2020 Elk Valley Regional Water Quality Model Update – Annex B

Hydrology Modelling – Set-up, Calibration and Future Projections Report

Rev1

May 2022

This report was prepared with assistance from:

GOLDER ASSOCIATES LTD.

Shelby Hawkins Junior Water Resources Specialist

J.P. Bechtold, MASc, PBiol, RPBio Principal, Senior Water Quality Specialist

There Coef

Steve Kaufman, MSc, EP Associate, Hydrologist

Executive Summary

This report, Annex B of the 2020 Regional Water Quality Model Update, describes the set-up and calibration of the Flow Component (FC) of the 2020 Regional Water Quality Model (RWQM). It includes a description of the methods used to generate future flows and the resulting future flow estimates. The RWQM was initially developed in 2014 to support the development of the Elk Valley Water Quality Plan. It was subsequently updated in 2017 pursuant to Section 9.9 of *Environmental Management Act* (EMA) permit 107517 and used to develop the 2019 Implementation Plan Adjustment (2019 IPA). Section 9.9 of EMA Permit 107517 identifies the need to update the RWQM every three years; hence, the 2020 RWQM Update has been undertaken to continue to meet this permit condition.

Updates to the FC carried out as part of the 2020 RWQM Update include, but are not limited to:

- changing from an analogue-driven modelling approach to one based directly on climate (i.e., the 2020 RWQM uses climate data as the primary input, as opposed to the flow-based analogues used in the 2017 RWQM);
- developing and including a waste rock hydrology module to simulate water flow through waste rock spoils;
- developing and including a snowmelt runoff module to simulate water flow from undisturbed areas and to estimate infiltration rates into waste rock spoils;
- increasing the spatial scale and level of detail to better represent sub-catchments within each mine site and within the larger mine-affected tributaries;
- using the same mine site, water management and mine plan information as that used in site water balance models to improve consistency among the different planning tools used by Teck;
- accounting for groundwater surface water partitioning at monitoring locations and locations where intakes or other water collection systems may be required for water quality management; and
- extending the historical period considered in the model to include data collected from 2017 to 2019.

Following completion of the updates, the FC was calibrated using a systematic approach, and model performance was evaluated at tributary mouths and locations in the Fording River, Line Creek and Michel Creek mainstems by comparing measured and modelled flows. The number of nodes included in the calibration was similar to that in the 2017 RWQM Update.

Performance of the FC was evaluated using a combination of standard goodness-of-fit statistics (e.g., Nash-Sutcliffe Efficiency) and graphical techniques (e.g., mean flow hydrographs). Overall, model performance has improved relative to that of the 2017 RWQM. Estimated water flows through mine-affected tributaries tend to more closely match measured flows, with reasonable replication of both winter low flows and freshet high flows at most tributary locations. Performance at some tributary locations continues to be rated as "poor" or "poor but improved"; however, such performance ratings do not impede overall model function and effectiveness. Mainstem performance continues to be strong, with some incremental improvements being achieved in areas where model performance was already good. The

model is fit for purpose and can be effectively used to support mitigation planning, project planning, and assessment.

The approach to estimating flows in the Elk River remains unchanged; it continues to be based on a scaling method, whereby monitored data are scaled based on watershed area to represent instream flow. This approach continues to be used in the Elk River, because the Elk River watershed is largely undisturbed by mining activity and mining activities are expected to have a negligible influence on the current flow regime and available flow data records are strong and considered to be representative of both historical and future flow conditions.

Estimates for future flows through mine-influenced tributaries and river mainstems are generated using historical climate records, with a focus on the 2000 to 2019 period. The chosen information is repeatedly fed into the model in an iterative, multi-realization fashion to generate a range of future flow estimates for each week of each future year. Three statistics from the resulting weekly dataset, the 10th percentile, median and 90th percentile, are pulled forward and provided to the Water Quality Component for the simulation of constituent concentrations under high (90th percentile), low (10th percentile) and median flow conditions.

Contents

1		Introduction		
2		Overview		
3	3 Hydrologic Setting and Conceptual Model			9
	3.	1	Introduction	9
	3.	2	Hydrologic Setting	9
		3.2.1	Geographic Setting	9
		3.2.2	Climatic Regime	.11
	3.	3	Sub-Catchment Conceptual Model	.12
		3.3.1	Sub-Catchment Water Balance Components	.12
		3.3.2	Precipitation	.13
		3.3.3	Evapotranspiration and Sublimation	.15
		3.3.4	Runoff, Streamflow and Surface Water Yield	.16
		3.3.5	Shallow Groundwater Recharge and Discharge	.17
		3.3.6	Deep Percolation of Groundwater	.19
		3.3.7 Reac	Interaction between Surface Water and Groundwater in Watercourses (Losing and Gaining nes)	19
		3.3.8	Storage	
	3.		Waste Rock Spoil Conceptual Model	
		3.4.1	Overview	
		3.4.2	Waste Rock Water Balance	
		3.4.3	Physical Properties and Water Storage	
		3.4.4	Evaporation, Infiltration and Percolation	
		3.4.5	Waste Rock Discharge	
4		Nume	rical Model - Part I: Model Set-Up	
	4.	1	Introduction	.24
	4.	2	Model Structure	.33
	4.	3	Model Input Information	.34
		4.3.1	Overview	.34
		4.3.2	Meteorological Data	35
				.00

4.3.4	Mine Plan Information, Sub-Catchment and Land Use Information	47
4.3.5	Mine Water Management Information	47
4.3.6	Surface Water - Groundwater Partitioning Information	47
4.3.7	Information from Hydrogeological Models	50
4.3.8	Water Quality Mitigation Information	50
4.4	Processing Meteorological Inputs (Global Climate Module)	50
4.4.1	Purpose	50
4.4.2	Methods	50
4.5	Generating Sub-Catchment-Specific Climate Information (Sub-Catchment Climate Module)	58
4.5.1	Purpose	58
4.5.2	Methods	58
4.6	Estimating Flow from Undisturbed and Disturbed, Non-Spoil Areas (Snowmelt Runoff Module).	63
4.6.1	Purpose	63
4.6.2	Methods	63
4.7	Estimating Flow from Waste Rock Spoils (Waste Rock Hydrology Module)	65
4.7.1	Purpose	65
4.7.2	Methods	65
4.8	Tracking Water Volumes and Levels in Backfilled, Flooded Pits (Pit Module)	68
4.8.1	Purpose	68
4.8.2	Methods	68
4.9	Accounting for Changes to Pit Seepage and Groundwater Flows (Pit Seepage Calculations)	69
4.9.1	Purpose	69
4.9.2	Methods	70
4.10	Accounting for Water Management Activities (Water Management Module)	71
4.10.	1 Purpose	71
4.10.	2 Methods	72
4.11	Accounting for the Effects of Reclamation	73
4.11.	1 Purpose	73
4.11.	2 Methods	74
4.12	Verifying the Sub-Catchment Water Balance (Water Balance Module)	75
4.12.	1 Purpose	75
4.12.	2 Methods	75

	4.13	E	stimating Total Flows at Tributary Nodes	76
	4.1	13.1	Purpose	76
	4.1	13.2	Methods	76
	4.14	E	stimating Flows at the Fording River Mainstem Nodes	76
	4.1	14.1	Purpose	76
	4.1	14.2	Methods	76
	4.15	E	stimating Flows at Michel Creek Mainstem Nodes	77
	4.1	15.1	Purpose	77
	4.1	15.2	Methods	78
	4.16	E	stimating Flows at the Elk River Mainstem Nodes	80
	4.1	16.1	Purpose	80
	4.1	16.2	Methods	80
	4.17	A	ccounting for Surface Water-Groundwater Partitioning at Model Nodes	81
	4.1	17.1	Purpose	81
	4.1	17.2	Methods	81
	4.18	G	enerating Future Flow Projections	83
	4.1	18.1	Purpose	83
	4.1	18.2	Methods	83
	4.19	A	ccounting for Water Quality Management Measures	86
	4.1	19.1	Purpose	86
	4.1	19.2	Methods	86
	4.20	A	ssumptions	87
5	Nu	Imer	ical Model - Part II: Calibration and Future Projections	
	5.1	С	verview of the Calibration Process	
	5.1	1.1	Quality Assurance Checks: Review Model Inputs	
	5.1	1.2	Review and Refine Operation-Specific Climate Input Adjustments	93
	5.2	С	verview of the Calibration Process	95
	5.2	2.1	Input Data Quality Checks	96
	5.2	2.2	Calibration of Runoff Components	
	5.2	2.3	Adjust Groundwater Partitioning	
	5.2	2.4	Iteration with Water Quality Component of RWQM	
	5.3	Ν	lodel Performance Metrics	

5.4	Results of Model Calibration	105
	Fording River Watershed and Mine-Influenced Tributaries Elsewhere in the Elk Valley	
5.4.2	Michel Creek	116
5.4.3	Elk River	118
5.4.4	GH_ERC	120
5.4.5	EV_ER4 to EV_ER2	120
5.4.6	EV_ER1 to RG_ELKFERNIE	121
5.5	Future Flow Projections	122
6 Refer	ences	128

Tables

Table 2-1:	Summary of Key Changes to the Flow Component of the 2020 Regional Water Quality Model				
Table 4-1:	Flow Modelling Nodes in the Elk River and Fording River Mainstems and their Tributaries that are of Most Relevance to the Discussion of Model Performance				
Table 4-2:	Meteorological Data Reviewed and Compiled for the 2020 RWQM				
Table 4-3:	Long-term (>5 years) Environment Canada and Climate Change Flow Monitoring Data in the Elk River Watershed				
Table 4-4:	Teck Fording River Operations Flow Monitoring Data Reviewed for the Flow Component 42				
Table 4-5:	Teck Greenhills Operations Flow Monitoring Data in the Elk River Watershed Reviewed for the Flow Component				
Table 4-6:	Teck Line Creek Operations Flow Monitoring Data in the Elk River Watershed Reviewed for the Flow Component				
Table 4-7:	Teck Elkview Operations Flow Monitoring Data in the Elk River Watershed Reviewed for the Flow Component				
Table 4-8:	Teck Coal Mountain Operations Data in the Elk River Watershed Reviewed for the Flow Component46				
Table 4-9:	Regression Relationships used to Infill Data Gaps52				
Table 4-10:	Fording Cominco Infilled Climate Data Summary54				
Table 4-11:	Sparwood Climate Data Summary56				
Table 4-12:	Estimated Groundwater Flows from Fording River Operations Sub-Catchments Reporting to Turnbull Tailings Storage Facility (Turnbull South Pit) and Swift Pit ^(a,b)				

Table 4-13:	Estimated Groundwater Flows from Greenhills Operations Sub-Catchments Reporting to Phase 3 to 6 Pits and Phase 7 Pit ^(a,b)
Table 4-14:	Estimated Groundwater Flows from Elkview Operations Sub-Catchments Reporting to Natal Pit, Baldy Ridge Pit, Cedar Pit and Adit Ridge Pit ^(a,b)
Table 4-15:	Non-consumptive Water Transfers Included the 2020 RWQM72
Table 4-16:	Estimating Flows at Fording River Nodes77
Table 4-17:	Estimating Flows at Michel Creek Nodes78
Table 4-18:	Flows at Regional Mainstem Nodes (Locations where Scaling Methods are Applied)80
Table 4-19:	Flow Thresholds Used to Define Surface Water - Groundwater Partitioning in the 2020 Regional Water Quality Model
Table 4-20:	Comparison of the Characteristics of Future Flow Timeseries (2020 to 2060) Developed for the Mouth of the Fording River Using Different Climate Datasets
Table 4-21:	Summary of Assumptions Relevant to the FC 2020 RWQM87
Table 5-1:	Calibration Nodes in the Fording River Watershed and Mine-Influenced Tributaries Elsewher in the Elk Valley90
Table 5-2:	Calibration Nodes in the Mainstem of Michel Creek93
Table 5-3:	Elk River – Model Performance Nodes93
Table 5-4:	Calculated Measurand Simulated AET for Waste Rock Spoils
Table 5-5:	Model Performance Evaluation Measures104
Table 5-6:	Model Performance Summary for the Fording River Watershed and in Other Mine-Influenced Tributaries, Based on the Calibrated FC of the 2020 RWQM
Table 5-7:	Model Performance Summary at Michel Creek Mainstem Nodes for the FC of the 2020 RWQM117
Table 5-8:	Model Performance Summary at Elk River Nodes in the FC of the 2020 RWQM

Figures

Figure 2-1:	Flow Component Comparisons: 2017 RWQM (top – analogue catchment and scaling methods) and the 2020 RWQM (bottom – climate-driven modules and scaling methods)	Ū	
Figure 2-2:	Hydrology Modelling Methods in the 2020 RWQM	8	
Figure 3-1:	Geographic Setting of the Elk River Watershed	0	
Figure 3-2:	Monthly Mean, Minimum and Maximum Average Air Temperature and Mean Monthly Precipitation for the Elk River Watershed	1	

Figure 3-3:	Conceptual Sub-Catchment Water Balance Diagram13
Figure 3-4:	Climatological Zones in the Elk River Watershed (adapted from Obedkoff 1985)14
Figure 3-5:	Monthly Mean Lake Evaporation and Evapotranspiration Estimates for the Elk River Watershed15
Figure 3-6:	Conceptual Hydrograph Illustrating Seasonal Fluctuations in the Contributions of Groundwater Baseflow and Surface Runoff to the Measured Streamflow Hydrograph
Figure 3-7:	Conceptual Model of Groundwater Flow at a Tributary Scale in the Elk Valley (SNC 2017)18
Figure 3-8:	Conceptual Hydrograph Illustrating Contributions of Measured Surface Flows and Unaccounted Subsurface Flows to Total Flow (Catchment Yield)20
Figure 3-9:	Conceptual Model of Flow into and through a Waste Rock Spoil
Figure 4-1:	Geographic Extent of the Regional Water Quality Model and Location of Some of the Flow Modelling Nodes Included in the Model25
Figure 4-2:	Fording River Operations – Some of the Mainstem and Tributary Modelling Nodes Included in the Model
Figure 4-3:	Greenhills Operations - Some of the Mainstem and Tributary Modelling Nodes Included in the Model
Figure 4-4:	Line Creek Operations - Some of the Mainstem and Tributary Modelling Nodes Included in the Model
Figure 4-5:	Elkview Operations - Some of the Mainstem and Tributary Modelling Nodes Included in the Model
Figure 4-6:	Coal Mountain Operations - Some of the Mainstem and Tributary Modelling Nodes Included in the Model
Figure 4-7:	Meteorological Stations in the Elk River Watershed
Figure 4-8:	Environment and Climate Change Canada Flow Monitoring Stations in the Elk River Watershed
Figure 4-9:	Some of the Teck Flow Monitoring Stations in the Elk River Watershed40
Figure 4-10:	Model Nodes with Partitioning of Surface Water and Groundwater in the 2020 RWQM \dots 49
Figure 4-11:	Source of Precipitation Data for Infilling Gaps in the Fording River Cominco Station Data Record
Figure 4-12:	Source of Temperature Data for Infilling Gaps in the Fording River Cominco Station Data Record
Figure 4-13:	Source of Precipitation Data for Infilling Gaps in the Sparwood Station Data Record52
Figure 4-14:	Source of Temperature Data for Infilling Gaps in the Sparwood Station Data Record52
Figure 4-15:	Fording Cominco Monthly Climate Data Summary (1970 to 2019)55

Figure 4-16:	Annual Precipitation for the Infilled Fording Cominco Station (1970 to 2019)55	5
Figure 4-17:	Annual Average Air Temperatures from the Infilled Fording Cominco Station (1970 to 2019))56
Figure 4-18:	Sparwood Monthly Climate Data Summary (1970 to 2019)57	7
Figure 4-19:	Annual Precipitation from the Infilled Sparwood Station (1970 to 2019)57	7
Figure 4-20:	Mean Air Temperatures from the Infilled Sparwood Station (1970 to 2019)58	3
Figure 4-21:	Regression Relationships to Derive a Temperature Lapse Rate)
Figure 4-22:	Regression Relationship to Derive a Precipitation Lapse Rate60)
Figure 4-23:	Snowpack Data Summary from the Morrissey Ridge Snow Pillow Station (accessed from D BC, August 2020)61	
Figure 4-24:	Potential Evapotranspiration Rates at Elk Valley Sites (source: OKC 2018)62	2
Figure 4-25:	Actual Evapotranspiration Rates at Elk Valley Waste Rock Spoils (source: OKC 2018)63	3
Figure 4-26:	Key Components of the Model Set Up for the 2020 Waste Rock Hydrology Module67	7
Figure 4-27:	Tracking Water Volumes and Levels in Pits in the FC of the RWQM69)
Figure 4-28:	Effect of Reclamation on Modelled Yield from the Hard Mine and CCR Runoff Coefficient75	5
Figure 4-29:	Example of Time Shifting Climate Data Years for 20 Realizations	ł
Figure 4-30:	Mean Annual Precipitation Comparisons for Different Historical Periods85	5
Figure 4-31:	Comparisons of Mean Monthly Total Precipitation for Different Climate Data Periods at Fording Cominco Station85	5
Figure 5-1:	Classification of Flow Conditions in each Hydrologic Year (i.e., October to September) from 2004 to 2019, Based on Annual Average Flows	
Figure 5-2:	Classification of Flow Conditions in each Hydrologic Year from 2004 to 2019, Based on Average Winter Flow (i.e., December to March)95	5
Figure 5-3:	Calibration Process for the Flow Component of the 2020 RWQM95	5
Figure 5-4:	2020 RWQM Climate Dataset Compared Against Local Stations Operated by Teck (Air Temperature)	7
Figure 5-5:	2020 RWQM Climate Dataset Compared Against Local Stations Operated by Teck (Summe Precipitation)	
Figure 5-6:	2020 RWQM Climate Dataset Compared Against Local Stations Operated by Teck (Total Precipitation))
Figure 5-7:	Adjustment to Groundwater Partitioning as part of Model Calibration (West Line Creek Example)	3
Figure 5-8:	Comparison of Annual Yields (mm) – GH_ERC and EV_ER4, 2004 – 2019 120)

2020 Regional Water Quality Model Update - Annex B: Hydrology Modelling

Figure 5-9:	Comparison of Annual Yield (mm) from Ungauged Areas Reporting to the Elk River Between EV_ER4 and EV_ER2 to that at EV_ER4 (1970 to 2019)
Figure 5-10:	Comparison of Annual Yield (mm) from Ungauged Areas Reporting to EV_ER1 and that at RG_ELKFERNIE (1970 – 2019)
Figure 5-11:	Comparison of Future Flow Projections, expressed as average weekly flows in Year 2032, between the 2017 RWQM (mean) and 2020 RWQM (median) ¹
Figure 5-12:	Comparison of Future Flow Projections, expressed as average weekly flows in Year 2032, between the 2017 RWQM (1-in-10 year high) and 2020 RWQM (90 th percentile) ¹
Figure 5-13:	Comparison of Future Flow Projections between the 2017 RWQM (1-in-10 year low) and 2020 RWQM (10 th percentile) ¹

Appendices

Appendix A Calibration Results Appendix B Surface Water – Groundwater Interactions Appendix C Statistical Test Descriptions

Appendix D Model Performance Output Summary

1 Introduction

The set-up and calibration of the Flow Component of the 2020 Regional Water Quality Model (RWQM) is described in this report. It also includes a description of the methods used to generate future flows and the resulting future flow estimates. The RWQM was initially developed in 2014 to support the development of the Elk Valley Water Quality Plan. It was subsequently updated in 2017 pursuant to Section 9.9 of *Environmental Management Act* (EMA) permit 107517 and used to develop the 2019 Implementation Plan Adjustment (2019 IPA). Section 9.9 of EMA Permit 107517 identifies the need to update the RWQM every three years; hence, the 2020 RWQM Update has been undertaken to continue to meet this permit condition.

The 2020 RWQM is a regional planning and assessment tool, which is used to estimate concentrations of selenium, nitrate, sulphate, cadmium and other water quality constituents at Compliance Points, Order Stations and other locations within the Fording River and Elk River watersheds. It has been calibrated to historical information and used to evaluate how water quality constituent concentrations may change in future as a result of mining in the Elk Valley and the implementation of water quality management and mitigation.

This report (Annex B) is one of five documents included in the March 2021 submission to the British Columbia (BC) Ministry of Environment and Climate Change Strategy and the BC Ministry of Energy, Mines and Low Carbon Innovation (EMLI). The other four documents consist of:

- The 2020 RWQM Update Report, which is the main report and includes a description of the 2020 RWQM Update, a discussion of model performance, future projections based on the management measures included in the 2019 IPA and a consolidated set of monitoring recommendations to support future model updates.
- Annex A: Geochemical Source Term Methods and Inputs for the 2020 Update of the Elk Valley Regional Water Quality Model, which details updates made to the geochemical source terms used to define constituent loading rates in the Elk Valley.
- Annex C: 2020 RWQM Update: Water Quality Modelling Set-up and Calibration Report, which outlines updates made to the Water Quality Component of the 2020 RWQM and describes its performance in terms of replicating measured concentrations of Order constituents in the Elk River and Fording River mainstems, as well as to the mouths of selected tributaries.
- Annex D: 2020 RWQM Update: Water Quality Model Projections Comparison Report, which describes the methods used to generate projections of future concentrations of selenium, nitrate, sulphate and cadmium at Compliance Points, Order Stations and other selected locations in the Elk Valley, along with the resulting projections based on permitted development and the mitigation measures included in the 2019 IPA.

2 Overview

The 2020 RWQM is a regional planning and assessment tool. Its purpose is to estimate how water quality conditions in the Elk Valley could change as a result of mining and water quality management activity.

At its core, the 2020 RWQM consists of four components:

- a hydrology component (known as the Flow Component; FC) that is used to estimate total water flow in tributary watersheds of the Fording River, and Elk River,
- geochemical source terms that describe the release of selenium, sulphate, nitrate and other constituents from waste rock, pit walls and other mine areas (e.g., tailings and coarse coal rejects).
- mine information, including historical mine site data and future-looking life of mine plans; and
- a water quality constituent transport component (known as the Water Quality Component; WQC) that is used to estimate constituent concentrations in mine-affected tributaries, the Elk River, Fording River, and the Koocanusa Reservoir.

The 2014 RWQM and the 2017 RWQM included these same four components, although the content of each component has been refined with each model update. The hydrologic setting and conceptual basis for the FC are outlined in Section 3 while the set-up and calibration of the FC is presented in Sections 4 and 5, respectively. The geochemical source terms and the WQC are described in Annexes A and C, respectively.

The FC is a sub-catchment-scale water balance model developed using a commercially available, general-purpose simulation software platform called GoldSim (GoldSim Technology Group 2014). A detailed description of the model set-up is provided in Section 4. Inputs to the FC include mine site information, meteorological data and hydrometric monitoring information from the Elk Valley. The FC-generated flow information is an input to the WQC to estimate constituent concentrations in mine affected tributaries, the Fording River and the Elk River

The FC is calibrated to historical conditions, as described in Section 5. This process involves simulating historical flows in the Elk Valley and comparing model output to monitoring results. The model is then adjusted as required, in an iterative fashion, to achieve a suitable fit to the measured data. Adjustments typically involve changes to the calibration factors and modifications to assumptions in model inputs. During the calibration process, data gaps and areas for potential future refinement are identified. These considerations form the basis for future monitoring recommendations and key uncertainties, which are summarized in the 2020 RWQM Update Report.

Once calibrated, the FC can be used to project future flows in the Elk Valley and used as an input to the WQC to support the generation of future water quality projections. The process to generate future flow projections is described in Section 4, with resulting projections discussed in Section 5, while the approach to generate future water quality projections and associated results are outlined in Annex D.

The 2020 RWQM Update included several focus areas of improvement for the FC. These included:

- increased spatial discretization, which results in an improved ability to represent water management activities and to evaluate the potential effects of smaller scale (within catchment) changes at each operation
- parameterization of water balance inputs and outputs to support the shift to a climate-drive model framework, as well as accounting for surface water groundwater partitioning where relevant to facilitate model calibration and potential mitigation planning
- developing an alternative method for modelling flow from waste rock spoils to help remove the previous dependence on a single waste rock hydrograph developed using data from Cataract Creek
- improving flow calibration in tributaries that have been targeted for mitigation where model performance was previously classified as poor

The relevant updates to the FC of the RWQM to address these focus areas are summarized in Table 2-1 and illustrated in Figure 2-1 and Figure 2-2.

Table 2-1: Summary of Key Changes to the Flow Component of the 2020 Regional Water Quality Model

Description	2017 RWQM	2020 RWQM	Rationale
Spatial Scale and Level of Spatial Detail	 Model domain spans from the Elk River upstream of GHO through to the Koocanusa Reservoir, inclusive of Fording River watershed and the reservoir itself All five operations (FRO, GHO, LCO, EVO and CMO) explicitly represented in the model framework Model contains a total of 96 individual sub- catchments 	 Model domain unchanged Four of five operations (FRO, GHO, LCO and EVO) explicitly represented in the model framework CMO no longer included in model framework; flow and loads from CMO defined using outputs from the CMO Water and Load Balance Model Level of spatial detail increased at each operation; model contains a total of 154 individual sub-catchments 	 Flows were generated at a sin ability of the RWQM to simulate the RWQM to be us and local scale changes to mean consistency between the second statement of the secon
Historical Period Considered in Model Set-up	• 1995 to 2015	1970 to 2018, with calibration focused on period from 2004 to 2018	 The model starts with data fr on the period from 2004 to 2 Three additional years of dat RWQM (i.e., 2016 through 20 include the additional years of Data from 2019 were prelimited
Simulation Time Step	• Weekly	• Daily	 Meteorological data inputs an daily time step. Daily input data supports interesting the state of the support of the suppor
Reporting Time Period	Weekly or Monthly	Weekly or Monthly	Not applicable (no change)
Meteorological data	• Not used, except as input to the LCO Dry Creek UBCWM, which was used to generate a representative hydrograph for undisturbed areas in the Fording River watershed	 RWQM is now climate-driven, and no longer relies on representative hydrographs Precipitation and air temperature data from two representative regional climate stations are applied across the model domain, scaled based on elevation within each individual sub-catchment Precipitation and air temperature data from several local climate stations considered for comparisons against the modelled data (where available) 	 Climate-driven model framew simulation of flow and water Allows for greater flexibility, in patterns on receiving water of
Hydrometric data	 Flow data from relevant flow monitoring stations used as an input for analogue catchments and regional (mainstem) stations Flow data from selected tributary and mainstem monitoring stations used for model performance evaluation 	 Flow data from flow monitoring stations on Elk River used as model input Flow data from tributary and mainstem monitoring stations used for model performance evaluation 	 Reduced reliance on flow motivation to a climate-driven Additional flow data were available
Waste rock deposition	 Based on available data records for historical actuals (up to 2016 year-end) Waste rock allocation by drainage (i.e., spreadsheet of annual and cumulative volumes by year) 	 Based on available data records (up to 2018 year-end) Checked and adjusted to match current drainage delineations with aerial photography and survey information Waste rock allocation by drainage (i.e., spreadsheet of annual and cumulative volumes by year) 	Historical and future waste ro approach to modelling flows
Mine plan information	 2016 permitted mine plans 5-year snapshots of surface contours for most areas (i.e., dxf files) 5-year snapshots of mined-out contours (i.e., dxf files) Details on sequencing (e.g., status maps) 	 2019 permitted mine plans 5-year snapshots of surface contours for most areas (i.e., dxf files) 5-year snapshots of mined-out contours (i.e., dxf files) Details on sequencing (e.g., status maps) 	The latest available permitter

le for Change / Intended Improvement

a sub-catchment scale within each mine site to improve the nulate within site across sub-catchment variability used to evaluate changes to within site water management o mining.

ween the RWQM and site models.

from 1970 and runs to 2018. The model calibration focuses 2018.

data were available for model calibration relative to the 2017 2018), so the model performance period was adjusted to s of data.

minary and not considered for calibration.

are daily, allowing the model to complete calculations at a

ntegration with local site water balance models.

ework allows for a more mechanistic approach to the er quality in the Elk Valley /, in terms of looking at the effects of different climatic

er quantity and quality.

monitoring data as an input to the model because of the en model for tributary catchments and waste rock spoils. available for calibration (relative to the 2017 RWQM Update).

e rock deposition information was required for the revised vs from waste rock spoils.

ted mine plans were incorporated into the 2020 RWQM.

Table 2-1:	Summary of Ke	y Changes to the Flow	Component of the 2020 Re	gional Water Quality Model
------------	---------------	-----------------------	--------------------------	----------------------------

Description	2017 RWQM	2020 RWQM	Rationale
Water management information	 Water flow diagrams developed through discussions with site water leads to represent best understanding of historical and future water management activities Existing and planned water management infrastructure data (i.e., shapefiles of alignments of diversions, ditches, rock drains, ponds and pipelines) Description of tailings water management facilities and wash plant water use Pit dewatering pumping data and pit pumping plans Existing water management plans 	 Expanded water flow diagrams showing a greater level of on-site detail related to historical and future water management activities Existing and planned water management infrastructure data (i.e., shapefiles of alignments of diversions, ditches, rock drains, ponds and pipelines) Description of tailings water management facilities and wash plant water use Pit dewatering pumping data and pit pumping plans Existing water management plans Dust suppression information 	 Water flow diagrams were de water balance models, achie Input information was develo water balance models.
Flows from undisturbed (non-mine affected) areas of tributary catchments	 Various analogue catchments were used (e.g., Harmer, Line, LCO Dry, Hosmer) for all 	 The Snowmelt Runoff Model (SRM) adopted to model non-mine affected (undisturbed) areas in all sub-catchments. 	 SRM allows for tributary-spe SRM facilitates easier trackir catchments. SRM uses the same input da SRM is used in the site wate among different Teck water restricts.
Flows from mine- affected (disturbed) areas (excluding waste rock spoils)	 Analogue catchment – Cataract Creek (i.e., the same analogue used for waste rock areas was also used for hard mine areas) 	 SRM adopted for modelling hard mine surfaces (i.e., pit walls, haul roads, and plant areas) and coarse coal reject spoils, although SRM set-up altered to reflect different characteristics of land types being modelled. 	 The use of a single mine ana spoils and hard mining surfa The revised approach to momodel non-mine affected are The change is consistent with
Flows from waste rock spoils	Analogue catchment – Cataract Creek	 Climate-driven waste rock hydrology module developed and implemented for all waste rock spoils. 	 The waste rock hydrology m model for movement of wate The inclusion of a waste rock limitations associated with use
Water stored in flooded, backfilled pits	 Pits modelled to fill up to the decant elevation at varying rates (depending on the flow scenario being modelled). Submerged waste rock volumes not tracked. 	 Pits modelled to fill up at rates dictated by climate conditions. For pits where flooding is modelled under future and historical conditions, submerged waste rock volumes estimated for the end-of-mining pit configurations. 	 The proposed change overce unrealistically slow or fast de Accounting for submerged w for submerged waste rock in
Mine water management activities represented in the model framework	 Pit pumping Clean water diversions Mine water diversions Consumptive water use in coal processing 	 Pit pumping Clean water diversions Mine water diversions / pumping Consumptive water use in coal processing Use of water for dust suppression 	 Dust suppression withdrawa Water management activities balance model to confirm co
Effects of reclamation	Not considered	 Long-range reclamation plans included Evaluated the effects of reclamation by modelling projected decreases in net percolation rates in waste rock spoils. 	The change incorporates the reduced percolation rates at and future water quality.

le for Change / Intended Improvement

developed collaboratively with the teams working on the site nieving greater consistency between models. eloped collaboratively with the teams working on the site

pecific calibration at more locations. king of the overall water balance in individual sub-

t data as the waste rock hydrology module. ater balance models, achieving consistency in approach er models.

analogue for all mine disturbance areas (i.e., both waste rock rfaces) was identified as a limitation of the 2017 RWQM. nodel hard mine surfaces is consistent with the method to areas.

with the current approach for the site water balance model.

module achieves greater consistency with the conceptual ater through waste rock spoils. ock module into the model framework eliminates the

using a single analogue for the Elk Valley.

ercomes a previous model limitation wherein pits filled either depending on the flow scenario chosen. d waste rock volumes allows application of the source terms is in the water quality model.

*w*al information was incorporated where available. ties cross-checked with representation within site water consistency

the current best understanding of the effect of reclamation on at waste rock spoils and overall changes to the water balance

Table 2-1: Summary of Key Changes to the Flow Component of the 2020 Regional Water Quality Model
--

Description	2017 RWQM	2020 RWQM	Rationale f	
Baseflow changes due to pit seepage	Pit seepage rates incorporated relative to baseline conditions, using results from project- specific groundwater models that were developed for environmental assessments or permit amendment applications (e.g., Swift, Cougar Pit Extension, Baldy Ridge Extension)	 Methods from the 2017 RWQM retained. Latest available data considered where available. 	Not applicable	
Sub-catchment water balance	Not considered	Annual water balance calculations for individual sub-catchments.	 Annual water balance calcula identification and resolution o evapotranspiration rates). 	
Sub-catchment yield (Total flows at tributary nodes)	Modelled flows are equivalent to total flows	 Modelled flows are equivalent to the total flows In selected locations, partitioning between surface water and groundwater flows incorporated (see the row titled "Surface water - Groundwater partitioning at nodes") 	 The development of an impro locations that support model for capture or diversion. Quantification of groundwate of the model, derivation of tot 	
Flows at mainstem nodes – Fording River	Total flows summed from upstream tributary contributions to the Fording River	 No changes to the method from the 2017 RWQM (i.e., summing flows from upstream tributaries). 	Not applicable	
Flows at mainstem nodes – Michel Creek	 Total flows summed from upstream tributary contributions to Michel Creek 	 Scaling method and ranked regression equations used to estimate flows in Michel Creek upstream of Elkview Operations (at EV_MC3), except for CM_MC2. Flows at CM_MC2 (i.e., Michel Creek CMO compliance point) estimated from the CMO Water and Load Balance Model Flows at modelling nodes adjacent to and downstream of Elkview Operations calculated as the sum of flow at EV_MC3 plus simulated inputs entering Michel Creek between EV_MC3 and the node in question. 	 Using a ranked-regression ap Elkview Operations at EV_M0 the production of flow from th EV_MC3. 	
Flows at mainstem nodes – Elk River	 Scaling methods or direct data inputs from hydrometric stations for the Elk River nodes 	 No fundamental changes to the methods from the 2017 RWQM Minor adjustments to the scaling equations were made 	Adjustments were primarily ir Elk River upstream of the For	
Surface water - groundwater partitioning at nodes	 Not quantified or considered explicitly during model calibration Implicitly accounted for in mitigation planning through the use of water availability (defined as the proportion of total catchment flow that is accessible at a given intake) 	 Total flow divided into surface water and groundwater components where relevant to model calibration and supported by available field data Flows were calibrated taking into consideration both measured surface flows and total watershed yield (as required to produce sufficient flow to meet surface and subsurface components). 	 Quantifying groundwater flow calibration helps support the systems. Quantifying groundwater flow capture or diversion supports of potential groundwater capt 	
Future flow projections	 Use of three statistical flow scenarios (average weekly flow, 1-in-10-year weekly low and weekly high flow) Future flow statistics are based on historical period between 1995 and 2015. 	 Estimates of future flow conditions developed using climate data from 2000 to 2019, and running that climate dataset repeatedly through the model framework Statistics from the resulting dataset generated for comparison to 2017 RWQM output. 	 A change to the approach wa catchment approach to a clim Climate-driven approach allow examine how changes to climenvironment. 	
Water quality management measures	 Not explicitly considered in the FC of the RWQM (only included in the WQC) 	 Existing water quality management measures incorporated in the FC Future mitigation and water quality management measures were not incorporated in the FC. 	 Existing measures were incol Future measures are only im and WQC and facilitate the e 	

CMO = Coal Mountain Operations, EVO = Elkview Operations, FRO = Fording River Operations, GHO = Greenhills Operations, LCO = Line Creek Operations, FC = Flow Component, RWQM = Regional Water Quality Model, SRM = Snowmelt Runoff Model, UBCWM = University of British Columbia Watershed Model, WQC = Water Quality Component.

le for Change / Intended Improvement

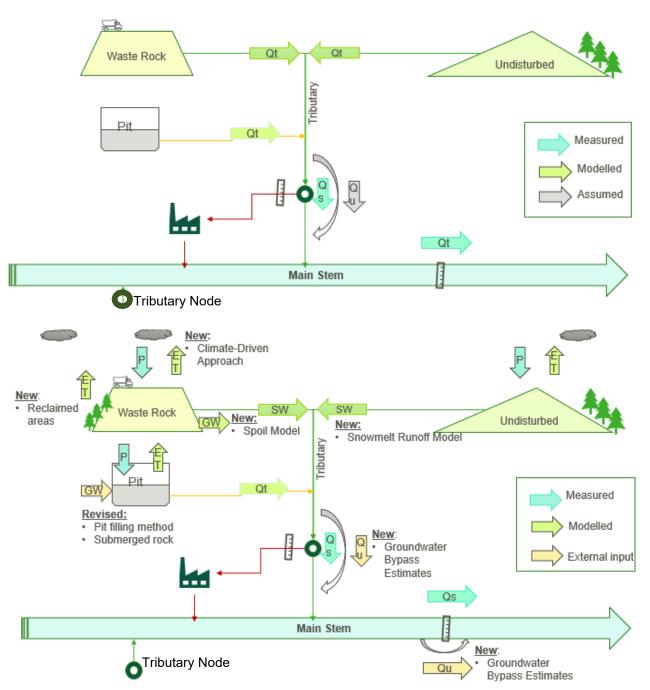
ulations allow for quality assurance checks and support the n of uncertainties (e.g., estimates of local precipitation or

proved understanding of sub-catchment yield is important at el calibration, as well as at locations where water is targeted

ater flow can be used to support the calibration and validation total loads, and interpretation of model projections.

A approach to estimate flows in Michel Creek upstream of MC3 for numerical simplicity and to avoid having to simulate in the relatively large undisturbed area present upstream of

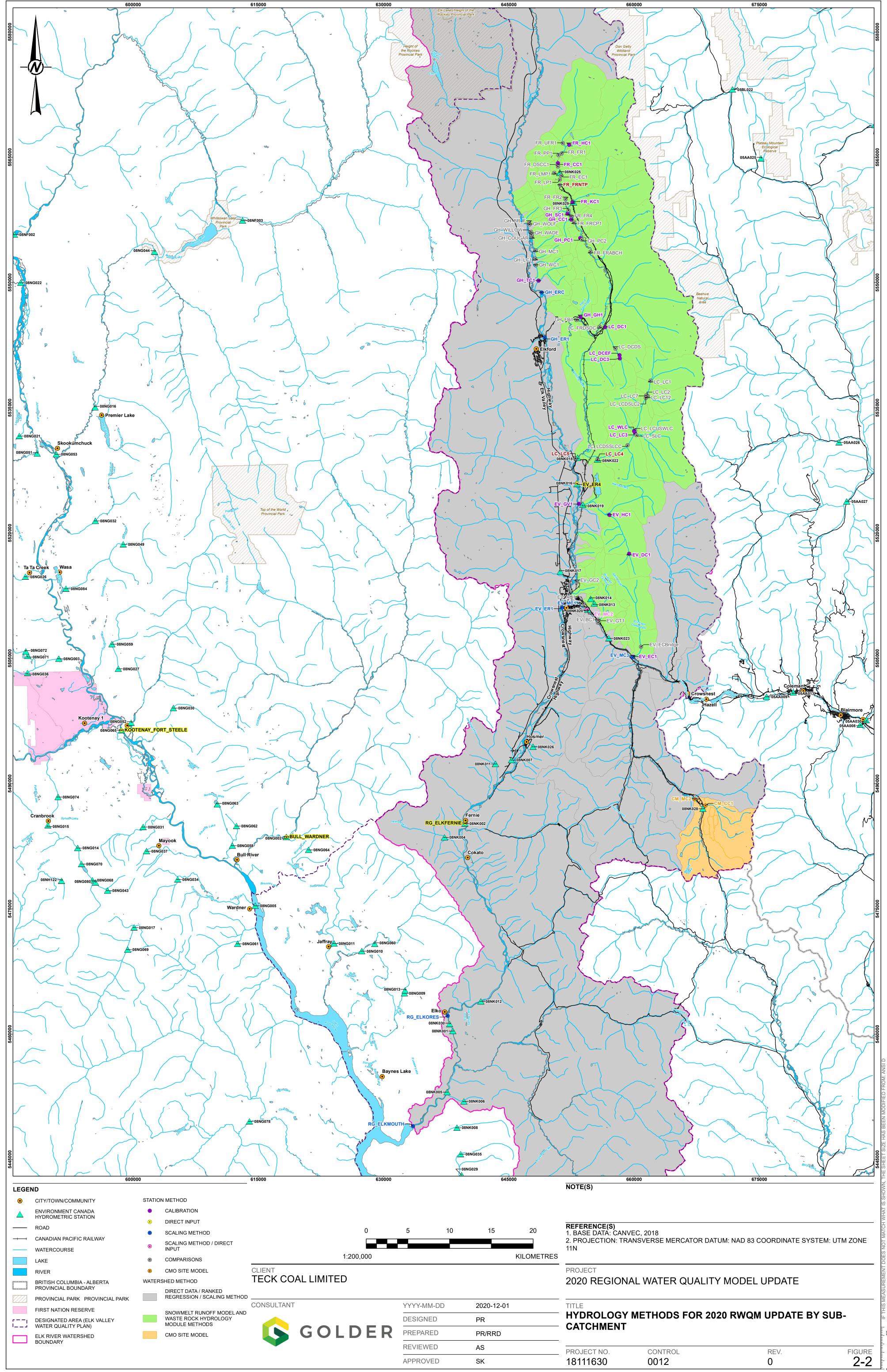
y informed by efforts to improve water quality calibration in the Fording River confluence.


ow components at monitoring stations that support model ne quantification of overall loading rates to downstream

ow components at locations where water is targeted for rts mitigation planning and facilitates a better understanding apture requirements.

was necessitated through the change from an analogue limate-driven hydrological model.

llows for greater model flexibility, including the potential to limate may affect water quantity and quality in the receiving


corporated as they may influence model calibration of the FC. implemented in the WQC to limit iteration between the FC e efficient examination of multiple scenarios.

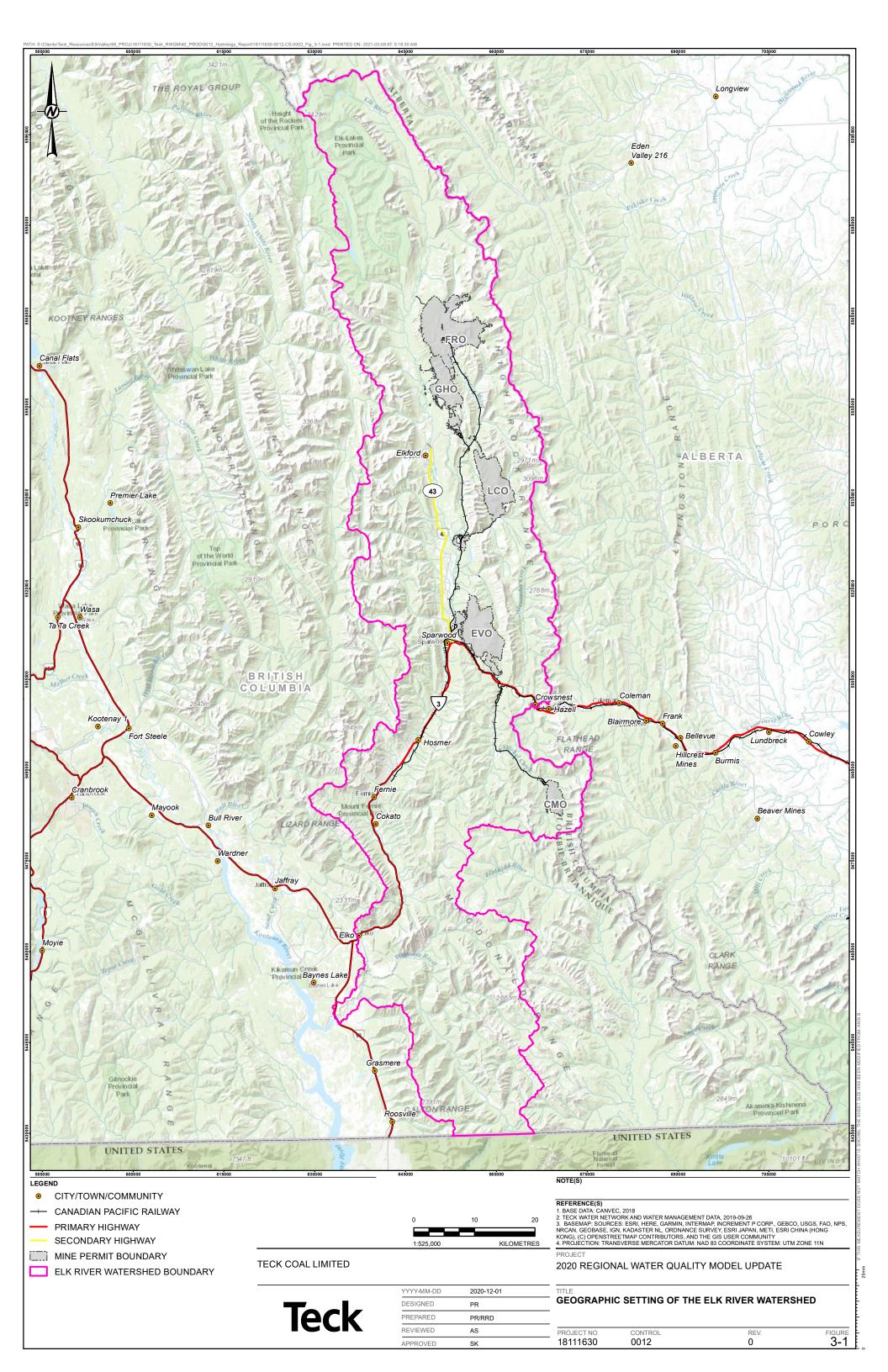
Acronyms: Qt = Total Flow; Qs = Surface Flow, Qu = Subsurface Flow, P = Precipitation, ET = Evapotranspiration, GW = Groundwater, SW = Surface Water.

Figure 2-1: Flow Component Comparisons: 2017 RWQM (top – analogue catchment and scaling methods) and the 2020 RWQM (bottom – climate-driven modules and scaling methods)

PATH: S:\Clients\Teck_Resources\ElkValley\99_PROJ\18111630_Teck_RWQM\40_PROD\0012_Hydrology_Report\18111630-0012-CS-0001_Fig_2_2.mxd PRINTED ON: 2021-03-08 AT: 10:03:24 AM

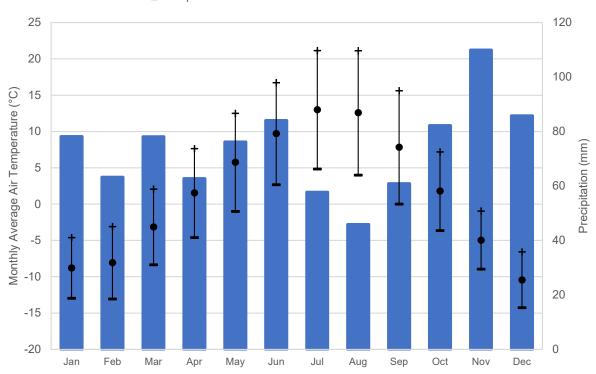
3 Hydrologic Setting and Conceptual Model

3.1 Introduction


This section includes a general description of the hydrologic setting and conceptual hydrology model upon which the flow component of the 2020 RWQM is based. The hydrologic setting (Section 3.1) is a description of the general mechanisms responsible for the hydroclimatic regime of the Elk Valley. The sub-catchment conceptual hydrology model (Section 3.2) is a description of the processes responsible for the generation of flows from mine operations, tributaries and mainstem locations, and overall water balance components. The waste rock spoil conceptual model (Section 3.4) is a description of the water flow dynamics through these features and their potential influence on downstream hydrographs.

An understanding of the setting and conceptual model allows for the development of a defensible numerical representation of the conceptual model, including reasonable assumptions and simplifications to meet modelling objectives. The translation of the conceptual model described below into a numerical framework is discussed in Section 4.

3.2 Hydrologic Setting


3.2.1 Geographic Setting

The Elk River watershed (British Columbia Watershed Code 349-248100) is a mountainous watershed in the interior continental regions of British Columbia and has its headwaters at Elk Pass in Elk Lakes Provincial Park at the British Columbia-Alberta border (Figure 3-1). The Elk River watershed area is approximately 4,450 km² at the Environment and Climate Change Canada (ECCC) hydrometric monitoring station at Phillips Bridge near the river mouth. The watershed ranges in elevation from approximately 750 metres above sea level (masl) at the mouth of the Elk River to 3,450 masl at the summit of Mount Joffre. Characterized by rugged terrain of the Front and Border Ranges of the Rocky Mountain, the Elk River watershed is north-south oriented, and the Elk River flows generally south-southwest through the towns of Elkford, Sparwood and Fernie, discharging into Koocanusa Reservoir approximately 120 km downstream of Teck's mining operations. Koocanusa Reservoir is located partly in British Columbia and partly in the State of Montana; it was formed by the construction of the Libby Dam on the Kootenay River. Major tributaries to the Elk River include the Fording River, Michel Creek, and the Wigwam River.

3.2.2 Climatic Regime

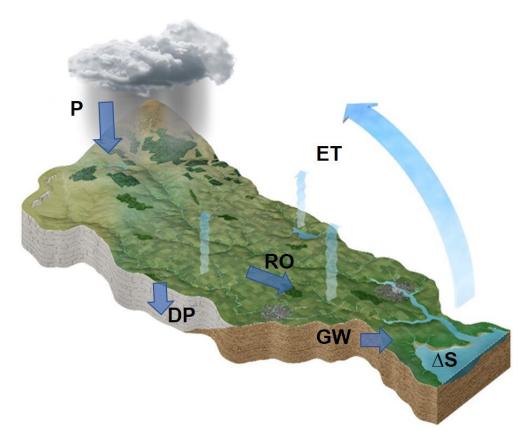
The climatic regime of the Elk River watershed is characterized by a continental climate with strong seasonality in precipitation and temperature (Figure 3-2). Accordingly, snow accumulates through the winter season and melts over the spring months (March, April and June), with the rate of melt influenced by local variation in elevation, hillslope, aspect and land cover. Warmer temperatures in the summer are typically accompanied by relatively low precipitation, and fall months are characterized by moderate temperatures and increased precipitation (Figure 3-2).

■Precipitation ● Mean T - Minimum T + Maximum T

Based on data recorded at the Sparwood climate station from 1980 to 2019, in-filled, and then adjusted to account for elevation differences between Sparwood climate station (1,138 masl) and the average elevation of the Elk River watershed (1,777 masl). $^{\circ}$ C = degrees Celsius, T = Temperature.

3.3 Sub-Catchment Conceptual Model

3.3.1 Sub-Catchment Water Balance Components


Exclusive of water balances applied to waste rock spoils (discussed in later sections), the water balance for a typical sub-catchment is illustrated in Figure 3-3 and can be expressed as follows:

$$P + \Delta S = RO + ET + DP - GW$$
 Eq. 1

Where:

Р	=	Precipitation, including rainfall and snowfall
ΔS	=	Change in water stored within the sub-catchment (e.g., in lakes, ponds or as snow accumulation)
RO	=	Surface and shallow subsurface discharge (i.e., water leaving the sib-catchment by means other than deep percolation or evapotranspiration)
ET	=	Evapotranspiration (including evaporation and sublimation losses to the atmosphere)
DP	=	Loss to groundwater through deep percolation
GW	=	Discharge of groundwater flow that originates from outside the sub-catchment

RO and GW together define watershed or sub-catchment yield, and the terms of the water balance equation can be expressed as units of volume / time (e.g., m³/day) or as units of depth / time (e.g., mm/year). The former can be useful in understanding the total magnitude of flow through a watershed (e.g., surface water discharge), while the latter can be more useful to compare hydrological processes between watersheds. Each component of the water balance equation is discussed further below.

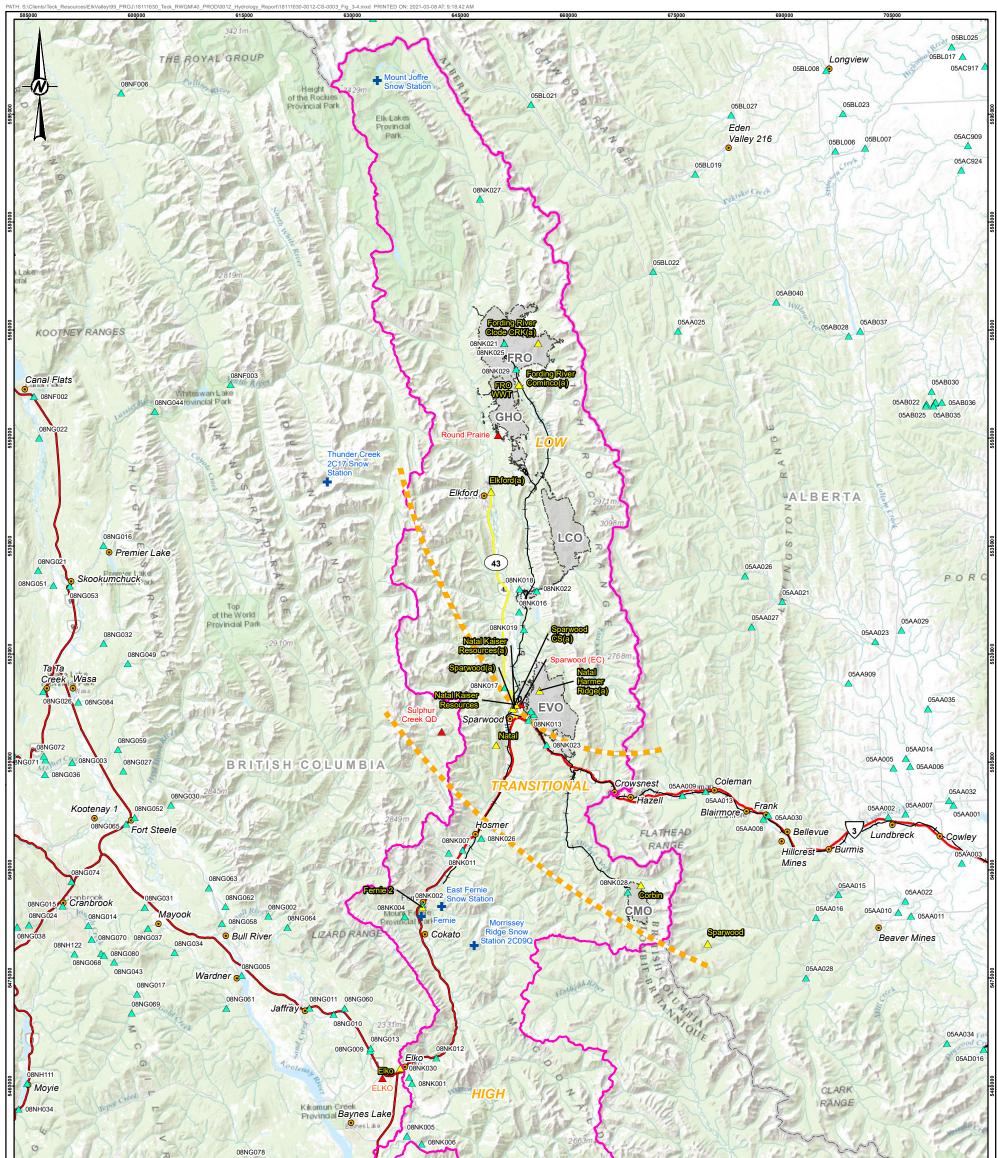
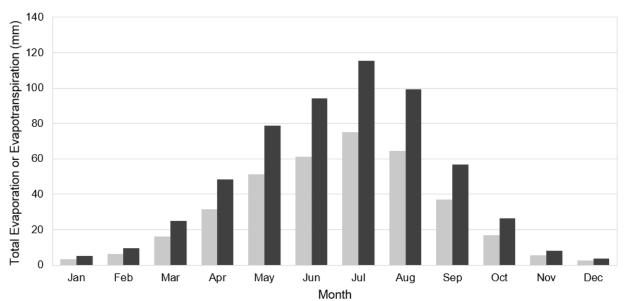

Adapted from https://i1.wp.com/www.catchments.ie

Figure 3-3: Conceptual Sub-Catchment Water Balance Diagram

3.3.2 Precipitation

Precipitation in the Elk Valley occurs as rain and snow. The mean annual precipitation for the watershed is estimated at 885 mm (at 1777 masl), with the range between 560 mm and 1270 mm (from 1980 to 2019). The year-to-year variability in precipitation and the associated variability in snowpack can substantially change the magnitude and, to a lesser extent, timing of the freshet peak. Mean annual temperature for the watershed is estimated to be 1.4 °C, with mean monthly variability between -10.5 and 13 °C. Climate data summary tables are included in Section 4.2.

Local precipitation patterns are affected by latitude, elevation, aspect, and local topography, most notably due to the rain shadow effect of high mountains (i.e., less precipitation on the leeward side). Ground elevation (altitude) is a major factor influencing air temperature and precipitation in mountainous areas of the Elk River watershed, also known as the orographic effect. According to Barbour et al. (2016), total annual precipitation and average temperature in the Elk Valley have approximate lapse rates of +21 mm/100 m and -0.48 °C/100 m, respectively. In addition to the orographic effect, a precipitation gradient is also observed in in the Elk Valley wherein annual precipitation increases in a southerly direction (Obedkoff 1985; Figure 3-4).



		08NK008 08NG035 08NG029 15mere			S44500	
Gilhockle Provincial Park 2 Om UNITED STATES 7547 fr Kootenai E66MD	Koocanusa 08NG006	NG082 08NG083 08NG008 08NG048 08NG047 645000	65 66 66 60 60 60 60	OBNP002 OBNP005 2849m Akaminia-Kishinena Provincial Park UNITED STATES Flathe at Forest Flathe at Forest Stational Forest Stational Forest Stational Forest Stational Forest Stational Forest Stational Forest Stational Forest Stational Forest Stational Stationa	LIV IN G ST	
 CITY/TOWN/COMMUNITY CLIMATE STATION OPERATED BY ENVIRONMENT AND CLIMATE CHANGE CANADA SNOW STATION LOCATION ENVIRONMENT CANADA HYDROMETRIC STATION ACTIVE WEATHER STATIONS OPERATED BY BC WILDFIRE 		0	10 20 KILOMETRES	REFERENCE(S) 1. BASE DATA: CANVEC, 2018 2. TECK WATER NETWORK AND WATER MANAGEMENT DATA, 2019-09-26 3. BASEMAP: SOURCES: ESRI, HERE, GARMIN, INTERMAP, INCREMENT P CORP., GEBCO, US NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA KONG), (C) OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY 4. PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZON	(HONG	
	ECK COAL LIMITED			PROJECT 2020 REGIONAL WATER QUALITY MODEL UPDATE		
SECONDARY HIGHWAY		YYYY-MM-DD	2020-12-01	TITLE		
MINE PERMIT BOUNDARY		DESIGNED	PR	CLIMATOLOGICAL ZONES IN THE ELK RIVER WATERSH	HED	
ELK RIVER WATERSHED BOUNDARY	Teck	PREPARED	PR/RRD	(ADAPTED FROM OBEDKOFF 1985)		
	ICCN	REVIEWED	AS	PROJECT NO. CONTROL REV.	FIGURE	
		APPROVED	SK	- 18111630 0012 0	3-4	

3.3.3 Evapotranspiration and Sublimation

Losses to the atmosphere, such as lake evaporation and evapotranspiration, are a substantive component of the overall water balance and influence the total yield from a watershed or sub-catchment. In snow-dominated mountainous areas like the Elk Valley, sublimation is another form of atmospheric loss, as it influences the accumulated snowpack, representing a fraction of precipitation that does not contribute to melt. In comparison to precipitation, atmospheric losses are less sensitive to elevation differences and have relatively low inter-annual variability for a given site and are more sensitive to land cover and aspect.

Actual evaporation / evapotranspiration rates are generally lower than potential evaporation / evapotranspiration rates, with several site-specific factors used to determine the actual rates. Over land, factors such as soil and vegetation type influence actual evapotranspiration rates. Fetch length, water temperature, relative humidity and wind influence lake evaporation rates. In smaller lakes, wind effects can dominate and increase the relative humidity gradient, leading to increased actual evaporation rates. In large lakes with long fetch lengths in the along-wind direction, the effect of wind on relative humidity (partial pressure gradient) is minimal on an area-averaged basis, and the cooling effect of winds can offset the local changes in humidity gradients. Estimated mean monthly lake evaporation and evapotranspiration rates for the Elk Valley calculated using the Hargreaves-Samani equation are shown on Figure 3-5. As further detailed in Section 4.5.2.4, the Hargreaves-Samani method uses daily air temperature as an input and therefore accounts for a small amount of winter evaporation (Figure 3-5).

Evapotranspiration Lake Evaporation

Based on data recorded at the Sparwood climate station from 1980 to 2019, in-filled, and then adjusted to account for elevation differences between Sparwood climate station (1,138 masl) and the average elevation of the regional study area (1,777 masl).

Figure 3-5: Monthly Mean Lake Evaporation and Evapotranspiration Estimates for the Elk River Watershed

Sublimation of snow and ice is driven by the vapour pressure gradient (i.e., sublimation occurs if ambient saturation vapour pressure is greater than the vapour pressure at the immediate snow/ice surface). The process is spatially variable and difficult to directly measure. However, sublimation rates have been found to be similar to evaporation rates (Jambon-Puilett et al. 2018). Based on guidance in available literature (Hood et al. 1999, Strasser et al. 2008), sublimation estimates for the Sparwood climate station could be up to 22% of the mean annual snowfall.

3.3.4 Runoff, Streamflow and Surface Water Yield

Mean annual runoff, or surface water yield from long-term mainstem hydrometric stations in the Elk River watershed range from 400 mm to 600 mm, with trends that are consistent with those observed for precipitation (i.e., elevation and north-south gradients). The increasing trend in surface water yield from upstream to downstream is consistent with the increasing precipitation trend from north to south, which generally supports the understanding that the lower Elk River watershed contributes a higher proportion of flow per unit area compared to the upper watershed. Hydrometric data summaries from monitoring stations in the Elk River watershed are included in Section 4.2.

Streamflow generated from a sub-catchment includes surface runoff and baseflow components, as conceptually illustrated in Figure 3-6. In literature, a third component of the hydrograph, defined as interflow, represents water that flows in the unsaturated zone between the ground surface and the top of the groundwater table, and then discharges to surface. For the RWQM conceptual model, interflow is not distinguished as a separate component of the hydrograph as this component interacts along the length of the watercourse with the relative proportion at surface or in below ground varying substantially from one location to another within a watercourse.

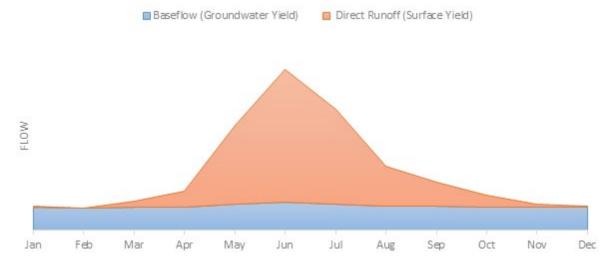
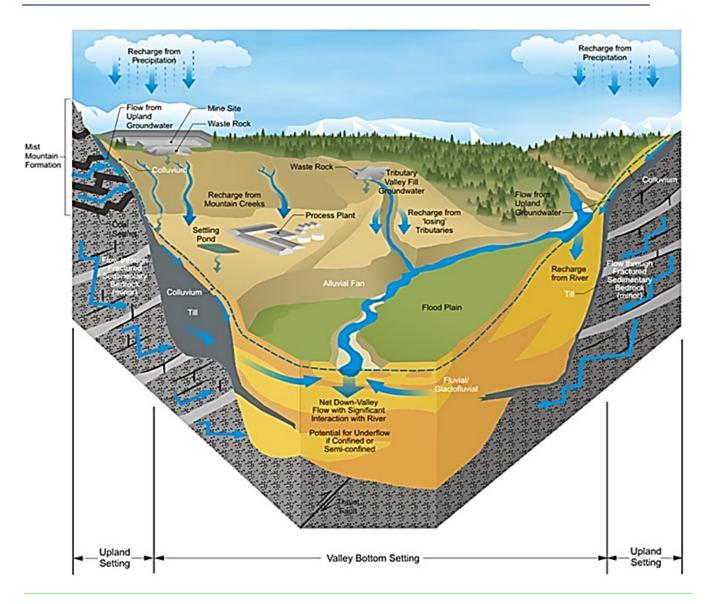



Figure 3-6: Conceptual Hydrograph Illustrating Seasonal Fluctuations in the Contributions of Groundwater Baseflow and Surface Runoff to the Measured Streamflow Hydrograph

The division of streamflow into contributions from surface runoff and baseflow is dependent on subcatchment characteristics such as slope, land use, land cover and permeability of surficial materials. Although the rate of baseflow, expressed in absolute terms (e.g., m³/day) is typically consistent over the year (Figure 3-6), its relative contribution to overall stream flow is temporally variable. Streamflow during winter months can, in many cases, be attributed almost entirely to baseflow, while streamflow during freshet is comprised predominantly of surface runoff from snowmelt (Figure 3-6). In the Elk Valley, baseflow comprises between 20% and 50% of the total surface water yield.

3.3.5 Shallow Groundwater Recharge and Discharge

In upland areas of the Elk Valley, rainfall and snowmelt infiltrates into the ground and recharges shallow groundwater systems at higher elevations. The shallow groundwater systems in the Elk Valley, which are conceptually illustrated in Figure 3-7, are local in the context that most of the groundwater recharge travels through colluvial deposits and overburden materials and discharges as surface flow to the tributaries along valley flanks, through valley fill or alluvial sediments. Colluvium deposits in the Elk Valley catchments are often thin, have a patchy distribution and experience ephemeral saturation conditions. As a result, the residence time of water that travels through these unconsolidated overburden materials and sediments on hillslopes is relatively short, with flow velocities in the order of hundreds of metres per year.

Figure 3-7: Conceptual Model of Groundwater Flow at a Tributary Scale in the Elk Valley (SNC 2017)

Conceptually, groundwater recharge from tributary catchments is equivalent to groundwater discharge as it eventually reports to the tributary or regional mainstems (topographic low points within the catchment or watershed). Several methods of estimating groundwater recharge defined in the literature are based on an analysis of streamflow records. While groundwater recharge can also be estimated using first principles (e.g., a catchment-scale water balance), recharge amounts in upland areas are highly variable and depend on the hydraulic conductivity of the various surface materials, land use (e.g., pits, spoils, roads) and water management practices. As such, estimates from first principles are not readily available.

Regional estimates of groundwater recharge in mountainous regions notably vary, as illustrated by the following examples:

- a few percent up to 40% of the total annual precipitation (Atwater 1994)
- 15 to 20% of total annual precipitation in the Meager Mountain area of south-central British Columbia (Jamieson and Freeze 1983)
- 20 to 30% of total annual precipitation in the Weary Ridge area in the Elk Valley (Harrison et al. 2000a)
- 2 to 30% of the average annual precipitation depth in the Elk Valley (SNC Lavalin 2017).

Groundwater recharge values based on winter stream flow estimates quoted in baseline reports for environment assessments for coal projects in the Elk Valley are summarized below:

- Line Creek Phase II (Teck 2011): 15 to 24% of total annual precipitation (637 to 837 mm depending on location)
- Swift Project (Teck 2014b): 10 to 15% based on flow measurements in Fording River and 10 to 35% of annual precipitation based on measurements in Cataract Creek.
- Elkview Operations, Baldy Ridge Extension (Teck 2015b): 9 to 21% based on winter stream flow measurements near the Project footprint

3.3.6 Deep Percolation of Groundwater

In contrast to groundwater flow through colluvium or alluvial deposits, residence time of water that travels through deep groundwater systems (i.e., bedrock) is of the order of one metre per year (SNC 2017). Relatively low bedrock hydraulic conductivity (decreasing trend with depth) limits the groundwater flow in the deeper bedrock. Percolation to deep groundwater systems, relative to the other components of the land-based hydrological cycle, is typically small to negligible, recognizing that the presence of karst topography or bedrock fractures can result in more appreciable deep groundwater flow. As deep groundwater flow is typically small to negligible, it is not included in the 2020 RWQM.

3.3.7 Interaction between Surface Water and Groundwater in Watercourses (Losing and Gaining Reaches)

Local tributary watercourses in the Elk Valley are generally characterized by relatively shallow glacial deposits and steep gradients. Water moves downgradient through tributary watercourses into the Fording River and the Elk River, which are regional topographical lows that generally gain flow with downstream distance (i.e., are gaining systems). The primary interactions between surface water and groundwater in a tributary watercourse in the Elk Valley are summarized as follows:

• Groundwater may discharge to surface where topographic lows or geological constraints (e.g., shallow bedrock) are present, which results in the phreatic surface rising above grade. These areas are commonly referred to as *gaining* stream reaches.

 Localized groundwater recharge may also occur whereby surface water from the stream channel infiltrates into the underlying alluvium; this typically occurs where the water surface elevation is higher than the underlying phreatic surface, and can lead to areas where surface streams go "dry" (as can be observed under low flow conditions in Line Creek Operations [LCO] Dry Creek). Areas where this flow pattern occurs are commonly referred to as *losing* stream reaches.

The presence of surface and subsurface flow components in a watercourse can make it a challenge to accurately measure total runoff from tributary catchments. Monitored water flows may underestimate total runoff from the upstream areas, because a portion of the total runoff is travelling subsurface at that particular location in the catchment. This concept is illustrated on Figure 3-8. In this figure, the subsurface flow component is reflective of ground conditions and flow paths at a specific location along the watercourse (such as a hydrometric monitoring station), and the partitioning of the surface and subsurface flow components is determined by the unique physical characteristics of the section of interest (e.g., gradient, cross-section width, substrate materials, thickness and permeability of underlying sediments).

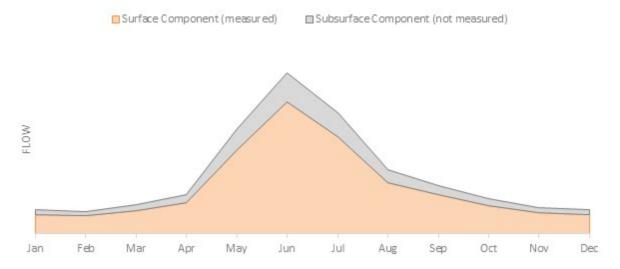


Figure 3-8: Conceptual Hydrograph Illustrating Contributions of Measured Surface Flows and Unaccounted Subsurface Flows to Total Flow (Catchment Yield)

3.3.8 Storage

Water storage in a catchment without large waterbodies is negligible, and inter-annual changes in most tributary catchments under steady state conditions or over a hydrologic year is also negligible. In catchments with waterbodies, or with large groundwater aquifer storage potential, storage changes occur seasonally and can attenuate peak flows from the catchment. There are few naturally occurring storage features in tributary catchments of the Elk Valley. At the mine site scale, storage features of significance to the overall hydrological regime include filling and flooded pits, as well as water stored within waste rock spoils, all of which are accounted for in the RWQM. Section 4.8 describes the approach for modelling water storage in pits, and Section 4.7 describes the approach for modelling waste rock spoil water storage in the 2020 RWQM.

3.4 Waste Rock Spoil Conceptual Model

3.4.1 Overview

This section consists of a summary of the conceptual model for movement of water through waste rock spoils. Understanding how water flows through waste rock spoils informs chemical transport mechanisms and the conceptual model supporting the development of geochemical source terms (as described in Annex A). Thus, an understanding of the physical processes governing flow within the spoils is necessary to simulate constituent release from these features. The conceptual model outlined below is informed by field studies and associated publications. Field studies on waste rock hydrology have been conducted at Teck sites by researchers at the University of Saskatchewan and McMaster University (e.g., Barbour et al. 2016; Hendry et al. 2015). Ongoing field studies and monitoring at Teck sites as part of annual water balance reporting are carried out by Okane Consultants Inc. (e.g., OKC 2018).

Waste rock spoils tend to be heterogeneous, and their hydrological behaviour is difficult to replicate using standard hydrologic models. Vertical water movement through the spoil occurs as infiltration into spoils, percolation through the spoils and toe discharge at the base of the spoil, with some water being retained through "wet-up" and/or temporary storage (Figure 3.9). The hydrologic response of a waste rock spoil is slower than that of an undisturbed hillslope catchment; they tend to attenuate freshet peaks and result in increase winter baseflow.

Hydrologic input into waste rock spoils can include run-on from upstream catchment and sub-catchment areas, which typically flows through the base of the waste rock spoil via a rock drain (i.e., a zone of higher permeability created through the natural segregation of waste rock when end-dumping). Research (e.g., Wellen et al. 2018) indicates that constituent transport is driven by vertical rather than horizontal flow through waste rock, and that flow through waste rock drains contributes little to overall constituent release from waste rock spoils to downstream watercourses and waterbodies.

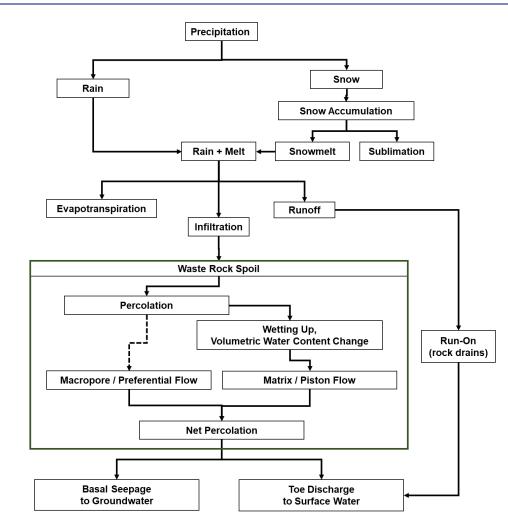


Figure 3-9: Conceptual Model of Flow into and through a Waste Rock Spoil

3.4.2 Waste Rock Water Balance

As with natural overburden deposits, the hydrology of a waste rock spoil can be conceptualized as a feature that collects and releases accumulated precipitation. The water balance of a waste rock spoil can be expressed as:

$$\Delta S = Inf - Q_{WR} \qquad \qquad \text{Eq. 2}$$

Where:

- Inf = water that infiltrates the surface of the spoil after evapotranspiration and sublimation are removed from rainfall and snowmelt.
- Q_{WR} = discharge from the spoil, in terms of water passing vertically through the spoil and being released from its base. This is commensurate with net percolation.

 ΔS = change in the volume of water stored within the spoil (i.e., the water holding content) which is influenced by the net of inflows and outflows, and the physical properties of the placed material.

Runoff from the surface of the spoil is assumed to be zero, due to the high permeability of waste rock (O'Kane et al. 2015). Further, run-on from upstream catchment and sub-catchment areas has not been included in the water balance equation, because run-on typically moves through the waste rock drain located at the base of the spoil, with limited influence on within spoil storage volumes and little to no influence on constituent release.

3.4.3 Physical Properties and Water Storage

Analogous to natural overburden deposits, waste rock piles can store water in their pore spaces due to capillarity action and textural breaks in the spoil. Storage can be defined as volumetric water content (VWC) based on the ratio of water volume to total bulk volume, which is limited by porosity (overall pore volume). Typical steady state drainage VWC of sampled waste rock spoils at EVO were estimated to range from 5% to 10%, and were up to 25% at LCO samples taken (Barbour et al. 2016). Studies by Okane (OKC 2018) identified water contents of spoils in the Elk Valley ranging between 8% and 20% on a volumetric basis, with median values around 12 to 14%.

An average waste rock porosity of 0.24 was calculated for EVO and LCO waste rock spoils based on dry density and specific gravity assumptions (Barbour et al. 2016), though values for waste rock of similar properties can reach up to 0.3 (Steinpreis 2018, Cash 2014). For reference, porosity values in this range are similar to a gravel or coarse sand deposit (Freeze and Cherry 1979).

After placement, there is typically a "wetting up" period which depends on initial VWC, spoil texture (i.e., particle size distribution), climate conditions, spoil height, and spoil porosity. The time for the wetting up process to reach steady state has been reported to range from one high flow season or freshet event to tens of years (Swanson et al. 2000, Steinpreis 2018). In the Elk Valley, wet up times tend to be short, in the order of one to two years (OKC 2018, Barbour et al. 2016); as a result, spoils created in the Elk Valley begin to release water shortly after placement, with each successive lift placed in a spoil taking in the order of one to two years to reach sufficient saturation to be able to conduct water through capillary action.

3.4.4 Evaporation, Infiltration and Percolation

Active waste rock spoils typically have limited to no vegetative cover, resulting in reduced evapotranspiration (ET) rates compared to non-mine affected areas (Birkham et al. 2014, Birkham 2017). Whether active or under rehabilitation, runoff is generally assumed to be zero from a waste rock spoil (O'Kane et al. 2015); thus, water that is not lost to evaporation or sublimation tends to infiltrate into the spoil.

Infiltrated water that percolates below the influence of ET is subject to groundwater flow dynamics as it moves through the waste rock spoil. Flow pathways through waste rock spoils are variable, both spatially and temporally, due to the textural heterogeneity of the waste rock (Nichol et al. 2005). For example, water can move through the waste rock via capillary dominated pores (matrix) as well as non-capillary

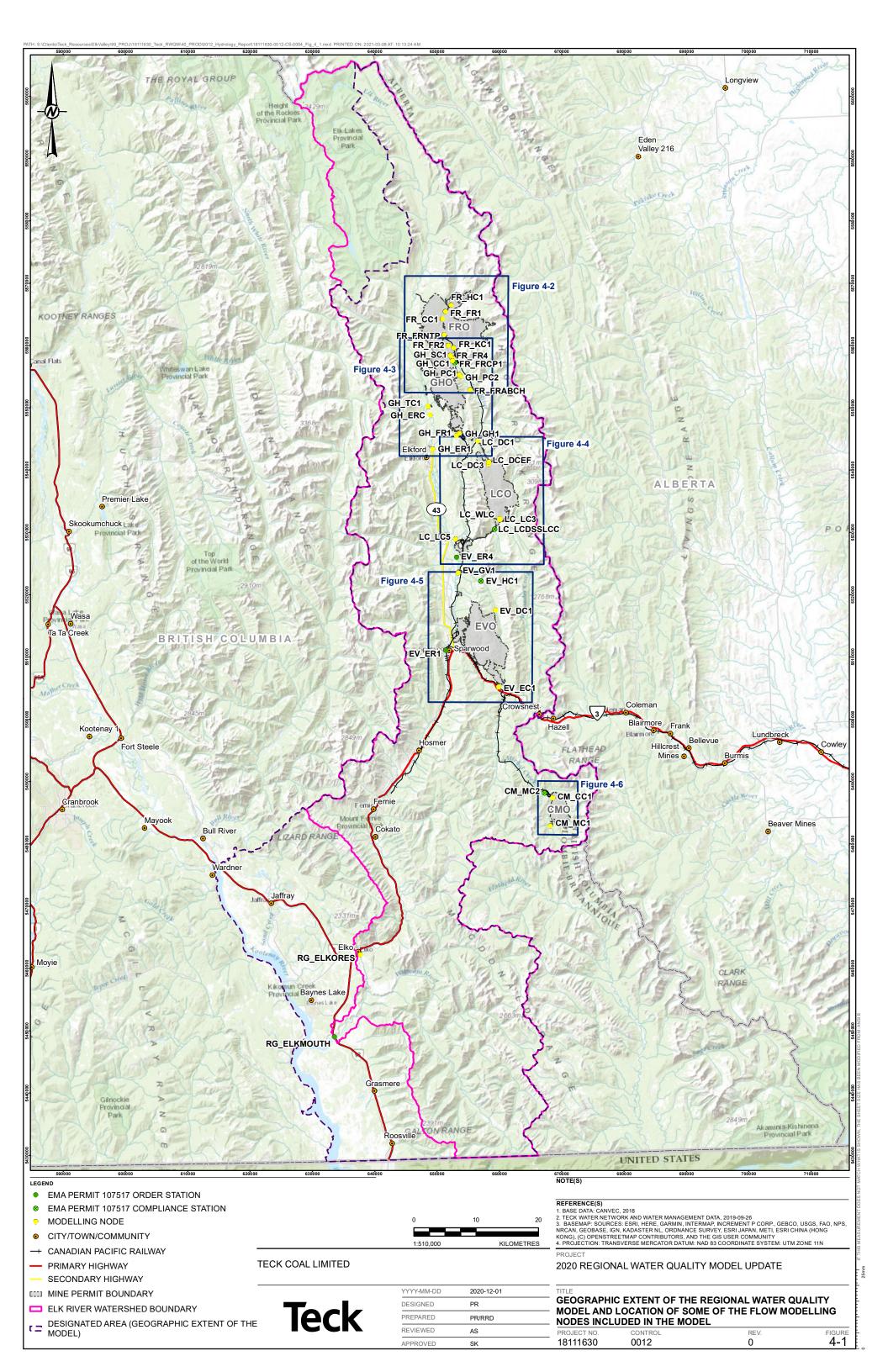
pores (macropores). Percolation rates near the surface of the spoil can be high (e.g., rapid snow melt or larger rainfall event), implying that preferential (macropore) flow pathways dominate; However, percolation rates are dampened with depth, and water migration transitions increasingly from macropore flow pathways to matrix flow (Barbour et al. 2016). This suggests that as a waste rock spoil matures (i.e., grows in size over time and consolidates underlying deposits), the proportion of water influenced by matrix flow increases relative to the water influenced by macropore flow.

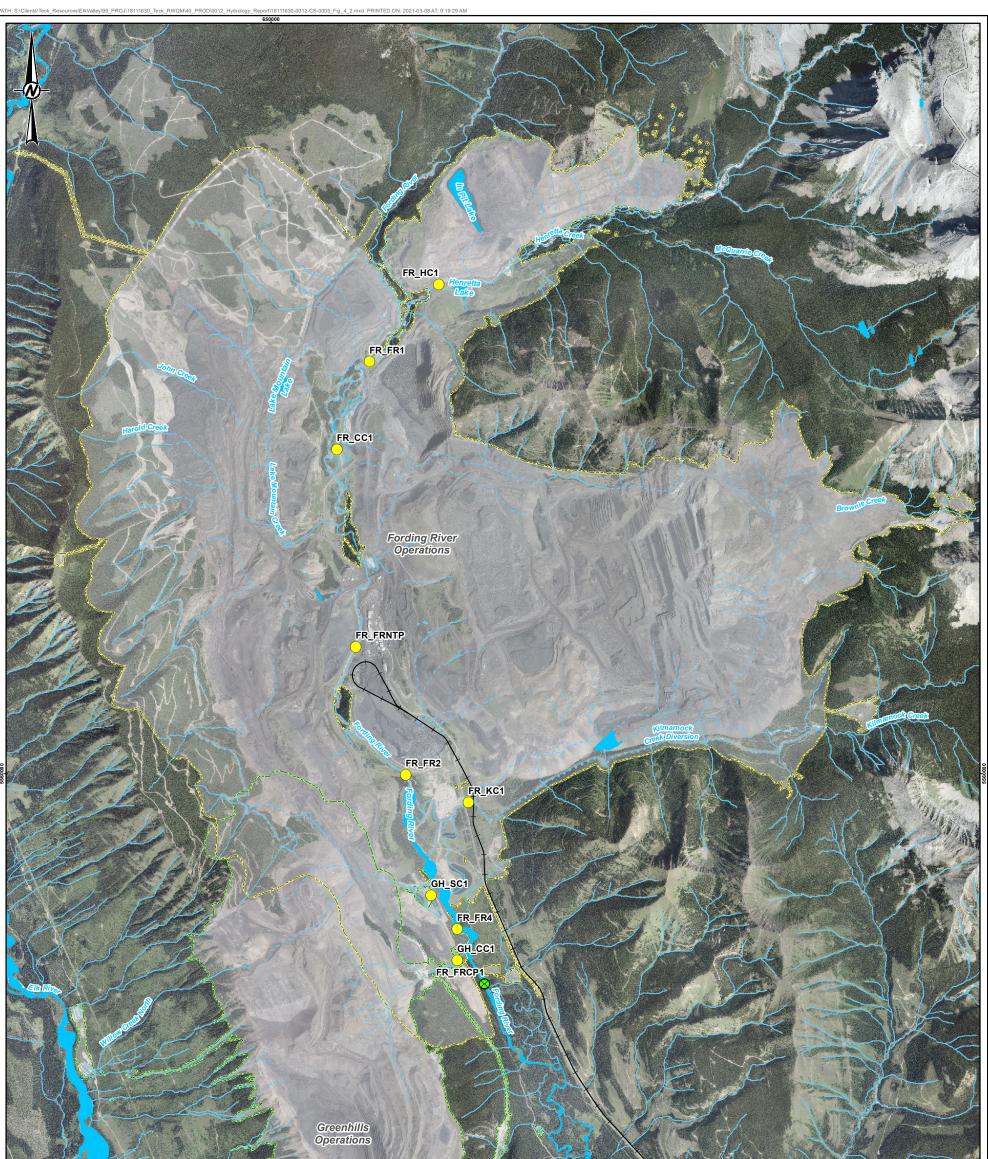
The simplest interpretation of a system with predominantly matrix flow is that of 'piston' where water moves at the same rate throughout the spoil. Interpretations of piston type matrix flow have been estimated in the Elk Valley waste rock spoils at velocities of meters to tens of metres per year (i.e., it can take in the order of one year for water to move vertically through 10 m of spoil) (Barbour et al. 2016). In contrast, macropore flow tends to be faster, with velocities of metres per hour. However, these relatively rapid macropore flow paths tend to account for a small amount of constituent transport, whereas matrix flow typically accounts for most of the mass displacement (Nichol et al. 2005). In other words, transport of constituents through and out of waste rock spoils is understood to be primarily driven by matrix, rather than macropore, flow due to greater residence time and increased contact of water with the fine-grained material (Neuner et al. 2013).

3.4.5 Waste Rock Discharge

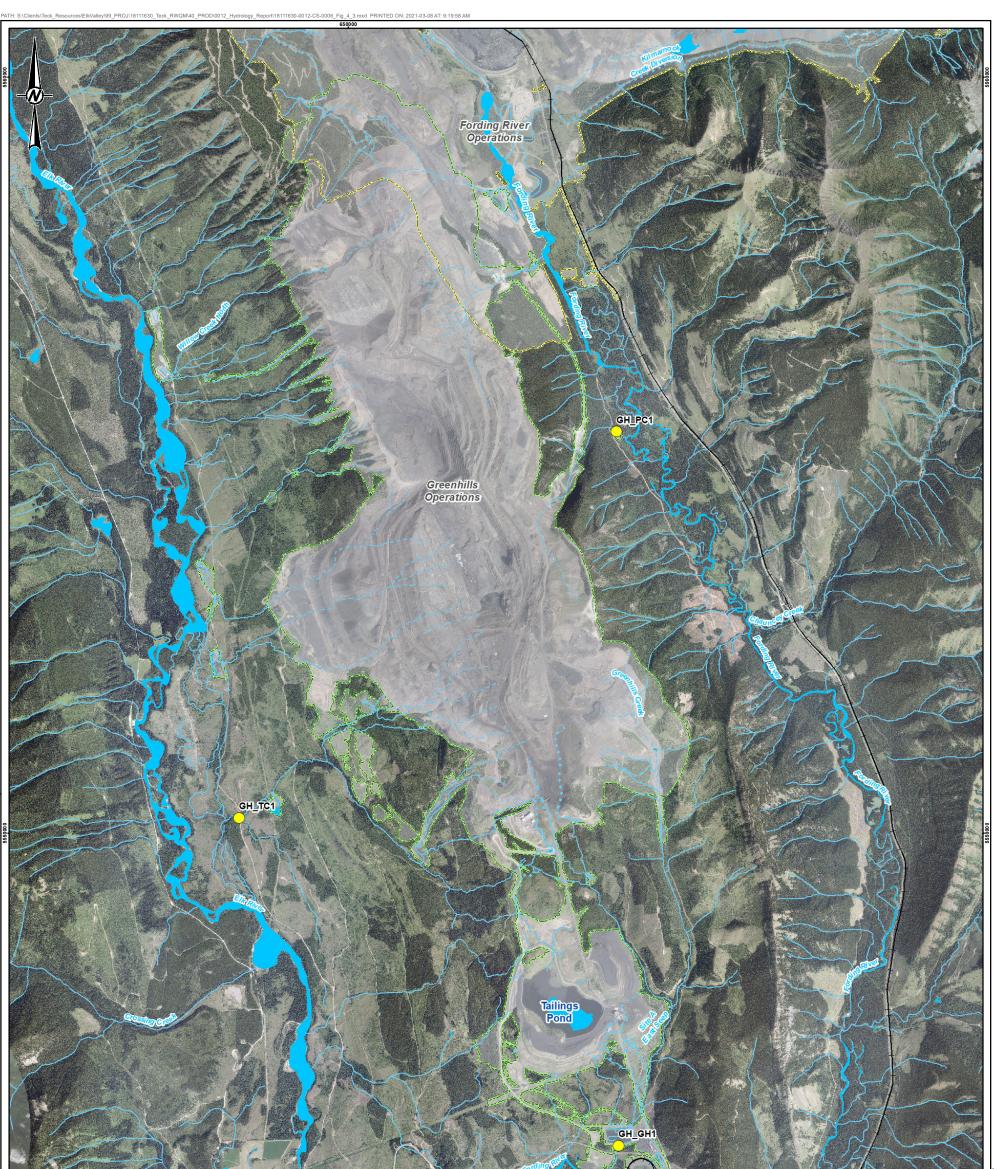
Net percolation is the water available for discharge once it has infiltrated and moved through the waste rock spoil. It can be released as a combination of:

- 1. Toe Discharge
- 2. Basal Seepage

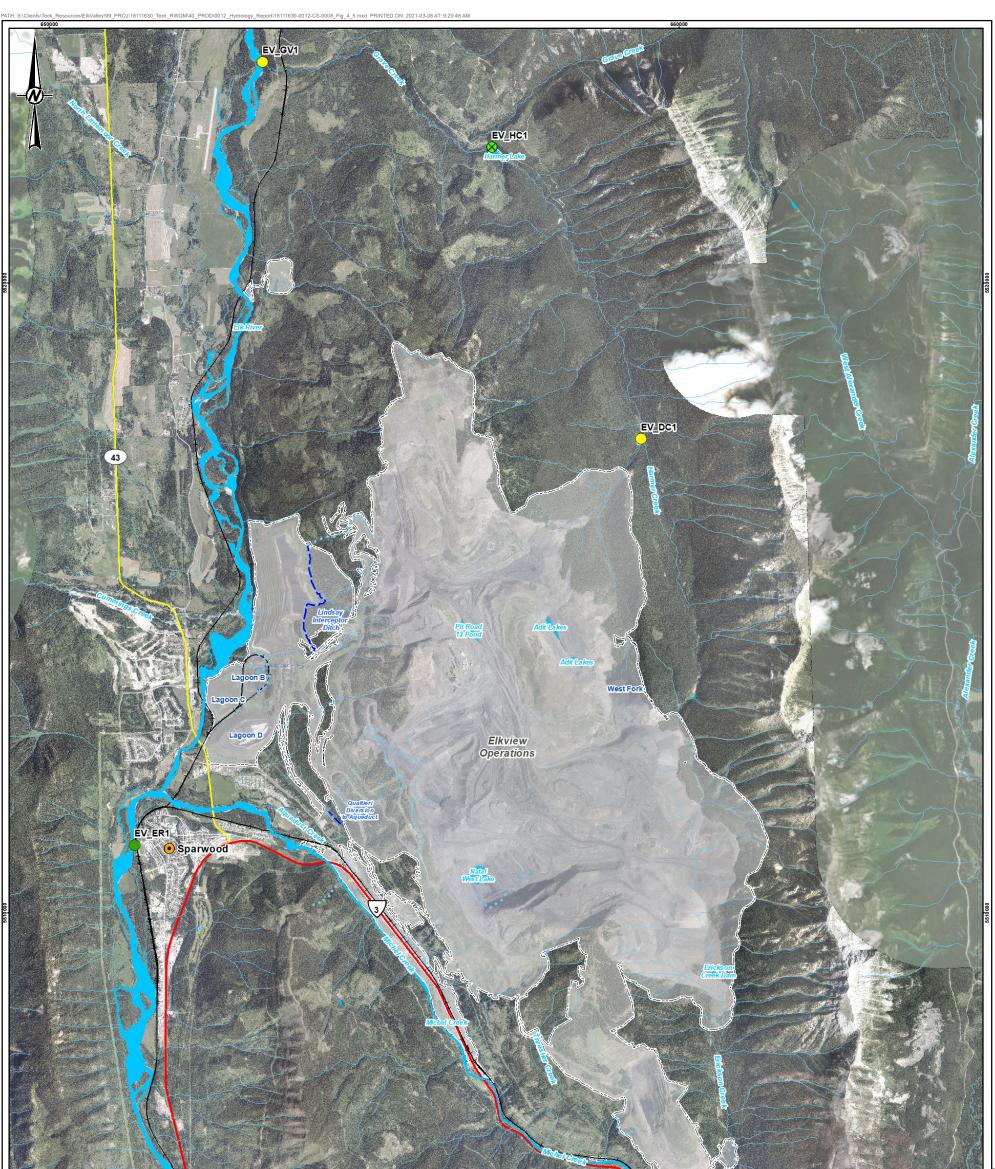

The proportion of net percolation being released as toe discharge compared to basal seepage depends on the geology underlying the spoil. In the Elk Valley, the local geology is such that net percolation released through either pathway tends to report to the nearest stream or creek, mixing with surface runoff from other areas of the catchment as it moves towards the catchment outlet.

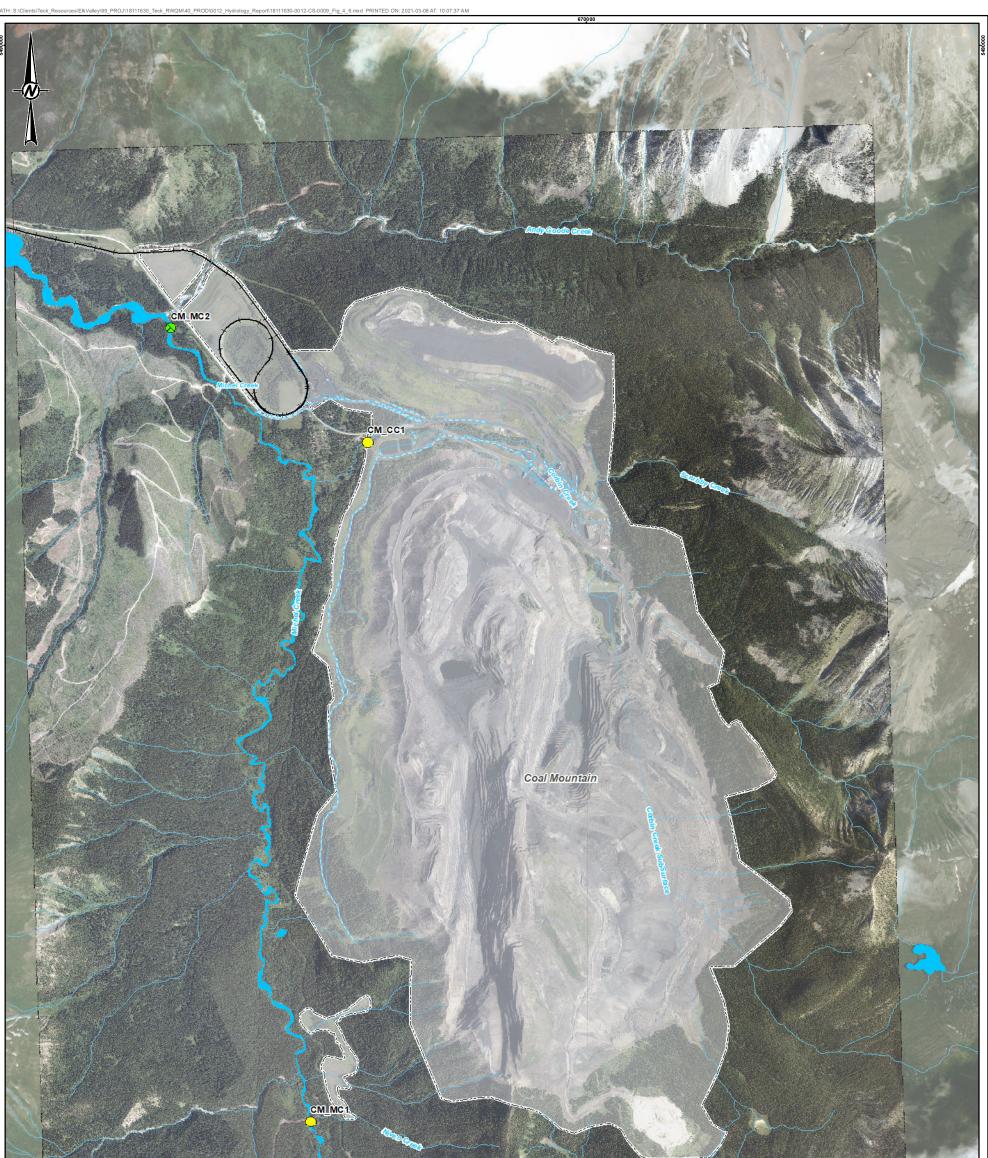

Nichol et al. (2005) indicates that most seepage from the base of a waste rock spoil is older water that is displaced from the lower portion of the spoil. This behaviour can be approximated as a dampened piston type displacement driven by a pressure wave resulting from infiltration. The pressure wave has been observed to travel through the spoil on a time scale in the order of months (Barbour et al. 2016), while a single drop of water may take decades to move through the entire height of a waste rock spoil.

4 Numerical Model - Part I: Model Set-Up


4.1 Introduction

The geographic extent of the 2020 RWQM is shown in Figure 4-1. Modelling nodes in the Elk River and Fording River mainstems, as well as some of those located in tributaries to each river, are shown in Figures 4-1 to 4-6 and summarized in Table 4-1. The 2020 RWQM contains approximately 100 modelling nodes, not all of which are shown in Figures 4-1 to 4-6 or listed in Table 4-1. Instead, only those most relevant to the discussion of model calibration are shown / listed. The other modelling nodes are included in the model to allow it to be used at both a local and regional scale.


					TCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN NODIFIED FROM: ANSI B
LEGEND SERMIT 107517 COMPLIANCE STATIO	AI .			NOTE(S)	NOT MA
 MODELLING NODE CANADIAN PACIFIC RAILWAY CANAL OR DITCH 	N	0	1,000 2,00	2. TECK WATER NETWORK AND WATER MANAGEMENT DATA PROVIDED BY TECK. 2019-09-26 3. IMAGERY: ORTHO IMAGERY PROVIDED BY TECK, 2019. ADDITIONAL IMAGERY BY MICROSOFT BING © 2018 MICROSOFT CORPORATION AND ITS DATA SUPPLIERS	- S MEASUREMENT DOES
	TECK COAL LIMITED			PROJECT 2020 REGIONAL WATER QUALITY MODEL UPDATE	- 25mm 25mm
WATERBODY		YYYY-MM-DD	2020-12-01	TITLE FORDING RIVER OPERATIONS – SOME OF THE MAINSTEM AND	
C-3 PERMIT BOUNDARY - FRO		DESIGNED	PR	 TRIBUTARY MODELLING NODES INCLUDED IN THE MODEL 	Ē
C-137 PERMIT BOUNDARY - GHO	Teck	PREPARED	PR/RRD		_ =
			AS SK	PROJECT NO. CONTROL REV. FIGURI 18111630 0012 0 4-2	2


bing							Line Creek Operations	CH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFED FROM ANSI B
LEGEND	650000				NOTE(S)			T MAT
MODELLING NODE								ES NO.
CANADIAN PACIFIC RAILWAY SECONDARY HIGHWAY		0	1,000	2,000	3. IMAGERY: ORTHO I	EC, 2018 VORK AND WATER MANAGEMENT IMAGERY PROVIDED BY TECK, 2 2018 MICROSOFT CORPORATION	DATA PROVIDED BY TECK. 2019-0 119. ADDITIONAL IMAGERY BY	OC UNDER STREEMENT OC UNDER STRE
CANAL OR DITCH		1:50,000		METRES	4. PROJECTION: TRAN	NSVERSE MERCATOR DATUM: NA	D 83 COORDINATE SYSTEM: UTM 2	ZONE 11N
SURFACE FLOW WATERCOURSE SUBSURFACE FLOW WATERCOURSE WATERBODY	TECK COAL LIMITED				PROJECT 2020 REGION	NAL WATER QUALITY	MODEL UPDATE	
C-3 PERMIT BOUNDARY - FRO		YYYY-MM-DD	2020-12-01		TITLE			
C-137 PERMIT BOUNDARY - GHO		DESIGNED	PR				ME OF THE MAINSTE INCLUDED IN THE M	
	Teck	PREPARED	PR/RRD		INDUIART			
	ILLN	REVIEWED	AS		PROJECT NO.	CONTROL	REV.	FIGURE
		APPROVED	SK		18111630	0012	0	4-3 [

bing			6002			CH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM: ANSI B
LEGEND			660000	NOTE(S)		MATC
S EMA PERMIT 107517 COMPLIANCE STATION						S NOT
 MODELLING NODE CANADIAN PACIFIC RAILWAY CANAL OR DITCH 		0	1,000 2,000	3. IMAGERY: ORTHO IMAGERY PROVIDE MICROSOFT BING © 2018 MICROSOFT C	MANAGEMENT DATA PROVIDED BY TECK. 2019-09 D BY TECK, 2019. ADDITIONAL IMAGERY BY ORPORATION AND ITS DATA SUPPLIERS. 70 DATUM: NAD 83 COORDINATE SYSTEM: UTM 2	EASU
SURFACE FLOW WATERCOURSE		,		PROJECT		THIS
SUBSURFACE FLOW WATERCOURSE	TECK COAL LIMITED			2020 REGIONAL WATER	QUALITY MODEL UPDATE	25mm ⊩
		YYYY-MM-DD	2020-12-01	TITLE		<u>_</u>
C-129 PERMIT BOUNDARY		DESIGNED	PR		NS - SOME OF THE MAINSTEI	
		PREPARED	PR/RRD		NODES INCLUDED IN THE M	
	Teck	REVIEWED	AS	PROJECT NO. CONTROL	REV.	FIGURE
		APPROVED	SK	18111630 0012	0	4-4

b bing esoos		Remains and					Identified and the set of the set
LEGEND					NOTE(S)		DT MA
EMA PERMIT 107517 ORDER STATION							N O E S
 EMA PERMIT 107517 COMPLIANCE STATION MODELLING NODE 		0	1,000	2,000	REFERENCE(S) 1. BASE DATA: CANVEC, 2018		MENT D
			1,000	2,000	2. TECK WATER NETWORK AND WATER MANA 3. IMAGERY: ORTHO IMAGERY PROVIDED BY		6 and a second
		1:60,000		METRES	MICROSOFT BING © 2018 MICROSOFT CORPO 4. PROJECTION: TRANSVERSE MERCATOR D/	ORATION AND ITS DATA SUPPLIERS. ATUM: NAD 83 COORDINATE SYSTEM: UTM ZOI	NE 11N
 PRIMARY HIGHWAY 					PROJECT		H
- SECONDARY HIGHWAY	TECK COAL LIMITED				2020 REGIONAL WATER QU	ALITY MODEL UPDATE	- E
· CANAL OR DITCH			0000 40 04				
SURFACE FLOW WATERCOURSE		YYYY-MM-DD DESIGNED	2020-12-01 PR			OME OF THE MAINSTEM AN	D
SUBSURFACE FLOW WATERCOURSE	Tock	PREPARED	PR PR/RRD		TRIBUTARY MODELLING N	ODES INCLUDED IN THE MO	DEL
	Teck	REVIEWED	AS				
ELKVIEW OPERATIONS C-2 PERMIT BOUNDARY		APPROVED	SK		PROJECT NO. CONTROL 18111630 0012	REV. 0	FIGURE 4-5
Les LERVIEW OF LIKEHONG C-2 FERMIT BOUNDART		APPROVED	SN		10111000 0012	0	<u> </u>

bing	A A A					
LEGEND			670000	NOTE(S)		
 EMA PERMIT 107517 COMPLIANCE STATI MODELLING NODE CANADIAN PACIFIC RAILWAY CANAL OR DITCH SURFACE FLOW WATERCOURSE 	ON TECK COAL LIMITED	0 1:25,000	500 1,000	2. TECK WATER NETWORK AND WATER MANA 3. IMAGERY: ORTHO IMAGERY PROVIDED BY MICROSOFT BING © 2018 MICROSOFT CORPO	RATION AND ITS DATA SUPPLIERS. TUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 11N	
				·		
WATERBODY		YYYY-MM-DD	2020-12-01		ONS - SOME OF THE MAINSTEM A	
COAL MOUNTAIN OPERATIONS C-84 PER		DESIGNED PREPARED	PR		DDES INCLUDED IN THE MODEL	
BOUNDARY	Teck	REVIEWED	PR/RRD AS		251/	
		APPROVED	SK	PROJECT NO. CONTROL 18111630 0012	REV. FIG	GURE 4-6

Table 4-1:	Flow Modelling Nodes in the Elk River and Fording River Mainstems and their
	Tributaries that are of Most Relevance to the Discussion of Model Performance

Operation	NadalD	Node Decodedian	Location ^(a)		
or General Location			Easting	Northing	
	FR_HC1	Henretta Creek u/s of Fording River (E216778)	652219	5566469	
FR_CC1		Clode Creek Sediment Pond Decant (E102481)	650871	5564287	
Fording River Operations	FR_KC1	Kilmarnock Creek d/s of Rock Drain (0200252)	652612	5559619	
	GH_SC1	Swift Creek Settling Pond Decant (E221329)	652024	5558252	
	GH_CC1	Cataract Creek Sediment Pond Decant (0200384)	652464	5557531	
	GH_PC1	Porter Creek Sediment Pond Decant (0200385)	653547	5555316	
Greenhills Operations	GH_GH1	Greenhills Creek Sediment Pond Decant (E102709)	653577	5545871	
	GH_TC1	Thompson Creek at LRP Road (E102714)	648550	5550218	
	LC_DC3	LCO Dry Creek u/s of East Tributary (E288273)	658294	5540918	
	LC_DCEF	East Tributary of Dry Creek (E288274)	658259	5541296	
	LC_DC1	LCO Dry Creek near mouth (at bridge) (E288270)	656379	5544775	
Line Creek Operations	LC_WLC	West Line Creek (E261958)	660004	5532209	
	LC_LCDSSLCC	LCO Compliance Point - Line Creek immediately downstream of South Line Creek confluence (E297110)	659218	5530522	
	LC_LC3	Line Creek downstream of West Line Creek (E261958)	660089	5532024	
	EV_EC1	Erickson Creek at Mouth (0200097)	659868	5505171	
	EV_GV1	Grave Creek at Bridge	653388	5523508	
Elkview Operations	EV_DC1	EVO Dry Creek Sediment Pond Decant (E298590)	659398	5517530	
	EV_HC1	EVO Harmer Compliance Point – Harmer Spillway (E102682)	657031	5522167	
Fording River	FR_FR1	Fording River downstream of Henretta Creek (0200251)	651304	5565451	

Table 4-1:Flow Modelling Nodes in the Elk River and Fording River Mainstems and theirTributaries that are of Most Relevance to the Discussion of Model Performance

Operation			Location ^(a)		
or General Location	Node ID	Node Description	Easting	Northing	
	FR_FRNTP	Fording River at North Tailings Pond	651121	5561676	
	FR_FR2	Fording River upstream of Kilmarnock Creek (0200201)	651781	5559984	
	FR_FR4	Fording River between Swift and Cataract creeks (0200311)	652503	5558088	
	FR_FRCP1	FRO Compliance Point - Fording River, 525 m d/s of Cataract Creek (E300071)	652823	5557220	
	FR_FRABCH	Fording River above Chauncey Creek	655293	5552865	
	GH_PC2	Fording River downstream of Porter Creek (E287431)	653751	5555147	
	<u>GH FR1</u>	GHO Fording River Compliance Point - Upper Fording River, 205 m d/s of Greenhills Creek (0200378)	653111	5545516	
	LC LC5	Fording River downstream of Line Creek (0200028)	652977	5528919	
	CM_MC2	CMO Compliance Point - Michel Creek d/s of CMO near Andy Goode Creek Junction (E258937)	667186	5488211	
Michel	EV_MC3	Michel Creek upstream of Erickson Creek (0200203)	659833	5505120	
Creek	EV_MC2	EVO Michel Creek Compliance Point (E300091)	654378	5510851	
	EV_MC1	Michel Creek upstream of Highway 43 Bridge (0200425)	653590	5511060	
	<u>GH_ER1</u>	Elk River u/s of Boivin Creek (u/s of Fording River) (E206661)	649295	5543393	
	GH_ERC	GHO Elk River Compliance Point - Elk River, 220 m d/s of Thompson Creek (E300090)	648926	5548802	
Elk River	EV ER4	Elk River u/s of Grave Creek (from Fording River to Michel Creek) (0200389)	653149	5525960	
	EV ER1	Elk River downstream of Michel Creek (0200393)	651354	5511080	
	RG ELKORES	Elk River at Elko Reservoir (E294312)	637661	5492190	

Table 4-1:Flow Modelling Nodes in the Elk River and Fording River Mainstems and theirTributaries that are of Most Relevance to the Discussion of Model Performance

Operation or General Location	Node ID	Node Description	Location ^(a)		
	Node ID		Easting	Northing	
	RG_ELKMOUTH	Elk River at Highway 93 near Elko; ECCC station BC08NK0003	633583	5449048	
Koocanusa Reservoir	RG DSELK	Koocanusa Reservoir - South of the Elk River (E300230)	627022	5445670	

a) NAD 83, Zone 11.

ID = Identification; CMO = Coal Mountain Operations; EVO = Elkview Operations; LCO = Line Creek Operations; LRP = Lower Round Prairie, FRO = Fording River Operations; GHO = Greenhills Operations; d/s = downstream; u/s = upstream; m = metre. Note: Sites in bold correspond to Order Stations and Compliance Points listed in EMA Permit 107517; Order Stations are also underlined.

4.2 Model Structure

The FC is a sub-catchment-scale water balance model developed using a commercially available, general-purpose simulation software platform called GoldSim (GoldSim Technology Group 2014). The FC relies on mine site information, together with meteorological data and hydrometric monitoring information to estimate flows in mine-affected tributaries, in the Elk River and Fording River. The FC-generated flow information is used as an input to the WQC to estimate constituent concentrations in the receiving environment downstream of mine operations.

At its core, the FC is a modular, sub-catchment scale water balance model that is interconnected at model nodes to function as a watershed-scale flow model. The FC is used to estimate total flows at a given location by adding together contributions from upstream mine-affected and undisturbed sub-catchment areas, while accounting for atmospheric losses, water stored within the sub-catchment areas, mine water management activities, and groundwater interactions.

The FC includes the following modules and calculations, each of which are replicated at individual subcatchments:

- global climate module
- sub-catchment climate module
- snowmelt runoff module
- waste rock hydrology module
- pit module
- pit seepage calculations
- water management module
- reclamation calculations
- water balance module

Flows from each sub-catchment are linked together in a flow network. This flow network includes a series of model nodes that represent locations with hydrometric monitoring information, confluences with other tributaries and mainstem watercourses, and points of diversion. At model nodes, the following calculations are completed:

- estimates of total flows reporting from sub-catchments to the downstream tributary or mainstem node
- estimates of surface water and groundwater partitioning at tributary or mainstem nodes, where applicable

The flow estimates from the FC involve the development of historical flow predictions. These flow predictions are relied on to calibrate the model. The FC is also used to generate three sets of weekly statistical flow estimates from a multi-realization simulation iteratively using historical climate data. These three sets of flow estimates are used as an input to the WQC to generate a range of future water quality projections.

Existing water quality mitigation facilities are accounted for in the FC. However, future changes to water flows to support future water quality mitigation are modelled using the WQC alone relying on FC-generated flows from individual sub-catchments for a future flow scenario without mitigation.

Each aspect of the FC is discussed in more detail in the sub-sections below.

4.3 Model Input Information

4.3.1 Overview

Data sources considered in the FC consist of:

- meteorological data
- flow data
- sub-catchment and land use data
- mine plan and water management plan information
- surface water groundwater information
- hydrogeological information
- water quality mitigation information

Each data source is discussed in more detail below.

4.3.2 Meteorological Data

Available meteorological data from the Elk Valley were compiled and reviewed for potential use in the 2020 RWQM. This data compilation and review was focused on the following climate variables: precipitation, air temperature, and snow water equivalent (SWE). The sources of this climate data are summarized in Table 4-2, and the relevant meteorological stations are shown on Figure 4-7.

			Coord	inates ^(a)	Elevation	Period of
Name	Operated By	Station ID	Easting	Northing	(masl)	Record
Elkford	ECCC	1152653	648,999	5,542,927	1370	1972 to 1993
Fernie	ECCC	1152850	639,771	5,483,719	1001	1913 to 2019
Fording Cominco	ECCC	1152899	652,883	5,557,501	1585	1970 to 2017
Sparwood	ECCC	1157630	652,714	5,512,991	1138	1980 to 2019
Sparwood CS	ECCC	1157631	679,345	5,479,791	1138	1980 to 2019
Morrissey Ridge	BC	2C09Q	647,132	5,479,462	1966	1983 to 2019
FRO C Spoil	Teck (Okane)	n/a	651,547	5,559,029	1690	2013 to 2019
FRO Turn Creek Spoil	Teck (Okane)	n/a	652,272	5,566,069	1800	2012 to 2019
FRO Brownie	Teck (RWDI)	n/a	655,866	5,563,061	2253	2013 to 2019
FRO A Spoil	Teck (RWDI)	n/a	650,661	5,562,744	1744	2013 to 2019
FRO Wastewater Treatment	Teck (RWDI)	n/a	653,101	5,557,395	1576	2014 to 2019
GHO North Thompson Creek	Teck (Okane)	n/a	651,875	5,550,651	1800	2012 to 2019
GHO North Thompson Creek	Teck (Okane)	n/a	651,835	5,550,564	1800	2012 to 2019
GHO Rosebowl	Teck (Okane)	n/a	652,174	5,550,429	1920	2012 to 2019

Table 4-2: Meteorological Data Reviewed and Compiled for the 2020 RWQM

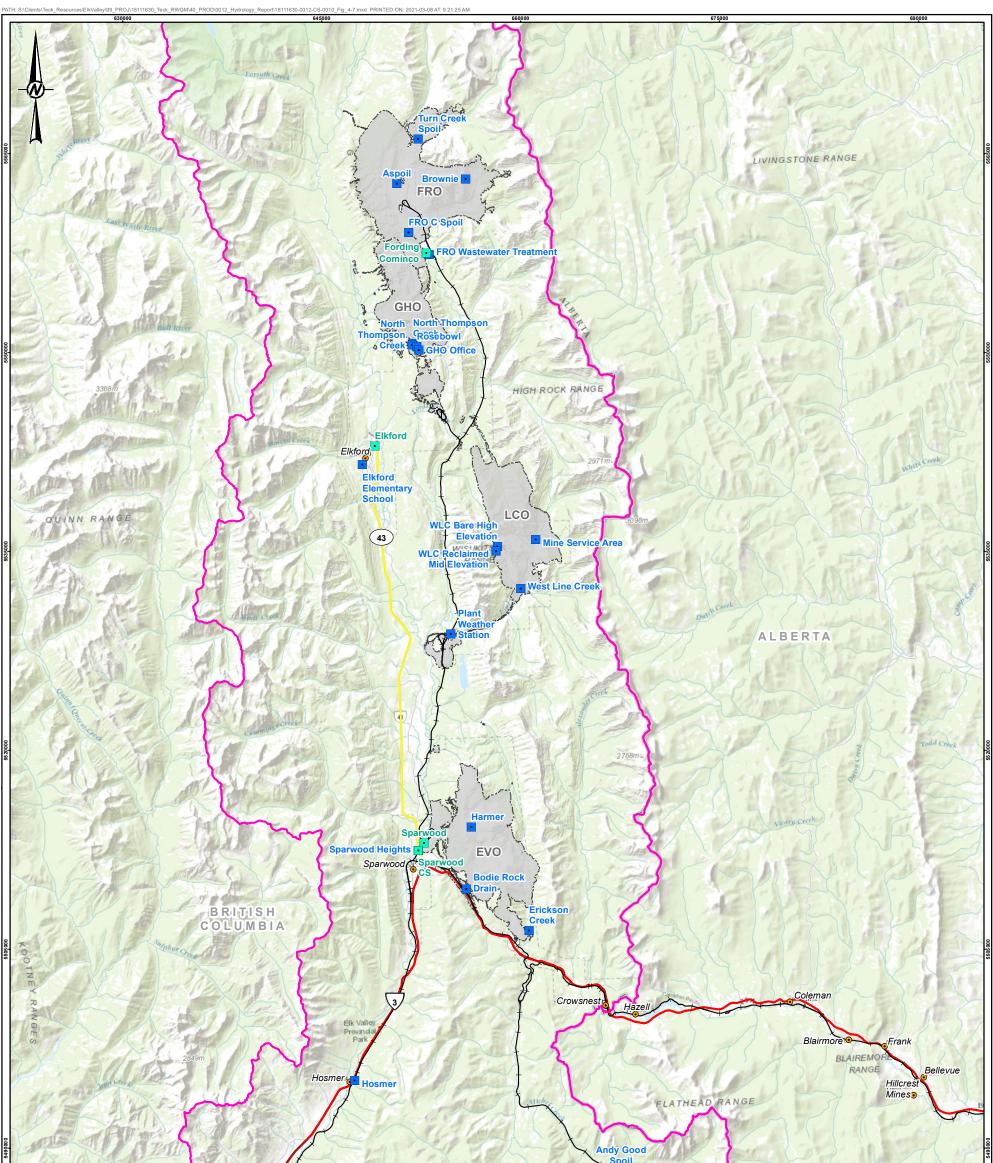

			Coord	Coordinates ^(a) Easting Northing		Period of
Name	Operated By	Station ID	Easting			Record
GHO Elkford Elementary School	Teck	n/a	648,056	5,541,543	1335	2010 to 2019
GHO Office	Teck	n/a	652,319	5,550,197	1972	2013 to 2019
LCO West Line Creek	Teck (Okane)	n/a	660,001	5,532,210	1451	2012 to 2019
LCO Mine Service Area	Teck	n/a	661,135	5,535,906	1595	2010 to 2019
LCO Plant Weather Station	Teck	n/a	654,736	5,528,744	1296	2010 to 2019
LCO WLC Bare High Elevation	Teck (Okane)	n/a	658,258	5,535,363	2150	2012 to 2019
LCO WLC Reclaimed Mid Elevation	Teck (Okane)	n/a	658,139	5,535,020	2075	2012 to 2019
EVO Harmer	Teck	n/a	656,284	5,514,206	1915	2013 to 2019
EVO Sparwood Heights	Teck	n/a	679,345	5,479,791	1135	2018 to 2019
EVO Bodie Rock Drain	Teck	n/a	655,908	509,545	1470	2011 to 2019
EVO Erickson Creek	Teck	n/a	660,652	5,506,402	1347	2019 to 2019
EVO Andy Good Spoil	Teck	n/a	667,586	5,488,250	1490	2011 to 2019
Hosmer	Teck	n/a	647,490	5,495,075	1060	2013 to 2019

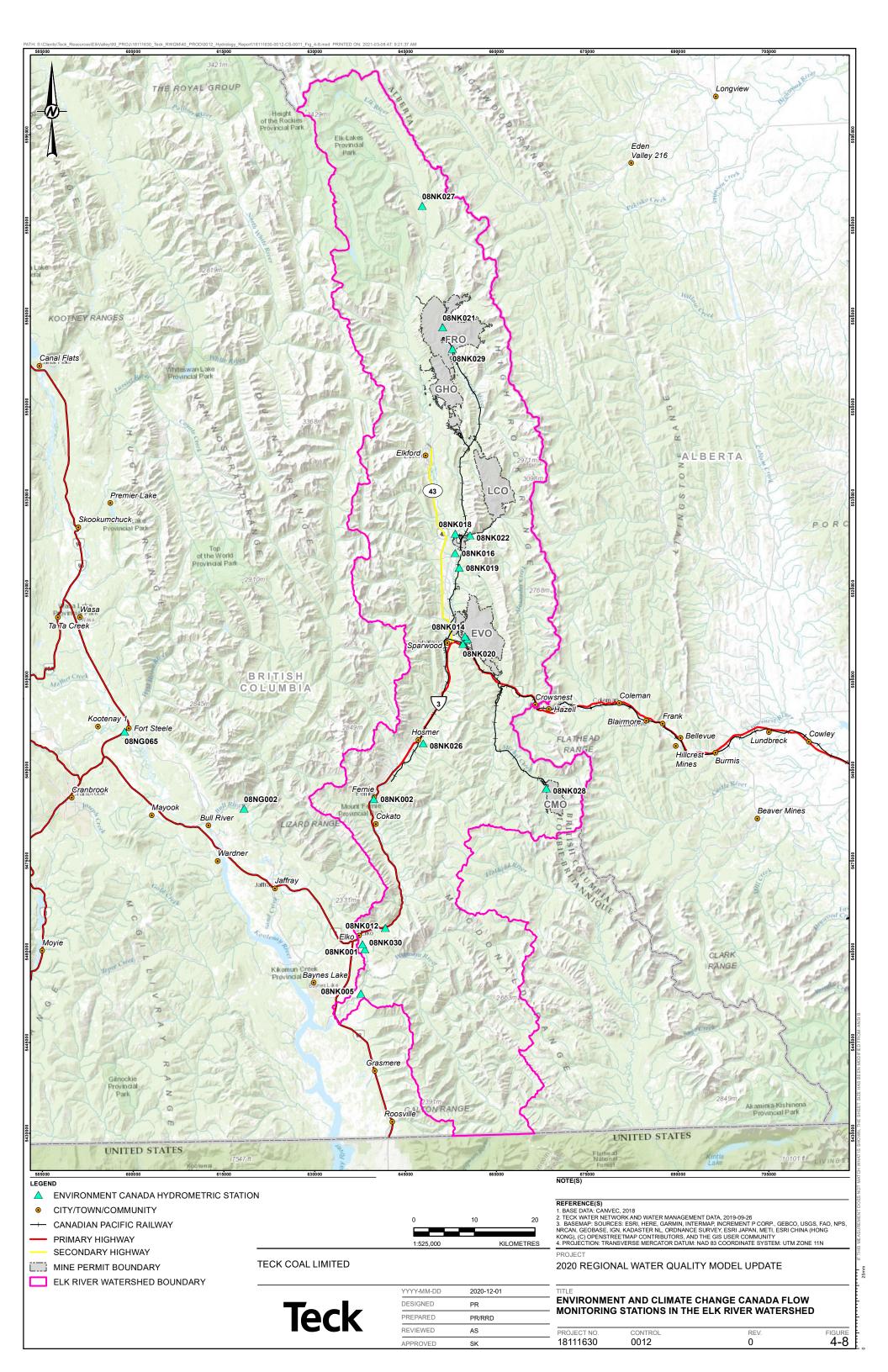
Table 4-2:	Meteorological Data Reviewed and Compiled for the 2020 RWQM
------------	---

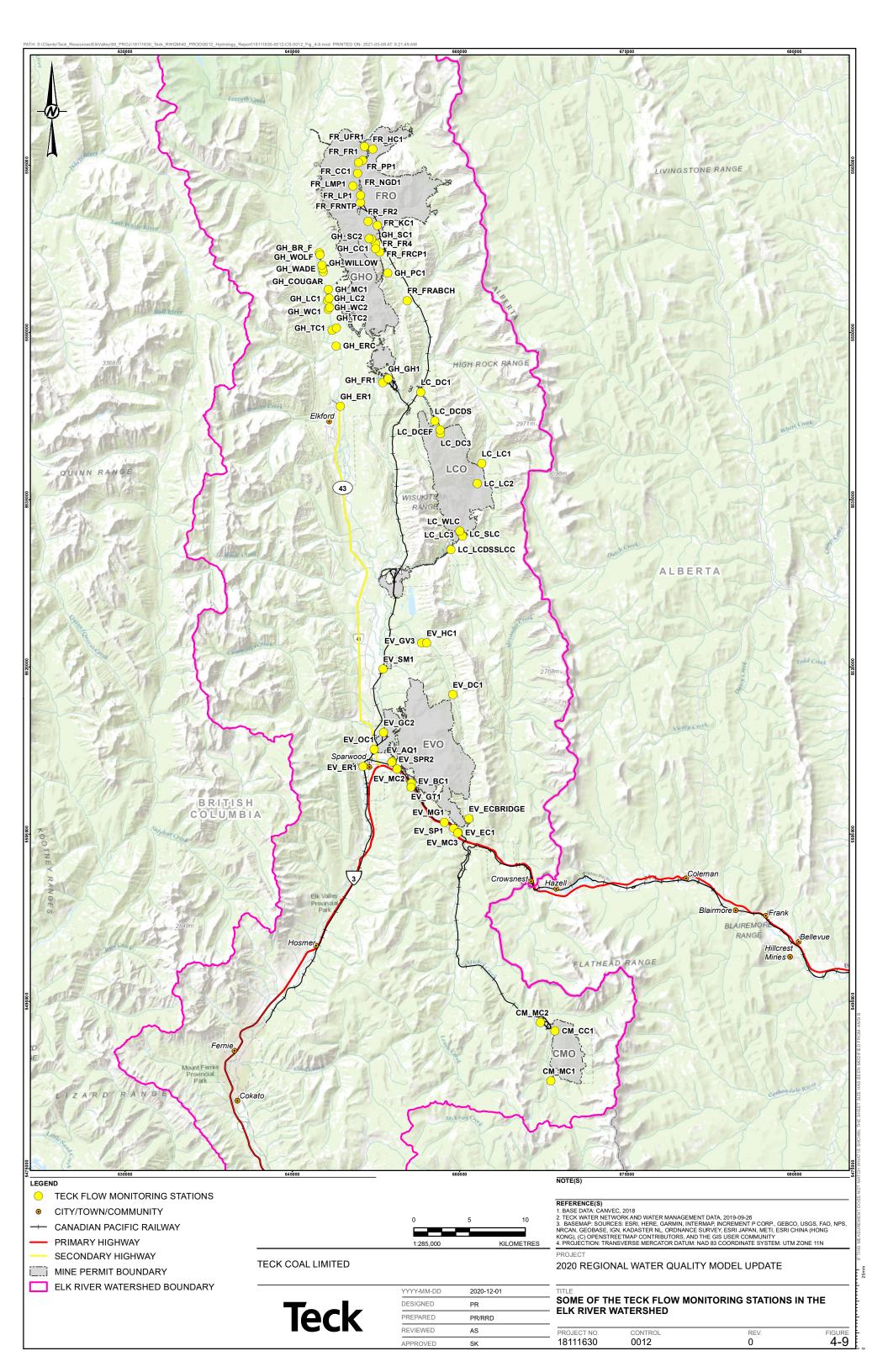
a) Universal Transverse Mercator (UTM) NAD83, Zone 11N.

BC = British Columbia, ECCC = Environment and Climate Change Canada, EVO = Elkview Operations, FRO = Fording River Operations, GHO = Greenhills Operations, LCO = Line Creek Operations.

n/a = not available.

Perint Perint Povincial Park Park	Fernie Cokato Ridge	50		CMO CMO Carbordale Ri	500 11 Martis skown The Skiert size twis Bleiby Modele D From ANSI
630000	645000	6	50000	675000 690000 NOTE(S)	547
METEOROLOGICAL STATION					S NOT
 TECK COAL LIMITED STATION ENVIRONMENT CANADA STATION BC STATION 		0	5 10	REFERENCE(S) 1. BASE DATA: CANVEC, 2018 2. TECK WATER NETWORK AND WATER MANAGEMENT DATA, 2019-09-26 3. BASEMAP: SOURCES: ESRI, HERE, GARMIN, INTERMAP, INCREMENT P CORP., GEBCO, US NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA KONG), (C) OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY	(HONG
		1:285,000	KILOMETRES	4. PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZON	IE 11N
CANADIAN PACIFIC RAILWAY	TECK COAL LIMITED			PROJECT 2020 REGIONAL WATER QUALITY MODEL UPDATE	⊥ = =
- PRIMARY HIGHWAY		YYYY-MM-DD	2020-12-01	TITLE	ŧ
SECONDARY HIGHWAY		DESIGNED	PR	METEOROLOGICAL STATIONS IN THE ELK RIVER WATE	
MINE PERMIT BOUNDARY	Teck	PREPARED	PR/RRD	-	ļ.
ELK RIVER WATERSHED BOUNDARY	ICCN	REVIEWED	AS	PROJECT NO. CONTROL REV.	FIGURE
		APPROVED	SK	- 18111630 0012 0	4-7


As shown in Table 4-2, available data for the Elk Valley include records from a network of regional and local climate stations. This network includes climate stations that are operated by ECCC, BC Wildfire, and Teck (including consultants such as Okane Consultants Inc. [OKC] and Rowan Williams Davies and Irwin [RWDI]). There are eight ECCC climate stations that include historical year-round daily data for the Elk River watershed, with periods of record ranging from 12 to 50 years. The methods to incorporate the available information in the 2020 RWQM are described in Section 4.4 and Section 4.5.


4.3.3 Flow Data

Available hydrometric (surface flow) data from the Elk Valley were compiled and reviewed for potential use in the 2020 RWQM. The surface flow data are available from active and discontinued hydrometric stations, primarily from two data sources:

- Environment and Climate Change Canada continuous flow data from regional Water Survey of Canada hydrometric stations (Figure 4-8).
- Teck continuous and/or instantaneous flow data from hydrometric stations at local tributaries near the mining operations (Figure 4-9).

The Environment and Climate Change Canada flow records are summarized in Table 4-3. Teck measures flows in several watersheds, as listed in Table 4-4 (Fording River Operations), Table 4-5 (Greenhills Operations), Table 4-6 (Line Creek Operations), Table 4-7 (Elkview Operations), and Table 4-8 (Coal Mountain Operations). Teck's five operations in the Elk Valley have over 120 permitted monitoring stations with flow monitoring requirements. Many Teck-operated hydrometric stations are equipped with staff gauges (or water level recorders) and rely on stage (level) - discharge (flow) relationships to estimate flow (KWL 2017). Other Teck-operated hydrometric stations are not instrumented. Instantaneous (spot) flow measurements are collected at these locations (typically along with water quality sampling). For each Teck station in the following tables, comments have been included to address the specific requirements of Section 10.9 of EMA Permit 107517, including frequency of flow measurements, completeness of data record, and method of use in the FC. Measurement frequency may be instantaneous (collected weekly or monthly) or continuous (sub-hourly or daily) and can vary from year to year and by season. The completeness of the data record for the purpose of modelling is defined as "poor" if the data record contains many gaps that span several consecutive weeks or months, "fair" if some good data years are interspersed with data gaps, or "good" if there are few or no gaps at a weekly / monthly frequency.

				J	J								
Station ID	Station Description	Teck Station ID (EMS ID) ^(s)	Order / Compliance Station?	Туре	Drainage Area (km²)	Status	Start of Record	End of Record ^(b)	Number of Years	Frequency	Data Completeness (%)	Data Use	
08NK001	Elk River at Elko	N/A	Yes	Regulated	3550	Discontinued	1914	1944	27	Continuous	83%	Not used; available data record does not overlap with time period of interest.	
08NK002	Elk River at Fernie	RG_ELKFERNIE	No	Unregulated	3090	Active	1970	2019	50	Continuous	100%	Regional input for scaling methods	
08NK005	Elk River at Phillips Bridge	RG_ELKPHILLIPS (E294311)	No	Regulated	4450	Discontinued	1924	1996	73	Continuous	98%	Regional input for scaling methods	
08NK012	Elk River at Stanley Park	N/A	No	Unregulated	3520	Discontinued	1944	1969	26	Miscellaneous	100%	Not used; available data record does not overlap with time period of interest.	
08NK013	Aqueduct Creek near Natal	N/A	No	Unregulated	1.19	Discontinued	1947	1952	6	Seasonal	31%	Not used; available data record does not overlap with time period of interest.	
08NK014	Qualtieri Creek near Natal	N/A	No	Unregulated	0.62	Discontinued	1947	1951	5	Seasonal	52%	Not used; available data record does not overlap with time period of interest.	
08NK016	Elk River near Natal	EV_ER4 (200027)	Yes	Unregulated	1840	Active	1950	2019	70	Continuous	98%	Regional input for scaling methods	
08NK018	Fording River at the Mouth	LC_LC5 (0200396)	Yes	Unregulated	621	Active	1970	2019	49	Continuous	100%	Model calibration	
08NK019	Grave Creek at the Mouth	EV_GV1	No	Unregulated	83.9	Discontinued	1970	1999	30	Continuous	99%	Model calibration	
08NK020	Michel Creek below Natal	EV_MC2 (E300091)	Yes	Unregulated	637	Discontinued	1970	1996	27	Continuous	98%	Regional input for ranked regression method	
08NK021	Fording River below Clode Creek	FR_DSCC1	No	Unregulated	104	Discontinued	1971	1995	24	Continuous	96%	Not used; dataset with greater overlap with time period of interest available from FR_FRNTP	
08NK022	Line Creek at the Mouth	LC_LC4	No	Unregulated	138	Active	1971	2019	47	Continuous	100%	Model calibration	
08NK026	Hosmer Creek above Diversion	N/A	No	Unregulated	6.4	Active	1981	2018	36	Continuous	98%	Not used; flows through Hosmer Creek are not explicitly simulated in the 2020 RWQM.	
08NK027	Elk River below Weary Creek	N/A	No	Unregulated	334	Discontinued	1982	1996	15	Continuous	99%	Not used; datasets with greater overlap with time period of interest available from other Elk River stations	
08NK028	Michel Creek above Corbin Creek	CM_MC1	No	Unregulated	35.9	Discontinued	1984	1995	12	Seasonal	52%	Not used; Coal Mountain Operation not explicitly included in 2020 RWQM	
08NK029	Kilmarnock Creek near the Mouth	FR_KC1	No	Unregulated	43	Discontinued	1984	1995	12	Seasonal	68%	Model calibration	
08NK030	Elk River below Elk Dam Diversion	RG_ELKORES (E294312)	Yes	Regulated	N/A	Active	2009	2015	7	Continuous	14%	Not used; available data record is limited.	
08NG002	Bull River near Wardner	N/A	No	Unregulated	1520	Active	1914	2019	103	Continuous	93%	Regional input	
08NG065	Kootenay River near Fort Steele	N/A	No	Unregulated	11500	Active	1963	2019	57	Continuous	99%	Regional input	

Table 4-3:	Long-term (>5 years)	Environment Cana	ada and Climate C	Change Flow Mo	onitoring Da	ta in the Elk Riv	er Watershed

a) EMS = Environmental Monitoring Station. b) 2019 data are preliminary.

N/A - not applicable.

Teck Station ID	Station Description	Order / Compliance Station?	2018YE Drainage Area (km²)	2018YE Disturbed Area (km²)	Status	Period of Record	Number of Years	Frequency ^a	Data Completeness ^b	Surficial Conditions ^c	Data Use
FR_UFR1	Fording River upstream of Henretta Creek (E216777)	No	39.1	0.0	Active	2008-2019	12	Instantaneous (spot)	Poor - 2012, 2013, and 2014 are the only complete years, limited winter flows.	Alluvial valley-bottom sediments	Model Performance Evaluation
FR_HC1	Henretta Creek upstream of Fording River (E216778)	No	49.3	4.5	Active	1996-2019	24	Mix of instantaneous and continuous daily flows	Fair - (good peak data but limited winter flows)	Alluvial valley-bottom sediments	Model Performance Evaluation
FR_PP1	Post Sediment Pond Decant (E304750)	No	4.1	1.5	Active	2018-2019	1	Instantaneous (spot)	Fair - gaps in the winter months	Pond decant in tributary upland setting	Model Performance Evaluation
FR_CC1	Clode Creek Sediment Pond Decant (E102481)	No	8.7	6.2	Active	1995-2019	25	Mix of instantaneous and continuous daily flows	Good - less than 6% of months missing data	Pond decant in Fording alluvial valley-bottom sediments	Model Performance Evaluation
FR_LMP1	Lake Mountain Sediment Ponds (E306924)	No	10.7	4.1	Active	2016-2019°	3	Instantaneous (spot)	Fair - gaps in the winter months	Pond decant in tributary upland setting	Model Performance Evaluation
FR_NGD1	North Greenhills Diversion Ditch	No	-	-	Discontinued	1995-2018	24	Instantaneous (spot)	Fair - gaps in the winter months	Pond outlet in tributary valley-bottom setting	Model Performance Evaluation
FR_LP1	Liverpool Sediment Pond Decant (E304835)	No	5.4	5.3	Active	2016-2019°	3	Instantaneous (spot)	Fair - gaps in the winter months	Pond decant in tributary upland setting	Model Performance Evaluation
GH_SC1 and GH_SC2	Swift Creek Settling Pond Discharge and Sediment Pond Bypass (E221329 and E105061)	No	5.1	3.8	Active	1995-2019	25	Instantaneous (spot)	Fair - winter gaps (October to March; GH_SC1). Fair – summer data gaps (May to October; GH_SC2)	Pond decant in tributary valley bottom setting	Model Performance Evaluation
FR_KC1	Kilmarnock Creek downstream of Rock Drain (0200252)	No	43.6	13.3	Active	1995-2019	25	Mix of instantaneous and continuous daily flows	Fair - good peak data but limited historical winter flows. Recent years have winter flow data.	Tributary alluvial valley bottom sediments	Model Performance Evaluation
GH_CC1	Cataract Creek Sediment Pond Decant (0200384)	No	3.6	3.4	Active	1993-2019	27	Instantaneous (spot)	Good - only 6% of months without a flow measurement	Pond decant in tributary valley bottom setting	Model Performance Evaluation
FR_FR1	Fording River downstream of Henretta Creek (0200251)	Yes	89.0	4.5	Active	1996-1998, 2009-2019	14	Instantaneous (spot)	Fair - gaps in the winter months	Fording alluvial valley bottom sediments	Model Performance Evaluation
FR_FRNTP	Fording River at North Tailings Pond	No	126.4	26.0	Active	1997-2019	23	Mix of instantaneous and continuous daily flows	Fair - most winter flows missing, no winter flows from 1999 to 2007	Fording alluvial valley bottom sediments	Model Performance Evaluation
FR_FR2	Fording River upstream of Kilmarnock Creek (0200201)	No	131.1	30.8	Active	1996-2019	24	Instantaneous (spot)	Fair - gaps in the winter months	Fording alluvial valley bottom sediments	Model Performance Evaluation
FR_FR4	Fording River downstream of Swift Creek, upstream of Cataract Creek	No	182.4	47.9	Active	2008-2019	12	Instantaneous (spot)	Poor - many gaps in the winter months	Fording alluvial valley bottom sediments	Model Performance Evaluation
FR_FRCP1	FRO Compliance Point- Fording River downstream of Cataract Creek (E300071)	Yes	187.9	51.8	Active	2015-2019	5	Instantaneous (spot)	Fair - gaps in the winter months	Fording alluvial valley bottom sediments	Model Performance Evaluation
FR_FRABCH	Fording River upstream of Chauncey Creek	No	214.5	53.2	Active	2017-2019	3	Instantaneous (spot)	Fair - gaps in the winter months	Fording alluvial valley bottom sediments	Model Performance Evaluation

 Table 4-4:
 Teck Fording River Operations Flow Monitoring Data Reviewed for the Flow Component

a) Frequency of flow measurements at a station may be instantaneous measurements collected at a weekly or monthly frequency, or continuous daily measurements. Frequency may vary from year to year and by season. b) Completeness of data record is defined as "poor" (spotty data record with many gaps extending several consecutive weeks or months), "fair" (a combination of some gaps and some good data years) or "good" (few or no gaps at a weekly / monthly frequency)

Teck Station ID	Station Description	Order / Compliance Station?	2018YE Drainage Area (km²)	2018YE Disturbed Area (km²)	Status	Period of Record	Number of Years	Frequency ^a	Data Completeness ^b	Surficial Conditions	Data Use
GH_BR_F	Branch F Creek at LRP Road (E287437)	No	1.3	0.0	Active	2009-2019	11	Instantaneous (spot)	Poor - Few winter flows, short data record	Tributary valley bottom setting	Model Performance Evaluation
GH_WOLF	Wolf Creek at LRP Road (E287436)	No	0.9	0.0	Active	2009-2019	11	Instantaneous (spot)	Poor - Few winter flows, short data record	Tributary valley bottom setting	Model Performance Evaluation
GH_WILLOW	Willow Creek at LRP Road (E287434)	No	2.3	0.0	Active	2009-2019	11	Instantaneous (spot)	Poor - Few winter flows, short data record	Tributary valley bottom setting	Model Performance Evaluation
GH_WADE	Wade Creek at LRP Road (E287433)	No	0.6	0.0	Active	2009-2019	11	Instantaneous (spot)	Poor - Few winter flows, short data record	Tributary valley bottom setting	Model Performance Evaluation
GH_COUGAR	Cougar Creek at LRP Road (E287432)	No	0.8	0.1	Active	2009-2019	11	Instantaneous (spot)	Poor - Few winter flows, short data record	Tributary valley bottom setting	Model Performance Evaluation
GH_MC1	Mickelson Creek (0200388)	No	1.3	0.3	Active	1993-2019	27	Instantaneous (spot)	Fair - Adequate data in high flow months but gaps in winter flows	Tributary valley bottom setting	Model Performance Evaluation
GH_LC1	Leask Creek Sediment Pond Decant (E257796)	No	5.4	4.9	Active	1993-2019	27	Instantaneous (spot)	Fair - Adequate data in high flow months but gaps in winter flows	Pond decant in Elk River alluvial valley bottom sediments	Model Performance Evaluation
GH_LC2	Leask Creek u/s of Pond Inlet	No	5.4	4.9	Active	2005-2019	15	Instantaneous (spot)	Fair - Adequate data in high flow months but gaps in winter flows	Tributary valley bottom setting	Model Performance Evaluation
GH_WC1	Wolfram Creek Sediment Pond Decant (E257795)	No	6.2	5.3	Active	1993-2019	27	Instantaneous (spot)	Fair - Adequate data in high flow months but gaps in winter flows	Pond decant in Elk River alluvial valley bottom sediments	Model Performance Evaluation
GH_WC2	Wolfram Creek upstream of Sediment Pond inflow	No	6.2	5.3	Active	2005-2019	15	Instantaneous (spot)	Fair - Adequate data in high flow months but gaps in winter flows	Tributary valley bottom setting	Model Performance Evaluation
GH_TC1	Thompson Creek at LRP Road (E102714)	No	12.1	2.8	Active	2006-2019	14	Instantaneous (spot)	Good - Adequate data, gaps in 17% of months, mostly in winter	Tributary valley bottom setting	Model Performance Evaluation
GH_TC2	Lower Thompson Creek Sediment Pond Decant (E207436)	No	12.1	2.8	Active	1994-2019	26	Instantaneous (spot)	Fair - Adequate data in high flow months but gaps in winter flows	Pond decant in Elk River alluvial valley bottom sediments	Model Performance Evaluation
GH_PC1	Porter Creek Sediment Pond Decant (0200385)	No	1.8	1.0	Active	1993-2019	27	Instantaneous (spot)	Good - only 6% of months without a flow measurement	Tributary valley bottom setting	Model Performance Evaluation
GH_GH1	Greenhills Creek Sediment Pond Decant (E102709)	No	15.2	3.8	Active	1993-2016	23	Mix of instantaneous and continuous daily flows	Good - Adequate data, gaps in 16% of months, mostly in winter	Pond decant in Fording alluvial valley bottom sediments	Model Performance Evaluation
GH_FR1	Fording River downstream of Greenhills Creek (0200378)	No	407.5	59.5	Discontinued	2017-2018	2	Continuous	Poor - No winter flows, short data record	Fording alluvial valley bottom sediments	Model Performance Evaluation

Table 4-5:	Teck Greenhills Operations Flow Monitori	ng Data in the Elk River Watershed Reviewed for the Flow Component
	Teek ereenning operations i low monitori	ig bata in the Environment materialica reviewed for the riow component

Teck Station ID	Station Description	Order / Compliance Station?	2018YE Drainage Area (km²)	2018YE Disturbed Area (km²)	Status	Period of Record	Number of Years	Frequency ^a	Data Completeness ^b	Surficial Conditions	Data Use
GH_ERC	Elk River downstream of Thompson Creek / GHO Elk River Compliance Point (E300090)	No	903.0	13.5	Discontinued	2017-2018	2	Continuous	Poor - No winter flows, short data record	Elk River alluvial valley bottom sediments	Model Performance Evaluation
GH_ER1	Elk River upstream of Boivin Creek (E206661)	No	977.0	13.7	Discontinued	2017-2018	2	Continuous	Poor - No winter flows, short data record	Elk River alluvial valley bottom sediments	Model Performance Evaluation

a) Frequency of flow measurements at a station may be instantaneous measurements collected at a weekly or monthly frequency, or continuous daily measurements. Frequency may vary from year to year and by season. b) Completeness of data record is defined as "poor" (spotty data record with many gaps extending several consecutive weeks or months), "fair" (a combination of some gaps and some good data years) or "good" (few or no gaps at a weekly / monthly frequency).

Table 4-6:	Teck Line Creek Op	perations Flow Monitor	ring Data in th	e Elk River Wa	atershed Review	ed for the Flow Compone	nt

	•	•					•				
Teck Station ID	Station Description	Order / Compliance Station?	2018YE Drainage Area (km²)	2018YE Disturbed Area (km²)	Status	Period of Record	Number of Years	Frequency ^a	Data Completeness ^b	Surficial Conditions	Data Use
LC_LC1	Upper Line Creek upstream of MSA North Pit (E126142)	No	27.9	0.0	Active	2011-2019	8	Mix of instantaneous and continuous daily flows	Poor - gaps in winter months, missing 2013 data, limited number of years of data	Tributary valley bottom setting	Model Performance Evaluation
LC_LC2	Line Creek upstream of Rock Drain (0200335)	No	27.9	0.0	Active	2007-2019	13	Mix of instantaneous and continuous daily flows	Good – since 2014	Tributary valley bottom setting	Model Performance Evaluation
LC_WLC	West Line Creek (E261958)	No	10.0	2.7	Active	2001-2019	19	Mix of instantaneous and continuous daily flows	Good - since 2009	Tributary valley bottom setting / Line Creek alluvial sediments	Model Performance Evaluation
LC_LC3	Line Creek downstream of West Line Creek (0200337)	No	71.2	18.7	Active	2005-2019	15	Mix of instantaneous and continuous daily flows	Good – since 2012	Tributary valley bottom / Line Creek alluvial sediments	Model Performance Evaluation
LC_SLC	South Line Creek West Side of Main Rock Drain (E282149)	No	40.6	0.0	Active	2015-2019	5	Instantaneous (spot) from 2015	Poor- gaps throughout monitoring period	Tributary valley bottom setting	Model Performance Evaluation
LC_LCDSSLCC	Line Creek downstream of South Line Creek confluence (E297110)	Yes	111.8	18.7	Active	2015-2019	5	Mix of instantaneous and continuous daily flows	Poor – data is not continuous	Tributary valley bottom setting	Model Performance Evaluation
LC_DC3	Dry Creek upstream of East Tributary Creek (E288273)	No	8.3	2.0	Active	2015-2019	5	Instantaneous (spot)	Fair	Upland tributary channel	Model Performance Evaluation
LC_DCEF	East Tributary of Dry Creek (E288274)	No	7.0	0.0	Active	2012-2019	8	Mix of instantaneous and continuous daily flows	Fair - few winter gaps in 2012-2014 and 2018	Tributary valley bottom setting	Model Performance Evaluation
LC_DCDS	Dry Creek downstream of Ponds (E295210)	No	15.3	2.0	Active	2014-2019	6	Instantaneous (spot)	Poor - few years of data, many gaps during winter months	Tributary valley bottom setting	Model Performance Evaluation
LC_DC1	Dry Creek near the Mouth (at bridge) (E288270)	No	25.6	2.1	Active	2011-2019	9	Mix of instantaneous and continuous daily flows	Fair - few years of data, many gaps in daily data, especially in winter (December to May). Missed peak flows in years 2014 to 2016.	Tributary valley bottom / Fording alluvial valley bottom sediments	Model Performance Evaluation

a) Frequency of flow measurements at a station may be instantaneous measurements collected at a weekly or monthly frequency, or continuous daily measurements. Frequency may vary from year to year and by season. b) Completeness of data record is defined as "poor" (spotty data record with many gaps extending several consecutive weeks or months), "fair" (a combination of some gaps and some good data years) or "good" (few or no gaps at a weekly / monthly frequency)

Teck Station ID	Station Description	Order / Compliance Station?	2018YE Drainage Area (km²)	2018YE Disturbed Area (km²)	Status	Period of Record	Number of Years	Frequency ^a	Data Completeness ^b	Surficial Conditions	Data Use
EV_DC1	EVO Dry Creek Sediment Pond Decant (E298590)	No	8.6	4.7	Active	2005-2019	15	Mix of instantaneous and continuous daily flows	Poor - records started in 2005 but there is no data from 2006 to 2008, with no winter flows from 2009 to 2012.	Pond decant in tributary valley bottom setting	Model Performance Evaluation
EV_GV3	Grave Creek upstream of Harmer Creek	No	24.4	0.0	Discontinued	2013-2015	3	Instantaneous (spot)	Poor – monthly measurements only. Winter flow data missing	Tributary valley bottom setting	Not used; available dataset is limited.
EV_HC1	EVO Harmer Creek Compliance Point – Harmer Spillway (E102682)	Yes	38.3	4.9	Active	1992-2019	24	Mix of instantaneous and continuous daily flows	Fair – good recent dataset (after 2001) missing 1997 to 2000 data.	Pond spillway in tributary valley bottom setting	Model Performance Evaluation
EV_SM1	Six Mile Creek Sediment Pond Decant (E102681)	No	3.9	0.4	Active	1992-2019	28	Instantaneous (spot)	Fair – Good recent dataset from 2009. Mostly weekly flow measurements	Pond decant in tributary valley bottom / Elk River alluvial sediments	Not used; small tributary of limited relevance to model calibration.
EV_GC2	Goddard Creek Sediment Pond Decant (E208043)	No	7.3	4.1	Active	1992-2019	27	Mix of instantaneous and continuous daily flows	Good - few winter gaps, daily data from 2009 onwards. Limited data from 1998 to 2000.	Pond decant in tributary valley bottom / Elk River alluvial sediments	Model Performance Evaluation
EV_OC1	Otto Creek Sediment Pond Decant (E102679)	No	3.6	1.5	Active	1992-2019	20	Instantaneous (spot)	Fair– data missing 1997-2004. Data more consistent from 2005 onwards	Pond decant in tributary valley bottom / Elk River alluvial sediments	Not used; small tributary of limited relevance to model calibration.
EV_ECBridge	Erickson Creek at the Bridge	No	28.9	9.4	Active	2018-2019	2	Instantaneous (spot)	Fair- monthly measurements in 2018. weekly flow measurements in 2019	Upland tributary valley bottom setting	Model Performance Evaluation
EV_EC1	Erickson Creek at Mouth (0200097)	No	31.9	9.7	Active	1996-2019	16	Mix of instantaneous and continuous daily flows	Fair - major data gaps and missing years 1997 to 2004 but recent data are consistent. Before 2011 some high flows were not measured due to safety issues at the measuring section.	Open channel in tributary valley bottom sediments	Model Performance Evaluation
EV_SP1	South Pit Creek Sediment Pond Decant (E296311)	No	1.4	1.1	Active	2007-2019	13	Instantaneous (spot)	Fair – Good recent dataset from 2015. Mostly weekly flow measurements	Pond decant in tributary valley bottom / Michel Creek alluvial sediments	Not used; small tributary of limited relevance to model calibration
EV_MG1	Milligan Creek Sediment Pond Decant (E208057)	No	2.0	0.4	Active	1992-2019	26	Instantaneous (spot)	Fair – Good recent dataset from 2009. Mostly weekly flow measurements	Pond decant in tributary valley bottom / Michel Creek alluvial sediments	Not used; small tributary of limited relevance to model calibration
EV_GT1	Gate Creek Sediment Pond Decant (E206231)	No	4.3	2.7	Active	1993-2019	19	Instantaneous (spot)	Poor - data before 2005 is uncharacteristically low or missing altogether. 1997-2003 and 2013 missing	Pond decant in Michel Creek alluvial valley bottom sediments	Model Performance Evaluation
EV_BC1	Bodie Creek Sediment Pond Decant (E102685)	No	11.5	11.2	Active	1992-2019	27	Instantaneous (spot)	Fair - winter gaps from 1997 to 1999, missing 2008 data	Pond decant in Michel Creek alluvial valley bottom sediments	Model Performance Evaluation
EV_AQ1 (replaced by EV_AQ6)	Aqueduct Creek at GN Road (E210369, E312170)	No	3.2	0.5	Active	2009-2019	9	Instantaneous (spot)	Poor - Missing most 2009 to 2013 data	Lined pond decant in Michel Creek alluvial valley bottom sediments	Model Performance Evaluation

Teck Station ID	Station Description	Order / Compliance Station?	2018YE Drainage Area (km²)	2018YE Disturbed Area (km²)	Status	Period of Record	Number of Years	Frequency ^a	Data Completeness ^b	Surficial Conditions	Data Use
EV_SPR2	Spring Creek at Mouth (E298594)	No	0	0	Active	2014-2019	6	Instantaneous (spot)	Good data from 2014-2019. Monthly flow measurements in recent years	Spring in upland tributary	Regional input
EV_MC3	Michel Creek upstream of Erickson Creek (0200203)	No	557.7	9.2	Active	2019	1	Instantaneous (spot)	Fair- winter data missing, weekly flows measurements Mar - Oct	Michel Creek alluvial valley bottom sediments	Model Performance Evaluation
EV_MC2	EVO Michel Creek Compliance Point - Michel Creek at Hwy 3 Bridge (E300091)	Yes	637.0	34.3	Active	2013-2019	7	Continuous daily flow year-round since February 2013.	Fair - missing Jul to Dec 2013; gaps in winter data.	Michel Creek alluvial valley bottom sediments	Model Performance Evaluation
EV_ER1	Elk River downstream of Michel Creek (0200393)	Yes	2813.0	142.6	Discontinued	2017-2018	2	Continuous daily flow	Fair- missing some winter 2018 data	Elk River alluvial valley bottom sediments	Model Performance Evaluation

Table 4-7: Teck Elkview Operations Flow Monitoring Data in the Elk River Watershed Reviewed for the Flow Component

a) Frequency of flow measurements at a station may be instantaneous measurements collected at a weekly or monthly frequency, or continuous daily measurements. Frequency may vary from year to year and by season. b) Completeness of data record is defined as "poor" (spotty data record with many gaps extending several consecutive weeks or months), "fair" (a combination of some gaps and some good data years) or "good" (few or no gaps at a weekly / monthly frequency).

Table 4-8: Teck Coal Mountain Operations Data in the Elk River Watershed Reviewed for the Flow Compone
--

Teck Station ID	Station Description	Order / Compliance Station?	2018YE Drainage Area (km²)	2018YE Disturbed Area (km²)	Status	Period of Record	Number of Years	Frequency ^a	Data Completeness ^b	Surficial Conditions	Data Use
CM_CC1	Corbin Creek downstream of CMO (0200209)	No	28.6	9.2	Active	2003-2019	13	Mix of instantaneous and continuous daily flows	Fair - missing years 2005 to 2007 but daily flow after 2012 is reliable	Pond outlet in tributary valley bottom sediments	Model Performance Evaluation
CM_MC1	Michel Creek upstream of CMO (E258175)	No	35.6	0.0	Active	2008-2019	12	Mix of instantaneous and continuous daily flows	Fair - missing most 2008 and winter flows from 2013 to 2014 but daily flow after 2012 is reliable	Tributary valley bottom sediments	Model Performance Evaluation
CM_MC2	Michel Creek downstream of CMO near Andy Goode Cr. Junction (E258937)	Yes	67.7	9.2	Active	2008-2019	12	Instantaneous (spot)	Poor – missing most winter flows, short period of record.	Michel Creek alluvial valley bottom sediments	Model Performance Evaluation

a) Frequency of flow measurements at a station may be instantaneous measurements collected at a weekly or monthly frequency, or continuous daily measurements. Frequency may vary from year to year and by season. b) Completeness of data record is defined as "poor" (spotty data record with many gaps extending several consecutive weeks or months), "fair" (a combination of some gaps and some good data years) or "good" (few or no gaps at a weekly / monthly frequency).

2020 Regional Water Quality Model Update - Annex B: Hydrology Modelling

4.3.4 Mine Plan Information, Sub-Catchment and Land Use Information

Changes over time in sub-catchment areas, land use and land cover are accounted for in the 2020 RWQM. These changes rely on information from several data sources, including:

- Historical topography
- LiDAR data
- Air photos
- Mine plans (e.g., mined out surfaces from mine plans)
- Historical waste rock spoil progression

The identified information was used to delineate sub-catchment areas, delineate land types within subcatchments, develop pit characteristics, characterize waste rock spoils, and account for the effects of reclamation.

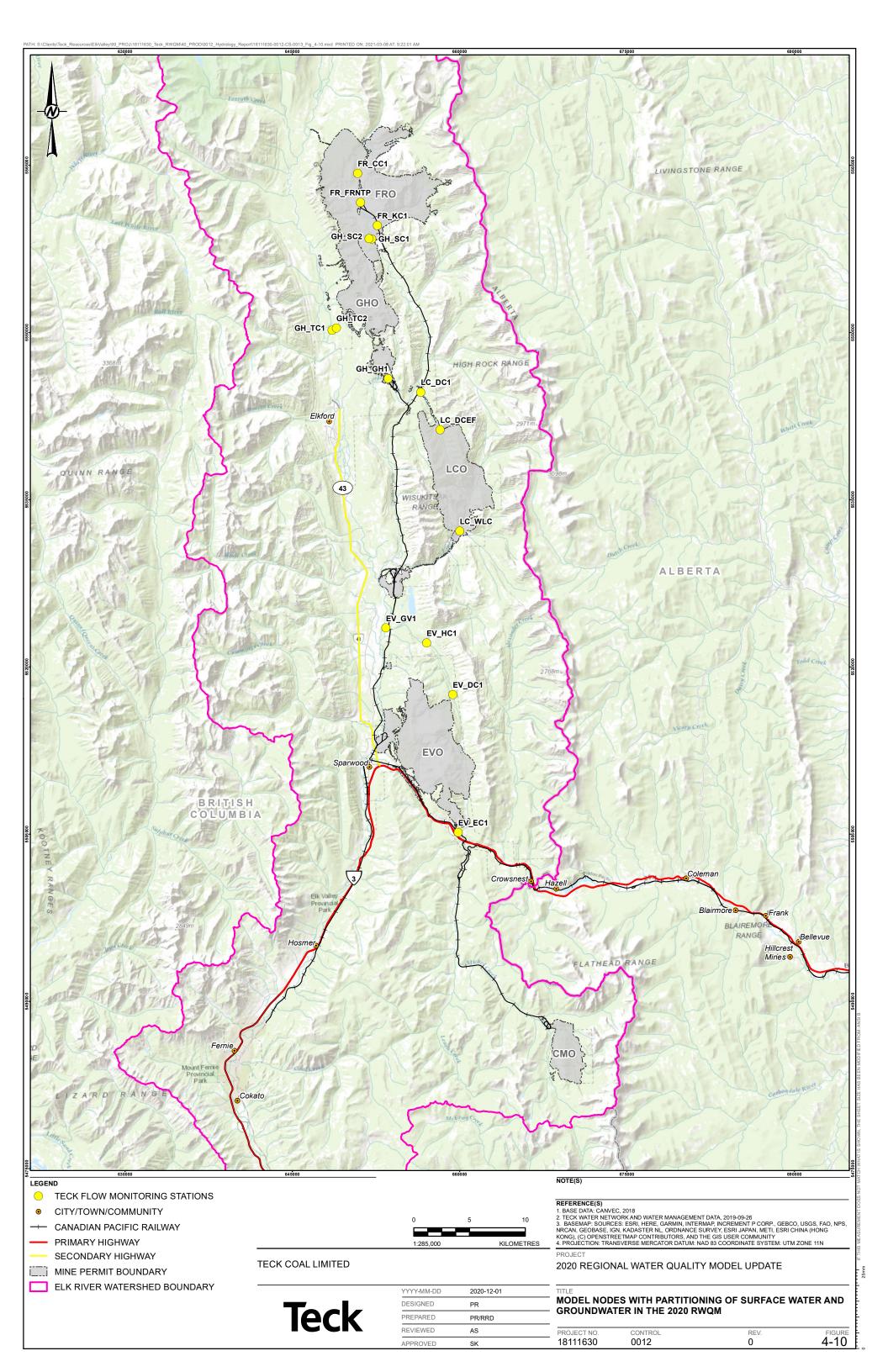
4.3.5 Mine Water Management Information

The 2020 RWQM considers the influence of site water management infrastructure, including diversion channels and/or pipelines for clean and mine-influenced water, pumps for pit dewatering, water stored in flooded pits, and water used on site for dust suppression, coal washing and other industrial uses. This information was obtained from several sources, including:

- Mine water management plans (Teck 2020a, Teck 2020b, Teck 2020c, Teck 2020d)
- Discussions with site personnel
- Historical data records
- Water licences

The identified information was used to develop a conceptual understanding of water movement at the site, which was relied on to model the movement of water between sub-catchments, pit pumping (dewatering, make-up water use), consumption for dust suppression, process water use, and flooding of pits (at closure).

4.3.6 Surface Water - Groundwater Partitioning Information


The 2020 RWQM relies on input from a number of site-specific groundwater studies and related field investigations that have been used to develop estimates of surface water – groundwater partitioning at specific locations, including several monitoring locations and points of flow diversion (e.g., intakes for water treatment facilities). The information was compiled for the following tributary catchments with input from groundwater consultants working in the Elk Valley (see Appendix A):

- Kilmarnock Creek
- Clode Creek

2020 Regional Water Quality Model Update - Annex B: Hydrology Modelling

- Swift Creek
- Cataract Creek
- Elk River tributaries at GHO (Greenhills Operations)
- Greenhills Creek
- LCO Dry Creek
- East Tributary of LCO Dry Creek
- West Line Creek
- Erickson Creek
- EVO Dry Creek
- Harmer Creek

At other model nodes, partitioning of surface water and groundwater was either not explicitly represented in the model framework. The model nodes in the 2020 RWQM that included the partitioning of surface water and groundwater flows are depicted on Figure 4-10.

4.3.7 Information from Hydrogeological Models

Information from available hydrogeological modelling studies are incorporated into the 2020 RWQM to account for the influence of future changes to pit seepage rates and the associated changes to baseflow in the mainstem and tributary watercourses. A list of the sources for the hydrogeological modelling seepage rate inputs is provided below:

- FRO Swift Pit seepage rates: Groundwater modelling results from the FRO (Fording River Operations) Swift Project Environmental Assessment Certificate (EAC) Application (Teck 2014b).
- FRO Turnbull Tailings Storage Facility seepage rates: Groundwater modelling results from the FRO Turnbull West Mines Act Permit Amendment Application (Teck 2018).
- GHO Phase 6 and Phase 7 Pits seepage rates: Groundwater modelling results from the GHO Cougar Pit Extension Permit Amendment Application (Teck 2015a)
- EVO Baldy Ridge Pit, Natal Pit, Adit Ridge Pit and Cedar Pit seepage rates: Groundwater modelling results from the EVO Baldy Ridge Extension (Teck 2015b).

4.3.8 Water Quality Mitigation Information

The FC of the 2020 RWQM incorporates water quality mitigation measures only if they are currently in existence, as they may influence model calibration. The two main water quality mitigation features that are included in the FC are the West Line Creek Active Water Treatment Facility and the EVO F2 Pit Saturated Rock Fill Treatment Facility.

Planned (future) mitigation information is not incorporated in the FC of the 2020 RWQM. The approach used to incorporate these measures into the WQC of the 2020 RWQM is described in further detail in Annex C.

4.4 Processing Meteorological Inputs (Global Climate Module)

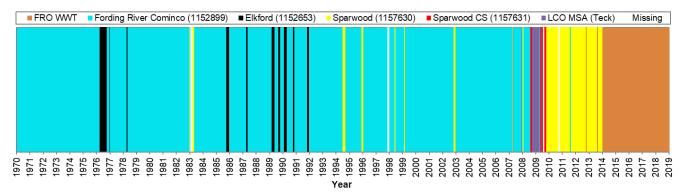
4.4.1 Purpose

The global climate module from the FC of the 2020 RWQM is described in this section. The global climate module is used to process regional meteorological data inputs from reference stations and set up the model with climate input parameters that are applicable across the model domain.

4.4.2 Methods

4.4.2.1 Selection of Representative Stations

Historical climate data from the Elk Valley were compiled for potential use in the 2020 RWQM, as outlined in Section 4.2. This involved the development of representative daily air temperature and precipitation records for each operation using long-term data from the Fording Cominco and Sparwood climate stations for the period of 1970 to 2019.


• Fording Cominco was selected as the representative station at FRO, GHO and LCO.

• Sparwood was selected as the representative station at EVO.

The above selections were checked through the correlation of concurrent daily temperature and precipitation data at a regional level with local data. Gaps in the historical climate records at the reference monitoring stations were infilled using data from other stations. The methods for infilling data gaps are described in the sub-sections below.

4.4.2.2 Infilling Data Gaps

The climate records for the Fording Cominco and Sparwood stations includes years with major data gaps (i.e., years with less than 340 days of available data) and years with minor data gaps (i.e., incomplete year with more than 340 days of available data). A cut-off of 340 days was chosen to differentiate years with larger data gaps from years with smaller data gaps based on a review of regional datasets. Missing precipitation and air temperature data (corrected for elevation differences) were transferred from other regional stations in a specified order of preference, depending on proximity and the availability of data. The source of precipitation and air temperature data for infilling gaps in the Fording River Cominco station data is shown in Figure 4-11 and Figure 4-12. The source of precipitation and air temperature data for infilling gaps in the Sparwood station data is shown in Figure 4-13 and Figure 4-14. Each climate station is represented by a colour in these figures and indicate the specific station that is used as a data source as a function of time.

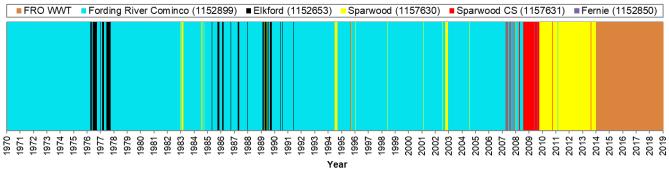
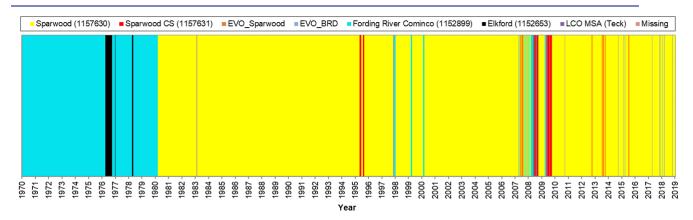
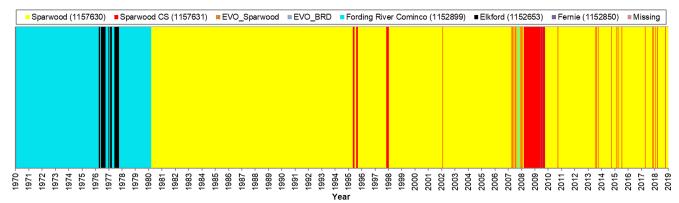




Figure 4-12: Source of Temperature Data for Infilling Gaps in the Fording River Cominco Station Data Record

Figure 4-14: Source of Temperature Data for Infilling Gaps in the Sparwood Station Data Record

The relationships used to derive the infilled Fording River Cominco and Sparwood precipitation and air temperature records are summarized in Table 4-9.

Table 4-9:	Regression Relationships used to Infill Data Gaps

Parameter	Infilling Station	Relationship used to infill Fording Cominco Data Gaps	Relationship used to infill Sparwood Data Gaps		
Precipitation	Fording Cominco	 No adjustment 	 P_{Sparwood} = P_{Fording} * 0.848 (May to September); P_{Sparwood} = P_{Fording} * 1.099 (October to April) 		
	Elkford	 P_{Fording} = P_{Elkford} * 1.11 (May to September); P_{Fording} = P_{Elkford} * 1.129 (October to April) 	 P_{Sparwood} = P_{Elkford} * 0.866 (May to September); P_{Sparwood} = P_{Elkford} * 0.794 (October to April) 		

Parameter	Infilling Station	Relationship used to infill Fording Cominco Data Gaps	Relationship used to infill Sparwood Data Gaps
	Sparwood	 P_{Fording} = P_{Sparwood} * 1.18 (May to September); P_{Fording} = P_{Sparwood} * 0.91 (October to April) 	 No adjustment
	Sparwood CS	 P_{Fording} = P_{SparwoodCS} * 1.106 	 No adjustment
	LCO MSA	No adjustment	 P_{Sparwood} = P_{MSA} * 0.953
Temperature	Fording Cominco	 No adjustment 	 T_{Sparwood} = T_{Fording} + 2.2 °C (May to September); T_{Sparwood} = T_{Fording} + 2.1 °C (October to April)
	Elkford	 T_{Fording} = T_{Elkford} - 1.1°C (From May to September); T_{Fording} = T_{Elkford} - 0.97°C (From October to April) 	 T_{Sparwood} = T_{Elkford} + 1.2 °C (May to September); T_{Sparwood} = T_{Elkford} + 1.1 °C (October to April)
	Sparwood	 T_{Fording} = T_{Sparwood} - 2.2°C (May to September); T_{Fording} = T_{Sparwood} - 2.0°C (October to April) 	 No adjustment
	Sparwood CS	 T_{Fording} =T_{SparwoodCS} - 2.2°C (May to September); T_{Fording} = T_{SparwoodCS} - 2.0°C (October to April) 	 No adjustment
	Fernie	 T_{Fording} =T_{Fernie} - 2.9°C (May to September); T_{Fording} = T_{Fernie} - 2.7°C (October to April) 	 T_{Sparwood} = T_{Fernie} - 0.7 °C (May to September); T_{Sparwood} = T_{Fernie} - 0.6 °C (October to April)

 Table 4-9:
 Regression Relationships used to Infill Data Gaps

T = Temperature, LCO = Line Creek Operations, P = Precipitation.

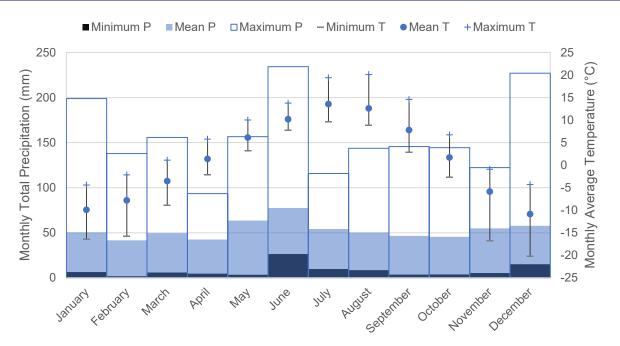
No adjustments were made to the FRO WWT station data for infilling the Fording Cominco data record.

No adjustments were made to the EVO BRD and EVO_Sparwood station data for infilling the Sparwood data record.

4.4.2.3 Climate Input Data Summaries

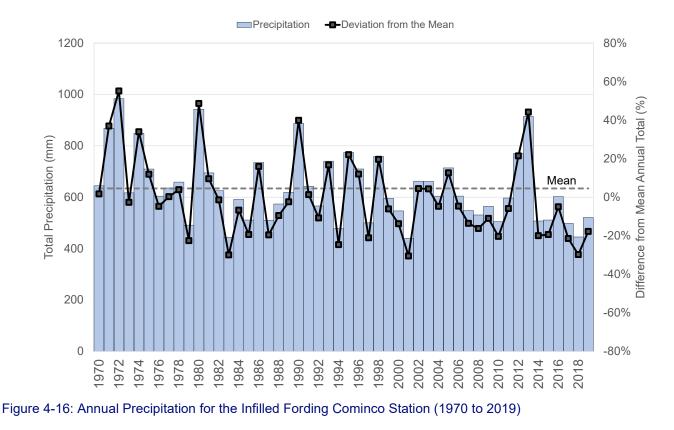
Climate data statistics for the infilled data series from the two main reference stations (Fording Cominco and Sparwood) are summarized in Table 4-10 and Table 4-11, as well as in Figure 4-15 through Figure 4-20. It should be noted that local undercatch¹ factors at the reference stations are unknown. Undercatch was, therefore, not considered in the analysis.

Month		Average Air Temper (°C)	Total Precipitation ^ь (mm)			
	Minimum	Mean	Maximum	Minimum	Mean	Maximum
January	-16	-9.9	-4.4	6	50	199
February	-16	-7.8	-2.1	2	42	138
March	-8.9	-3.5	1.1	6	50	156
April	-2.1	1.4	5.8	5	43	94
May	3.2	6.1	10	3	64	157
June	7.8	10	14	26	77	234
July	9.7	14	19	10	54	116
August	8.9	13	20	9	50	144
September	2.9	7.8	15	4	46	146
October	-2.7	1.7	6.8	4	45	144
November	-17	-5.8	-0.9	5	55	122
December	-20	-11	-4.3	15	58	227
Annual	-1.1	1.3	3.1	440	634	984


Table 4-10:	Fording	Cominco	Infilled	Climate	Data	Summary	,
	rorung	001111100	mmeu	onnate	Data	ounnary	/

a) Air temperature and precipitation were derived based on data recorded at the Fording Cominco climate station from 1970 to 2019, in-filled using WWT, Elkford, Sparwood, Sparwood CS and Fernie climate station data.

b) Precipitation was derived based on data recorded at the Fording Cominco climate station from 1970 to 2019, in-filled using WWT, Elkford, Sparwood, Sparwood CS and LCO MSA climate station data.


c) Annual statistics are calculated independently and do not equate to the sum of the equivalent monthly statistics.

The common installation of rain gauges with rims above the ground surface results in a difference between the rainfall caught and the amount reaching ground level, termed "undercatch."

T = Temperature P = Precipitation.

Figure 4-15: Fording Cominco Monthly Climate Data Summary (1970 to 2019)

Teck Coal Limited May 2022

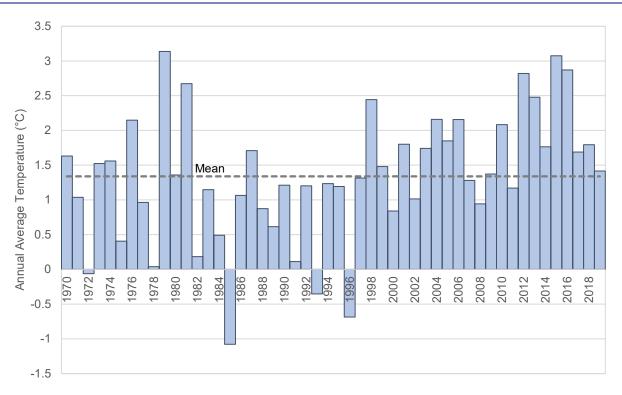


Figure 4-17: Annual Average Air Temperatures from the Infilled Fording Cominco Station (1970 to 2019)

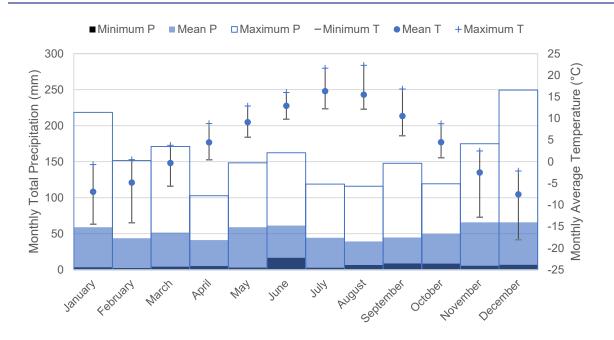

Month	Aver	age Air Tempera (°C)	ature ^a	Total Precipitation ^b (mm)			
	Minimum	Mean	Maximum	Minimum	Mean	Maximum	
January	-14	-7.0	-0.6	3	59	219	
February	-14	-4.8	0.5	2	44	152	
March	-5.7	-0.3	3.8	4	52	171	
April	0.4	4.5	8.8	5	41	103	
May	5.7	9.2	13	3	59	148	
June	9.8	13	16	17	61	163	
July	12	16	22	3	44	119	
August	12	16	22	7	39	116	
September	6.1	11	17	9	45	148	
October	1.0	4.5	8.8	9	50	119	
November	-13	-2.5	2.5	5	66	175	
December	-18	-7.5	-2.1	7	66	250	
Annual	2.0	4.3	6.1	382	626	1007	

Table 4-11: Sparwood Climate Data Summary

a) Air temperature and precipitation were derived based on data recorded at the Sparwood climate station from 1970 to 2019, infilled using Fording Cominco, Elkford, Sparwood CS, Fernie, EVO Sparwood, and EVO BRD climate station data.

b) Precipitation was derived based on data recorded at the Sparwood climate station from 1970 to 2019, in-filled using Fording Cominco, Elkford, Sparwood CS, EVO Sparwood and EVO BRD climate station data.

c) Annual statistics are calculated independently and do not equate to the sum of the equivalent monthly statistics.

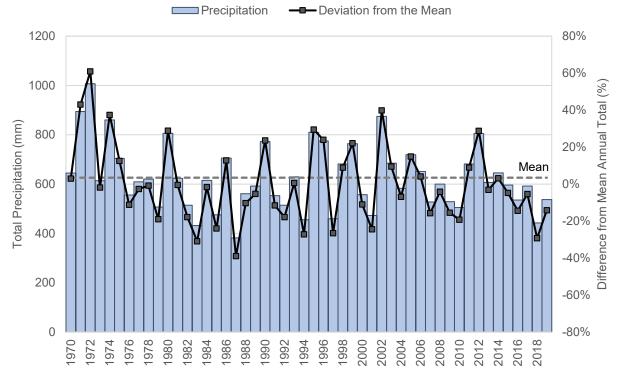


Figure 4-19: Annual Precipitation from the Infilled Sparwood Station (1970 to 2019)

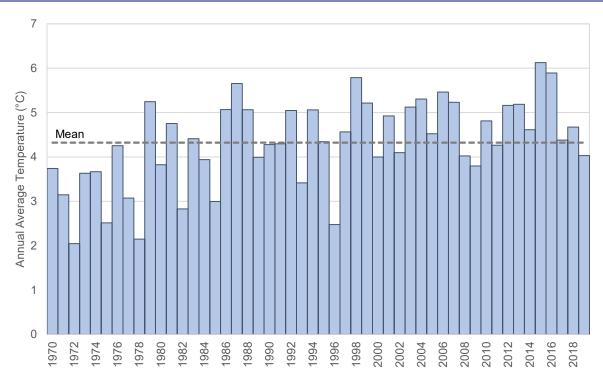
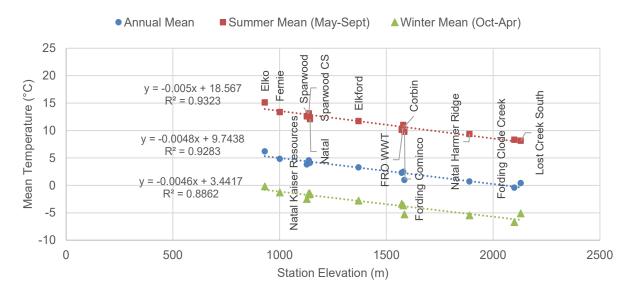


Figure 4-20: Mean Air Temperatures from the Infilled Sparwood Station (1970 to 2019)

4.5 Generating Sub-Catchment-Specific Climate Information (Sub-Catchment Climate Module)

4.5.1 Purpose


The sub-catchment climate module in the flow component of the 2020 RWQM is described in this section. The sub-catchment climate module is used to adjust the regional meteorological data inputs from reference stations to individual sub-catchments. This information is then used as the primary forcing functions for estimating sub-catchment-specific evapotranspiration and lake evaporation rates, and for generating flows from areas within the sub-catchment.

4.5.2 Methods

In the sub-catchment climate module, air temperature and precipitation records from the global subclimate module are adjusted for elevation differences between the reference station and the mean elevation of the sub-catchment using regional regression relationships (developed for baseline studies in the Elk Valley, including FRO Swift and EVO Baldy Ridge Extension). The specific adjustments are described in the subsections below.

4.5.2.1 Adjustment to Air Temperature

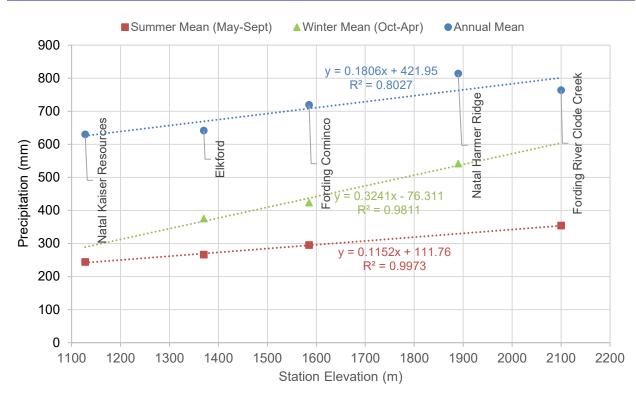

Daily average, minimum and maximum air temperatures were decreased by approximately 0.5 °C for every 100 m gain in elevation based on the regression relationship among several stations in the Elk Valley, as shown on Figure 4-21. The same adjustment was applied year-round.

Figure 4-21: Regression Relationships to Derive a Temperature Lapse Rate

4.5.2.2 Adjustment to Precipitation

Average total precipitation was increased by 25 mm per 100 m gain in elevation, with seasonal differences of 11.5 mm (summer) and 32.0 mm (winter) for every 100 m gain in elevation (Figure 4-22). These adjustments are similar to those presented in Barbour et al. (2016) and are a function of the mean elevation of each model sub-catchment (i.e., each sub-catchment area receives the same adjusted precipitation input). Total precipitation was divided into rainfall and snowfall components using a threshold temperature.

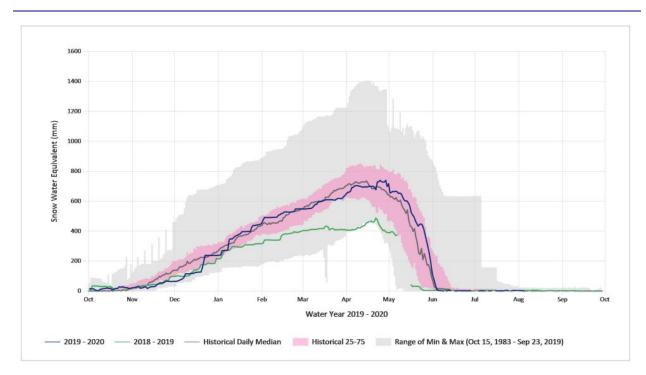
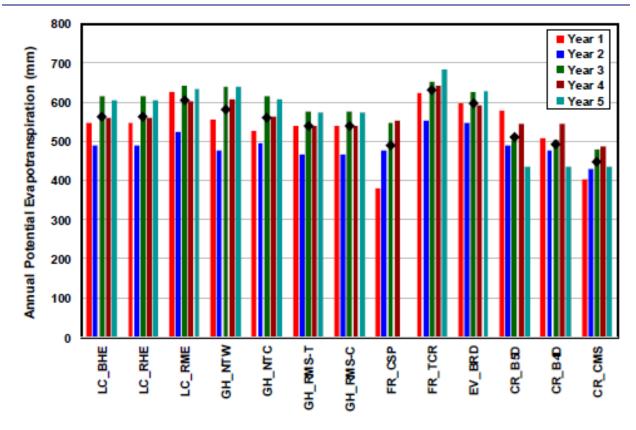


Figure 4-22: Regression Relationship to Derive a Precipitation Lapse Rate

Where applicable, the adjusted/divided precipitation records for each sub-catchment area were verified against comparable records from local and regional stations. This verification step is described as part of the model calibration process in Section 5.1.

4.5.2.3 Snowpack (Snow Water Equivalent)


Snowpack accumulation (based on local-scale measurements from the ECCC snow pillow stations at Fernie and Morrisey Ridge stations, as shown in Figure 4-23) were used to calibrate the modelled snowpack accumulation, as well as to calibrate the threshold temperatures.

4.5.2.4 Estimating Potential Evapotranspiration

Potential evapotranspiration (PET) rates were calculated using the Hargreaves-Samani method. This approach relies on the minimum and maximum daily air temperature records (adjusted based on the subcatchment elevation), the solar constant (equal to 0.082 MJ/m²min), and a coefficient (Kc). Kc is used to calculate evapotranspiration, bare soil evaporation, or open water evaporation from reference evapotranspiration (Hargreaves and Samani 1982). Figure 4-24 shows the annual PET values from 2012 to 2017 as reported in water balances completed at various Elk Valley sites (OKC 2018). The Kc factor used in the Hargreaves-Samani equation was estimated for specific sub-catchments by comparing the calculated PET values with the values in Figure 4-24.

4.5.2.5 Estimating Actual Evapotranspiration

The sub-catchment PET values were adjusted to actual evapotranspiration (AET) based on conversion factors that consider the ratio or partitioning of AET to PET from Okane (OKC 2018; Figure 4-25) (i.e., concurrent records of AET and PET for bare and reclaimed waste rock spoils that include a combination of waste rock and revegetated areas ranging from grasses to 25-year old coniferous trees). As a result, a different conversion factor was applied for each land type within the sub-catchment (i.e., undisturbed areas, hard mine surfaces and waste rock spoils).

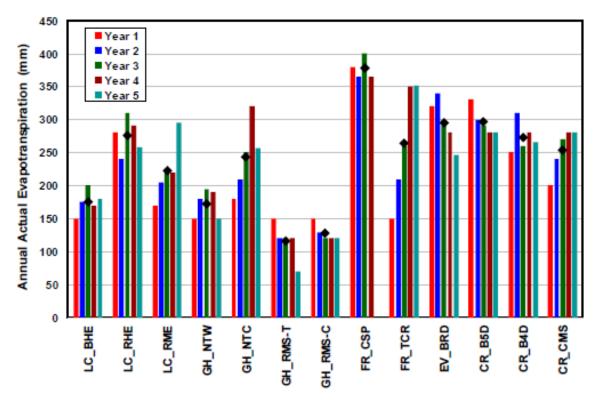


Figure 4-25: Actual Evapotranspiration Rates at Elk Valley Waste Rock Spoils (source: OKC 2018)

4.6 Estimating Flow from Undisturbed and Disturbed, Non-Spoil Areas (Snowmelt Runoff Module)

4.6.1 Purpose

The Snowmelt Runoff Module (SRM) in the FC of the 2020 RWQM is described in this section. The SRM in the FC is used to estimate flows from undisturbed and mine-influenced areas at individual subcatchments, except for waste rock spoils. The outputs from the SRM are ultimately used to calculate total flows at downstream tributary nodes and support calculations of loads from different areas within a subcatchment in the WQC.

4.6.2 Methods

4.6.2.1 SRM Description

The SRM (Martinec et al. 2008) is a lumped, empirical model that is designed to simulate and forecast daily streamflow for mountainous areas with substantial snow cover and associated snowmelt processes on a seasonal basis. The SRM is considered computationally simple, given that the model has comparatively minimal data requirements (Abudu et al. 2012). The primary input variables for the model are temperature, precipitation, and snow cover area. This information is used in the model, along with

several other input parameters (i.e., temperature lapse rate, runoff coefficient [for rain and snow], degreeday factor, recession coefficient, critical temperature, rainfall-contributing area, and lag time) to track snow accumulation and compute flow (discharge) as an output. The surface discharge estimate from this model is typically calibrated to measured flows for gauged sub-catchments or assumed to represent total basin yield for ungauged and uncalibrated sub-catchments.

SRM generates daily discharge based on the following equation:

$$Q_{n+1} = [c_{Sn} a_n (T_n + \Delta T_n)S_n + c_{Rn}P_n] \frac{A.10000}{86400} (1 - k_{n+1}) + Q_n k_{n+1}$$
Eq. 3

Where:

Q	=	average daily discharge (m³/s)
n	=	the day during the discharge computation period
А	=	area of the basin or zone (km ²)
Т	=	degree-days (°Cday)
ΔΤ	=	adjusted (or lapse rate) temperature to account for the difference between the elevation of the climate station and the average hypsometric elevation of the subject basin or zone (°Cday)
Ρ	=	precipitation that contributes to runoff (cm), or is stored/accumulated until melting conditions occur based on temperature;
S	=	ratio of snow-covered area to total area (assumed to be 1 if there is snow on the ground)
С	=	runoff coefficient that identifies the surface water contribution as a ratio of rainfall to runoff (c_R) or snowmelt to runoff (c_s)
а	=	degree-day factor (cm/°Cday) that identifies the characteristic snowmelt depth from 1 degree-day
k	=	recession coefficient that identifies the decline of discharge in a period without snowmelt or rainfall

Several modifications were completed to the latest publicly available SRM version from the GoldSim model library. This included adjustments to the snowmelt calculations to include a reservoir for tracking snow accumulation, and to allow for seasonal inputs, such as a varying runoff coefficient, and the use of a single elevation for each sub-catchment.

The parameter for snow cover area (S) was determined to be either 0 or 1 using the following equation from Essery and Pomeroy (2004):

$$S = \min\left(\frac{\bar{S}}{a}, 1\right)$$
 Eq. 4

Where:

a = roughness length of the surface, which is interpreted to be a snow depth of sufficient
 magnitude to conclude that the ground is indeed snow covered (set to a fixed value of 5 mm throughout the model domain)

 \overline{S} = long-term monthly average SWE that was estimated based on available SWE records from the ECCC Morrisey Ridge climate station

4.6.2.2 SRM Input Data

The SRM was integrated within the 2020 RWQM for individual sub-catchments (excluding waste rock areas) using the following input information:

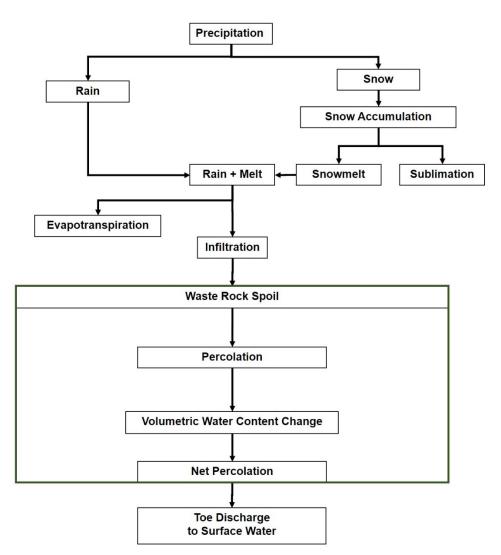
- sub-catchment areas, divided into undisturbed (non-mine affected) areas, hard mine surfaces (e.g., pit walls, roads) and coarse coal reject areas.
- average elevation of the sub-catchment, to support orographic adjustments.
- sub-catchment-specific daily temperature and precipitation, and climate station elevation, as discussed in the sub-catchment climate module.

4.7 Estimating Flow from Waste Rock Spoils (Waste Rock Hydrology Module)

4.7.1 Purpose

The waste rock hydrology module in the FC of the 2020 RWQM is described in this section. The waste rock hydrology module in the FC is used to estimate flows from waste rock spoils at individual subcatchments. The waste rock hydrology module achieves greater consistency with the conceptual model described in Section 3.4 than the 2017 RWQM; it includes functionality that allows for the evaluation of the effects of reclamation on flow and represents a first step to a more mechanistic or process-based approach to the simulation of constituent release from waste rock spoils. The outputs from the waste rock hydrology module are used to calculate total flows at downstream tributary nodes, and support calculations of seasonal and interannual loads from waste rock spoils in the WQC.

4.7.2 Methods


The waste rock hydrology module was developed in GoldSim as a linked component of the SRM. It relies on a characterization of historical waste rock spoil progression and mining in the sub-catchment and includes a numerical representation of the following conceptual components of the hydrology of a waste rock spoil:

- i) **Precipitation** Rainfall, snow fall, snow accumulation and snow melt on the surface of the spoil
- ii) Evapotranspiration and Sublimation Atmospheric losses from the surface of the spoil
- iii) Infiltration Amount of water on the surface that enters the spoil
- iv) Percolation Movement of water through the spoil, primarily as matrix flow
- v) Internal Storage Changes to the VWC within the spoil
- vi) Net Percolation Water released from spoil as toe discharge

The key components of the model set-up for the waste rock hydrology module are further described below and illustrated in the schematic in Figure 4-26.

Elements included in the conceptual model for waste rock hydrology that are not explicitly accounted for in the waste rock hydrology module consist of the following:

- Runoff assumed to be zero, consistent with the modelling approaches used by others (Keller et al. 2015, Martin et al. 2004)
- Wet-up a short-term process in Elk Valley spoils that appears to have limited influence on total waste rock flow (Barbour et al. 2016)
- Macropore flow a flow path of minor relevance with respect to constituent transport (Nichol et al. 2005)
- Basal seepage in waste rock sub-catchments, constituent concentrations tend to be consistent between surface water and shallow groundwater monitoring points, indicating that constituents released from waste rock spoils tend to report to local watercourses in short order, thus, negating the need to track the two discharge pathways separately within the numerical model framework upstream of the first sub-catchment monitoring point.

Figure 4-26: Key Components of the Model Set Up for the 2020 Waste Rock Hydrology Module

The model calculates infiltration to the spoil as follows:

- Rain and snow (accumulation, sublimation, and snowmelt) as calculated by SRM are applied to the surface of the waste rock spoil.
- Actual evapotranspiration rates from the near surface layer of the spoil are estimated using the Hargreaves-Samani equation and a calibration factor for bare waste rock spoils, with the calibration factor being determined through comparisons with actual evapotranspiration rate estimates from OKC (2018).
- Remaining rainfall and calculated snowmelt infiltrate into the waste rock spoil.
- Water infiltrating into the spoil enters a reservoir element. The maximum volume assigned to the reservoir element is determined by multiplying the volume of the waste rock spoil, expressed as

bank cubic meters by a porosity of 0.3. Percolation through the spoil is controlled by an outflow rate from the reservoir element, which is set to 2.5% per week of the total storage held in the spoil. The water exiting the reservoir (net percolation) is directed to the nearest downstream modelling node, wherein it mixes with runoff from other sub-catchment areas, including that which would travel through the rock drain associated with the spoil in question.

4.8 Tracking Water Volumes and Levels in Backfilled, Flooded Pits (Pit Module)

4.8.1 Purpose

The pit module in the FC of the 2020 RWQM is described in this section. The pit module in the FC is used to model inflows, outflows, and water stored within pits. The pit module is intended for application to larger existing and future pits, the filling of which can have a meaningful effect on downstream flow and/or water quality. The module was developed to support (1) the tracking of water levels and volumes within flooded pits, and (2) calculations of pit dewatering, groundwater seepage and withdrawal of water for consumptive or process use. The corresponding outputs from the pit module are used to calculate total flows at downstream tributary nodes, and to support calculations of loads from pits in the WQC.

4.8.2 Methods

The approach to model the filling of mine pits in the FC of the 2020 RWQM is consistent with the associated approach that was used in the *Elk Valley Water Quality Plan 2019 Implementation Plan Adjustment* (2019 IPA; Teck 2019). Pits are modelled using pool elements within GoldSim. Each pool element has a set volume defined as the maximum amount of water the pit can hold below the decant elevation, and they begin to store water once activity in each pit is complete. The pits begin to release water to the receiving environment once full. Information on the characteristics of these pits was obtained from a review of available mine plan information.

Each pool element requires the following information:

- **Inflows**, which include direct precipitation on the open water surface of the pit, runoff from contributing pit sub-catchment areas, water transfers into the pit from other sub-catchments, and groundwater seepage into the pit.
- **Pit characteristics**, which include pit dimensions, backfill material, backfill volumes and backfill porosity, all of which is used to define the maximum capacity of the pit to store water.
- **Outflows**, which include evaporation, groundwater seepage out of the pit, pit pumping (dewatering, make-up water, dust suppression), and overflow, noting that outflows are allocated from the available water stored in the pit using a defined priority sequence.

The FC of the 2020 RWQM accounts for water stored within the following pits under historical conditions (i.e., up to December 31, 2019) using predicted modelled inflows:

- FRO: Turnbull South Pit Tailings Storage Facility (TSF), Eagle 6 West Pit, Eagle 4 Pit, and Shandley Pit
- GHO: Phases 3 Pit and Phase 6 Pit

- LCO: North Line Creek (NLC) Pit, Mine Services Area (MSA) West Pit and Horseshoe Ridge (HSR) Pit
- EVO: Natal West Pit, South Pit and F2 Pit

In addition, the FC of the 2020 RWQM accounts for water stored within the following pits under future conditions (i.e., from January 1, 2020):

- FRO: Eagle 6 Pit to Clode, Eagle 6 Pit to Kilmarnock, and Swift Pit
- GHO: Phases 3 to 6 Pit and Phase 7 Pit
- LCO: NLX Pit and Burnt Ridge North 3 pit
- EVO: Baldy Ridge Pit, Cedar Pit and Natal Pit

The configuration of the pit module in the FC of the 2020 RWQM is conceptually represented on Figure 4-27.

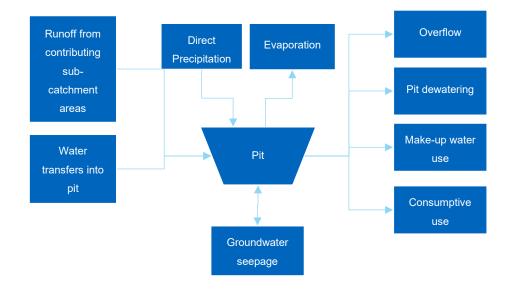


Figure 4-27: Tracking Water Volumes and Levels in Pits in the FC of the RWQM

4.9 Accounting for Changes to Pit Seepage and Groundwater Flows (Pit Seepage Calculations)

4.9.1 Purpose

The pit seepage calculations in the FC of the 2020 RWQM is described in this section. The pit seepage calculations in the FC are used to model the projected changes to instream flow in relevant tributary catchments as a result of future pit development. These calculations are incorporated for pits previously

analyzed in support of permit applications. The calculations affect estimates of projected total flows at downstream tributary nodes.

4.9.2 Methods

The bottom elevations of the mine pits listed below are or may in the future become low enough for those pits to act as local groundwater sinks, drawing water away from surrounding areas. As mining progresses, seepage into the pits is assumed to increase linearly to the end of mining. Maximum groundwater inflows to the pits are expected to occur when the pits are fully mined out and do not hold any water. These groundwater inflows will then diminish over time during pit filling as the pits reach equilibrium conditions. Seepage calculations for the following pits are included in the FC of the 2020 RWQM:

- FRO: Turnbull South Pit and Swift Pit
- GHO: Phases 3 to 6 pits and Phase 7 pit
- EVO: Adit Pit, Baldy Ridge Pit, Cedar Pit, and Natal Pit

Groundwater inflows to the identified pits at FRO, GHO, and EVO are modelled as incremental changes relative to conditions prior to pit development. The effects of pit development on groundwater flows are therefore mostly applicable to modelling future conditions. The modelled groundwater inflows to each of the relevant pits are provided in Tables 4-12 4-13, and 4-14, respectively.

Table 4-12: Estimated Groundwater Flows from Fording River Operations Sub-Catchments Reporting to Turnbull Tailings Storage Facility (Turnbull South Pit) and Swift Pit^(a,b)

Period ^(c)	Net Groundwater Inflow to Turnbull Pit [m³/day]	Net Groundwater Inflow to Swift Pit ^(c) [m³/day]
Conditions Prior to Pit Development	0	0
Pit Mining Ends, filling begins	831	17,733
Pit Full	473	10,031

a) Based on groundwater modelling conducted for the Swift Project (Teck 2014b) and the Turnbull West Project (Teck 2018).

b) Includes baseline recharge over the pit footprints in addition to groundwater inflows to pits.

c) Linear interpolation was used to estimate values between time periods.

m³/day = cubic metres per day.

Table 4-13: Estimated Groundwater Flows from Greenhills Operations Sub-Catchments Reporting
to Phase 3 to 6 Pits and Phase 7 Pit ^(a,b)

Period ^(c)	Net Groundwater Inflow to Phase 3 to 6 Pit [m³/day]	Net Groundwater Inflow to Phase 7 Pit [m³/day]
Conditions Prior to Pit Development	0	0
Pit Mining Ends, filling begins	2121	499
Pit Full	1412	286

a) Based on groundwater modelling conducted for the CPX Project (Teck 2015a).

b) Includes baseline recharge over the pit footprints in addition to groundwater inflows to pits.

c) Linear interpolation was used to estimate values between time periods.

m³/day = cubic metres per day.

Table 4-14: Estimated Groundwater Flows from Elkview Operations Sub-Catchments Reporting to
Natal Pit, Baldy Ridge Pit, Cedar Pit and Adit Ridge Pit^(a,b)

Period ^(b)	Net Inflows to Natal Pit [m³/day]	Net Inflows to Baldy Pits [m³/day]	Net Inflows to Cedar Pit [m³/day]	Net Inflows to Adit Ridge Pit [m³/day]
Conditions Prior to Pit Development ^(c)	0	0	0	0
Mining Ends, filling begins	605	485	61	22
Pits Full	574	464	130	210

a) Based on groundwater modelling conducted for the EVO BRE Project EAC (Teck 2015b).

b) Includes baseline recharge over the pit footprints in addition to groundwater inflows to pits.

c) Linear interpolation was used to estimate values between time periods.

m³/day = cubic metres per day.

4.10 Accounting for Water Management Activities (Water Management Module)

4.10.1 Purpose

The water management module in the FC of the 2020 RWQM is described in this section. The water management module in the FC is used to model the transfer of flows between individual sub-catchments (e.g., via pumping or diversion channels) and to account for the associated changes to water management activities over time (e.g., commissioning of new diversions, decommissioning a pond). The outputs from this module are used to support calculations of total flows at sub-catchment nodes, downstream tributary nodes, and calculations of loads at specific nodes in the WQC.

4.10.2 Methods

4.10.2.1 Non-Consumptive Transfer Flows

Non-consumptive water transfers include diversions, pumping for make-up water supply to the process plant, and process flows (e.g., water in dredged tailings or tailings slurry). The FC accounts for the movement of water between sub-catchments as a result of these activities. Total flow within a given sub-catchment is estimated based on the different outflows and transfers from or to a sub-catchment. The withdrawals from a sub-catchment are based on an order of priority specified within FC that reflects on-site water management practices. After accounting for all water transfer demands and consumptive withdrawals (described further below), the net water remaining in the sub-catchment is directed to the downstream model node as discharge.

The water transfers in the FC are summarized in Table 4-15, noting that water transfers from water quality management measures are excluded from this list (see Section 4.19).

Operation	Process and Tailings	Diversions and Pumping (ex-pit)	Pit Pumping
FRO	 Wash plant tailings to South Tailings Pond (STP) Dredged tailings to Turnbull TSF Reclaim water from STP to wash plant 	 Clode rock drain Post Ponds rock drain North and East Tributary rock drain Tower Diversion Tower Diversion Extension Swift Creek Upper Diversion Cataract Creek Diversion to Swift Ponds Britt Creek Diversion North Spoil Clean Water Diversion 	 Eagle 6 to Clode Creek Eagle 6 to Kilmarnock Creek Eagle 6 to Eagle 4 Pit Lake Mountain Pit to Lake Mountain Ponds Swift Pits to Liverpool Ponds
GHO	 Process plant tailings to TSF Reclaim water from TSF to process plant 	• None	 Phase 3 Pit to Thompson, Wolfram Creek Phase 4/5 Pit to Wolfram Creek Phase 6 Pit to Cataract, Mickelson, Leask and Wolfram Creek Phase 7 Pit to Willow Creek, Phase 6 Pit
LCO	• None	 No Name Creek to NLC Pit No Name Creek rock drain, 	 NLX Pit to HSR Pit HSR Pit to Line Creek MSAW to HSR Pit BRN Pits to LCO Dry, No Name Creek MTM Pits to LCO Dry, Upper Line Creek
EVO	 Process plant tailings to Lagoon D Process plant tailings to West Fork Tailings Facility 	 Cedar Pit / Breaker Lake to EVO Dry Creek Bodie Control Pond to Gate Creek 	 Natal Pit to Bodie rock drain Cedar Pit to Tunnel Baldy Ridge Pits to Natal Pit Baldy Ridge Pits to Aqueduct Creek

Table 4-15:	Non-consumptiv	e Water Transfers	Included the 2020 RWQM
		• • • • • • • • • • • • • • • • •	

4.10.2.2 Consumptive Withdrawals

The FC includes a consumptive loss term for dust suppression activities at FRO, GHO, LCO and EVO. Water for dust suppression is diverted from the following locations:

- FRO: Kalmikoff Pond, Eagle 4 Pit, Shandley Pit, Liverpool Ponds, and Kilmarnock Settling Ponds
- GHO: Phase 3, Phase 4/5, Phase 6 and Phase 7 pits
- LCO: Horseshoe Ridge Pit, Burnt Ridge South Pit, Mine Services Area West Pit, and North Line Extension Pit
- EVO: Breaker Lake, Natal Pit, Bodie Creek, Adit Pit, Baldy Ridge Pit, and the EVO SRF

Rates of water use for dust suppression are estimated based on site information.

The FC includes a consumptive loss term for use in coal processing at FRO, GHO, and EVO. Make-up water for process uses are diverted from the following locations:

- FRO: Shandley Pit. Eagle 4 Pit, Turnbull TSF reclaim line, Kilmarnock Creek, and groundwater wells
- GHO: Phase 3 Pit, Phase 6 Pit, and groundwater wells
- LCO: None
- EVO: Cedar Pit (Tunnel) and Elk River

The consumptive water losses at FRO (e.g., water lost with clean coal as a result of dryer usage and other mechanisms within the process plant) are estimated at 3,000 m³/d based on the water balance results for the South Tailings Pond (STP). In comparison, the consumptive water losses at GHO and EVO are estimated at 3,000 m³/d and 2,700 m³/d, respectively, based on the water balance results for the process plant/tailings storage facility.

4.11 Accounting for the Effects of Reclamation

4.11.1 Purpose

The *Reclamation Calculations* in the FC of the 2020 RWQM are described in this section. These calculations are used to model projected decreases in infiltration rates and associated increases in evapotranspiration rates at waste rock spoils once they are reclaimed, as well as the overall decrease in flows from reclaimed areas (relative to disturbed areas prior to reclamation). The effects of reclamation are mostly applicable to the modelling of closure conditions but can be applied wherever reclamation activities are undertaken. These calculations result in a progressive decrease in catchment yields from reclaimed areas and affect projected estimates of total flows from sub-catchments and at downstream tributary nodes.

4.11.2 Methods

Information from Teck's long-range reclamation plans and reclamation research and development program was considered to support the modelling of reclamation activities in the FC of the 2020 RWQM. The long-range reclamation plans specify the extent of reclamation having been completed in each mine area by a given time (i.e., at each snapshot interval), consistent with future permitted development activities at each Teck operation. The plans also identify the type of reclamation being considered (i.e., the prescription), and the start date of reclamation. Information from Teck's research and development program (OKC 2018) includes estimates of the duration for each reclamation prescription to reach maturity, and an empirical relationship to model the expected change to evapotranspiration rates as vegetation cover matures.

User inputs defined for estimating effects of reclamation in the 2020 RWQM include:

• Reclamation start date

The start date of reclamation was set to begin after the end of active operations, consistent with the last date of seeding noted in the long-range reclamation plan at each site. These dates are as follows: 2055 year-end (YE) for FRO, 2042YE for GHO, 2043YE for LCO, and 2059YE for EVO.

• Reclamation prescription

Four options are built into the FC: bare ground, natural revegetation, grasses, and seedlings. Consistent with information noted in the long-range reclamation plan at each site, all areas were modelled with seedlings as the reclamation prescription. Reclamation prescriptions were applied to all mine-affected areas, including waste rock areas, hard mine areas, and CCR areas.

 Reclamation period, which corresponds to the length of time it will take for the reclamation efforts to be fully realized (i.e., vegetation is fully matured and effects to evapotranspiration and infiltration are fully realized)

Reclamation period varies by reclamation prescription, ranging from 2 years to 30 years. Seedlings were modelled with a period of maturity of 30 years.

Once the above inputs were defined for each sub-catchment, the effect of progressive reclamation is calculated in the FC of the 2020 RWQM. The numerical approach differs between waste rock areas and other mine-affected areas (i.e., hard mine and CCR areas), because flows from waste rock areas are generated using the waste rock hydrology module and flows from hard mine areas are generated using SRM.

For waste rock areas, the Kc value (the coefficient to scale evaporation from open water to land surface) for waste rock areas is modelled to progressively increase over the reclamation period, beginning on the reclamation start date. The increase in the Kc value is defined as a function of leaf area index (LAI). The LAI increases from a value of zero (bare surfaces) to a defined maximum value at maturity. Increasing the Kc value from the start of the reclamation period results in an incremental increase in the evapotranspiration losses, which in turn decreases the infiltration into the waste rock spoil.

For hard mine and CCR areas, the runoff coefficient for a given sub-catchment was modelled to progressively decrease over the reclamation period. The runoff coefficient was approximately matched to

that of natural areas at the end of the reclamation period (Figure 4-28). This approach reflects the temporal increase in the evapotranspiration losses from the change in land cover and results in an incremental decrease in runoff from the start of the reclamation period.

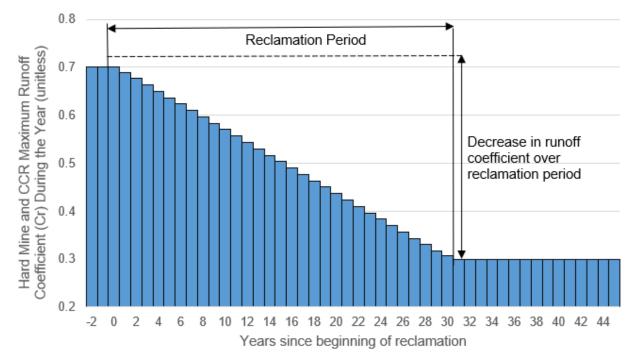


Figure 4-28: Effect of Reclamation on Modelled Yield from the Hard Mine and CCR Runoff Coefficient

4.12 Verifying the Sub-Catchment Water Balance (Water Balance Module)

4.12.1 Purpose

The water balance module in the flow component of the 2020 RWQM is described in this section. This module was developed to allow a basis for completing quality assurance checks of the modelled estimates at individual sub-catchments.

4.12.2 Methods

The water balance module estimates annual water volumes for individual water balance components, including precipitation, evapotranspiration, total flow (or sub-catchment yield), and water storage. In sub-catchments that include water management activities, water transfers and consumptive uses are also accounted for in the overall water balance estimates. Calculations in the module are completed based on the hydrological year (from October 1 to September 30) to consider the entire snow accumulation and snowmelt within the same annual cycle. The application of the water balance module in the model calibration process is discussed further in Section 5.1.

4.13 Estimating Total Flows at Tributary Nodes

4.13.1 Purpose

The tributary-scale estimates of total flow in the FC of the 2020 RWQM are described in this section. These estimates of total flows at tributary nodes are required during model calibration to evaluate model performance, allow for comparisons against estimates of sub-catchment yield, and to verify the overall water balance of the sub-catchment.

4.13.2 Methods

The approach to estimate total flows at tributary nodes in the FC generally involves adding up the flows from the contributing sub-catchment areas. This process accounts for the influences of the relevant water management activities through mining operations and closure, including pit water storage, diversions, consumptive uses, groundwater baseflow changes due to pit development, and reclamation activities. The total flows at tributary nodes represent the net flows generated using the SRM for undisturbed (non-mine affected) areas, hard mine areas and coarse coal reject areas, and the net flows generated using the waste rock hydrology module for waste rock spoils. The tributary nodes in the FC that include estimates of total flows are presented in Table 4-1 of Section 4.1.

At tributary nodes in the FC, the estimated total flows are subsequently partitioned into surface and groundwater flow components, to account for the site-specific channel conditions. The approach to flow partitioning is discussed further in Section 4.17.

4.14 Estimating Flows at the Fording River Mainstem Nodes

4.14.1 Purpose

The mainstem flow calculations in the FC of the 2020 RWQM for the Fording River mainstem nodes are described in this section. Estimates of total flows at mainstem nodes are required to evaluate model performance at mainstem nodes with available flow monitoring data, as well as to support WQC-calculated loads at mainstem Order Stations and compliance points.

4.14.2 Methods

The approach in the FC for estimating flows at mainstem Fording River nodes involves adding up the flows from the contributing upstream tributary nodes. The mainstem Fording River nodes that include estimates of total flows are presented in Table 4-16.

Model Node	Description	Formula used	Comments
FR_FR1	Fording River downstream of Henretta Creek (0200251)	FR_HC1 + FR_UFR1 + Turn Creek	Flow from Henretta Creek, Turn Creek and Fording River above Henretta Creek
FR_FRNTP	Fording River at the North Tailings Pond	FR_FR1 + FR_PP1 + FR_CC1 + FR_LMP1 + FR_LP1 + FR_EC1 + Turnbull Bridge Spoil	Additional flow from Post Ponds and Turnbull Bridge Spoils, Lake Mountain Creek, Clode Creek, Turnbull TSF decant, Eagle Ponds, Eagle Pits and Liverpool Ponds (Swift Pit)
FR_FR2	Fording River upstream of Kilmarnock Creek (0200201)	FR_FRNTP + Fording LF2 Lower + South Tailings Pond Seepage	Additional flow from Fording LF2 Lower, South Tailings Pond Seepage
FR_FR4	Fording River downstream of Swift Creek and upstream of Cataract Creek (0200311)	FR_FR2 + Swift Creek Upper Diversion + GH_SC1	Additional flow from Swift Creek Upper Diversion and Swift Creek
FR_FRCP1	FRO Compliance Point - Fording River approximately 525 m downstream of Cataract Creek (E300071)	FR_FR4 + GH_CC1 + other areas	Additional flow from Cataract Creek, a portior of Kilmarnock Creek flow and other areas, including a portion of the Castle Mountain sub-catchment and other areas not associated with a named tributary between FR_FR4 and FR_FRCP1.
GH_PC2	Fording River downstream of Porter Creek (E287431)	FR_FRCP1 + GH_PC1 + other areas	Additional flow from Porter Creek, remaining flow from Kilmarnock Creek and other areas not associated with a named tributary between FR_FRCP1 and GH_PC2, including a portion of the Castle Mountain sub- catchment
FR_FRABCH	Fording River above Chauncey Creek	GH_PC2 + other areas	Additional flow from other areas include a portion of the Castle Mountain sub-catchmen and other areas not associated with a named tributary between GH_PC2 and FR_FRABCH.
GH_FR1	GHO Fording River Compliance Point – Upper Fording River, approximately 205 m downstream of Greenhills Creek (0200378)	FR_FRABCH + Chauncey Creek + Ewin Creek + Todhunter Creek + LCO Dry Creek + Grace Creek + GH_GH1 + other areas	Additional flow from Chauncey Creek, Ewin Creek, Todhunter Creek, LCO Dry Creek, Grace Creek, Greenhills Creek and other areas not associated with a named tributary between FR_FRABCH and GH_FR1.
LC_LC5	Fording River downstream of Line Creek (at the Mouth)	GH_FR1 + LC_LC4 + other areas	Additional flow from Line Creek and other areas not associated with a named tributary between GH_FR1 and LC_LC5.

Table 4.40.	F = t ¹ ··· = t ¹ ··· = ··			Diver Neder
Table 4-16.	Esumating	FIOWS at	roraing	River Nodes

4.15 Estimating Flows at Michel Creek Mainstem Nodes

4.15.1 Purpose

The mainstem flow calculations in the FC of the 2020 RWQM for the Michel Creek mainstem node are described in this section. As indicated in Section 4.14, estimates of total flows at mainstem nodes are required to evaluate model performance at mainstem nodes with available flow monitoring data and to support WQC-calculated loads at mainstem Order Stations and compliance points.

4.15.2 Methods

The methods for deriving flows at Michel Creek mainstem nodes in the FC of the 2020 RWQM include a combination of approaches, as described below:

- Flows at Michel Creek downstream of CMO (CM_MC2) originate from the CMO Water and Load Balance Model. The methods for estimating flows at CM_MC2 are described in SRK (2021).
- Flows at Michel Creek upstream of Erickson Creek (EV_MC3) are estimated using a ranked regression equation developed at EV_MC2 and a scaling equation to account for the differences in drainage area and elevation between EV_MC3 and EV_MC2.
- Flows at all nodes downstream of EV_MC3 to the mouth of Michel Creek (i.e., at nodes EV_MC3a, EV_MC2a, EV_MC2 and EV_MC1) are then estimated by adding up the individual upstream flow contributions from sub-catchments of EVO, as modelled using the SRM and the waste rock hydrology module in the FC. The equations for each of these nodes are provided in Table 4-17.

Model Node	Description	Method / Formula used	Comments
CM_MC2	Michel Creek, approximately 50 m upstream of Andy Goode Creek (E258937)	CMO Water and Load Balance Model	Flow from the entire Coal Mountain Operations site, the Corbin Creek sub-catchment, and other areas of the Michel Creek catchment above Corbin Creek were obtained from the CMO Water and Load Balance Model.
EV_MC3	Michel Creek upstream of Erickson Creek (0200203)	Ranked regression equation to estimate flow at EV_MC2, scaled (prorated) to drainage area at EV_MC3, with a baseflow adjustment for groundwater flow component	Represents flow from several tributaries including the CMO site, Andy Goode Creek, Leach Creek, Carbon Creek, Snowslide Creek, Wheeler Creek, and Alexander Creek, and other unnamed tributaries between CM_MC2 and EV_MC3.
EV_MC3a	Michel Creek downstream of Erickson Creek	EV_MC3 + EV_EC1	Additional flow from Erickson Creek are estimated using the SRM and waste rock hydrology modules and added to the flow at EV_MC3.
EV_MC2a	Michel Creek upstream of Gate Creek	EV_MC3a + EV_SP1 + EV_MG1 + EV_TC1 + other areas	Additional flow from South Pit Creek, Milligan Creek, Thresher Creek and other unnamed areas of the Michel Creek catchment between EV_MC3a and EV_MC2a are estimated using the SRM and waste rock hydrology modules and added to EV_MC3a.
EV_MC2	EVO Michel Creek Compliance Point (at the Highway 3 bridge) (E300091)	EV_MC2a + EV_BC1 + EV_GT1 + other areas	Additional flow from Gate Creek, Bodie Creek and other unnamed areas of the Michel Creek catchment between EV_MC2a and EV_MC2 are estimated using the SRM and waste rock hydrology modules and added to EV_MC2a.
EV_MC1	Michel Creek upstream of Highway 43 Bridge (at the Mouth) (0200425)	EV_MC2 + EV_AQ1 + other areas	Additional flow from Aqueduct Creek and other unnamed areas of the Michel Creek catchment between EV_MC2 and EV_MC1 are estimated using the SRM and waste rock hydrology modules and added to EV_MC2.

Table 4-17: Estimating Flows at Michel Creek Nodes

CMO = Coal Mountain Operations, EVO = Elkview Operations, SRM = Snowmelt Runoff Module.

The ranked regression or empirical frequency pairing (EFP) method is an alternate to conventional regression techniques and can be used to generate relationships to estimate flows, particularly at locations with short-term data using stations with long-term data (Butt 2013). Historical flows between 1970 and 1996 from the discontinued ECCC hydrometric station (Michel Creek below Natal, Station 08NK020) were used along with concurrent data records at the Elk River at Fernie (08NK002) and Elk River near Natal (08NK016) hydrometric stations with the EFP method to generate a ranked regression relationship. These relationships were then applied to generate a synthetic daily flow record at the EVO Michel Creek Compliance Point (EV_MC2) for the entire historical period (i.e., 1970 to 2019). The steps followed are described in further detail below:

- Flow data for the period of 1970 to 2018 from the aforementioned ECCC stations and Teck's EV_MC2 station were complied. The source dataset used to develop the regression relationship was derived as the difference in flow between the Elk River at Fernie and the Elk River near Natal.
- A regression analysis was conducted on the concurrent dataset, which was limited by the Michel below Natal station (08NK020) data record from 1970 to 1995. The data record from 1970 to 1995 was split into two: the period from 1970 to 1983 (14 years) was used for developing the regression relationships, and the period from 1984 to 1995 (12 years) was used for validation.
- To develop the regression relationships, the dataset was first divided into quarters as follows: Quarter 1 (January – March), Quarter 2 (April – June), Quarter 3 (July – September), and Quarter 4 (October – December). Quarter 2 was further split into two: April, and May to June, in recognition of the rapid transition in flow that can occur in this period with the onset of spring freshet.
- The data in each quarter was ranked for each dataset (i.e., the difference in flow between the Elk River at Fernie and the Elk River near Natal formed one dataset while the Michel Creek below Natal station formed the other).
- Regression was performed on the ranked (frequency paired) data for each quarter. Various regression types were then tested to pick the best fit.
- Ultimately, the best fit relationship was applied to the source dataset to generate a long-term data record at EV_MC2.

The derived long-term data record at EV_MC2 was scaled to the EV_MC3 node in the FC of the 2020 RWQM, with the scaling adjustment a function of the drainage area and elevation differences between EV_MC2 and EV_MC3, as noted in Table 4-17. The approach to scaling was adopted to allow the FC to continue to rely on the SRM and waste rock hydrology modules for flow estimates from EVO tributary catchments. In other words, the model domain of the FC for the Michel Creek catchment effectively begins at EV_MC3 and does not explicitly model upstream catchment flows. Loads from the upstream catchment are defined in the WQC using output from the CMO Water and Load Balance Model.

Finally, a baseflow adjustment was also applied to EV_MC3 as part of the model calibration process. This adjustment is further explained in Section 5.

4.16 Estimating Flows at the Elk River Mainstem Nodes

4.16.1 Purpose

The mainstem flow calculations in the FC of the 2020 RWQM for the Elk River mainstem nodes as well as tributary inflows to the Koocanusa Reservoir are described in this section. As indicated in Section 4.14, estimates of total flows at mainstem nodes are required to evaluate model performance at mainstem nodes with available flow monitoring data and support WQC-calculated loads at mainstem Order Stations and compliance points.

4.16.2 Methods

A specific method of flow derivation was used to estimate flows for the Elk River nodes and other tributary inflows to Koocanusa Reservoir (relative to the associated mainstem flow calculations for the Fording River and Michel Creek nodes). Estimating flows at these nodes consisted of the direct use of available monitoring data (at gauged locations) or by pro-rating flows from gauged stations to the modelling nodes (at ungauged locations). This method was applied to the Elk River, as well as to inflows to the Koocanusa Reservoir from other tributaries (i.e., the Bull River and Kootenay River). There are long-term stream gauge records for these watercourses and the flow regimes are not expected to change substantially due to future mining activity, meaning that flows at the subject watercourses can be characterized using existing flow records and pro-rated as required to reflect contributing sub-catchment area.

Table 4-18:	Flows at Regional Mainstem Nodes (Locations where Scaling Methods are
	Applied)

Node	Description	Method	Formula used to derive flows
GH_ERC	GHO Elk River Compliance Point – Elk River, 220 m downstream of Thompson Creek (E300090)	Derived by calculating the amount of flow measured at Environment Canada hydrometric gauge 08NK016 (Elk River at Natal) that would originate from the Elk River watershed excluding the Fording River, and pro-rating the result using a ratio of watershed areas. Fording River flows are defined for the purposes of this calculation using measured data,	(EV_ER4 - LC_LC5) * 0.72
GH_ER1	Elk River upstream of Boivin Creek (upstream of Fording River confluence, near Elkford) (E206661)	Same as above.	(EV_ER4 - LC_LC5) * 0.78
EV_ER4	Elk River upstream of Grave Creek (from Fording River to Michel Creek (0200027) (downstream of Fording River confluence, near Natal)	Located at Environment Canada hydrometric gauge 08NK016 (Elk River at Natal). Gauged flows were used.	EV_ER4 = 08NK016

	•• •		
Node	Description	Method	Formula used to derive flows
EV_ER1	Elk River downstream of Michel Creek confluence (0200393)	Derived by summing the modelled flow at Michel Creek at the mouth (EV_MC1) and pro-rating the gauged flow at 08NK016 (EV_ER4).	EV_MC1 + EV_ER4*1.164
RG_ELKFERNIE	Elk River at Fernie (West Fernie Bridge)	Located at Environment Canada hydrometric gauge 08NK004 (Elk River at Fernie). Gauged flows were used.	RG_ELKFERNIE = 08NK004
RG_ELKORES	Elk River at Elko Reservoir (E294312)	Derived using Elk River at Fernie (08NK004) and prorated using a ratio of watershed areas.	RG_ELKORES = RG_ELKFERNIE x 1.14
RG_ELKMOUTH	Elk River at Highway 93 near Elko (the mouth)	Derived using Environment Canada hydrometric gauges Elk River at Phillips Bridge (08NK005), and Elk at Fernie after 1996. Prorated flow based on a relationship between monthly flows (from scatterplot).	RG_ELKMOUTH = 08NK005 (until 1996) RG_ELKMOUTH = RG_ELKFERNIE × 1.53 (after 1996)
RG_BULL	Bull River near Wardner	Located at Environment Canada hydrometric gauge 08G002 (Bull River near Wardner) Gauged flows were used.	RG_BULL = 08NG002
RG_KOOTENAY	Kootenay River near Fort Steele	Located at Environment Canada hydrometric 08NG065 (Kootenay River near Fort Steele). Gauged flows were used.	RG_KOOTENAY = 08NG065

Table 4-18: Flows at Regional Mainstem Nodes (Locations where Scaling Methods are Applied)

4.17 Accounting for Surface Water-Groundwater Partitioning at Model Nodes

4.17.1 Purpose

The approach to partitioning the surface and groundwater flow components at model nodes in the FC of the 2020 RWQM is described in this section. As noted in the conceptual model, total sub-catchment yield, as estimated by the FC, flows via surface and groundwater pathways. Explicit representation of these two flow pathways was not included in previous versions of the RWQM. Focus was placed on tracking total sub-catchment yield (i.e., total flow), and it was assumed that constituents released from mine operations and other areas mixed completely in the total flow. Surface water – groundwater partitioning is explicitly built into the 2020 RWQM to assist with the calibration of the FC and to support a more accurate representation of the hydrologic system because of the relevance of mine-impacted water flow pathways to water quality mitigation planning, in terms of capturing mine-influenced water.

4.17.2 Methods

The FC of the RWQM is used to estimate and then track total flow. At specific locations, explicit representation of the division of flow between surface and groundwater pathways has been included to more accurately support flow tracking and mitigation planning. The volume of water traveling through the

ground at any point in time is calculated based on flow thresholds that are expressed as a percentage of total flow up to a maximum flow rate.

The flow thresholds are defined based on available monitoring information, including knowledge of the local geology. The flow thresholds are summarized in Table 4-19. These thresholds relied on information from various sources, as summarized in Section 4.3 and Appendix B. In some instances, the defined partitioning was adjusted as part of the model calibration process. The need for adjustments was determined based on the sub-catchment water balance and comparisons of modelled and monitored flows on a mean annual basis. This process is discussed further in Section 5.1.

			Groundwater Flow			
Operation	Node ID	Description	Percentage of Total Flow	Maximum Flow Rate (m³/d)		
FRO	FR_CC1	Clode Creek Sediment Pond Decant (E102481)	60%	4,000		
	FR_KC1	Kilmarnock Creek d/s of Rock Drain (0200252)	Flows <60,000 m³/d: 100%; Flows >60,000 m³/d: 30%	Flows <60,000 m³/d: 16,500; Flows >60,000 m³/d: 26,900		
	FR_FRNTP	Fording River at North Tailings Pond	3%	10,000		
	GH_SC1 and GH_SC2	Swift Creek Sediment Pond Decant (E221329)	2%	1,000		
GHO	GH_GH1	Greenhills Creek Sediment Pond Decant (E102709)	30%	6,000		
	GH_TC1 and GH_TC2	Thompson Creek at LRP Road (E102714)	80%	5,000		
LCO	LC_DCEF ^(a)	East Tributary of LCO Dry Creek (E288274)	80%	69,120		
	LC_WLC	West Line Creek (E261958)	60%	10,000		
	LC_DC1	LCO Dry Creek near mouth (at bridge) (E288270)	50%	8,000		

Table 4-19: Flow Thresholds Used to Define	Surface Water - Groundwater Partitioning in the 2020
Regional Water Quality Model	_

Regional Water Quality Moder							
			Groundwater Flow				
Operation	Node ID Description		Percentage of Total Flow	Maximum Flow Rate (m³/d)			
	EV_DC1	EVO Dry Creek Sediment Pond Decant (E298590)	Flows <20,000 m³/d: 100%, Flows >20,000 m³/d: 10%	Flows <20,000 m³/d: 2,000; Flows >20,000 m³/d: 5,000			
EVO	EV_HC1	EVO Harmer Compliance Point – Harmer Spillway (E102682)	5%	5,000			
	EV_GV1	Grave Creek at bridge	5%	5,000			
	EV_EC1	Erickson Creek at Mouth (0200097)	10%	34,560			

Table 4-19: Flow Thresholds Used to Define Surface Water - Groundwater Partitioning in the 2020 Regional Water Quality Model

a) Groundwater partitioning occurs in downstream reach after LC_DCEF, not at LC_DCEF.

EVO = Elkview Operations; FRO = Fording River Operations; GHO = Greenhills Operations; LCO = Line Creek Operations; ID = identification; m^3/d = cubic metres per day;% = percent.

4.18 Generating Future Flow Projections

4.18.1 Purpose

The methods to generate future flow projections in the flow component of the 2020 RWQM are described in this section. These methods are used to generate flows that are representative of future site conditions, through operations and closure, at each mine site. Future flow projections in the FC of the 2020 RWQM are generated for a range of climatic conditions encompassing wet and dry years. The resulting information is summarized and used to produce three representative flow conditions (i.e., 10th percentile, median and 90th percentile weekly flows) that are then used in the WQC of the RWQM to generate future water quality projections.

4.18.2 Methods

Future climate projections are generated within GoldSim using a multi-realization simulation approach. More specifically, the FC is set-up to loop through the 2000 to 2019 historical climate dataset to develop potential future flow projections. The FC loops through the historical climate dataset 20 times, with the starting date of the historical climate dataset being offset by one year from that used in the previous realization. For example, during the first realization, the climate information starts in 2000 and ends with that from 2019. In the next realization, the climate information starts in 2001 and ends with that from 2000, and so on through the 20 realizations. When the duration of the simulation exceeds 20 years, the

climate information is repeated. For example, the first realization of a 40-year simulation will begin with climate information from 2000 and run through the 2000 to 2019 climate dataset twice over the course of the simulation. Using this approach, every future year uses each of the 20 years of climate data during the 20 realizations (Figure 4-29).

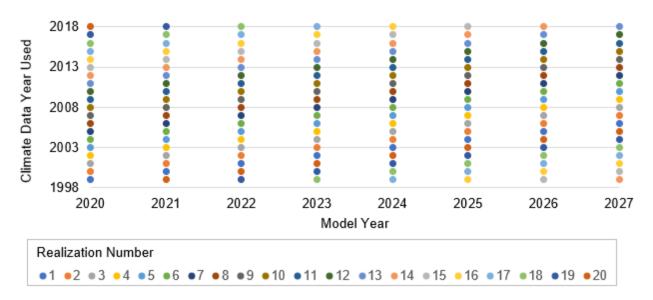


Figure 4-29: Example of Time Shifting Climate Data Years for 20 Realizations

Based on its current set-up, the FC produces 20 weekly average flow estimates for each week of each year included in the simulation period. A 20 year climate record, as opposed to a 30 or 40 year climate record, was selected for use to manage model runtimes and output file size. The 1999 to 2019 time period was selected for use in generating future flow projections, it being most representative of recent conditions. As shown in Figures 4-30 and 4-31, it is characterized as a period of less total winter precipitation and greater summer precipitation, relative to the longer period of record.

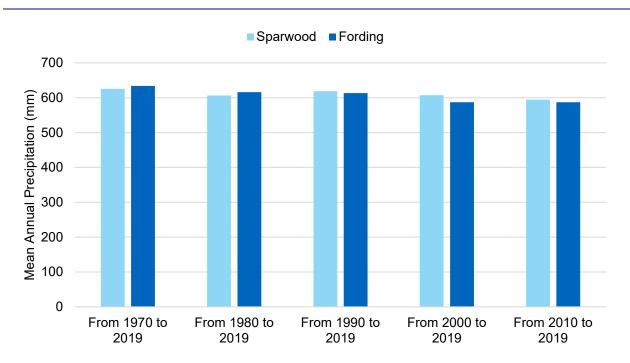
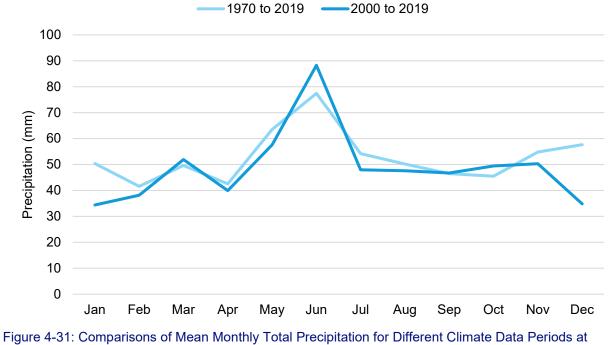



Figure 4-30: Mean Annual Precipitation Comparisons for Different Historical Periods

Fording Cominco Station

A sensitivity analysis was conducted to evaluate how future flow projections may change if a longer climate dataset were used to generate future flow projections. Three configurations were tested:

- Climate data from 1999 to 2019 (20 realizations)
- Climate data from 1989 to 2019 (30 realizations)
- Climate data from 1979 to 2019 (40 realizations)

Resulting future flow estimates at the mouth of the Fording River were compared. Differences were found to be small to negligible, as shown in Table 4-20.

Table 4-20: Comparison of the Characteristics of Future Flow Timeseries (2020 to 2060) Developed
for the Mouth of the Fording River Using Different Climate Datasets

		nate data fr 1999 - 2019			limate data from 1989 - 2019 Climate data from 1979 - 2019				
	Flo	w Time Ser	ies	F	Percentil	9	F	Percentil	e
Summary Statistics	P10	P50	P90	10%	50%	90%	10%	50%	90%
Minimum flow (m ³ /s)	0.4	0.8	1.3	0.4	0.8	1.3	0.4	0.8	1.3
Average flow (m ³ /s)	1.4	2.8	5.4	1.4	2.7	5.4	1.4	2.7	5.3
75 th percentile flow (m ³ /s)	1.7	3.1	5.2	1.8	3.0	5.2	1.8	3.0	5.2
95 th percentile flow (m ³ /s)	3.7	7.9	17.3	3.5	7.8	16.7	3.5	7.9	16.6
Maximum flow (m³/s)	5.9	12.3	24.2	5.2	11.5	22.8	5.0	11.0	21.7

4.19 Accounting for Water Quality Management Measures

4.19.1 Purpose

The FC of the 2020 RWQM incorporates water quality management measures that are currently in operation, as they may influence model calibration. Future planned mitigation information is not incorporated into the FC of the 2020 RWQM. Changes to water flows that may occur in support of, or as a result of, future water quality mitigation are modelled using the WQC. This approach is used to facilitate the evaluation of different potential mitigation scenarios efficiently, without having to loop back and forth between the FC and WQC.

4.19.2 Methods

The water quality management measures incorporated into the FC are:

- existing active water treatment (i.e., the West Line Creek AWTF);
- existing water treatment using SRFs (i.e., the F2 Pit SRF);
- existing conveyance of mine-affected water associated with existing treatment facilities; and

• existing and projected consumptive water use (at all sites).

Other measures such as blasting practices and reduction of selenium and nitrate concentrations via tailings are considered to have no influence on flow projections and were not modelled in the FC. The approach used to incorporate these measures into the WQC of the 2020 RWQM is described in further detail in Annex C. Only existing water quality management measures that affect flow projections are represented in the FC. As noted above, this approach was adopted to allow for flexibility in using the WQC to examine the potential influence of a number of different water quality management and mitigation scenarios on water quality without having to rely on the FC for inputs to each scenario, thereby limiting iteration between the FC and WQC and facilitating the examination of multiple scenarios in a shorter amount of time.

4.20 Assumptions

The main assumptions incorporated into the setup and configuration of the FC of the 2020 RWQM are summarized in Table 4-21. The assumptions reflect, where relevant, the conceptual model discussed in Section 3. The assumptions in Table 4-21 are organized by subject, with a cross-reference to the report section in which they are discussed.

Subject	Assumptions			
Site Conditions	 Runoff flows are driven by the topography of the underlying mined-out or original surface; therefore, the placement of backfill and waste rock spoils (and current reclamation practice) does not affect drainage paths or decant elevations of flooded pits and backfilled pits. Sub-catchment areas are generally constant from 1970 to 2018 (fixed to 2018 sub-catchment areas). There is generally high confidence in the topographic snapshot in 2018 used to delineate the areas. This confidence is lower at the beginning of the historical period. Mining areas (areas disturbed by mining activity including pit waste rock dumps, coarse coal reject dumps plant areas, tailings storage areas, roads and pond and spoil areas) before 2018 are assumed to be proportional to historical waste rock volumes. The change in future sub-catchment and spoil areas is linearly interpolated between snapshot years. Non-mine affected I areas may include forested areas, flood plains, undisturbed bare ground and other areas not substantially altered by mining activity. Short-term, temporary watershed events (e.g., ice jams) and upsets that may affect flows will have a limited effect on water quality planning; as a result, they have not been explicitly considered. 	4.3.4, 4.3.5		
Climate	 Precipitation and temperature patterns are predominantly affected by latitude and elevation within the Elk Valley. Localized influence of topographic features (e.g., aspect) are negligible at a sub-catchment-scale. Orographic temperature gradients (lapse rates) are constant regionally (throughout the Elk Valley) and do not vary substantially seasonally. Orographic precipitation gradients vary seasonally (between winter and summer) but show less variability regionally (i.e., from one operation to another). Data collected at a nearby reference station for sub-catchments in each operation are representative of the climatic patterns and trends at the entire operation once the appropriate adjustments for elevation differences are implemented. All land types within a sub-catchment receive the same meteorological inputs. Snow accumulation and snow cover in a sub-catchment is not influenced by land cover and is primarily a function of elevation, air temperature and the rate of ablation. The rate of potential evaporation and evapotranspiration is primarily a function of air temperature, relative humidity (correlated with the diurnal variability in temperature) and solar radiation (correlated with latitude). The potential rate of sublimation is constant and uniformly applies to the entire snow-covered area in a sub-catchment. Actual rates of atmospheric losses (evapotranspiration, evaporation and sublimation) are influenced by land cover and elevation during influences of aspect are negligible at the sub-catchment-scale. 	4.4, 4.5		

Table 4-21: Summary of Assumptions Relevant to the FC 2020 RWQM

Subject	Assumptions			
Snowmelt Runoff Module (SRM)	 The snow cover fraction in a sub-catchment follows a similar trend each year. <u>Runoff generation</u> Snowmelt and runoff patterns within a sub-catchment follow the same pattern for each land type (i.e., are independent of elevation differences within the sub-catchment). Snowmelt runoff and rainfall runoff coefficients are constant for a given sub-catchment, with seasonal differences between warm and cold months. 			
Waste Rock Hydrology Module	 Spoil properties are consistent for all waste rock placed within a sub-catchment. Water flow through the waste rock spoils are governed both by the overall volume of waste rock and the area of waste rock (effective spoil height). The influence of dump construction techniques on water flows is not considered. Runoff from the surface of the spoil is negligible. The predominant flow pathway for percolation through is a spoil is matrix flow. Run-on and rock drain flows at the base of the spoil are not attenuated and mix completely with the toe discharge from the waste rock spoil. 			
Pit Module	 The decant elevation of a pit is the lowest outlet elevation from the mined topography. Backfilled in-pit waste rock spoils store water within the void spaces, up to the porosity of the waste rock spoil (0.30). 	4.3.5, 4.8		
Water Management	 Consumptive uses result in a complete loss of water (i.e., water used for dust suppression is removed from the sub-catchment and does not report to other sub-catchments or downstream model nodes). Water diversion infrastructure (e.g., pipes, open channels, rock drains) function effectively with minimal leakage. 	4.3.5, 4.10		
Effects of Reclamation	 Historical reclamation has a negligible influence on the overall sub-catchment yield. The effects of reclamation on flows are seen progressively over a period of 30 years, beginning once all mining operations are completed at each site. Reclamation prescriptions are similar at all sites, meaning that the duration for complete revegetation and the relative effect of the revegetation is expected to be similar throughout the Elk Valley. 	4.3.4, 4.11		
Sub- Catchment Water Balance	 Change in the amount of water stored within undisturbed sub-catchments (e.g., in lakes, ponds or as snow accumulation) is negligible on an annual scale. Deep percolation to bedrock groundwater aquifers is a negligible component of the overall water balance. 	4.12		
Travel time	The travel time for flows between two nodes is of the order of hours or within the same day.	4.13, 4.14, 4.15, 4.16		
Groundwater Flow, Pit Seepage and Groundwater Partitioning at Nodes	 Groundwater recharge from tributary catchments travels through shallow flow pathways and reports to tributary mouths, with few exceptions. Groundwater flow through deep bedrock systems is, in general, a small to negligible component of the overall water balance. Interactions of surface water and shallow groundwater flow in watercourses are localized and occur as losing and gaining reaches within a watercourse, with limited interaction with deeper bedrock groundwater flow. The volume of water that can be conveyed through shallow subsurface flow paths is limited (i.e., is subject to a maximum flow capacity). The ability for mine pits to act as local groundwater sinks is at its maximum potential when they are empty and fully mined out. Seepage rates decrease as pits reach decant elevation and stabilize to an equilibrium. Seepage rates vary linearly between these conditions (i.e., pit empty and pit full). 	4.3.6, 4.3.7, 4.9, 4.17		
Future Flow Projections	Future flows are based on the climate variability observed between 2000 and 2019.			
Water Quality Management Measures	There are no consumptive losses at water treatment facilities, or through the conveyance infrastructure associated with water quality management measures.	4.3.8, 4.19		

5 Numerical Model - Part II: Calibration and Future Projections

5.1 Overview of the Calibration Process

The FC of the 2020 RWQM has changed from that included in the 2017 RWQM. The FC now relies on meteorological inputs, rather than flow data from analogue catchments, to initiate the generation of flows in mine-influenced tributaries throughout the Elk River Valley and in both natural and mine-influenced areas of the Fording River watershed. The FC also now uses a ranked regression approach and monitored flow data to simulate flows in Michel Creek and the Elk River, respectively.

Like the 2017 RWQM, the FC of the 2020 RWQM was calibrated to historical conditions. The period of record for calibration was from January 2004 to December 2018, with consideration given to information collected in 2019, if and where available. Available data from 2019 were still classified as draft and preliminary at the time the model calibration was largely undertaken; hence, the primary focus on conditions between 2004 and 2018. In some instances, older data records were also considered. The rationale for the selected calibration period is discussed further below.

The calibration process involved simulating historical flows in the Elk Valley and comparing model output to monitoring results for the coincident period (i.e., evaluating model performance). The goal of calibration was to obtain a good visual and statistical fit between modelled and measured flows at both tributary and mainstem nodes. Model variables were adjusted as required, in an iterative fashion, within a reasonable range to achieve a suitable fit to the measured data. Adjustments typically involved changes to runoff coefficients and model variables controlling the magnitude and duration of runoff.

Once calibrated, the FC was used to project future flows in the Elk Valley and support the generation of future water quality projections. The future flow projections from the FC were compared with flows from the 2017 RWQM as outlined in Section 5.6.

This section consists of:

- 1. A list of the nodes selected for evaluating model performance as part of the calibration process (Section 5.1.1).
- 2. A discussion of the model calibration period (Section 5.1.2).
- 3. A description of the model calibration process (Section 5.2).
- 4. A description of the metrics used to evaluate model performance over the calibration period (Section 5.3).
- 5. A discussion of model performance over the calibration period (i.e., results of the model calibration) (Section 5.4 and Appendix B).

5.1.1 Quality Assurance Checks: Review Model Inputs

The FC of the 2020 RWQM was calibrated with a focus on nodes positioned in both tributaries and river mainstems (i.e., nodes in Michel Creek, Fording River and Elk River). Although the approach used to evaluate model performance was similar throughout the model domain, the calibration process differed depending on location. As previously noted, the FC now relies on meteorological inputs to initiate the

generation of flows in mine-influenced tributaries throughout the Elk Valley and in both natural and mineinfluenced areas of the Fording River watershed. In contrast, a ranked regression approach is used to initiate the simulation of flow through the mainstem of Michel Creek, while monitored data are scaled to estimate flows in the Elk River mainstem. Consequently, model calibration nodes are organized into three groups:

- Fording River watershed and mine-influenced tributaries elsewhere in the Elk Valley
- Michel Creek mainstem
- the Elk River mainstem

Each group is discussed in more detail below.

5.1.1.1 Fording River Watershed and Mine-Influenced Tributaries Elsewhere in the Elk Valley

In the Fording River watershed, as well as mine-influenced tributaries that contribute to the Elk Valley, model calibration nodes were positioned in sub-watersheds that generate runoff at FRO, GHO, LCO and EVO, as well as in the mainstem of the Fording River (Table 5-1). These locations were selected for availability of monitored data record completeness, record length and measurement through the model calibration period of 2004 – 2018 (Section 4.3).

Operation	Node Name	Node Description
Fording River Operations (FRO)	FR_HC1	Henretta Creek upstream of Fording River (E216778)
	FR_CC1	Decant from Clode Sediment Pond (E102481)
	FR_FRNTP	Fording River at North Tailings Pond
	GH_SC1	Swift Creek Sediment Pond Decant (E221329)
	GH_SC2	Swift Creek Sediment Pond Bypass (E105061)
	FR_KC1	Kilmarnock Creek downstream of Rock Drain (0200252)
	GH_CC1	Cataract Creek Sediment Pond Decant (0200384)
	FR_UFR1	Fording River upstream of Henretta Creek
	FR_LMP1	Lake Mountain Sediment Pond Decant
	FR_LP1	Liverpool Sediment Pond Decant
	FR_FR1	Fording River downstream of Henretta Creek (0200251)

Table 5-1: Calibration Nodes in the Fording River Watershed and Mine-Influenced Tributaries Elsewhere in the Elk Valley

Operation	Node Name	Node Description		
	FR_FR2	Fording River upstream of Kilmarnock Creek (0200201)		
	FR_FR4	Fording River between Swift and Cataract creeks (0200311)		
	FR_FRABCH	Fording River above Chauncey Creek		
Greenhills Operations (GHO)	GH_PC1	Porter Creek Sediment Pond Decant (0200385)		
	GH_TC1	Thompson Creek at LRP Road (E102714)		
	GH_TC2	Lower Thompson Creek Sediment Pond Decant (E207436)		
	GH_GH1	Greenhills Creek Sediment Pond Decant (E102709)		
	GH_FR1	GHO Fording River Compliance Point - Upper Fording River, 205 m d/s of Greenhills Creek (0200378)		
	GH_LC1	Leask Creek Sediment Pond Decant (E257796)		
	GH_LC2	Leask Creek u/s of Pond Inlet		
	GH_WC1	Wolfram Creek Sediment Pond Decant (E257795)		
	GH_WC2	Wolfram Creek u/s Pond Inflow		
	GH_FR1	GHO Fording River Compliance Point - Upper Fording River, 205 m d/s of Greenhills Creek (0200378)		

Table 5-1: Calibration Nodes in the Fording River Watershed and Mine-Influenced Tributaries Elsewhere in the Elk Valley

Operation	Node Name	Node Description
	Node Nume	
Line Creek Operation (LCO)	LC_LC4	Line Creek upstream of Process Plant (0200044) (near the mouth)
	LC_LC1	Upper Line Creek upstream of MSA North Pit (E126142)
	LC_WLC	West Line Creek (E261958)
	LC_LC3	Line Creek downstream of West Line Creek (0200337)
	LC_DC3	LCO Dry Creek upstream of East Tributary Creek (E288273)
	LC_DCEF	East Tributary of LCO Dry Creek (E288274)
	LC_DC1	LCO Dry Creek near the Mouth (at bridge) (E288270)
	LC_DCDS	LCO Dry Creek d/s of Sedimentation Ponds (E295210)
	LC_LCUSWLC	Line Creek u/s of West Line Creek (E293369)
	LC_LCDSSLCC	LCO Compliance Point - Line Creek immediately downstream of South Line Creek confluence (E297110)
	LC_LC5	Fording River downstream of Line Creek (0200028)
Elkview Operations (EVO)	EV_GT1	Gate Creek Sediment Pond Decant (E206231)
	EV_BC1	Bodie Creek Sediment Pond Decant (E102685)
	EV_DC1	EVO Dry Creek Sediment Pond Decant (E298590)
	EV_HC1	EVO Harmer Compliance Point – Harmer Spillway (E102682)
	EV_GV1	Grave Creek at Bridge (near the mouth)
	EV_EC1	Erickson Creek at Mouth (0200097)

Table 5-1: Calibration Nodes in the Fording River Watershed and Mine-Influenced Tributaries Elsewhere in the Elk Valley

5.1.1.2 Michel Creek Mainstem

Model calibration for flows in the mainstem of Michel Creek was conducted with a focus on the two model nodes outlined in Table 5-2. Discharge at these locations were developed by applying the ranked regression method at upstream locations (EV_MC3; Section 4.15.2) and sequentially adding simulated tributaries downstream (Section 4.14.2). As per Section 4.15.2, the FC model of Michel Creek effectively begins at EV_MC3 and does not explicitly model upstream catchment flows. For these flows, the WQC relies on the CMO Site Model for the upstream mine-influenced flows and loads.

Operation	Node Name	Node Description
Elkview Operations (EVO)	EV_MC2	EVO Michel Creek Compliance Point - Michel Creek at Hwy 3 Bridge (E300091)
Elkview Operations (EVO)	EV_MC3	Michel Creek upstream of Erickson Creek (0200203)

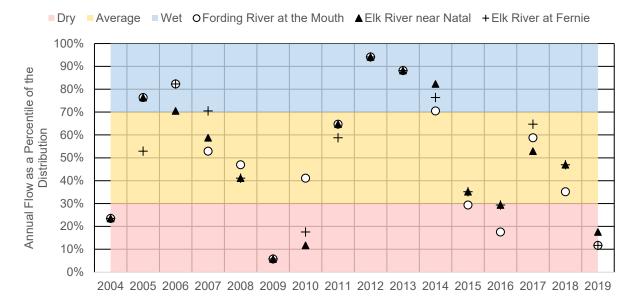
Table 5-2:	Calibration Nodes in the Mainstem of Michel Creek
------------	---

5.1.1.3 Elk River Mainstem

Modelled flows at Elk River nodes were compared to measured flow data following a discharge pro-rating approach applied to these locations (Section 4.16.2; Table 5-3). An additional comparison on total watershed yield was completed as well (Section 5.4.3).

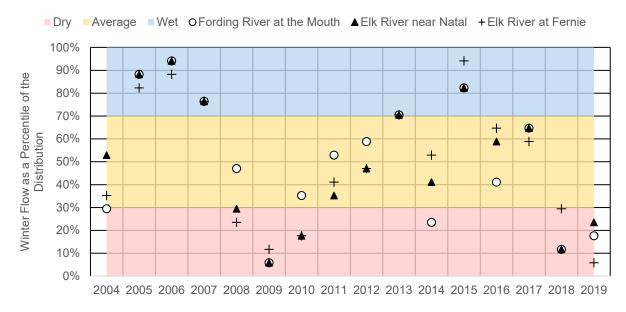
Table 5-3: Elk River – Model Performance Nodes

Operation	Node Name	Node Description
Greenhills Operations (GHO)	GH_ERC	GHO Elk River Compliance Point - Elk River, 220 m d/s of Thompson Creek (E300090)
Elkview Operations (EVO)	GH_ER1	Elk River u/s of Boivin Creek (u/s of Fording River) (E206661)
Elkview Operations (EVO)	EV_ER4	Elk River u/s of Grave Creek (from Fording River to Michel Creek) (0200389)
Elkview Operations (EVO)	EV_ER1	Elk River downstream of Michel Creek (0200393)
Elkview Operations (EVO)	RG_ELKORES	Elk River at Elko Reservoir (E294312)


5.1.2 Review and Refine Operation-Specific Climate Input Adjustments

The FC of the 2020 RWQM has been configured to simulate stream flow for a 49-year period between 1970 and 2019. However, a shorter period of time was used for model calibration. Specifically, the FC was calibrated with a focus on 2004 to 2018, consistent with the time period considered in the calibration of the WQC of the 2020 RWQM. This time period also corresponds to that in which a higher volume of monitored data are available with which to both drive the model and evaluate its performance; confidence

in the accuracy of the available data is also higher than that associated with older information. Flow data from 2019 was preliminary during the FC model development and are provided herein as a point of reference and comparison, but they were not explicitly considered when evaluating model performance over the calibration period (e.g., not included when generating calibration statistics or annual average hydrographs).


The calibration period includes recorded wet, dry and average flow conditions. The prevalence of each, and seasonal variation, is illustrated in Figure 5-1 and Figure 5-2 using flow measurements taken from stations at i) Fording River at the Mouth, ii) Elk River near Natal and iii) Elk River at Fernie.

As per Figure 5-1, the hydrologic years 2005, 2006, 2012, 2013 and 2014 can be considered wet years, whereas 2004, 2009, 2010, 2016 and 2019 can be considered dry years. This pattern is similar, but not identical, when limiting this analysis to winter flow periods (December to March; Figure 5-2). The antecedent winter flow conditions can influence the magnitude of spring runoff and total annual flow. Therefore, the variation in the annual and winter flows over the calibration period was considered to be a reasonable representation of the range of historical hydrological conditions recorded in Elk Valley watersheds.

Annual flows were calculated for hydrologic years (e.g., 2004 represents the period from October 2003 to September 2004). Dry, Average and Wet bands are indicative of flow conditions. 'Dry' is defined as flows below the 30th percentile, 'Average' is defined as flows between the 30th and 70th percentile, and 'Wet' is defined as flows greater than the 70th percentile.

Figure 5-1: Classification of Flow Conditions in each Hydrologic Year (i.e., October to September) from 2004 to 2019, Based on Annual Average Flows

Winter flows were calculated for the months of December to March (e.g., 2004 represents the period from December 2003 to March 2004). Dry, Average and Wet bands are indicative of flow conditions. 'Dry' is defined as flows below the 30th percentile, 'Average' is defined as flows between the 30th and 70th percentile, and 'Wet' is defined as flows greater than the 70th percentile.

Figure 5-2: Classification of Flow Conditions in each Hydrologic Year from 2004 to 2019, Based on Average Winter Flow (i.e., December to March)

5.2 Overview of the Calibration Process

The FC of the 2020 RWQM was calibrated following the process depicted in Figure 5-3, which is further described in the sections that follow. Although depicted as a linear process, the review of the fit between modelled and recorded data necessitated an iterative process where model performance improvements were made by returning to earlier steps, making adjustments, and repeating the subsequent steps.

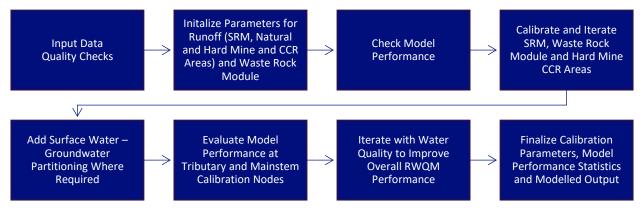


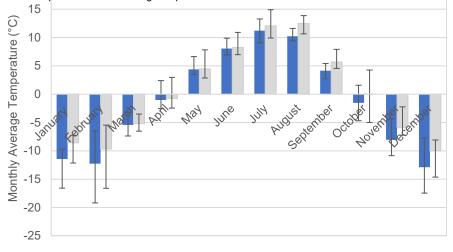
Figure 5-3: Calibration Process for the Flow Component of the 2020 RWQM

5.2.1 Input Data Quality Checks

The primary means by which model performance was altered and improved (i.e., accurate replication of the magnitude and timing of measured surface water flows) occurred through adjustments to runoff parameters, as described starting in Section 5.2.2. However, model output is only as good as the input information used to drive it. Thus, the calibration process started with data quality checks on FC model inputs. Specifically, these checks consisted of:

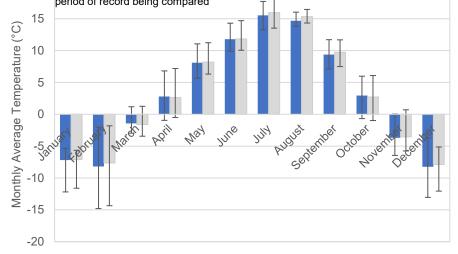
- Sub-catchment areas and classification of land uses were reviewed to confirm that the area balance of the model domain was maintained and consistent with mine plan information.
- Waste rock spoil volumes, footprints and calculated spoil heights were reviewed to confirm that the modelled values were consistent with mine plan information.
- Key dates used to represent changes to water management activities in the model were compared against information in water management plans and conceptual flow diagrams. Examples of these data are the applied start and end dates for site pumping activities, or the projected filling and discharge of open pit areas.
- Pit characteristic inputs to the model (e.g., water storage volumes, decant elevations, backfilled waste rock volumes) were extracted from mine plan information. Where required, adjustments were made to account for additional information such as aerial photographs and discussions with site personnel to improve estimated volumes and surface areas.
- Dates for pit dewatering and pit filling at closure were compared against water management plans and mine plans.
- Climate inputs developed from regional data were compared, as outlined below, to available information from local climate stations.

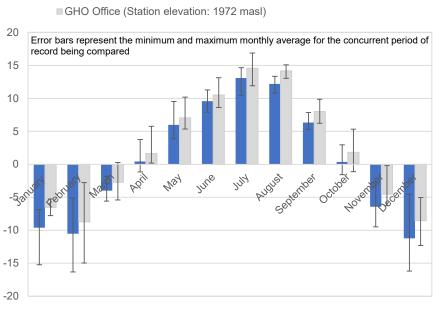
5.2.1.1 Precipitation and Air Temperature

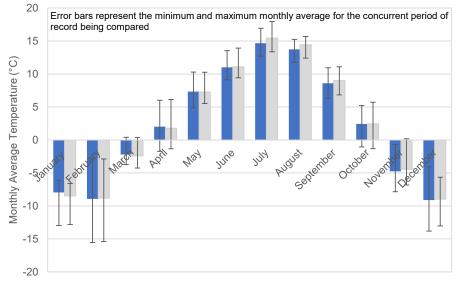

Following the development of long-term representative climate datasets and lapse rates for air temperature and precipitation as per the process outlined in Section 4.4, further checks against recorded meteorological data at specific Teck monitoring locations were completed. Typically, data records at site locations were less than 10 years in duration and recorded only rainfall reliably. To account for the differences in elevation between the developed long-term climate datasets and the site-specific measurements, the estimated lapse rate for temperature (°C/m) and precipitation (mm/m) was applied up to the average elevation of the subject sub-watershed. The resulting comparisons are provided in Figures 5-4 (Monthly Average Air Temperature), Figure 5-5 (Summer Precipitation) and Figure 5-6 (Total Annual Precipitation).

The monthly distribution of air temperature extrapolated from the long-term representative climate dataset matched the range of and seasonal pattern of recorded data across the sub-watersheds. A greater degree of discrepancy was observed when comparing precipitation estimates, most notably at LCO. This discrepancy may be due to localized undercatch (e.g., wind effects on precipitation). Consequently, the lapse rate for summer and winter precipitation were altered for the LCO and EVO sub-watersheds to improve model performance from the initial rates displayed in Figure 5-6 and Figure 5-7. The final lapse rates used in the FC are listed in Appendix A.

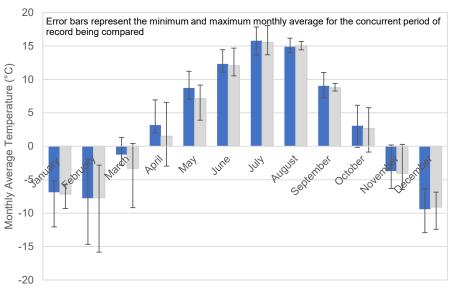
Fording Cominco (adjusted to catchment elevation: 2265 masl)


Brownie (Station elevation: 2253 masl)


20 Error bars represent the minimum and maximum monthly average for the concurrent period of record being compared


FRO Brownie

- Fording Cominco (adjusted to catchment elevation: 1383 masl) Elkford Elementary (Station elevation: 1335 masl)
- 20 Error bars represent the minimum and maximum monthly average for the concurrent period of record being compared

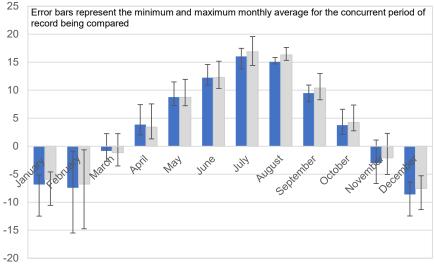

Fording Cominco (adjusted to catchment elevation: 1538 masl) ■MSA (Station elevation: 1595 masl)

LCO Mine Service Area (MSA)

Fording Cominco (adjusted to catchment elevation: 1355 masl) ■West Line Creek (Station elevation: 1451 masl)

GHO Elkford Elementary

LCO West Line Creek


(D_°)

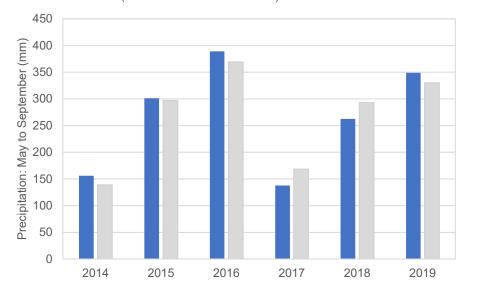
ILe

Monthly

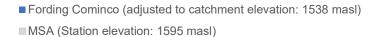
() 0

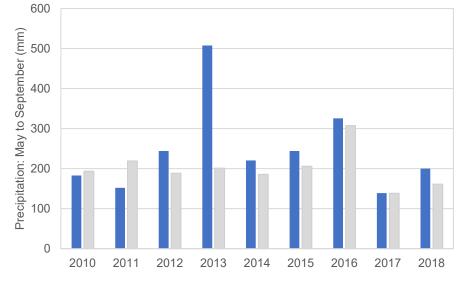
Monthly

Fording Cominco (adjusted to catchment elevation: 1992 masl)

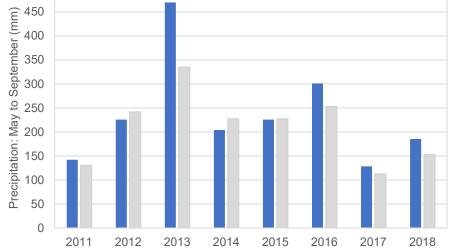

GHO Office

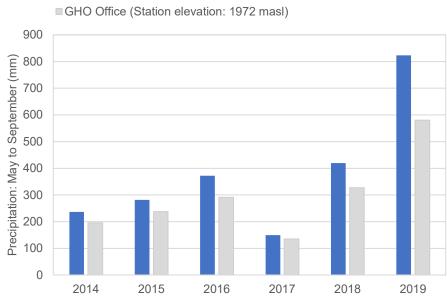
Sparwood (adjusted to catchment elevation: 1420 masl)

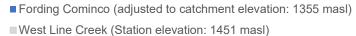

■BRD (Station elevation: 1470 masl)

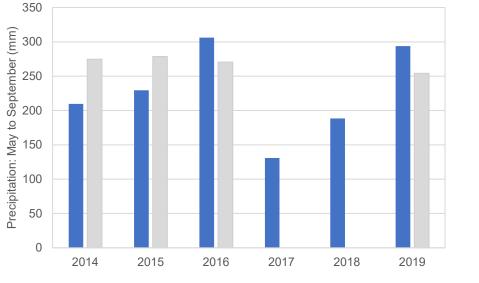

EVO Bodie Rock Drain (BRD)

Fording Cominco (adjusted to catchment elevation: 2265 masl) Brownie (Station elevation: 2253 masl)


FRO Brownie

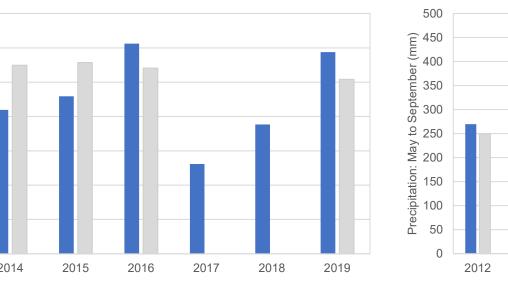



LCO Mine Service Area (MSA)



GHO Elkford Elementary

5


Эeг

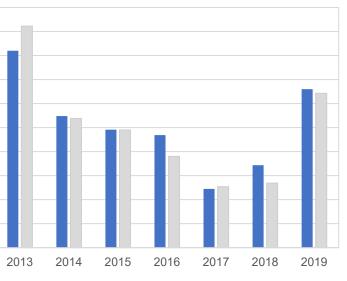
þ

n

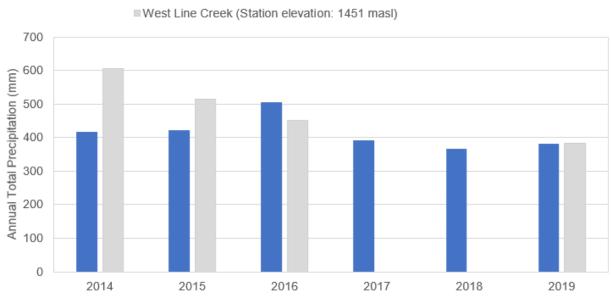
pita

Pre

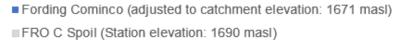
LCO West Line Creek

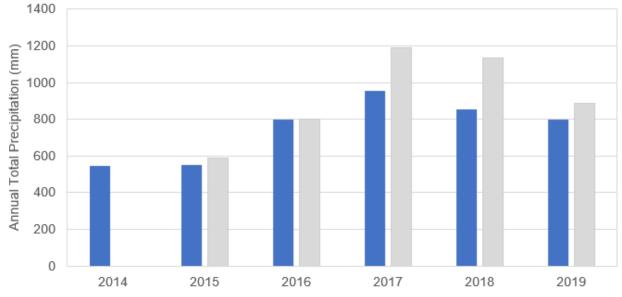

Figure 5-5: 2020 RWQM Climate Dataset Compared Against Local Stations Operated by Teck (Summer Precipitation)

Fording Cominco (adjusted to catchment elevation: 1992 masl)


GHO Office

Sparwood (adjusted to catchment elevation: 1420 masl)


BRD (Station elevation: 1470 masl)



EVO Bodie Rock Drain (BRD)

Fording Cominco (adjusted to catchment elevation: 1355 masl)

Data were not available at West Line Creek for 2017 and 2018. Data were not available at FRO C Spoil in 2014.

Figure 5-6: 2020 RWQM Climate Dataset Compared Against Local Stations Operated by Teck (Total Precipitation)

5.2.1.2 Evapotranspiration

Evapotranspiration was calculated for open water and bare waste rock surfaces in the FC using the Hargreaves – Samani PET method (Section 4.5.2.4). For waste rock, AET was refined by adjusting PET using the coefficient K_c and subsequently reviewed against data collected by Okane (2015; Table 5-4). The final K_c applied to operational waste rock spoils are summarized in Appendix A. For comparison, PET, or open water evaporation, during the typical open water season of April through October is approximately 520 mm (Section 3.3.3).

Operation	Measure (O'kane et		Simulated AET (2004 – 2018)					
	Range (mm)	Average (mm)	Range (mm)	Average (mm)				
FRO	150 - 320	230	148-235	185				
GHO	150 - 180	165	148-235	185				
LCO	150 - 280	200	143-163	152				
EVO	n/aª	320	143-163	152				
Overall	150 - 320	214	143-235	168				

Table 5-4:	Calculated Measurand Simulated AET for Waste Rock Spoils
------------	--

a) one study site selected.

5.2.2 Calibration of Runoff Components

Runoff coefficients, recessions rates and other parameters used to estimate runoff from different land types were identified in the following sequence:

- 1. Input parameters for runoff from waste rock (i.e., those used in the waste rock hydrology module)
- 2. Input parameters for runoff from natural areas (SRM module)
- 3. Input parameters for runoff from hard mine and CCR areas (SRM module)

Adjusting the input parameters was done iteratively at each step, with model performance evaluated after each model run. The evaluation involved comparing the 2020 RWQM modelled surface and total flows at nodes to monitored data (i.e., measured surface flows) as well as the modelled total flows from the 2017 RWQM. The fit between modelled and measured flows was evaluated to confirm the desired change (e.g., increase peak flows, decrease low flows, adjust slope of the hydrograph's receding limb). The evaluation of model fit considered potential flow measurement errors and outliers. For instance, extreme low or high flow measurements, as well as flows outside of typical trends (e.g., single-event water management activities) were identified during an evaluation of visual fit to explain differences between measured and modelled flows. The input parameters were then adjusted until there was little improvement in the model performance metrics from one model run to the next. The final calibration

parameters are detailed in Appendix A, and the process in selecting these are further described in the sections that follow.

5.2.2.1 Calibration of Waste Rock Spoil Runoff at Cataract Creek

The input parameters governing waste rock flow were estimated using one sub-catchment (Catarack Creek) and then applying those input parameters to other SRM sub-catchments. Cataract Creek sub-watershed was used to set the input parameters governing runoff from waste rock, with a focus on model performance through the 2009 to 2018 time period, because:

- more than 75 percent of the sub-watershed was covered by waste rock
- pit water from Phase 6 at GHO was no longer discharging to Cataract Creek (i.e., this activity stopped in 2009)
- it is the only sub-catchment above the GH_CC1 monitoring node.

Thus, flows recorded at GH_CC1 should be represented primarily by runoff from the upstream waste rock area during that period of time. The input parameters were adjusted to replicate outflow from a spoil based on the conceptual understanding that there is little to no surface runoff, little to no loss to deep groundwater systems, and virtually all water reports out as toe drainage. The primary model parameter influencing the rate of flow out of a spoil is the spoil drawdown rate, which is defined as the amount of water held in the spoil that is released each week, expressed as a percent of the stored volume.

5.2.2.2 Calibration of SRM Runoff for Natural Areas

Input parameters governing flows generated from natural areas (i.e., using the SRM) were adjusted once the waste rock parameters were defined. Parameters were systematically adjusted within a range of reasonable values, relying on a sensitivity analysis that was performed on a test sub-catchment prior to calibrating the FC. The calibration procedure adopted was consistent with the recommended approach in Chernos et al. (2017) and is outlined below:

- Isolation and exclusion of known insensitive parameters (e.g., initial runoff and precipitation threshold).
- Adjusting snowmelt factors (e.g., degree day factor, month to begin snowmelt) to the adjust the timing of the freshet.
- Adjusting the runoff coefficients, routing and baseflow terms (i.e., Cr, Cs, x and y recession constants) to adjust the magnitude of the freshet, magnitude of the fall/winter flows, and hydrograph shape.

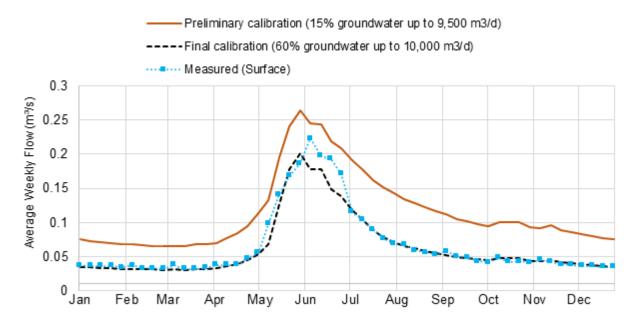
The input parameters for runoff from natural areas were estimated for each group of sub-catchments that are above a monitoring node with flow data from 2004 to 2018. The groups (one or more sub-catchments) were defined based on the first upstream node to which they contribute flows. The approach to grouping sub-catchments was used to minimize the number of unique configurations of input parameters. These adjustments were conducted group by group, starting with the most upstream node in a tributary catchment. The input parameters for all sub-catchments in each group were assigned the same value. If

a sub-catchment did not contribute to a tributary node, then it was assigned the same input values as an adjacent sub-catchment.

5.2.2.3 Calibration of SRM Runoff for Hard Mine and CCR Areas

Calibration of the hard mine and CCR area input parameters required a slightly different approach, because there was little information available to directly calibrate these areas. There is no node that has a single sub-catchment that is predominately hard mine or CCR area available that could be used to calibrate these land types similar to the approach used for waste rock. In addition, the flow from most sub-catchments is dominated by runoff from natural areas, so adjusting the hard mine and CCR inputs had little influence on the overall model performance. Therefore, the input parameters for hard mine and CCR areas were estimated relative to the inputs used for the natural areas for each sub-catchment. More specifically, the runoff coefficients were assumed to be larger than natural areas to reflect flashier runoff from bare areas. These inputs should be reviewed and re-evaluated as more land-type specific data become available, and if and as the RWQM is applied at smaller spatial scales in areas dominated by either CCR or hard mine land types.

5.2.2.4 Calibration of Fording and Line Creek Mainstem Streamflows


The Fording River and Line Creek mainstem streamflows are the sum of the runoff from upstream subcatchments. Model performance at mainsteam nodes was evaluated and adjustments made to the input parameters for the sub-catchments in the tributaries as required to achieve reasonable fit to measured data in the mainstem and at tributary mouths. This step also provided a means to evaluate the inputs assigned to sub-catchments not otherwise directly monitored. In some instances, calibration involved application of groundwater bypass estimates in combination to modification to sub-catchment input parameters, particularly in areas where performance in upstream sub-catchments was reasonable. Adjustments to groundwater bypass estimates is discussed in the next section.

5.2.3 Adjust Groundwater Partitioning

Surface water-groundwater partitioning was modelled at nodes where site-specific information was available to support this approach and where doing so improved the calibration of flows. Partitioning of groundwater was based on the information compiled in Appendix B. In the FC of the RWQM, as described in Section 4.17, these estimates were expressed as a percentage of the total yield up to an initial threshold, then as another percentage of the total yield up to a maximum threshold. This approach reflects the concept that water will move preferentially into the ground until conditions become saturated, at which point additional flow into shallow subsurface pathways only occurs as the wetted width of the stream expands.

Modelled surface flow and total flow yields were checked against the corresponding cumulative monitored surface water yield. The results of this check were used to inform potential adjustments to the partitioning of total flow into surface and groundwater components at the calibration node. Changes to groundwater partitioning were then considered, working to remain within the range of values provided in Appendix B. For example, Figure 5-7 shows the surface flow plot at West Line Creek (LC_WLC) generated using an

initial set of values for groundwater partitioning (15% up to a maximum of 9,500 m³/d) versus calibrated values (60% up to a maximum of 10,000 m³/d), relative to measured flows at this node.

5.2.4 Iteration with Water Quality Component of RWQM

This step was iterative, whereby model input parameters and other variables in the FC were adjusted, if and where warranted, to support improvements in simulating constituent concentrations in the receiving environment. Examples of changes made during this step of the calibration process are refinement of groundwater / surface water partitioning, modifications to the destination of pit dewatering water and refinement of assumptions around water use for dust suppression.

5.3 Model Performance Metrics

In evaluating the performance of a flow or hydrological model for its designated purpose, it is standard practice to apply statistics and graphical techniques to define the reliability and representativeness of the modelling results. These items include "goodness-of-fit" statistics, absolute error measures, and graphical tools such as flow exceedance curves and time series plots. A summary of the statistics and graphical techniques that were used to describe the performance of the FC is presented in Table 5-5, with further detail on the statical methods provided in Appendix C. The model performance metrics in Table 5-5 were applied at the calibration nodes tabulated above.

Performance Measure	Measure	Notation	Worst	Best	Comments
Statistical	Nash-Sutcliffe Efficiency	E	-∞	1	Widely used measure for hydrologic models (Moriasi <i>et al.</i> 2007). Values =>0.75 are very good Values =>0.65 are good Values =>0.5 are acceptable Values <0.5 are poor Values <0 indicate that the measured mean is a better predictor than the model. Tends to overweight spring freshet / flood peaks.
	Modified Nash- Sutcliffe Efficiency	E1	-∞	1	Reduces the overweighting of flood peaks compared to E. The modification relies on the absolute value instead of the square power.
	Index of Agreement	d	0	1	Relatively high values (>0.65) could still be possible for poor model fits. Tends to overweight flood peaks and extreme low flows.
	Modified Index of Agreement	d₁	0	1	Reduces the overweighting of flood peaks compared to d.
	Mean Absolute Error	MAE	ø	0	Simple, often used to compare performance between models
	Root Mean Square Error	RMSE	ø	0	Absolute indicator of difference, often used to compare performance between models
	Coefficient of Determination	R ²	0	1	Describes proportion of variance in measured data explained by model output
Graphical	Weekly Time Series	n/a	n/a	n/a	A simple, visual time series comparison
	Mean Flow Hydrographs	n/a	n/a	n/a	Used to identify systematic differences in the hydrograph (over/under prediction, timing and magnitude of freshet flows, recession, baseflow)
	Flow Duration Curves	n/a	n/a	n/a	Used to identify the frequency (percentage of time) with which flows of a certain magnitude are exceeded.
	Mean Seasonal Flows	n/a	n/a	n/a	Used to identify opposing bias in hydrograph distribution (e.g., instances of positive bias in winter vs. negative bias during freshet).

Table 5-5:	Model Performance Evaluation Measures

Note: Comparisons of unequal data distributions (e.g., instantaneous measured flow vs. weekly or monthly model results) have an inherent bias. To limit bias, the best available concurrent data record for a given node was used to evaluate model performance.

5.4 Results of Model Calibration

Final model calibration parameters for each simulated sub-watershed are available in Appendix A. Model performance over the calibration period is presented in this section, with figures and other details provided in Appendix D.

5.4.1 Fording River Watershed and Mine-Influenced Tributaries Elsewhere in the Elk Valley

A summary of model performance through the Fording River watershed and in mine-influenced tributaries elsewhere the Elk Valley is presented in Table 5-6. Model performance is presented as:

- Comparisons of modelled to monitored, mean annual runoff, summary goodness-of-fit statistics, with reference to the plots and tables included in this section and in Appendix D.
- Comparisons of modelled to monitored yields, in mm/year.
- Comments on node specific model performance

In the Fording River watershed and in other mine-influenced tributaries, model performance was generally equivalent to, or improved from, the 2017 RWQM. The ability of the model to simulate the variability in annual runoff and the timing and magnitude of hydrograph rise and recession were considered appropriate across a range of climate and sub-watershed land cover conditions (Appendix D).

01-11-12			Evaluation	Groundwater Component	Approximate mean annual runoff (mm)			Statistics			Commonto en Madel Datformanco
Station ID	Station Description	Flow Modelling Method	Period		Measured (surface)	Modelled (surface)	Modelled (total)	Е	E1	Rating	Comments on Model Performance
FR_HC1	Henretta Creek upstream of Fording River (E216778)	SRM and waste rock hydrology module in the sub-catchments of Henretta, McSlide, McDonald, McMillan and Moore Creeks.	2004 to 2018	Not implemented	650	n/a	620	0.73	0.58	Good	 Flow data were available throughout the evaluation period, with some gaps in winter between 2004 and 2009 Good match with low flows; fall flows overestimated in some years Modelled high flows underestimated compared to monitored data in some years An improvement compared to the 2017 RWQM
FR_CC1	Decant from Clode Sediment Pond (E102481)	SRM and waste rock hydrology module in the sub-catchments of Clode Creek Upper, Clode Creek Lower, Eagle 6 to Clode. Eagle 6 West Pit and Eagle 4 Pit, modelled using the pit module.	2004 to 2018	60% up to 4,000 m³/d	280	280	440	0.12	0.12	Poor but improved	 Flow data were available throughout the evaluation period, with some gaps in winter between 2004 and 2009. Flow regime influenced by water management activity Modelled mean annual runoff matches monitored Modelled fall flows overestimated compared to monitored data in some years An improvement compared to the 2017 RWQM
FR_FRNTP	Fording River at North Tailings Pond	FR_FR1 + FR_PP1 + Turnbull Bridge Spoil + FR_CC1 + FR_LMP1 + FR_LP1 + FR_EC1 (Sum of modelled flows)	2004 to 2018	3% up to 10,000 m³/d	480	440	450	0.71	0.57	Good	 Flow data were available throughout the evaluation period, with gaps in winter between 2004 and 2013. Limited data in 2013 Good match with low flows; fall flows overestimated in some years Modelled high flows underestimated compared to monitored data in some years prior to 2014 A comparable but improved fit relative to the 2017 RWQM

			Evaluation	on Groundwater Component	Approxima	Approximate mean annual runoff (mm)			cs		Commente on Medel Derfermence
Station ID	Station Description	Flow Modelling Method	Period		Measured (surface)	Modelled (surface)	Modelled (total)	E	E1	Rating	Comments on Model Performance
GH_SC1 / GH_SC2	Swift Creek Sediment Pond Decant (E221329) / Swift Creek Sediment Pond Bypass (E105061)	SRM and waste rock hydrology module in the sub-catchment Swift Spoil	2004 to 2018	2% up to 1,000 m³/d	300	390	390	0.32	0.28	Poor but improved	 Significant gaps in monitored flow data between August and April prior to 2016 at GH_SC1; combined data record with GH_SC2 was used to evaluate performance Modelled moderate and low flows overestimated compared to monitored data Good match with high flows in most years, noting that monitored data between 2012 and 2014 have abnormally high peaks. Statistics were calculated in comparison to a combined data record (GH_SC1 and GH_SC2), and model fit is improved compared to the 2017 RWQM
FR_KC1	Kilmarnock Creek downstream of Rock Drain (0200252)	SRM and waste rock hydrology module in the sub-catchments of Kilmarnock Upper, Kilmarnock Lower, Brownie Creek	2004 to 2018	Flows <60,000 m³/d: 100%, maximum of 16,500 m³/d Flows >60,000 m³/d: 30%, maximum of 26,900 m³/d	460	490	650	0.70	0.52	Good	 Flow data were available throughout the evaluation period, with some gaps in winter between 2004 and 2009; continuous flows from 2012 onward. Good match with moderate and low flows in most years. Some overestimation of late summer/fall flows. Good match with high flows A comparable fit of flows relative to the 2017 RWQM
GH_CC1	Cataract Creek Sediment Pond Decant (0200384)	SRM and waste rock hydrology module in the sub-catchment of Cataract Creek; flows from Phase 6 Pit at GHO prior to 2009	2004 to 2018	0%	530	580	580	0.36	0.29	Poor	 Flow data were available throughout the evaluation period, with some gaps in winter data between 2009 and 2015. Model performance improves following 2009 changes to water management. Underestimated low flows in 2014- 2015, and fall flows overestimated in several years Good match with high flows A comparable fit of flows relative to the 2017 RWQM

			Evaluation		Approximate mean annual runoff (mm)			Statistics			
Station ID	Station Description	Flow Modelling Method	Period	Groundwater Component	Measured (surface)	Modelled (surface)	Modelled (total)	E	E1	Rating	 Comments on Model Performance
FR_UFR1	Fording River upstream of Henretta Creek	Snowmelt Runoff Module, Waste Rock Hydrology Module in sub-catchment of Upper Fording	2004 to 2018	Not implemented	630	n/a	400	0.45	0.34	Poor but improved	 Flow data were available from 2008 onwards, with gaps in winter during much of the data record. Irregular elevated winter flow patterns observed between 2011 and 2013 Modelled low flows appear underestimated between 2011 and 2013 due to irregular monitored data Modelled high flows underestimated compared to monitored flows between 2011 and 2014 An improvement compared to the 2017 RWQM
FR_LMP1	Lake Mountain Sediment Pond Decant	Snowmelt Runoff Module, Waste Rock Hydrology Module in sub-catchments of John Creek, Lake Pit, Lake Mountain Pit, Tower Diversion, Tower Diversion Extension	2004 to 2018	Not implemented	430	n/a	400	0.69	0.54	Good	 Flow data is limited to 2017 onwards Good match with low flows Modelled high flows underestimated compared to monitored flows. Some overestimation of late summer/fall flows. An improvement compared to the 2017 RWQM
FR_LP1	Liverpool Sediment Pond Decant	Snowmelt Runoff Module, Waste Rock Module, Pit Module in sub-catchments of Swift Pit, Fording LF2 Upper	2004 to 2018	Not implemented	70	n/a	80	0.80	0.71	Very Good	 Flow data is limited to 2017 onwards Model logic at this location has been modified to maintain sufficient makeup supply at Swift Pit for use at the wash plant. As a result, modelled flows prior to 2020 are limited Very good fit with available monitored data An improvement compared to the 2017 RWQM
FR_FR1	Fording River downstream of Henretta Creek (0200251)	FR_HC1 + FR_UFR1 + Turn Creek (Sum of modelled flows)	2004 to 2018	Not implemented	500	n/a	540	0.57	0.44	Acceptable	 Flow data were available from 2010 onwards, with gaps in winter data in some years and gaps in peak flow data in 2017-2018 Good match with low flows Modelled fall flows overestimated compared to monitored data in some years A comparable fit of flows relative to the 2017 RWQM

Table 5.6: Model Berfermenes Summer	y for the Fording River Watershed and in Oth	or Mina Influenced Tributerica, Record on	the Calibrated EC of the 2020 DWOM
Table 5-6. Model Ferrormance Summar	y for the Fording River Watershed and in Oth	iei wille-illiueliceu Tribulalles, Baseu Ol	

			Evaluation	¹ Groundwater Component	Approxima	te mean ann	ual runoff (mm)	Statistic	s		Comments on Model Performance
Station ID	Station Description	Flow Modelling Method	Period		Measured (surface)	Modelled (surface)	Modelled (total)	E	E1	Rating	
FR_FR2	Fording River upstream of Kilmarnock Creek (0200201)	FR_FRNTP + Fording LF2 Lower + South Tailings Pond Seepage (sum of modelled flows)	2004 to 2018	Not implemented	430	n/a	470	0.57	0.42	Acceptable	 Flow data were available from 2010 onwards, with gaps in winter data in some years and gaps in peak flow data in 2017-2018 Good match with low flows Modelled fall flows overestimated compared to monitored data in some years An improvement compared to the 2017 RWQM
FR_FR4	Fording River between Swift and Cataract creeks (0200311)	FR_FR2 + GH_SC1 + Swift Creek Upper Diversion + FR_SKP1 (sum of modelled flows)	2004 to 2018	Not implemented	470	n/a	390	0.56	0.47	Acceptable	 Flow data were available from 2008 onwards, with significant gaps throughout the year from 2008-2010 and 2016 onwards Good match with fall and winter flows Modelled high flows underestimated compared to monitored data from 2010-2013 A comparable fit of flows relative to the 2017 RWQM
FR_FRABCH	Fording River above Chauncey Creek	GH_PC2 + a portion of the Castle Mountain watershed and unnamed areas between GH_PC2 and FR_FRABCH (Sum of modelled flows)	2004 to 2018	Not implemented	380	n/a	430	0.91	0.64	Very Good	 Flow data were only available from late 2017 onwards Good match with fall and winter flows Modelled fall flows overestimated compared to monitored data An improvement compared to the 2017 RWQM
GH_PC1	Porter Creek Sediment Pond Decant (0200385)	SRM and waste rock hydrology module in the sub-catchment of Porter Creek	2004 to 2018	Not implemented	1010	n/a	620	-0.01	0.19	Poor	 Flow data were available throughout the evaluation period, with some gaps in winter data between 2004 and 2018 Underestimation of high, moderate and low flows compared to monitored data in some years. A worse fit relative to the 2017 RWQM, noting that a yield reduction factor was used in the 2017 RWQM at this node

Table 5-6: Model Performance Summary for the Fording River Watershed and in Other Mine-Influenced Tributaries, Based on the Calibrated FC of the 2020 RWQI	M
--	---

			Evaluation		Approxima	te mean ann	ual runoff (mm)	Statisti	cs		Comments on Model Performance
Station ID	Station Description	Flow Modelling Method	Period	Groundwater Component	Measured (surface)	Modelled (surface)	Modelled (total)	E	E1	Rating	
GH_TC1	Thompson Creek at LRP Road (E102714)	SRM and waste rock hydrology module in the sub-catchments of Thompson Creek Upper & Lower, Phase 3 pit dewatering	2004 to 2018	80% to a maximum of 5,000 m³/d	200	220	360	0.45	0.37	Poor but improved	 Flow data were available between 2006 and 2018, with gaps in winter flows throughout and larger gaps in data between 2006 and 2009. Good match with moderate and low flows Overestimation of high flows in some years An improvement relative to the 2017 RWQM
GH_TC2	Lower Thompson Creek Sediment Pond Decant (E207436)	SRM and waste rock hydrology module in the sub-catchments of Thompson Creek Upper & Lower, plus Phase 3 pit dewatering flows	2004 to 2018	80% to a maximum of 5,000 m³/d	200	190	340	0.30	0.33	Poor	 Flow data were available throughout the evaluation period, with some gaps in winter data between 2005 and 2015 Good match with moderate and low flows Overestimation of high flows in some years A comparable fit of flows relative to the 2017 RWQM
GH_GH1	Greenhills Creek Sediment Pond Decant (E102709)	SRM and waste rock hydrology module in the sub-catchment of Greenhills Creek North & South, plus process plant and tailings storage facilities flows	2004 to 2018	30% to a maximum of 6,000 m³/d	320	300	380	0.40	0.36	Poor but improved	 Flow data were available throughout the evaluation period, with some gaps in winter data between 2007 and 2014. Limited data in 2014. Good match with moderate and low flows in most years Timing of modelled freshet delayed in some years, with peak flows underestimated An improvement relative to the 2017 RWQM
GH_FR1	Fording River downstream of Greenhills Creek (200378)	FR_FRABCH + Chauncey + Ewin + Todhunter + LCO Dry + Grace + GH_GH1 + unnamed areas between FR_FRABCH and GH_FR1 (Sum of modelled flows)	2004 to 2018	Not implemented	410	n/a	390	0.69	0.65	Good	 Scaled ECCC data available throughout the evaluation period Modelled moderate and low flows good fit with monitored flows Modelled high flows underestimated relative to monitored flows in 2013 A comparable fit of flows relative to the 2017 RWQM

Table 5-6: Model Performance Summary for the Fording River Watershed and in Other Mine-Influenced Tributaries, Based on the Calibrated FC of the 2020 RWQM
--

			Evaluation		Approxima	ite mean anr	nual runoff (mm)	Statisti	s		Commente en Madel Barformanas	
Station ID	Station Description	Flow Modelling Method	Period	Groundwater Component	Measured (surface)	Modelled (total)		E	E1	Rating	Comments on Model Performance	
GH_LC1	Leask Creek Sediment Pond Decant (E257796)	SRM and waste rock hydrology module in the sub-catchments Wolfram Creek North & South Upper & Lower, Phase 3, 4, 6 Pit dewatering	2004 to 2018	Not implemented	170	n/a	250	0.02	-0.29	Poor but improved	 Limited flow data available throughout evaluation period Flow regime influenced by water management activities between 2015 and 2018 An improvement relative to the 2017 RWQM 	
GH_LC2	Leask Creek u/s of Pond Inlet	SRM and waste rock hydrology module in the sub-catchments Wolfram Creek North & South Upper & Lower, Phase 3, 4, 6 Pit dewatering	2004 to 2018	Not implemented	160	n/a	250	0.19	0.11	Poor but improved	 Flow data available from 2005 onwards with significant gaps in winter flows throughout the period of record Flow regime influenced by water management activities between 2015 and 2018 An improvement relative to the 2017 RWQM 	
GH_WC1	Wolfram Creek Sediment Pond Decant (E257795)	SRM and waste rock hydrology module in the sub-catchments Wolfram Creek North & South Upper & Lower, Phase 3, 4, 6 Pit dewatering	2004 to 2018	Not implemented	180	n/a	190	-0.16	0.03	Poor but improved	 Flow data available throughout evaluation period with some gaps in winter flows throughout the period of record Flow regime influenced by water management activities Modelled high flows underestimated and fall flows overestimated compared to monitored flows in some years An improvement relative to the 2017 RWQM 	
GH_WC2	Wolfram Creek u/s Pond Inflow	SRM and waste rock hydrology module in the sub-catchments Wolfram Creek North & South Upper & Lower, Phase 3, 4, 6 Pit dewatering	2004 to 2018	Not implemented	200	n/a	180	-0.21	0.00	Poor but improved	 Flow data available throughout evaluation period with some gaps in winter flows throughout the period of record Flow regime influenced by water management activities Modelled high flows underestimated compared to monitored flows in some years An improvement relative to the 2017 RWQM 	

Table 5-6: Model Performance Summary for the Fording River Watershed and in Other Mine-Influenced Tributaries, Based on the Calibra	prated FC of the 2020 RWQM
---	----------------------------

			Evaluation		Approximate mean annual runoff (mm)				cs			
Station ID	Station Description	Flow Modelling Method	Period	Groundwater Component	Measured (surface)	Modelled (surface)	Modelled (total)	E	E1	Rating	Comments on Model Performance	
LC_LC5	Fording River downstream of Line Creek (0200028)	GH_FR1 + LC_LC4 + unnamed areas between GH_FR1 and LC_LC5 (Sum of modelled flows)	2004 to 2018	Not implemented	420	n/a	450	0.84	0.69	Very Good	 Flow data were available throughout the evaluation period. Good match with monitored flows Overestimation of flows in some years A comparable fit of flows relative to the 2017 RWQM 	
LC_LC4	Line Creek upstream of Process Plant (0200044)	LC_LCDSSLC + undisturbed lower Line Creek sub-catchments modelled using SRM (Sum of modelled flows)	2004 to 2018	Not implemented	490	n/a	490	0.84	0.67	Very Good	 Flow data were available throughout the evaluation period. Good match with monitored flows A comparable fit of flows relative to the 2017 RWQM 	
LC_LC1	Line Creek upstream of MSA North Pit (E126142)	SRM and waste rock hydrology module in the sub-catchment of Upper Line Creek 1	2004 to 2018	Not implemented	510	n/a	560	0.64	0.47	Acceptable	 Flow data were available from 2008 to 2018, with gaps in winter flows throughout, and significant data gaps between 2008 and 2014 Modelled peak and fall flows overestimated relative to monitored flows in some years A comparable fit of flows relative to the 2017 RWQM 	
LC_WLC	West Line Creek (E261958)	SRM and waste rock hydrology module in the sub-catchment of West Line Creek	2004 to 2018	60% up to a maximum of 10,000 m³/d	210	210	440	0.74	0.55	Good	 Flow data were available from 2005 to 2018, with gaps in winter flows between 2013 and 2014, in addition to significant data gaps between 2005 and 2010 Good match with monitored flows A comparable fit of flows relative to the 2017 RWQM 	
LC_LC3	Line Creek downstream of West Line Creek (0200337)	LC_LCUSWLC + LC_WLC (sum of modelled flows)	2004 to 2018	Not implemented	490	n/a	500	0.75	0.60	Very Good	 Flow data were available from 2005 to 2018, with gaps in winter flows between 2006 and 2011, in addition to significant data gaps between 2005 and 2009 Good match with monitored flows A comparable fit of flows relative to the 2017 RWQM 	
LC_DC3	Dry Creek upstream of East Tributary Creek (E288273)	SRM and waste rock hydrology module in the sub-catchments of Upper LCO Dry Creek, MTM 1-3 Pits	2004 to 2018	0%	390	400	400	0.80	0.62	Very Good	 Flow data were available from 2015 to 2018, with gaps in late summer and winter flows throughout period of record Good match with monitored flows An improvement relative to the 2017 RWQM 	

Table 5-6: Model Performance Summar	y for the Fording River Watershed and in Other Mine-Influenced Tributaries, Based on the Calibrated FC of the 2020 RWQM	

			Evaluation	on	Approxima	te mean ann	ual runoff (mm)	Statisti	cs		- Commonts on Model Performance	
Station ID	Station Description	Flow Modelling Method	Period	Groundwater Component	Measured (surface)	Modelled (surface)	Modelled (total)		E1	Rating	Comments on Model Performance	
LC_DCEF	East Tributary of Dry Creek (E288274)	SRM and waste rock hydrology module in the sub-catchment of East Tributary of LCO Dry Creek	2004 to 2018	Not implemented	460	n/a	480	0.16	0.46	Poor but improved	 Flow data were available from 2012 to 2018, with gaps between 2012 and 2014 Modelled high flows underestimated compared to monitored flows in some years An improvement relative to the 2017 RWQM 	
LC_DC1	Dry Creek near the Mouth (at bridge) (E288270)	SRM and waste rock hydrology module in the sub-catchments of East Tributary of LCO Dry Creek, Upper LCO Dry Creek, Lower LCO Dry Creek to DC4, Lower LCO Dry Creek to DC1	2004 to 2018	50% up to a maximum of 8,000 m³/d	250	340	420	0.25	0.36	Poor but improved	 Flow data were available from 2004 to 2018, with significant gaps between 2004 and 2015 Good match with moderate and low flows Modelled high flows overestimated compared to monitored flows prior to 2018 An improvement relative to the 2017 RWQM 	
LC_DCDS	LCO Dry Creek d/s of Sedimentation Ponds (E295210)	Snowmelt Runoff Module, Waste Rock Module of subcatchments East Tributary of LCO Dry Creek, Upper LCO Dry Creek	2004 to 2018	80% of LC_DCEF in downstream reach, maximum of 69,100 m³/d	560	260	260	0.32	0.52	Poor	 Flow data were available from 2015 onwards, with some gaps in 2015 Modelled high flows underestimated compared to monitored flows in 2017 and 2018 A comparable fit of flows relative to the 2017 RWQM 	
LC_LCUSWLC	Line Creek u/s of West Line Creek (E293369)	Snowmelt Runoff Module, Waste Rock Module of subcatchments Centre Line Creek, North Line Creek, HSR Pit, MSA West, Horseshoe Creek (1 & 2), Upper Line Creek (1 & 2), No Name Creek (Diversion, NLX Pit, Access Road Spoils)	2004 to 2018	Not implemented	510	530	530	0.74	0.60	Good	 Flow data were available from 2005 to 2018, with significant gaps between 2005 and 2011 Good match with high and low flows Modelled fall flows overestimated compared to monitored flows in some years A worse fit relative to the 2017 RWQM 	
LC_LCDSSLCC	Line Creek downstream of South Line Creek / LCO Compliance Point (E297110)	LC_LC3 + South Line Creek (LC_SLC)	2004 to 2018	Not implemented	480	n/a	480	0.81	0.53	Very Good	 Flow data were available between 2015 and 2018 Modelled flows match measured flows well An improved fit relative to the 2017 RWQM 	

			Evaluation		Approxima	te mean ann	ual runoff (mm)	Statisti	cs		Comments on Medel Performance	
Station ID	Station Description	Flow Modelling Method	Period	Groundwater Component	Measured (surface)	Modelled (surface)	Modelled (total)	E	E1	Rating	Comments on Model Performance	
EV_GT1	Gate Creek Sediment Pond Decant (E206231)	Snowmelt Runoff Module, Waste Rock Hydrology Module in sub-catchment of Gate Creek, dewatering of Natal Pit (diverted via Bodie Control Pond) and Natal Pit 2	2004 to 2018	Not implemented	610	n/a	990	-2.83	-0.62	Poor	 Flow data were available from 2004 to 2018, with significant gaps between 2005 and 2014 Flow regime influenced by water management activities Modelled flows generally overestimated relative to monitored flows A comparable fit of flows relative to the 2017 RWQM 	
EV_BC1	Bodie Creek Sediment Pond Decant (E102685)	Snowmelt Runoff Module, Waste Rock Hydrology Module in sub-catchments of Bodie Creek and dewatering of Natal Pits (via Bodie Control Pond)	2004 to 2018	Not implemented	170	250	250	-1.17	-0.08	Poor but improved	 Flow data were available from 2004 to 2018, with some gaps in data throughout the period of record Flow regime influenced by water management activities Modelled flows generally overestimated relative to monitored flows An improved fit relative to the 2017 RWQM 	
EV_DC1	EVO Dry Creek Sediment Pond Decant (E298590)	SRM and waste rock hydrology module in the sub-catchment of EVO Dry Creek	2004 to 2018	Flows <20,000 m³/d: 100%, maximum of 2,000 m³/d Flows >20,000 m³/d: 10%, maximum of 5,000 m³/d	460	420	510	0.59	0.46	Acceptable	 Flow data were available from 2009 to 2018, with gaps in winter flows throughout, and significant data gaps between 2009 and 2013 Overestimation of moderate and relative to monitored flows Underestimation of high flows in some years A worse fit relative to the 2017 RWQM 	
EV_HC1	Harmer Creek Dam Spillway (E102682)	SRM and waste rock hydrology module in the sub-catchments of Harmer above EVO Dry Creek, Upper and Lower Harmer Creek	2004 to 2018	5%, up to a maximum of 5,000 m³/d	460	430	450	0.78	0.61	Very Good	 Flow data were available throughout the evaluation period, with gaps in winter flows Good match with moderate and low flows relative to monitored flows Underestimation of high flows in some years A comparable fit of flows relative to the 2017 RWQM 	

Table 5-6: Model Performance Summar	for the Fording River Watershed and in Other Mine-Influenced Tributaries, Based on the Calibrated FC of	of the 2020 RWQM
	Tor the Fording filter Material and the other mine mine materials and build a for	

		Flow Modelling Method	Evaluation Period	Groundwater Component	Approximate mean annual runoff (mm)				cs		Commonto en Madel Derfermenes	
Station ID	Station Description				Measured (surface)	Modelled (surface)	Modelled (total)	E	E1	Rating	Comments on Model Performance	
EV_GV1	Grave Creek at Bridge	SRM and waste rock hydrology module in the sub-catchments of Dry Creek, Upper and Lower Harmer Creek, Grave above Harmer Creek, Lower Grave Creek	2004 to 2018	5%, up to a maximum of 5,000 m³/d	n/a	n/a	n/a	-0.96	-0.24	n/a	 Performance was not assessed since limited flow data are available (spot measurements in 2015 and 2016 alone) 	
EV_EC1	Erickson Creek at Mouth (0200097)	SRM and waste rock hydrology module in the sub-catchments of Erickson Creek (Lower, Bridge and Upper), Adit Ridge Pit plus West Fork Tailings Facility flows	2004 to 2018	10%, up to a maximum of 34,560 m³/d	240	250	300	0.51	0.33	Acceptable	 Flow data were available for most of the evaluation period, with gaps in flows between 2004 and 2009, and continuous flows from 2013 Good match with low flows relative to monitored flows Modelled moderate flows overestimated relative to monitored flows Reasonable match with high flows, with instances of both underestimation and overestimation An improvement in fit relative to the 2017 RWQM 	

E = Nash Sutcliffe Efficiency; E1 = Modified Nash Sutcliffe Efficiency; SRM = Snowmelt Runoff Module; RWQM = Regional Water Quality Model;

n/a = Not applicable (e.g., surface runoff was only calculated at nodes with partitioning of surface water and groundwater flow components).

5.4.2 Michel Creek

Table 5-7 summarizes the final calibration parameters and model performance for the Michel Creek mainstem nodes. These results are presented as:

- Comparisons of modelled to monitored, mean annual runoff, summary goodness-of-fit statistics, with reference to the plots and tables included in this section and in Appendix D.
- Comparisons of modelled to monitored yields, in mm/year.
- Comments on node specific model performance.

For these model locations, the statistical fit was considered to be equivalent to or better than the 2017 RWQM. The ability of the model to simulate the variability in annual runoff and the timing and magnitude of hydrograph rise and recession were considered appropriate across the range of climate and sub-watershed land cover conditions. (Appendix D).

Station	Station	Flow Modelling	Evaluation	Groundwater	Approxi r		Statisti	cs	Comments on Model		
ID	Description	Method	Period	component	Measured (surface)			E	E1	Rating	Performance
EV_MC2	Michel Creek downstream of Hwy 3 Bridge (E300091)	EV_MC3 + EV_EC1 + South Pit + Milligan + Thresher + EV_GT1 + EV_BC1 + other unnamed tributaries between EV_MC3 and EV_MC2 (sum of modelled flows)	2004 to 2018	Not implemented	560	n/a	530	0.77	0.72	Very Good	 Flow data were available from 2012 onwards, with gaps in 2013 and 2014. Good match high flows relative to monitored flows An improved fit relative to the 2017 RWQM
EV_MC3	Michel Creek upstream of Erickson Creek (0200203)	Scaling equation using flows estimated at EV_MC2 using a ranked regression relationship based on ECCC data at Elk River at Fernie and Elk River at Natal	2004 to 2018	Not implemented	n/a	n/a	n/a	n/a	n/a	n/a	 Flow data not available to evaluate model performance High flows have generally decreased while low flows increased compared to the 2017 RWQM

E = Nash Sutcliffe Efficiency; E1 = Modified Nash Sutcliffe Efficiency; SRM = Snowmelt Runoff Module; RWQM = Regional Water Quality Model; n/a = Not applicable (e.g., surface runoff was only calculated at nodes with partitioning of surface water and groundwater flow components).

5.4.3 Elk River

Model calibration and model performance metrics for the Elk River nodes are presented in Table 5-8. These results are presented as:

- Comparisons of modelled to monitored, mean annual runoff, summary goodness-of-fit statistics, with reference to the plots and tables included in this section and in Appendix D.
- Comparisons of modelled to monitored yields, in mm/year.
- Comments on node specific model performance.

The use of monitored streamflow data to develop the simulated discharge results in a strong statistical fit, and the timing and magnitude of hydrograph limb rise and recession were considered as reasonable for the locations (Appendix D).

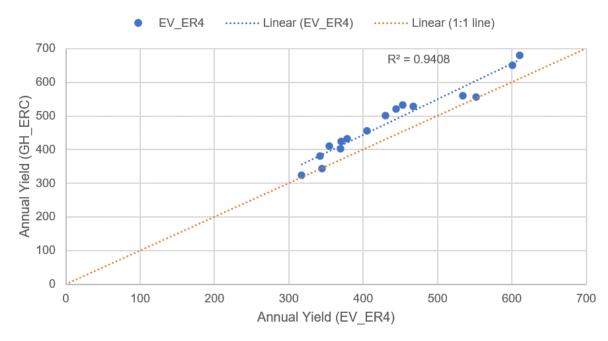
Flows from some natural catchments along the Elk River are calculated in the RWQM as a difference of flows between two mainstem nodes (i.e., flows at mainstem nodes are either a direct input to the model or estimated using a scaling equation, as described in Section 4.16). To check the reasonableness of the calculated flows from these natural areas, yield checks were undertaken at three Elk River mainstem nodes, to confirm that the annual yields from the undefined natural areas were comparable to corresponding annual yields from areas being modelled or from nodes where gauge data were used directly. The three points of comparison were:

- Flows to the Elk River upstream of the Fording River confluence (i.e., GH_ERC vs. RG_ELKFERNIE)
- Flows to the Elk River downstream of the Fording River confluence and upstream of the Michel Creek confluence (i.e., EV_ER4 to EV_ER2 vs EV_ER4)
- Flows to the Elk River downstream of the Michel Creek confluence and upstream of Fernie (i.e., EV_ER1 to RG_ELKFERNIE vs. RG_ELKFERNIE)

Results of each of these yield comparisons is outlined below.

			Evelve tie v	One we deve to a	Approximate	Statistics				
Station ID	Station Description	Flow Modelling Method	Evaluation Period	Groundwater component	Measured (surface)	Modelled (surface)	Modelled (total)	E	E1	Rating
GH_ERC	Elk River 220 m downstream of Thompson Creek / GHO Elk River Compliance Point (E300090)	Scaling of flows from ECCC station at Elk River near Natal and Fording River at the Mouth	2004 to 2018	Not Implemented	460 ^(a)	n/a	460	1	1	Very good
GH_ER1	Elk River upstream of Boivin Creek (E206661)	Scaling of flows from ECCC station at Elk River near Natal and Fording River at the Mouth	2004 to 2018	Not Implemented	460 ^(a)	n/a	460	1	1	Very Good
EV_ER4	Elk River upstream of Grave Creek (0200027)	ECCC station at Elk River near Natal	2004 to 2018	Not implemented	440	440	440	1	1	Very Good
EV_ER1	Elk River downstream of Michel Creek (0200393)	EV_MC1 + EV_ER2 (estimated by scaling flows at EV_ER4)	2004 to 2018	Not implemented	510 ^(a)	n/a	470	0.91	0.80	Very Good
RG_ELKORES	Elk River at Elko Reservoir (E294312)	Scaling of flows from ECCC station at Elk River at Fernie	2004 to 2018	Not implemented	n/a	n/a	n/a	n/a	n/a	n/a

ECCC = Environment and Climate Change Canada; E = Nash Sutcliffe Efficiency; E1 = Modified Nash Sutcliffe Efficiency; SRM = Snowmelt Runoff Module; RWQM = Regional Water Quality Model n/a = Not applicable (e.g., surface runoff was only calculated at nodes with partitioning of surface water and groundwater flow components)


At GH_ERC, GH_ER1 and EV_ER1, comparisons of modelled flows are with calculated flows based on a scaling equation that relies on measured data at other mainstem hydrometric stations. a) Estimated using scaling equation.

Comments on Model Performance

•	Flow data were only available in 2018; comparisons for the entire evaluation period are based on calculated flows (scaling equation) Modelled flows are based on the calculated flows A comparable fit relative to the 2017 RWQM
•	Flow data were only available in 2018; comparisons for the entire evaluation period are based on calculated flows (scaling equation) Modelled flows are based on the calculated flows A comparable fit relative to the 2017 RWQM
•	Data from a hydrometric station is used directly at this location
•	Flow data were only available in 2018; comparisons for the entire evaluation period are based on calculated flows (scaling equation) Modelled flows are based on the calculated flows A comparable fit relative to the 2017 RWQM
•	Flow data not available to evaluate model performance High flows have increased in some years relative to the 2017 RWQM

5.4.4 GH_ERC

The yield check at GH_ERC was completed through a comparison of modelled annual yields (mm) at GH_ERC and EV_ER4 (gauged flows at Environment Canada station 08NK016; Figure 5-8). The relationship suggests that there is slightly higher yield from watersheds in the upper Elk River compared to the Fording and in the catchments between GH_ERC and EV_ER4. The comparative annual yield between these stations was considered acceptable.

5.4.5 EV_ER4 to EV_ER2

The yield check for EV_ER4 (1,840 km²) to EV_ER2 (2,170 km²) considers the contributing simulated flows from the Elk River tributaries at EVO. Modelled flows at EV_ER4 are based on measured flows at the ECCC station 08NK016, while modelled flows at EV_ER2 are calculated using a scaling equation, based on flows at EV_ER4. The contributing flow from the undefined area (229 km²) was estimated using the following formula:

Flow from undefined natural area between EV_ER2 and EV_ER4 = Elk River upstream of Michel Creek (EV_ER2) – Elk River downstream Fording (EV_ER4) – Grave Creek (EV_GV1) – Six Mile Creek (EV_SM1) – Balmer Creek (EV_BLM2)– Fennelon Creek (EV_FC1) – Lindsay Creek (EV_LC1) – Goddard Creek (EV_GC2) – Cossarini-Otto Creek (EV_OC1)

The results of the yield check are presented on Figure 5-9, which demonstrates that yields from the undefined area are generally proportionate to corresponding modelled yields at EV_ER4.

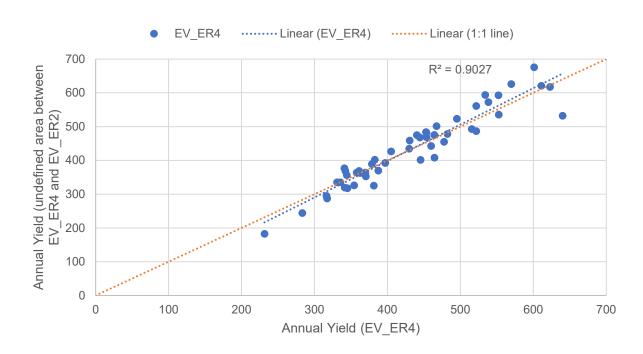


Figure 5-9: Comparison of Annual Yield (mm) from Ungauged Areas Reporting to the Elk River Between EV_ER4 and EV_ER2 to that at EV_ER4 (1970 to 2019)

5.4.6 EV_ER1 to RG_ELKFERNIE

The yield check for EV_ER1 (2,813 km²) to RG_ELKFERNIE (3,090 km²) considers the contributing simulated flows from the Elk River tributaries downstream of Michel Creek at EVO. Flows at RG_ELKFERNIE are based on measured flows at ECCC station 08NK002; flows at EV_ER1 are calculated as the sum of flows at EV_ER2 (calculated as described in the previous section) and modelled flows at the mouth of Michel Creek at EV_MC1. The flow from the undefined area (277 km²) was estimated using the following formula:

```
Flow from undefined natural area between EV_ER1 and RG_ELKFERNIE = Elk River near Fernie (RG_ELKFERNIE) – Elk River
downstream Michel (EV_ER1)
```

The results of the yield check are presented on Figure 5-10. The check demonstrates that yields from the undefined area are generally proportionate to, but higher than, corresponding yields at RG_ELKFERNIE.

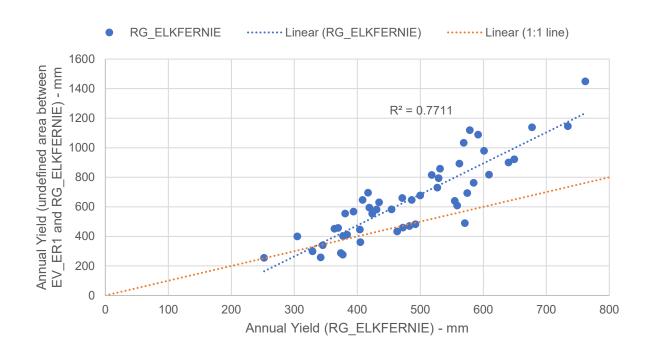


Figure 5-10: Comparison of Annual Yield (mm) from Ungauged Areas Reporting to EV_ER1 and that at RG_ELKFERNIE (1970 – 2019)

5.5 Future Flow Projections

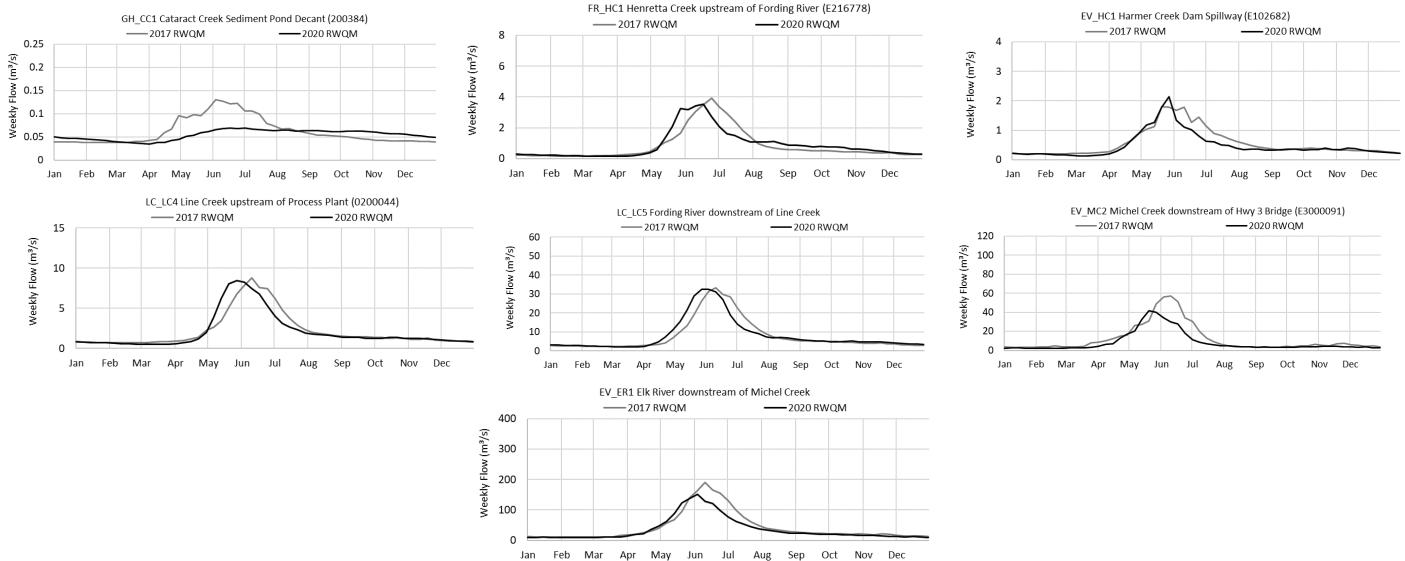
As noted in Section 4.18, future flow projections were developed using a 20-year climate dataset (1999 to 2019) that was run repeatedly through the FC using a multi-realization approach. The results from the 20 realizations were exported directly for use in the WQC. They were also used to produce three timeseries of weekly average flows, one based on each of the following statistics: 10th percentile (P10), median (P50) and 90th percentile (P90). The 10th percentile timeseries is intended to be representative of low flow conditions, whereas the 90th percentile is intended to be representative of high flow conditions. Neither timeseries corresponds directly to 1-in-10 year events, because each timeseries is created by knitting together independent weekly results that may originate from different climate years. For example, the 10th percentile for week 1 may be the result of 2001 climate conditions, whereas that in week 2 may be the result of 2004 climate conditions. As a result, they tend to be more restrictive than flow conditions calculated based on an annual 1-in-10 year return period. These three flow timeseries can be used as an input to the WQC to account for variability in hydrologic patterns in projecting a corresponding range of water quality conditions. However, for this submission, they were generated to allow for comparison of future flow conditions between the 2020 RWQM and the 2017 RWQM, which only provides future flow projections in terms of low, average, and high flows. The purpose of the comparison is to demonstrate how the changes to the RWQM modelling approach influence future flow projections, which can then affect future water quality projections. The magnitude of flows projected to occur at different locations in the Elk Valley in future is presented in Annex D, Appendix D.

The comparison of simulated average weekly flow statistics from the 2020 RWQM to those generated with the 2017 RWQM was completed with a focus on the following locations:

- Cataract Creek (GH_CC1)
- Henretta Creek (FR_HC1)
- Harmer Creek (EV_HC1)
- Line Creek upstream of Process Plant (LC_LC4)
- Mouth of Fording River (LC_LC5)
- Michel Creek EVO Compliance Point (at the Highway 3 bridge) (EV_MC2)
- Elk River downstream of Michel Creek (EV_ER1)

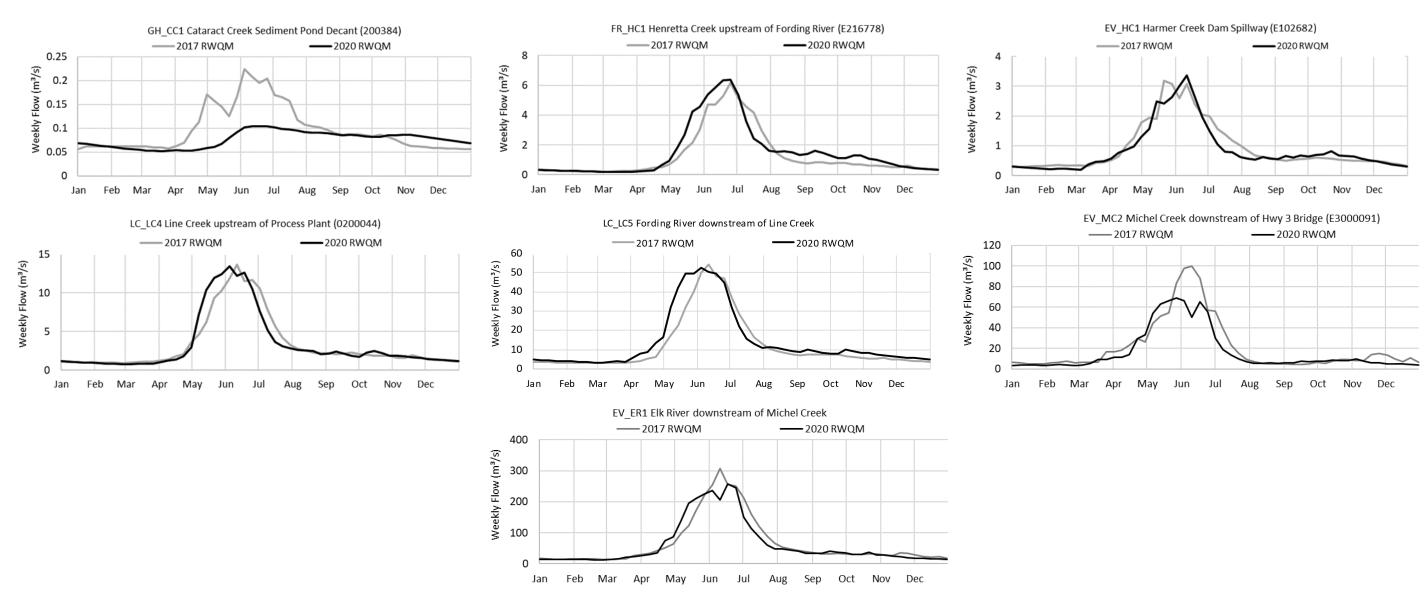
These locations were selected, as they represent a range of mining influence and geographic scale. For example, Cataract Creek is a small watershed covered almost entirely with waste rock, Henretta Creek is a moderately-size watershed containing a small amount of waste rock coverage, and the Elk River is a large regional system with waste rock coverage representing a very small proportion of the overall watershed area.

The flow comparison was completed using a representative future year (i.e., 2032) and locations where groundwater partitioning is assumed to be small to negligible (i.e., where there is expected to be little difference between surface flow and total watershed flow).


The same conceptual model to describe waste rock hydrology was applied in both the 2017 and 2020 RWQM. Waste rock spoils result in dampened hydrographs, with less spring runoff and higher volumes in late summer through winter flow relative to that occurring in undisturbed watersheds. In the 2017 RWQM, this dampening effect was numerically represented within the model using a representative unit hydrograph for waste rock developed using monitoring data from Cataract Creek. In the 2020 RWQM, the representative hydrograph has been replaced by the waste rock hydrology module described in Section 4,7.2.1. Both approaches produced a damped hydrograph; however, as shown in Cataract Creek in Figures 5-23 to 5-25, the dampening effect is more pronounced when using the waste rock hydrology module. The reason for the difference relates to the time period considered in the development of the representative unit hydrograph for waste rock.

The representative unit hydrograph for waste rock was developed in 2017 using measured flow data collected from Cataract Creek from 1995 to 2015. This time period includes flows influenced by pit pumping and early spoil development when more of the Cataract Creek watershed was behaving like an undisturbed watershed. Both factors influence the shape of the resulting unit hydrograph, resulting in higher freshet flow and lower fall / winter flow than would otherwise be expected from a waste rock spoil. Consequently, the results produced using the waste rock hydrology module are considered more representative and accurate than those developed using the 2017 representative unit hydrograph.

Although the differences in future flow projections from waste rock are notable, when comparing output from the 2017 RWQM to that produced using the 2020 RWQM, they tend to have limited influence on future flow projections in tributaries and the Fording River and Elk River mainstems, as illustrated by the hydrographs for the other locations shown in Figures 5-23 to 5-25. In general, future flow projections


produced by the 2020 RWQM are similar to those produced using the 2017 RWQM, in terms of overall hydrograph shape and flow magnitude. That said, there are differences in the timing of freshet flows in some locations, and the comparison of average to median flow conditions in Figure 5-11 is somewhat affected by the different flow statistics being used.

Nevertheless, an outcome of the change in approach to the simulation of waste rock hydrology and its consequential effect on projected waste rock flows is that the proportion of water originating from waste rock spoils in late fall and winter will be higher in the 2020 RWQM flow projections than in those produced using the 2017 RWQM. The opposite being true for spring freshet, given the more dampened waste rock hydrograph now being produced by the RWQM.

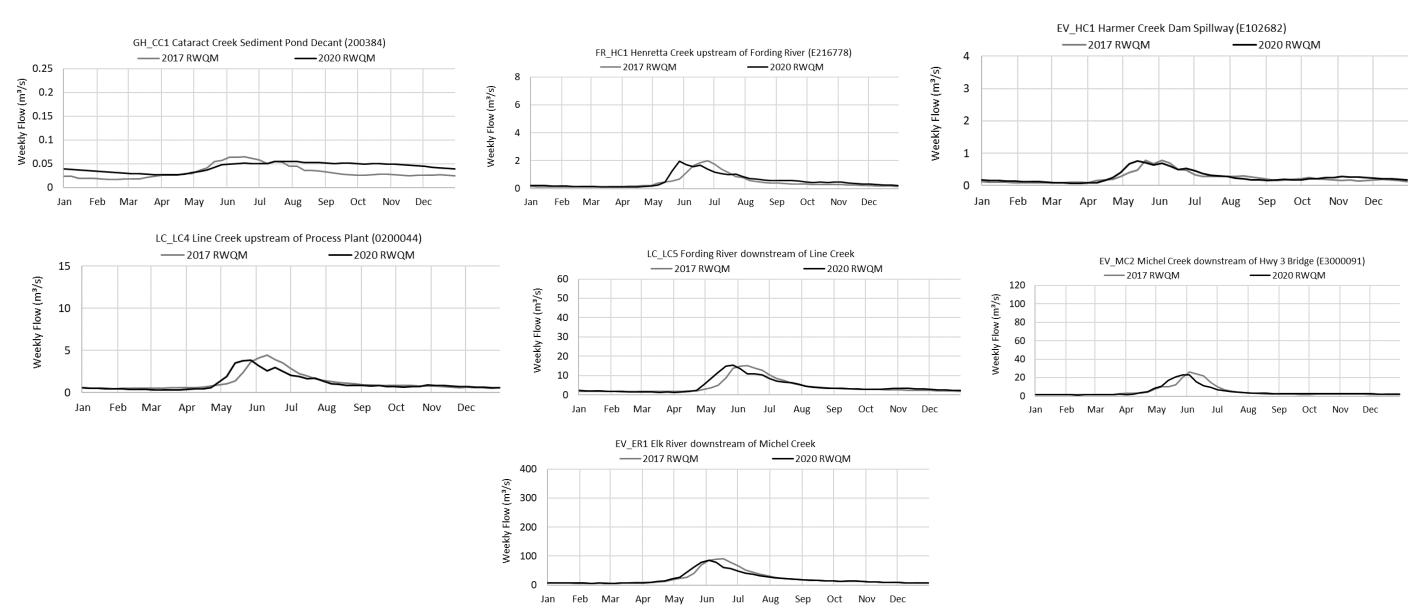

Data from the 2020 RWQM originate from the surface flow component; however, groundwater partitioning at each of the monitoring locations shown in this figure is assumed to be small to negligible (i.e., < 5%); thus, surface flow and total watershed flow at these locations are effectively equivalent. The 2017 RWQM was set-up and configured to model total watershed flow, assuming groundwater partitioning was negligible at all monitoring locations.

Figure 5-11: Comparison of Future Flow Projections, expressed as average weekly flows in Year 2032, between the 2017 RWQM (mean) and 2020 RWQM (median)¹

 Data from the 2020 RWQM originate from the surface flow component; however, groundwater partitioning at each of the monitoring locations shown in this figure is assumed to be small to negligible (i.e., < 5%); thus, surface flow and total watershed flow at these locations are effectively equivalent. The 2017 RWQM was set-up and configured to model total watershed flow, assuming groundwater partitioning was negligible at all monitoring locations.

Figure 5-12: Comparison of Future Flow Projections, expressed as average weekly flows in Year 2032, between the 2017 RWQM (1-in-10 year high) and 2020 RWQM (90th percentile)¹

 Data from the 2020 RWQM originate from the surface flow component; however, groundwater partitioning at each of the monitoring locations shown in this figure is assumed to be small to negligible (i.e., < 5%); thus, surface flow and total watershed flow at these locations are effectively equivalent. The 2017 RWQM was set-up and configured to model total watershed flow, assuming groundwater partitioning was negligible at all monitoring locations.

Figure 5-13: Comparison of Future Flow Projections between the 2017 RWQM (1-in-10 year low) and 2020 RWQM (10th percentile)¹

6 References

- Abudu S, Cui C, Saydi M, King JP. 2012. Application of snowmelt runoff model (SRM) in mountainous watersheds: A review, Water Science and Engineering, 5(2), 123-136.
- Atwater J. 1994. Groundwater Resources of British Columbia, ed. British Columbia and Environment Canada, 200 pp.
- Barbour LS, Hendry JM, Carey SK. 2016. High-resolution profiling of the stable isotopes of water in unsaturated coal waste rock. Journal of Hydrology, 616-629.
- Birkham T, O'Kane M, Goodbrand A, Barbour SL, Carey SK, Straker J, Klein R. 2014. Near-surface water balances of waste rock dumps. Retrieved from http://www.okc-sk.com/wpcontent/uploads/2015/04/Birkham-et-al-2014-Near-surface-water-balances-of-waste-rockdumps.pdf.
- Birkham T. 2017. Research Summary Waste Rock Dump Cover Systems and Internal Gas and Temperature. Cranbrook, British Columbia.
- Butt CM. 2013. Evaluation of the performance of Frequency and Chronological Pairing Techniques in synthesizing long-term streamflow. Vancouver, British Columbia, Canada: The Faculty of Graduate Studies, University of British Columbia.
- Cash A. 2014. Structural and hydrologic characterization of two historic waste rock piles. M.Sc. thesis, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta.
- Chernos M, MacDonald R, Craig J. 2017. Efficient Semi-Distributed Hydrological Modelling Workflow for Simulating Streamflow and Characterizing Hydrologic Processes. Journal of Watershed Science and Management, 6, 177-190.
- Essery R, Pomeroy J. 2004 Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: Theoretical considerations. Annals of Glaciology 38, 261-265
- Freeze RA, Cherry JA. 1979, Groundwater: Englewood Cliffs, NJ, Prentice-Hall, 604 p.
- Hargreaves GH. 1975. Moisture availability and crop production. Transactions of the American Society of Agricultural Engineers ASAE, 18(5): 980–984.
- Hargreaves GH, Samani ZA. 1982. Estimating potential evapotranspiration. J. Irrig. And Drain Engr., ASCE, 108(IR3):223-230.
- Hendry JM, Biswas A, Essilfie-Dughan J, Chen N, Day SJ. 2015. Reservoirs of Selenium in Coal Waste Rock: Elk Valley, British Columbia, Canada. Environmental Science and Technology, 8228-8236.
- Hood et al. 1999. Sublimation From a Seasonal Snowpack at a Continental, Mid-Latitude Alpine Site. Eran Hood, Mark Williams and Don Cline. Hydrological Processes. Hydrol. Process. 13, 1781±1797 (1999).
- Jambon-Puillet E, et al. 2018. Singular sublimation of ice and snow crystals, Nature Communications (2018). DOI: 10.1038/s41467-018-06689-x.

- Jamieson GR, Freeze RA. 1983. Determining Hydraulic Distributions in Mountainous Area Using Mathematical Modelling. Ground Water, 21: 168-177.
- Keller J, Milczarek M, Zhan G. 2015. Water Balance Modelling of Preferential Flow in Waste Rock Materials. 10th International Conference on Acid Rock Drainage and IMWA Annual Conference.
- KWL (Kerr Wood Leidal), Golder Associates and EcoFish Research. 2017. Regional Surface Flow Monitoring Plan -October 2017. Prepared for Teck Coal Limited.
- Martin V, Aubertin M, Bussiere B, Chapuis R. 2004. Evaluation of Unsaturated Flow in Mine Waste Rock. 57th Canadian Geotechnical Conference, 5th Joint CGS/IAH-CNC Conference. Session 7D. pp. 14 – 21.
- Martinec J, Rango A, Roberts RT. 2008. Snowmelt Runoff Model (SRM) User's Manual. New Mexico: New Mexico State University Press.19-39.
- Neuner M., Smith L., Blowes D, Sego D.C., Smith, L.J.D., Fretz, N., Gupton, M. 2013. The Diavik waste rock project: Water flow through mine waste rock in a permafrost terrain. Applied Geochemistry 36, pp. 222-233
- Nichol C, Smith L, Beckie R. 2005. Field-scale experiments of unsaturated flow and solute transport in a heterogeneous porous medium. Water Resour. Res, 41. Doi:http://dx.doi.org/10.1029/2004WR003035.
- Obedkoff W. 1985. Elk River Study Hydrology Overview. Province of British Columbia Ministry of Environment. File S2204-10. September 1985.
- O'Kane M, Birkham T, Goodbrand A, Barbour SL, Carey S, Straker J, Baker T, Klein R. 2015. Near-Surface Water Balances of Waste Rock Dumps, 2015. 10th International Conference on Acid Rock Drainage and IMWA Annual Conference.
- OKC (Okane Consultants Inc.). 2018. Watershed Research and Development Program: 2017 Water Year Annual Meteorological, Soil Water and Near-Surface Water Balance Report. March 16, 2018. 815/113-01.
- SNC (SNC Lavalin) 2017. Regional Groundwater Monitoring Program. Elk Valley, BC. Prepared for Teck Coal Limited. September 2017.
- SRK 2021. Coal Mountain Operations Water and Load Balance Model 2020 Consolidated Report. Prepared for Teck Coal Ltd by SRK consulting. January 2021.
- Steinpreis M (Stantec Consulting Ltd.). 2018. Estimating the Wetting Time for Mine Waste Rock Piles. Proceedings of Mine Water Solutions 2018 (pp. 1 – 8). Published by the University of British Columbia. June 12 – 15, 2018. Vancouver, British Columbia.
- Strasser et Al. 2008. Is Snow Sublimation Important in The Alpine Water Balance? U. Strasser, M. Bernhardt, M. Weber, G. E. Liston, and W. Mauser. The Cryosphere, 2, 53–66, 2008.

- Swanson DA, Savci G, Danziger G, Williamson A, Barnes C. 2000. "Unsaturated hydrologic assessment of waste rock stockpiles in semi-arid climates". 5th International Conference on Acid Rock Drainage. Pp. 1273 1282.
- Teck (Teck Coal Limited). 2011. Line Creek Operations Phase II Project Environmental Assessment Certificate Application. Submitted to BC Environmental Assessment Office December 2011 and revised February 2012. Teck Coal Ltd.
- Teck. 2014b. Fording River Operations Swift Project Environmental Assessment Certificate Application. Annex E – Surface Water Hydrology Baseline Report. Prepared for Teck Coal.
- Teck. 2015a. Greenhills Operations Cougar Pit Extension Project: Joint Application for a Mines Act and Environmental Management Act Permit Amendment. November 18, 2015.
- Teck. 2015b. Elkview Operations Baldy Ridge Extension Project Environmental Assessment Certificate Application. Prepared for Teck Coal by Golder Associates Ltd, November 2015.
- Teck. 2018. Fording River Operations Turnbull West Project. Joint Application for a Mines Act Permit Amendment and an Environmental Management Act Permit Amendment. May 2018.
- Teck. 2019. Elk Valley Water Quality Plan Implementation Plan Adjustment. Submitted to the British Columbia Ministry of Environment and Climate Change Strategy. July 30, 2019.
- Teck. 2020a. Mine Water Management Plan Elkview Operations. Prepared for Teck Coal by Golder Associates Ltd, June 30, 2020.
- Teck. 2020b. Mine Water Management Plan Fording River Operations. Prepared for Teck Coal by Golder Associates Ltd, June 30, 2020.
- Teck. 2020c. Mine Water Management Plan Greenhills Operations. Prepared for Teck Coal by Golder Associates Ltd, June 30, 2020.
- Teck. 2020d. Mine Water Management Plan Line Creek Operations. Prepared for Teck Coal by Golder Associates Ltd, June 30, 2020.
- Wellen C, Shatilla NJ, Carey SK. 2018. Environmental Research Letters. The influence of mining on hydrology and solute transport in the Elk Valley, British Columbia, Canada. Christopher Wellen et al. 2018 Environ. Res. Lett. 13 074012.

Appendix A Calibration Settings

2020 Elk Valley Regional Water Quality Model Update – Appendix A of Annex B

Calibration Settings Rev1

May 2022

Contents

1	Introduction	1
2	Calibration Settings	1

Tables

Table A-1: Summary of Operation-Specific Model Calibration Parameters 1
Table A-2: Summary of Model Calibration Parameters by Sub-Catchment: Fording River Operations2
Table A-3: Summary of Model Calibration Parameters by Sub-Catchment: Greenhills Operations
Table A-4: Summary of Model Calibration Parameters by SubCatchment: Line Creek Operations
Table A-5: Summary of Model Calibration Parameters by Sub-Catchment: Elkview Operations

1 Introduction

This appendix contains tabulated calibration parameters for each sub-catchment in the Flow Component (FC) of the 2020 Regional Water Quality Model (RWQM).

2 Calibration Settings

A compilation of the final model calibration parameters by model sub-catchment are presented in this section. Table A-1 contains parameters that are applied at a broader scale (e.g., throughout the model domain or throughout a particular mining operation). Table A-2 through Table A-5 contain sub-catchment-specific calibration parameters for actual evapotranspiration rates, the snowmelt runoff module and the waste rock hydrology module. For definitions of the parameters, see the main report or the glossary of terms.

Parameter	Units	FRO	GHO	LCO	EVO
Reference Climate Station	-	Fording Cominco	Fording Cominco	Fording Cominco	Sparwood
Lapse Rate Precipitation (Summer)	mm/m	0.115	0.115	0.09	0.0805
Lapse Rate Precipitation (Winter)	mm/m	0.32	0.32	0.32	0.224
Lapse Rate Temperature	°C/m	0.005	0.005	0.005	0.005
Degree Day Factor	mm/°C-d	2	2	2	1.5
Snowfall Threshold Temperature	°C	0.6	0.6	0.6	0.6
Snowmelt Threshold Temperature	°C	-1	-1	-1	-1
Precipitation Threshold	cm/d	6	6	6	6
Sublimation Constant	mm/d	0.3	0.3	0.3	0.3
Solar Constant	MJ/m²-min	0.082	0.082	0.082	0.082
Snow Water Equivalent (SWE) Equation Choice	-	3	3	3	3
SWE roughness length factor	-	5	5	5	5

Table A-1: Summary of Operation-Specific Model Calibration Parameters

See the glossary of terms for parameter definitions.

"-" Unitless parameter.

FRO = Fording River Operations, GHO = Greenhills Operations, LCO = Line Creek Operations, EVO = Elkview Operations; SWE equations from Essery and Pomeroy (2004), as presented in the Snowmelt Runoff Module setup section of the report.

	Category									\$	Snowmelt	Runoff Mo	dule (SRM)											Wa	ste Rock I	lydrolog	gy Modu	le			
	Units	-	-	m³/s	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	m	-	-	d/m	-	-	d	-	-
ID	Sub-Catchment	Begin Freeze Month	Begin Melt Month	Initial Runoff	Lag Time	X_cold_n	X_Warm_n	Y_Cold_n	Y_warm_n	Cr_Summer_n	Cr_Winter_n	Cs_Summer_n	Cs_Winter_n	X_Cold_p	X_Warm_p	Y_Cold_p	Y_warm_p	Cr_Summer_p	Cr_Winter_p	Cs_Summer_p	Cs_Winter_p	K (waste rock)	Porosity	Height Threshold	Volumetric Moisture Capacity	Initial Moisture	QP_Delay	QP_Erlang	QP Fraction	SP_Delay SP_Erlang		SP_Exp_Decay
1	Henretta_Ck	10	3	0	0.5	0.95	0.95	0.02	0.02	0.8	0.75	0.85	0.95	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
2	McSlide_Ck	10	3	0	0.5	0.95	0.95	0.02	0.02	0.8	0.75	0.85	0.95	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
3	McDonald_Ck	10	3	0	0.5	0.95	0.95	0.02	0.02	0.8	0.75	0.85	0.95	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
4	McMillan_Ck	10	3	0	0.5	0.95	0.95	0.02	0.02	0.8	0.75	0.85	0.95	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
5	Moore_Ck	10	3	0	0.5	0.95	0.95	0.02	0.02	0.8	0.75	0.85	0.95	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
6	Upper_Fording	10	3	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
7	Post_Ponds_Rock_Drain	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
8	SwiftNorthWest	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
9	Turnbull_Bridge_Spoil	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
10	North_East_Trib_Rock_Drain	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
11	John_Creek	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
12	Lake_Pit	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
13	Tower_Diversion	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
14	Tower_Diversion_Ext	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
15	Lake_Mountain_Pit	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
16	Turn_Ck	10	3	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
17	Turnbull_South_Pit	10	3	0	0.5	1	0.93	0.02	0.02	0.3	0.3	0.75	0.85	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
18	Clode_Ck_Upper	10	3	0	0.5	1	0.93	0.02	0.02	0.3	0.3	0.75	0.85	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
19	Clode_Ck_Lower	10	3	0	0.5	1	0.93	0.02	0.02	0.3	0.3	0.75	0.85	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
20	Eagle_6_North_Pit	10	3	0	0.5	1	0.93	0.02	0.02	0.3	0.3	0.75	0.85	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
21	Eagle_6_South_Pit	10	3	0	0.5	1	0.93	0.02	0.02	0.3	0.3	0.75	0.85	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
22	Eagle_6_West_Pit	10	3	0	0.5	1	0.93	0.02	0.02	0.3	0.3	0.75	0.85	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
23	Eagle_4_Pit	10	3	0	0.5	1	0.93	0.02	0.02	0.3	0.3	0.75	0.85	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
24	Fording_EC1_EaglePonds	10	3	0	0.5	1	0.93	0.02	0.02	0.3	0.3	0.75	0.85	1	0.89	0.018	0.018	0.35	0.7	0.6	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004
25	Add_FR_FRNTP	10	5	0	0.5	1	0.93	0.02	0.02	0.65	0.2	0.75	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0 1	1000	0.004

Table A-2: Summary of Model Calibration Parameters by Sub-Catchment: Fording River Operations

Categor	ry									s	nowmelt	Runoff Mo	dule (SRN	I)											Wa	ste Rock I	Hydrolog	gy Modu	ule			
Units		-	-	m³/s	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	m	-	-	d/m	-	-	d	-	•
ID Sub-Cat	tchment	Begin Freeze Month	Begin Melt Month	Initial Runoff	Lag Time	X_cold_n	X_Warm_n	Y_Cold_n	Y_warm_n	Cr_Summer_n	Cr_Winter_n	Cs_Summer_n	Cs_Winter_n	X_Cold_p	X_Warm_p	Y_Cold_p	Y_warm_p	Cr_Summer_p	Cr_Winter_p	Cs_Summer_p	Cs_Winter_p	K (waste rock)	Porosity	Height Threshold	Volumetric Moisture Capacity	Initial Moisture	QP_Delay	QP_Erlang	QP Fraction	SP_Delay	sP_Erlang	SP_Exp_Decay
26 Swift_Pit		10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
27 Swift_Bens_Pit		10	5	0	0.5	0.95	0.9	0.02	0.02	0.3	0.2	0.55	0.85	1	0.89	0.018	0.018	0.35	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
28 Fording_STP		10	5	0	0.5	0.95	0.9	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
29 Wash_Plant_NL	.P	10	5	0	0.5	0.95	0.9	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
30 Fording_LF2_Up	pper	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
31 Fording_LF2_Lo	ower	10	5	0	0.5	0.95	0.9	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
32 Swift_Ck_Upper	r_Diversion	10	5	0	0.5	0.95	0.9	0.02	0.02	0.3	0.2	0.55	0.85	1	0.89	0.018	0.018	0.35	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
33 Swift_Spoil		10	5	0	0.5	0.95	0.9	0.02	0.02	0.3	0.2	0.55	0.85	1	0.89	0.018	0.018	0.35	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
34 Brownie_Ck		10	5	0	0.5	1	0.95	0.02	0.01	0.8	0.75	0.85	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
35 Kilmarnock_Upp	ber	10	5	0	0.5	1	0.95	0.02	0.01	0.8	0.75	0.85	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
36 Kilmarnock_Low	ver	10	5	0	0.5	1	0.95	0.02	0.01	0.8	0.75	0.85	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
37 Cataract_Ck		10	5	0	0.5	0.95	0.9	0.02	0.02	0.65	0.2	0.55	0.85	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
38 Castle_FR_FRC	CP1_A	10	5	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
39 Castle_FR_FRC	CP1_B	10	5	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
40 Add_GH_PC2		10	5	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
41 Castle_GH_PC2	2_A	10	5	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
42 Castle_GH_PC2	2_B	10	5	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
43 Castle_FR_FRA	ABCH_A	10	5	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
44 Castle_FR_FRA	ABCH_B	10	5	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
45 Castle_FR_FRA	ABCH_Upper	10	5	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
46 Add_FR_FRABC	СН	10	5	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004
47 Chauncey_Ck		10	5	0	0.5	1	0.9	0.02	0.02	0.75	0.2	0.55	0.95	1	0.89	0.018	0.018	0.7	0.35	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	0	1000	0.004

Table A-2: Summary of Model Calibration Parameters by Sub-Catchment: Fording River Operations

See the glossary of terms for parameter definitions; "-" Unitless parameter.

	Category		Snowmelt Runoff Module (SRM)																			Wa	ste Rock H	ydrolog	y Modu	ıle						
	Units	-	-	m³/s	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	m	-	-	d/m	-	-	d	-	-
ID	Sub-Catchment	Begin Freeze Month	Begin Melt Month	Initial Runoff	Lag Time	X_cold_n	X_Warm_n	Y_Cold_n	Y_warm_n	Cr_Summer_n	Cr_Winter_n	Cs_Summer_n	Cs_Winter_n	X_Cold_p	X_Warm_p	Y_Cold_p	Y_warm_p	Cr_Summer_p	Cr_Winter_p	Cs_Summer_p	Cs_Winter_p	K (waste rock)	Porosity	Height Threshold	Volumetric Moisture Capacity	Initial Moisture	QP_Delay	QP_Erlang	QP Fraction	SP_Delay	SP_Erlang	SP_Exp_Decay
1	Unnamed_Elk_Tribs_4	10	3	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.55	0.85	1	0.89	0.018	0.018	0.3	0.2	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
2	Unnamed_Elk_Tribs_3	10	3	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.55	0.85	1	0.89	0.018	0.018	0.3	0.2	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
3	Unnamed_Elk_Tribs_2	10	3	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.55	0.85	1	0.89	0.018	0.018	0.3	0.2	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
4	Unnamed_Elk_Tribs_1	10	3	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.55	0.85	1	0.89	0.018	0.018	0.3	0.2	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
5	Branch_F_Ck	10	3	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.55	0.85	1	0.89	0.018	0.018	0.3	0.2	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
6	Wolf_Ck	10	3	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.55	0.85	1	0.89	0.018	0.018	0.3	0.2	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
7	Phase_9_10_Pits	10	5	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.55	0.85	1	0.89	0.018	0.018	0.3	0.3	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
8	Phase_8_Pit	10	5	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.55	0.85	1	0.89	0.018	0.018	0.3	0.3	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
9	Phase_7_North	10	5	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.55	0.85	1	0.89	0.018	0.018	0.3	0.3	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
10	Phase_7_South	10	5	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.55	0.85	1	0.89	0.018	0.018	0.3	0.3	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
11	Willow_Ck_North	10	3	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.55	0.85	1	0.89	0.018	0.018	0.3	0.2	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
12	Willow_Ck_South	10	3	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.55	0.85	1	0.89	0.018	0.018	0.3	0.2	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
13	Wade_Ck	10	5	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.95	0.85	1	0.89	0.018	0.018	0.3	0.2	1	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
14	Cougar_Ck	10	3	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.55	0.85	1	0.89	0.018	0.018	0.3	0.2	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
15	Phase_6_Pit	10	5	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.55	0.85	1	0.89	0.018	0.018	0.3	0.3	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
16	Phase_4_5_Pits	10	5	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.55	0.85	1	0.89	0.018	0.018	0.3	0.3	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
17	West_Spoil_Ph3_A	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.95	1	0.89	0.018	0.018	0.75	0.3	0.65	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
18	West_Spoil_Ph3_B	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.95	1	0.89	0.018	0.018	0.75	0.3	0.65	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
19	West_Spoil_Ph3_C	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.95	1	0.89	0.018	0.018	0.75	0.3	0.65	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
20	Mickelson_Ck	10	3	0	0.5	0.95	0.85	0.02	0.02	0.2	0.1	0.55	0.85	1	0.89	0.018	0.018	0.3	0.2	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
21	Leask_Ck_Upper	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.95	1	0.89	0.018	0.018	0.75	0.3	0.65	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
22	Leask_Ck_Lower	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.95	1	0.89	0.018	0.018	0.75	0.3	0.65	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
23	Phase_3_Pit	10	5	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.55	0.85	1	0.89	0.018	0.018	0.3	0.3	0.65	0.95	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
24	Wolfram_Ck_W	10	3	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.75	0.95	1	0.89	0.018	0.018	0.3	0.3	0.85	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004

Table A-3: Summary of Model Calibration Parameters by Sub-Catchment: Greenhills Operations

	Category									:	Snowmelt	Runoff Mo	odule (SRN	1)											Was	ste Rock H	ydrolog	y Modu	le			
	Units	-	-	m³/s	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	m	-	-	d/m	-	-	d	-	-
ID	Sub-Catchment	Begin Freeze Month	Begin Melt Month	Initial Runoff	Lag Time	X_cold_n	X_Warm_n	Y_Cold_n	Y_warm_n	Cr_Summer_n	Cr_Winter_n	Cs_Summer_n	Cs_Winter_n	X_Cold_p	X_Warm_p	Y_Cold_p	Y_warm_p	Cr_Summer_p	Cr_Winter_p	Cs_Summer_p	Cs_Winter_p	K (waste rock)	Porosity	Height Threshold	Volumetric Moisture Capacity	Initial Moisture	QP_Delay	QP_Erlang	QP Fraction	SP_Delay	SP_Erlang	SP_Exp_Decay
25	Wolfram_Ck_N_Upper	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.95	1	0.89	0.018	0.018	0.75	0.3	0.65	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
26	Wolfram_Ck_N_Lower	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.95	1	0.89	0.018	0.018	0.75	0.3	0.65	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
27	Wolfram_Ck_S_Upper	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.95	1	0.89	0.018	0.018	0.75	0.3	0.65	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
28	Wolfram_Ck_S_Lower	10	3	0	0.5	0.95	0.85	0.02	0.02	0.65	0.2	0.55	0.95	1	0.89	0.018	0.018	0.75	0.3	0.65	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
29	Thompson_Upper	10	3	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.75	0.95	1	0.89	0.018	0.018	0.3	0.3	0.85	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
30	Thompson_Lower	10	3	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.75	0.95	1	0.89	0.018	0.018	0.3	0.3	0.85	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
31	Fowler_Ck	10	3	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.75	0.95	1	0.89	0.018	0.018	0.3	0.3	0.85	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
32	Rush_Ck	10	3	0	0.5	0.95	0.9	0.02	0.02	0.2	0.2	0.75	0.95	1	0.89	0.018	0.018	0.3	0.3	0.85	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
33	Greenhills_North	10	3	0	0.5	0.95	0.9	0.02	0.02	0.65	0.2	0.75	0.8	1	0.89	0.018	0.018	0.75	0.3	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
34	Greenhills_South	10	3	0	0.5	0.95	0.9	0.02	0.02	0.65	0.2	0.75	0.8	1	0.89	0.018	0.018	0.75	0.3	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
35	Add_GH_FR1	10	3	0	0.5	0.95	0.9	0.02	0.02	0.65	0.2	0.75	0.8	1	0.89	0.018	0.018	0.75	0.3	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
36	Porter_Ck	10	3	0	0.5	0.95	0.9	0.02	0.02	0.85	0.85	0.95	0.95	1	0.89	0.018	0.018	0.95	0.95	1	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
37	Porter_Upper	10	3	0	0.5	0.95	0.9	0.02	0.02	0.85	0.85	0.95	0.95	1	0.89	0.018	0.018	0.95	0.95	1	1	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004
38	Additional_LC_LC5_GHO	10	3	0	0.5	0.95	0.9	0.02	0.02	0.65	0.2	0.75	0.8	1	0.89	0.018	0.018	0.75	0.3	0.85	0.9	0.95	0.3	40	0.16	0.16	3	50	0	365	15	0.004

Table A-3: Summary of Model Calibration Parameters by Sub-Catchment: Greenhills Operations

See the glossary of terms for parameter definitions; "-" Unitless parameter.

Category									:	Snowmelt	Runoff N	lodule (SRI	/ I)											Was	ste Rock F	lydrolog	y Modu	ıle			
Units	-	-	m³/s	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	m	-	-	d/m	-	-	d	-	-
ID Sub-Catchment	Begin Freeze Month	Begin Melt Month	Initial Runoff	Lag Time	X_cold_n	X_Warm_n	Y_Cold_n	Y_warm_n	Cr_Summer_n	Cr_Winter_n	Cs_Summer_n	Cs_Winter_n	X_Cold_p	X_Warm_p	Y_Cold_p	Y_warm_p	Cr_Summer_p	Cr_Winter_p	Cs_Summer_p	Cs_Winter_p	K (waste rock)	Porosity	Height Threshold	Volumetric Moisture Capacity	Initial Moisture	QP_Delay	QP_Erlang	QP Fraction	SP_Delay	SP_Erlang	SP_Exp_Decay
1 Todhunter_Ck_Ewin_Ck	10	3	0	0.5	1	0.91	0.012	0.015	0.4	0.1	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
2 Additional_LC_FRDSDC	10	3	0	0.5	1	0.91	0.012	0.015	0.4	0.1	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
3 East_Trib_LCO_Dry_Ck	10	3	0	0.5	1	0.91	0.012	0.015	0.4	0.1	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
4 Upper_LCO_Dry_Ck	10	3	0	0.5	1	0.91	0.012	0.015	0.4	0.1	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
5 BRN_1_Pit	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
6 BRN_2_Pit	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
7 BRN_3_Pit	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
8 MTM_1_Pit	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
9 MTM_2_Pit	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
10 MTM_3_Pit	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
11 Lower_LCO_Dry_Ck_DC4	10	3	0	0.5	1	0.91	0.012	0.015	0.4	0.1	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
12 Lower_LCO_Dry_Ck_DC1	10	3	0	0.5	1	0.91	0.012	0.015	0.4	0.1	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
13 Lower_LCO_Dry_Ck_to_ Fording_River	10	3	0	0.5	1	0.91	0.012	0.015	0.4	0.1	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
14 Upper_Line_Ck_1	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
15 Upper_Line_Ck_2	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
16 Horseshoe_Ck_1	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
17 Horseshoe_Ck_2	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
18 Horseshoe_Ridge_Pit	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
19 No_Name_Ck_Diversion	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
20 No_Name_Ck_NLX_Pit	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
21 No_Name_Ck_ Access_Road_Spoils	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
22 MSA_West	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
23 MSAW_Backfilled_Pit	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004

Table A-4: Summary of Model Calibration Parameters by SubCatchment: Line Creek Operations

	Category	i i m ³ /s D i i i m ³ /s D i i i i i i i i m ³ /s D i																			Was	te Rock H	ydrolog	y Modul	e							
	Units	-	-	m³/s	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	m	-	-	d/m	-	-	d	-	-
ID	Sub-Catchment	Freeze	egin Melt	Initial Runoff	Lag Time	X_cold_n	X_Warm_n	Y_Cold_n	Y_warm_n	Cr_Summer_n	Cr_Winter_n	Cs_Summer_n	Cs_Winter_n	X_Cold_p	່ຂ່	Y_Cold_p	Y_warm_p	Cr_Summer_p	_Winter_	Cs_Summer_p	Cs_Winter_p	K (waste rock)	Porosity	Height Threshold	Volumetric Moisture Capacity	Initial Moisture	QP_Delay	QP_Erlang	QP Fraction	SP_Delay	SP_Erlang	SP_Exp_Decay
24	North_Line_Ck	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
25	Centre_Line_Ck	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
26	West_Line_Ck	10	5	0	0.5	1	0.95	0.012	0.015	0.4	0.6	0.45	0.6	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
27	South_Line_Ck	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
28	Lower_Line_Ck_LC_LC4	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
29	Lower_Line_Ck_Mouth	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
30	Add_LC_LC5	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004
31	LCO_Processing_Plant_Area	10	5	0	0.5	1	0.935	0.012	0.01	0.65	0.3	0.9	1	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	40	0.12	0.12	3	50	0	365	15	0.004

Table A-4: Summary of Model Calibration Parameters by SubCatchment: Line Creek Operations

See the glossary of terms for parameter definitions; "-" Unitless parameter.

Category		Snowmelt Runoff Module (SRM)																			Was	ste Rock H	ydrolog	y Modu	le						
Units	-	-	m³/s	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	m	-	-	d/m	-	-	d	-	-
ID Sub-Catchment	Begin Freeze Month	Begin Melt Month	Initial Runoff	Lag Time	x_cold_n	X_Warm_n	Y_Cold_n	Y_warm_n	Cr_Summer_n	Cr_Winter_n	Cs_Summer_n	Cs_Winter_n	X_Cold_p	X_Warm_p	Y_Cold_p	Y_warm_p	Cr_Summer_p	Cr_Winter_p	Cs_Summer_p	Cs_Winter_p	K (waste rock)	Porosity	Height Threshold	Volumetric Moisture Capacity	Initial Moisture	QP_Delay	QP_Erlang	QP Fraction	SP_Delay	SP_Erlang	SP_Exp_Decay
1 Grave_above_Harmer_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
2 Harmer_above_EVO_Dry_Ck	10	3	0	5	0.95	0.9	0.016	0.016	0.75	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
3 EVO_Dry_Ck	10	3	0	5	0.95	0.9	0.016	0.016	0.75	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.007
4 Lower_Harmer_Ck	10	3	0	5	0.95	0.9	0.016	0.016	0.75	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
5 Lower_Grave_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
6 Six_Mile_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
7 Unnamed_Ck_below_6_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
8 Balmer_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
9 Fennelon_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
10 Upper_Lindsay_Ck	10	3	0	5	0.95	0.8	0.02	0.02	0.1	0.1	0.2	0.3	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
11 Lower_Lindsay_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
12 Goddard_Ck	10	3	0	5	0.95	0.8	0.02	0.02	0.1	0.1	0.2	0.3	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
13 Cedar_BR6_Pits	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
14 Breaker_Lake	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
15 Cossarini_Otto_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
16 Plant_Area	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
17 Alexander_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
18 Add_EV_MC3	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
19 Adit_Ridge_Pit	10	5	0	5	0.95	0.95	0.02	0.02	0.1	0.1	0.2	0.3	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
20 Erickson_Ck_Upper	10	5	0	5	0.95	0.95	0.02	0.02	0.1	0.1	0.2	0.3	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
21 Erickson_Ck_Bridge	10	5	0	5	0.95	0.95	0.02	0.02	0.1	0.1	0.2	0.3	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
22 Erickson_Ck_Lower	10	5	0	5	0.95	0.95	0.02	0.02	0.1	0.1	0.2	0.3	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
23 South_Pit_Ck	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
24 Milligan_Ck	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004

Table A-5: Summary of Model Calibration Parameters by Sub-Catchment: Elkview Operations

Category										Snowmelt	Runoff Mo	odule (SRM	A)											Was	te Rock H	ydrolog	y Modul	е			
Units	-	-	m³/s	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	m	-	-	d/m	-	-	d	-	-
ID Sub-Catchment	Begin Freeze Month	Begin Melt Month	Initial Runoff	Lag Time	X_cold_n	X_Warm_n	Y_Cold_n	Y_warm_n	Cr_Summer_n	Cr_Winter_n	Cs_Summer_n	Cs_Winter_n	X_Cold_p	X_Warm_p	Y_Cold_p	Y_warm_p	Cr_Summer_p	Cr_Winter_p	Cs_Summer_p	Cs_Winter_p	K (waste rock)	Porosity	Height Threshold	Volumetric Moisture Capacity	Initial Moisture	QP_Delay	QP_Erlang	QP Fraction	SP_Delay	SP_Erlang	SP_Exp_Decay
25 Thresher_Ck	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
26 Natal_Pit_South	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
27 Natal_Pit_North	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
28 Natal_Pit_2	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
29 Gate_Creek	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
30 F2_Pit	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
31 Baldy_Ridge_PitS	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
32 Bodie_Ck	10	5	0	5	0.95	0.9	0.016	0.016	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
33 Add_EV_MC2	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
34 Upper_Aqueduct_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
35 Lower_Aqueduct_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
36 Qualtieri_Ck	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004
37 Add_EV_MC1	10	5	0	5	0.95	0.95	0.012	0.02	0.6	0.35	0.6	0.8	1	0.9	0.01	0.01	0.75	0.3	0.9	1	0.8	0.3	50	0.12	0.12	3	50	0	365	15	0.004

Table A-5: Summary of Model Calibration Parameters by Sub-Catchment: Elkview Operations

See the glossary of terms for parameter definitions; "-" Unitless parameter.

Appendix B

Surface Water – Groundwater Interactions

2020 Elk Valley Regional Water Quality Model Update – Appendix B of Annex B

Surface Water – Groundwater Partitioning Information Rev1

May 2022

Contents

1	Intro	oduction	. 1
2	Bac	kground Information	.1
	2.1	Water Balance Components	.1
	2.2	Contribution of Groundwater / Interflow to Total Runoff in the Elk Valley	.2
	2.3	Subsurface Flow Paths and Their Effect on Estimating Total Runoff from Measured Flows	. 3
3	Info	rmation to Inform Surface Water – Groundwater Partitioning Assumptions	.5
	3.1	Clode Creek	. 5
	3.2	Swift Creek	. 6
	3.3	Kilmarnock Creek	.7
	3.3.1	1 Flow Monitoring Station	.7
	3.3.2	2 Intake Location	. 8
	3.4	Cataract Creek	. 9
	3.5	Thompson Creek	10
	3.6	Greenhills Creek	11
	3.7	LCO Dry Creek	12
	3.8	West Line Creek	15
	3.9	EVO Dry Creek	16
	3.10	Harmer Creek	17
	3.11	Erickson Creek	18
	3.11	1.1 Flow Monitoring Station	18
	3.11	1.2 Intake Location	19
4	Refe	erences	20

Tables

Table B-1:	Surface Water – Groundwater Partitioning at Clode Creek Sediment Pond Decant (FR_CC1, E102481)	.5
Table B-2:	Surface Water – Groundwater Partitioning at the Swift Creek Sediment Pond Decant (GH_SC1, E221329)	

Table B-3:	Surface Water – Groundwater Partitioning at Kilmarnock Creek Downstream of the Rock Drain (FR_KC1, 0200252)
Table B-4:	Surface Water – Groundwater Partitioning at the Kilmarnock Creek Intake8
Table B-5:	Surface Water – Groundwater Partitioning at Cataract Creek Sediment Pond Decant (GH_CC1, 0200252)9
Table B-6:	Surface Water – Groundwater Partitioning at Thompson Creek at LRP Road (GH_TC1, E102714)10
Table B-7:	Surface Water – Groundwater Partitioning at Greenhills Creek Sediment Pond Decant (GH_GH1, E102709)11
Table B-8:	Surface Water – Groundwater Partitioning at LCO Dry Creek upstream of East Tributary Creek (LC_DC3, E288273)12
Table B-9:	Surface Water – Groundwater Partitioning Mouth of East Tributary of LCO Dry Creek (E288274)
Table B-10:	Surface Water – Groundwater Partitioning at LCO Dry Creek near the Mouth (at bridge) (E288270)14
Table B-11:	Surface Water – Groundwater Partitioning at West Line Creek (LC_WLC, E261958) 15
Table B-12:	Surface Water – Groundwater Partitioning at EVO Dry Creek Sediment Pond Decant (E298590)16
Table B-13:	Surface Water – Groundwater Partitioning at the EVO Harmer Creek Compliance Point – Harmer Spillway (E102682)17
Table B-14:	Surface Water – Groundwater Partitioning at Mouth of Erickson Creek (0200097)18
Table B-15:	Surface Water – Groundwater Partitioning at the Erickson Creek Intake

Figures

Figure B-1:	Conceptual Hydrograph Illustrating Seasonal Fluctuations in the Contributions of
	Groundwater Discharge / Interflow and Direct Runoff to Total Runoff (Watershed Yield) 2
Figure B-2:	Conceptual Hydrograph Illustrating Contributions of Measured Surface Flows and
	Unaccounted Subsurface Flows to Total Runoff (Watershed Yield)4

1 Introduction

This appendix to the Hydrology Modelling Report (i.e., Annex B of the 2020 Regional Water Quality Model Update) contains an overview of the surface water - groundwater partitioning information incorporated into the Flow Component (FC) of the 2020 Regional Water Quality Model (RWQM). This information was used to estimate the volume of water that may be present in the subsurface and travelling as interflow / shallow groundwater at noted monitoring stations. This information was incorporated into the 2020 RWQM to aid in the simulation of total watershed yield, while also facilitating a comparison of modelled flow at surface with measured surface flow.

Groundwater monitoring and site-specific investigations are on-going activities in the Elk Valley, with new information being regularly generated. The new information can result in updates to the conceptual understanding of interflow / shallow groundwater flow in the vicinity of individual flow monitoring stations. During the completion of the 2020 RWQM Update, efforts were made to incorporate new information and reflect updates to localized understanding of interflow / shallow groundwater flow at individual monitoring points as it was being generated up until February 2021.

Surface water – groundwater partitioning is site-specific, and the values outlined herein are those applied at existing flow monitoring stations to support model calibration and an understanding of the system as it currently exists. Values are also discussed with reference to two established intake locations: those on Kilmarnock Creek and Erickson Creek. Assumptions related to water availability for treatment at intake locations will be discussed and outlined in the next Implementation Plan Adjustment, similar to the approach used in the 2019 IPA.

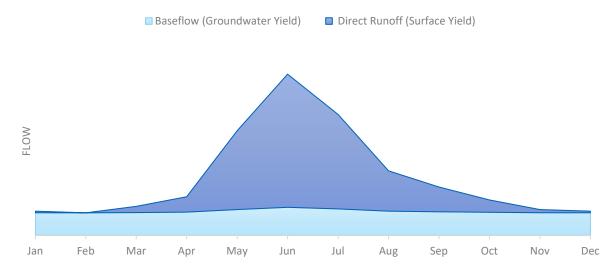
2 Background Information

2.1 Water Balance Components

A catchment water balance consists of four main components:

- precipitation
- surface losses (i.e., evaporation, evapotranspiration, sublimation)
- total runoff (i.e., direct runoff, interflow and groundwater discharge)
- deep percolation (i.e., groundwater recharge to deep aquifers)

Surface losses involve the loss of water from a catchment to the atmosphere through the processes identified above (i.e., evaporation, evapotranspiration and/or sublimation). Deep percolation is a different form of water loss, involving the downward movement of water from the surface or near surface zone to deep aquifers that do not readily interact with local watercourses or waterbodies within the catchment. The remaining component, total runoff, consists of water that effectively moves laterally downgradient through the catchment, reporting to local watercourses or waterbodies within the catchment and then to catchment outlets. Total runoff, which can also be referred to as total watershed yield, includes water


traveling at surface (direct runoff), interflow and shallow groundwater flow that readily interacts with and discharges to local watercourses and waterbodies.

Interflow is precipitation that infiltrates the ground, flows in the near surface unsaturated zone (vadose zone), then discharges back to surface. The division of total runoff into direct runoff, interflow, and shallow groundwater discharge is dependent on local-scale spatial variations in slope angle, near-surface permeability, and precipitation patterns, as well as temporal variations in precipitation events.

In a catchment with mining disturbance (i.e., waste rock spoils, pits), the division of total runoff into its three sub-components follows the same principles as in an undisturbed catchment. However, it is complicated by local-scale variations introduced by mining activity, such as changes to catchment boundaries induced through pit development and changes to surface permeability related to waste rock spoiling / pit backfilling.

2.2 Contribution of Groundwater / Interflow to Total Runoff in the Elk Valley

In the Elk Valley, total runoff (or total watershed yield) computed from water balances and measured flows at regional hydrometric stations (e.g., the mouth of the Fording River) equates to approximately 50% to 60% of annual precipitation. The shallow groundwater / interflow component typically ranges between 20% and 50% of the total watershed yield (or 10% to 30% of annual precipitation). The fraction of total runoff represented by the shallow groundwater / interflow component varies notably throughout the year. Total runoff during winter months can, in many cases, be attributed almost entirely to interflow and groundwater discharge, while total runoff during freshet is comprised predominantly of direct runoff (Figure B-1). The relative contributions of groundwater discharge / interflow and direct runoff to surface flows in a watercourse can vary along the length of the watercourse depending on flow pathways inherent in the local catchments and the extent of mining disturbance.

2.3 Subsurface Flow Paths and Their Effect on Estimating Total Runoff from Measured Flows

Local tributary catchments in the Elk Valley are generally characterized by relatively shallow glacial deposits and steep gradients. Losses to deep percolation are small, and total runoff tends to report to surface watercourses either as direct runoff or as shallow groundwater / interflow moving along short travel paths. Water moves downgradient through tributary catchments into the Fording River and the Elk River, which are regional topographical lows that generally gain flow with downstream distance (i.e., are gaining systems), as discussed for example in SNC (2017).

The Fording River floodplain contains permeable sediments and a valley bottom aquifer. Some of the total tributary runoff reporting to the Fording River travels subsurface and initially reports to the valley bottom aquifer. Groundwater flow in the valley bottom aquifer is directed to and eventually discharges into the Fording River, which, as previously identified, is a regional topographic low. There are small, local areas where groundwater flow is directed parallel to the river (SNC 2021a), which is referred to as an underflow-dominated section. However, on a regional basis, the direction of shallow groundwater flow is towards and into the Fording River.

Flows into the Elk River occur in a similar fashion, particularly in the vicinity of Leask Creek, Wolfram Creek and Thompson Creek. Water moves from tributary streams into the Elk River through surface and subsurface flow paths, which ultimately discharge into the Elk River mainstem (SNC 2021a).

The presence of surface and subsurface flow paths can make it a challenge to accurately measure total runoff from tributary catchments. Unless a monitoring station is placed in an area of local groundwater discharge (i.e., in a gaining reach), monitored water flows may underestimate total runoff from the upstream areas, because a portion of the total runoff is travelling subsurface at that particular location in the catchment. This concept is illustrated in Figure B-2.

The subsurface flow component in Figure B-2 is reflective of ground conditions and flow paths at a specific location along the watercourse, defined by the unique physical characteristics of the section of interest (e.g., gradient, cross-section width, substrate materials, thickness and permeability of underlying sediments). These characteristics are taken into consideration when evaluating model performance at a given monitoring station; they also become relevant when siting and designing intake structures and quantifying flows that may not be captured by a given intake structure.

In contrast, the relative size of the groundwater / interflow components of total runoff (as illustrated in Figure B-1) is reflective of broader catchment characteristics and the pathways by which water moves through the catchment. It is defined by the physical characteristics of the catchment rather than the watercourse itself. An understanding of the relative size of these two flow components (shallow groundwater and interflow) does not directly inform mitigation planning, but informs certain aspects of the RWQM, such as potential adjustments to runoff characteristics between catchments.

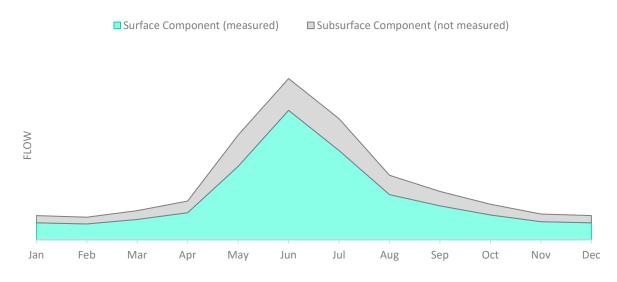


Figure B-2: Conceptual Hydrograph Illustrating Contributions of Measured Surface Flows and Unaccounted Subsurface Flows to Total Runoff (Watershed Yield)

3 Information to Inform Surface Water – Groundwater Partitioning Assumptions

3.1 Clode Creek

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at the Clode Creek Sediment Pond Decant (FR_CC1, E102481). It was informed by the information outlined in Golder (2021a). The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-1.

Table B-1:	Surface Water – Groundwater	[,] Partitioning a	at Clode	Creek	Sediment Po	ond	Decant
	(FR_CC1, E102481)	_					

Category	Information
Location	Clode Creek Sediment Pond Decant (FR_CC1, E102481)
Contributing Sub- catchments	Upper and lower Clode Creek, Eagle 4, Eagle 6 West, Eagle 6 (portion to Clode)
Setting	 Settling pond located at the toe of existing waste rock spoils Underlying sediments are Fording River valley-bottom alluvium Surface discharge from the settling pond occurs year-round
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping tests Field studies: flow accretion Field studies: groundwater monitoring data (levels, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Estimated to be between 520 and 5,500 m³/d
Groundwater Flow Value in 2020 RWQM	 60% of total simulated catchment flow, up to a maximum of 4,000 m³/d
Notes	 Values implemented in the 2020 RWQM are within the range estimated from groundwater investigations. Flow accretion studies upstream of pond are not possible; pond abuts an existing waste rock spoil, with flow discharging to the pond through a rock drain positioned under 50+ meters of waste rock.

3.2 Swift Creek

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at the Swift Creek Sediment Pond Decant (GH_SC1, E221329). It was informed by the information outlined in AMEC (2018). The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-2

Table B-2:	Surface Water – Groundwater Partiti	ioning at the Swift Cree	k Sediment Pond Decant
	(GH_SC1, E221329)	-	

Category	Information
Location	 Swift Creek Sediment Pond Decant (GH_SC1, E221329)
Contributing Sub- catchments	Swift Spoil
Setting	 Settling pond located downstream of the toe of waste rock spoils Surficial materials underlying settling pond characterized as thin overburden overlying bedrock Consistent surface discharge
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping test Field studies: flow accretion Field studies: groundwater monitoring data (levels, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Estimated at ~100 m³/d
Groundwater Flow Value in 2020 RWQM	 2% of total simulated catchment flow, up to a maximum of 1,000 m³/d
Notes	 The Swift Creek intake for the FRO AWTF-S is located close to the settling pond; same surface water – groundwater partitioning assumed to apply at the intake.

AWTF-S: Active Water Treatment Facility- South; FRO = Fording River Operations.

3.3 Kilmarnock Creek

3.3.1 Flow Monitoring Station

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at Kilmarnock Creek downstream of the rock drain monitoring station (FR_KC1, 0200252). It was informed by the information outlined in Golder (2020). The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-3.

Category	Information
Location	 Kilmarnock Creek downstream of the rock drain (FR_KC1, 0200252)
Contributing Sub- catchments	 Brownie Creek, Upper Kilmarnock Creek, Lower Kilmarnock Creek, Eagle 6 to Kilmarnock Creek
Setting	 Open channel downstream of the toe of a large waste rock spoil and intake location Underlying surficial materials are Kilmarnock Creek valley-bottom alluvial sediments Consistent surface discharge year-round
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping tests Field studies: flow accretion Field studies: groundwater monitoring data (levels, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Estimated to be 16,500 m³/d during lower flow conditions and up to 26,900 m³/d during higher flow conditions
Groundwater Flow Value in 2020 RWQM	 When total flow < 60,000 m³/d, 100% to bypass to a max of 16,500 m³/d When total flow > 60,000 m³/d, then 30% to bypass to a max of 26,900 m³/d
Notes	 Formulas used in 2020 RWQM acknowledge preference for water to go to ground and provide a gradual transition in groundwater flow rates as one moves from lower to higher flow conditions. Pumping tests and groundwater modelling activities have so far been primarily focused on the upstream intake location, with the results generated therefrom informing groundwater estimates at this location.

 Table B-3:
 Surface Water – Groundwater Partitioning at Kilmarnock Creek Downstream of the Rock Drain (FR_KC1, 0200252)

3.3.2 Intake Location

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at the Kilmarnock Creek Intake (KC_Intake) to the FRO South Active Water Treatment Facility (AWTF-S). It was informed by the information outlined in Golder (2020). The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-4.

Category	Information
Location	Kilmarnock Creek Intake to the FRO AWTF-S
Contributing Sub- catchments	 Brownie Creek, Upper Kilmarnock Creek, Lower Kilmarnock Creek, Eagle 6 to Kilmarnock Creek
Setting	 Open channel downstream of the toe of a large waste rock spoil but upstream of monitoring location Underlying surficial materials are Kilmarnock Creek valley-bottom alluvial sediments Consistent surface discharge year-round
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping tests Field studies: flow accretion Field studies: groundwater monitoring data (levels, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Estimated to be 8,000 m³/d during lower flow conditions and up to 15,000 m³/d during higher flow conditions
Groundwater Flow Value in 2020 RWQM	 Currently described using water availability assumptions, which are set as per the 2019 IPA

Table B-4: Surface Water – Groundwater Partitioning at the Kilmarnock Creek Intake

AWTF-S: Active Water Treatment Facility- South; FRO = Fording River Operations.

3.4 Cataract Creek

Partitioning of total flow into surface water and groundwater components does not appear to be occurring at the Cataract Creek Sediment Pond Decant (GH_CC1, 0200252), based on the information outlined in AMEC (2018) and summarized in Table B-5.

Table B-5:	Surface Water – Groundwater	Partitioning	at Cataract	Creek	Sediment Pond	Decant
	(GH_CC1, 0200252)	-				

Category	Information
Location	Cataract Creek Sediment Pond Decant (GH_CC1, 0200252)
Contributing Sub- catchments	Cataract Creek; Phase 6 Pit at GHO (only up to 2009)
Setting	 Sediment pond downstream of the toe of a small heavily, disturbed tributary to the Fording River Underlying surficial materials characterized as thin overburden with shallow depth to bedrock (near surface) Consistent surface discharge year-round
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping tests Field studies: flow accretion Field studies: groundwater monitoring data (levels, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	Estimated to be a negligible component of total flow
Groundwater Flow Value in 2020 RWQM	0% of total simulated catchment flow
Notes	• Beginning in 2019, flow from Cataract Creek has been diverted to Swift Creek at a location upstream of the monitoring location, as part of the Swift water management system for the FRO AWTF-S. The collection system is designed to collect all the flow from Cataract Creek.

AWTF-S: Active Water Treatment Facility- South; FRO = Fording River Operations.

3.5 Thompson Creek

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at Thompson Creek at LRP Road (GH_TC1, E102714). It was informed by a catchment water balance, and comparisons between modelled total flows and monitored flows. The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-6.

 Table B-6:
 Surface Water – Groundwater Partitioning at Thompson Creek at LRP Road (GH_TC1, E102714)

Category	Information
Location	Thompson Creek at LRP Road (GH_TC1, E102714)
Contributing Sub- catchments	Thompson Creek Upper, Thompson Creek Lower, Phase 3 Pit (during dewatering)
Setting	 Alluvial fan with bedrock ridge influencing flow direction in the upper and mid-sections of the catchment Underlying surficial materials in lower catchment may include Elk River valley-bottom alluvial sediments Consistent surface discharge in most years
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping tests Field studies: flow accretion Field studies: groundwater monitoring data (levels, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Estimated to be >80% of total catchment yield at certain times of year Expected to be much lower (i.e., negligible) at potential intake location placed in upper tributary
Groundwater Flow Value in 2020 RWQM	 80% of total simulated catchment flow, up to a maximum of 5,000 m³/d
Notes	 Estimates in the 2020 RWQM are based on a catchment water balance, and comparisons between modelled total flows and monitored flows.

3.6 Greenhills Creek

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at the Greenhills Creek Sediment Pond Decant (GH_GH1, E102709). It was informed by the information outlined in SNC (2021b). The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-7.

(GH_GH1, E102709)	
Category	Information
Location	 Greenhills Creek Sediment Pond Decant (GH_GH1, E102709)
Contributing Sub- catchments	Greenhills Creek North, Greenhills Creek South
Setting	 Sediment pond decant in valley-fill alluvial sediments (Greenhills Creek alluvial fan) Fording River valley-fill sediments are thick near the confluence of Greenhills Creek Consistent surface water discharge
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping tests Field studies: flow accretion Field studies: groundwater monitoring data (levels, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Estimated to be between 500 to 6,000 m³/d
Groundwater Flow Valu in 2020 RWQM	• 30% of total simulated catchment flow, up to a maximum of 6,000 m ³ /d
Notes	Constituent concentrations in groundwater are typically lower than in surface water, which indicates load partitioning does not match flow partitioning (less mine-affected

water in the subsurface than would otherwise be expected).

 Table B-7:
 Surface Water – Groundwater Partitioning at Greenhills Creek Sediment Pond Decant (GH_GH1, E102709)

3.7 LCO Dry Creek

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at three locations in the LCO Dry Creek catchment:

- upstream of East Tributary Creek (LC_DC3, E288273)
- mouth of East Tributary of Dry Creek (LC_DCEF, E288274)
- mouth of LCO Dry Creek (at bridge) (LC_DC1, E288270)

It was informed by the information outlined in Golder (2016). The values used to define the division of total flow into surface and subsurface components at each location, along with a summary of the supporting lines of evidence, are summarized in Tables B-8, B-9 and B-10.

Table B-1: Surface Water – Groundwater Partitioning at LCO Dry Creek upstream of East Tributary Creek (LC_DC3, E288273)

Category	Information
Location	 LCO Dry Creek upstream of East Tributary Creek (LC_DC3, E288273)
Contributing Sub- catchments	Upper LCO Dry Creek
Setting	 Located in upper tributary in area underlain by colluvium and highly consolidated basal till In an area of groundwater upwelling (vertically upward gradients) Consistent discharge year-round
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping test Field studies: flow accretion Field studies: groundwater monitoring data (level, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Estimated at 1 to 10 m³/d
Groundwater Flow Value in 2020 RWQM	0% of total simulated catchment flow
Notes	 The estimate is supported by flow and water quality monitoring to date.

(E288274)	
Category	Information
Location	 Mouth of East Tributary of LCO Dry Creek (E288274)
Contributing Sub- catchments	East Tributary of LCO Dry Creek
Setting	Underlying alluvial sedimentsSurface water discharge is not observed year-round (channel goes dry)
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping test Field studies: flow accretion Field studies: groundwater monitoring data (level, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Estimated to be majority of catchment runoff
Groundwater Flow Value in 2020 RWQM	 80% of total simulated catchment flow, up to a maximum of 69,120 m³/d
Notes	 Developed from field observations, most notably flow and load accretion studies.

Table B-2: Surface Water – Groundwater Partitioning Mouth of East Tributary of LCO Dry Creek (E288274)

(E288270)	
Category	Information
Location	LCO Dry Creek near the Mouth (at bridge) (E288270)
Contributing Sub- catchments	 Upper LCO Dry Creek, East Tributary of LCO Dry Creek, Lower LCO Dry Creek (to LC_DC4), Lower LCO Dry Creek (to LC_DC1)
Setting	 Sample site located in a losing reach in the tributary valley-bottom In proximity to the Fording River valley-bottom alluvial sediments Surface discharge year-round in most years
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping test Field studies: flow accretion Field studies: groundwater monitoring data (level, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	Estimated at 35% of total flow
Groundwater Flow Value in 2020 RWQM	 50% of total simulated catchment flow, up to a maximum of 8,000 m³/d
Notes	 Flow and load accretion studies between LC_DCEF and LC_DC1 confirm the presence of a losing reach between LC_DC4 and LC_DC1.

Table B-3: Surface Water – Groundwater Partitioning at LCO Dry Creek near the Mouth (at bridge) (E288270)

3.8 West Line Creek

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at West Line Creek (LC_WLC, E261958). It was informed by the information outlined in SNC (2021c). The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-11.

Category	Information
Location	West Line Creek (LC_WLC, E261958)
Contributing Sub- catchments	West Line Creek
Setting	 Open channel located downstream of a waste rock spoil Underlying material consists of heterogeneous alluvial aquifer composed of interbedded glaciofluvial and glaciolacustrine deposits and till Consistent year-round discharge
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping test Field studies: flow accretion Field studies: groundwater monitoring data (level, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Best estimate is between 640 and 1,920 m³/d
Groundwater Flow Value in 2020 RWQM	 60% of total simulated catchment flow, up to a maximum of 10,000 m³/d
Notes	 Constituent concentrations in groundwater are typically lower than in surface water, which indicates load partitioning does not match flow partitioning (less mine-affected water in the subsurface than would otherwise be expected). Inclusion of groundwater – surface water partitioning helps to address discrepancy in previous calibrations of the RWQM Upper limit used in RWQM informed by model calibration

Table B-4: Surface Water – Groundwater Partitioning at West Line Creek (LC_WLC, E261958)

3.9 EVO Dry Creek

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at EVO Dry Creek Sediment Pond Decant (E298590). It was informed by the information outlined in Lorax (2019). The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-12

 Table B-5:
 Surface Water – Groundwater Partitioning at EVO Dry Creek Sediment Pond Decant (E298590)

Category	Information
Location	 EVO Dry Creek Sediment Pond Decant (E298590)
Contributing Sub- catchments	EVO Dry Creek; Breaker Lake (some historical pumping)
Setting	 Sediment pond decant located downstream of a waste rock spoil in the headwaters of the catchment, and located just upstream of confluence with Upper Harmer Creek Thin overburden materials and presence of bedrock outcrops upstream of the sediment pond. Consistent surface discharge year-round
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping test Field studies: flow accretion Field studies: groundwater monitoring data (level, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	Estimated to be in the order of 10% of total runoff
Groundwater Flow Value in 2020 RWQM	 When total flow < 20,000 m³/d, 100% to bypass to a max of 2,000 m³/d When total flow > 20,000 m³/d, then 10% to bypass to a max of 5,000 m³/d
Notes	 Formulas used in 2020 RWQM acknowledge preference for water to go to ground and provide a gradual transition in groundwater flow as one moves from lower to higher flow conditions. Developed from field observations, most notably flow and load accretion studies.

3.10 Harmer Creek

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at EVO Dry Creek Sediment Pond Decant (E298590). It was informed by the information outlined in Lorax (2019). The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-13.

– Harmer Spillway (E102682)	
Category	Information
Location	EVO Harmer Creek Compliance Point – Harmer Spillway (E102682)
Contributing Sub- catchments	EVO Dry Creek, Harmer Creek above EVO Dry Creek, Harmer Creek below EVO Dry Creek
Setting	 Spillway of a dam, with some leakage of flow at hydrometric station Valley-bottom sediments Consistent surface discharge year-round
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping test Field studies: flow accretion Field studies: groundwater monitoring data (level, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	Estimated to be in the order of 6% of total runoff
Groundwater Flow Value in 2020 RWQM	• 5% of total simulated catchment flow, up to a maximum of 5,000 m ³ /d
Notes	 Developed from field observations, most notably flow and load accretion studies. Same surface water – groundwater partitioning assumed at mouth of Grave Creek

 Table B-6:
 Surface Water – Groundwater Partitioning at the EVO Harmer Creek Compliance Point

 – Harmer Spillway (E102682)

3.11 Erickson Creek

3.11.1 Flow Monitoring Station

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at the monitoring station located at the mouth of Erickson Creek (EV_EC1, 0200097). It was informed by the information outlined in Teck (2020). The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-14. Water balance uncertainty in this catchment is acknowledged and will be addressed through the execution of the work plan that is being submitted to the Director on March 31, 2021, as required under the *Environmental Management Act* Permit 107517.

Category	Information
Location	Erickson Creek at Mouth (0200097)
Contributing Sub- catchments	 Upper Erickson Creek, Erickson Creek at Bridge, Adit Ridge Pit and Lower Erickson Creek
Setting	 Monitoring at spillway near the confluence with Michel Creek Located upstream of Michel Creek valley-fill sediments. Consistent surface discharge year-round
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping tests Field studies: flow accretion Field studies: groundwater monitoring data (levels, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Estimated to be in the order of 10 to 15% of total runoff
Groundwater Flow Value in 2020 RWQM	 15% of total simulated catchment flow, up to a maximum of 34,600 m³/d
Notes	 Groundwater modelling activities have so far been primarily focused on the upstream intake location. Groundwater estimates at this location developed primarily from flow accretion studies.

 Table B-14: Surface Water – Groundwater Partitioning at Mouth of Erickson Creek (0200097)

3.11.2 Intake Location

Explicit representation of the partitioning of total flow into surface water and groundwater components was implemented at the monitoring station located at the Erickson Creek Intake (EV_ECBridge) to the EVO Saturated Rockfill Treatment Facility (SRF). It was informed by the information outlined in Teck (2020). The values used to define the division of total flow into surface and subsurface components at this location, along with a summary of the supporting lines of evidence, are summarized in Table B-15.

Category	Information
Location	Erickson Creek Intake (EV_ECBridge)
Contributing Sub- catchments	Upper Erickson Creek, Erickson Creek at Bridge, Adit Ridge Pit
Setting	 Gaining reach located downstream of waste rock spoil Surficial materials comprise a thin layer of sand overlaying low permeability till Consistent surface discharge year-round
Lines of Evidence	 Surface water level and flow monitoring data Surface water quality monitoring data Conceptual groundwater model / 3D visualization Field studies: pumping tests Field studies: flow accretion Field studies: groundwater monitoring data (levels, quality) Field studies: geophysical surveys Field studies: sediment sampling from ponds Catchment water balance / water budget Analytical estimate of groundwater flow Numerical groundwater modelling
Groundwater Flow Estimates	 Negligible partitioning of mine-influenced flow into the subsurface
Groundwater Flow Value in 2020 RWQM	 Currently described using water availability assumptions, which are set as per the EVO SRF Application (Teck 2020)

Table B-15: Surface Water – Groundwater Partitioning at the Erickson Creek Intake

SRF: saturated rockfill; EVO: Elkview Operations.

4 References

- AMEC (Amec Foster Wheeler). 2018. Fording River Operations Swift Project. 2017 South System Detailed Design Water Management Plan. Submitted to Teck Coal Limited. April 2018.
- Golder (Golder Associated Ltd). 2016. LCO Phase II: Dry Creek Water Management System Groundwater Flow Modelling to Evaluate Potential Seepage Bypass - Life of Mine. Report submitted to Teck Coal Limited. September 2016.
- Golder. 2020. Fording River Operations AWTF- South Permitting Groundwater Modelling Updates for Kilmarnock Creek. Report submitted to Teck Coal Limited. June 2020.
- Golder. 2021a. Summary Memorandum: Hydrogeological Study of the Clode Ponds. Submitted to Teck Coal Limited. 15 March 2021.
- Lorax (Lorax Environmental Services Ltd.). 2019. EVO Dry Creek and Harmer Creek Local Flow and Water Quality Investigation. Report submitted to Teck Coal Limited. June 2019.
- SNC (SNC-Lavalin Inc.). 2017. Regional Groundwater Monitoring Program. Submitted to Teck Coal Limited Sept. 2017
- SNC 2021a. Mass Balance Investigations Hypothesis 1 Status Update and Findings to Date. Memo submitted to Teck Coal Limited. January 2021.
- SNC. 2021b. Estimated Groundwater Transport Pathways and Bypass Lines of Evidence Greenhills Creek. Memo submitted to Teck Coal Limited. February 2021.
- SNC. 2021c. Estimated Groundwater Transport Pathways and Bypass Lines of Evidence West Line Creek. Memo submitted to Teck Coal Limited. March 2021.
- Teck. 2020. Elkview Operations Saturated Rock Fill Phase 2 Project Operations: Application for a Mines Act Permit and Environmental Management Act Amendment to Authorize the Commissioning and Operation Phase Activities. Submitted to: Ministry of Energy, Mines and Petroleum Resources and Ministry of Environment and Climate Change Strategy. Submitted by: Teck Coal Limited, Sparwood, BC. MMO ID: EVO-015-3. May 5, 2020.

Appendix C Statistical Test Descriptions

2020 Elk Valley Regional Water Quality Model Update – Appendix C of Annex B

Statistical Test Descriptions Rev1

May 2022

Contents

1	Nash-Sutcliffe Efficiency (E)	.1
2	Index of Agreement (d)	. 1
	Modified forms of E and d	
4	Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)	.2
5	Coefficient of Determination (R2)	. 3

1 Nash-Sutcliffe Efficiency (E)

$$E = 1 - \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2}$$
 Nash and Sutcliffe [1970] Eq. 5.1

Where: O_i = measured data, P_i = simulated (predicted) data, \overline{O} = mean of measured data.

The range of *E* lies between 1.0 (perfect fit) and minus infinity (- ∞). An *E* = 0.0 indicates that the square of the differences between the model simulations and the observations is as large as the variability in the measured data. In other words, the measured mean is as good a predictor as the model. An *E* <0.0 indicates that the mean for the measured dataset is a better predictor than the model. An *E* >0.0 indicates that the model is a better predictor than the measured dataset.

The Nash-Sutcliffe efficiency statistic has been widely used to evaluate the performance of hydrologic models and represents an improvement over the coefficient of determination (Legates and McCabe 1999). The largest disadvantage of the Nash-Sutcliffe efficiency is that differences between observed and predicted values are calculated as squared values. Larger values in a time series therefore strongly influence *E*, while lower values have much less influence (Legates and McCabe 1999). In addition, the Nash-Sutcliffe Efficiency is not overly sensitive to systematic model over- or underprediction, especially during low flow periods (Krause et.al. 2005).

2 Index of Agreement (d)

$$d = 1 - \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{\sum_{i=1}^{n} (|P_i - \bar{O}| + |O_i - \bar{O}|)^2}$$
 Willmott [1981] Eq. 5.2

Where: O_i = measured data, P_i = simulated (predicted) data, \overline{O} = mean of measured data.

The Index of Agreement ranges from 0 (no correlation) to 1 (perfect fit). Practical applications of *d* show that the technique has some disadvantages, namely:

- relatively high values (more than 0.65) of *d* may be obtained even for poor model fits, leaving only a narrow range for model calibration
- despite Willmot's intention, d is not sensitive to systematic model over- or under-prediction (Krause et.al. 2005)

3 Modified forms of E and d

$$E_j = 1 - \frac{\sum_{i=1}^n |O_i - P_i|^j}{\sum_{i=1}^n |O_i - \bar{O}|^j} \text{ with } j \in \mathbb{N}$$
$$d_j = 1 - \frac{\sum_{i=1}^n |O_i - P_i|^j}{\sum_{i=1}^n (|P_i - \bar{O}| + |O_i - \bar{O}|)^j} \text{ with } j \in \mathbb{N}$$

Willmott et.al. [1985]

Eq. 5.3

Where: O_i = measured data, P_i = simulated (predicted) data, \overline{O} = mean of measured data, |X-Y| = absolute value.

The modified index of agreement (d_1) and modified coefficient of efficiency (E_1) are produced from the above equations where *j*=1. The advantage of these modified forms is that errors and differences are given their appropriate weighting and not inflated by their squared value (i.e., the overweighting of the flood peaks is reduced, resulting in a better overall evaluation). In practice, $d_2 > d_1$ for the range of most values, although this relationship does not hold for extremely low values of both statistics (Legates and McCabe 1999).

4 Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)

$$RMSE = \sqrt{N^{-1} \sum_{i=1}^{N} (O_i - P_i)^2}$$
$$MAE = N^{-1} \sum_{i=1}^{N} |O_i - P_i|$$

Eq. 5.4

Where: O_i = measured data, P_i = modelled (predicted) data.

The root mean square error, RMSE, and mean absolute error, MAE, are well-accepted absolute error goodness-of-fit indicators that describe differences in measured and predicted values in the appropriate units (Legates and McCabe 1999).

5 Coefficient of Determination (R2)

$$r^{2} = \left(\frac{\sum_{i=1}^{n} (O_{i} - \bar{O}) (P_{i} - \bar{P})}{\sqrt{\sum_{i=1}^{n} (O_{i} - \bar{O})^{2}} \sqrt{\sum_{i=1}^{n} (P_{i} - \bar{P})^{2}}}\right)^{2}$$
Eq. 5.5

Where: O_i = measured data, P_i = simulated (predicted) data, \overline{O} = mean of measured data, \overline{P} = mean of simulated data.

The coefficient of determination describes the proportion of the total variance in the measured data that can be explained by the model. It ranges from 0 to 1, with higher values indicating better agreement.

The coefficient of determination technique is limited in that it only evaluates linear relationships between the variables and is insensitive to additive and proportional differences (Legates and McCabe 1999). Correlation-based measures are also more sensitive to outliers than to measurements near the mean (Legates and Davis 1997). The fact that only the dispersion is quantified is one major drawbacks of r^2 if it is considered alone (Krause et.al. 2005).

Appendix D Model Performance Output Summary

2020 Elk Valley Regional Water Quality Model Update – Appendix D of Annex B

Model Performance Output Summary Rev1

May 2022

Contents

1 Introduction - Model Performance Output Summaries	1
---	---

Tables

Table D-1:	List of Stations and Period of Record Shown in the Model Performance Output
	Summaries1

1 Introduction - Model Performance Output Summaries

The following pages contain a series of sheets with model performance results, presented in the order listed in Table D-1.

ID.	Orthogram		Node Description	Period	Shown
ID	Category	Node ID	Node Description	From	То
1		FR_HC1	Henretta Creek upstream of Fording River (E216778)	2004	2018
2	FR_CC1		Decant from Clode Sediment Pond (E102481)	2004	2018
3		FR_FRNTP	Fording River at North Tailings Pond	2004	2018
4		GH_SC1	Swift Creek Sediment Pond Decant (E221329)	2004	2018
5		GH_SC2	Swift Creek Sediment Pond Bypass (E105061)	2004	2018
6		FR_KC1	Kilmarnock Creek downstream of Rock Drain (0200252)	2004	2018
7	Fording River and Mine	GH_CC1	Cataract Creek Sediment Pond Decant (0200384)	2004	2018
8	Influenced	FR_FRCP1	FRO Compliance Point - Fording River, 525 m d/s of Cataract Creek (E300071)	2004	2018
9		FR_UFR1	Fording River upstream of Henretta Creek	2004	2018
10		FR_LMP1	Lake Mountain Sediment Pond Decant	2004	2018
11		FR_LP1	Liverpool Sediment Pond Decant	2004	2018
12		FR_FR1	Fording River downstream of Henretta Creek (0200251)	2004	2018
13		FR_FR2	Fording River upstream of Kilmarnock Creek (0200201)	2004	2018
14		FR_FR4	Fording River between Swift and Cataract creeks (0200311)	2004	2018

Table D-1:	List of Stations a	nd Period	of Record	Shown in	in the	Model	Performance	Output
	Summaries							

Model Performance Output Summary

	Summaries				
				Period	Shown
ID	Category	Node ID	Node Description	From	То
15		FR_FRABCH	Fording River above Chauncey Creek	2004	2018
16		GH_PC1	Porter Creek Sediment Pond Decant (0200385)	2004	2018
17		GH_TC1	Thompson Creek at LRP Road (E102714)	2004	2018
18		GH_TC2	Lower Thompson Creek Sediment Pond Decant (E207436)	2004	2018
19		GH_GH1	Greenhills Creek Sediment Pond Decant (E102709)	2004	2018
20		GH_FR1	GHO Fording River Compliance Point - Upper Fording River, 205 m d/s of Greenhills Creek (0200378)	2004	2018
21		GH_LC1	Leask Creek Sediment Pond Decant (E257796)	2004	2018
22		GH_LC2	Leask Creek u/s of Pond Inlet	2004	2018
23		GH_WC1	Wolfram Creek Sediment Pond Decant (E257795)	2004	2018
24		GH_WC2	Wolfram Creek u/s Pond Inflow	2004	2018
25		LC_LC5	Fording River downstream of Line Creek (0200028)	2004	2018
26		LC_LC4	Line Creek upstream of Process Plant (0200044) (near the mouth)	2004	2018
27		LC_LC1	Upper Line Creek upstream of MSA North Pit (E126142)	2004	2018
28		LC_WLC	West Line Creek (E261958)	2004	2018
29		LC_LC3	Line Creek downstream of West Line Creek (0200337)	2004	2018
30		LC_DC3	LCO Dry Creek upstream of East Tributary Creek (E288273)	2004	2018

Table D-1: List of Stations and Period of Record Shown in the Model Performance Output Summaries

Model Performance Output Summary

Table D-1:	List of Stations and Period of Record Shown in the Model Performance Output
	Summaries

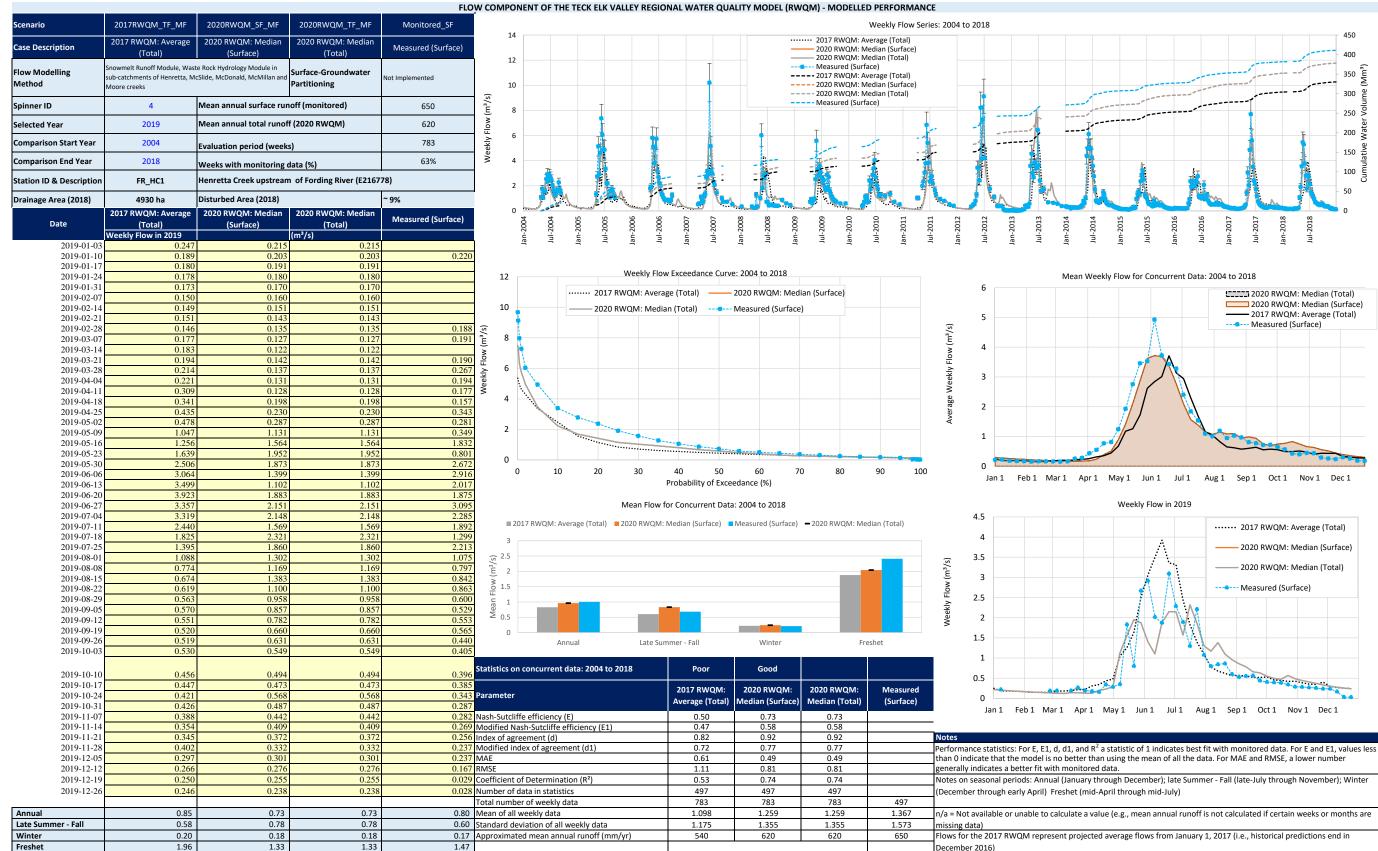
	Octomore	Node ID	Nodo Deceminática	Period	Shown
ID	Category	Node ID	Node Description	From	То
31		LC_DCEF	East Tributary of LCO Dry Creek (E288274)	2004	2018
32		LC_DC1	LCO Dry Creek near the Mouth (at bridge) (E288270)	2004	2018
33		LC_DCDS	LCO Dry Creek d/s of Sedimentation Ponds (E295210)	2004	2018
34		LC_LCUSWLC	Line Creek u/s of West Line Creek (E293369)	2004	2018
35		LC_LCDSSLCC	LCO Compliance Point - Line Creek immediately downstream of South Line Creek confluence (E297110)	2004	2018
36		EV_GT1	Gate Creek Sediment Pond Decant (E206231)	2004	2018
37		EV_BC1	Bodie Creek Sediment Pond Decant (E102685)	2004	2018
38		EV_DC1	EVO Dry Creek Sediment Pond Decant (E298590)	2004	2018
39		EV_HC1	EVO Harmer Compliance Point – Harmer Spillway (E102682)	2004	2018
40		EV_GV1	Grave Creek at Bridge (near the mouth)	2004	2018
41		EV_EC1	Erickson Creek at Mouth (0200097)	2004	2018
42	Michel Creek	EV_MC2	EVO Michel Creek Compliance Point - Michel Creek at Hwy 3 Bridge (E300091)	2004	2018
43	(mainstem)	EV_MC3	Michel Creek upstream of Erickson Creek (0200203)	2004	2018
44	Elk River	GH_ER1	Elk River u/s of Boivin Creek (u/s of Fording River) (E206661)	2004	2018
45	(mainstem)	EV_ER4	Elk River u/s of Grave Creek (from Fording River to Michel Creek) (0200389)	2004	2018

Table D-1: List of Stations and Period of Record Shown in the Model Performance Output Summaries

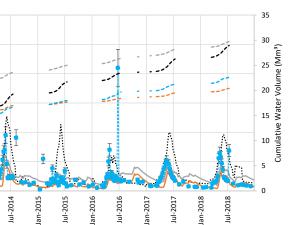
15	Cotomore	Nada ID	Nodo Decerintion	Period S	Shown
ID	Category	Node ID	Node Description	From	То
46		EV_ER1	Elk River downstream of Michel Creek (0200393)	2004	2018
47		RG_ELKORE	Elk River at Elko Reservoir (E294312)	2004	2018
48		GH_ERC	GHO Elk River Compliance Point - Elk River, 220 m d/s of Thompson Creek (E300090)	2004	2018

The following details are included on the top left of each sheet:

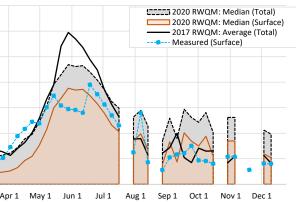
- details of results being compared (i.e., the 2017 RWQM [total flows], the 2020 RWQM [surface flows], 2020 RWQM [total flows] and monitoring data [surface flows])
- station information (Station ID, description, drainage area, disturbed area within the watershed, partitioning of surface and groundwater flow components);
- notes on flow modelling method;
- comparisons between the measured and modelled watershed yield.

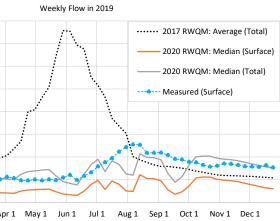

The following plots are included on each sheet:

- time series plot of weekly flows (up to 2018);
- flow duration curves (also known as exceedance curves);
- mean annual hydrograph for concurrent data to show an accurate comparison between data series;
- bar chart of mean seasonal flows for concurrent data, with the seasons defined as Annual (January through December); late Summer - Fall (late-July through November); Winter (December through early April) and Freshet (mid-April through mid-July));
- annual hydrograph for 2019 (for check against preliminary 2019 observed data)


The following statistical information is included on the bottom right of each sheet:

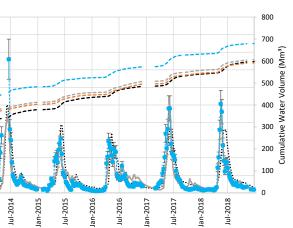
- Goodness-of-fit statistics for comparisons of monitored flows against modelled flows for the concurrent period of record for the 2017 RWQM, 2020 RWQM (surface flow), 2020 RWQM (total flow), including:
 - Nash Sutcliffe Efficiency
 - Modified Nash Sutcliffe Efficiency
 - Index of Agreement
 - Modified Index of Agreement
 - Mean Absolute Error (MAE);
 - Root Mean Square Error (RMSE)
 - Coefficient of Determination (R²)
- Total weekly data points considered for the evaluation
- Approximate watershed yield for the 2017 RWQM, 2020 RWQM (surface flow), 2020 RWQM (total flow). This metric was calculated only when sufficient concurrent data were available for all weeks of the year.


Explanatory notes are included on the bottom right of each sheet.

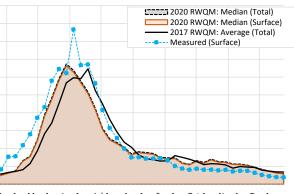


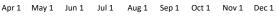
				FLC		мро	NENT (OF THE TE	CK ELK VAL	LEY R	EGIO	NAL W	ATER Q	QUALITY	MODEL	(RWQ	M) - MC	DELLEI	D PERF	ORMA	NCE					
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF		1 7													Weekl	y Flow S	Series: 2	2004 to 20	018			
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		1.2						RWQM:		. ,	-		2020 RWO Measured			face)						
Flow Modelling Method		te Rock Hydrology Module, Pit Ilode Creek Upper, Clode Creek :, E4 Pit	Surface-Groundwater Partitioning	60%, maximum of 4,000 m3/d		1 0.8						RWQM:		. ,			2020 RWO Measured			face)					T	
Spinner ID	7	Mean annual surface rui	noff (monitored)	280	Weekly Flow (m³/s)	0.8																			,	
Selected Year	2019	Mean annual total runo	ff (2020 RWQM)	440	i) NO	0.6																			<u> </u>	!
Comparison Start Year	2004	Evaluation period (week	(5)	783	ekly F								1							-					ά π	
Comparison End Year	2018	Weeks with monitoring	· ·	46%	Wee	0.4			JE.		4				ſ	-				=	34 ²²	-			ш	
Station ID & Description	FR_CC1	Clode Creek Sediment P		•		0.2	-				<u>N</u>		-11			=		Ξ		-					₽	
Drainage Area (2018)	870 ha	Disturbed Area (2018)		~ 70%				M	/ w/								<u>k</u> ý		Mar Mar		$\int N$		Y	Ś		\searrow
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	(Total)	Measured (Surface)		0	Jan-2004	Jul-2004	Jul-2005	Jan-2006	Jul-2006	lan-2007	Jul-2007	Jan-2008	Jul-2008	lan-2009	Jul-2009	Jan-2010	Jul-2010	Jan-2011	Jul-2011	Jan-2012	Jul-2012	Jan-2013	Jul-2013	Jan-2014
2019-01-03	Weekly Flow in 2019 0.054)		Jan	lul. Jan	Int	Jan	Int	Jan	Inf	Jan	Inf	Jan	Int	Jan	Int	Jan	Int	Jan	Int	Jan	Inf	Jan
2019-01-10 2019-01-17	0.053	0.027																								
2019-01-24	0.052	0.025	0.063	0.032	2	0.9				Weekly	y Flow	v Exceed	lance Cu	urve: 20	04 to 2018											Mean W
2019-01-31 2019-02-07	0.051 0.051	0.024	0.061	0.031	3	0.8	.		••• 2017 RW	VQM: A	Averag	ge (Tota	I) <u> </u>	2020	RWQM: N	Aediar	n (Surface	e)				0.3	35			
2019-02-14	0.050	0.023		0.028	3	0.7			— 2020 RW	VQM: N	Media	n (Total)	Mea	isured (Sur	face)						0	.3			
2019-02-21 2019-02-28	0.058	0.022	0.055	0.027		0.7																(s)				
2019-03-07 2019-03-14	0.087	0.020		0.026	5	0.6																Average Weekly Flow (m³/s) 0 .:0 0 .:0	25			
2019-03-21	0.091	0.021	0.054			0.5	-															2 2 2 0	.2			
2019-03-28 2019-04-04	0.098	0.021	0.053	0.051	_ ≥	0.4	1															ekly				
2019-04-11	0.118	0.020	0.050	0.053	3 ≥																	Š 0.:	15			
2019-04-18 2019-04-25	0.134	0.025	0.062		,	0.3	Į į	2.														erage				
2019-05-02	0.204	0.028	0.069	0.050)	0.2																A O	.1 /	\sim		
2019-05-09 2019-05-16	0.231	0.028	0.071	0.048	3	0.1			20													0.0	05 🦶	\sim	Ľ V	$\sim \sim$
2019-05-23	0.322	0.023				0											***						ſ		X	
2019-05-30 2019-06-06	0.379	0.018	<u>0.046</u> 0.042	0.055			0	10	20	30		40	50	5	00	70	8	0	90	1	00		0 Lan 1	Feb 1	1 Mar	r1 Apr
2019-06-13 2019-06-20	0.347	0.015	0.038	0.049							I	Probabil	lity of E	xceedan	ice (%)								5411 2			- , ibi
2019-06-27	0.276	0.039	0.083	0.066	5				N	Vlean F	low fo	or Concu	urrent D	Data: 200	04 to 2018											
2019-07-04 2019-07-11	0.258	0.049		0.079		≡ 2	017 RW0	QM: Average	e (Total) 📕 2	2020 RW	VQM: N	Median (Surface)	Mea	sured (Surfa	ace) 🗕	2020 RW	QM: Me	dian (To	otal)		0	.4			
2019-07-18	0.185	0.047	0.091	0.097	7	0.2																0.3	35			
2019-07-25 2019-08-01	0.168	0.040	0.084	0.112															-			~ .				
2019-08-08	0.101	0.024	0.060	0.128	m³/	0.15						_										(s/,ɯ)	.3			
2019-08-15 2019-08-22	0.094	0.061		0.127	>	0.1	-	-														≥ 8 0.2	25			
2019-08-29	0.083	0.052	0.098	0.109		0.05									-						i	н С	2			
2019-09-05 2019-09-12	0.079	0.048			y ∑	0.05															1	0 Meekiy	.2			
2019-09-19	0.077	0.018	0.044	0.096	5	0																s 0.1	15			
2019-09-26 2019-10-03	0.075	0.023	0.056	0.094				Annua		La	ate Sur	mmer - Fa	all		Winter			Fre	eshet			n	.1			
						tics o	n concu	rrent data	2004 to 20	18		F	Poor		Poor but										ŀ	
2019-10-10 2019-10-17	0.069	0.054		0.088	8		utometu								improved							0.0				
2019-10-24	0.063	0.056	0.102	0.079	Param	neter							RWQN ge (Tota		020 RWQN dian (Surfa		2020 RW Median (-		easured urface)			0			
2019-10-31 2019-11-07	0.060	0.051		0.080		Sutcli	ffe effic	iency (E)					0.17		0.12		0.00		(3)	arracej			Jan 1	Feb 1	Mar	1 Apr 1
2019-11-14	0.059	0.048	0.094	0.085	Modif	ied N	ash-Sut	cliffe efficie	ency (E1)			-	0.02		0.12		-0.0	7								
2019-11-21 2019-11-28	0.058	0.045			2 Index			t (d) greement	(d1)				0.68 0.54		0.68	-+	0.66					otes rformance	e statict	ics: For I	F F1 d	d1 and
2019-12-05	0.057	0.038	0.085	0.079	MAE			BICCHIERI	(d+)			(0.07		0.06		0.07	7			tha	an 0 indic	ate that	the mod	del is no	o better t
2019-12-12 2019-12-19	0.056	0.035			RMSE		of Doto	rmination (R ²)				0.11 0.27		0.09	$-\top$	0.10				-	nerally ind				
2019-12-19 2019-12-26		0.032						statistics	N]				362		362	+	362					ecember f				
					Total r	numb	er of we	ekly data					783		783		783	3		362						-
Annual Late Summer - Fall	0.13	0.03	0.07		Mean Standa		,	data of all week	lv data).134).111		0.094 0.083	+	0.13			0.104		a = Not av ssing data		or unabl	e to cal	culate a
Winter	0.07	0.03	0.06	0.04	Appro				unoff (mm/y	/r)			350		280		440			280		ws for th		RWQM r	eprese	nt projec
Freshet	0.26	0.03	0.07	0.06																	De	cember 2	016)			

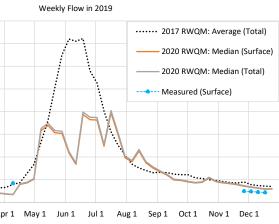
Weekly Flow for Concurrent Data: 2004 to 2018


and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less tter than using the mean of all the data. For MAE and RMSE, a lower number nitored data.

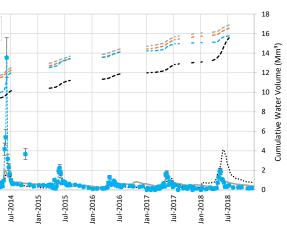
ary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July)


e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

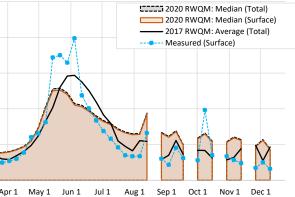

		1		FLO	w cor	MPONENT	OF THE TEC	CELK VAL	LEY REGI	ONAL WATER QUA	ALITY MODEL (RW	/QM) - MODELI	LED PERFORMA	NCE				
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF									Weekly Flow S	eries: 2004 to 2	018			
Case Description	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Measured (Surface)		20			20:	17 RWQM: Average (To	otal) —	- 2020 RWQM: M	edian (Surface)					
	(Total)	(Surface)	(Total)		1	18				20 RWQM: Median (To 17 RWQM: Average (To		 Measured (Surfa 2020 RWQM: M 						T
Flow Modelling Method	FR_FR1 + FR_PP1 + Turnbull Brid FR_LP1 + FR_EC1 (Sum of mode	dge Spoil + FR_CC1 + FR_LMP1 + lled flows)	Surface-Groundwater Partitioning	3%, maximum of 10,000 m3/d		16 14				20 RWQM: Median (To		- Measured (Surfa		Ţ	J			
Spinner ID	15	Mean annual surface rur	l noff (monitored)	480	Weekly Flow (m³/s)	12		-			т			1	I			
Selected Year	2019	Mean annual total runof	ff (2020 RWQM)	450) wol	10	т	-	AT			I		I.			= = = =	
Comparison Start Year	2004	Evaluation period (week	is)	783	ekly F	8	1				-	Ī						ī
Comparison End Year	2018	Weeks with monitoring	data (%)	54%	We	6											j	f
Station ID & Description	FR_FRNTP	Fording River at North Ta	ailings Pond			4			T T								M	П
Drainage Area (2018)		Disturbed Area (2018)		~ 21%		2		\						·	V			ſ
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		÷ .	004	Jul-2005	an-2006	007	lan-2008 Jul-2008 Jan-2009	Jul-2009 an-2010	Jul-2010 an-2011	Jul-2011 an-2012	012	an-2013 Jul-2013	014	710
2010 01 02	Weekly Flow in 2019	0.401	(m³/s)	0.200	1	lan-2004	Jul-2004 Jan-2005	2-Inf	Jan-2006	Jan-2007 Jul-2007	Jan-2008 Jul-2008 Jan-2009	Jul-2009 Jan-2010	Jul-2010 Jan-2011	Jul-2011 Jan-2012	Jul-2012	Jan-2013 Jul-2013	Jan-2014	
2019-01-03 2019-01-10	0.667	0.431 0.407		0.380		-	-				·	-1	7	_			7	
2019-01-10	0.587	0.384	0.396	0.417						E State	2004 1- 2010							
2019-01-24	0.580	0.362	0.373	0.359		16			vveekly Fl	ow Exceedance Curv	e: 2004 to 2018						Mean	W
2019-01-31 2019-02-07	0.569	0.342	0.352	0.354		14		• 2017 RW	QM: Ave	rage (Total)	2020 RWQM: Med	ian (Surface)			10			
2019-02-07 2019-02-14	0.537	0.325	0.333	0.422		14		– 2020 RW	QM: Med	lian (Total)	Measured (Surface	:)			9			+
2019-02-21	0.548	0.288	0.297	0.327		12								~	8			_
2019-02-28 2019-03-07	0.541 0.571	0.268 0.253	0.276	0.316	s/s)	M								n³/s	-			
2019-03-07 2019-03-14	0.583	0.233	0.254	0.349	v (m ³	10 🁯								u) x	7			T
2019-03-21	0.593	0.454	0.468		Flov	8								Flor	6			+
2019-03-28 2019-04-04	0.638	0.400 0.367	0.413 0.379		Weekly Flow	8								Weekly Flow (m³/s)	5			_
2019-04-04 2019-04-11	0.661	0.367	0.379	0.842	We	6									4			
2019-04-18	0.871	0.792	0.817	0.012		-									4			
2019-04-25	1.276	0.856	0.882			4		-						Average	3			+
2019-05-02 2019-05-09	1.666 2.652	1.016 3.162	1.048 3.254			2								4	2			+
2019-05-16	3.601	3.390	3.492			2									1			۶
2019-05-23	5.075	3.069				0									<u></u>		-	-
2019-05-30 2019-06-06	<u>6.508</u> 7.195	3.039	3.133 2.238			0	10	20	30	40 50	60 7	0 80	90 10	0	0	Ech 1	Mar 1 .	1
2019-06-13	7.104	1.677	1.728							Probability of Exce	edance (%)				Jan 1	Feb 1	Mar 1 A	۰pr
2019-06-20	7.222 5.798	3.874 3.645	3.984 3.753						Mean Flow	/ for Concurrent Data	a. 2004 to 2019							
2019-06-27 2019-07-04	5.798	3.645	3.753												8			
2019-07-11	4.022	2.476	2.553			■ 2017 R	NQM: Average	Total) 📕 2	020 RWQN	1: Median (Surface)	Measured (Surface)	- 2020 RWQM: N	Vedian (Total)		-			
2019-07-18	3.113	3.941				5									7			-
2019-07-25 2019-08-01	2.522 2.079	2.992 1.969			(5	4								~				
2019-08-08	1.686	1.793	1.849		(m³/s)									(m³/s)	6			
2019-08-15	1.517	2.259	2.329		Ň	5								L) N	5			L
2019-08-22 2019-08-29	1.407	1.739 1.514			1 Flo	2		_						Flov	-			
2019-08-29	1.309	1.314			Mean Flo	1								Weekly	4			-
2019-09-12	1.310	1.199	1.236		2	1								We				
2019-09-19 2019-09-26	<u>1.241</u> 1.217	0.986				0	A		1-4 0	mmor F-U	AA //		Freehot		3			
2019-09-20	1.217	0.904					Annual		Late Su	mmer - Fall	Winter		Freshet		2			_
					Statist	ics on con	current data: 2	004 to 20	18	Acceptable	Good							
2019-10-10	1.084	0.853	0.879		otatist		anen uata. /			Acceptable	0000				1			
2019-10-17 2019-10-24	1.052	0.879			Param	eter				2017 RWQM:	2020 RWQM:	2020 RWQM:						Ľ
2019-10-24 2019-10-31	0.993	0.906	0.934							Average (Total)	Median (Surface)	Median (Total) (Surface)		0 – Jan 1	Eeb 1 M	Mar1 Ap	or 1
2019-11-07	0.915	0.855	0.881				iciency (E)			0.63	0.71	0.72		_	Jall T	LEDI N	νιαι τ Αμ	<i>n</i> 1
2019-11-14	0.875	0.821					utcliffe efficier	cy (E1)		0.51	0.57	0.57		Notes				
2019-11-21 2019-11-28	0.853 0.896	0.774 0.713	0.798			of agreeme ed index o	nt (d) f agreement (d	1)		0.87	0.91 0.77	0.91 0.77		Notes		ics: For F	E1, d, d1, a	and
2019-12-05	0.782	0.664	0.684	0.478	MAE			·		1.06	0.93	0.93		than 0 indi	cate that t	he model	is no bette	er th
2019-12-12	0.739	0.619		0.448						1.71	1.50	1.49		generally in				
2019-12-19	0.714	0.580		0.436			ermination (R	')		0.65	0.73	0.73		Notes on s	•			
2019-12-26	0.700	0.586	0.604				n statistics weekly data			423 783	423 783	423 783	423	December	inrough	early April) Freshet (inic
Annual	1.88	1.32	1.37	0.42		of all week	,			2.334	2.310	2.366	2.656	n/a = Not a	vailable o	r unable to	o calculate	a v
		1.29	1.33				on of all weekly	data		2.136	2.302	2.333	2.816	missing da				
Late Summer - Fall	1.29																	
Late Summer - Fall Winter Freshet	1.29 0.62 4.14	0.40	0.42				ean annual rur		/r)	440	440	450	480	Flows for t December	ne 2017 R	WQM rep	resent proj	į

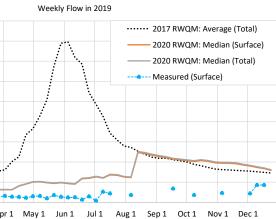

https://goldenassociates.sharepoint.com/sites/106374/Project Files/6 Deliverables/02. Working/18111630-007-R-RevB-23050-HydrologyReport/Spreadsheets/Model Performance/ FR-FRNTP-Monitored/Interface

Weekly Flow for Concurrent Data: 2004 to 2018

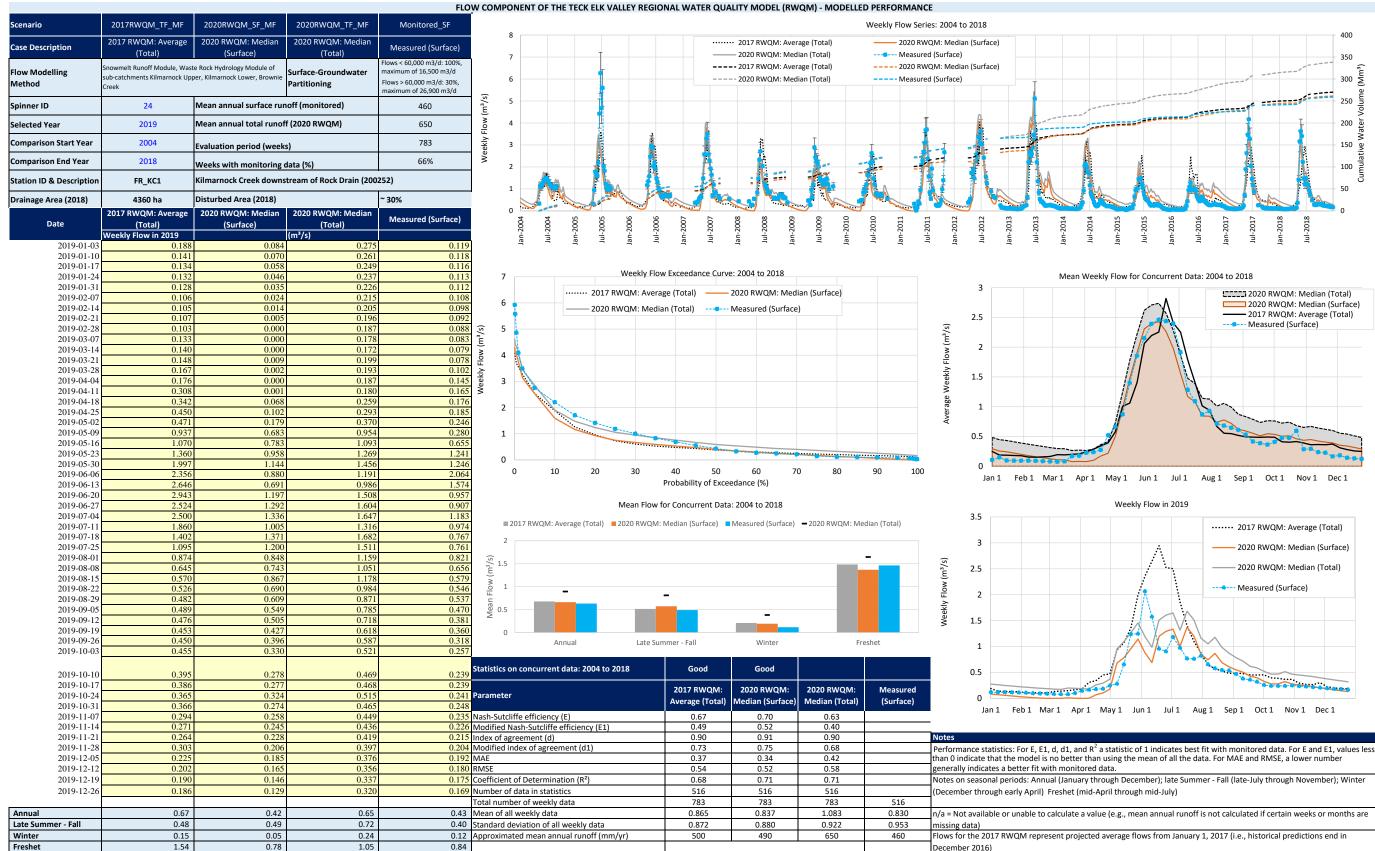


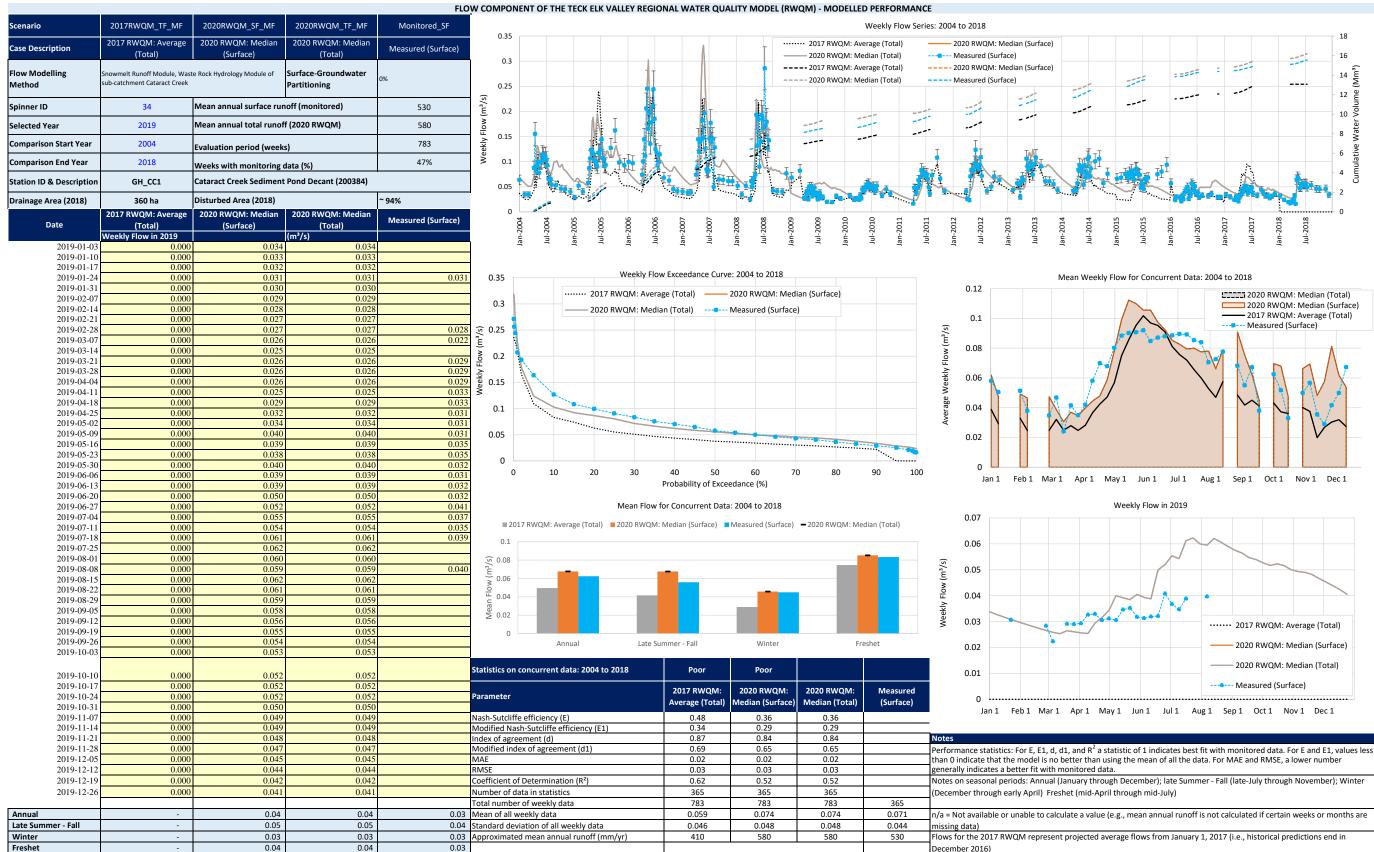
and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less ter than using the mean of all the data. For MAE and RMSE, a lower number itored data.


ary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July)

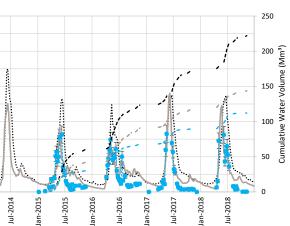

e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

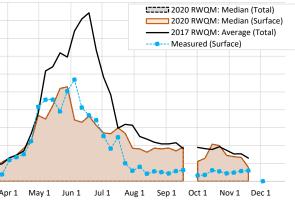
Scenario	001701100	0000000	0000011/01		ſ					IAL WATER QU		. ,						
	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF	1.	.8							Weekly Flow	v Series: 2	2004 to 20	18		
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	1.		2017 RWQM: • 2017 RWQM:				M: Median (Surface) M: Median (Surface)		VQM: Median (VQM: Median (/leasured (/leasured (
Flow Modelling Method	Snowmelt Runoff Module, Was sub-catchment Swift Spoil	ste Rock Hydrology Module of	Surface-Groundwater Partitioning	2%, maximum of 1,000 m3/d	1.	.4												
Spinner ID	27	Mean annual surface ru	noff (monitored)	300	n³/s	1											15 F	==*
Selected Year	2019	Mean annual total runo	off (2020 RWQM)	400	N Elow	-									= =		==	===
Comparison Start Year	2004	Evaluation period (weel	ks)	783	Weekly I									= * * *	=1			
Comparison End Year	2018	Weeks with monitoring		49%											ł		Į	1
Station ID & Description	GH_SC1_GH_SC2	Swift Creek Sediment Po Bypass (E105061	ond Decant (E221329) / Sv	wift Creek Sediment Pond	0.				- 5 2 2					Ţ				
Drainage Area (2018)	510 ha	Disturbed Area (2018)		~ 75%	0.	.2	. 1		1					Â.,				
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		an-2004 -	5005	Jul-2005 J Jan-2006	Jul-2006	lan-2007 Jul-2007	Jan-2008 : Jul-2008 -	Jul-2009 Jan-2010	Jul-2010 lan-2011	Jul-2011	Jan-2012	Jul-2012 Jan-2013	Jul-2013	Jan-2014 Jul-2014
2019-01-03	Weekly Flow in 2019 0.074	4 0.036	(m³/s) 6 0.037	7		Jan-2004 Jul-2004	Jan-2005	Jan-2	2-Inc	Jan-2007 Jul-2007	Jan-2 Jul-2 Jan-2	Jul-2 Jan-2	Jul-2010 Jan-2011	Jul-2	Jan-2	c-Int	2-Inc	Jan-2 Jul-2
2019-01-10	0.073	0.035	5 0.035	5 0.000														
2019-01-17 2019-01-24	0.072			0.015	1.2			Wee	ekly Flow	Exceedance Curv	e: 2004 to 2018							Mean We
2019-01-24 2019-01-31				2	1.2		24				2020 RWQM: Med	ion (Surface)			0.2	5		weatt we
2019-02-07	0.070				1	1			0	. ,								
2019-02-14 2019-02-21	0.070				1		20	ι∠υ κ₩QΝ	n: iviediar	i (i otal)	Measured (Surface	:)			· 0.	,		
2019-02-28					(s/ _m ³ /s)										(s) ¹ 3/s)	2		
2019-03-07 2019-03-14	0.069			0.010	٥.0 ح										⊥) >			
2019-03-21					6.0 ح ا										Average Weekly Flow (m ³ /s) 0	5		
2019-03-28 2019-04-04				2 0.013	9.0 Weekly	ł									eekly			
2019-04-11	0.101				ĕ 0.4										Ξ υ 0.	1		
2019-04-18 2019-04-25	0.113				0.4	•									erag			
2019-05-02	0.183	3 0.050	0 0.051	0.015	0.2											- 1		
2019-05-09 2019-05-16					0.2										0.0			ma
2019-05-23																		
											•• •••••• ••••••	·····				41		
2019-05-30 2019-06-06	0.395	5 0.049	9 0.050	0.013	0		10 20		·····	40 50	60 7		90	100		o 1		
2019-06-06 2019-06-13	0.395 0.398 0.360	5 0.049 0.047 0.047 0.045	9 0.050 7 0.048 5 0.046	0 0.013 0.012 0 0.013					80		60 7		90	100		0 Jan 1	Feb1 M	Mar1 Apr1
2019-06-06 2019-06-13 2019-06-20	0.395 0.398 0.360 0.343	5 0.049 8 0.047 0 0.045 8 0.055	9 0.050 7 0.048 5 0.046 9 0.060	0 0.013 0.012 0.013 0 0.013 0 0.007) 3	80 P	40 50 robability of Exce	60 7 edance (%)		90	100		0 Jan 1	Feb 1 M	Mar 1 Apr 1
2019-06-06 2019-06-13 2019-06-20 2019-06-27 2019-07-04	0.395 0.398 0.360 0.343 0.272 0.243	0.049 0.047	9 0.050 7 0.044 5 0.046 9 0.066 0 0.061 3 0.065	0.013 0.012 0.013 0.007 0.015 0.004	0	0 1	10 20) 3 Mea	80 P In Flow fo	40 50 robability of Exce r Concurrent Data	60 7 edance (%) a: 2004 to 2018	0 80		100	0.4		Feb 1 M	Mar 1 Apr 1
2019-06-06 2019-06-13 2019-06-20 2019-06-27 2019-07-04 2019-07-11	0.395 0.398 0.360 0.343 0.272 0.243 0.214	0.049 0.049 0.043 0.052 0.066 0.066 0.066 0.066	9 0.050 7 0.048 5 0.046 9 0.060 0 0.061 3 0.062 0 0.061	0.013 0.012 0.001 0.007 0.015 0.004 0.026	0	0 1	10 20) 3 Mea	80 P In Flow fo	40 50 robability of Exce r Concurrent Data	60 7 edance (%)	0 80		100		5	Feb 1 M	Mar 1 Apr 1
2019-06-06 2019-06-12 2019-06-22 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-25	0.395 0.396 0.360 0.343 0.272 0.243 0.214 0.214 0.175 0.155	0.049 8 0.041 0 0.042 8 0.055 2 0.066 8 0.066 4 0.066 2 0.066 4 0.066 5 0.067	9 0.050 7 0.048 5 0.046 9 0.066 0 0.061 3 0.065 0 0.061 8 0.065 7 0.065	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.022	0	0 1 1 2017 RWQM: 2	10 20) 3 Mea	80 P In Flow fo	40 50 robability of Exce r Concurrent Data	60 7 edance (%) a: 2004 to 2018	0 80		100	0.	5	Feb 1 M	Mar 1 Apr 1
2019-06-06 2019-06-17 2019-06-27 2019-06-27 2019-07-04 2019-07-11 2019-07-15 2019-07-25 2019-08-01	0.395 0.396 0.342 0.272 0.243 0.214 0.172 0.155 0.140	0.049 8 0.041 0 0.042 8 0.055 2 0.066 8 0.066 4 0.066 2 0.066 5 0.067 6 0.066 9 0.066 0 0.067	0 0.050 7 0.048 5 0.046 9 0.061 3 0.062 0 0.061 8 0.062 7 0.066 3 0.065 8 0.065 3 0.065	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.022	0	0 1 1 2017 RWQM: 2	10 20) 3 Mea	80 P In Flow fo	40 50 robability of Exce r Concurrent Data	60 7 edance (%) a: 2004 to 2018	0 80			0.	5	Feb1 M	Mar 1 Apr 1
2019-06-06 2019-06-12 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-25 2019-08-08 2019-08-08	0.395 0.398 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.135 0.127	0.049 8 0.041 9 0.042 8 0.052 9 0.066 8 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.067 9 0.062	9 0.050 7 0.048 5 0.044 9 0.060 0 0.061 3 0.062 0 0.061 8 0.066 7 0.063 3 0.064 1 0.065 4 0.126	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.022	0 0.12 (\$ 0.1 (\$ 0.0	0 1 2017 RWQM: 2 1 88	10 20) 3 Mea	80 P In Flow fo	40 50 robability of Exce r Concurrent Data	60 7 edance (%) a: 2004 to 2018	0 80			0. (s/,ш) 0.3	5	Feb 1 M	Mar 1 Apr 1
2019-06-06 2019-06-12 2019-06-20 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-18 2019-08-08 2019-08-15 2019-08-15	0.395 0.396 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.136 0.127 0.155 0.140 0.137 0.157	0.049 8 0.044 8 0.042 9 0.042 8 0.055 2 0.066 4 0.066 5 0.066 6 0.066 5 0.066 6 0.066 7 0.122 0.121 0.121	9 0.050 7 0.048 5 0.046 9 0.066 0 0.061 3 0.065 0 0.061 3 0.065 0 0.061 3 0.065 3 0.066 1 0.063 4 0.122 1 0.123	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.022 0.022	0 0.1: (\$ 0.3: EL 0.03 0.00	0 1 2017 RWQM: 2 1 88 66	10 20) 3 Mea	80 P In Flow fo	40 50 robability of Exce r Concurrent Data	60 7 edance (%) a: 2004 to 2018	0 80			0. (s/ 0.3 (s/ 0.	5	Feb1 M	Mar 1 Apr 1
2019-06-00 2019-06-13 2019-06-27 2019-07-04 2019-07-14 2019-07-18 2019-07-25 2019-08-01 2019-08-05 2019-08-15 2019-08-25 2019-08-25 2019-08-25 2019-08-25 2019-08-25	0.395 0.396 0.362 0.342 0.272 0.243 0.214 0.172 0.155 0.140 0.136 0.127 0.112 0.112 0.112	0.049 8 0.041 9 0.042 8 0.059 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 0 0.066 0 0.066 0 0.066 0 0.061 0 0.062 0 0.062 0 0.061 0 0.062 0 0.124 0 0.114 0 0.114	9 0.050 7 0.048 5 0.046 9 0.060 0 0.061 3 0.062 0 0.061 8 0.062 3 0.063 4 0.122 1 0.123 7 0.112 7 0.114	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.022 0.022	0 0.1: (\$ 0.3: EL 0.03 0.00	0 1 2017 RWQM: 2 1 88 66	10 20) 3 Mea	80 P In Flow fo	40 50 robability of Exce r Concurrent Data	60 7 edance (%) a: 2004 to 2018	0 80			0. (s/ 0.3 (s/ 0.	5 4 5 3 5	Feb 1 M	Mar 1 Apr 1
2019-06-00 2019-06-12 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-18 2019-08-01 2019-08-01 2019-08-05 2019-08-22 2019-08-22 2019-08-25 2019-09-05 2019-09-12	0.395 0.398 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.136 0.127 0.151 0.112 0.115 0.112 0.109	0.049 8 0.041 9 0.042 8 0.052 9 0.066 1 0.066 2 0.066 5 0.067 0 0.066 5 0.066 7 0.122 0 0.112 0 0.111 0 0.111	9 0.050 7 0.048 5 0.046 9 0.060 0 0.061 3 0.062 0 0.061 8 0.062 7 0.063 4 0.122 1 0.123 7 0.112 4 0.113 1 0.113	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.022 0.022	0 0.1: 0.0: 0.0: 0.0: 0.0: 0.0: 0.0: 0.0	0 1 1 2017 RWQM: 2 1 1 88 66 64 14	10 20) 3 Mea	80 P In Flow fo	40 50 robability of Exce r Concurrent Data	60 7 edance (%) a: 2004 to 2018	0 80			0. (s/, س 0.3 0.	5 4 5 3 5	Feb1 N	Mar 1 Apr 1
2019-06-06 2019-06-17 2019-06-27 2019-07-24 2019-07-41 2019-07-11 2019-07-15 2019-07-25 2019-08-05 2019-08-05 2019-08-25 2019-08-25 2019-09-05 2019-09-15 2019-09-15	0.395 0.396 0.340 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.135 0.140 0.135 0.140 0.136 0.127 0.119 0.119 0.119 0.109 0.100	0.049 8 0.044 0.042 0.044 8 0.055 2 0.066 8 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.067 10 0.012 10 0.012 10 0.114 10 0.117 10 0.117 10 0.0107	9 0.050 7 0.048 5 0.046 9 0.060 0 0.061 3 0.062 0 0.061 3 0.062 7 0.063 1 0.064 1 0.062 4 0.122 7 0.115 4 0.116 1 0.113 7 0.105 5 0.107	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.022 0.022	0 0.1: 0.0: 0.0: 0.0: 0.0: 0.0: 0.0: 0.0	0 1 2017 RWQM: 2 1 88 66	10 20) 3 Mea	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data	60 7 edance (%) a: 2004 to 2018	0 80 - 2020 RWQM: Mr			0. (s/ 0.3 (s/ 0.	5	Feb1 N	Mar 1 Apr 1
2019-06-06 2019-06-12 2019-06-27 2019-07-04 2019-07-14 2019-07-18 2019-07-18 2019-08-08 2019-08-08 2019-08-05 2019-08-22 2019-08-22 2019-08-25 2019-09-15	0.395 0.396 0.340 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.135 0.140 0.135 0.140 0.136 0.127 0.119 0.119 0.119 0.109 0.100	0.049 8 0.044 0.042 0.042 8 0.055 2 0.066 8 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.062 9 0.012 9 0.122 9 0.112 9 0.114 9 0.115 9 0.101 9 0.101	9 0.050 7 0.048 5 0.046 9 0.060 0 0.061 3 0.062 0 0.061 3 0.062 7 0.063 1 0.064 1 0.062 4 0.122 7 0.115 4 0.116 1 0.113 7 0.105 5 0.107	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.022 0.022	0 0.1: 0.0: 0.0: 0.0: 0.0: 0.0: 0.0: 0.0	0 1 1 2017 RWQM: 2 1 1 88 66 64 14	10 20) 3 Mea	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Aedian (Surface)	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter	0 80 - 2020 RWQM: Mr	edian (Total)		0. 0.3 0.0 0.2 0. 0.	5 4 5 3 5 2 5 1		
2019-06-06 2019-06-13 2019-06-27 2019-07-04 2019-07-04 2019-07-11 2019-07-18 2019-07-25 2019-08-01 2019-08-05 2019-08-25 2019-08-25 2019-08-25 2019-09-12 2019-09-12 2019-09-12 2019-09-26 2019-10-03	0.395 0.396 0.342 0.272 0.243 0.214 0.172 0.155 0.140 0.136 0.127 0.115 0.140 0.136 0.127 0.115 0.140 0.136 0.127 0.119 0.109 0.100	0.049 8 0.044 9 0.042 8 0.055 2 0.066 3 0.066 4 0.066 5 0.066 6 0.066 5 0.066 6 0.066 0 0.012 0 0.122 0 0.112 0 0.112 0 0.114 0 0.111 5 0.105 8 0.105 0 0.105	9 0.050 7 0.048 5 0.046 9 0.061 3 0.062 0 0.061 3 0.062 0 0.061 3 0.062 7 0.063 1 0.063 1 0.063 1 0.062 1 0.062 1 0.022 1 0.122 1 0.122 1 0.122 1 0.125 7 0.115 5 0.107 3 0.105	0.013 0.017 0.013 0.007 0.015 0.004 0.026 0.022 0.022 0.022	0 0.11: 0.01 0.00 0.00 0.00 0.00 0.00 0.	0 1 2017 RWQM: 2 1 8 6 6 6 4 2 0	10 20) 3 Mean 10 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Aedian (Surface)	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter Winter Poor but	0 80 - 2020 RWQM: Mr	edian (Total)		0. 0.3 0.2 0.2 0.2 0.1 0.1	5 4 5 3 5 2 1 		Mar 1 Apr 1
2019-06-06 2019-06-17 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-18 2019-07-25 2019-08-05 2019-08-05 2019-08-25 2019-08-25 2019-09-05 2019-09-15 2019-09-16 2019-10-07 2019-10-10	0.395 0.396 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.135 0.140 0.137 0.112 0.112 0.109 0.100 0.100 0.100	0.049 8 0.044 8 0.042 8 0.055 2 0.066 8 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.067 9 0.122 0 0.121 10 0.111 10 0.111 10 0.111 10 0.111 10 0.111 10 0.111 10 0.111 10 0.111 10 0.111 10 0.102 10 0.103 11 0.000 10 0.101 11 0.101	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.026 0.027 0.027 0.027 0.027 0.028	0 0.11 (5/ 0.1) 0.00 □ 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 12017 RWQM: 2 1 8 66 14 2 0 0 0 0 0 0 0 0 0 0 0 0 0	10 2C) 3 Mean 10 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Dat Aedian (Surface)	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter Poor but improved	0 80 - 2020 RWQM: MA	edian (Total)	111-11-11-11-11-11-11-11-11-11-11-11-11	0. 0.3 0.2 0.2 0.1	5 4 5 3 5 2 1 		
2019-06-06 2019-06-13 2019-06-27 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-25 2019-08-01 2019-08-05 2019-08-25 2019-08-25 2019-09-05 2019-09-15 2019-09-16 2019-10-10 2019-10-17 2019-10-17 2019-10-24	0.395 0.396 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.135 0.140 0.135 0.140 0.136 0.127 0.115 0.112 0.109 0.109 0.100 0.100 0.100 0.009 0.009	0.049 8 0.044 9 0.042 8 0.055 2 0.066 8 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.067 10 0.012 10 0.112 10 0.112 10 0.111 10 0.010 11 0.100 11 0.100 11 0.100 11 0.100 11 0.100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.022 0.022 0.022 0.022 0.034	0 0.11: 0.01 0.00 0.00 0.00 0.00 0.00 0.	0 1 12017 RWQM: 2 1 8 66 14 2 0 0 0 0 0 0 0 0 0 0 0 0 0	10 2C) 3 Mean 10 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Median (Surface)	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter Winter Poor but	0 80 - 2020 RWQM: Mr	edian (Total)		0. 0.3 0.2 0.2 0.2 0.1 0.1	5 4 5 3 5 5 5 1 5 5 0		
2019-06-06 2019-06-13 2019-06-27 2019-06-27 2019-07-44 2019-07-18 2019-07-18 2019-07-25 2019-08-01 2019-08-05 2019-08-25 2019-08-25 2019-08-25 2019-09-15 2019-09-15 2019-09-15 2019-10-17 2019-10-17 2019-10-17 2019-10-33 2019-11-07	0.395 0.395 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.135 0.140 0.135 0.140 0.135 0.140 0.137 0.119 0.119 0.100 0.100 0.100 0.100 0.100 0.0091 0.094 0.081	0.049 8 0.044 8 0.045 8 0.042 8 0.055 2 0.066 8 0.066 9 0.066 9 0.066 9 0.066 5 0.067 0 0.066 5 0.067 0 0.062 0 0.067 0 0.067 0 0.121 0 0.111 0 0.111 5 0.100 0 0.101 0 0.102 0 0.103 4 0.100 7 0.102 0 0.092 0 0.092	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.013 0.012 0.013 0.013 0.015 0.004 0.026 0.022 0.022 0.022 0.022 0.025 0.018 0.018	0 0.1: (م) 0.0: (م) 0.0: ((a) 0.0:((a) 0.0:))))))))))))))))))))))))))))))))))	0 1 12017 RWQM: 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1	10 2C : Average (Tota Annual) 3 Mean 10 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Aedian (Surface) amer - Fall Poor 2017 RWQM: Average (Total) 0.10	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter Poor but improved 2020 RWQM: Median (Surface) 0.32	0 80 - 2020 RWQM: Mi - 2020 RWQM: Mi 	edian (Total)		0. 0.3 0.2 0.2 0.2 0.1 0.1	5 4 5 3 5 5 5 1 5 5 0		
2019-06-06 2019-06-17 2019-06-27 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-25 2019-08-05 2019-08-25 2019-08-25 2019-08-25 2019-09-15 2019-09-15 2019-09-15 2019-09-16 2019-10-07 2019-10-17 2019-10-17 2019-11-17 2019-11-17 2019-11-17	0.395 0.396 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.144 0.136 0.127 0.155 0.144 0.136 0.127 0.112 0.112 0.112 0.109 0.100 0.100 0.100 0.100 0.009 0.009 0.009 0.008 0.088 0.088 0.088	0.049 8 0.044 8 0.042 9 0.042 8 0.055 2 0.066 4 0.066 5 0.066 6 0.066 6 0.066 6 0.066 7 0.122 0.0112 0.111 9 0.111 9 0.111 9 0.111 9 0.111 9 0.101 10 0.112 10 0.111 10 0.112 10 0.111 10 0.112 10 0.101 10 0.102 10 0.102 10 0.102 10 0.102 10 0.104 10 0.104 10 0.092 10 0.092	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.013 0.012 0.013 0.007 0.015 0.004 0.026 0.026 0.022 0.022 0.022 0.034	0 0.11 (5, 0.1 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0 1 2017 RWQM: 2 1 8 6 6 4 2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	10 2C : Average (Tota Annual int data: 2004 cy (E) fe efficiency () 3 Mean 10 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Median (Surface) mer - Fall 2017 RWQM: Average (Total) 0.10 0.21	60 7 edance (%) a: 2004 to 2018 t Measured (Surface) Winter <u>Poor but</u> improved 2020 RWQM: Median (Surface) 0.32 0.28	0 80 - 2020 RWQM: Mr - 2020 RWQM: Mr Fi 2020 RWQM: Median (Total) 0.32 0.27	edian (Total)	2d 2)	0. 0.3 0.1 0.2 0.2 0.1 0.1 0.1 0.0	5 4 5 3 5 5 5 1 5 5 0		
2019-06-06 2019-06-13 2019-06-27 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-25 2019-08-08 2019-08-25 2019-08-25 2019-08-25 2019-09-12 2019-09-12 2019-09-12 2019-09-12 2019-10-03 2019-10-17 2019-10-24 2019-11-21 2019-11-28	0.395 0.396 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.135 0.140 0.135 0.140 0.136 0.127 0.115 0.140 0.136 0.121 0.112 0.109 0.109 0.100 0.100 0.100 0.100 0.0091 0.094 0.091 0.093 0.083 0.083 0.083 0.088 0.087 0.078	0.049 8 0.044 9 0.042 8 0.055 2 0.066 8 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.066 9 0.067 9 0.122 9 0.112 9 0.111 9 0.111 9 0.101 9 0.102 9 0.103 9 0.103 10 0.104 11 0.104 11 0.104 11 0.104 11 0.104 11 0.104 11 0.0102 11 0.0102 11 0.0102 11 0.0104 11	$\begin{array}{c} 9 \\ \hline 0 \\ 0 \\ 7 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0.013 0.017 0.013 0.007 0.015 0.004 0.026 0.022 0.022 0.022 0.022 0.022 0.023 0.034	0 (۲) (۲) (۲) (۲) (۲) (۲) (۲) (۲) (۲) (۲)	0 1 12017 RWQM: 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1	10 20 : Average (Tota Annual ent data: 2004 cy (E) fe efficiency () 3 Mean 10 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Aedian (Surface) mer - Fall Poor 2017 RWQM: Average (Total) 0.10 0.21 0.52 0.56	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter <u>Poor but</u> improved 2020 RWQM: Median (Surface) 0.32 0.28 0.59 0.53	0 80 - 2020 RWQM: MA - 2020 RWQM: MA - 2020 RWQM: Median (Total) 0.32 0.27 0.60 0.52	edian (Total)	ed e)	0. 0.3 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	5 4 5 5 5 5 5 1 1 5 5 0 Jan 1	Feb 1 M	
2019-06-00 2019-06-13 2019-06-27 2019-06-27 2019-07-44 2019-07-14 2019-07-15 2019-07-15 2019-08-01 2019-08-25 2019-08-25 2019-08-25 2019-08-25 2019-09-15 2019-09-15 2019-09-15 2019-10-10 2019-10-10 2019-10-17 2019-10-17 2019-10-13 2019-11-21 2019-11-25 2019-11-25	0.395 0.395 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.135 0.140 0.135 0.140 0.137 0.119 0.119 0.109 0.100 0.100 0.100 0.100 0.100 0.100 0.0091 0.0091 0.0091 0.0081 0.083 0.081 0.088 0.077	0.049 8 0.044 8 0.045 8 0.042 8 0.055 2 0.066 8 0.066 9 0.066 9 0.066 9 0.066 5 0.067 6 0.066 5 0.067 6 0.066 5 0.067 6 0.067 7 0.122 0 0.111 0 0.017 10 0.111 5 0.100 0 0.102 0 0.103 1 0.100 1 0.100 2 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.013 0.012 0.013 0.013 0.013 0.015 0.004 0.026 0.027 0.018 0.022 0.023 0.024 0.025	0 مالی (الم الم الم الم الم الم الم الم الم الم	0 1 12017 RWQM: 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1	10 20 : Average (Tota Annual ent data: 2004 cy (E) fe efficiency () 3 Mean 10 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Aedian (Surface) amer - Fall Poor 2017 RWQM: Average (Total) 0.10 0.21 0.52 0.56 0.04	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter Poor but improved 2020 RWQM: Median (Surface) 0.32 0.28 0.59 0.53 0.04	0 80 - 2020 RWQM: Mi - 2020 RWQM: Mi 2020 RWQM: Median (Total) 0.32 0.27 0.60 0.52 0.04	edian (Total)	ed ed e) No Pei tha	0. 0.3 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0	5 4 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Feb 1 M :: For E, EJ e model i:	har 1 Apr 1 1, d, d1, and R
2019-06-06 2019-06-13 2019-06-27 2019-06-27 2019-07-04 2019-07-11 2019-07-14 2019-07-25 2019-08-08 2019-08-25 2019-08-25 2019-08-25 2019-09-12 2019-09-12 2019-09-12 2019-09-12 2019-10-17 2019-10-17 2019-10-17 2019-10-22 2019-11-21 2019-11-28	0.395 0.395 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.135 0.140 0.137 0.119 0.119 0.100 0.100 0.100 0.100 0.0091 0.0091 0.0091 0.0091 0.0087 0.088 0.088 0.088 0.077	0.049 0.044 0.044 0.045 0.046 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.055 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.0101 0.0102 0.0103 0.0104 0.0105 0.0106 0.0107 0.0108 0.0109	9 0.050 7 0.048 5 0.046 9 0.066 0 0.061 3 0.065 0 0.061 3 0.065 0 0.061 3 0.065 1 0.063 4 0.122 7 0.115 4 0.116 1 0.113 7 0.105 1 0.105 1 0.102 1 0.103 4 0.106 2 0.104 8 0.100 1 0.0097 7 0.099 6 0.099 3 0.094 0 0.092 7 0.085	0.013 0.012 0.013 0.003 0.004 0.026 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.034	0 0.11 0.12 0.00 0.00 0.00 0.00 0.00 0.0	0 1 12017 RWQM: 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1	10 20 : Average (Tota Annual ant data: 2004 cy (E) fe efficiency ()) eement (d1)) 3 Mean 10 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Aedian (Surface) mer - Fall Poor 2017 RWQM: Average (Total) 0.10 0.21 0.52 0.56	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter <u>Poor but</u> improved 2020 RWQM: Median (Surface) 0.32 0.28 0.59 0.53	0 80 - 2020 RWQM: MA - 2020 RWQM: MA - 2020 RWQM: Median (Total) 0.32 0.27 0.60 0.52	edian (Total)	ed ed e) No e pei tha get	0. (5, 0.3 0. (1, 0, 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0	5 4 5 5 2 5 1 3 5 5 1 3 5 5 1 3 3 5 5 1 3 3 5 5 1 3 3 5 5 1 3 5 5 1 3 5 5 5 1 3 3 5 5 5 1 3 3 5 5 5 5	Feb 1 M : For E, E1 etter fit w	1, d, d1, and R
2019-06-06 2019-06-12 2019-06-27 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-18 2019-08-05 2019-08-05 2019-08-25 2019-08-25 2019-09-05 2019-09-15 2019-09-15 2019-09-16 2019-10-10 2019-10-17 2019-10-24 2019-11-21 2019-11-25 2019-11-26 2019-12-05 2019-12-05	0.395 0.396 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.144 0.136 0.127 0.115 0.155 0.144 0.136 0.127 0.111 0.112 0.109 0.100 0.100 0.100 0.100 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.0075 0.077 0.077	0.049 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.045 0.045 0.055 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.067 0.122 0.112 0.112 0.112 0.111 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 </td <td>9 0.050 7 0.048 5 0.046 9 0.066 0 0.061 3 0.065 0 0.061 3 0.065 0 0.061 3 0.065 1 0.063 1 0.064 1 0.122 7 0.111 4 0.126 5 0.100 5 0.100 1 0.115 4 0.102 1 0.103 2 0.100 5 0.100 5 0.100 4 0.102 1 0.102 4 0.100 7 0.095 6 0.092 7 0.095 3 0.092 0 0.092 7 0.088 4 0.085 <td>0.013 0.012 0.013 0.013 0.003 0.015 0.004 0.026 0.026 0.018</td><td>0 0.11 (S() 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td><td>0 1 12017 RWQM: 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1</td><td>10 20 : Average (Tota Annual ent data: 2004 cy (E) fe efficiency () eement (d1) ination (R²) tistics</td><td>) 3 Mean 10 2020</td><td>30 P n Flow fo RWQM: N</td><td>40 50 robability of Exce r Concurrent Data Aedian (Surface) • mmer - Fall 2017 RWQM: Average (Total) 0.10 0.21 0.52 0.56 0.04 0.10 0.14 382</td><td>60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter Poor but improved 2020 RWQM: Median (Surface) 0.32 0.28 0.59 0.53 0.59 0.53 0.04 0.08 0.36 382</td><td>0 80 - 2020 RWQM: MA - 2020 RWM: M</td><td>edian (Total)</td><td>ed ed e) No Pei tha ger No</td><td>0. (5/LLL) 0.3 (5/LLL) 0.2 (1) 0.2</td><td>5 4 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td><td>Feb 1 M :: For E, E3 etter fit w iods: Ann</td><td>har 1 Apr 1 1, d, d1, and R s no better th vith monitored</td></td>	9 0.050 7 0.048 5 0.046 9 0.066 0 0.061 3 0.065 0 0.061 3 0.065 0 0.061 3 0.065 1 0.063 1 0.064 1 0.122 7 0.111 4 0.126 5 0.100 5 0.100 1 0.115 4 0.102 1 0.103 2 0.100 5 0.100 5 0.100 4 0.102 1 0.102 4 0.100 7 0.095 6 0.092 7 0.095 3 0.092 0 0.092 7 0.088 4 0.085 <td>0.013 0.012 0.013 0.013 0.003 0.015 0.004 0.026 0.026 0.018</td> <td>0 0.11 (S() 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td> <td>0 1 12017 RWQM: 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1</td> <td>10 20 : Average (Tota Annual ent data: 2004 cy (E) fe efficiency () eement (d1) ination (R²) tistics</td> <td>) 3 Mean 10 2020</td> <td>30 P n Flow fo RWQM: N</td> <td>40 50 robability of Exce r Concurrent Data Aedian (Surface) • mmer - Fall 2017 RWQM: Average (Total) 0.10 0.21 0.52 0.56 0.04 0.10 0.14 382</td> <td>60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter Poor but improved 2020 RWQM: Median (Surface) 0.32 0.28 0.59 0.53 0.59 0.53 0.04 0.08 0.36 382</td> <td>0 80 - 2020 RWQM: MA - 2020 RWM: M</td> <td>edian (Total)</td> <td>ed ed e) No Pei tha ger No</td> <td>0. (5/LLL) 0.3 (5/LLL) 0.2 (1) 0.2</td> <td>5 4 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td> <td>Feb 1 M :: For E, E3 etter fit w iods: Ann</td> <td>har 1 Apr 1 1, d, d1, and R s no better th vith monitored</td>	0.013 0.012 0.013 0.013 0.003 0.015 0.004 0.026 0.026 0.018	0 0.11 (S() 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0 1 12017 RWQM: 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1	10 20 : Average (Tota Annual ent data: 2004 cy (E) fe efficiency () eement (d1) ination (R ²) tistics) 3 Mean 10 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Aedian (Surface) • mmer - Fall 2017 RWQM: Average (Total) 0.10 0.21 0.52 0.56 0.04 0.10 0.14 382	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter Poor but improved 2020 RWQM: Median (Surface) 0.32 0.28 0.59 0.53 0.59 0.53 0.04 0.08 0.36 382	0 80 - 2020 RWQM: MA - 2020 RWM: M	edian (Total)	ed ed e) No Pei tha ger No	0. (5/LLL) 0.3 (5/LLL) 0.2 (1) 0.2	5 4 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Feb 1 M :: For E, E3 etter fit w iods: Ann	har 1 Apr 1 1, d, d1, and R s no better th vith monitored
2019-06-06 2019-06-13 2019-06-27 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-25 2019-08-01 2019-08-05 2019-08-25 2019-08-25 2019-08-25 2019-09-12 2019-09-12 2019-09-12 2019-10-10 2019-10-17 2019-10-22 2019-11-21 2019-11-25 2019-12-26	0.395 0.396 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.140 0.135 0.140 0.135 0.127 0.115 0.120 0.109 0.109 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.007 0.007 0.077 0.077 0.077	0.049 0.044 0.044 0.045 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.067 0.066 0.066 0.067 0.067 0.0112 0.0112 0.0112 0.0112 0.0112 0.0115 0.0107 0.0101 0.0102 0.0103 0.0091 0.0092 0.0092 0.0093 0.0093 0.0093 0.0094 0.0095 0.0086 0.0087 0.0088 0.0075	$\begin{array}{c} 9 \\ \hline 0 \\ 0 \\ 7 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0.013 0.013 0.013 0.0013 0.0015 0.0043 0.0020 0.021 0.0220 0.021 0.0221 0.015 0.016 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023	0 0.12 0.01 0.0	0 1 12017 RWQM: 2 1 12017 RWQM: 2 1 1 12017 RWQM: 2 1 1 1 12017 RWQM: 2 1 1 1 12017 RWQM: 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 20 : Average (Tota Annual int data: 2004 cy (E) fe efficiency ()) eeement (d1) ination (R ²) tistics ly data) 3 Mean 10 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Aedian (Surface) mer - Fall 2017 RWQM: Average (Total) 0.10 0.21 0.56 0.04 0.10 0.14 382 783	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter <u>Poor but</u> improved 2020 RWQM: Median (Surface) 0.32 0.28 0.59 0.53 0.53 0.04 0.08 0.36 382 783	0 80 - 2020 RWQM: MA - 2020 RWM: MA	edian (Total)	ed Per has per No Occupients	0. (5, 0.3 0. 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0	5 4 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Feb 1 M :: For E, E1 e model i: etter fit w iods: Ann rrly April)	1, d, d1, and R s no better th vith monitoree mual (January t Freshet (mid
2019-06-06 2019-06-12 2019-06-27 2019-06-27 2019-07-04 2019-07-11 2019-07-18 2019-07-18 2019-07-25 2019-08-05 2019-08-25 2019-08-25 2019-08-25 2019-08-25 2019-09-15 2019-09-15 2019-09-15 2019-10-05 2019-10-17 2019-10-17 2019-11-12 2019-11-12 2019-11-21 2019-12-15	0.395 0.396 0.360 0.343 0.272 0.243 0.214 0.172 0.155 0.144 0.136 0.127 0.115 0.155 0.144 0.136 0.127 0.111 0.112 0.109 0.100 0.100 0.100 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.0075 0.077 0.077	0.049 0.044 0.044 0.045 0.045 0.045 0.045 0.045 0.046 0.055 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.067 0.067 0.067 0.067 0.067 0.075 0.091 0.092 0.092 0.093 0.094 0.095 0.095 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097	9 0.050 7 0.048 5 0.046 9 0.066 0 0.061 3 0.062 0 0.061 3 0.062 0 0.061 3 0.062 7 0.062 3 0.064 1 0.063 4 0.122 7 0.116 1 0.117 4 0.116 1 0.113 4 0.100 5 0.107 3 0.106 2 0.107 3 0.106 1 0.107 3 0.100 4 0.100 5 0.100 6 0.0092 7 0.088 9 0.081 9 0.081	0.013 0.013 0.013 0.003 0.004 0.026 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.023 0.018 0.018	0 مال المحالي المحالي المح محالي محالي المحالي محالي محالي محالي مح محالي محالي محالي محالي محالي محالي محالي	0 1 12017 RWQM: 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2	10 20 : Average (Tota Annual int data: 2004 cy (E) fe efficiency ()) eeement (d1) ination (R ²) tistics ly data) 3 Mean 2020	30 P n Flow fo RWQM: N	40 50 robability of Exce r Concurrent Data Aedian (Surface) • mmer - Fall 2017 RWQM: Average (Total) 0.10 0.21 0.52 0.56 0.04 0.10 0.14 382	60 7 edance (%) a: 2004 to 2018 Measured (Surface) Winter Poor but improved 2020 RWQM: Median (Surface) 0.32 0.28 0.59 0.53 0.59 0.53 0.04 0.08 0.36 382	0 80 - 2020 RWQM: MA - 2020 RWM: M	edian (Total)	ed ed e) Pei tha ger No O Co n/a	0. (5, 0.3 0. 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0	5 4 5 3 5 2 5 1 5 0 Jan 1 e statistics te that the icates a be sonal per hrough each ailable or	Feb 1 M :: For E, E1 e model i: etter fit w iods: Ann rrly April)	Aar 1 Apr 1 1, d, d1, and R s no better th vith monitorer uual (January t


Weekly Flow for Concurrent Data: 2004 to 2018



ary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July)


e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

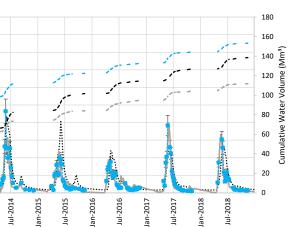


						01						UALITY MODEL	. (
cenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF		20									Weekly Flow	v Series:	2004 to 2	018			
ase Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		18	2017 F	RWQM: A	verage (Tot	al) —	2020 RWQN	1: Median (Surface	:) ——	– 2020 RWQM: M	ledian (Total)						
					1	16	Measu	ired (Surf	face)		2017 RWQN	1: Average (Total)		- 2020 RWQM: M	ledian (Surface	2)					
ow Modelling 1ethod	FR_FR4 + GH_CC1 + other unna flows)	imed areas (sum of modelled	Surface-Groundwater Partitioning	Not Implemented		10	2020 F	RWQM: N	/ledian (Tot	al)	Measured (S	Surface)									
pinner ID	37	Mean annual surface ru	noff (monitored)	210	m³/s)	12				-						-					
elected Year	2019	Mean annual total runo	ff (2020 RWQM)	320	Weekly Flow (m³/s)	10															
omparison Start Year	2004	Evaluation period (weel	ks)	783	ekly F	8												H^{-}			
omparison End Year	2018	Weeks with monitoring		13%		6	JA.														
ation ID & Description	FR_FRCP1	FRO Compliance Point- I Cataract Creek (E300071	Fording River approximate L)	ly 525 m downstream of		4	M.		WWA.					h .	A.					M	
rainage Area (2018)	18790 ha	Disturbed Area (2018)		~ 28%		2	and the second	-		J ~			·		W. K.		<i>د</i>	V	کر	- Ver	
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)			Jan-2004 Jul-2004	Jan-2005	2005-Iut Jan-2006	Jul-2006	Jan-2007 Jul-2007	Jan-2008 Jul-2008	lan-2009	Jul-2009 Jan-2010	Jul-2010 Jan-2011	Jul-2011	Jan-2012	Jul-2012	Jan-2013	Jul-2013 Jan-2014	2014
	Weekly Flow in 2019	0.440	(m³/s)				Jul-2	an-2	an-2	2-Inf	lan-2 Jul-2	lan-2 Jul-2	lan-2	Jul-2 lan-2	Jul-2 lan-2	2-Inf	an-2	2-Inf	an-2	2-IuL	
2019-01-03 2019-01-10	1.135	0.649	0.649		-			,	–		- ·	-			-		-		-	_	
2019-01-10 2019-01-17	0.998	0.631	7 0.597		1																
2019-01-24	0.988	0.570	0.570		1	18			Wee	kly Flow	Exceedance Cu	irve: 2004 to 201	.8							N	lean We
2019-01-31	0.971	0.523	0.523		4	16	.	20	17 RWQM	: Averag	e (Total)	- 2020 RWQM:	Median	(Surface)				10			
2019-02-07 2019-02-14	0.920	0.514	4 0.514 3 0.518		-	16				-								9			
2019-02-14 2019-02-21	0.914	0.318			1	14		20.		. wearar	i (i Utai)	Measured (Su	n lace)								
2019-02-28	0.914	0.434	4 0.434		/s)	N N											³/s)	8			
2019-03-07	0.975	0.410			(m³/s)	12											Flow (m³/s)	7			
2019-03-14	0.998	0.395	5 0.395		Flow	10											Ň	6			
2019-03-21 2019-03-28	1.016	0.659	0.659 0.593	0.663		10											I ≻ EI	0			
2019-04-04	1.126	0.553	0.553	0.362	eekly	8											Weekly	5			
2019-04-11	1.451	0.526	5 0.526	0.315	ž	c 🛉											≥ N	4			
2019-04-18	1.590	1.055	5 1.055	0.190)	6	· · · ·	•••									Average				
2019-04-25 2019-05-02	2.210	1.132	2 <u>1.132</u> 7 <u>1.307</u>	0.727		4											Ave	3			
2019-05-02	4.151	3.683	3.683	0.610					The second se	••••								2			
2019-05-16	5.299	3.934	3.934	4.180)	2						·····						1			
2019-05-23	7.208	3.599		2.100		0															4
2019-05-30 2019-06-06	9.383 10.432	3.624		4.206		0	10	20	30)	40 50	60	70	80	90	100		0 4		•	
2019-06-08	10.432	2.125		4.051	1						robability of Ex							Jan :	1 Feb 1	1 Mar 1	Apr
2019-06-20	10.950	4.531	4.531	3.878																	
2019-06-27	8.981	4.303							Mear	n Flow fo	r Concurrent D	ata: 2004 to 2018	8								
2019-07-04 2019-07-11	8.380 6.439	4.311		4.488		■ 20	17 RWQM: Avera	age (Total	I) = 2020 I	RWQM: N	/ledian (Surface)	Measured (Surf)	face) 🗕	2020 RWQM: Me	dian (Total)		:	12			
2019-07-11 2019-07-18	4.991	4.619	9 4.619	2.704							,										
2019-07-25	4.062	3.632	3.632			6											:	10			
2019-08-01	3.369	2.507			(m ³ /s)	5											(s)				
2019-08-08 2019-08-15	2.741	2.306		1.537	(m ³	4 —											w (m³/s)	8			
2019-08-13	2.310			1.624	No	3 —											MO				
2019-08-29	2.154	1.974	1.974	1.073	I LI	2											₹ FI				
2019-09-05	2.172	1.790		0.806		1											Weekly Flo	6			
2019-09-12	2.142			0.716	,												š				
2019-09-19 2019-09-26	2.044	1.3/3		0.631		0	Annual		1.	ate Summ	per - Fall	Winter		Err	eshet			4			
2019-09-20	2.012			0.000			Annual			ace outliff	ici - i dli	winter		rre	SHEL						
					Static	tics on	concurrent dat	ta: 2004	to 2018		Poor	Acceptabl	le .					2			
2019-10-10	1.806			0.325	Statis	ies on	concurrent ud	.a. 2004	10 2010		1001	Acceptabl									
2019-10-17 2019-10-24	1.759				Paran	otor					2017 RWQM	: 2020 RWQ	M: :	2020 RWQM:	Measure	ed					
2019-10-24 2019-10-31	1.672		7 <u>1.437</u> 3 1.188		raran	eter					Average (Tota	I) Median (Surf	face) N	vledian (Total)	(Surface	e)		0 -		NA 4	A
2019-11-07	1.492	1.183		0.224			e efficiency (E)				-0.81	0.62		0.62				Jan 1	⊾ ⊦eb1	L Mar 1	Apr 1
2019-11-14	1.426	1.156	5 1.156		Modif	ied Na	sh-Sutcliffe effi		1)		-0.28	0.38		0.38							
2019-11-21	1.395			0.273			ement (d)	+ (14)			0.73	0.87		0.87			lotes		1		
2019-11-28 2019-12-05	1.476	1.032	2 <u>1.032</u> 3 0.973		Modif MAE	ed ind	lex of agreemer	ić (01)			0.44 2.00	0.63		0.63			erformanc han 0 indic				
2019-12-03	1.281		0.975		RMSE						2.00	1.15		1.15			enerally in				
2019-12-12	1.173		0.871				f Determination	n (R²)			0.61	0.71		0.71		-	lotes on se				
2019-12-26	1.153	0.868	0.868				ata in statistics				103	103		103			December				
	-						r of weekly dat	a			783	783		783	103						
Annual	2.95	1.69					veekly data	older de l	2		3.566	2.308		2.308	1.800		/a = Not a		e or unabl	Ie to calcu	late a v
	2.11	1.70	1.70	0.72	stand		iation of all we	екiy data	d		2.806	1.340		1.340	1.867	m	nissing dat	a)			project
Late Summer - Fall Winter	1.04	0.62	0.62	0.51	Appro	vimeto	ed mean annual	runoff (mm/vr)	I	450	320		320	210	CI	lows for th	10 2017	RWOM	renrecont	

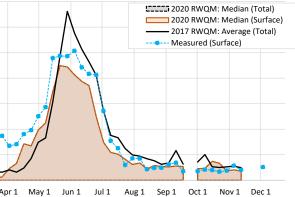
https://goldenassociates.sharepoint.com/sites/106374/Project Files/6 Deliverables/02. Working/18111630-007-R-RevB-23050-HydrologyReport/Spreadsheets/Model Performance/ FR-FRCP1-Monitored/Interface

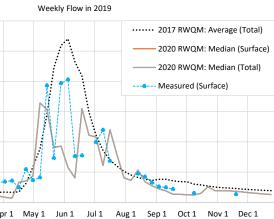
Weekly Flow for Concurrent Data: 2004 to 2018

Weekly Flow in 2019 ······ 2017 RWQM: Average (Total) ------- 2020 RWQM: Median (Surface) — 2020 RWQM: Median (Total) ----- Measured (Surface) ---*** **.** • • • or 1 May 1 Jun 1 Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 1


and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less ter than using the mean of all the data. For MAE and RMSE, a lower number itored data. Jary through December); late Summer - Fall (late-July through November); Winter

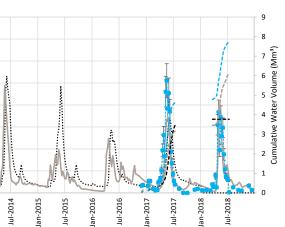
mid-April through mid-July)


e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

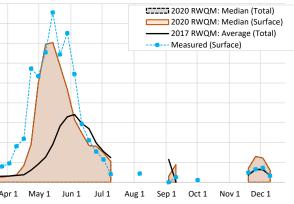

				FLC	W CON	IPONENT	OF THE TE	CK ELK VA	ALLEY REG	SIONAL WATE	er quai	LITY MODEL (RV	VQM) - MODE	lled per	RFORMAN	CE				
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF		10								Wee	kly Flow Ser	ries: 2004	to 2018			
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		10	•••• 2017 RW	QM: Avera	ge (Total)	2020 R	WQM: M	ledian (Surface) —	2020 RWQN	/I: Median	(Total)					
Flow Modelling	(TOLAI) Snowmelt Runoff Module, Was		Surface-Groundwater			J	Measure	d (Surface)		2017 R	WQM: Av	verage (Total)	2020 RWQN	/I: Median	(Surface)	T				
Method	sub-catchment of Upper Fordir		Partitioning	Not Implemented		7	2020 RW	QM: Media	in (Total)	Measu	red (Surfa	ace)								
Spinner ID	1	Mean annual surface ru	noff (monitored)	630	Weekly Flow (m³/s)	6													<u> </u>	1
elected Year	2019	Mean annual total runo	ff (2020 RWQM)	400	Nol	5									_					Ī
Comparison Start Year	2004	Evaluation period (week	(S)	783	ekly F	4													1	==
Comparison End Year	2018	Weeks with monitoring	data (%)	29%	We	3		ſ.						т		•			<u>-</u>	1
itation ID & Description	FR_UFR1	Fording River upstream	of Henretta Creek (E2167)	77)		2	A4						4						H	
Drainage Area (2018)	3910 ha	Disturbed Area (2018)		~ 0%		1	Mr.		A		1 a						-7 \		1 Kr	
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		0 Jan-2004 📕	Jul-2004 Jan-2005	Jul-2005	Jan-2006	Jul-2006 Jan-2007	Jul-2007	an-2008	Jul-2009	Jul-2010	Jan-2011	Jul-2011 Jul-2012	Jul-2012	Jan-2013	Jul-2013	Jan-2014
2019-01-03	Weekly Flow in 2019 0.188	0.071	(m³/s)		1	Jan-	-lul Jan-	-Inf	Jan-	Jul Jan-	-Inr	-nul -lul	-lul -lan-	-Inc	Jan-			Jan-	lut	Jan-
2019-01-10	0.185	0.066	5 0.066 0.061]															
2019-01-17 2019-01-24	0.181 0.178	0.061	0.061		1	8			Weekly I	low Exceedance	ce Curve	: 2004 to 2018								Mean W
2019-01-31	0.174	0.053	0.053			•		··· 2017 R	WQM: Av	erage (Total)	2	2020 RWQM: Med	lian (Surface)				3.5			
2019-02-07 2019-02-14	0.171 0.169	0.049	0.049			7		— 2020 R	WQM: M	dian (Total)		Measured (Surfac	e)				-			
2019-02-21	0.166	0.043	0.043			6										~	3			
2019-02-28 2019-03-07	0.163	0.036	5 0.036 3 0.028		n³/s)											Average Weekly Flow (m³/s)	2.5			
2019-03-14	0.159		0.020		w (m³	5										v (r	2.0			
2019-03-21	0.157	0.143 0.107	8 0.143 7 0.107	0.225	/ Flor	4										y Flo	2			
2019-03-28 2019-04-04	0.166	0.107	0.107	0.325	Weekly	- <u>\</u>										eekl				
2019-04-11	0.165		0.070	0.357	Ň	3										ě	1.5			
2019-04-18 2019-04-25	0.175	0.333	0.333 0.352	0.244		2										erag				
2019-05-02	0.588	0.434	0.434	0.366		2	1									Ave	1			
2019-05-09	0.883	1.644	1.644 1.537	0.412		1			· · · · · ·								0.5	•	•	-
2019-05-16 2019-05-23	2.230		7 0.907	0.732													0.5			
2019-05-30	2.593	0.930	0.930	1.969		0	10	20	30	40	50		70 80	90	100		0			
2019-06-06 2019-06-13	2.703	0.577	0.577 0.402	2.031		Ū	10	20	50	Probability			0 00	50	100		Ja	an 1 Fe	eb 1 Mar	1 Apr
2019-06-20	2.084	1.551	1.551	0.774																
2019-06-27 2019-07-04	1.488	1.111	1.111	0.995					Mean Flo	w for Concurre	ent Data:	: 2004 to 2018					3			
2019-07-04	0.856		0.611	1.198		■ 2017 RV	/QM: Average	e (Total) 🛛	2020 RWC	M: Median (Surf	face) 🔳	Measured (Surface)	- 2020 RWQM	: Median (Total)		J			
2019-07-18	0.700		0 1.199 5 0.785	0.684		2											2.5			
2019-07-25 2019-08-01	0.598		0.785		s)										_		2.5			
2019-08-08	0.451	0.364	0.364	_	low (m ³ /s)	L.5										(m³/s)	2			
2019-08-15 2019-08-22	0.412		0.534	0.475	NO	1										≥	2			
2019-08-29	0.362	0.274	0.274	0.326												Weekly Flo				
2019-09-05 2019-09-12	0.381	0.223	0.223	0.260	/lei).5										eekl	1.5			
	11 2 2 1	0.188			~					_										
2019-09-19	0.381		8 0.188 8 0.133	0.248		0						_				8	-			
2019-09-19 2019-09-26	0.356	0.133 0.132	8 0.188 0.133 2 0.132	0.248		0	Annual		Late	Summer - Fall		Winter		Freshet		3	1			
2019-09-19	0.356	0.133 0.132	8 0.188 0.133 2 0.132	0.248		0								Freshet		3				
2019-09-19 2019-09-26	0.356 0.342 0.340	0.133 0.132	0.188 0.133 0.132 0.132 0.124	0.248		0	Annual urrent data:	2004 to 2		Summer - Fall	r	Winter Poor but improved		Freshet		3	1 0.5			
2019-09-19 2019-09-26 2019-10-03 2019-10-10 2019-10-10	0.356 0.342 0.340 0.340 0.301 0.288	0.133 0.132 0.124 0.120 0.120 0.151	0.188 0.133 0.132 0.124 0.120 0.120 0.120	0.248	Statist	cs on conc		2004 to 2				Poor but	2020 RWQN		Neasured	>	0.5			•••
2019-09-19 2019-09-26 2019-10-03 2019-10-10 2019-10-17 2019-10-24	0.356 0.342 0.340 0.301 0.288 0.269	0.133 0.132 0.124 0.120 0.120 0.151 0.259	0.188 0.133 0.132 0.124 0.120 0.120 0.151 0.259	0.248		cs on conc		2004 to 2		Poo 2017 RW	VQM:	Poor but improved		1: N	Neasured Surface)	>	0.5 0			~~
2019-09-19 2019-09-26 2019-10-03 2019-10-10 2019-10-17 2019-10-14 2019-10-31 2019-11-07	0.356 0.342 0.340 0.301 0.288 0.269 0.253 0.243	0.133 0.132 0.124 0.124 0.120 0.120 0.151 0.259 0.192 0.189	0.188 0.133 0.132 0.132 0.124 0 0.120 0.120 0.151 0.259 0.192 0.188	0.248	Statist Param Nash-S	cs on conc eter utcliffe eff	urrent data: ciency (E)			Poo 2017 RW Average (0.32	VQM: (Total) 1	Poor but improved 2020 RWQM: Median (Surface) 0.45	Median (Tota 0.45	1: N		3	0.5 0			~~
2019-09-19 2019-09-26 2019-10-03 2019-10-10 2019-10-17 2019-10-24 2019-10-31 2019-11-07 2019-11-14	0.356 0.342 0.340 0.301 0.288 0.269 0.253 0.243 0.238	0.133 0.132 0.124 0.120 0.151 0.259 0.192 0.189 0.189	0.188 0.133 0.132 0.124 0.120 0.120 0.120 0.151 0.259 0.192 0.189 0.189	0.248 0.219 0.153	Statist Param Nash-S Modifi	cs on conc eter utcliffe eff ed Nash-Su	urrent data: ciency (E) tcliffe efficie			Poo 2017 RW Average (0.32 0.20	VQM: (Total) 1 0	Poor but improved 2020 RWQM: Median (Surface) 0.45 0.34	Median (Tota 0.45 0.34	1: N			0.5 0 Ja			~~
2019-09-19 2019-09-26 2019-10-03 2019-10-10 2019-10-17 2019-10-14 2019-10-31 2019-11-07	0.356 0.342 0.340 0.301 0.288 0.269 0.253 0.243	0.133 0.132 0.124 0.120 0.151 0.259 0.192 0.189 0.189 0.189	0.188 0.133 0.132 0.124 0.120 0.120 0.120 0.151 0.259 0.192 0.189 0.189	0.248 0.219 0.153	Statist Param Nash-S Modifi Index c	cs on conc eter utcliffe eff ed Nash-Su f agreeme	urrent data: ciency (E) tcliffe efficie	ncy (E1)		Poo 2017 RW Average (0.32	VQM: (Total) 1 0 9	Poor but improved 2020 RWQM: Median (Surface) 0.45	Median (Tota 0.45	1: N		Notes	0.5 0 Ja	in 1 Fe		1 Apr 1
2019-09-19 2019-09-26 2019-10-03 2019-10-10 2019-10-17 2019-10-14 2019-10-31 2019-11-07 2019-11-14 2019-11-28 2019-11-28	0.356 0.342 0.340 0.301 0.288 0.269 0.253 0.243 0.238 0.228 0.228 0.228 0.228	0.133 0.132 0.124 0.124 0.120 0.151 0.259 0.192 0.189 0.189 0.189 0.183 0.171 0.159	0.188 0.133 0.132 0.132 0.124 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.192 0.192 0.189 0.189 0.189 0.171 0.159	0.248 0.219 0.153	Statist Param Nash-S Modifi Index o Modifi MAE	cs on conc eter utcliffe eff ed Nash-Su f agreeme	urrent data: ciency (E) tcliffe efficie nt (d)	ncy (E1)		Poo 2017 RW Average (0.33 0.22 0.75 0.66 0.66	VQM: (Total) 1 0 9 2 6	Poor but improved 2020 RWQM: Median (Surface) 0.45 0.34 0.82 0.68 0.54	Median (Tota 0.45 0.34 0.82 0.68 0.54	1: N		Notes Perfor than 0	0.5 0 Ja mance sta indicate	in 1 Fe atistics: Fi that the r	b 1 Mar 1 or E, E1, d, nodel is no	1 Apr 1 , d1, and I
2019-09-19 2019-09-26 2019-10-03 2019-10-10 2019-10-17 2019-10-24 2019-10-21 2019-11-07 2019-11-07 2019-11-14 2019-11-21 2019-11-20 2019-12-05	0.356 0.342 0.340 0.301 0.288 0.269 0.253 0.243 0.238 0.228 0.228 0.211 0.205	0.133 0.132 0.124 0.120 0.120 0.151 0.259 0.192 0.189 0.189 0.189 0.183 0.171 0.159 0.148	0.188 0.133 0.132 0.132 0.132 0.124 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.151 0.189 0.189 0.183 0.171 0.159 0.159 0.148	0.248 0.219 0.153	Statist Param Nash-S Modifi Index o Modifi MAE RMSE	eter eter etcliffe eff ed Nash-Su f agreeme ed index of	urrent data: ciency (E) tcliffe efficie nt (d) agreement	ncy (E1) (d1)		2017 RW Average (0.33 0.22 0.75 0.66 0.99	VQM: (Total) 1 0 9 2 6 9	Poor but improved 2020 RWQM: Median (Surface) 0.45 0.34 0.82 0.68 0.54 0.88	Median (Tota 0.45 0.34 0.82 0.68 0.54 0.88	1: N		Notes Perforn than 0 genera	0.5 0 Ja mance sta indicate	atistics: Free that the rest a bett	b 1 Mar 1 or E, E1, d, model is no ter fit with	1 Apr 1 , d1, and I o better th monitore
2019-09-19 2019-09-26 2019-10-03 2019-10-10 2019-10-17 2019-10-21 2019-10-31 2019-11-07 2019-11-07 2019-11-14 2019-11-28 2019-12-05	0.356 0.342 0.340 0.301 0.288 0.269 0.253 0.243 0.238 0.228 0.228 0.218 0.218 0.211 0.219	0.133 0.132 0.124 0.120 0.120 0.151 0.259 0.192 0.189 0.189 0.189 0.183 0.171 0.159 0.148	0.188 0.133 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.151 0.120 0.189 0.189 0.183 0.171 0.151 0.171 0.152 0.148 0.148 0.138	0.248 0.219 0.153	Statist Param Nash-S Modifi Index o Modifi MAE RMSE Coeffic	eter eter utcliffe eff ed Nash-Su f agreeme d index of ent of Det	urrent data: ciency (E) tcliffe efficie nt (d)	ncy (E1) (d1)		Poo 2017 RW Average (0.33 0.22 0.75 0.66 0.66	VQM: (Total) 1 0 9 2 6 6 9 2	Poor but improved 2020 RWQM: Median (Surface) 0.45 0.34 0.82 0.68 0.54	Median (Tota 0.45 0.34 0.82 0.68 0.54	1: N		Notes Perforn than 0 genera Notes	0.5 0 Ja mance sta indicate illy indica on season	an 1 Fe atistics: Fr that the r ites a bett nal period	b 1 Mar 1 or E, E1, d, nodel is no	1 Apr 1 , d1, and I o better th monitore (January
2019-09-19 2019-09-26 2019-10-03 2019-10-07 2019-10-17 2019-10-24 2019-10-31 2019-11-07 2019-11-14 2019-11-12 2019-11-12 2019-12-12 2019-12-12 2019-12-26	0.356 0.342 0.340 0.301 0.288 0.269 0.253 0.243 0.243 0.228 0.218 0.211 0.205 0.199 0.194	0.133 0.132 0.124 0.120 0.120 0.151 0.259 0.192 0.189 0.189 0.189 0.183 0.171 0.159 0.148 0.138 0.129	0.188 0.133 0.132 0.132 0.120 0.120 0.151 0.192 0.192 0.192 0.193 0.193 0.192 0.193 0.193 0.194 0.195 0.171 0.159 0.148 0.148 0.148 0.120 0.120 0.120	0.248 0.219 0.153 0.153 0.133	Statist Param Nash-S Modifi Index o Modifi MAE RMSE Coeffic Numbe Total n	ent of Det	urrent data: ciency (E) tcliffe efficie nt (d) agreement ermination (o statistics veekly data	ncy (E1) (d1)		Poo 2017 RW Average (0.33 0.2017 RW Average (0.33 0.2017 RW 0.217 0.33 0.2017 RW 0.217 0.33 0.217 0.062 0.942 0.783 783	VQM: (Total) 1 0 9 9 2 6 6 9 9 2 2 3 3 3 3	Poor but improved 2020 RWQM: Median (Surface) 0.45 0.34 0.34 0.82 0.68 0.54 0.54 0.53 0.53 228 783	Median (Tota 0.45 0.34 0.82 0.68 0.54 0.54 0.53 228 783	1: N	Surface)	Notes Perforn than 0 genera Notes (Decer	0.5 0 Ja indicate 1 illy indica on season nber thro	atistics: Fe that the r tes a bett nal perioo bugh early	b 1 Mar 1 for E, E1, d, model is no ter fit with ds: Annual y April) Fre	1 Apr 1 , d1, and I o better th monitore (January eshet (mic
2019-09-19 2019-09-26 2019-10-03 2019-10-10 2019-10-17 2019-10-14 2019-10-31 2019-11-07 2019-11-14 2019-11-28 2019-12-05 2019-12-12 2019-12-19 2019-12-26 Annual	0.356 0.342 0.340 0.301 0.288 0.269 0.253 0.243 0.238 0.243 0.238 0.228 0.211 0.205 0.199 0.194 0.57	0.133 0.132 0.124 0.120 0.151 0.259 0.192 0.189 0.189 0.189 0.188 0.188 0.188 0.189 0.189 0.189 0.189 0.138 0.171 0.159 0.148 0.138 0.129 0.120	3 0.188 4 0.132 9 0.132 10 0.124 11 0.124 12 0.120 13 0.120 14 0.120 15 0.192 16 0.192 17 0.189 18 0.183 19 0.189 10 0.159 10 0.159 10 0.148 10 0.138 10 0.129 11 0.138 11 0.138 12 0.37	0.248 0.219 0.153 0.153 0.133 0.133 0.66	Statist Param Nash-S Modifi Index o Modifi MAE RMSE Coeffic Numbe Total n Mean	ent of Dett ent of Dett immer of V f all weekl	urrent data: ciency (E) tcliffe efficie nt (d) agreement ermination (o statistics veekly data y data	ncy (E1) (d1) R ²)		Poo 2017 RW Average (0.33 0.2017 RW Average (0.33 0.2017 RW 0.2017 RW 0.210 0.77 0.62 0.62 0.62 0.99 0.44 228 783 1.000	VQM: (Total) 1 0 9 9 2 6 6 9 9 2 2 3 3 3 3 5 5	Poor but improved 2020 RWQM: Median (Surface) 0.45 0.34 0.82 0.68 0.54 0.54 0.53 228 783 0.811	Median (Tota 0.45 0.34 0.82 0.68 0.54 0.88 0.53 228 783 0.811	1: N	Surface) 228 1.111	Notes Perforn than 0 genera Notes (Decer n/a = N	0.5 0 Ja indicate illy indica on seaso nber thro	atistics: Fe that the r tes a bett nal perioo bugh early	b 1 Mar 1 or E, E1, d, model is no ter fit with ds: Annual	1 Apr 1 , d1, and I o better th monitore (January eshet (mic
2019-09-19 2019-09-26 2019-10-03 2019-10-07 2019-10-17 2019-10-24 2019-10-31 2019-11-07 2019-11-14 2019-11-12 2019-11-12 2019-12-12 2019-12-12 2019-12-26	0.356 0.342 0.340 0.301 0.288 0.269 0.253 0.243 0.243 0.228 0.218 0.211 0.205 0.199 0.194	0.133 0.132 0.124 0.120 0.120 0.151 0.259 0.192 0.189 0.189 0.189 0.183 0.171 0.159 0.148 0.138 0.129	0.188 0.133 0.132 0.132 0.124 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.189 0.189 0.189 0.189 0.171 0.159 3 0.148 0.138 0.120 0.120 0.37 0.26	0.248 0.219 0.153 0.153 0.133 0.133 0.133 0.134	Statist Param Nash-S Modifi Index of Modifi MAE RMSE Coeffic Numbe Total n Mean Standa	ent of Det r of data in umber of v f all weekk	urrent data: ciency (E) tcliffe efficie nt (d) agreement ermination (o statistics veekly data	(d1) (d1) R ²)	018	Poo 2017 RW Average (0.33 0.2017 RW Average (0.33 0.2017 RW 0.217 0.33 0.2017 RW 0.217 0.33 0.217 0.062 0.942 0.783 783	VQM: (Total) 1 0 9 2 6 6 9 9 2 2 3 3 3 5 5 8	Poor but improved 2020 RWQM: Median (Surface) 0.45 0.34 0.34 0.82 0.68 0.54 0.54 0.53 0.53 228 783	Median (Tota 0.45 0.34 0.82 0.68 0.54 0.54 0.53 228 783	1: N	Surface)	Notes Perform than 0 genera Notes (Decer n/a = N missin	0.5 0 Ja indicate i illy indica on season nber thro Vot availa g data)	atistics: Fri that the rites a betti nal periocough early buble or un	b 1 Mar 1 for E, E1, d, model is no ter fit with ds: Annual y April) Fre	1 Apr 1 , d1, and l b better th monitore (January eshet (mic culate a v

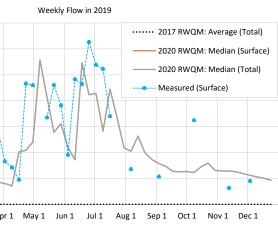
https://goldenassociates.sharepoint.com/sites/106374/Project Files/6 Deliverables/02. Working/18111630-007-R-RevB-23050-HydrologyReport/Spreadsheets/Model Performance/ FR-UFR1-Monitored/Interface

Weekly Flow for Concurrent Data: 2004 to 2018


nd R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less er than using the mean of all the data. For MAE and RMSE, a lower number itored data. ıary through December); late Summer - Fall (late-July through November); Winter

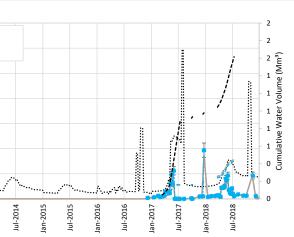
(mid-April through mid-July)


e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

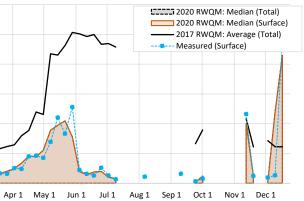

Sconario	2017RWQM TF MF	2020RWQM SF MF	2020RWQM TF MF	Monitored SF							ALITY MODEL (F	,				to 2010		
Scenario				Monitored_SF		1.6							week	ly Flow Ser				
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		1.4		RWQM: Averag sured (Surface)	ge (Total)		2020 RWQM: M 2017 RWQM: A			2020 R		dian (Total) dian (Surfac		
Flow Modelling Method	Snowmelt Runoff Module, Was sub-catchments of John Creek, Tower Diversion, Tower Diversi	Lake Pit, Lake Mountain Pit,	Surface-Groundwater Partitioning	Not Implemented		1.2		RWQM: Media	n (Total)		- Measured (Surfa	- · ·					·	
Spinner ID	9	Mean annual surface ru	noff (monitored)	430	(m³/s)	1			1									
Selected Year	2019	Mean annual total runo	off (2020 RWQM)	400	low (0.8			_									-
Comparison Start Year	2004	Evaluation period (wee	ks)	783	Weekly Flow	0.6												
Comparison End Year	2018	Weeks with monitoring	-	7%	Vee	0.4												
Station ID & Description	FR_LMP1	Lake Mountain Pond (E		ł			A.						M					
Drainage Area (2018)	1060 ha	Disturbed Area (2018)		~ 39%	-	0.2	J. V.	/ Www.			h.		14		ί			W
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		0		Jul-2005	Jul-2006	an-2007	an-2008	Jan-2009	Jul-2010	Jan-2011	Jul-2011	Jul-2012	Jan-2013	Jul-2013 an-2014
2019-01-03	Weekly Flow in 2019 0.000	0.032	(m³/s) 2 0.032				Jan-2004 Jul-2004 Jan-2005	Jul-2 Jan-2	Jul-2	Jan-2007 Jul-2007	Jan-2008 Jul-2008	Jan-2 Jul-2 Jan-2	Jul-2	Jan-2	Jan-2 Jan-2	Jul-2	Jan-2	Jul-2013 Jan-2014
2019-01-10	0.000	0.03	1 0.031	0.025	5													
2019-01-17 2019-01-24	0.000	0.029		0.049		4		Wee	ekly Flow Exc	ceedance Curv	e: 2004 to 2018							Mean V
2019-01-24 2019-01-31	0.000			5		•						odian (Surface)				0.9		iviedil V
2019-02-07	0.000	0.024		0.018	3 1	.2					2020 RWQM: M	· · ·				0.8		
2019-02-14 2019-02-21	0.000	0.022		1				- 2020 KWQN	i: iviedian (To	otal)	Measured (Surfa	ice)						
2019-02-28	0.000	0.019			3/s)	1									1 ³ /s)	0.7		
2019-03-07 2019-03-14	0.000			7 0.016	u s s										л) м	0.6		
2019-03-21	0.000	0.050			÷).8									Weekly Flow (m³/s)	0.5		
2019-03-28 2019-04-04	0.000	0.043			Weekly	0.6									eekly			
2019-04-11	0.000	0.030	6 0.036	5 0.071	Ň										e Ke	0.4		
2019-04-18 2019-04-25	0.000	0.10			, C	.4									Average	0.3		
2019-05-02	0.000	0.12	1 0.121	0.230)										A	0.2		
2019-05-09 2019-05-16	0.000	0.278		3 7 0.167).2												
2019-05-23	0.000	0.139	9 0.139	0.230)	0										0.1	S .	
2019-05-30 2019-06-06	0.000	0.150				0		20 3			60	70 80	90	100		0		
2019-06-13	0.000	0.080	6 0.086	5 0.241					Prob	oability of Exce	edance (%)					Jan	I Feb	1 Mar 1 Ap
2019-06-20 2019-06-27	0.000	0.27						Mea	n Flow for Co	oncurrent Dat	a: 2004 to 2018							
2019-07-04	0.000	0.214	4 0.214	4 0.269)	= 20	17 RWQM: Average					- 2020 DWOM	Madian (T	et al \		0.35		
2019-07-11 2019-07-18	0.000	0.14		0.261)		17 KWQIVI. Avelage	10(a) 2020	KWQIVI. Weu	ian (sunace)	Ineasureu (Surrau	-2020 KWQIVI.	. Ivieulali (1	otaij				
2019-07-25	0.000	0.168	8 0.168	3		0.5										0.3		
2019-08-01 2019-08-08	0.000	0.109				0.4									(m³/s)	0.25		
2019-08-15	0.000	0.132	2 0.132	2		0.3									v (L	0.25		
2019-08-22 2019-08-29	0.000				ן Flo	0.2									, Flov	0.2		
2019-09-05	0.000	0.079	9 0.079		Mean Flo	0.1									Weekly Flo			
2019-09-12 2019-09-19	0.000			3		0									Ŵ	0.15		*
2019-09-26	0.000	0.063	3 0.063	3		0 -	Annual		Late Summer	r - Fall	Winter		Freshet			0.1		
2019-10-03	0.000	0.063	3 0.063	3												0.1		
2019-10-10	0.000	0.06	1 0.061	0.162	Statisti	ics on	concurrent data:	004 to 2018		Poor	Good					0.05	,	
2019-10-17	0.000	0.073	3 0.073	3	Davrow				2	017 RWQM:	2020 RWQM	2020 RWQN	1: M	easured		-	· •	
2019-10-24 2019-10-31	0.000			5	Param	eter			Av	verage (Total)				Surface)		-		 1 Mar 1 Apr
2019-11-07	0.000	0.064	4 0.064	1			fe efficiency (E)	(= -)		0.04	0.69	0.69			_	Jan	т гер.	т іміагт Арг
2019-11-14 2019-11-21	0.000						sh-Sutcliffe efficier eement (d)	cy (E1)		0.20	0.54	0.54	_		Notes			
2019-11-28	0.000	0.059	9 0.059)	Modifi		lex of agreement (o	1)		0.58	0.75	0.75			Perform			E, E1, d, d1, and
2019-12-05 2019-12-12	0.000	0.050		0.045	MAE RMSE					0.18	0.10 0.15	0.10	_					del is no better fit with monito
2019-12-12	0.000)		ient o	f Determination (R	2)		0.26	0.72	0.13						Annual (Januar
2019-12-26	0.000	0.040	6 0.046	5			ata in statistics			55	55	55			(Decem	ber throug	gh early A	pril) Freshet (m
Annual	-	0.09	0.09	0.14			er of weekly data weekly data			783 0.113	783 0.191	783		55 0.235	n/a = N	ot availabl	e or unah	le to calculate a
Late Summer - Fall	-	0.08					viation of all weekly	data		0.184	0.215	0.215		0.278	missing			
Winter		0.03	0.03				ed mean annual rui			260	400	400		430				represent project

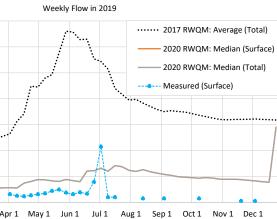
https://goldenasociates.sharepoint.com/sites/106374/Project Files/6 Deliverables/02. Working/18111630-007-R-RevB-23050-HydrologyReport/Spreadsheets/Model Performance/ FR-IMP1-Monitored/Interface

Weekly Flow for Concurrent Data: 2004 to 2018



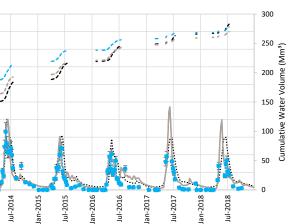
and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less ter than using the mean of all the data. For MAE and RMSE, a lower number itored data. Jary through December); late Summer - Fall (late-July through November); Winter


(mid-April through mid-July)

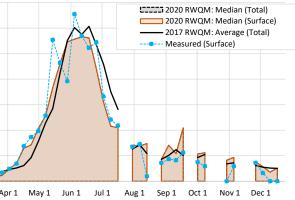

e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

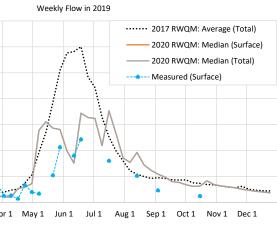
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF	[Y MODEL (,				Series: 2	004 to 2	018		
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		0.35		•• 2017 R	WQM: A	verage (T	otal)	_	2020	RWQM:	Median (Sur	face)		— 2020 F	RWQM:	Median	(Total)		e Me	asured (Surface)
	(Total)	(Surface)	(TOLAI)			0.3		 2017 R	WQM: A	verage (T	otal)		2020	RWQM:	Median (Sur	face)		2020 F	RWQM:	Median	(Total)		Me	asured (Surface)
Flow Modelling Method	Snowmelt Runoff Module, Wast sub-catchments of Swift Pit, For		Surface-Groundwater Partitioning	Not Implemented		0.25																			
ipinner ID	14	Mean annual surface rur	off (monitored)	70	Weekly Flow (m³/s)	0.2																			
elected Year	2019	Mean annual total runof	f (2020 RWQM)	80) wol:																				
Comparison Start Year	2004	Evaluation period (week	s)	783	ekly F	0.15																			
Comparison End Year	2018	Weeks with monitoring	data (%)	7%	Ne	0.1																			
station ID & Description	FR_LP1	Liverpool Sediment Pond	d Decant (E304835)			0.05					4						_						ż.		M ^r n
Drainage Area (2018)		Disturbed Area (2018)		~ 98%		0		ļ.	··· ^{/•} ··· [•] ··	~		×	<u>_</u>	·····			*•		·····	····.		····.,		•••••••	·····
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)			Jan-2004	Jan-2005	Jul-2005	Jan-2006	Jul-2006	lan-2007	Jul-2007	Jan-2008	Jul-2008	Jan-2009	Jul-2009	Jan-2010	Jul-2010	Jan-2011	Jul-2011	Jan-2012	Jul-2012	Jan-2013	Jul-2013 Jan-2014
	Weekly Flow in 2019		(m³/s)		Į	5	an-z Iul-2	an-2	Jul-2	an-2	Jul-2	an-2	Jul-2	an-2	Jul-2	an-2	Jul-2	an-2	Jul-2	an-2	Jul-2	an-2	Jul-2	an-2	Jul-2 an-2
2019-01-03	0.044	0.013	0.013	0.005	-	-		Ť.	,	-		-		-i		-		7							
2019-01-10 2019-01-17	0.045	0.012 0.012	0.012		1																				
2019-01-17	0.045	0.012	0.012		0.	35				Wee	kly Flov	w Excee	dance Cu	irve: 20	004 to 2018										Mea
2019-01-31	0.045	0.011	0.011						2017		Avera	ge (Tot	al) —	202	0 RWQM: N	ledian	(Surface	•)				0	.12		
2019-02-07	0.045	0.011	0.011	0.003	(0.3						•	-				Junace	.,							
2019-02-14 2019-02-21	0.045	0.010 0.010	0.010		-				- 2020	RWQM	: Media	an (Tota	al) -	Mea	sured (Surf	ace)							0.1		
2019-02-21 2019-02-28	0.046	0.010	0.010		્ર ૦.	25																			
2019-03-07	0.047	0.009	0.009	0.004	(m³/																	Flow (m ² /s) 0			
2019-03-14	0.048	0.009	0.009		-	0.2																<u> </u>	.08		
2019-03-21 2019-03-28	0.049 0.051	0.011 0.011	0.011 0.011	0.012	Ē																ī	ž >			
2019-03-28 2019-04-04	0.051	0.011	0.011	0.006	eekly 0.	15																0 Weekly	.06		
2019-04-11	0.063	0.011	0.011	0.005	Ae v.																3	Š			
2019-04-18	0.068	0.015	0.015	0.005		0.1																Average O	.04		
2019-04-25	0.090	0.016	0.016	0.005		J.1																Ver Ver	.04		
2019-05-02 2019-05-09	0.089	0.018 0.017	0.018	0.006	0																				$\sqrt{\lambda}$
2019-05-09	0.090	0.017	0.017	0.007	0.	.05			•••••													0	.02		\setminus / \vee
2019-05-23	0.115	0.016	0.016	0.010										•••••											
2019-05-30	0.132	0.018	0.018	0.007		0 - 0		10	20	3(0	40	50		60	70	80	n	90	1	.00		0		
2019-06-06	0.131	0.017	0.017	0.006		0		10	20	51			ility of Ex			70	0	0	90	1	.00		Jan 1	L Feb	1 Mar 1
2019-06-13 2019-06-20	0.126	0.016	0.016	0.008								TTODat		cecuar	100 (70)										
2019-06-27	0.111	0.024	0.024	0.016						Mear	n Flow f	for Con	urrent D	ata: 20	04 to 2018										
2019-07-04	0.109	0.026	0.026	0.043																		0.	14		
2019-07-11	0.103	0.024	0.024	0.004		201	L7 RWQIV	1: Average	e (Total)	2020	RWQIVI:	Median	(Surface)	IVIea	sured (Surfa	ce) —	2020 RW	QIVI: IVIe	dian (To	ital)					
2019-07-18 2019-07-25	0.088 0.083	0.028	0.028	0.004		0.1																0.	12 -		
2019-07-23 2019-08-01	0.085	0.027	0.027		5)	0.08															_	-			
2019-08-08	0.079	0.023	0.025		m ³ /5	0.08															(m ³ /c)	Ê (0.1		
2019-08-15	0.077	0.025	0.025	0.003	_ ≥	0.06																			
2019-08-22	0.074	0.024			Flo	0.04															- 1	5 0.	08		
2019-08-29 2019-09-05	0.072	0.023	0.023	0.003	ean	0.04															1	h			
2019-09-03	0.070	0.022	0.022	0.003	Ξ	0.02															what	0.	06		
2019-09-19	0.070	0.020	0.020			0															>				
2019-09-26	0.070	0.019	0.019		_			Annual			Late Su	mmer -	Fall		Winter			Fre	eshet			0.	04	•••••	
2019-10-03	0.069	0.019	0.019																			5.			
2019-10-10	0.067	0.019	0.019	0.003	Statist	ics on o	concurre	ent data:	2004 to	2018			Poor		Very good							0.	02		
2019-10-10	0.067	0.019	0.019	0.003														-				5.			
2019-10-24	0.065	0.019			Param	eter							7 RWQM		020 RWQM		2020 RW			easured			o 📩		•
2019-10-31	0.064	0.018	0.018											n) ivie	dian (Surfa	ce) N	ledian ((St	urface)			-	Feb	1 Mar 1 A
2019-11-07	0.064	0.018	0.018				e efficier			\			-8.27		0.80		0.80								
2019-11-14 2019-11-21	0.064	0.018	0.018	0.001			sh-Sutclif ement (d	fe efficie	ency (E1	1			-2.33 0.32		0.71		0.71				Not	tes			
2019-11-21 2019-11-28	0.064	0.013	0.013	0.001				eement ((d1)				0.32		0.85		0.85						ce stati	tics: Fo	r E, E1, d, d1, a
2019-12-05	0.064	0.017	0.017	0.001	MAE								0.04		0.00		0.00								odel is no bett
2019-12-12	0.064	0.016	0.016		RMSE								0.06		0.01		0.01				-				r fit with mon
2019-12-19	0.064	0.015	0.015					ination (R²)				0.02	_	0.80		0.80								: Annual (Janu
2019-12-26	0.064	0.058	0.058				ata in sta r of week					+	53 783	_	53 783		53 783			53	(De	cember	throug	n early A	April) Freshet
Annual	0.07	0.02	0.02	0.01			eekly da	,					0.055		0.015	+	0.01		(0.015	n/a	= Not a	vailable	orunal	ole to calculate
		0.02	0.02				,	all week	dv data			-	0.036		0.013		0.01			0.015		sing dat		o. undi	
Late Summer - Fall	0.07	0.02	0.02																			sing uai			
Late Summer - Fall Winter	0.07	0.02	0.02					annual ru		m/yr)			260		80		80			70				RWQM	represent pro

an Weekly Flow for Concurrent Data: 2004 to 2018


and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less , tter than using the mean of all the data. For MAE and RMSE, a lower number initored data. nuary through December); late Summer - Fall (late-July through November); Winter

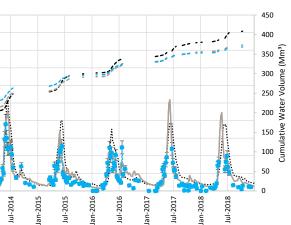
t (mid-April through mid-July)


te a value (e.g., mean annual runoff is not calculated if certain weeks or months are

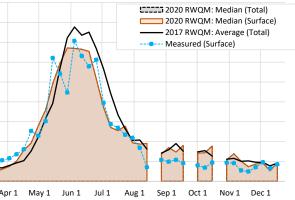

				FLC		ONENT	OF THE TEC	K ELK VAL	LEY REGIO	NAL WATER		TY MODEL (RV	VQM) - MC	DELLED	PERFOR	MANCE				
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF										v	Veekly Flo	w Serie	s: 2004 to 20)18		
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	2	。…	···· 2017 RW0	QM: Average	(Total) —	2020 RW	/QM: Med	ian (Surface) —	2020 RV	/QM: Med	lian (Total)					
Slow Medalling	(Total)	(Surface)					Measured	(Surface)		• 2017 RW	/QM: Aver	age (Total) ––	 2020 RV	/QM: Med	lian (Surfac	:e) T				
Flow Modelling Method	FR_HC1 + FR_UFR1 + Turn Creel	k (Sum of modelled flows)	Surface-Groundwater Partitioning	Not Implemented	1		2020 RW0	QM: Median	(Total) -	Measure	ed (Surface	:)				1		T	T	
Spinner ID	5	Mean annual surface ru	noff (monitored)	500	(s/ _E u 1	2]			
Selected Year	2019	Mean annual total runo	ff (2020 RWQM)	540	 ≥1	o				- 1						_				-1
Comparison Start Year	2004	Evaluation period (week	ks)	783	Weekly Flow (m ³ /s)	8		l.	A						Ţ			4- -		TÅ.
Comparison End Year	2018	Weeks with monitoring	data (%)	27%	Ňe	6						k.			t t		-1	<u>x</u>		
Station ID & Description	FR_FR1	Fording River downstrea	am of Henretta Creek (020	00251)		4	A.										-			
Drainage Area (2018)	8900 ha	Disturbed Area (2018)		~ 5%		2	M.	/ WA			M	him				•/		-	_ ¥	
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		0 400	004	005	900	007	000	800 600	600	010	010	011	012	012	013	014 014
	Weekly Flow in 2019		(m³/s)		1	Jan-2004	Jul-2004 Jan-2005	Jul-2005	Jan-2006 Jul-2006	Jan-2007	Jul-2007 Jan-2008	Jul-2008 Jan-2009	Jul-2009	Jan-2010	Jul-2010 Jan-2011	Jul-2011	Jan-2012	Jul-2012 Jan-2013	Jul-2013	Jan-2014 Jul-2014
2019-01-03 2019-01-10	0.433 0.370	0.289									,									
2019-01-17	0.357	0.255	5 0.255					`	Weekly Flor	v Exceedance) (urvo·)	004 to 2018								
2019-01-24 2019-01-31	0.353	0.239			16													7		Mean We
2019-01-51 2019-02-07	0.319	0.223			14	!		•• 2017 RW	/QM: Avera	ge (Total) 🛛 🗕	202	20 RWQM: Mec	lian (Surface	:)				'		
2019-02-14	0.314 0.313	0.199 0.187				N -		— 2020 RW	QM: Media	an (Total) 🛛 -	- Me	easured (Surface	e)					6		
2019-02-21 2019-02-28	0.306	0.187			<u>ت</u> 12												(s)			
2019-03-07	0.335	0.156			(s/s) 10												Flow (m³/s)	5		
2019-03-14 2019-03-21	0.339 0.348	0.150			ð 10												NO			
2019-03-21 2019-03-28	0.377	0.246		0.744	Weekly Flow 0 ∞												κίγ F	4		
2019-04-04	0.388	0.216		0.248	Veek												Weekly	3		
2019-04-11 2019-04-18	0.471 0.513	0.199 0.533		0.259	≥ 6		v. ***										ge V	3		
2019-04-25	0.743	0.585	5 0.585	0.664	4		<u> </u>										Average	2		
2019-05-02 2019-05-09	1.063	0.724		0.395				. · · · ·									A			
2019-05-09	2.705	3.106		0.555	2						-							1		
2019-05-23	3.866	2.865		1.043	0														<u> </u>	
2019-05-30 2019-06-06	5.096 5.764	2.810		2.127	-	0	10	20	30	40	50	60 7	70 8	D	90	100		0		Ann 1 Ann 1
2019-06-13	5.819	1.510	1.510	1.799						Probability o	f Exceeda	ince (%)						Jan 1	Feb1 N	Nar1 Apr:
2019-06-20 2019-06-27	6.005 4.842	3.442		2.427				N	/lean Flow f	or Concurren	nt Data: 2	004 to 2018								
2019-00-27 2019-07-04	4.431	3.238			-													7		
2019-07-11	3.292	2.189		1.600	-	2017 RW	/QM: Average	(Total) 📕 20	020 RWQM:	Median (Surfa	ice) 🗖 Me	easured (Surface)	- 2020 RW	QM: Medi	ian (Total)					
2019-07-18 2019-07-25	2.522	3.530		1.600	4													6		
2019-08-01	1.598	1.713	3 1.713		(s/, 3.5												(s)			
2019-08-08 2019-08-15	1.221	1.542		1.020	(s/ _E m)												w (m³/s)	5		
2019-08-15 2019-08-22	0.998			1.020	2												NO			
2019-08-29	0.922	1.239		0.177	1.5 Mean F				_	_							άγF	4		
2019-09-05 2019-09-12	0.948	1.088		0.457	Ž 1 2 0.5												Weekly Flo	3		
2019-09-19	0.873	0.800	0.800		0.5												>	-		
2019-09-26	0.857	0.770			_		Annual		Late Sur	nmer - Fall		Winter		Fres	het			2		
2019-10-03	0.868	0.679	0.679																	
2019-10-10	0.753	0.619				on conc	urrent data:	2004 to 201	18	Acceptal	ble	Acceptable						1		_
2019-10-17	0.733	0.629		0.237	_					2017 RW0	QM:	2020 RWQM:	2020 RW	QM:	Measu	red				
2019-10-24 2019-10-31	0.687	0.832			Paramete					Average (T		edian (Surface)			(Surfa			0		
2019-11-07	0.627	0.636	5 0.636		Nash-Suto					0.53		0.57	0.57					1 LUBL	-ent Ma	ar1 Apr1
2019-11-14	0.589	0.602					tcliffe efficie	ncy (E1)		0.40		0.44 0.86	0.44				Notos			
2019-11-21 2019-11-28	0.570	0.560			Index of a Modified		agreement (d1)		0.84		0.86	0.8				Notes Performance	e statistics	For E, E1	., d, d1, and F
2019-12-05	0.505	0.464	4 0.464		MAE		- 1			1.20		1.12	1.12	2			than 0 indica	ate that the	e model is	s no better th
2019-12-12 2019-12-19	0.467	0.428			RMSE	t of Dot	ermination (F	2)		1.93 0.54		1.84 0.58	1.84							vith monitore ual (January t
2019-12-19 2019-12-26	0.446	0.397			Number o			• 1		208		208	208							Freshet (mid
					Total num	ber of w	eekly data			783		783	783		208					
Annual	1.41	1.10			Mean of a			u dat-		2.262		2.159	2.15		2.21				inable to	calculate a v
Late Summer - Fall	0.92	1.05 0.26			Standard Approxim		n of all weekl		r)	2.387 550		2.482 540	2.48 540		2.81 500		missing data Flows for the		OM ropro	sent project
Winter																				

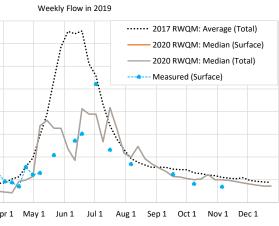
https://goldenassociates.sharepoint.com/sites/106374/Project Files/6 Deliverables/02. Working/18111630-007-R-RevB-23050-HydrologyReport/Spreadsheets/Model Performance/ FR-FR1-Monitored/Interface

Weekly Flow for Concurrent Data: 2004 to 2018



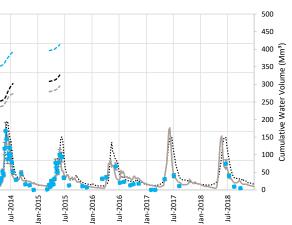
nd R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less er than using the mean of all the data. For MAE and RMSE, a lower number tored data.


ary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July)

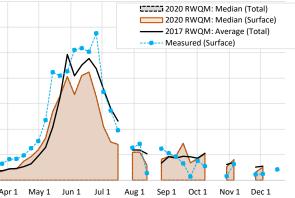

e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

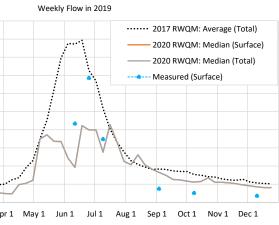
				FLC	у сом	DNENT OF THE TECK ELK VALLEY REGIO	ONAL WATER QUA	LITY MODEL (RV	VQM) - MODELLE	D PERFORMAN	CE		
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF						Weekly Flow Ser	ies: 2004 to 2018		
Case Description	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Measured (Surface)		0 2017 RWQM: Average (Total) –	2020 RWQM: N	ledian (Surface) —		edian (Total)			
	(Total)	(Surface)	(Total)		1	8 Measured (Surface) -	2017 RWQM: A	verage (Total) ––	2020 RWQM: M	edian (Surface)		ΤT	
Flow Modelling Method	FR_FRNTP + Fording LF2 Lower (sum of modelled flows)	+ South Tailings Pond Seepage	Surface-Groundwater Partitioning	Not Implemented		6 4 2020 RWQM: Median (Total) -	Measured (Surf	ace)			Ī		
Spinner ID	16	Mean annual surface ru	noff (monitored)	430	Weekly Flow (m³/s)	2							_
Selected Year	2019	Mean annual total runo	ff (2020 RWQM)	470	low (0				т			1
Comparison Start Year	2004	Evaluation period (week	ks)	783	ekly F	8	;						
Comparison End Year	2018	Weeks with monitoring	data (%)	30%	Ňe	6	4		1				
Station ID & Description	FR_FR2	Fording River upstream	of Kilmarnock Creek (2002	201)		4 A A A						A A	ľ
Drainage Area (2018)	13110 ha	Disturbed Area (2018)		~ 23%	-			M.					F
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		000 0000	007	800 800	010	010 011 011	011 012 012	013 013 014 014	014
2010 01 02	Weekly Flow in 2019		(m³/s)			Jan-2004 Jul-2005 Jan-2005 Jul-2006 Jan-2006	Jan-2007 Jul-2007	Jan-2008 Jul-2008 Jan-2009	Jul-2009 Jan-2010	Jul-2010 Jan-2011	Jul-2011 Jan-2012 Jul-2012	Jan-2013 Jul-2013 Jan-2014	Jul-201
2019-01-03 2019-01-10	0.863	0.524 0.511										·	
2019-01-17	0.782	0.482				Weekly Flo	w Exceedance Curve	e: 2004 to 2018				Maan	14/-
2019-01-24 2019-01-31	0.775	0.460		0.304	18						9	Mean	vve
2019-02-07	0.735	0.412	2 0.412	0.360	16	2017 RWQM: Avera	age (Total)	2020 RWQM: Mec	lian (Surface)		-		
2019-02-14 2019-02-21	0.731 0.741	0.420			14	2020 RWQM: Medi	an (Total)	Measured (Surface	2)		8		\uparrow
2019-02-28	0.733	0.344	0.344								(s) 7		_
2019-03-07	0.764				(s/ _€ m) 12						Weekly Flow (m³/s) 8 2 9 L		
2019-03-14 2019-03-21	0.777 0.787	0.310		0.342	10						N O		
2019-03-28	0.836	0.490	0.490	1.296	ΎΕ						4 S		
2019-04-04 2019-04-11	0.861	0.449		0.919	weekly	··/					aa ≥ 4		_
2019-04-11 2019-04-18	1.126	0.424		0.699	- 6						р0 0		
2019-04-25	1.576	0.987		1.559	4						Avera,		
2019-05-02 2019-05-09	1.958 2.954	1.141 3.376		1.215	-						≪ 2		+
2019-05-16	3.897	3.616	5 3.616		2						1		
2019-05-23	5.394	3.273		2.081									
2019-05-30 2019-06-06	6.856 7.538	3.261		1	-	0 10 20 30	40 50	60 7	0 80	90 100	0	n1 Feb1 Mar1 Ag	nr '
2019-06-13	7.437	1.853		2.715			Probability of Excee	edance (%)			101		p
2019-06-20 2019-06-27	7.556	4.129		3.019		Mean Flow	for Concurrent Data	: 2004 to 2018					
2019-07-04	5.579	3.889	3.889	5.210					2020 00/004-04-		8		
2019-07-11 2019-07-18	4.321 3.381	2.670 4.181		2.315		2017 RWQM: Average (Total) 2020 RWQM:	iviedian (Surface)	ivieasured (Surrace)	= 2020 RWQIVI: IVIE	dian (Total)			
2019-07-18	2.781				5				_		7		
2019-08-01	2.328	2.166			(s/ ⁸ m ³ /s						(s) 6		
2019-08-08 2019-08-15	1.937	1.988		1.684	د (m						(s/ɛm)		
2019-08-22	1.645	1.926	5 1.926		Nol-						<u> </u>		
2019-08-29	1.541 1.555				2 Mean Flo		-						
2019-09-05 2019-09-12	1.555	1.519			Ĕ 1			_			4 Weekly Flo		
2019-09-19	1.467	1.141	1.141	1.239	0						> 3		
2019-09-26 2019-10-03	<u>1.441</u> 1.439				-	Annual Late Sun	nmer - Fall	Winter	Fre	eshet	2		
2017-10-03	1.+37	1.050	1.050		Charlint		Destruction	Associated			2		
2019-10-10	1.302	1.002			Statistics	on concurrent data: 2004 to 2018	Poor	Acceptable			1.	·····	-
2019-10-17 2019-10-24	1.267 1.206	1.030			Paramet		2017 RWQM:	2020 RWQM:	2020 RWQM:	Measured			μ
2019-10-24 2019-10-31	1.206	0.993			raramet		Average (Total)	Median (Surface)	Median (Total)	(Surface)	0	1 Feb 1 Mar 1 Apr)r 1
2019-11-07	1.104	0.991	0.991			liffe efficiency (E)	0.47	0.57	0.57			i iebi ividit Api	. 1
2019-11-14 2019-11-21	1.063	0.966				Nash-Sutcliffe efficiency (E1) greement (d)	0.32 0.85	0.42	0.42		Notes		
2019-11-28	1.083	0.854	4 0.854		Modified	ndex of agreement (d1)	0.68	0.71	0.71		Performance sta	tistics: For E, E1, d, d1, and	
2019-12-05	0.968	0.803			MAE		1.32	1.13	1.13			hat the model is no better	
2019-12-12 2019-12-19	0.925	0.756			RMSE Coefficie	t of Determination (R ²)	2.04 0.55	1.83 0.61	1.83 0.61			es a better fit with monito al periods: Annual (Januar	
2019-12-26	0.884	0.721				f data in statistics	238	238	238			igh early April) Freshet (n	
						ber of weekly data	783	783	783	238			
Annual Late Summer - Fall	2.12	1.47 1.45				ll weekly data leviation of all weekly data	2.848 2.798	2.599 2.740	2.599 2.740	2.564 2.811		le or unable to calculate a	a va
Winter	0.81	0.50				ated mean annual runoff (mm/yr)	510	470	470	430	missing data) Flows for the 202	17 RWQM represent proje	ectr
	4.45						1				December 2016)		

Weekly Flow for Concurrent Data: 2004 to 2018



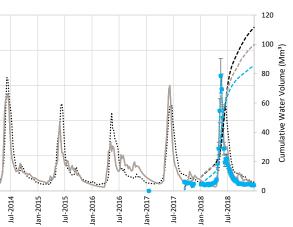
nd R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less er than using the mean of all the data. For MAE and RMSE, a lower number tored data. ary through December); late Summer - Fall (late-July through November); Winter


mid-April through mid-July)

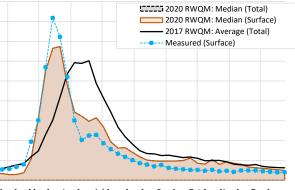

e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

				FLC	W COMP	ONE	NT OF THE TECK ELK VALLEY RE	GIONAL W	ATER QUA	LITY MODEL (RW	/QM) - MODELL	ED PERFOR	MANCE	E			
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF		20						Weekly Flo	ow Serie	es: 2004 to 2	018		
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		30	······ 2017 RWQM: Average (Tota			WQM: Median (Surf		2020 RWQM: I 2020 RWQM: I					
Flow Modelling	FR_FR2 + GH_SC1 + Swift Creek	Upper Diversion + FR_SKP1	Surface-Groundwater] :	25	2020 RWQM: Median (Tota			red (Surface)	, , , , , , , , , , , , , , , , , , ,	2020 1110 0111	viculari (Junacey		T	
Method	(sum of modelled flows)		Partitioning	Not Implemented		20							ŀ		т		-1
Spinner ID	32	Mean annual surface ru	noff (monitored)	470	(m³/s										_	I	
Selected Year	2019	Mean annual total runo	ff (2020 RWQM)	390	Flow	15					т				1		==!!
Comparison Start Year	2004	Evaluation period (week	ks)	783	^{skl}	10			1	ΨT	1	Ţ	H		1 1		<u>F</u>
Comparison End Year	2018	Weeks with monitoring		22%	š							1					
Station ID & Description	FR_FR4	Fording River downstrea (200311)	am of Swift Creek, upstrea	am of Cataract Creek		5	A		-	1			- //		-		
Drainage Area (2018)	18240 ha	Disturbed Area (2018)		~ 26%		0		m.	_ \^		يميكم الح			be f	Carlor,	<u> </u>	
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)			Jul-2004 Jan-2005 Jul-2005 Jan-2006	006	Jul-2007	an-2008 Jul-2008 an-2009	Jul-2009 an-2010	Jul-2010 Jan-2011	Jul-2011	012	Jul-2012	Jul-2013	an-2014
2019-01-03	Weekly Flow in 2019 1.003	0.568	(m³/s) 0.568			Jan-2004	Jul-2004 Jan-2005 Jul-2005 Jan-2006	Jul-2006 Jan-2007	Jul-2	Jan-2008 Jul-2008 Jan-2009	Jul-2009 Jan-2010	Jul-2010 Jan-2011	Jul-2	Jan-2012	Jul-2012 Jan-2013	Jul-2	Jan-2014
2019-01-03	0.921	0.568															
2019-01-17	0.901	0.522	2 0.522				Weeklv	Flow Exceed	dance Curv	e: 2004 to 2018							Magazit
2019-01-24 2019-01-31	0.893	0.498			25										14		Mean W
2019-02-07	0.843	0.448	3 0.448				······ 2017 RWQM: Av		-								
2019-02-14 2019-02-21	0.837	0.455			20	-	2020 RWQM: M	edian (Tota	I) -	Measured (Surface	2)				12		
2019-02-21 2019-02-28	0.848	0.409			/s)									/s)			
2019-03-07	0.880	0.354			(m³/s)									(m ³	10		
2019-03-14 2019-03-21	0.898 0.911	0.340			· 15 안내									NO			
2019-03-28	0.971	0.528	0.528		Ϋ́F		×							Weekly Flow (m³/s)	8		
2019-04-04	1.003	0.488			Meekly 10	À								Vee	6		
2019-04-11 2019-04-18	1.242	0.462			>									ge V	0		
2019-04-25	1.902	1.048	3 1.048											Average	4		
2019-05-02 2019-05-09	2.306	1.214		·	5									A			
2019-05-16	4.527	3.722								-					2		8
2019-05-23	6.208	3.365			0											_	
2019-05-30 2019-06-06	7.950	3.352			-	0	10 20 30	40	50	60 7	0 80	90	100		0	Fab 1 A	Max 1 Arx
2019-06-13	8.723	1.926			ŀ			Probabi	lity of Exce	edance (%)					Jan 1	Feb1 N	Mar 1 Apr
2019-06-20 2019-06-27	8.929 7.263	4.230		6.847	7		Mean Flo	ow for Conc	urrent Data	a: 2004 to 2018							
2019-07-04	6.697	3.992	3.992									• · · · · · · · ·			10		
2019-07-11	5.185	2.761		3.482	2	2017	7 RWQM: Average (Total) 2020 RW(QM: Median ((Surface)	Measured (Surface)	- 2020 RWQM: N	vledian (Total)			9		
2019-07-18 2019-07-25	4.043	4.287			7												
2019-08-01	2.774	2.255	5 2.255		3/s)									(s)	8		
2019-08-08 2019-08-15	2.299 2.087	2.074			/ (m ³ /s)									ow (m³/s)	7		
2019-08-22	1.948	2.070	2.070		≥ 4									low	6		
2019-08-29	1.822	1.828			2 Mean Flo									dy Flo	5		
2019-09-05 2019-09-12	1.835	1.651 1.491			ž									Weekly			
2019-09-19	1.731	1.264	1.264		0									2	4		
2019-09-26 2019-10-03	1.702	1.237			-		Annual Late	Summer - Fal	I	Winter	F	Freshet			3		
2017-10-03	1.098	1.108	1.100		C1 -11-11										2		
2019-10-10	1.534	1.117		0.510	Statistics	on co	oncurrent data: 2004 to 2018	Acc	eptable	Acceptable					1		
2019-10-17	1.493	1.149			Parameter			2017	RWQM:	2020 RWQM:	2020 RWQM:	Measu	red			••••	
2019-10-24 2019-10-31	1.420	1.346			Paramete	-		Avera	ige (Total)	Median (Surface)	Median (Total)) (Surfa	ce)		0	Eob 1 M	Apr 1 Apr 1
2019-11-07	1.288	1.102	2 1.102				efficiency (E)		0.59	0.56	0.56				111PT	IGNT IV	Nar 1 Apr 1
2019-11-14		1.078					n-Sutcliffe efficiency (E1)		0.47	0.47	0.47			Notos			
2019-11-21 2019-11-28	1.212	0.960			Index of a Modified		ment (d) x of agreement (d1)		0.86	0.84 0.71	0.84 0.71	_		Notes Performand	e statistics	: For E. F1	1, d, d1, and I
2019-12-05	1.124	0.905	5 0.905	_	MAE				1.78	1.77	1.77			than 0 indic	ate that th	e model is	is no better th
2019-12-12	1.071	0.854		0.354	RMSE	at of 1	Dotormination (P ²)		2.82 0.61	2.92 0.63	2.92 0.63	+					vith monitore
2019-12-19 2019-12-26	1.039	0.810					Determination (R ²) ta in statistics		173	173	0.63						ual (January Freshet (mio
							of weekly data		783	783	783	173		(seconder		,pin)	
Annual	2.49	1.56			Mean of a				3.500	3.057	3.057	4.15				unable to	o calculate a v
Late Summer - Fall	1.78 0.94	1.57 0.55					ation of all weekly data mean annual runoff (mm/yr)		3.480 440	3.136 390	3.136 390	4.40		missing dat			esent project
Winter																	

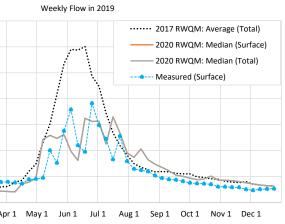
Weekly Flow for Concurrent Data: 2004 to 2018



nd R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less er than using the mean of all the data. For MAE and RMSE, a lower number tored data.

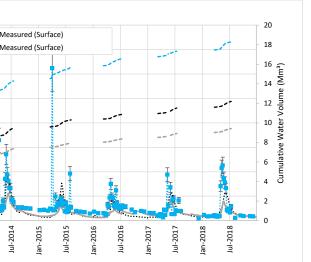

itored data. hary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July)

e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

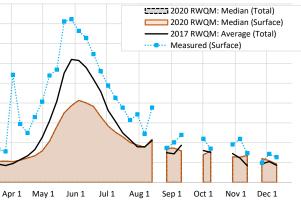

Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF												Week	kly Flow S	Series:	2004 to	2018			
Case Description	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Measured (Surface)		25		•••• 2017 RW	QM: Average	e (Total)		- 2020 RW	/QM: Median (Surface)		2020 RW	VQM: Med	dian (Tot	tal)]			
	(Total) GH_PC2 + a portion of the Cast	(Surface)	(Total)					Measure		(T-1)			QM: Average	(Total)		2020 RW	VQM: Med	dian (Sur	rface)				
low Modelling Aethod	GH_PC2 + a portion of the Cast unnamed areas between GH_P modelled flows)		Surface-Groundwater Partitioning	Not Implemented	_	20		2020 RW	ци: Median	(Total)		- Measure	d (Surface)							1			
Spinner ID	46	Mean annual surface rui	noff (monitored)	380	Flow (m³/s)	15			1:	-										-			
elected Year	2019	Mean annual total runo	ff (2020 RWQM)	430) wol:															1			
Comparison Start Year	2004	Evaluation period (week	(s)	783	Weekly F	10									1								
Comparison End Year	2018	Weeks with monitoring	-	8%	We		٨.								4								
station ID & Description	FR_FRABCH	Fording River above Cha				5		١Λ.	MA.								A			+		M	
Drainage Area (2018)	21450 ha	Disturbed Area (2018)		~ 25%	-		\bigcup	N.N			\sim	S M	\square			<u> </u>			A		V.	J.	\bigvee
Date	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Measured (Surface)		0	2 3	05 04	5 9	3 8	01	60	8 8	8	00 01	10	11	Ę	12	12	13	13	14
Date	(Total) Weekly Flow in 2019	(Surface)	(Total) (m³/s)				Jan-2004	Jul-2004 Jan-2005	Jul-2005	Jul-2006	Jan-2007	Jul-2007	Jan-2008 Jul-2008	Jan-2009	Jul-2009 Jan-2010	Jul-2010	Jan-2011	Jul-2011	Jan-2012	Jul-2012	Jan-2013	Jul-2013	Jan-2014
2019-01-03	1.245		0.962	0.825	-		Ξ.	- °f	<u> </u>	. –	ŝĹ	- ·		ŗ	- SL		ż	-	ŗ	_	j,	~	ŗ
2019-01-10 2019-01-17	1.129	0.927	0.927	0.808	-																		
2019-01-24	1.091	0.836	0.836	0.791	:	25			We	eekly Flov	w Exceedan	ce Curve:	2004 to 2018	3									Mean W
2019-01-31	1.073	0.776		0.824	-				2017 RWQ	M: Avera	ge (Total)	2	020 RWQM: I	Vedian	(Surface)					18			
2019-02-07 2019-02-14	1.021	0.754	0.754	0.807	-								leasured (Sur		í					16			
2019-02-21	1.013	0.686				20			_020 NVVQ	weuld		IV											
2019-02-28	1.011		0.640		(m³/s)		1												1 ³ /s)	14			
2019-03-07 2019-03-14	1.070	0.605	0.605	0.742	E.	15													Weekly Flow (m³/s)	12			
2019-03-14	1.095		0.932	1.138	Flow	د.													Flov				
2019-03-28	1.187	0.870	0.870	1.565	kly F		<u>}</u>												ekly	10			
2019-04-04 2019-04-11	1.227	0.834	0.834	1.582 1.518	Weekly	10				_									Wee	8			
2019-04-11 2019-04-18	1.553			1.518	^		$ \rangle$	<u>.</u>											age /	~			
2019-04-25	2.394	1.555	1.555	1.773			,												Average	6		_	
2019-05-02	2.962		1.875	1.809	-	5													Ā	4			_
2019-05-09 2019-05-16	4.618	4.858	4.858	1.889 4.007	-															2			
2019-05-23	8.341	4.937	4.937	3.048		0								•••••						2	-		
2019-05-30	10.701	5.236		5.517	-	0	0	10	20	30	40	50	60	70	80	90	1	100		0			
2019-06-06 2019-06-13	<u>11.803</u> 11.746	3.931	3.931 3.233	7.159	-		-		-		Probability			. •		55	1			Ja	n1 F	eb 1 Ma	lar 1 Apı
2019-06-20	12.015	6.494	6.494	3.903																			
2019-06-27	9.748		6.237	7.641	-				Me	an Flow f	or Concurre												
2019-07-04	<u> </u>	6.264					017 RWO				or concurre	ent Data:	2004 to 2018							14			
2019-07-11	0.092	4 /08		5.950 4 890		■ 20	017 1111000	M: Average (I	otal) 📕 202	0 RWQM:					2020 RWQM: N	Median (T	Total)			14			
2019-07-11 2019-07-18	5.362	4.498 6.593		4.890 3.316			.017 117701	M: Average (I	otal) 🔳 2020	0 RWQM:					2020 RWQM: N	Vedian (T	Total)						
2019-07-18 2019-07-25	4.382	6.593 5.355	4.498 6.593 5.355	4.890 3.316 5.112		8		M: Average (I	otal) 🔳 2020	0 RWQM:					2020 RWQM: N	Vledian (T	Total)			12			
2019-07-18 2019-07-25 2019-08-01	4.382 3.646	6.593 5.355 3.816	4.498 6.593 5.355 3.816	4.890 3.316 5.112 3.179		8	017 117 10	M: Average (I	otal) 🗖 202	0 RWQM:					2020 RWQM: N	Median (T	Total)		³/s)	12			
2019-07-18 2019-07-25	4.382	6.593 5.355 3.816 3.478	4.498 6.593 5.355	4.890 3.316 5.112	(m³/s)	8 7 6 5		M: Average (I	otal) 🗖 202	0 RWQM:					2020 RWQM: N	Median (T	Total)		/ (m³/s)				
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22	4.382 3.646 2.987 2.705 2.520	6.593 5.355 3.816 3.478 4.122 3.301	4.498 6.593 5.355 3.816 3.478 4.122 3.301	4.890 3.316 5.112 3.179 2.578 2.479 2.384	-low (m³/s)	8 7 6 5 4		M: Average (1	otal) 2020	0 RWQM:					2020 RWQM: N	Viedian (T	Total)		No No	12			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-29	4.382 3.646 2.987 2.705 2.520 2.353	6.593 5.355 3.816 3.478 4.122 3.301 2.945	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067	-low (m³/s)	8 7 6 5 4		M: Average (1	otal) 2024	0 RWQM:					2020 RWQM: N	Viedian (T	Total)		Flow	12			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-29 2019-09-05	4.382 3.646 2.987 2.705 2.520 2.353 2.380	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875	an Flow (m ³ /s)	8 7 6 5 4		M: Average (1	otal) 2024	0 RWQM:					2020 RWQM: N	Median (T	Total)		Flow	12			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-29 2019-09-05 2019-09-19 2019-09-19	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.350 2.239	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.2441 2.080	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.241 2.080	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733	Mean Flow (m³/s)	8 7 6 5 4		M: Average (1	otal) 2024						2020 RWQM: N	Median (T	Total)		No No	12 10 8			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-29 2019-09-05 2019-09-12 2019-09-19 2019-09-26	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.350 2.350 2.239 2.200	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625	Mean Flow (m ³ /s)	8 7 6 5 4		Annual		0 RWQM:	Median (Sur					Median (T	Total)		Flow	12 10 8			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-29 2019-09-05 2019-09-19 2019-09-19	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.350 2.239	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.241 2.080	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733	Mean Flow (m³/s)	8 7 6 5 4 3 2 1 0		Annual		Late Sum	Median (Sur		1easured (Surfa				Total)		Flow	12 10 8 6			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-29 2019-09-05 2019-09-12 2019-09-19 2019-09-26	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.239 2.230 2.239 2.200 2.198	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625	Mean Flow (m³/s)	8 7 6 5 4 3 2 1 0				Late Sum	Median (Sur	face) N	1easured (Surfa	ace) — 2			Total)		Flow	12 10 8 6			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-29 2019-09-05 2019-09-19 2019-09-26 2019-10-03 2019-10-10	4.382 3.646 2.987 2.705 2.520 2.353 2.350 2.350 2.239 2.200 2.198 1.973 1.919	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.454 1.440	Mean Flow (m ³ /s)	8 7 6 5 4 3 2 1 0		Annual		Late Sum	Median (Sur mer - Fall Poo	face) N	leasured (Surfa Winter Very good	ace) - 2	F	Freshet			Flow	12 10 8 6 4			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-29 2019-09-05 2019-09-19 2019-09-19 2019-09-10 2019-10-03 2019-10-10 2019-10-17 2019-10-24	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.350 2.239 2.200 2.198 1.973 1.919 1.822	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.454 1.440 1.387	yteau Flow (main flow) Statisti	8 7 6 5 4 3 2 1 0		Annual		Late Sum	Median (Sur mer - Fall Poo 2017 RV	face) N	Neasured (Surfa Winter Very good 2020 RWQN	ace) – 2	020 RWQM:	Freshet	Total)	3	Flow	12 10 8 6 4			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-22 2019-09-05 2019-09-12 2019-09-12 2019-09-26 2019-10-03 2019-10-17 2019-10-24 2019-10-31	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.350 2.239 2.200 2.198 1.973 1.919 1.822 1.781	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.454 1.454 1.387 1.201	(s/ _E m) wold used Statisti	8 7 6 5 4 4 3 2 1 0	n concurr	Annual rent data: 20		Late Sum	Median (Sur mer - Fall Poo 2017 RV Average	face) N pr VQM: (Total) N	Very good 2020 RWQN Verfain (Surfa	ace) – 2	020 RWQM: edian (Total)	Freshet	Aeasured	3	Flow	12 10 8 6 4 2 0			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-29 2019-09-05 2019-09-19 2019-09-19 2019-09-12 2019-10-03 2019-10-17 2019-10-17 2019-10-24	4.382 3.646 2.987 2.705 2.520 2.353 2.350 2.239 2.200 2.198 1.973 1.919 1.822 1.781 1.628 1.561	6.593 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.454 1.440 1.387 1.201 1.202	(s/s) Wean Flow Mean Flow Nash-S	8 7 6 5 4 4 3 2 1 0 ics or eter Sutclif	n concurr	Annual rent data: 20	004 to 2018	Late Sum	Median (Sur mer - Fall Poo 2017 RV	or VQM: (Total) N 6	Neasured (Surfa Winter Very good 2020 RWQN	ace) – 2	020 RWQM:	Freshet	Aeasured	3	Flow	12 10 8 6 4 2 0			
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-22 2019-08-22 2019-08-29 2019-09-05 2019-09-19 2019-09-26 2019-10-03 2019-10-17 2019-10-31 2019-11-07 2019-11-14 2019-11-21	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.239 2.200 2.198 1.973 1.919 1.822 1.781 1.628 1.561	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.700 1.700 1.603	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.672 1.603	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.440 1.387 1.201 1.202 1.162 1.152	Statisti Paramo Nash-S Modifie Index c	8 7 6 5 4 3 2 1 1 0 0 ics or eter Gutclif	n concurr ffe efficie ash-Sutcl reement (Annual rent data: 20 ency (E) iffe efficienc (d)	004 to 2018 y (E1)	Late Sum	Median (Sur mer - Fall 2017 RV Average 0.21 0.11	or VQM: (Total) № 6 9 6	Very good Vedian (Surfa 2020 RWQN Vedian (Surfa 0.91 0.64 0.98	ace) – 2	020 RWQM: edian (Total) 0.64 0.98	Freshet	Aeasured	d No	Weekly Flow	12 10 8 6 4 2 0 Ja	n1 F	eb 1 Ma	ar 1 Apr
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-15 2019-08-22 2019-08-22 2019-09-12 2019-09-12 2019-09-16 2019-10-03 2019-10-10 2019-10-17 2019-10-24 2019-10-24 2019-11-42 2019-11-14 2019-11-28	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.239 2.200 2.198 1.973 1.919 1.822 1.781 1.528 1.561 1.524 1.600	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.855 1.753 1.801 2.027 1.720 1.720 1.704 1.603 1.504	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.603 1.603 1.504	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.454 1.454 1.454 1.201 1.202 1.152 0.998	Statisti Paramo Modifie Index c Modifie	8 7 6 5 4 3 2 1 1 0 0 ics or eter Gutclif	n concurr ffe efficie ash-Sutcl reement (Annual rent data: 20 ency (E) iffe efficienc	004 to 2018 y (E1)	Late Sum	Median (Sur mer - Fall 2017 RV Average 0.2: 0.1: 0.7: 0.7:	face) N VQM: (Total) M 6 9 5 6 7	Very good 2020 RWQN Vedian (Surfa 0.91 0.64 0.98 0.81	ace) – 2	020 RWQM: ledian (Total) 0.64 0.98 0.81	Freshet	Aeasured	d No Pe	Moekin Flow	12 10 8 6 4 2 0 Ja	n 1 F	eb 1 Ma For E, E1,	ar 1 Apr
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-22 2019-08-22 2019-08-29 2019-09-05 2019-09-19 2019-09-26 2019-10-03 2019-10-17 2019-10-31 2019-11-07 2019-11-14 2019-11-21	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.239 2.200 2.198 1.973 1.919 1.822 1.781 1.628 1.561	6.593 6.593 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.672 1.603 1.504 1.504 1.424	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.720 1.704 1.672 1.603 1.504 1.504	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.454 1.454 1.454 1.450 1.201 1.202 1.152 0.998 0.928	Statisti Paramo Nash-S Modifie Index c	8 7 6 5 4 3 2 1 1 0 0 ics or eter Gutclif	n concurr ffe efficie ash-Sutcl reement (Annual rent data: 20 ency (E) iffe efficienc (d)	004 to 2018 y (E1)	Late Sum	Median (Sur mer - Fall 2017 RV Average 0.21 0.11	face) ■ M vQM: (Total) N 6 9 6 7 4 1	Very good Vedian (Surfa 2020 RWQN Vedian (Surfa 0.91 0.64 0.98	ace) – 2	020 RWQM: edian (Total) 0.64 0.98	Freshet	Aeasured	d Nu Pe th	otes cotes cotes cotes cotes	12 10 8 6 4 2 Ja nce stat	n 1 Fi tistics: I hat the	eb 1 Ma For E, E1, o model is i	ar 1 Apr d, d1, and no better
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-22 2019-08-22 2019-08-29 2019-09-05 2019-09-12 2019-09-12 2019-09-26 2019-10-03 2019-10-17 2019-10-24 2019-10-31 2019-11-14 2019-11-21 2019-11-28 2019-12-12	4.382 3.646 2.987 2.705 2.520 2.353 2.350 2.239 2.200 2.198 1.973 1.919 1.822 1.781 1.628 1.561 1.524 1.501 1.524 1.330	6.593 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.672 1.603 1.504 1.424 1.343 1.275	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.603 1.504 1.424 1.424 1.343 1.275	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.454 1.440 1.387 1.201 1.202 1.162 1.152 0.998 0.928 1.008	Statisti Parame Nash-S Modifie MAE RMSE Coeffic	8 7 6 5 4 3 2 1 0 ics or eter iutclif ed Na of agr ed in	n concurr ffe efficie ash-Sutcl reement (dex of ag	Annual rent data: 20 incy (E) iffe efficience (d) reement (d1 reement (d1 reement (d1)04 to 2018 γ (E1)	Late Sum	Median (Sur mer - Fall 2017 RV Average 0.21 0.5 1.6 2.77 0.4	r VQM: (Total) № 6 9 6 7 4 6 6 0	Neasured (Surfa Winter Very good 2020 RWQN Median (Surfa 0.91 0.64 0.98 0.81 0.73 0.94 0.93	ace) – 2	020 RWQM: edian (Total) 0.91 0.64 0.98 0.81 0.73 0.94 0.93	Freshet	Aeasured	i Pe th ge	otes otes erforman an 0 inc enerally	12 10 8 6 4 2 0 Ja nce sta dicate t indica	n 1 Fortistics: I hat the tes a be	eb 1 Ma For E, E1, model is in tter fit wit	d, d1, and no better ith monitor
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-22 2019-08-22 2019-08-29 2019-09-12 2019-09-12 2019-09-16 2019-10-03 2019-10-03 2019-10-17 2019-10-24 2019-10-24 2019-11-21 2019-11-28 2019-12-05 2019-12-12	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.239 2.200 2.198 1.973 1.919 1.822 1.781 1.628 1.561 1.524 1.600 1.402 1.330	6.593 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.672 1.603 1.504 1.424 1.343 1.275	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.603 1.504 1.424 1.424 1.343 1.275	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.454 1.440 1.387 1.201 1.202 1.162 1.152 0.998 0.928 1.008	Statisti Parame Nash-S Modifii Index c Modifii MAE RMSE Coeffic Numbe	8 7 6 5 4 3 2 1 0 0 ics or eter ics of agr f ag	n concurr ffe efficie ash-Sutcl reement (dex of ag of Determ data in st	Annual rent data: 20 iffe efficience (d) greement (d1 mination (R ²) ratistics)04 to 2018 γ (E1)	Late Sum	Median (Sur mer - Fall 2017 RV Average 0.2 0.1 0.7 0.5 1.6 2.77 0.4 4 60	face) ■ M VQM: (Total) M 6 9 6 7 7 4 6 0 0 0	Neasured (Surfa Winter Very good 2020 RWQN Median (Surfa 0.91 0.64 0.98 0.81 0.73 0.94 0.93 60	ace) – 2	020 RWQM: edian (Total) 0.91 0.64 0.98 0.81 0.73 0.94 0.93 60	Freshet	Aeasured (Surface)	a Nu Pe th ge Nu	otes erforman an 0 inc enerally otes on	12 10 8 6 4 2 0 Ja nice sta dicate t indicat seasor	n 1 Find the second sec	eb 1 Ma For E, E1, f model is i tter fit wit ods: Annua	d, d1, and no better f ith monitor Jal (January
2019-07-18 2019-07-25 2019-08-08 2019-08-08 2019-08-08 2019-08-22 2019-09-05 2019-09-12 2019-09-19 2019-09-19 2019-10-03 2019-10-10 2019-11-07 2019-11-21 2019-11-28 2019-12-05 2019-12-26	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.239 2.200 2.198 1.973 1.919 1.822 1.781 1.628 1.561 1.524 1.600 1.402 1.330 1.288 1.265	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.672 1.603 1.504 1.424 1.343 1.275 1.250	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.603 1.603 1.504 1.424 1.424 1.424 1.425 1.250	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.440 1.387 1.201 1.202 1.152 0.998 0.928 1.008 1.038	Statisti Parame Modifie MAE RMSE Coeffic Numbe Total n	8 7 6 5 7 4 3 2 1 0 0 ics or eter ics or eter ics of agr of agr of agr ics or eter ics or eter ics or	n concurr ffe efficie ash-Sutcl reement i dex of ag of Determ data in st er of wee	Annual rent data: 20 iffe efficienc (d) greement (d1 mination (R ²) iatistics ekly data)04 to 2018 γ (E1)	Late Sum	Median (Sur mer - Fall 2017 RV Average 0.2: 0.1: 0.7; 0.5; 1.6; 2.7; 0.44; 600 78;	face) ■ N VQM: (Total) N 6 9 6 7 1 4 6 0 0 3 3 N	Neasured (Surfa Winter Very good 2020 RWQN Vedian (Surfa 0.91 0.64 0.98 0.81 0.73 0.94 0.93 60 783	ace) – 2	020 RWQM: ledian (Total) 0.64 0.98 0.81 0.73 0.94 0.93 60 783	Freshet	Aeasured (Surface) 60	H Pe th ge Nu (D	otes erforman an 0 ince enerally otes on Decembe	12 10 8 6 4 2 0 Ja noce stad dicate to indicate seasor er thro	n 1 Fi tistics: I hat the tes a be nal peric ugh earl	eb 1 Ma For E, E1, model is n tter fit wit ods: Annua ly April) F	d, d1, and no better t ith monitor ial (January Freshet (mi
2019-07-18 2019-07-25 2019-08-01 2019-08-08 2019-08-22 2019-08-22 2019-09-12 2019-09-12 2019-09-12 2019-09-16 2019-10-03 2019-10-03 2019-10-17 2019-11-07 2019-11-14 2019-11-21 2019-11-24 2019-12-12 2019-12-12 2019-12-26 Annual	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.380 2.239 2.200 2.198 1.973 1.919 1.822 1.781 1.628 1.561 1.524 1.504 1.402 1.330 1.288 1.265 3.26	6.593 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.672 1.603 1.504 1.544 1.424 1.343 1.275 1.250	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.603 1.504 1.424 1.424 1.343 1.275 1.250	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.454 1.440 1.387 1.201 1.202 1.152 0.998 0.928 1.008 1.030 1.032 1.052	Statisti Paramo Nash-S Modifiti MAE RMSE Coeffic Numbe Total n Mean c	8 7 6 5 4 3 2 1 0 0 eter 6 6 1 0 0 0 eter 6 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n concurr ffe efficie ash-Sutcl reement (dex of ag of Detern data in st er of wee weekly d	Annual rent data: 20 iffe efficienc (d) greement (d1 mination (R ²) catistics ekly data lata)))	Late Sum	Median (Sur mer - Fall 2017 RV Average 0.2 0.11 0.5 1.6 60 2.7 7 8 3.07	face) N VQM: (Total) N 6 9 6 6 7 1 4 6 6 0 1 3 7 4	Very good Very good 2020 RWQN Median (Surfa 0.91 0.64 0.98 0.81 0.73 0.94 0.93 60 783 2.748	ace) – 2	020 RWQM: edian (Total) 0.91 0.64 0.98 0.81 0.73 0.94 0.93 60 783 2.748	Freshet	Aeasured (Surface) 60 2.359	d Pe th 8 NN 0 NN 0 0 0	otes erforman an 0 inc enerally otes on becembe	12 10 8 6 4 2 0 Ja nce stat dicate t indica: seasor er thro	n 1 Fi tistics: I hat the tes a be nal peric ugh earl	eb 1 Ma For E, E1, model is n tter fit wit ods: Annua ly April) F	d, d1, and no better t ith monitor ial (January Freshet (mi
2019-07-18 2019-07-25 2019-08-08 2019-08-08 2019-08-15 2019-08-22 2019-09-05 2019-09-12 2019-09-12 2019-09-12 2019-09-26 2019-10-03 2019-10-17 2019-10-17 2019-10-24 2019-10-14 2019-11-21 2019-11-28 2019-12-12 2019-12-12	4.382 3.646 2.987 2.705 2.520 2.353 2.380 2.350 2.239 2.200 2.198 1.973 1.919 1.822 1.781 1.628 1.561 1.524 1.600 1.402 1.330 1.288 1.265	6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.672 1.603 1.504 1.424 1.343 1.275 1.250 2.45	4.498 6.593 5.355 3.816 3.478 4.122 3.301 2.945 2.698 2.441 2.080 2.009 1.865 1.753 1.801 2.027 1.720 1.704 1.603 1.603 1.504 1.424 1.424 1.424 1.425 1.250	4.890 3.316 5.112 3.179 2.578 2.479 2.384 2.067 1.875 1.777 1.733 1.625 1.505 1.454 1.454 1.440 1.387 1.201 1.202 1.152 0.998 0.928 1.008 1.030 1.052 0.928 1.008 1.052	Statisti Paramo Nash-S Modifie MAE RMSE Coeffic Numbe Total n Mean c Standa	8 7 6 5 4 3 2 1 0 0 eter 6 4 1 0 0 eter 6 6 1 1 0 0 eter 6 1 1 0 0 0 eter 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n concurr ffe efficie ash-Sutcl reement (dex of ag of Detern data in st er of wee weekly d eviation c	Annual rent data: 20 iffe efficienc (d) greement (d1 mination (R ²) iatistics ekly data)04 to 2018 γ (E1)) data	Late Sum	Median (Sur mer - Fall 2017 RV Average 0.2: 0.1: 0.7; 0.5; 1.6; 2.7; 0.44; 600 78;	face) N vQM: (Total) N 6 9 6 6 7 1 4 6 0 0 1 3 1 7 4 39 1	Neasured (Surfa Winter Very good 2020 RWQN Vedian (Surfa 0.91 0.64 0.98 0.81 0.73 0.94 0.93 60 783	ace) – 2	020 RWQM: ledian (Total) 0.64 0.98 0.81 0.73 0.94 0.93 60 783	Freshet	Aeasured (Surface) 60	9 Pee th 899 NN (C (C (C (C) ()) m m	otes efformance an 0 ince enerally totes on becombe 'a = Not issing d	12 10 8 6 4 2 0 Ja nce sta dicate t indica seasor er thro availa	n 1 Fi tistics: I hat the tes a be hal peric ugh earl ble or u	eb 1 Ma For E, E1, 1 model is 1 tter fit wit vds: Annua ly April) F nable to c	d, d1, and no better t ith monitor ial (January Freshet (mi calculate a sent projec

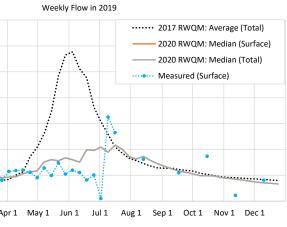
Weekly Flow for Concurrent Data: 2004 to 2018

Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 1



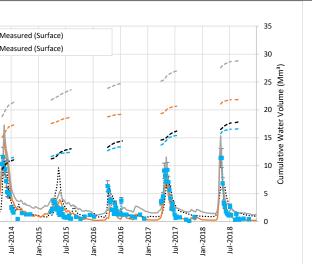
and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less :ter than using the mean of all the data. For MAE and RMSE, a lower number nitored data.

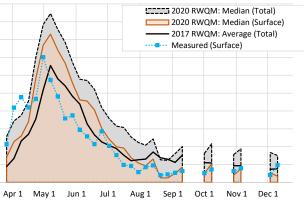

uary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July)

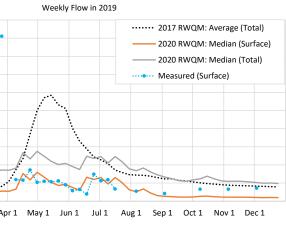

e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

				FLC		DNENT OF	THE TECK ELK	VALLEY F	REGIONA	L WATER QU	ALITY MODEL (I	RWQM) - CALIBE	RATION DAS	SHBOARD			
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF									Weekly Fl	ow Series: 2	2004 to 2018		
	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median		0.801			•••• 2017 R	RWQM: Ave	erage (Total)	2020	RWQM: Median (Su	urface)	2020	RWQM: Media	n (Total)	•••• = •••• Me
Case Description	(Total)	(Surface)	(Total)	Measured (Surface)	0.701					erage (Total)		RWQM: Median (Su			RWQM: Media		Me
					0.601												
Notes on Flow	Snowmelt Runoff Module, Was sub-catchment Porter Creek	ste Rock Hydrology Module in	Surface-Groundwater	Not Implemented												т	1
Modelling Method	Sub-catchinent Forter Creek		Partitioning		(s) 0.501 ພ						I						
Spinner ID	33	Mean annual runoff (me	onitored)	1010	(s/ 0.501 Eu) 0.401						T				, f	1	
Selected Year	2019	Mean annual runoff (20	20 RWQM)	580	kly Fl						4						, <u> </u>
Comparison Start Year	2004	Evaluation period (weel	ks)	783	A eekly 0.301				_					- -		7	
Comparison End Year	2018	Weeks with monitoring	•	47%	0.201		Т		Ī	Į							
Station ID & Description	GH_PC1	Porter Creek Sediment I			0.101												
Drainage Area (2018)	180 ha	Disturbed Area (2018)	· · · · · · · · · · · · · · · · · · ·	~ 52%	0.101		~ A									- 4	لر 🖌
Stallage Alea (2018)	2017 RWQM: Average		2020 RWQM: Median		0.001	4 4	о о о о	9	۔۔۔ س		ו•••	. o o			7 7		w 4
Date	(Total)	(Surface)	(Total)	Measured (Surface)		Jan-2004 Jul-2004	Jan-2005 Jul-2005	Jan-2006	Jul-2006	Jan-2007 Jul-2007	Jan-2008 Jul-2008	Jul-2009 Jan-2010	Jul-2010	Jul-2011	Jan-2012 Jul-2012	Jan-2013	Jul-2013 Jan-2014
2019-01-03						ief uf	lai U	Jar	JL	ul ul		Jar J	JL 76	er nr	Jai Ul	Jai	Jr Jar
2019-01-10 2019-01-17	0.016			0.024													
2019-01-24	0.015	5 0.016	5 0.016	0.024	0.6			Week	ly Flow Ex	ceedance Curv	e: 2004 to 2018						Mean
2019-01-31 2019-02-07	0.015	5 0.016 5 0.016				t	2017	RWQM:	Average (Total) ——	- 2020 RWQM: M	edian (Surface)			0.18		
2019-02-07 2019-02-14	0.015				0.5	<u>+</u>	2020	RWQM:	Median (T		Measured (Surfa				0.16		
2019-02-21 2019-02-28	0.015			0.050											ত 0.14		
2019-02-28	0.015			0.033	s/ €⊔ 0.4	1									(m ³ /		
2019-03-14 2019-03-21	0.015			0.027) wo	A.									Meekly Flow (m ³ /s) 0.12 0.1 0.08		
2019-03-28	0.016	5 0.018	3 0.018	0.016	표 0.3										≝0.1		
2019-04-04 2019-04-11	0.017			0.023	Week										80.0 K		
2019-04-18	0.023	0.021	0.021	0.024	> 0.2		₹.								8 0.06		
2019-04-25 2019-05-02				0.022			and the second second								Aver		
2019-05-09	0.052	0.030	0.030	0.026	0.1		•••••								۹ 0.04	• * •,	
2019-05-16 2019-05-23	0.069			0.020	_		••••••	•••••			••••	• = • • • • • = • • • • • = • • • • •			0.02		
2019-05-30	0.113			0.021	0	0 :	10 20	30	4	0 50	60	70 80	90	100	0		
2019-06-06 2019-06-13	0.115			0.024				50		bability of Exce			50	100	Ji	an 1 Feb	1 Mar 1 A
2019-06-20 2019-06-27	0.095			0.016				Moon F	low for Co	ancurrent Data	a: 2004 to 2018						
2019-07-04	0.061	0.042	2 0.042	0.002											0.14		
2019-07-11 2019-07-18	0.052	2 0.038 2 0.043		0.065		017 RWQM:	Average (Total)	2020 RW	VQM: Medi	an (Surface) 🗖	Measured (Surface	● 2020 RWQM: N	Vledian (Total)				
2019-07-25	0.037	0.040	0.040	0.033	0.12										0.12		
2019-08-01 2019-08-08					0.1 Jack Na (200										(s) ⊮ 0.1		
2019-08-15	0.029	0.035	5 0.035	0.032	0.08 0.06										Meekly Flow (m ³ /s) 80.0 90.0		
2019-08-22 2019-08-29					LL										6 0.08		
2019-09-05					U.04 ₩ 2 0.02			_							eekly		
2019-09-12 2019-09-19	0.025			0.022	0										Å 0.06		
2019-09-26 2019-10-03	0.024						Annual	La	ate Summe	r - Fall	Winter	I	Freshet		0.04		
2019-10-05	0.023	0.021	0.021		Ch-11-11			2010		Deen	Deer						•
2019-10-10					Statistics o	n concurre	nt data: 2004 to	2018		Poor	Poor				0.02		
2019-10-17 2019-10-24				0.035	Parameter					2017 RWQM:	2020 RWQM:			sured	0		
2019-10-31	0.019	0.018	3 0.018				(=)		A	verage (Total)			al) (Sur	face)	-	in 1 Feb	1 Mar 1 Ap
2019-11-07 2019-11-14				0.004	Nash-Sutcl Modified N		cy (E) fe efficiency (E1)			0.23	-0.01 0.20	-0.01 0.20					
2019-11-21	0.018	0.016	5 0.016		Index of ag	reement (d	i)			0.66	0.53	0.53			lotes	ausues: Fo	r E, E1, d, d1, ar
2019-11-28 2019-12-05					Modified in MAE	ndex of agre	eement (d1)			0.65	0.57 0.04	0.57					ne model is no b
2019-12-12	0.017	0.014	4 0.014	0.016	RMSE	(5)				0.07	0.08	0.08		g	enerally indica	ites a bette	er fit with monit
2019-12-19 2019-12-26	0.016				Coefficient Number of		ination (R ²) tistics			0.35 367	0.27 367	0.27 367		N	lotes on seaso	nal periods	s: Annual (Janua
					Total numb	oer of week	ly data			783	783	783		67 (C	December thro	ough early A	April) Freshet (
Annual Late Summer - Fall	0.03				Mean of al Standard d		ta all weekly data			0.055	0.043 0.028	0.043			/a = Not availa nissing data)	able or una	ble to calculate
Winter	0.02	0.02	0.02	0.03			annual runoff (m	m/yr)		680	580	580				017 RWQM	1 represent proj
Freshet	0.07	0.03	0.03	0.03										D	ecember 2016	j)	

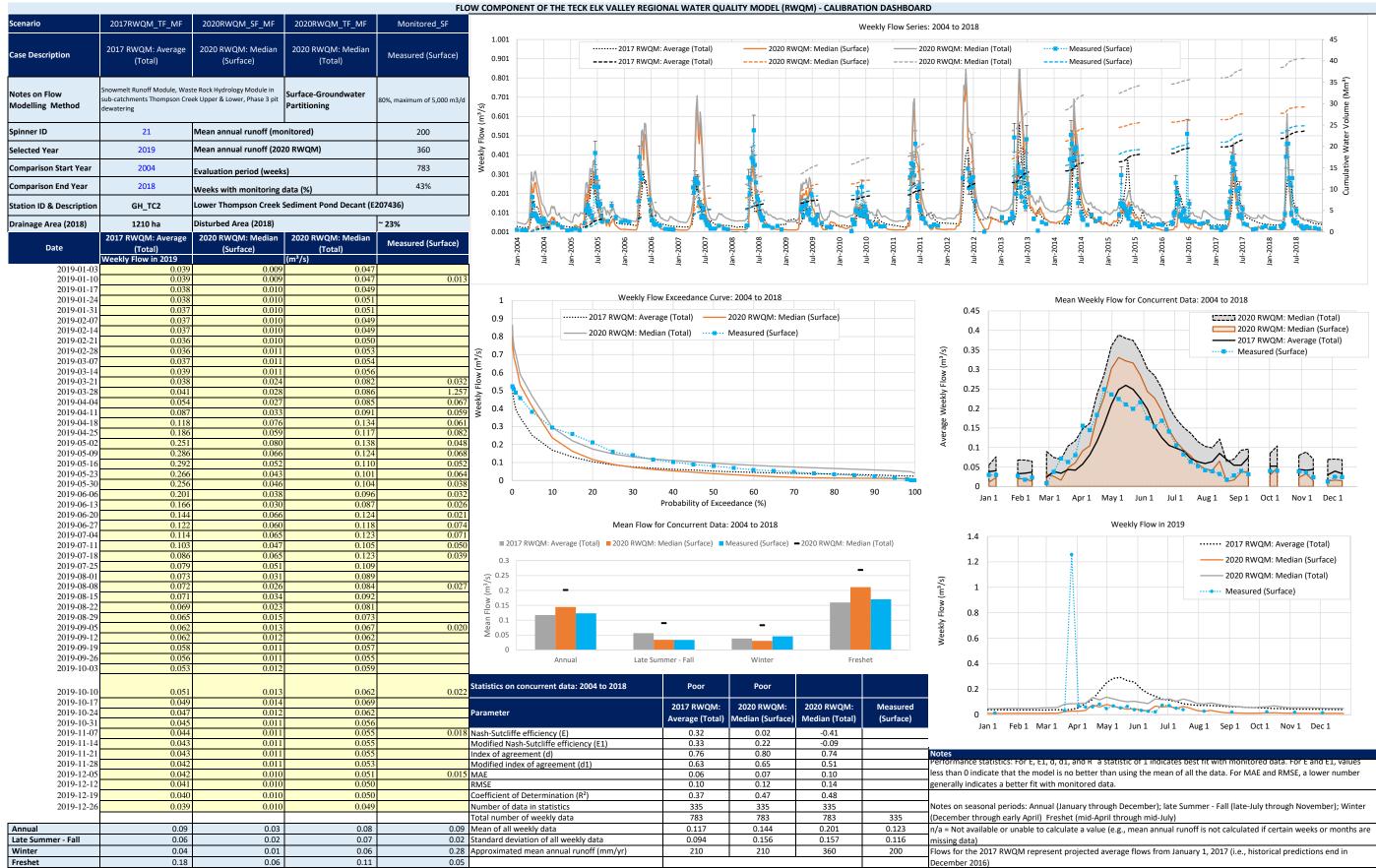
n Weekly Flow for Concurrent Data: 2004 to 2018

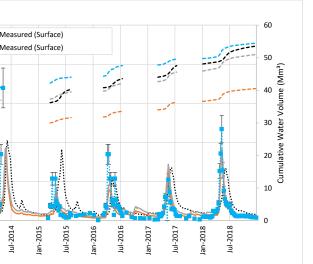



uary through December); late Summer - Fall (late-July through November); Winter t (mid-April through mid-July)

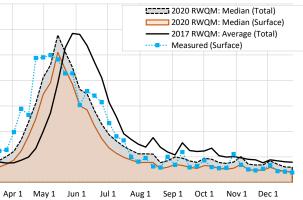

te a value (e.g., mean annual runoff is not calculated if certain weeks or months are

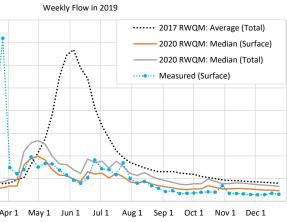
					OW COMPO	NENT OF THE TECK ELK VALLEY REGIO	ONAL WATER QU	ALITY MODEL (RV	VQM) - CALIBRAT	ION DASHBO	ARD		
nario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF					V	Weekly Flow Ser	ries: 2004 to 2	018	
Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	1.401	2017 RWQM			VQM: Median (Surfac VQM: Median (Surfac	-	2020 RWQM: N 2020 RWQM: N		-
on Flow Iling Method	Snowmelt Runoff Module, Wa: sub-catchments Thompson Cre dewatering	ste Rock Hydrology Module in eek Upper & Lower, Phase 3 pit	Surface-Groundwater Partitioning	80%, maximum of 5,000 m3/c	1.001								
nner ID	20	Mean annual runoff (mo	Dinitored)	200	Weekly Flow (m³/s)								1
ected Year	2019	Mean annual runoff (20	20 RWQM)	370	- 문 <i>⋛</i> 0.601								
mparison Start Year	2004	Evaluation period (week	(5)	783		Т				4		N.	i i
mparison End Year	2018	Weeks with monitoring		26%	0.401						-	1	
ion ID & Description	GH_TC1	Thompson Creek at LRP			0.201				🛝 🧯		[1	
iinage Area (2018)	1210 ha	Disturbed Area (2018)		~ 23%	-					m /			
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	0.001	Jan-2004 Jul-2005 Jul-2005 Jan-2006 Jan-2006	Jan-2007 Jul-2007	Jan-2008 Jul-2008 Jan-2009	Jul-2009 Jan-2010	Jul-2010 Jan-2011	Jul-2011 Jan-2012	Jul-2012	Jan-2013 Jul-2013 Jan-2014
2019-01-03	Weekly Flow in 2019 0.039	0.009	(m ³ /s) 0.047			nel nel nel nel nel	Jan Jul	lul Jan	lul Jan	lul lan	Jul Jan		lul lul
2019-01-10 2019-01-17	0.039	0.009	0.047										
2019-01-24	0.038	0.010	0.051		1.2	Weekly Flor	w Exceedance Curv	e: 2004 to 2018					Mean
2019-01-31 2019-02-07	0.037	0.010	0.051		-	2017 RWQM: Avera	ge (Total)	2020 RWQM: Med	ian (Surface)			0.5	
2019-02-14	0.037	0.010	0.049		1	2020 RWQM: Media	an (Total)	Measured (Surface	:)		C	.45	
2019-02-21 2019-02-28	0.036		0.050		(s						(s)	0.4	
2019-03-07	0.037	0.011	0.054		8.0 m ³ /s)							.35	
2019-03-14 2019-03-21	0.039	0.011 0.024	0.056		N I I O K						Flow	0.3	
2019-03-28		0.028	0.086 0.085	0.45	5 Å 0.6						ekly I	.25	
2019-04-04 2019-04-11	0.034	0.027	0.085	0.059	Mee						Me	0.2	
2019-04-18 2019-04-25	0.118		6 0.134 0.117	0.053	8 0.4						age		
2019-05-02	0.251	0.080	0.138	0.052	2							0.15	
2019-05-09 2019-05-16			6 0.124 2 0.110	0.053								0.1	
2019-05-23	0.266	0.043	0.101	0.05							C	0.05	
2019-05-30 2019-06-06			6 0.104 8 0.096	0.04	5	10 20 30	40 50	60 7	0 80	90 10	0	0 Jan 1	Feb 1 Mar 1 A
2019-06-13	0.166		0.087	0.032	2		Probability of Exce	edance (%)				1911 1	FEDI WALL A
2019-06-20 2019-06-27	0.144	0.066	6 0.124 0 0.118	0.020	4	Mean Flow f	or Concurrent Data	: 2004 to 2018					
2019-07-04 2019-07-11	0.114		6 0.123 0.105	0.05		17 RWQM: Average (Total) 📕 2020 RWQM:	Median (Surface) 🔳	Measured (Surface)	- 2020 RWQM: Medi	ian (Total)		0.5	
2019-07-18	0.086	0.065	0.105	0.034	/					· · · · · · · · · · · · · · · · · · ·	0	.45	•
2019-07-25 2019-08-01			0.109		(s) 0.33						_	0.4	
2019-08-08	0.072	0.026	0.084	0.02	7 ^s 0.25	-					m³/s)	.35	
2019-08-15 2019-08-22			0.092		0.25 ≥ 0.25 ≥ 0.2 0.15						I) MC	0.3	
2019-08-29	0.065	0.015	0.073	0.55			_				iy Fic	.25	
2019-09-05 2019-09-12			8 0.067 2 0.062	0.02							ee		
2019-09-19 2019-09-26	0.058		0.057		0			1447 - 1		h at	-	0.2	
2019-09-26			0.055			Annual Late Su	mmer - Fall	Winter	Fres	net		.15	
0010 15 1					Statistics or	concurrent data: 2004 to 2018	Poor	Poor				0.1	
2019-10-10 2019-10-17			0.062 0.069	0.033				2020 RWQM:	2020 RWQM:	Nacaria		.05	
2019-10-24	0.047	0.012	0.062		Parameter		2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	-	Measured (Surface)		0	
2019-10-31 2019-11-07	0.044		0.056	0.033	3 Nash-Sutcli	fe efficiency (E)	0.36	0.08	-0.33			Jan 1	Feb1 Mar1 A
2019-11-14 2019-11-21	0.043		0.055		Modified N	sh-Sutcliffe efficiency (E1)	0.29 0.76	0.21 0.81	-0.12 0.75		Notes		
2019-11-28	0.042	0.011	0.053			eement (d) lex of agreement (d1)	0.61	0.66	0.51		Performan		tics: For E, E1, d, d1, a
2019-12-05 2019-12-12	0.042		0.051 0.050	0.03	6 MAE RMSE		0.07 0.11	0.08 0.14	0.11 0.16				that the model is no a better fit with mon
2019-12-12					-	of Determination (R ²)	0.39	0.14	0.18		Benerally	naicates :	
2019-12-26	0.039	0.010	0.049			lata in statistics	204	204	204	204			periods: Annual (Janu
nual	0.09	0.03	0.08	0.07	Mean of all	er of weekly data weekly data	783 0.145	783 0.177	783 0.235	204 0.135		-	early April) Freshet or unable to calculat
te Summer - Fall	0.06	0.02	0.07	0.03	Standard de	viation of all weekly data	0.110	0.187	0.187	0.142	missing da	ta)	
linter	0.04	0.01	0.06	0.25		ed mean annual runoff (mm/yr)	230	230	370	200	Flows for t	he 2017	RWQM represent pro


an Weekly Flow for Concurrent Data: 2004 to 2018



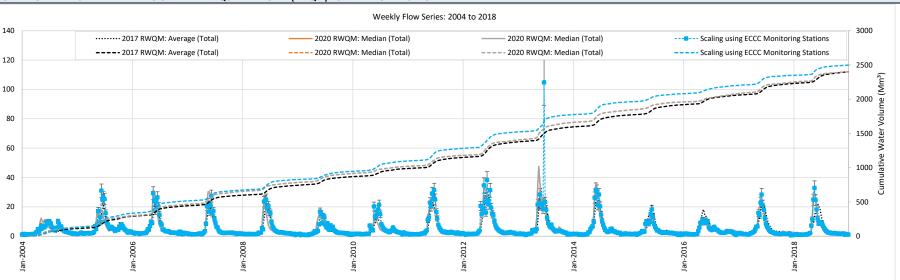
uary through December); late Summer - Fall (late-July through November); Winter it (mid-April through mid-July)

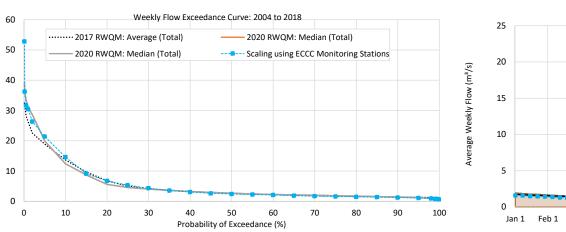

ate a value (e.g., mean annual runoff is not calculated if certain weeks or months are



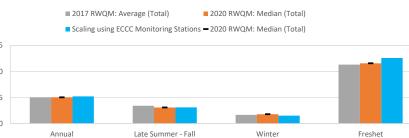
				FLC		ONENT OF THE TECK ELK VALLEY REGIO	ONAL WATER QU	ALITY MODEL (RV	VQM) - CALIBRAT	TION DASHBOA	RD	
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF						Weekly Flow Seri	ies: 2004 to 2018	
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	2.501	2017 RWQM	- · ·		VQM: Median (Surfa VQM: Median (Surfa	-	2020 RWQM: Media 2020 RWQM: Media	
Notes on Flow Modelling Method	Snowmelt Runoff Module, Was sub-catchments Greenhills Cre and tailings storage facilities	ste Rock Hydrology Module in eek North & South, process plant	Surface-Groundwater Partitioning	30%, maximum of 6,000 m3/d	2.001 (۲) ۳ 1.501							
Spinner ID	28	Mean annual runoff (mo	onitored)	320	(s/ _E m) 1.501							
Selected Year	2019	Mean annual runoff (20	20 RWQM)	320	- E - X: 1.001	т		I		I		
Comparison Start Year	2004	Evaluation period (week	(S)	783	1.001 Meekly		1	I I				
Comparison End Year	2018	Weeks with monitoring	data (%)	50%	0.501				-			T T
Station ID & Description	GH_GH1	Greenhills Creek Sedime	ent Pond Decant (E102709)								
Drainage Area (2018)	1520 ha	Disturbed Area (2018)		~ 25%	0.001				(Array)	A strength		And the second
Date	2017 RWQM: Average (Total) Weekly Flow in 2019	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total) (m ³ /s)	Measured (Surface)		Jan-2004 Jul-2005 Jan-2005 Jul-2005 Jan-2006 Jan-2006	Jan-2007 Jul-2007	Jan-2008 Jul-2008 Jan-2009	Jul-2009 Jan-2010	Jul-2010 Jan-2011	1ul-2011 Jan-2012 Jul-2012	Jan-2013 Jul-2013 Jan-2014
2019-01-03 2019-01-10		8 0.040 7 0.039	0.057	0.040)							
2019-01-17	0.076	0.039 0.039 0.040	0.056	0.039	5	Weekly Flov	v Exceedance Curv	e: 2004 to 2018				Mean V
2019-01-24 2019-01-31	0.074	0.040	0.058	0.037	1.6			2020 RWQM: Med	ian (Surfaco)		0.7	wean v
2019-02-07 2019-02-14	0.073	<u>8</u> 0.040 8 0.040		0.026	1.4	2020 RWQM: Avera	• • •				0.0	
2019-02-21 2019-02-28	0.072	2 0.040 2 0.041		0.034 0.028	1.2			incusured (surrace	.,		0.6	
2019-03-07	0.072	2 0.042	2 0.060	0.030	(s/ _e m) »						(s/ _€ m) 0.5	
2019-03-14 2019-03-21	0.073	3 0.043 3 0.057	3 0.062 7 0.081	0.039	0						Meekky Me	
2019-03-28 2019-04-04	0.078 0.081	0.059		0.719 0.148	8.0 Eki						ekly 1	
2019-04-11	0.095	0.066	5 0.095	0.121	∛ 0.6						o 0.3	
2019-04-18 2019-04-25	0.105	5 0.160 2 0.189			0.4						erage 0.2	
2019-05-02 2019-05-09	0.215	5 0.198 5 0.182		0.150)						A V	
2019-05-16	0.385	0.139	0.198	0.164	0.2						0.1	
2019-05-23 2019-05-30	0.548	0.113	0.161	0.137 0.115						and a state of the second	0	
2019-06-06 2019-06-13	0.669	0.097		0.093	3		40 50 Probability of Exce	60 7 edance (%)	0 80	90 100	Ja	an 1 Feb 1 Mar 1 Ap
2019-06-20 2019-06-27	0.542			0.103 0.182	5	Mean Flow fr	or Concurrent Data	· 2004 to 2018				
2019-07-04	0.333	0.124	4 0.177	0.143		2017 RWQM: Average (Total) 2020 RWQM: I			- 2020 PW/OM: Mod	lian (Total)	0.8	
2019-07-11 2019-07-18	0.277	0.102	2 0.146 3 0.176	0.139	0.4			ivieasureu (surrace)		nan (Total)	0.7	•
2019-07-25 2019-08-01	0.193 0.171			0.169	0.20				_			
2019-08-08	0.159	0.079	0.113	0.079	۰ ^۳						(s/ 0.6 س	
2019-08-15 2019-08-22	0.147	7 0.088 8 0.076		0.087	0.2						<u>≥</u> 0.5	
2019-08-29 2019-09-05	0.130			0.056	0.19 0.19		_				Meekly Flow (m ³)	
2019-09-12 2019-09-19	0.131	0.058	0.083	0.045	≥ _{0.05}						ĕ ≥ 0.3	
2019-09-26	0.125	0.051	0.073	0.034	,		nmer - Fall	Winter	Free	shet	0.5	
2019-10-03	0.119	0.054	4 0.077	0.035				Poor but			0.2	
2019-10-10	0.109			0.039	Statistics of	on concurrent data: 2004 to 2018	Poor	improved			0.1	
2019-10-17 2019-10-24	0.105		0.087		Paramete		2017 RWQM:	2020 RWQM:	2020 RWQM:	Measured	0	0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
2019-10-31 2019-11-07	0.094	0.054		0.067		iffe efficiency (E)	Average (Total) 0.01	Median (Surface) 0.35	Median (Total) 0.41	(Surface)	Ja	an 1 Feb 1 Mar 1 Apr
2019-11-14	0.091	0.056	5 0.080	0.033	Modified N	lash-Sutcliffe efficiency (E1)	0.15	0.34	0.36		Neter	
2019-11-21 2019-11-28		3 0.056 5 0.053	0.076	0.028	Modified i	greement (d) ndex of agreement (d1)	0.65 0.54	0.76 0.65	0.79 0.65			atistics: For E, E1, d, d1, an
2019-12-05 2019-12-12	0.085	0.051 0.049			MAE RMSE		0.16 0.25	0.12 0.20	0.12 0.19			cate that the model is no be ates a better fit with monito
2019-12-19	0.081	0.048	0.069	0.035	Coefficien	c of Determination (R ²)	0.19	0.41	0.44			
2019-12-26	0.079	0.046	5 <u>0.066</u>	0.030		f data in statistics ber of weekly data	390 783	390 783	390 783	390		nal periods: Annual (Januar ough early April) Freshet (n
Annual	0.18	0.08			Mean of a	l weekly data	0.227	0.172	0.216	0.231	n/a = Not availa	able or unable to calculate
Late Summer - Fall Winter	0.12	0.07				leviation of all weekly data Ited mean annual runoff (mm/yr)	0.214 350	0.187 250	0.201 320	0.250 320	missing data) Flows for the 20	017 RWQM represent proje
Freshet	0.36	0.13	0.18	0.14		· · · · · · · · · · · · · · · · · · ·					December 2016	

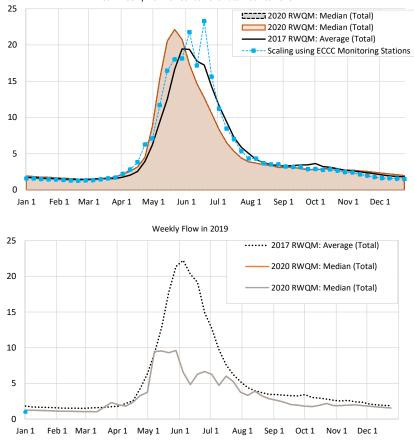
an Weekly Flow for Concurrent Data: 2004 to 2018

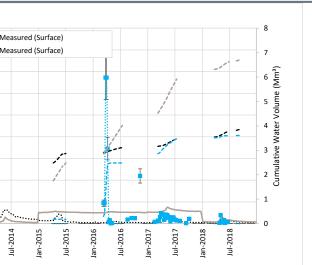




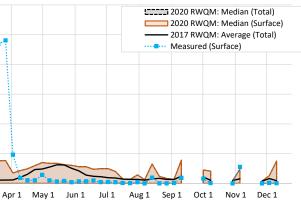
uary through December); late Summer - Fall (late-July through November); Winter t (mid-April through mid-July)

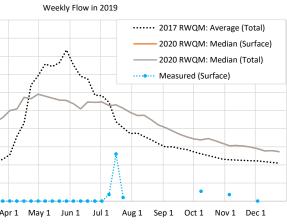

te a value (e.g., mean annual runoff is not calculated if certain weeks or months are


Scenario	2017RWQM_TF_MF	2020RWQM_TF_MF	2020RWQM_TF_MF	Scaling_Method							Weekly Flow Se	eries: 200
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Total)	2020 RWQM: Median (Total)	Scaling using ECCC Monitoring Stations		140	20 2017 RWQM:	- · ·				
Notes on Flow Modelling Method	FR_FRABCH + Chauncey + Ewin GH_GH1 + unnamed areas betw (Sum of modelled flows)		Surface-Groundwater Partitioning	Not implemented		120 100						
Spinner ID	17	Mean annual surface rui	noff (monitored)	410	Weekly Flow (m³/s)	80	1					
Selected Year	2019	Mean annual total runo	ff (2020 RWQM)	390	Flow							
Comparison Start Year	2004	Evaluation period (week	(s)	783	ekly	60	0					1
Comparison End Year	2018	Weeks with monitoring		100%	We							4.4
Station ID & Description	GH_FR1		am of Greenhills Creek (20	00378)		40	J	Jess:				ž
Drainage Area (2018)	 40750 ha	Disturbed Area (2018)		~ 15%		20	0			Ē.	1	<u>R</u>
Date	2017 RWQM: Average (Total) Weekly Flow in 2019	2020 RWQM: Median (Total)	2020 RWQM: Median (Total) (m ³ /s)	Scaling using ECCC Monitoring Stations		(Jan-2004		Jan-2008	an-2010	r.	
2019-01-03	1.826	1.261	1.261	0.987			el la		Γ.	2r		
2019-01-10 2019-01-17	1.693 1.653	1.225	1.225									
2019-01-24 2019-01-31	1.628 1.597	1.179 1.130	1.179 1.130			60	Weekly Flow	Exceedance Curv	ve: 2004 to 2018			
2019-02-07	1.538	1.105	1.105				······· 2017 RWQM: Average (Tota	I) —	- 2020 RWQM: Med	lian (Total)		
2019-02-14 2019-02-21	1.517 1.516	1.103	1.103		!	50	2020 RWQM: Median (Total)	- Scaling using ECCC	Monitoring Station	ıs	
2019-02-28	1.494	1.052	1.052		s)							s/s)
2019-03-07 2019-03-14	1.547 1.598	1.043	1.043		Weekly Flow (m³/s)	40						Flow (m ³ /s)
2019-03-21	1.622	1.684	1.684) NO							Flow
2019-03-28 2019-04-04	1.738 1.791	2.311	2.311		Η	30						Weekly
2019-04-04	2.190	1.980	1.980		Veek							Nev
2019-04-18	2.563	2.363	2.363		>	20						age
2019-04-25 2019-05-02	4.261 6.347	3.291 3.741	3.291 3.741				No. of the second se					Avei
2019-05-09	9.196	9.456				10	······································					
2019-05-16 2019-05-23	12.825	9.538 9.287	9.538 9.287				and the second se		-			
2019-05-30	21.366	9.603	9.603			0	0 10 20 30	40 50	60 7	0 80	90 10	00
2019-06-06 2019-06-13	22.228	6.549 4.832	6.549 4.832			,		Probability of Exce		0 00	50 10	00
2019-06-20	19.152	6.296	6.296						2004 += 2040			
2019-06-27 2019-07-04	14.891	6.651 6.264	6.651 6.264				Mean Flow fo	r Concurrent Data	: 2004 to 2018			
2019-07-11	9.704	4.717	4.717				■ 2017 RWQM: Average (Total) 2 020 F	RWQM: Median (Total)		
2019-07-18 2019-07-25	7.584	6.017 5.253	6.017 5.253				Scaling using ECCC Monitoring	ng Stations – 2020 F	RWQM: Median (Total)		
2019-08-01	5.232	3.762	3.762			15						(s/
2019-08-08 2019-08-15	4.398	3.314 3.893	3.314 3.893		m³/s	10						, (m
2019-08-22	3.696	3.249	3.249) wo	10						Flow
2019-08-29 2019-09-05	3.455 3.424	2.847 2.629			Mean Flow (m ³ /s)	5						Weekly Flow (m³/s)
2019-09-12	3.345	2.386	2.386		Mea							Weé
2019-09-19 2019-09-26	3.270 3.247	2.039				0	Annual Late Sumr	mer - Fall	Winter	Fres	het	
2019-10-03	3.420	1.798							willer	ries	nict	
2019-10-10		1.748			Statist	ics o	n concurrent data: 2004 to 2018	Good	Good			
2019-10-17 2019-10-24	2.931 2.801	1.909 2.169	1.909 2.169		Param	otor		2017 RWQM:	2020 RWQM:	2020 RWQM:	Scaling using ECCC Monitor	
2019-10-31	2.635	1.885	1.885					Average (Total)		Median (Total)	Stations	mg
2019-11-07	2.521 2.617	1.892					ffe efficiency (E)	0.70	0.69	0.69		
2019-11-14 2019-11-21	2.617	1.943 1.991					ash-Sutcliffe efficiency (E1) reement (d)	0.66 0.90	0.65 0.90	0.65 0.90		Note
2019-11-28	2.365	1.889	1.889		Modifi		dex of agreement (d1)	0.82	0.82	0.82		Perfo
2019-12-05 2019-12-12	2.102	1.792			MAE RMSE			1.53 4.01	1.58 4.08	1.58 4.08		less t gene
2019-12-19	1.917	1.629	1.629		Coeffic		of Determination (R ²)	0.71	0.69	0.69		
2019-12-26	1.869	1.551	1.551				data in statistics er of weekly data	783 783	783 783	783 783	783	Note
Annual	5.36	3.15	3.15				weekly data	5.065	5.066	5.066	5.273	(Dec n/a =
Late Summer - Fall	3.42	2.55	2.55		Standa	ard de	eviation of all weekly data	5.678	6.306	6.306	7.339	miss
Winter	1.70	1.39	1.39	0.99	Annroy	ximat	ted mean annual runoff (mm/yr)	390	390	390	410	Flow


2.169			Parameter	Average (Total)		Median (Total)	ECCC Monitoring Stations	0
1.892			Nash-Sutcliffe efficiency (E)	0.70	0.69	0.69	Stations	Jan 1 Feb 1 Mar 1 Apr 1 May 1
1.943	1.943		Modified Nash-Sutcliffe efficiency (E1)	0.66	0.65	0.65		
1.991	1.991		Index of agreement (d)	0.90	0.90	0.90		Notes
1.889	1.889		Modified index of agreement (d1)	0.82	0.82	0.82		Performance statistics: For E, E1, d, d1, and R a statistic
1.792	1.792		MAE	1.53	1.58	1.58		less than 0 indicate that the model is no better than usin
1.703	1.703		RMSE	4.01	4.08	4.08		generally indicates a better fit with monitored data.
1.629	1.629		Coefficient of Determination (R ²)	0.71	0.69	0.69		
1.551	1.551		Number of data in statistics	783	783	783		Notes on seasonal periods: Annual (January through De
			Total number of weekly data	783	783	783	783	(December through early April) Freshet (mid-April through
3.15	3.15	0.99	Mean of all weekly data	5.065	5.066	5.066	5.273	n/a = Not available or unable to calculate a value (e.g., r
2.55	2.55		Standard deviation of all weekly data	5.678	6.306	6.306	7.339	missing data)
1.39	1.39	0.99	Approximated mean annual runoff (mm/yr)	390	390	390	410	Flows for the 2017 RWQM represent projected average
6.03	6.03							December 2016)

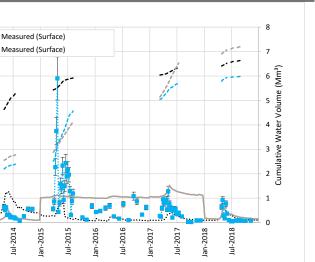
Mean Weekly Flow for Concurrent Data: 2004 to 2018

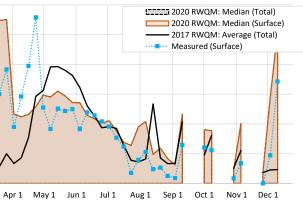

c of 1 indicates best fit with monitored data. For E and E1, values using the mean of all the data. For MAE and RMSE, a lower number

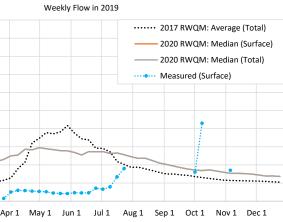

December); late Summer - Fall (late-July through November); Winter rough mid-July) , mean annual runoff is not calculated if certain weeks or months are

Scenario	2017RWQM TF MF	2020RWQM SF MF	2020RWQM TF MF	Monitored SF		UNLI				120101			LITY MOD	(11.00	حريور) -	SALIDI					to 201	0				1
					1.80	1											wee	екіў Но	w serie	es: 2004	ι ι 201	.ð				
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	1.60						Average (To Average (To			2020 RW 2020 RW			-	-		2020 RW 2020 RW					••••• M	
Notes on Flow	Snowmelt Runoff Module, Was sub-catchments Leask Creek U	ste Rock Hydrology Module in pper & Lower, Mickelson Creek	Surface-Groundwater	Not Implemented	1.40																					
Modelling Method	from 2017, Phase 6 pit dewate		Partitioning	Not implemented	(s) 1.20 س) 1.00 Mole HA 0.80 Mole HA 0.60	1																				
Spinner ID	16	Mean annual runoff (mo	onitored)	170	> 1.00	1																				
Selected Year	2019	Mean annual runoff (20	20 RWQM)	250	8.0 k	1																				
Comparison Start Year	2004	Evaluation period (weel	<s)< td=""><td>783</td><td>Š 0.60</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></s)<>	783	Š 0.60	1																				
Comparison End Year	2018	Weeks with monitoring	data (%)	30%	0.40	1																				
Station ID & Description	GH_LC1	Leask Creek Sediment P	ond Decant (E257796)		0.20	1				1-																
Drainage Area (2018)	540 ha	Disturbed Area (2018)		~ 91%	0.00	1		ý.			A	-									×					$\overline{}$
Date	2017 RWQM: Average (Total) Weekly Flow in 2019	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total) (m ³ /s)	Measured (Surface)	0.00	an-2004	Jul-2004 Jan-2005	Jul-2005	Jan-2006	Jul-2006	Jan-2007	Jul-2007	Jan-2008 Jul-2008	Jan-2009	Jul-2009	Jan-2010	Jul-2010	Jan-2011	111-2011	C10C-0c	2012	2102-11	Jan-2013	Jul-2013	Jan-2014	1-2014
2019-01-03	0.011		5 0.015			Jai	Ju Ja	Ĩ	Jai	۲ı	Jai	-	Jan Ju	Jai	۲.	Jai	٦	Jai	-		ş =	Ξ.	Jai	-	Ja	4
2019-01-10 2019-01-17	0.011		5 0.015 5 0.016	0.003	5						_															
2019-01-24 2019-01-31	0.010	0.016	5 0.016 5 0.016		1.6				Weekl	ly Flow	Exceedanc	e Curve	e: 2004 to 20	018							0.	6 –			Mean	n W
2019-02-07	0.010	0.015	5 0.015	0.000	1.4					-			2020 RWQN		an (Surf	face)					0.	.0				
2019-02-14 2019-02-21	0.010		5 0.016 5 0.016	0.000	1.2			2020	RWQM: N	Median	n (Total)	••••	Measured (Surface)							0.	.5				_
2019-02-28 2019-03-07	0.010		7 0.017 7 0.017	0.000	(s/ _E u) 1															n³/s)						1
2019-03-14	0.011	0.017	0.017																	ow (r	0.	.4				+
2019-03-21 2019-03-28		0.023	2 0.022 3 0.023	0.000) 문 0.8															Weekly Flow (m³/s)	0.	2				
2019-04-04 2019-04-11	0.013		5 0.025 5 0.025	0.000	8.0 Meekly (Wee	0.	.5				
2019-04-18 2019-04-25	0.022		0.029	0.000)															Average ¹	0.	.2				_
2019-05-02	0.035	0.030	0.030	0.000	0.4															Ave						
2019-05-09 2019-05-16	0.038		0.029 0.028	0.000	0.2																0.	.1	1			_
2019-05-23 2019-05-30	0.038		3 0.028 3 0.028	0.000) 0		**************************************						.				-	*****				0		Δ	<u>/</u>	
2019-06-06 2019-06-13	0.038		7 0.027 5 0.025	0.000)	0	10	20	30	Р	40 Probability of	50 of Excer	60 edance (%)	70		80	9	90	100)		Jan 1	Feb	1 Ma	r1 /	Арі
2019-06-20	0.034	0.027	0.027	0.000)																					
2019-06-27 2019-07-04	0.029		7 0.027 7 0.027	0.000									2004 to 20								0.0	5				
2019-07-11 2019-07-18	0.027	0.026	5 0.026 7 0.027	0.002	2		RWQM: Average (To	otal) 📕	2020 RW	/QM: M	ledian (Surfa	ice) 🗖 N	Aeasured (Su	rface) 🗕	2020 R	WQM: N	Median	(Total)			0.04	5				_
2019-07-25	0.020	0.026	5 0.026	0.001																	0.0	4				_
2019-08-01 2019-08-08	0.019	0.024	4 0.024	0.033																(m³/s)	0.03					
2019-08-15 2019-08-22			4 0.024 2 0.022										-							ow (r	0.0					
2019-08-29 2019-09-05				0.047	⊆ 0.0			_			•									Weekly Flow	0.02					_
2019-09-12	0.015	0.019	0.019	0.041	≥ 0.0															Wee	0.0				-	<u>_</u>
2019-09-19 2019-09-26	0.014	0.018	3 0.018 3 0.018			0	Annual		La	ate Sumi	mer - Fall		Winte	r			Freshet				0.01		\sim	_		
2019-10-03	0.014	0.017	7 0.017										Poor b	ut							0.0					·
2019-10-10			0.017	0.003	3 Statistics	on co	ncurrent data: 20	04 to	2018		Poo	r	improv								0.00					
2019-10-17 2019-10-24	0.013		7 0.017 7 0.017		Paramete	er					2017 RW		2020 RW			RWQN		Meas			2.00	0				
2019-10-31 2019-11-07	0.012		5 0.016	0.002			efficiency (E)				Average (-0.06		Median (Su 0.02			an (Tota).02	al)	(Surf	acē)			Jan 1	Feb	1 Mar	1 A	۰pr
2019-11-14	0.011	0.015	5 0.015		Modified	Nash-	Sutcliffe efficience	y (E1)			-0.06	6	-0.29)	-(0.29				_						_
2019-11-21 2019-11-28	0.011	0.015	5 0.015 5 0.015				nent (d) of agreement (d1	L)			0.04	5	0.29	1	C	0.29 0.30					rmance			r E, E1, (
2019-12-05 2019-12-12			4 0.014 4 0.014	0.000	MAE RMSE						0.04		0.05			0.05 0.13	Ŧ							e mode r fit wit		
2019-12-19	0.011	0.014	4 0.014		Coefficie		Determination (R ²))			0.01	L	0.06	i	C	0.06										
2019-12-26	0.010	0.014	0.014		-		a in statistics of weekly data				237 783		237 783			237 783		23	57					: Annua April) Fi		
Annual	0.02		0.02		Mean of	all wee		data			0.02	7	0.04	7	0	.047 .044		0.0	25	n/a =	Not av	ailable		ble to ca		
Late Summer - Fall Winter	0.01	0.02	0.02				tion of all weekly mean annual runo		m/yr)		0.02		250			250		0.1			ng data s for the		RWQM	repres	ent pro	oje
Freshet	0.03	0.03	0.03	0.00																Dece	mber 2	016)				

an Weekly Flow for Concurrent Data: 2004 to 2018

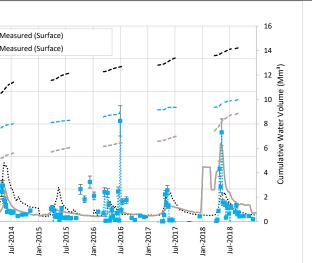


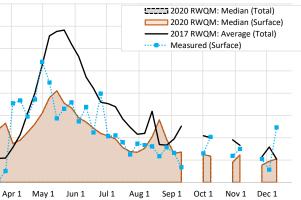

uary through December); late Summer - Fall (late-July through November); Winter t (mid-April through mid-July)

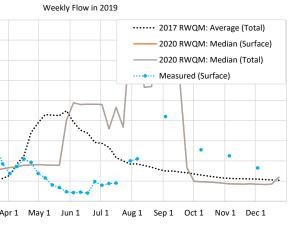

te a value (e.g., mean annual runoff is not calculated if certain weeks or months are

Scenario						UNEIVI (OF THE FECK			IONAL WATER QU								_
	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF	0.00	1							Weel	kly Flow Serie	es: 2004 to 20	-8		
Case Description	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Measured (Surface)	0.80					M: Average (Total)		WQM: Median (020 RWQM: M			••• Mea
	(Total)	(Surface)	(Total)		0.70	1			2017 RWQ	M: Average (Total)	2020 R	WQM: Median (Surface)	2	020 RWQM: M	edian (Total)	Mea
Notes on Flow Modelling Method	Snowmelt Runoff Module, Was sub-catchments Leask Creek U from 2017, Phase 6 pit dewate	pper & Lower, Mickelson Creek	Surface-Groundwater Partitioning	Not Implemented	0.60 (s/ 0.50 E													
pinner ID	17	Mean annual runoff (mo	onitored)	160	 												1	,
elected Year	2019	Mean annual runoff (20		250	0.40 문	1											/	
Comparison Start Year	2004	Evaluation period (weel	(c)	783	Veekly 0.30	1									. /			
Comparison End Year	2018	Weeks with monitoring		34%	0.20	0.201							,					
tation ID & Description	GH_LC2	Leask Creek u/s of Pond			0.10	1				· · · ·			;;;=	12				\sim
Drainage Area (2018)	540 ha	Disturbed Area (2018)		~ 91%	-	~					- 1	~		. 🧍	<u></u>		· <u> </u>	. 🕺
	2017 RWQM: Average			Measured (Surface)	0.00		05	05	906	07	80 80 60	00 01	10	1 1	12	112	13 14	5
Date	(Total) Weekly Flow in 2019	(Surface)	(Total) (m³/s)			Jan-2004	Jul-2004 Jan-2005	Jul-2005	Jan-2006 Jul-2006	Jan-2007 Jul-2007	Jan-2008 Jul-2008 Jan-2009	Jul-2009 Jan-2010	Jul-2010	Jan-2011 Jul-2011	Jan-2012	Jul-2012 Jan-2013	Jul-2013 Jan-2014	4 102-lui
2019-01-03	0.011		5 0.015			-			- ·				,	- ·	_			
2019-01-10 2019-01-17	0.011 0.010	0.015	5 0.015 5 0.016															
2019-01-24	0.010	0.016	5 0.016		0.6				Weekly Flo	ow Exceedance Curv	e: 2004 to 2018						M	lean V
2019-01-31 2019-02-07	0.010		5 0.016 5 0.015		-	_		2017 R\	VQM: Aver	rage (Total)	2020 RWQM: Med	dian (Surface)			0.	12		
2019-02-14	0.010		5 0.016		0.5	—		2020 R\	VQM: Med	dian (Total)	Measured (Surfac	e)					1	
2019-02-21	0.010	0.016).1		
2019-02-28 2019-03-07	0.010		7 0.017 7 0.017		(s/₅u) 0.4										Flow (m³/s) .0			
2019-03-14	0.011		0.017		L) ^										≥ 0.0	08		_
2019-03-21	0.011		0.022	0.00		1									/ Flo			A
2019-03-28 2019-04-04	0.012	0.023	3 0.023 5 0.025	0.002											.0 Weekly	06		1
2019-04-11	0.018	0.025	5 0.025	0.000	0.3 Meekly Fl	1 1 1									We			
2019-04-18 2019-04-25	0.022	0.029	0.029	0.000											.0 ge	04		
2019-04-23	0.032	0.028		0.005	5										Average .	A A		
2019-05-09		0.029	0.029	0.005	0 1										0.0	02	- 1	
2019-05-16	0.037	0.028	3 0.028 3 0.028	0.004			•••••		une man							·- 🕺	XN	
2019-05-23 2019-05-30	0.038	2 0.028	8 0.028 8 0.028	0.004							· · · · · · · · · · · · · · · · · · ·		••••			0		
2019-06-06	0.038	0.027		0.005		0	10	20	30	40 50		70 80	90	0 100		-	Feb 1 Mar 1	Ap
2019-06-13 2019-06-20	0.034	0.025	5 0.025 7 0.027	0.005						Probability of Exce	eedance (%)							
2019-06-20	0.029		0.027	0.00				N	/lean Flow	for Concurrent Data	a: 2004 to 2018							
2019-07-04	0.029		0.027	0.00		2017 PM/0	M: Avorago /To	otal) = 2		I: Median (Surface)	Moncurod (Surface)	- 2020 BWOM	· Modian /J	Total)	0	.1		
2019-07-11 2019-07-18	0.027	0.026	5 0.026 7 0.027	0.008	3	2017 KWU	livi: Average (10	JLdI) = 2	UZU KVVQIVI		ivieasured (surface)	- 2020 KWQIVI	. ivieulari (i	I OLdI)	0.0			
2019-07-25	0.020	0.026	5 0.026	0.01	0.0													
2019-08-01					0.0 (s/ (s/							_	_		0.0 (ج			
2019-08-08 2019-08-15					0.0 j											J7		
2019-08-22	0.017	0.022	2 0.022		0.0 Elo K	3).0 ﷺ).0 Keekiy).0 Keekiy)6		
2019-08-29				0.00											프 ▲ 0.0	15		
2019-09-05 2019-09-12	0.015	5 0.020 5 0.019		0.086	0.0 Mear	1									,eek			
2019-09-19	0.015					0									≥ 0.0)4		
2019-09-26		0.018		0.01			Annual		Late Si	ummer - Fall	Winter		Freshet		0.0)3		
2019-10-03	0.014	0.017	0.017	0.010							Poor but				0.0	12		\frown
2019-10-10	0.013	0.017	0.017	0.043	Statistics	on concu	rrent data: 20	04 to 20)18	Poor	improved							
2019-10-17	0.013	0.017	0.017							2017 RWQM:	2020 RWQM:	2020 RWQ	M:	Measured	0.0	/ <u> </u>	••••••	-
2019-10-24		0.017			Paramete	er				Average (Total)				(Surface)		0		•
2019-10-31 2019-11-07				0.01	7 Nash-Sute	cliffe effici	iency (E)			-0.21	0.19	0.19				Jan 1	Feb 1 Mar 1	Apr
2019-11-14	0.011	0.015	5 0.015		Modified	Nash-Suto	cliffe efficience	y (E1)		-0.11	0.11	0.11			- 			
2019-11-21 2019-11-28						igreement		-		0.35	0.66	0.66			Notes Performance	e statistic	5: For E, E1, d, d	11. an
2019-11-28 2019-12-05					Modified	muex of a	agreement (d1	L)		0.39	0.55	0.55					at the model is	
2019-12-12	0.011	0.014	4 0.014		RMSE					0.06	0.05	0.05					etter fit with m	
2019-12-19							rmination (R ²))		0.02	0.25	0.25						
2019-12-26	0.010	0.014	0.014		-	of data in s	statistics eekly data			270 783	270 783	270 783		270			riods: Annual (Ja arly April) Fresł	
Annual	0.02	0.02	0.02	0.01	Mean of a					0.041	0.044	0.044		0.037		-	unable to calcu	
ate Summer - Fall	0.01	0.02	0.02				of all weekly	data		0.036	0.041	0.041		0.058	missing dat			
Winter	0.01					ated mea	in annual runo	off (mm/	/yr)	160	250	250		160			VQM represent	proje
Freshet	0.03	0.03	0.03	0.01						1			1		December 2	(016)		

an Weekly Flow for Concurrent Data: 2004 to 2018

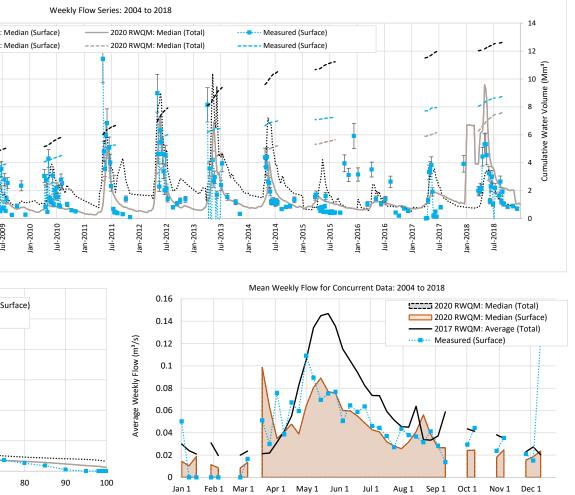


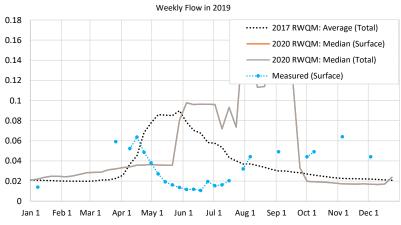

uary through December); late Summer - Fall (late-July through November); Winter t (mid-April through mid-July)


te a value (e.g., mean annual runoff is not calculated if certain weeks or months are

				FLC		ONENT O	F THE TECK ELK		Y REGIO	NAL WATER QU	ALITY MODEL (F	RWQM) - CALIBR	ATION DASH	BOARD			
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF									Weekly Flow	Series: 2	004 to 2018		
	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median		0.601	1		201	7 RWQM:	Average (Total)	2020	RWQM: Median (Su	rface) —	2020	RWQM: Median	(Total)	Mea
Case Description	(Total)	(Surface)	(Total)	Measured (Surface)	0.501	11		201	7 RWQM:	Average (Total)	2020	RWQM: Median (Su	rface) ––	2020	RWQM: Median	(Total)	Mea
	Snowmelt Runoff Module, Was	te Bock Hydrology Module, Pit			0.50	1			T								
Notes on Flow Modelling Method	Module in sub-catchments Wo	lfram Creek North & South	Surface-Groundwater Partitioning	Not Implemented	<u>.</u> 0.401	1			•								
	Upper & Lower, Phase 3, 4, 6 P	it dewatering			(s/sm)				-							, '	
Spinner ID	18	Mean annual runoff (mo	onitored)	180	0.301						т				1		
Selected Year	2019	Mean annual runoff (202	20 RWQM)	190	Areakly Meekly 0.201				ŧ		_ T T			1	I	т	
Comparison Start Year	2004	Evaluation period (week	(s)	783	\$ 0.201	1	1		1		-			I		I	
Comparison End Year	2018	Weeks with monitoring	data (%)	43%					.	1		- -	-F	-	<u>.</u>		#
Station ID & Description	GH_WC1	Wolfram Creek Sedimen	t Pond Decant (E257795)		0.101	1		-	. North	1			.	1			· 💦
Drainage Area (2018)	620 ha	Disturbed Area (2018)		~ 85%	0.001	1	and the second second]			
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	0.000	Jan-2004	Jan-2005 Jul-2005	Jan-2006	Jul-2006	Jan-2007 Jul-2007	Jan-2008 Jul-2008	Jul-2009 Jan-2010	Jul-2010 Jan-2011	Jul-2011	Jan-2012 Jul-2012	Jan-2013 Jul-2013	Jan-2014 Jul-2014
2010 01 02	Weekly Flow in 2019		(m³/s)			Jan-	Jul Jan	Jan-	-Inf	Jan-Jan-	Jul - Jul	Jan-C	Jan-C-Int	Jul	Jan-C-Iul	Jan-Jan-	Jan-C-Int
2019-01-03 2019-01-10	0.021	0.021	0.021														
2019-01-17 2019-01-24	0.021	0.024	0.024		0.45			We	ekly Flow	/ Exceedance Curv	/e: 2004 to 2018						Mean W
2019-01-31	0.020	0.025	0.025					7 RWON	M· Averag	ze (Total)	- 2020 RWQM: M	edian (Surface)			0.16		
2019-02-07 2019-02-14	0.020	0.024	0.024		0.4						Measured (Surfa				0.14		
2019-02-21 2019-02-28	0.020	0.027	0.027		0.35												
2019-03-07	0.020	0.029	0.029		(s/ ‴u) 0.3										້ 0.12 ຍ		
2019-03-14 2019-03-21	0.021	0.029 0.031	0.029	0.056	>	-									(s/ _€ L) 0.12 Moli		
2019-03-28 2019-04-04	0.023	0.032	0.032	0.037	2.0 Meekly										80.0 Weekly		
2019-04-11	0.037	0.034 0.036	0.034	0.034	Š0.15										¥ ജ 0.06		
2019-04-18 2019-04-25	0.068	0.036	0.036	0.039)		· ·								era	1 1	
2019-05-02 2019-05-09	0.078	0.036	0.036	0.028	0.1							70 80			₹ 0.04		
2019-05-16 2019-05-23	0.085	0.036	0.036	0.016	0.05										0.02		
2019-05-30	0.090	0.080	0.080	0.009	0	0	10 20		30	40 50	60	70 80	90	100	0		
2019-06-06 2019-06-13	0.078	0.098	0.098	0.008	•	0	10 20			Probability of Exce		70 80	50	100	Jan	1 Feb 1	Mar 1 Apr
2019-06-20 2019-06-27	0.068	0.096	0.096	0.008	•			Mear	n Flow fo	r Concurrent Data	a: 2004 to 2018						
2019-07-04	0.057	0.096	0.096	0.016		2017 RWOM	1. Average (Total)) – 2020 RWQM: M	ledian (Total)		0.18		
2019-07-11 2019-07-18	0.043	0.072	0.093	0.017	0.1		in the tage (total)	_ 2020			incusurea (surrace	, 2020	iculari (Fotal)		0.16		
2019-07-25 2019-08-01	0.040	0.074	0.074	0.040											. 0.14		
2019-08-08 2019-08-15	0.037	0.149 0.113	0.149	0.042		6									S E 0.12		
2019-08-22	0.034	0.114	0.114												No		
2019-08-29 2019-09-05	0.032	0.153	0.153	0.084	sar										⊟ 0.1		
2019-09-12 2019-09-19	0.030	0.130	0.130		-										80.08 ≷		
2019-09-26	0.028	0.033	0.033			0	Annual		Late Sum	nmer - Fall	Winter	F	reshet		0.06		•
2019-10-03	0.027	0.020	0.020							_	Poor but				0.04		
2019-10-10	0.026	0.019		0.051	Statistics of	on concurr	ent data: 2004 t	o 2018		Poor	improved				0.02		
2019-10-17 2019-10-24	0.025	0.019	0.019		Parameter	er				2017 RWQM:	2020 RWQM: Modian (Surfac				0		
2019-10-31 2019-11-07	0.023 0.023	0.018	0.018	0.045	Nash-Sutc	cliffe efficie	ncy (E)			Average (Total) -0.18	Median (Surfac -0.16	e) Median (Tota -0.16	l) (Surfac	.e)	Jan	1 Feb 1	Mar 1 Apr
2019-11-14	0.022	0.017	0.017	0.045	Modified I	Nash-Sutcli	ffe efficiency (E1	1)		-0.10	0.03	0.03					
2019-11-21 2019-11-28	0.022	0.017	0.017			igreement index of ag	d) reement (d1)			0.60 0.42	0.48	0.48 0.43		Pe	otes erformance stat		
2019-12-05 2019-12-12	0.022	0.017	0.017	0.033	MAE RMSE					0.04 0.06	0.04 0.06	0.04 0.06			ss than 0 indica enerally indicate		
2019-12-19	0.021	0.017	0.017		Coefficien		nination (R ²)			0.17	0.05	0.05			·		
2019-12-26	0.021	0.024	0.024			of data in st ober of wee				333 783	333 783	333 783	333		otes on season: December throu		
Annual	0.04	0.05	0.05		Mean of a	all weekly d	ata			0.071	0.045	0.045	0.050) n/	′a = Not availab		
Late Summer - Fall Winter	0.03	0.07	0.07	0.05			f all weekly data annual runoff (n			0.049 250	0.038	0.038	0.057		issing data) ows for the 201	17 RWQM re	epresent proje
Freshet	0.07	0.07	0.07	0.02											ecember 2016)		

n Weekly Flow for Concurrent Data: 2004 to 2018

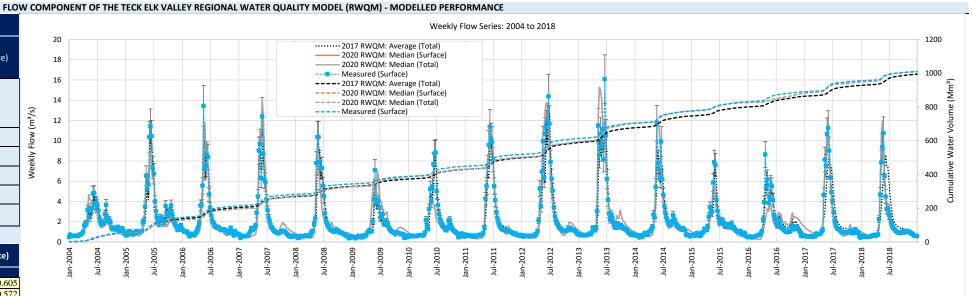




uary through December); late Summer - Fall (late-July through November); Winter t (mid-April through mid-July)

te a value (e.g., mean annual runoff is not calculated if certain weeks or months are

D19.46.13 0.070 0.096 0.096 0.017 D19.46.21 0.058 0.096 0.016 0.011 D19.46.27 0.057 0.096 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011	ALIBRATION DASHBOARD	VQM) - CALIBRA	ALITY MODEL (RV	NAL WATER QU	DNENT OF THE TECK ELK VALLEY REGION	W COMPC	FLO				
Date Decolption 202 TWO/M Average (Tes) 202 TWO/M Average (Tes	Weekly Flow Series: 20						Monitored_SF	2020RWQM_TF_MF	2020RWQM_SF_MF	2017RWQM_TF_MF	Scenario
Class transmission Close Close <td>lian (Surface) — 2020 R</td> <td>VQM: Median (Surfa</td> <td> 2020 RV</td> <td>Average (Total)</td> <td></td> <td>0.351</td> <td></td> <td>2020 RWQM: Median</td> <td>2020 RWQM: Median</td> <td>2017 RWQM: Average</td> <td></td>	lian (Surface) — 2020 R	VQM: Median (Surfa	2020 RV	Average (Total)		0.351		2020 RWQM: Median	2020 RWQM: Median	2017 RWQM: Average	
Description Number for advances Description Number for advances Description Spinse 10 9.3 Mean annual runoff frombared 970 Spinse 10 9.3 Mean annual runoff frombared 10.0 Spinse 10 9.3 Mean annual runoff frombared 10.0 Spinse 10 9.3 10.0 10.0 10.0 <td>dian (Surface) 2020 R</td> <td>VQM: Median (Surfa</td> <td> 2020 RV</td> <td>Average (Total)</td> <td> 2017 RWQM: /</td> <td>0.301</td> <td>Measured (Surface)</td> <td></td> <td></td> <td></td> <td>Case Description</td>	dian (Surface) 2020 R	VQM: Median (Surfa	2020 RV	Average (Total)	2017 RWQM: /	0.301	Measured (Surface)				Case Description
Saletad Vary 2019 Mean annual mundi (1202 (MMM)) 100 Comparison Erd Vari 2018 Weds with monitoring data (%) 2018 Comparison Erd Vari 2018 Weds with monitoring data (%) 2018 Draing Arss (2014) 2010 Weds with monitoring data (%) 783 Comparison Erd Vari 2010 Mean monitoring data (%) 783 Comparison Erd Vari 2010 Polity (%) (%) (%) Polity (%) (%) (%) Polity (%) (%) (%) Comparison Erd Vari 2010 0.01 Polity (%) (%) (%) Polity (%) (%) (%) Polity (%) (%) (%) Polity (%) (%) (%) (%) (%) Polity (%) (%) (%) (%) (%) (%) Polity (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)			T		3T .		Not Implemented		olfram Creek North & South	Module in sub-catchments Wo	
Saleted Year 2019 Main anoula mundi (1202 MVM) 140 Origenizasi End Year 2029 Beakation period (ed.al. %) 353 Comparisos End Year 2029 Weeks with monitoring (ed.al. %) 353 Comparisos End Year 2029 Monitoring (ed.al. %) 753 Comparisos End Year 2029 Monitoring (ed.al. %) 753 Comparisos End Year 2029 Disturged Area (2004) Feasure (1004) Optime Area (2004) Comparisos End Year 2029 Feasure (1004) Optime Area (2004) Comparisos End Year 2029 Point Area (2004) Point Area (2004) Optime Area (2004) Comparisos End Year Point Area (2004) Point Area (2004) Point Area (2004) Optime Area (2004) Comparisos End Year Point Area (2004) Point Area (2004) Point Area (2004) Point Area (2004) Optime Area (2004) Comparisos End Year Point Area (2004) Point Area (2004) Point Area (2004) Point Area (2004) Optime Area (2004) Comparisos End Year Point Area (2004) Point Area (2004) Point Area (2004) <	I					는 0.201 중	200	nitored)	Mean annual runoff (mo	19	Spinner ID
Comparison for Visual Unitary for Visual (Construction) Statis Description Off, WCZ Weeks with monitoring data (p) 2016 Drainage Area (2001) CD to Unitary for CD (D) Fastis Fasti						년 ▲ 0.151 광	180	20 RWQM)	Mean annual runoff (202	2019	Selected Year
Comparison for Mater 2014 Votes with monitoring data (ty) 25% Data to B B Association Ok Watter Creak (A Pool Millow) Estimate Area (201) Control Material (2010) Control Material (2010)<		-1				₩ > 0 101	783	s)	Evaluation period (week	2004	Comparison Start Year
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0.101	35%	data (%)	Weeks with monitoring	2018	Comparison End Year
Date 202 WVDM: Medan 2020 WVDM: Medan Measure(surface) 10000 (0/a) (0/a) (0/a) (0/a) 20100163 (0/a) (0/a) (0/a) (0/a) 20100163 (0/a) (0/a) (0/a) (0/a) 20100161 (0/a) (0/a) (0/a) (0/a) 20100161 (0/a) (0/a) (0/a) (0/a) 20100161 (0/a) (0/a) (0/a) (0/a) 20100162 (0/a) (0/a) (0/a) (0/a) (0/a) 20100162 (0/a) (0/a) (0/a) (0/a) (0/a) (0/a) 2010017 (0/a) (0/a) (0/a) (0/a) (0/a) (0/a)						0.051		linflow	Wolfram Creek u/s Pond	GH_WC2	Station ID & Description
Dit (real) (united) (real) (united) 2010 (real) (united)					D man the Mark	0.001	~ 85%				Drainage Area (2018)
2018-01-02 0.021 0.021 0.021 2018-01-02 0.023 0.025 0.025 2019-01-12 0.020 0.025 0.025 2019-01-12 0.020 0.025 0.025 2019-01-12 0.020 0.025 0.025 2019-01-12 0.020 0.025 0.025 2019-01-12 0.020 0.025 0.025 2019-01-12 0.020 0.025 0.025 2019-01-12 0.020 0.025 0.025 2019-01-12 0.021 0.025 0.025 2019-01-14 0.022 0.027 0.027 2019-01-14 0.027 0.027 0.027 2019-01-15 0.026 0.036 0.036 2019-01-15 0.036 0.036 0.036 2019-01-16 0.036 0.036 0.036 2019-01-16 0.036 0.036 0.036 2019-01-16 0.036 0.036 0.036 2019-01-16 0.036 0.036 0.036 2019-01-16 0.036 0.036 0.0	Jan-2010 Jul-2010 Jan-2011 Jul-2011	2009	2008	2007	2004 2005 2005 2006 2006		Measured (Surface)			(Total)	Date
001901-10 00123 00122 00021 001901-10 0023 0025 0025 001902-14 0020 0025 0025 001902-14 0020 0025 0025 001902-14 0020 0027 0027 001902-14 0020 0027 0027 001902-14 0020 0027 0027 001902-14 0020 0027 0027 001902-14 0020 0027 0027 001902-14 0023 0027 0027 001902-14 0023 0037 0027 001902-14 0023 0037 0037 001902-14 0033 0033 0038 001902-14 0038 0036 0038 001902-15 0038 0036 0038 001902-15 0038 0036 0037 001902-15 0038 0036 0037 001902-15 0038 0036 0037 001902-15 0038 0036 0037 001902-16 0038	-net -nut -net -nut	Jul- Jan-	Jan- Jul- Jan-	Jan-	Jan- Jul- Jul- Jul-				0.001		2010.01.02
2019-01-17 0.021 0.022 0.025 2019-01-17 0.023 0.025 0.025 2019-01-17 0.023 0.025 0.025 2019-01-17 0.023 0.025 0.025 2019-01-12 0.023 0.027 0.027 2019-01-22 0.023 0.027 0.027 2019-01-23 0.023 0.027 0.026 2019-01-24 0.023 0.027 0.027 2019-01-23 0.023 0.027 0.026 2019-01-24 0.023 0.027 0.026 2019-01-24 0.023 0.023 0.027 2019-01-24 0.026 0.037 0.056 0.056 2019-01-24 0.056 0.056 0.056 0.056 2019-01-36 0.056 0.056 0.056 0.057 2019-01-46 0.056 0.056 0.056 0.057 2019-02-36 0.058 0.056 0.056 0.057 2019-02-36 0.058 0.056 0.056 0.057 2019-02-36 0.043 0.057<							0.014				
2019-01-31 0.003 0.002 0.004 2019-02-14 0.003 0.022 0.023 2019-02-14 0.003 0.023 0.025 2019-02-14 0.003 0.023 0.024 2019-02-14 0.003 0.025 0.025 2019-02-14 0.001 0.003 0.025 2019-02-14 0.001 0.003 0.002 2019-02-14 0.001 0.003 0.005 2019-02-14 0.002 0.003 0.003 2019-02-14 0.003 0.003 0.003 2019-02-15 0.003 0.003 0.003 2019-02-16 0.005 0.005 0.005 2019-02-16 0.005 0.005 0.005 2019-02-17 0.066 0.005 0.005 2019-02-18 0.066 0.005 0.005 2019-02-18 0.066 0.005 0.005 0.005 2019-02-18 0.066 0.056 0.056 0.056 2019-02-18 0.066 0.056 0.057 0.057 2019-02			2004 to 2019	Exceedance Curr	Mookly Flow			0.024	0.024	0.021	2019-01-17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0.3					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ice)	ian (Surface)	2020 RWQM: Med	e (Total)	·······2017 RWQM: Average			0.024	0.024	0.020	2019-02-07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $:)	Measured (Surface	n (Total)	2020 RWQM: Median	0.25					
2019-04-18 0.045 0.036 0.036 0.064 2019-04-25 0.066 0.036 0.036 0.048 2019-04-22 0.075 0.036 0.036 0.037 2019-04-23 0.066 0.036 0.036 0.027 2019-05-23 0.085 0.036 0.016 0.016 2019-05-23 0.085 0.036 0.016 0.016 2019-05-27 0.055 0.096 0.096 0.017 2019-05-27 0.055 0.096 0.096 0.017 2019-07-44 0.057 0.096 0.096 0.017 2019-07-45 0.037 0.164 0.164 0.032 2019-07-45 0.037 0.149 0.044 0.074 0.032 2019-07-45 0.033 0.139 0.130 0.1						(s)					
2019-04-18 0.045 0.036 0.036 0.064 2019-04-25 0.066 0.036 0.036 0.048 2019-04-22 0.075 0.036 0.036 0.037 2019-04-23 0.066 0.036 0.036 0.027 2019-05-23 0.085 0.036 0.016 0.016 2019-05-23 0.085 0.036 0.016 0.016 2019-05-27 0.055 0.096 0.096 0.017 2019-05-27 0.055 0.096 0.096 0.017 2019-07-44 0.057 0.096 0.096 0.017 2019-07-45 0.037 0.164 0.164 0.032 2019-07-45 0.037 0.149 0.044 0.074 0.032 2019-07-45 0.033 0.139 0.130 0.1					<u>N</u>	_{ແມ} 0.2					
2019-04-18 0.045 0.036 0.036 0.064 2019-04-25 0.066 0.036 0.036 0.048 2019-04-22 0.075 0.036 0.036 0.037 2019-04-23 0.066 0.036 0.036 0.027 2019-05-23 0.085 0.036 0.016 0.016 2019-05-23 0.085 0.036 0.016 0.016 2019-05-27 0.055 0.096 0.096 0.017 2019-05-27 0.055 0.096 0.096 0.017 2019-07-44 0.057 0.096 0.096 0.017 2019-07-45 0.037 0.164 0.164 0.032 2019-07-45 0.037 0.149 0.044 0.074 0.032 2019-07-45 0.033 0.139 0.130 0.1						low					
2019-04-18 0.045 0.036 0.036 0.064 2019-04-25 0.066 0.036 0.036 0.048 2019-04-22 0.075 0.036 0.036 0.037 2019-04-23 0.066 0.036 0.036 0.027 2019-05-23 0.085 0.036 0.016 0.016 2019-05-23 0.085 0.036 0.016 0.016 2019-05-27 0.055 0.096 0.096 0.017 2019-05-27 0.055 0.096 0.096 0.017 2019-07-44 0.057 0.096 0.096 0.017 2019-07-45 0.037 0.164 0.164 0.032 2019-07-45 0.037 0.149 0.044 0.074 0.032 2019-07-45 0.033 0.139 0.130 0.1						لے 0.15	0.059				
2019-04-18 0.045 0.036 0.036 0.064 2019-04-25 0.066 0.036 0.036 0.048 2019-04-22 0.075 0.036 0.036 0.037 2019-04-23 0.066 0.036 0.036 0.027 2019-05-23 0.085 0.036 0.016 0.016 2019-05-23 0.085 0.036 0.016 0.016 2019-05-27 0.055 0.096 0.096 0.017 2019-05-27 0.055 0.096 0.096 0.017 2019-07-44 0.057 0.096 0.096 0.017 2019-07-45 0.037 0.164 0.164 0.032 2019-07-45 0.037 0.149 0.044 0.074 0.032 2019-07-45 0.033 0.139 0.130 0.1						Vee	0.052				
Daris doctor Doctor Doctor Doctor Doctor Probability of Exceedance (%) 2019-06-27 0.008 0.096 0.006 0.019 2019-06-27 0.008 0.096 0.006 0.019 2019-07-04 0.037 0.096 0.006 0.015 2019-07-14 0.033 0.093 0.003 0.021 2019-08-01 0.037 0.164 0.014 0.012 2019-08-08 0.037 0.164 0.013 0.13 0.13 0.13 0.13 0.13 0.032 0.014 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.029 0.020 0.020 0.021 0.029 0.020 0.020 0.021 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.041 0.021 <td></td> <td></td> <td></td> <td></td> <td></td> <td>> 0.1</td> <td>0.064</td> <td>0.036</td> <td>5 0.036</td> <td>0.045</td> <td>2019-04-18</td>						> 0.1	0.064	0.036	5 0.036	0.045	2019-04-18
Display de 13 Outro Outre <thoutro< th=""> Outro</thoutro<>											
Displayed is 2019-06-13 Octobe 0.0006 Octobe 0.0006 Octobe 0.0012 Optobe 0.0006 Optobe 0.0013 Probability of Exceedance (%) 2019-06-27 O.008 0.096 0.006 0.019 2019-07-24 0.037 0.096 0.003 0.002 2019-07-14 0.033 0.093 0.003 0.001 2019-07-25 0.040 0.073 0.0164 0.012 2019-08-08 0.037 0.164 0.013 0.12 0.01 2019-08-08 0.032 0.113 0.113 0.113 0.12 0.00 0.01 0.02			•	····		0.05	0.027	0.036	0.036	0.086	2019-05-09
Displayed is 2019-06-13 Octobe 0.0006 Octobe 0.0006 Octobe 0.0012 Optobe 0.0006 Optobe 0.0013 Probability of Exceedance (%) 2019-06-27 O.008 0.096 0.006 0.019 2019-07-24 0.037 0.096 0.003 0.002 2019-07-14 0.033 0.093 0.003 0.001 2019-07-25 0.040 0.073 0.0164 0.012 2019-08-08 0.037 0.164 0.013 0.12 0.01 2019-08-08 0.032 0.113 0.113 0.113 0.12 0.00 0.01 0.02			· · · · · · · · · · · · · · · · · · ·								
Display de 13 Outro Outre <thoutro< th=""> Outro</thoutro<>							0.014	0.080	0.080	0.090	2019-05-30
2019-06-20 0.068 0.096 0.011 2019-06-27 0.058 0.096 0.019 2019-07-14 0.057 0.096 0.093 0.012 2019-07-14 0.053 0.072 0.072 0.016 2019-07-18 0.043 0.093 0.0020 0.012 2019-07-25 0.040 0.074 0.074 0.012 2019-08-15 0.033 0.113 0.113 0.113 2019-08-22 0.033 0.113 0.113 0.125 0.026 2019-09-045 0.030 0.130 0.130 0.032 0.130 0.026 2019-09-045 0.028 0.033 0.130 0.033 0.0130 0.026 0.019 0.026 2019-10-10 0.026 0.019 0.019 0.024 0.019 0.024 0.019 0.024 0.017 0.017 0.044 0.025 0.019 0.019 0.024 0.021 0.020 0.024 0.021 0.024 0.017 0.017 0.024 0.022 0.017 0.017 0.024 0.021 0.	80 90 100	u 80									
2019-07-41 0.057 0.096 0.015 2019-07-18 0.043 0.072 0.072 0.016 2019-07-18 0.043 0.093 0.020 0.016 2019-07-25 0.040 0.074 0.074 0.021 2019-08-01 0.037 0.149 0.149 0.041 2019-08-22 0.032 0.133 0.113 0.113 2019-09-25 0.036 0.149 0.149 0.049 2019-09-26 0.036 0.149 0.0149 0.049 2019-09-26 0.026 0.020 0.020 0.020 2019-10-10 0.026 0.019 0.019 0.049 2019-10-24 0.023 0.019 0.019 0.049 2019-10-24 0.023 0.019 0.019 0.021 0.021 0.021 2019-10-10 0.023 0.017 0.017 0.064 Nash-sutclifte efficiency (E1) -0.50 -0.21 -0.20 2019-10-10 0.023 0.017 0.017 0.064 Nash-sutclifte efficiency (E1) -0.50 -0.21 -0.21 <td></td>											
2019-07-11 0.053 0.072 0.072 0.016 2019-07-15 0.043 0.093 0.020 2019-07-25 0.040 0.074 0.074 2019-08-81 0.037 0.164 0.014 0.032 2019-08-82 0.033 0.113 0.113 0.114 2019-08-82 0.033 0.133 0.114 0.014 2019-09-82 0.032 0.133 0.130 0.149 0.049 2019-09-12 0.030 0.130 0.130 0.130 0.120 0.02 2019-09-25 0.022 0.023 0.033 0.033 0.049 0.049 2019-09-12 0.030 0.120 0.120 0.049 0.049 0.049 2019-10-13 0.025 0.019 0.019 0.019 0.019 0.019 2019-10-14 0.023 0.013 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.017 0.01			2004 to 2018	Concurrent Data	Mean Flow for						
2019-07-25 0.040 0.074 0.074 2019-08-08 0.037 0.164 0.164 0.037 2019-08-08 0.037 0.149 0.044 0.037 2019-08-15 0.035 0.113 0.113 0.12 2019-08-22 0.034 0.114 0.114 0.113 2019-09-25 0.032 0.153 0.153 0.120 2019-09-16 0.030 0.149 0.149 0.049 2019-09-17 0.022 0.021 0.120 0.120 2019-09-19 0.022 0.020 0.020 0.044 2019-09-19 0.022 0.020 0.044 0.049 2019-09-19 0.022 0.020 0.044 0.049 2019-09-19 0.025 0.019 0.049 Statistics on concurrent data: 2004 to 2018 Poor Poor but improved	/QM: Median (Total)	- 2020 RWQM: Med	Measured (Surface)	ledian (Surface) 🔳	017 RWQM: Average (Total) 🛛 2020 RWQM: M	■ 2					
2019-07-25 0.040 0.074 0.074 2019-08-10 0.037 0.149 0.044 2019-08-08 0.037 0.149 0.044 2019-08-15 0.035 0.113 0.113 2019-08-29 0.032 0.133 0.13 2019-09-25 0.030 0.149 0.044 2019-09-26 0.030 0.130 0.130 2019-09-26 0.029 0.130 0.130 2019-09-26 0.022 0.033 0.033 2019-09-26 0.029 0.120 0.020 2019-09-26 0.029 0.020 0.044 2019-10-10 0.026 0.019 0.019 2019-10-17 0.025 0.019 0.019 2019-10-17 0.025 0.019 0.019 2019-10-17 0.023 0.017 0.017 2019-10-17 0.023 0.019 0.019 2019-10-17 0.023 0.017 0.017 2019-11-17 0.022 0.017 0.017 2019-11-14 0.022 0.017 0.01						0.12	0.020				
2019-08-08 0.037 0.149 0.149 0.044 2019-08-15 0.035 0.113 0.113 0.113 2019-08-22 0.032 0.133 0.133 0.013 2019-09-50 0.030 0.149 0.149 0.049 2019-09-50 0.030 0.130 0.130 0.013 2019-09-50 0.030 0.130 0.130 0.020 2019-09-50 0.028 0.033 0.033 0.033 2019-09-50 0.028 0.033 0.033 0.033 2019-10-03 0.027 0.020 0.020 0.044 2019-10-17 0.025 0.019 0.019 0.049 2019-10-17 0.025 0.019 0.019 0.049 2019-10-17 0.025 0.019 0.019 0.049 2019-10-17 0.025 0.019 0.019 0.049 2019-10-17 0.023 0.017 0.017 0.044 2019-11-14 0.022 0.017 0.017 0.044 Average (Tota) Median (Surface) Median							0.032				
2019-08-12 0.033 0.113 0.114 0.114 2019-08-29 0.032 0.153 0.153 0.019 2019-09-12 0.030 0.149 0.049 0.049 2019-09-12 0.030 0.130 0.130 0.130 2019-09-12 0.029 0.120 0.120 0.031 2019-09-26 0.028 0.033 0.033 0.044 2019-10-10 0.026 0.019 0.019 0.049 2019-10-17 0.026 0.019 0.019 0.049 2019-10-13 0.023 0.019 0.019 0.019 2019-11-14 0.022 0.017 0.017 0.064 Nath-Sutcliffe efficiency (E) -0.50 -0.21 -0.01 2019-11-14 0.022 0.017 0.017 Modified Nash-Sutcliffe efficiency (E1) -0.21 0.00 0.01 2019-11-24 0.022 0.017 0.017 Modified Nash-Sutcliffe efficiency (E1) -0.21 0.00 0.01 2019-11-24 0.022 0.017 0.017 Modified Nash-Sutcliffe efficiency (E1) -0.21 0.00						, ∭ 0.08		0.149	0.149	0.037	2019-08-08
2019-09-05 0.032 0.133 0.133 0.149 0.049 2019-09-12 0.030 0.130 0.130 0.130 0.130 2019-09-12 0.030 0.1130 0.130 0.130 0.130 2019-09-26 0.028 0.033 0.033 0.044 Annual Late Summer - Fall Winter 2019-10-03 0.027 0.020 0.019 0.049 Statistics on concurrent data: 2004 to 2018 Poor Poor but improved 2019-10-17 0.025 0.019 0.019 0.049 Average (Total) Median (Surface) Median (Surface						≥ 0.06					
Diff Oncol Oncol Oncol Oncol Annual Late Summer - Fall Winter 2019-09-26 0.028 0.033 0.033 0.044 Annual Late Summer - Fall Winter 2019-10-03 0.027 0.020 0.019 0.049 Annual Late Summer - Fall Winter 2019-10-10 0.026 0.019 0.019 0.049 Annual Late Summer - Fall Winter 2019-10-17 0.025 0.019 0.019 Annual Late Summer - Fall Winter 2019-10-17 0.025 0.019 0.019 Annual Late Summer - Fall Winter 2019-10-17 0.023 0.019 0.019 Parameter 2017 RWQM: 2020 RWQM: <						도 도 0.04		0.153	0.153	0.032	2019-08-29
Diff Oncol Oncol Oncol Oncol Annual Late Summer - Fall Winter 2019-09-26 0.028 0.033 0.033 0.044 Annual Late Summer - Fall Winter 2019-10-03 0.027 0.020 0.019 0.049 Annual Late Summer - Fall Winter 2019-10-10 0.026 0.019 0.019 0.049 Annual Late Summer - Fall Winter 2019-10-17 0.025 0.019 0.019 Annual Late Summer - Fall Winter 2019-10-17 0.025 0.019 0.019 Annual Late Summer - Fall Winter 2019-10-17 0.023 0.019 0.019 Parameter 2017 RWQM: 2020 RWQM: <						₩ ₩ 0.02	0.049				
2019-09-26 0.028 0.033 0.033 0.033 0.044 2019-10-03 0.027 0.020 0.020 0.004 0.044 2019-10-03 0.027 0.020 0.020 0.004 0.044 2019-10-17 0.025 0.019 0.019 0.049 Statistics on concurrent data: 2004 to 2018 Poor Poor but improved Median (Surface) 0.021 -0.21											
2019-10-10 0.026 0.019 0.019 0.019 2thistics on concurrent data: 2004 to 2018 Poor Poor but improved Poor but improved 2019-10-17 0.025 0.019 0.019 0.019 Poor 2017 RWQM: 2020 RWQM: Median (Surface) 0.010	Freshet	Fre	Winter	mer - Fall	Annual Late Sum	Ū	0.011			0.028	2019-09-26
019-10-10 0.026 0.019 0.019 0.019 Statistics on concurrent data: 2004 to 2018 Poor improved 2019-10-17 0.025 0.019 0.019 0.019 Parameter 2017 RWQM: 2020 RWQM: 2020 RWQM: 2020 RWQM: Median (Surface) 0.010			Poor but				0.044	0.020	0.020	0.027	2019-10-03
2019-10-24 0.024 0.019 0.019 Parameter 2017 KWQW: Average (Total) 2020 KWQW: Median (Surface) 2020 KWQW:				Poor	n concurrent data: 2004 to 2018	Statistics o	0.049				
2019-10-31 0.023 0.018 0.018 0.018 Average (rota) Median (Surface) Median 2019-10-31 0.023 0.017 0.017 0.064 Nash-Sutcliffe efficiency (E) -0.50 -0.21 -0. 2019-11-14 0.022 0.017 0.017 Modified Nash-Sutcliffe efficiency (E1) -0.21 0.00 0.0 2019-11-21 0.022 0.017 0.017 Index of agreement (d) 0.57 0.52 0.52 2019-11-28 0.022 0.017 0.017 Modified index of agreement (d1) 0.40 0.43 0.4 2019-12-05 0.022 0.017 0.017 0.044 MAE 0.05 0.04 0.0 2019-12-05 0.022 0.017 0.017 0.044 MAE 0.05 0.04 0.0 2019-12-19 0.021 0.017 0.017 Coefficient of Determination (R ²) 0.12 0.06 0.0 2019-12-19 0.021 0.024 0.024 Number of data in statistics 272 2	RWQM: Measured	2020 RWQM:	2020 RWQM:	2017 RWQM:		Parameter					
2019-11-07 0.023 0.017 0.017 0.064 Nash-Sutcliffe efficiency (E) -0.50 -0.21 -0.0 2019-11-14 0.022 0.017 0.017 Modified Nash-Sutcliffe efficiency (E1) -0.21 0.00 0.01 2019-11-14 0.022 0.017 0.017 Index of agreement (d) -0.21 0.00 0.01 2019-11-28 0.022 0.017 0.017 Modified index of agreement (d1) 0.40 0.43 0.4 2019-12-05 0.022 0.017 0.017 0.044 MAE 0.05 0.04 0.0 2019-12-12 0.022 0.017 0.017 RMSE 0.06 0.06 0.0 2019-12-12 0.021 0.017 0.017 RMSE 0.12 0.06 0.0 2019-12-19 0.021 0.017 0.017 Number of data in statistics 272 272 272	n (Total) (Surface)	Median (Total)	Median (Surface)	Average (Total)		Farameter					
2019-11-21 0.022 0.017 0.017 Index of agreement (d) 0.57 0.52 0.12 2019-11-28 0.022 0.017 0.017 Modified index of agreement (d1) 0.40 0.43 0.40 2019-12-05 0.022 0.017 0.017 0.044 MAE 0.05 0.04 0.06 2019-12-05 0.022 0.017 0.017 0.044 MAE 0.05 0.04 0.0 2019-12-12 0.022 0.017 0.017 RMSE 0.06 0.06 0.0 2019-12-19 0.021 0.017 0.017 Coefficient of Determination (R ²) 0.12 0.06 0.0 2019-12-26 0.021 0.024 0.024 Number of data in statistics 272 272 272		-0.21					0.064	0.017	3 0.017	0.023	2019-11-07
2019-11-28 0.022 0.017 0.017 Modified index of agreement (d1) 0.40 0.43 0.43 2019-12-05 0.022 0.017 0.017 0.044 MAE 0.05 0.04 0.0 2019-12-12 0.022 0.017 0.017 RMSE 0.06 0.06 0.06 2019-12-19 0.021 0.017 0.017 Coefficient of Determination (R ²) 0.12 0.06 0.0 2019-12-26 0.021 0.024 0.024 Number of data in statistics 272 272 272		0.00 0.52									
2019-12-12 0.022 0.017 0.017 RMSE 0.06 0.06 0.06 2019-12-19 0.021 0.017 0.017 Coefficient of Determination (R ²) 0.12 0.06 0.0 2019-12-26 0.021 0.024 0.024 Number of data in statistics 272 272 272	.43 Pe	0.43	0.43	0.40		Modified in		0.017	2 0.017	0.022	2019-11-28
2019-12-19 0.021 0.017 0.017 Coefficient of Determination (R ²) 0.12 0.06 0.0 2019-12-26 0.021 0.024 0.024 Number of data in statistics 272 272 272		0.04				MAE	0.044				
2019-12-26 0.021 0.024 0.024 Number of data in statistics 272 272 27	*	0.06			of Determination (R ²)						
		272									
	83 272 (De	783	783	783	per of weekly data	Total numb					
		0.047 0.039									
		180									
Freshet 0.07 0.07 0.03	De						0.03	0.07	0.07	0.07	Freshet


0.08 0.06 Freshet 0.04 0.02 Measured 20 RWQM:

0.017		would a wash-sutchine enciency (E1)	0.21	0.00	0.00		
0.017		Index of agreement (d)	0.57	0.52	0.52		Notes
0.017		Modified index of agreement (d1)	0.40	0.43	0.43		Performance statistics: For E, E1, d, d1, and R a statistic
0.017	0.044	MAE	0.05	0.04	0.04		less than 0 indicate that the model is no better than usin
0.017		RMSE	0.06	0.06	0.06		generally indicates a better fit with monitored data.
0.017		Coefficient of Determination (R ²)	0.12	0.06	0.06		
0.024		Number of data in statistics	272	272	272		Notes on seasonal periods: Annual (January through De
		Total number of weekly data	783	783	783	272	(December through early April) Freshet (mid-April through
0.05	0.03	Mean of all weekly data	0.077	0.047	0.047	0.054	n/a = Not available or unable to calculate a value (e.g., r
0.07	0.05	Standard deviation of all weekly data	0.051	0.039	0.039	0.052	missing data)
0.02	0.04	Approximated mean annual runoff (mm/yr)	260	180	180	200	Flows for the 2017 RWQM represent projected average
0.07	0.03						December 2016)

stic of 1 indicates best fit with monitored data. For E and E1, values using the mean of all the data. For MAE and RMSE, a lower number

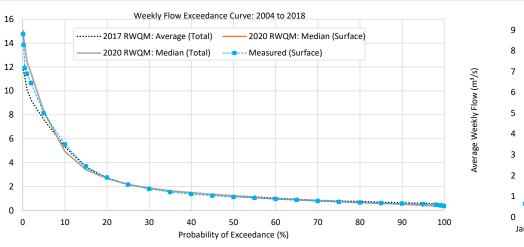
December); late Summer - Fall (late-July through November); Winter hrough mid-July) g., mean annual runoff is not calculated if certain weeks or months are

				FLO	w con
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF	
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	
Flow Modelling Method	LC_LCDSSLC + undisturbed lowe modelled using Snowmelt Runo flows)		Surface-Groundwater Partitioning	Not Implemented	Weekly Flow (m³/s)
Spinner ID	26	Mean annual surface rur	490	 No	
Selected Year	2019	Mean annual total runof	f (2020 RWQM)	490	kly FI
Comparison Start Year	2004	Evaluation period (week	e)	783	Wee
Comparison End Year	2018	Weeks with monitoring	•	100%	
Station ID & Description	LC_LC4	Line Creek upstream of F			1
•	-	Disturbed Area (2018)	1000000 Hunt (0200044)	~ 14%	1
Drainage Area (2018)	13790 ha 2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median		
Date	(Total)	(Surface)	(Total)	Measured (Surface)	
2019-01-03	Weekly Flow in 2019 0.716	0.511	(m³/s) 0.511	0.605	1
2019-01-03	0.711	0.482	0.482	0.572	
2019-01-17	0.690	0.454	0.454	0.551	
2019-01-24	0.690	0.428	0.428	0.523	1
2019-01-31	0.682	0.403	0.403	0.505	_
2019-02-07 2019-02-14	0.689	0.380	0.380 0.359	0.479 0.473	1
2019-02-14 2019-02-21	0.666	0.339		0.468	
2019-02-28	0.677	0.320		0.441	
2019-03-07	0.719	0.302	0.302	0.411	m³/
2019-03-14	0.787	0.300			3
2019-03-21	0.805	0.487	0.487		음
2019-03-28 2019-04-04	0.859	0.500			ški
2019-04-04	0.926	0.522 0.515	0.522 0.515		Weekly Flow (m³/s)
2019-04-18	1.318	0.853			-
2019-04-25	2.157	0.972	0.972		
2019-05-02	2.592	1.705	1.705		
2019-05-09 2019-05-16	3.352	4.280 4.050	4.280 4.050		-
2019-05-18	5.043 6.728	3.045	3.045		
2019-05-25	7.803	3.083	3.083		
2019-06-06	8.718	2.317	2.317	8.432	
2019-06-13	7.508	1.813		4.010	
2019-06-20	7.426	4.207	4.207	3.521	
2019-06-27 2019-07-04	6.175 4.725	3.653 3.674	3.653 3.674	4.394 3.395	
2019-07-04 2019-07-11	3.638	2.653	2.653	2.981	
2019-07-18	2.801	3.641	3.641	2.052	e
2019-07-25	2.257	2.977	2.977	2.452	
2019-08-01	1.964	2.042		1.718	3/s)
2019-08-08	1.828	1.809		1.354	Ľ,
2019-08-15 2019-08-22	1.666 1.565	2.156		1.255 1.264	Mean Flow (m ³ /s)
2019-08-22	1.505	1.425		1.149	L L
2019-09-05	1.403	1.237	1.237	1.017	Леа
2019-09-12	1.405	1.094		1.046	~ :
2019-09-19	1.443	0.892		1.025	(
2019-09-26 2019-10-03	1.345 1.320	0.849 0.865		0.994	-
2019-10-03	1.320	0.854			Statisti
2019-10-17	1.258	1.116			
2019-10-24	1.225	1.166	1.166	0.888	Parame
2019-10-31	1.114	0.976			
2019-11-07 2019-11-14	1.084	0.966			Nash-S Modifie
2019-11-14 2019-11-21	1.039	0.945			Index o
2019-11-21 2019-11-28	0.933	0.889			Modifie
2019-12-05	0.884	0.844	0.844	0.687	MAE
2019-12-12	0.871	0.793			RMSE
2019-12-19	0.794	0.750			Coeffic
2019-12-26	0.767	0.706	0.706	0.503	Numbe Total p
Annual	2.15	1.43	1.43	1 / 2	Total n Mean c
		1.43			ivican U
Late Summer - Fall	1.41	1.31	1.31	1.09	Standar
Late Summer - Fall Winter	<u>1.41</u> 0.76	1.31 0.49	1.31 0.49	1.09 0.53	Standar Approx

10

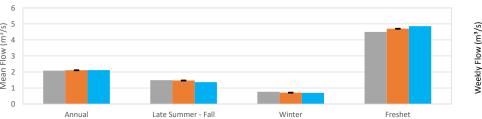
9

8

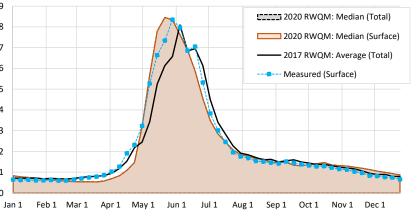

7

6

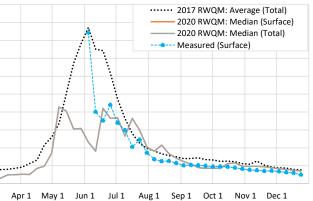
5


4

3

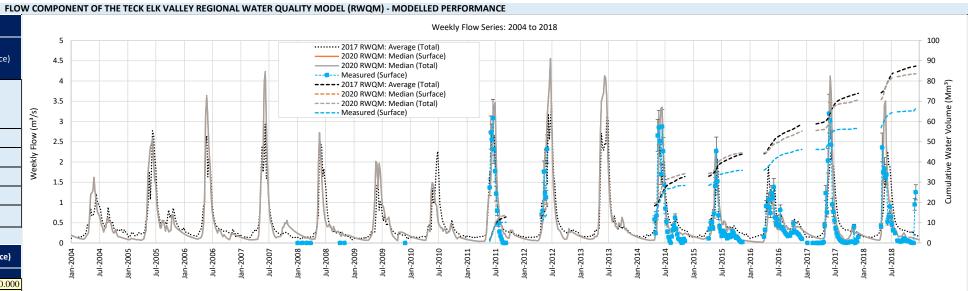

Mean Flow for Concurrent Data: 2004 to 2018

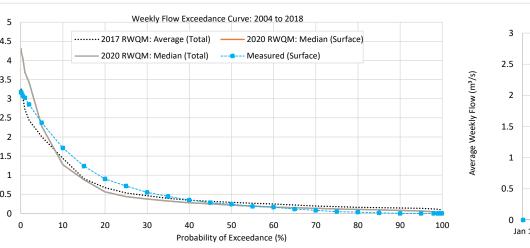
2017 RWQM: Average (Total) 2020 RWQM: Median (Surface) Measured (Surface) -2020 RWQM: Median (Total)



-07-20	1.545	0.0+7	0.0+)	0.774	Annual	Late Summer - Fall	winter	Fre	snet	
-10-03	1.320	0.865	0.865	0.952						2
-10-10	1.244	0.854	0.854	0.959	Statistics on concurrent data: 2004 to 2018	Very good	Very good			
-10-17	1.258	1.116	1.116	0.941		2017 RWQM:	2020 RWQM:	2020 RWQM:	Measured	1
-10-24	1.225	1.166	1.166	0.888	Parameter		Median (Surface)		(Surface)	0
-10-31	1.114	0.976	0.976	0.825		Average (Total)	weulan (Surface)	wieulan (Total)	(Surface)	Jan 1 Feb 1 Mar 1 A
-11-07	1.084	0.966	0.966	0.772	Nash-Sutcliffe efficiency (E)	0.88	0.84	0.84		Jani Tebi Mari A
-11-14	1.261	0.971	0.971	0.748	Modified Nash-Sutcliffe efficiency (E1)	0.76	0.67	0.67		-
-11-21	1.039	0.945	0.945	0.705	Index of agreement (d)	0.96	0.96	0.96		Notes
-11-28	0.933	0.889	0.889	0.716	Modified index of agreement (d1)	0.87	0.83	0.83		Performance statistics: For E, E1, d, d1, a
-12-05	0.884	0.844	0.844	0.687	MAE	0.41	0.56	0.56		less than 0 indicate that the model is no
-12-12	0.871	0.793	0.793	0.628	RMSE	0.88	1.00	1.00		generally indicates a better fit with moni
-12-19	0.794	0.750	0.750	0.597	Coefficient of Determination (R ²)	0.88	0.85	0.85		
-12-26	0.767	0.706	0.706	0.503	Number of data in statistics	783	783	783		Notes on seasonal periods: Annual (Janu
					Total number of weekly data	783	783	783	783	(December through early April) Freshet
	2.15	1.43	1.43	1.43	Mean of all weekly data	2.100	2.131	2.131	2.135	n/a = Not available or unable to calculate
all	1.41	1.31	1.31	1.09	Standard deviation of all weekly data	2.210	2.578	2.578	2.510	missing data)
	0.76	0.49	0.49	0.53	Approximated mean annual runoff (mm/yr)	480	490	490	490	Flows for the 2017 RWQM represent pro
	4.74	2.70	2.70	4.11						December 2016)

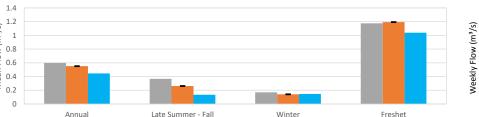
Mean Weekly Flow for Concurrent Data: 2004 to 2018

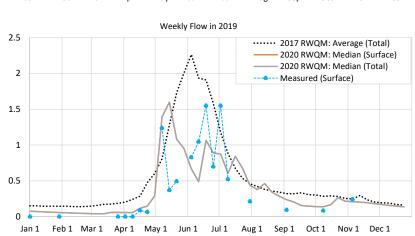



d1, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values s no better than using the mean of all the data. For MAE and RMSE, a lower number nonitored data.

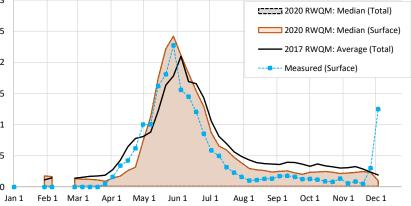
January through December); late Summer - Fall (late-July through November); Winter shet (mid-April through mid-July)

ulate a value (e.g., mean annual runoff is not calculated if certain weeks or months are


				FLO	w cor	VIPO	NEN
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF			
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		5 4.5	
Flow Modelling Method	Snowmelt Runoff Module, Wast subcatchment Upper Line Creek		Surface-Groundwater Partitioning	Not Implemented	n³/s)	4 3.5 3	
Spinner ID	14	Mean annual surface rui	noff (monitored)	510	Weekly Flow (m³/s)	2.5	
Selected Year	2019	Mean annual total runol	f (2020 RWQM)	560	ekly F	2	
Comparison Start Year	2004	Evaluation period (week	s)	783	Wee	1.5	
Comparison End Year	2018	Weeks with monitoring	data (%)	25%		1	
Station ID & Description	LC_LC1	Line Creek upstream of I	ASA North Pit (E126142)			0.5	
Drainage Area (2018)	2790 ha	Disturbed Area (2018)		~ 0%		0	/
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)			Jan-2004
	Weekly Flow in 2019		(m³/s)		ļ		Jan
2019-01-03	0.152	0.076	0.076	0.000			
2019-01-10 2019-01-17	0.151 0.146	0.071	0.071				
2019-01-17 2019-01-24	0.146	0.066	0.066		1	5	
2019-01-24	0.140	0.057	0.057	0.000	1	J	
2019-01-51	0.144	0.054	0.054	0.000	2	4.5	-
2019-02-07	0.141	0.050	0.054			_	1
2019-02-21	0.140	0.047	0.047			4	1
2019-02-28	0.143	0.043	0.043		(s)	3.5	
2019-03-07	0.154	0.040	0.040		Weekly Flow (m³/s)	J.J	1
2019-03-14	0.171	0.039	0.039		_ 3	3	
2019-03-21	0.176	0.059	0.059		Ê.		
2019-03-28	0.187	0.058	0.058	0.000	- Ž	2.5	
2019-04-04	0.203	0.057	0.057	0.000	eel	2	
2019-04-11	0.241	0.057	0.057	0.000	≥	2	
2019-04-18	0.286	0.117	0.117	0.088	1	1.5	
2019-04-25	0.475	0.146	0.146	0.065			
2019-05-02 2019-05-09	0.802	1.391	0.290	1.238		1	
2019-05-16	1.280	1.598	1.598	0.370		0.5	
2019-05-23	1.731	1.081	1.081	0.493			
2019-05-30	2.004	0.953	0.953			0	
2019-06-06	2.262	0.668	0.668	0.830		(0
2019-06-13	1.933	0.488	0.488	1.046			
2019-06-20	1.908	1.064	1.064	1.548			
2019-06-27	1.580	0.889	0.889	0.698			
2019-07-04	1.177	0.874	0.874	1.548			
2019-07-11	0.883	0.607	0.607	0.522		Z	2017
2019-07-18	0.677	0.843	0.843		l	1.4	
2019-07-25	0.533	0.672	0.672	0.010	_	1.2	
2019-08-01	0.459	0.437	0.437	0.213	³ /S)	1.2 1 0.8 0.6 0.4 0.2	
2019-08-08 2019-08-15	0.421 0.381	0.378	0.378		Ľ.	- C	
2019-08-13	0.357	0.465	0.465		NO	U.8	
2019-08-22	0.343	0.283	0.283		L L	0.6	
2019-08-29	0.321	0.238	0.238	0.095	lear	0.4	
2019-09-12	0.322	0.204	0.204	0.075	Σ	0.2	
2019-09-19	0.333	0.156	0.156			0	
2019-09-26	0.307	0.146	0.146			0	
2019-10-03	0.303	0.140	0.140				
2019-10-10	0.284	0.138	0.138	0.084	Statist	ics o	n co
2019-10-17	0.290	0.167	0.167				
2019-10-24	0.283	0.264	0.264		Param	eter	
2019-10-31	0.255	0.215	0.215				
2019-11-07	0.247	0.208	0.208	0.243			
2019-11-14	0.296	0.204 0.195	0.204 0.195		Modifi		
2019-11-21 2019-11-28	0.235	0.195	0.195		Index of Modifi		
2019-11-28	0.192	0.162	0.162		MAE	cu III	iuc/
2019-12-03	0.192	0.158	0.158		RMSE		
2019-12-19	0.169	0.147	0.147		Coeffic	cient	of D
2019-12-26	0.163	0.137	0.137		Numbe		
					Total n		
	0.53		0.34	0.45	Mean		
Annual	0.52	0.34	0.,34	0.4.1			
Annual Late Summer - Fall	0.33	0.34	0.34				
					Standa Approx	ard de	eviat



Mean Flow for Concurrent Data: 2004 to 2018


7 RWQM: Average (Total) 2020 RWQM: Median (Surface) Measured (Surface) - 2020 RWQM: Median (Total)

2019-09-26	0.307	0.146	0.146		Annual Late Su	ummer - Fall	Winter	Fre	shet	
2019-10-03	0.303	0.140	0.140							0.5
2019-10-10	0.284	0.138	0.138	0.084	Statistics on concurrent data: 2004 to 2018	Acceptable	Acceptable			4
2019-10-17	0.290	0.167	0.167			2017 RWQM:	2020 RWQM:	2020 RWQM:	Measured	
2019-10-24	0.283	0.264	0.264		Parameter		Median (Surface)	-	(Surface)	0
2019-10-31	0.255	0.215	0.215			Average (Total)	wieulan (Sunace)	weulan (Total)	(Surface)	Jan 1 Feb 1 Mar 1 Ar
2019-11-07	0.247	0.208	0.208	0.243	Nash-Sutcliffe efficiency (E)	0.57	0.64	0.64		
2019-11-14	0.296	0.204	0.204		Modified Nash-Sutcliffe efficiency (E1)	0.33	0.47	0.47		
2019-11-21	0.235	0.195	0.195		Index of agreement (d)	0.86	0.92	0.92		Notes
2019-11-28	0.206	0.182	0.182		Modified index of agreement (d1)	0.63	0.74	0.74		Performance statistics: For E, E1, d, d1, a
2019-12-05	0.192	0.169	0.169		MAE	0.37	0.29	0.29		less than 0 indicate that the model is no l
2019-12-12	0.190	0.158	0.158		RMSE	0.49	0.45	0.45		generally indicates a better fit with monit
2019-12-19	0.169	0.147	0.147		Coefficient of Determination (R ²)	0.63	0.76	0.76		
2019-12-26	0.163	0.137	0.137		Number of data in statistics	198	198	198		Notes on seasonal periods: Annual (Janu
					Total number of weekly data	783	783	783	198	(December through early April) Freshet
ual	0.52	0.34	0.34	0.45	Mean of all weekly data	0.729	0.698	0.698	0.555	n/a = Not available or unable to calculate
Summer - Fall	0.33	0.26	0.26	0.16	Standard deviation of all weekly data	0.620	0.863	0.863	0.751	missing data)
ter	0.16	0.08	0.08	-	Approximated mean annual runoff (mm/yr)	600	560	560	510	Flows for the 2017 RWQM represent pro
het	1 19	0.74	0.74	0.70						December 2016)

Mean Weekly Flow for Concurrent Data: 2004 to 2018

11, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values no better than using the mean of all the data. For MAE and RMSE, a lower number onitored data.

anuary through December); late Summer - Fall (late-July through November); Winter net (mid-April through mid-July)

late a value (e.g., mean annual runoff is not calculated if certain weeks or months are

				FLU	vv cu		ILINI OF IF
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF			
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		0.6	
	(Total)	(Surface)	(Total)		1	0.5	
Flow Modelling Method	Snowmelt Runoff Module, Wast subcatchment West Line Creek	te Rock Module of	Surface-Groundwater Partitioning	60%, maximum of 10,000 m3/d	n³/s)	0.4	
Spinner ID	22	Mean annual surface rur	noff (monitored)	210	Weekly Flow (m³/s)	0.3	
Selected Year	2019	Mean annual total runof	ff (2020 RWQM)	440	ekly F		
Comparison Start Year	2004	Evaluation period (week	s)	783	We	0.2	~ A
Comparison End Year	2018	Weeks with monitoring	data (%)	61%			
Station ID & Description	LC_WLC	West Line Creek (E26195	8)			0.1	
Drainage Area (2018)	1000 ha	Disturbed Area (2018)		~ 27%		0	\smile
Date	2017 RWQM: Average (Total) Weekly Flow in 2019	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)			Jan-2004 Jul-2004
2019-01-03		0.029	(m³/s) 0.072	0.030	١		el IL
2019-01-10		0.027	0.068	0.030	1		
2019-01-17	0.029	0.026	0.065	0.029			
2019-01-24	0.029	0.025	0.062	0.028		0.6	
2019-01-31	0.028	0.024	0.059	0.028			
2019-02-07	0.028	0.023	0.056	0.028			
2019-02-14	0.028	0.022	0.054	0.027		0.5	
2019-02-21	0.028	0.021	0.052	0.027			
2019-02-28	0.028	0.020	0.049		/s)	•	
2019-03-07	0.029	0.019			Weekly Flow (m ³ /s)	0.4	
2019-03-14	0.032	0.018	0.045		3		🔓 🔪 👘
2019-03-21	0.032	0.020	0.050		문	0.3	
2019-03-28	0.034		0.048		klγ	0.5	
2019-04-04	0.037	0.019	0.047		/ee		
2019-04-11 2019-04-18	0.046	0.018	0.046		>	0.2	
2019-04-18 2019-04-25	0.033	0.023	0.059			0.2	
2019-04-23	0.093	0.020	0.003				
2019-05-02	0.114	0.045	0.113			0.1	
2019-05-16		0.045	0.115				
2019-05-23	0.207	0.044	0.111				
2019-05-30		0.046	0.116			0	
2019-06-06	0.264	0.044	0.110			0	10
2019-06-13	0.230	0.042	0.105				
2019-06-20	0.229	0.058	0.145				
2019-06-27	0.192	0.059	0.147				
2019-07-04	0.153	0.064	0.161				
2019-07-11	0.122	0.060	0.149			■ 20	017 RWQM: A
2019-07-18	0.095	0.071	0.177			0.25	
2019-07-25	0.079	0.069	0.172			0.20	
2010 08 01	0.070	0.0(2	0.154			~	

0.062

0.060

0.065

0.060

0.057

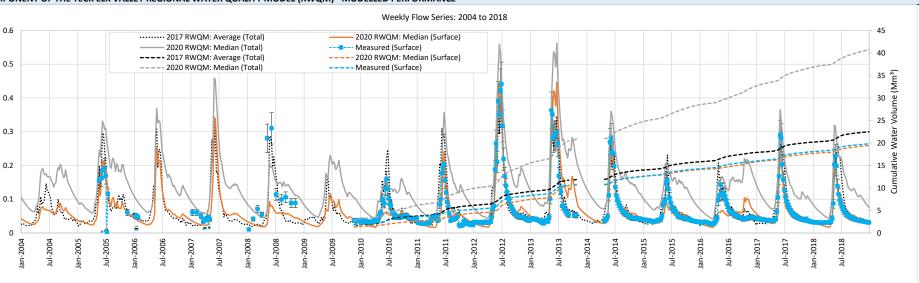
0.055

0.053

0.154

0.15

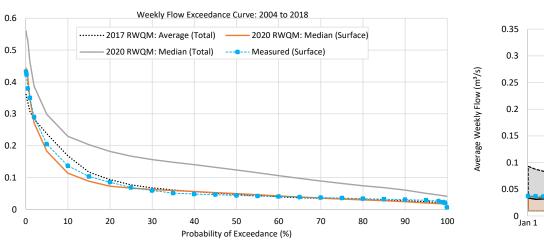
0.162


0.15

0.143

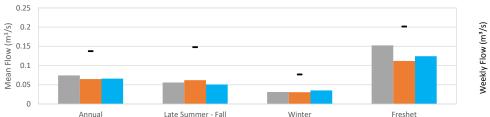
0.137

0.13



0.3

0.25


0.2

0.15

: Average (Total) 2020 RWQM: Median (Surface) Measured (Surface) - 2020 RWQM: Median (Total)

0.051	0.055	0.152							>
0.052	0.050	0.124		0					0.1
0.049	0.048	0.121		Annual Late S	Summer - Fall	Winter	Fre	eshet	
0.048	0.046	0.115							0.05
0.045	0.044	0.110		Statistics on concurrent data: 2004 to 2018	Good	Good			0.05
0.045	0.044	0.109			2017 BW/OM	2020 BW/OM-	2020 BWOM	Measured	***************
0.044	0.044	0.111		Parameter					0
0.041	0.042	0.105			Average (Total)	weulan (Surrace)	weulan (Total)	(Surrace)	Jan 1 Feb 1 Mar 1 A
0.040	0.041	0.101		Nash-Sutcliffe efficiency (E)	0.73	0.74	-0.80		
0.044	0.039	0.099		Modified Nash-Sutcliffe efficiency (E1)	0.53	0.55	-0.77		_
0.038	0.038	0.095		Index of agreement (d)	0.94	0.93	0.75		Notes
0.035				Modified index of agreement (d1)	0.78	0.77	0.38		Performance statistics: For E, E1, d, d1, a
				MAE	0.02	0.02	0.07		less than 0 indicate that the model is no
0.034	0.033			RMSE	0.03	0.03	0.09		generally indicates a better fit with mon
0.031	0.031	0.077		Coefficient of Determination (R ²)	0.79	0.77	0.72		
0.030	0.029	0.073		Number of data in statistics	478	478	478		Notes on seasonal periods: Annual (Janu
				Total number of weekly data	783	783	783	478	(December through early April) Freshet
0.07	0.04	0.10	0.03	Mean of all weekly data	0.078	0.067	0.141	0.069	n/a = Not available or unable to calculat
0.05	0.05	0.13		Standard deviation of all weekly data	0.071	0.067	0.090	0.065	missing data)
0.03	0.02	0.06	0.03	Approximated mean annual runoff (mm/yr)	240	210	440	210	Flows for the 2017 RWQM represent pro
0.15	0.05	0.11							December 2016)
	0.052 0.049 0.048 0.045 0.045 0.044 0.041 0.040 0.044 0.038 0.035 0.034 0.034 0.031 0.030 0.031 0.030	0.052 0.050 0.049 0.048 0.049 0.048 0.045 0.044 0.045 0.044 0.045 0.044 0.044 0.044 0.041 0.042 0.040 0.041 0.043 0.038 0.035 0.036 0.034 0.033 0.031 0.031 0.030 0.029 0.07 0.04 0.03 0.02	0.052 0.050 0.124 0.049 0.048 0.121 0.048 0.046 0.115 0.045 0.044 0.110 0.045 0.044 0.109 0.044 0.044 0.111 0.041 0.042 0.105 0.040 0.041 0.101 0.044 0.039 0.099 0.038 0.038 0.095 0.035 0.036 0.090 0.034 0.033 0.081 0.031 0.031 0.077 0.030 0.029 0.073 0.05 0.05 0.13 0.03 0.05 0.13	0.052 0.050 0.124 0.049 0.048 0.121 0.048 0.046 0.115 0.045 0.044 0.110 0.045 0.044 0.110 0.045 0.044 0.111 0.041 0.042 0.105 0.044 0.041 0.101 0.044 0.039 0.099 0.038 0.038 0.095 0.035 0.036 0.090 0.034 0.031 0.077 0.030 0.029 0.073 0.007 0.04 0.10 0.03 0.035 0.05 0.13 0.03	0.052 0.050 0.124 0 0.049 0.048 0.121 Annual Late 9 0.048 0.046 0.115 Annual Late 9 0.045 0.044 0.110 Statistics on concurrent data: 2004 to 2018 0.045 0.044 0.110 Parameter 0.044 0.044 0.111 Parameter 0.041 0.042 0.105 Modified Nash-Sutcliffe efficiency (E) 0.044 0.039 0.099 Modified index of agreement (d) 0.038 0.036 0.090 Modified index of agreement (d1) 0.034 0.033 0.081 RMSE 0.031 0.031 0.077 Coefficient of Determination (R ²) 0.030 0.029 0.073 Number of weekly data 0.07 0.04 0.10 0.03 0.05 0.13 Standard deviation of all weekly data	0.052 0.050 0.124 0 0.049 0.048 0.121 Annual Late Summer - Fall 0.048 0.046 0.115 Contract Stress Good 0.045 0.044 0.110 Statistics on concurrent data: 2004 to 2018 Good 0.045 0.044 0.109 Parameter 2017 RWQM: 0.041 0.042 0.105 Octaverage (Total) Average (Total) 0.044 0.041 0.101 Mash-Sutcliffe efficiency (E) 0.73 0.044 0.039 0.099 Modified Mash-Sutcliffe efficiency (E1) 0.53 0.038 0.038 0.095 Index of agreement (d) 0.94 0.034 0.033 0.081 RMSE 0.03 0.031 0.031 0.077 Coefficient of Determination (R ³) 0.79 0.030 0.029 0.073 Number of data in statistics 478 0.07 0.04 0.10 0.03 Mean of all weekly data 0.078 0.05 0.05 0.13	0.052 0.050 0.124 0 Annual Late Summer - Fall Winter 0.049 0.048 0.011 0 Annual Late Summer - Fall Winter 0.045 0.044 0.010 Statistics on concurrent data: 2004 to 2018 Good Good 0.045 0.044 0.019 0 Parameter 2017 RWQM: Average (Total) 2020 RWQM: Median (Surface) 0.041 0.042 0.005 0 0.74 0.74 0.044 0.039 0.099 Modified Nash-Sutcliffe efficiency (E) 0.73 0.74 0.044 0.038 0.038 0.095 Index of agreement (d) 0.94 0.93 0.035 0.036 0.090 Modified index of agreement (d1) 0.78 0.77 0.034 0.033 0.081 RMSE 0.03 0.03 0.03 0.031 0.031 0.077 Coefficient of Determination (R ³) 0.79 0.77 0.030 0.029 0.073 Number of data in statistics 478 478	0.052 0.050 0.124 0.049 0.048 0.121 0.048 0.046 0.115 0.045 0.044 0.110 Statistics on concurrent data: 2004 to 2018 Good Good 0.045 0.044 0.110 Statistics on concurrent data: 2004 to 2018 Good Good Good 0.045 0.044 0.110 Statistics on concurrent data: 2004 to 2018 Good Good Median (Surface) Median (Total) 0.041 0.042 0.105 Parameter 2017 RWQM: Average (Total) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Total) 0.041 0.041 0.101 Nash-Sutcliffe efficiency (E) 0.73 0.74 -0.80 0.043 0.038 0.099 Modified Mash-Sutcliffe efficiency (E1) 0.53 0.55 -0.77 0.038 0.038 0.099 Modified index of agreement (d1) 0.78 0.77 0.38 0.034 0.033 0.081 RMSE 0.03 0.03 0.09 0.031 0.029 0.073	0.052 0.050 0.124 Annual Late Summer - Fall Winter Freshet 0.049 0.048 0.121 Annual Late Summer - Fall Winter Freshet 0.045 0.044 0.010 Statistics on concurrent data: 2004 to 2018 Good Good Median (Surface) Median (Total) Median (Surface) Median (Total) Median (Surface) Median (Total) Median (Surface) Median (Total) Median (Surface) Median (Surface)

2019-08-01

2019-08-08

2019-08-15

2019-08-22

2019-08-29

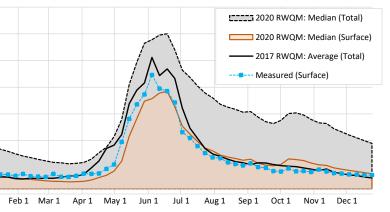
2019-09-05

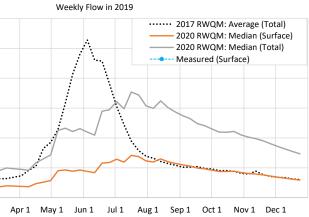
2019-09-12

0.070

0.066

0.061

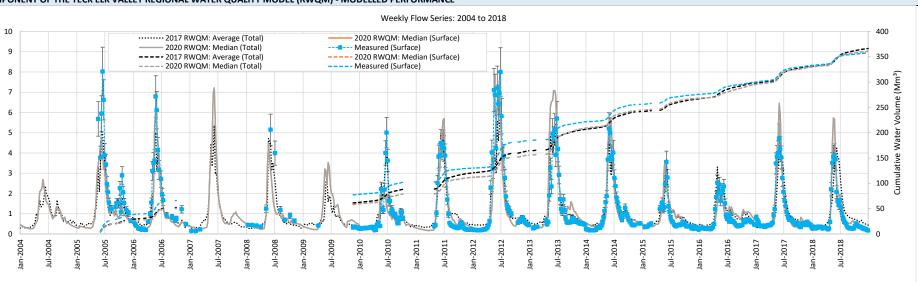

0.057


0.054

0.051

0.051

Mean Weekly Flow for Concurrent Data: 2004 to 2018

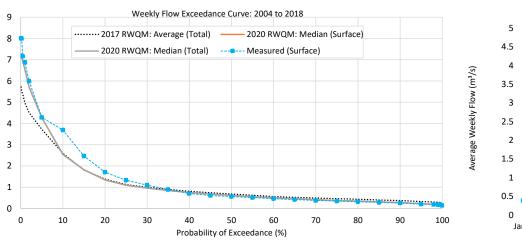


d1, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values s no better than using the mean of all the data. For MAE and RMSE, a lower number monitored data.

January through December); late Summer - Fall (late-July through November); Winter het (mid-April through mid-July)

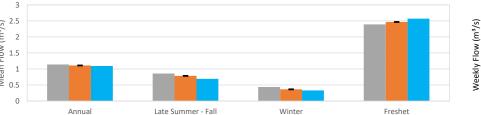
ulate a value (e.g., mean annual runoff is not calculated if certain weeks or months are

				FLO	w com
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF	
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	
Flow Modelling Method	LC_LCUSWLC + LC_WLC (sum of	modelled flows)	Surface-Groundwater Partitioning	Not Implemented	m³/s)
Spinner ID	24	Mean annual surface rur	noff (monitored)	490	Weekly Flow (m³/s)
Selected Year	2019	Mean annual total runof	ff (2020 RWQM)	500	kly F
Comparison Start Year	2004	Evaluation period (week	s)	783	Wee
Comparison End Year	2018	Weeks with monitoring	•	62%	
Station ID & Description	LC_LC3		of West Line Creek (02003	337)	
Drainage Area (2018)	7120 ha	Disturbed Area (2018)		~ 26%	1
Dete	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Measured (Surface)	
Date	(Total) Weekly Flow in 2019	(Surface)	(Total) (m³/s)		
2019-01-03	0.423	0.255	0.255	0.162	1
2019-01-10	0.420	0.242	0.242	0.196	<u> </u>
2019-01-17	0.409	0.230	0.230	0.162	
2019-01-24	0.408	0.218	0.218	0.139	
2019-01-31 2019-02-07	0.404 0.406	0.207 0.197	0.207 0.197	0.162	1
2019-02-07 2019-02-14	0.408	0.197	0.197	0.196	1
2019-02-21	0.396	0.178	0.178	0.233	
2019-02-28	0.401	0.169	0.169	0.252	/s)
2019-03-07	0.421	0.160	0.160	0.294	m³,
2019-03-14	0.457	0.157	0.157	0.233) N
2019-03-21	0.466	0.218	0.218	0.351	문
2019-03-28 2019-04-04	0.498 0.534	0.220	0.220	0.493	Weekly Flow (m³/s)
2019-04-04	0.659	0.223	0.223	0.465	Vee
2019-04-18	0.767	0.348	0.348	0.465	
2019-04-25	1.241	0.400	0.400	0.521	
2019-05-02	1.430	0.652	0.652	0.849	
2019-05-09	1.797	2.118	2.118	0.849	
2019-05-16 2019-05-23	2.575 3.390	2.383 1.757	2.383 1.757	3.519 1.346	-
2019-05-23	3.936	1.651	1.651	1.847	-
2019-06-06	4.354		1.031	4.639	
2019-06-13	3.779	0.963	0.963	1.532	1
2019-06-20	3.746	1.946	1.946	2.490	
2019-06-27	3.128	1.706	1.706	2.427	
2019-07-04	2.454	1.701	1.701	2.427	
2019-07-11 2019-07-18	1.934 1.496	1.262	1.262	2.714	-
2019-07-18	1.228	1.391	1.391	1.847	1
2019-07-25	1.078		0.993	1.355	
2019-08-08	1.017	0.888		0.830	m³/
2019-08-15	0.931		1.027	0.812	× (L
2019-08-22	0.875			0.708	Flo
2019-08-29	0.835		0.712	0.742	Mean Flow (m ³ /s)
2019-09-05 2019-09-12	0.784 0.785		0.627	0.643	Ξ
2019-09-12	0.800		0.303	0.499	
2019-09-26	0.752	0.451	0.451	0.580	1
2019-10-03	0.736		0.438		
2019-10-10	0.696		0.429		Statistic
2019-10-17	0.699		0.484	0.438	
2019-10-24	0.679	0.596		0.493	Parame
2019-10-31 2019-11-07	0.623	0.515	0.515 0.502		Nash-Su
2019-11-07 2019-11-14	0.690		0.495		Modifie
2019-11-21	0.586	0.479	0.479	0.010	Index of
2019-11-28	0.536	0.453	0.453		Modifie
2019-12-05	0.513		0.429		
2019-12-12 2019-12-19	0.505	0.405	0.405	0.493	RMSE
2019-12-19	0.453	0.363	0.363	0.243	Coeffici Numbe
Annual	1.45	0.74	0.74		l otal nu
Annual Late Summer - Fall	1.15 0.79	0.71 0.65	0.71 0.65	0.92	Mean o Standar
Winter	0.79	0.05	0.05	0.73	Approx
Freshet	2.45	1.33	1.33	1.85	
Treshet	2.45	1.33	1.33	1.03	I



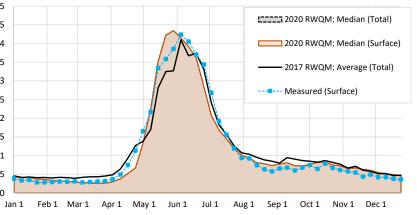
5

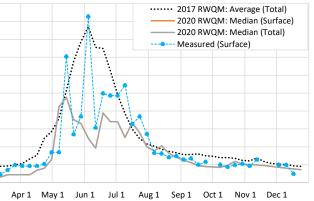
4.5


4

•••••

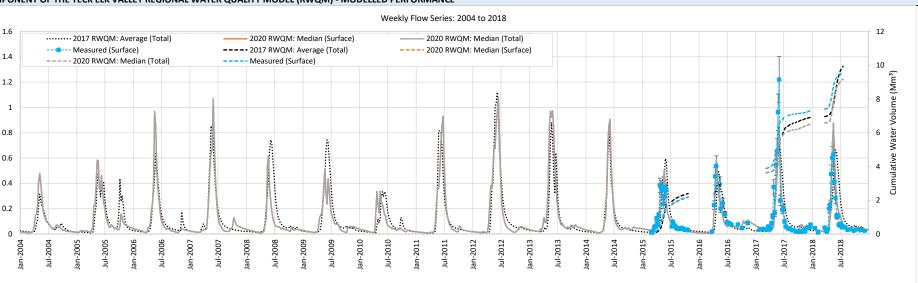
Mean Flow for Concurrent Data: 2004 to 2018


■ 2017 RWQM: Average (Total) ■ 2020 RWQM: Median (Surface) ■ Measured (Surface) = 2020 RWQM: Median (Total)


Parameter			2017 RWQM:	2020 RWQM:	2020 RWQM:	Measured		0.5
statistics or	n concurrent data: 2004 to	2018	Very good	Very good				
	7.111.001	Late ball						1
0	Annual	Late Sum	imer - Fall	Winter	Ere	eshet		1.5
							We	2
1 Wean 1 0.5								2.5
							Flow	3
s/ _E m)							(m³/ś	3.5

0.679 0.623	0.515	0.515	0.526			Median (Surface)	Median (Total)	(Surface)	0 Jan 1 Feb 1 Mar 1 Ap
0.608 0.690	0.495	0.495	0.643	Nash-Sutcliffe efficiency (E) Modified Nash-Sutcliffe efficiency (E1)	0.84	0.75 0.60	0.75 0.60		-
0.586 0.536	0.453	0.479 0.453		Index of agreement (d) Modified index of agreement (d1)	0.95 0.81	0.93 0.79	0.93 0.79		Notes Performance statistics: For E, E1, d, d1, ar
0.513 0.505	0.405		0.493	RMSE	0.37	0.42	0.42		less than 0 indicate that the model is no b generally indicates a better fit with monit
0.467 0.453		0.384		Coefficient of Determination (R ²) Number of data in statistics Total number of weekly data	0.86 485 783	0.76 485 783	0.76 485 783	485	Notes on seasonal periods: Annual (Janua (December through early April) Freshet (
1.15 0.79	0.71 0.65	0.71 0.65		Mean of all weekly data Standard deviation of all weekly data	1.249 1.177	1.230 1.440	1.230 1.440	1.218 1.483	n/a = Not available or unable to calculate missing data)
0.44	0.25	0.25	0.28	Approximated mean annual runoff (mm/yr)	510	500	500		Flows for the 2017 RWQM represent proj December 2016)

Mean Weekly Flow for Concurrent Data: 2004 to 2018



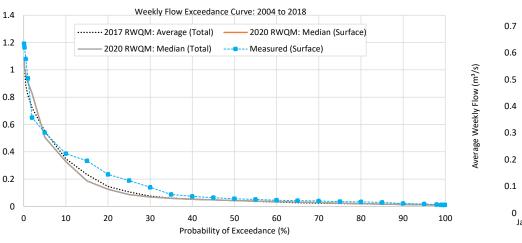
Weekly Flow in 2019

, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values no better than using the mean of all the data. For MAE and RMSE, a lower number onitored data. nuary through December); late Summer - Fall (late-July through November); Winter et (mid-April through mid-July) late a value (e.g., mean annual runoff is not calculated if certain weeks or months are projected average flows from January 1, 2017 (i.e., historical predictions end in

				FLO	w coi	MPO	NENT C
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF			
Case Description	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Measured (Surface)		1.6	
	(Total)	(Surface)	(Total)	(oundee)	ļ	1.4	-
Flow Modelling	Snowmelt Runoff Module, Was		Surface-Groundwater	0		1.2	
Method	subcatchment Upper LCO Dry C	reek, MTM 1-3 Pits	Partitioning		(m³/s)	1	
Spinner ID	7	Mean annual surface rur	noff (monitored)	390	Weekly Flow (m³/s)	0.8	
Selected Year	2019	Mean annual total runof	f (2020 RWQM)	400	eekly	0.6	
Comparison Start Year	2004	Evaluation period (week	s)	783	3	0.4	1
Comparison End Year	2018	Weeks with monitoring		14%			
Station ID & Description Drainage Area (2018)	LC_DC3 830 ha	Disturbed Area (2018)	ast Tributary Creek (E288	~ 24%]	0.2	
	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Measured (Surface)		0	
Date	(Total) Weekly Flow in 2019	(Surface)	(Total) (m³/s)				Jan-2004
2019-01-03	0.032		0.029	0.010			•
2019-01-10	0.030		0.028				
2019-01-17	0.030	0.026	0.026		l	1 4	
2019-01-24	0.029	0.025	0.025	0.024		1.4	
2019-01-31 2019-02-07	0.028	0.024	0.024	0.024	1		
2019-02-07 2019-02-14	0.028	0.022	0.022		1	1.2	
2019-02-21	0.026	0.020	0.020				
2019-02-28	0.026	0.019	0.019		(s)	1	
2019-03-07	0.026	0.017	0.017		",		2
2019-03-14	0.028	0.017	0.017		Weekly Flow (m ³ /s)	0.8	
2019-03-21	0.029	0.037	0.037	0.046	믭	0.0	
2019-03-28 2019-04-04	0.032	0.034	0.034	0.246	skly		(()
2019-04-04 2019-04-11	0.034	0.032	0.032	0.078	Vee	0.6	
2019-04-11	0.059	0.023	0.023	0.078			
2019-04-25	0.128	0.110	0.110	0.169		0.4	
2019-05-02	0.215	0.124	0.124	0.091			
2019-05-09	0.285	0.324	0.324	0.000		0.2	
2019-05-16		0.265	0.265	0.389			
2019-05-23 2019-05-30	0.563 0.637	0.194	0.194	0.145 0.246	·	0	
2019-06-06	0.618	0.135	0.135	0.257		C	C
2019-06-13	0.509	0.102	0.102	0.194			
2019-06-20	0.427	0.164	0.164	0.080			
2019-06-27	0.310	0.147	0.147	0.233			
2019-07-04	0.232	0.141	0.141	0.233		= 2	017 RWC
2019-07-11	0.178	0.106	0.106	0.260		= 20	017 10000
2019-07-18 2019-07-25	0.138	0.133 0.116	0.133 0.116	0.181 0.217		0.35	
2019-08-01	0.099	0.086	0.086	0.133	s)	0.3	
2019-08-08	0.090	0.076	0.076	0.058	Mean Flow (m³/s)	0.25	
2019-08-15	0.081	0.083	0.083	0.060	~ (r	0.2	
2019-08-22	0.074		0.069		Flov	0.15	
2019-08-29	0.069	0.061	0.061	0.039	an	0.1	
2019-09-05	0.064	0.054	0.054	0.095	Σe	0.05	
2019-09-12 2019-09-19	0.061	0.049 0.043	0.049	0.099			
2019-09-19	0.065	0.043	0.043	0.035		0	
2019-10-03	0.074	0.043	0.043	1.001			
2019-10-10	0.063	0.044	0.044	2.301	Statist	tics or	n concu
2019-10-17	0.061	0.059	0.059	0.099			
2019-10-24	0.059	0.066	0.066		Param	ieter	
2019-10-31	0.051	0.057	0.057	0.854			
2019-11-07	0.054	0.056	0.056	0.099			ffe effici
2019-11-14 2019-11-21	0.063	0.056	0.056				ash-Suto reement
2019-11-21	0.033	0.053	0.053				dex of a
2019-12-05	0.043	0.049	0.032		MAE		
2019-12-12	0.040	0.047	0.047	0.066	RMSE		
2019-12-19 2019-12-26	0.038	0.044 0.042	0.044 0.042		Coeffi Numb	cient of	of Deter data in s
2017-12-20	0.037	0.042	0.042		l otal r	numb	er of we
Annual	0.13	0.08	0.08	0.18			weekly
Late Summer - Fall	0.07	0.06	0.06				eviation
Winter	0.03	0.03	0.03	0.08	Appro	ximat	ed mea
Freshet	0.32	0.15	0.15	0.19			
			0.20				

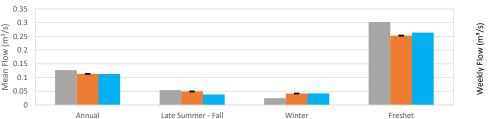
1

1.2

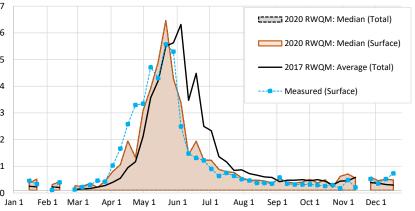

1

0.8

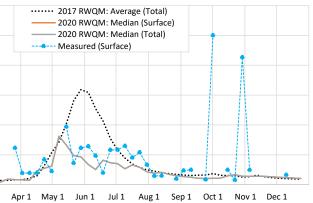
0.6


0.4

4

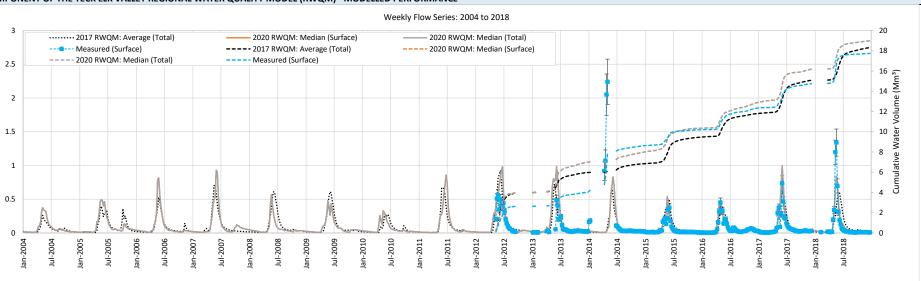


WQM: Average (Total) 2020 RWQM: Median (Surface) Measured (Surface) - 2020 RWQM: Median (Total)



2017-07-20	0.005	0.041	0.0+1	0.055	Annual Late S	ummer - Fall	winter	Fre	esnet	
2019-10-03	0.074	0.043	0.043	1.001						
2019-10-10	0.063	0.044	0.044		Statistics on concurrent data: 2004 to 2018	Poor	Very good			0.2
2019-10-17	0.061	0.059	0.059	0.099		2017 RWOM:	2020 RWQM:	2020 RWQM:	Measured	
2019-10-24	0.059	0.066	0.066	0.032	Parameter		Median (Surface)	-	(Surface)	0
2019-10-31	0.051	0.057	0.057	0.854		Average (Total)	wiedian (Surrace)	wedian (Total)	(Surface)	Jan 1 Feb 1 Mar 1 A
2019-11-07	0.054	0.056	0.056	0.099	Nash-Sutcliffe efficiency (E)	0.41	0.80	0.80		
2019-11-14	0.063	0.056	0.056		Modified Nash-Sutcliffe efficiency (E1)	0.32	0.62	0.62		
2019-11-21	0.053	0.055	0.055		Index of agreement (d)	0.82	0.94	0.94		Notes
2019-11-28	0.047	0.052	0.052		Modified index of agreement (d1)	0.66	0.81	0.81		Performance statistics: For E, E1, d, d1,
2019-12-05	0.043	0.049	0.049		MAE	0.09	0.05	0.05		less than 0 indicate that the model is no
2019-12-12	0.040			0.066	RMSE	0.15	0.09	0.09		generally indicates a better fit with mor
2019-12-19	0.038				Coefficient of Determination (R ²)	0.47	0.80	0.80		Notes on seasonal periods: Annual (Jan
2019-12-26	0.037	0.042	0.042		Number of data in statistics Total number of weekly data	109	109 /83	109 /83	109	(December through early April) Freshet
	0.13	0.08	0.08	0.19	Mean of all weekly data	0.155	0.142	0.142	0.147	n/a = Not available or unable to calculate
								-	-	
er - Fall	0.07	0.06	0.06		Standard deviation of all weekly data	0.185	0.184	0.184	0.200	missing data)
	0.03	0.03	0.03	0.08	Approximated mean annual runoff (mm/yr)	440	400	400	390	Flows for the 2017 RWQM represent pr
	0.32	0.15	0.15	0.19						December 2016)

Mean Weekly Flow for Concurrent Data: 2004 to 2018

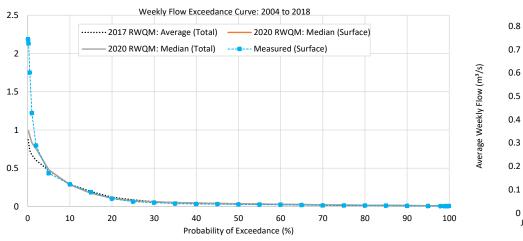


Weekly Flow in 2019

d1, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values is no better than using the mean of all the data. For MAE and RMSE, a lower number monitored data. January through December); late Summer - Fall (late-July through November); Winter shet (mid-April through mid-July) culate a value (e.g., mean annual runoff is not calculated if certain weeks or months are t projected average flows from January 1, 2017 (i.e., historical predictions end in

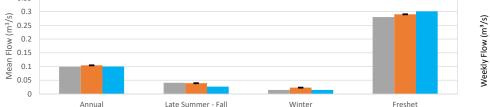
Scenario Case Description					
Case Description	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF	
	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	2.5
Flow Modelling Method	Snowmelt Runoff Module, Wast subcatchment East Tributary of		Surface-Groundwater Partitioning	Not implemented	
Spinner ID	8	Mean annual surface rur	noff (monitored)	460	(s/ s/ s/ s) 1.5 1.5 1.5
Selected Year	2019	Mean annual total runof	f (2020 RWQM)	480	
Comparison Start Year	2004	Evaluation period (week	s)	783	≥ 1
Comparison End Year	2018	Weeks with monitoring		36%	
Station ID & Description	LC_DCEF	East Tributary of Dry Cre	ek (E288274)		0.5
Drainage Area (2018)	700 ha	Disturbed Area (2018)		~ 0%	
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	
Butt	Weekly Flow in 2019	(Surface)	(m³/s)		Jan-2004
2019-01-03	0.017	0.014	0.014		4
2019-01-10 2019-01-17	0.016	0.013	0.013 0.012		1
2019-01-17 2019-01-24	0.015	0.012	0.012		2.5
2019-01-24 2019-01-31	0.014	0.012	0.012		2.5
2019-02-07	0.013	0.010	0.010		
2019-02-14	0.012	0.009	0.009		2
2019-02-21	0.012	0.009	0.009		
2019-02-28	0.011	0.008	0.008		Weekly Flow (m ³ /s) 1'2
2019-03-07	0.011	0.007	0.007		Ë 15
2019-03-14 2019-03-21	0.012	0.007 0.021	0.007		ð 1.5
2019-03-28	0.015	0.019	0.019		ы Ч
2019-04-04	0.015	0.018	0.018		sekl
2019-04-11	0.019	0.017	0.017		l ≩ 1
2019-04-18	0.032	0.074	0.074		
2019-04-25	0.091	0.090	0.090		
2019-05-02 2019-05-09	0.183 0.254	0.103 0.349	0.103 0.349	0.043	0.5
2019-05-16	0.234	0.349	0.349	0.045	
2019-05-23	0.540	0.208	0.208		_
2019-05-30	0.609	0.163	0.163		0
2019-06-06	0.592	0.111	0.111		0
2019-06-13	0.481	0.079	0.079		
2019-06-20	0.394	0.135	0.135	0.000	-
2019-06-27 2019-07-04	0.278	0.112 0.106	0.112 0.106	0.228	-
2019-07-04	0.141	0.075	0.075		■ 2017 R
2019-07-18	0.108	0.096	0.096		0.35
2019-07-25	0.087	0.078	0.078		
2019-08-01	0.072	0.054	0.054		(s 0.3
2019-08-08	0.062	0.046	0.046	0.045	m 0.25
2019-08-15 2019-08-22	0.054	0.052	0.052		(s) 0.25 W 0.25 M 0.2 H 0.15 W 0.15 W 0.05
2019-08-22	0.049	0.040	0.040		표 0.15
2019-09-05	0.042	0.029	0.029		0.1 ear
2019-09-12	0.038	0.025	0.025		≥ 0.05
2019-09-19	0.041	0.020	0.020		0
2019-09-26 2019-10-03	0.042	0.018 0.021	0.018	0.013	-
2019-10-03	0.054	0.021	0.021		Chatistics on son
2019-10-10	0.043	0.024	0.024		Statistics on con
2019-10-17	0.042	0.035	0.035		
2019-10-24	0.040	0.053	0.053		Parameter
2010 10 21	0.033	0.043	0.043		Nash-Sutcliffe ef
2019-10-31 2019-11-07	0.033	0.042	0.042		Modified Nash-S
2019-11-07		0.041	0.041		Index of agreeme
	0.034	0.041			
2019-11-07 2019-11-14	0.028	0.038	0.038		Modified index of
2019-11-07 2019-11-14 2019-11-21 2019-11-28 2019-12-05	0.028	0.038	0.036		MAE
2019-11-07 2019-11-14 2019-11-21 2019-11-28 2019-12-05 2019-12-12	0.028 0.024 0.021	0.038 0.036 0.033	0.036		MAE RMSE
2019-11-07 2019-11-14 2019-11-21 2019-11-28 2019-12-05	0.028	0.038	0.036		MAE RMSE Coefficient of De Number of data
2019-11-07 2019-11-14 2019-11-21 2019-11-28 2019-12-05 2019-12-05 2019-12-19 2019-12-26	0.028 0.024 0.021 0.019 0.018	0.038 0.036 0.033 0.031 0.029	0.036 0.033 0.031 0.029		MAE RMSE Coefficient of De Number of data Total number of
2019-11-07 2019-11-14 2019-11-21 2019-11-28 2019-12-05 2019-12-12 2019-12-12 2019-12-19 2019-12-26 Annual	0.028 0.024 0.021 0.019 0.019 0.018 0.11	0.038 0.036 0.033 0.031 0.029 0.06	0.036 0.033 0.031 0.029 0.06	0.08	MAE RMSE <u>Coefficient of De</u> Number of data Total number of Mean of all week
2019-11-07 2019-11-14 2019-11-21 2019-11-28 2019-12-05 2019-12-05 2019-12-19 2019-12-26	0.028 0.024 0.021 0.019 0.018	0.038 0.036 0.033 0.031 0.029	0.036 0.033 0.031 0.029	0.08	MAE RMSE Coefficient of De Number of data Total number of

0.7

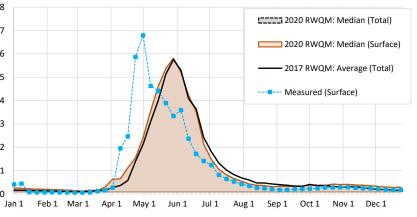

0.6

0.5

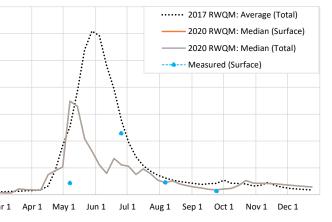
0.4

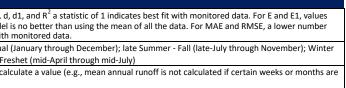

0.3

0.2

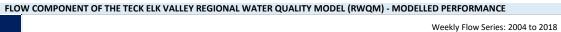

Mean Flow for Concurrent Data: 2004 to 2018

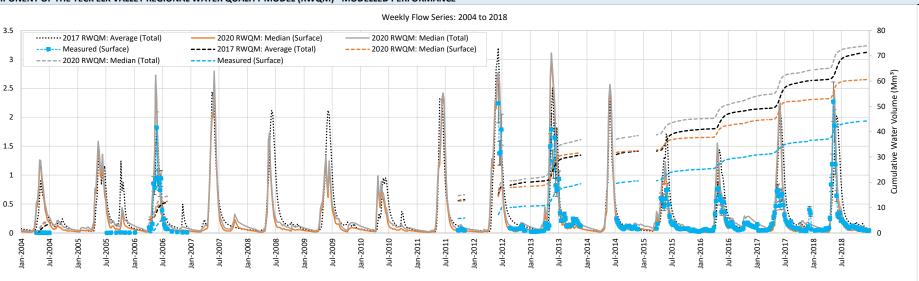
2017 RWQM: Average (Total) 2020 RWQM: Median (Surface) Measured (Surface) -2020 RWQM: Median (Total)



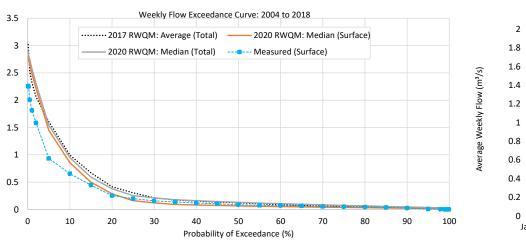

	Statistics on concurrent data: 2004 to 2018	Poor	Poor but improved			0.1
	Parameter	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	0 Jan 1 Feb 1 Mar 1
	Nash-Sutcliffe efficiency (E)	0.12	0.16	0.16		
	Modified Nash-Sutcliffe efficiency (E1)	0.40	0.46	0.46		_
	Index of agreement (d)	0.58	0.66	0.66		Notes
	Modified index of agreement (d1)	0.68	0.72	0.72		Performance statistics: For E, E1, d,
	MAE	0.07	0.07	0.07		less than 0 indicate that the model
	RMSE	0.23	0.22	0.22		generally indicates a better fit with
	Coefficient of Determination (R ²)	0.18	0.24	0.24		Notes on seasonal periods: Annual
	Number of data in statistics	285	285	285		
	lotal number of weekly data	/83	/83	/83	285	(December through early April) Fre
0.08	Mean of all weekly data	0.106	0.110	0.110	0.103	n/a = Not available or unable to cal
0.03	Standard deviation of all weekly data	0.164	0.189	0.189	0.245	missing data)
	Approximated mean annual runoff (mm/yr)	450	480	480	460	Flows for the 2017 RWQM represen
0.14						December 2016)

Mean Weekly Flow for Concurrent Data: 2004 to 2018



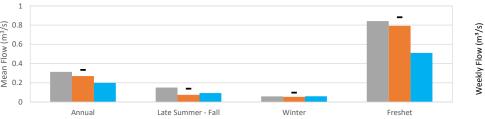


				FLO	W COMPC
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF	
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	3.5
Flow Modelling Method	Snowmelt Runoff Module, Wast subcatchments East Tributary ol Creek, Lower LCO Dry Creek to I DC1	f LCO Dry Creek, Upper LCO Dry	Surface-Groundwater Partitioning	50%, maximum of 8,000 m3/d	2.5 (s/ _ɛ ၬ
Spinner ID	12	Mean annual surface rur	off (monitored)	250	L) 2
Selected Year	2019	Mean annual total runof	f (2020 RWQM)	420	Weekly Flow (m³/s) 1'2
Comparison Start Year	2004			783	Week
Comparison End Year	2018	Evaluation period (week		41%	1
Station ID & Description	LC_DC1	Weeks with monitoring of Dry Creek near the Mout			0.5
Drainage Area (2018)	2560 ha	Disturbed Area (2018)		~ 8%	
Drainage Area (2018)	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median		0
Date	(Total)	(Surface)	(Total) (m³/s)	Measured (Surface)	
2019-01-03	Weekly Flow in 2019 0.069	0.033	(m ⁻ /s) 0.065	0.040	
2019-01-10	0.066	0.031	0.061	0.039	
2019-01-17	0.063	0.029	0.057	0.036	25
2019-01-24 2019-01-31	0.061	0.027	0.054	0.036	3.5
2019-01-31	0.057	0.023	0.048	0.038	
2019-02-14	0.055	0.022	0.045		3
2019-02-21	0.053	0.021	0.042		
2019-02-28	0.051	0.019	0.039		(s 2.5
2019-03-07 2019-03-14	0.050	0.017 0.018	0.035		(m
2019-03-14 2019-03-21	0.058	0.018	0.030		Meekly Flow (m ³ /s) 1.5
2019-03-28	0.065	0.058	0.116		μ
2019-04-04	0.068	0.057	0.114		ਕ ੋ 1.5
2019-04-11	0.085	0.051	0.102		Ň
2019-04-18 2019-04-25	0.131 0.331	0.269 0.323	0.361 0.416		1
2019-04-23	0.623	0.323	0.463		
2019-05-09	0.850	0.860	0.953		0.5
2019-05-16	1.266	0.692	0.785		
2019-05-23	1.766	0.451	0.543		0
2019-05-30 2019-06-06	1.995 1.938	0.390	0.483 0.348		-
2019-06-00	1.580	0.168	0.260		
2019-06-20	1.304	0.362	0.455		
2019-06-27	0.930	0.303	0.395		
2019-07-04	0.667	0.289	0.382		= 2
2019-07-11 2019-07-18	0.493 0.380	0.189 0.264	0.282 0.357		
2019-07-25	0.310		0.301		1
2019-08-01	0.261	0.123	0.215		(s) 0.8
2019-08-08	0.229	0.096	0.188		ш Ш
2019-08-15 2019-08-22	0.202 0.184	0.115 0.083	0.208 0.167		≥ 0.0
2019-08-22	0.134	0.072	0.144		۰.4 E
2019-09-05	0.157	0.063	0.125		0.8 (m ³ /s) 0.0 0.4 (m ³ /s)
2019-09-12	0.147	0.055	0.111		2 0.2
2019-09-19	0.155	0.047	0.093		0
2019-09-26 2019-10-03	0.159 0.194	0.044 0.051	0.087		
2010 10 10	0.150	0.054	0.107		Statistics o
2019-10-10 2019-10-17	0.159 0.155	0.054	0.107 0.164		
2019-10-24	0.149	0.088	0.175		Parameter
2019-10-31	0.124	0.073	0.146		
2019-11-07	0.132	0.073	0.146		Nash-Sutcl
2019-11-14 2019-11-21	0.166 0.129	0.075	0.150 0.148		Modified N Index of ag
2019-11-21 2019-11-28	0.129	0.074	0.148		Modified in
2019-12-05	0.096	0.066	0.132		MAE
2019-12-12	0.088	0.062	0.124		RMSE
2019-12-19 2019-12-26	0.082	0.058 0.054	0.116 0.109		Coefficient Number of
					Total num
Annual	0.36	0.14	0.21	0.04	Mean of a
			0.15		
Late Summer - Fall Winter	0.17	0.08	0.15	0.04	Standard d Approxima

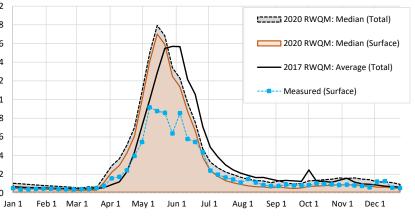


2.5

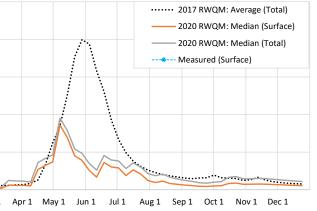
2

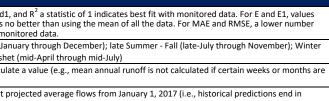

1.5

1

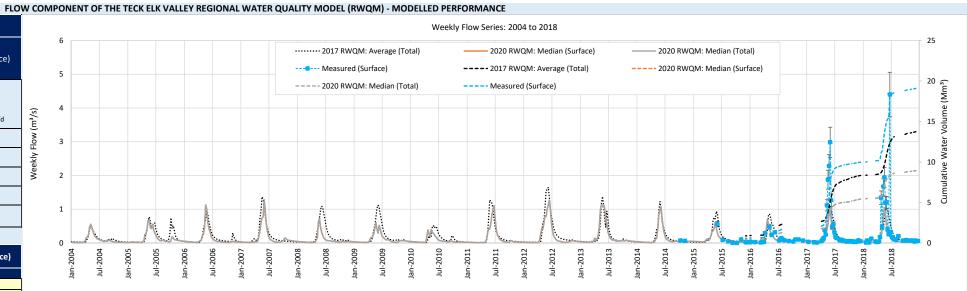

Mean Flow for Concurrent Data: 2004 to 2018

2017 RWQM: Average (Total) 2020 RWQM: Median (Surface) Measured (Surface) -2020 RWQM: Median (Total)

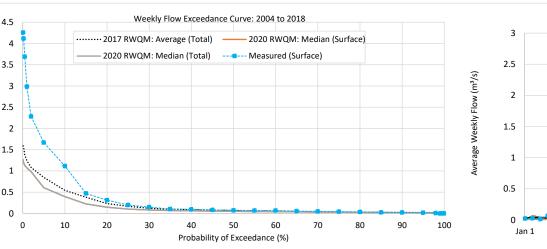



0.107		Statistics on concurrent data: 2004 to 2018	Poor	Poor but improved			0.5
0.164 0.175 0.146		Parameter	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	0 Jan 1 Feb 1 Mar 1 Apr 1 M
0.146		Nash-Sutcliffe efficiency (E)	0.03	0.25	0.08		
0.150		Modified Nash-Sutcliffe efficiency (E1)	0.16	0.36	0.23		-
0.148		Index of agreement (d)	0.83	0.88	0.86		Notes
0.139		Modified index of agreement (d1)	0.64	0.73	0.66		Performance statistics: For E, E1, d, d1, and R ² a
0.132		MAE	0.19	0.15	0.18		less than 0 indicate that the model is no better t
0.124		RMSE	0.36	0.32	0.35		generally indicates a better fit with monitored d
0.116		Coefficient of Determination (R ²)	0.61	0.75	0.75		Notes on seasonal periods: Annual (January thro
0.109			783	322 783	322 783	322	(December through early April) Freshet (mid-Ap
0.21	0.04	Mean of all weekly data	0.367	0.312	0.380	0.227	n/a = Not available or unable to calculate a value
0.15		Standard deviation of all weekly data	0.524	0.560	0.572	0.365	missing data)
0.08	0.04	Approximated mean annual runoff (mm/yr)	390	340	420	250	Flows for the 2017 RWQM represent projected a
0.44							December 2016)
	0.164 0.175 0.146 0.146 0.150 0.150 0.148 0.139 0.132 0.124 0.116 0.109 0.21 0.21 0.21 0.21	0.107 0.164 0.175 0.146 0.146 0.146 0.148 0.139 0.139 0.132 0.124 0.116 0.116 0.109 0.21 0.04 0.15 0.08 0.04	0.164 0.175 Parameter 0.146 Nash-Sutcliffe efficiency (E) 0.146 Modified Nash-Sutcliffe efficiency (E1) 0.150 Modified Nash-Sutcliffe efficiency (E1) 0.148 Index of agreement (d) 0.139 Modified index of agreement (d1) 0.132 MAE 0.146 RMSE 0.124 RMSE 0.116 Coefficient of Determination (R ²) 0.109 Number of data in statistics 1041 number of weekly data 0.21 0.15 Standard deviation of all weekly data 0.08 0.04	0.107 2017 RWQM: 0.164 Parameter 2017 RWQM: 0.175 Parameter Average (Total) 0.146 Nash-Sutcliffe efficiency (E) 0.03 0.146 Nash-Sutcliffe efficiency (E1) 0.16 0.146 Modified Nash-Sutcliffe efficiency (E1) 0.16 0.148 Index of agreement (d) 0.83 0.139 Modified index of agreement (d1) 0.64 0.132 MAE 0.19 0.124 RMSE 0.36 0.110 Coefficient of Determination (R ²) 0.61 0.109 Number of data in statistics 322 0 10tal number of weekly data 783 0.21 0.04 Mean of all weekly data 0.367 0.15 Standard deviation of all weekly data 0.524 0.08 0.04 Approximated mean annual runoff (mm/yr) 390	0.107 Statistics on concurrent data: 2004 to 2018 Poor improved 0.164	0.107 Statistics on concurrent data: 2004 to 2018 Poor improved 0.164 Parameter 2017 RWQM: Average (Total) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Total) 0.146 Nash-Sutcliffe efficiency (E) 0.03 0.25 0.08 0.146 Nash-Sutcliffe efficiency (E1) 0.16 0.36 0.23 0.148 Index of agreement (d1) 0.64 0.73 0.66 0.139 Modified index of agreement (d1) 0.64 0.73 0.66 0.132 MAE 0.19 0.15 0.18 0.124 RMSE 0.36 0.32 0.35 0.130 MAE 0.19 0.15 0.18 0.124 RMSE 0.36 0.32 0.35 0.109 Number of data in statistics 322 322 322 0.109 Number of weekly data 783 783 783 0.21 0.04 Mean of all weekly data 0.367 0.312 0.380 0.15 Standard deviation of all weekly data	0.107 Statistics on concurrent data: 2004 to 2018 Poor improved improved 0.164 0.175 Parameter 2017 RWQM: 2020 RWQM: 2020 RWQM: 2020 RWQM: (Surface) 0.146 Nash-Sutcliffe efficiency (E) 0.03 0.25 0.08 (Surface) 0.146 Nash-Sutcliffe efficiency (E1) 0.16 0.36 0.23 (Surface) 0.148 Index of agreement (d) 0.83 0.88 0.86 (Surface) 0.132 MAE 0.19 0.15 0.18 (Surface) 0.124 RMSE 0.36 0.32 (Surface) 0.139 Modified index of agreement (d1) 0.64 0.73 0.66 0.132 MAE 0.19 0.15 0.18 (Surface) 0.124 RMSE 0.36 0.32 0.35 (Surface) 0.109 Number of data in statistics 322 322 322 (Surface) 0.109 Number of weekly data 783 783 783 322

Mean Weekly Flow for Concurrent Data: 2004 to 2018

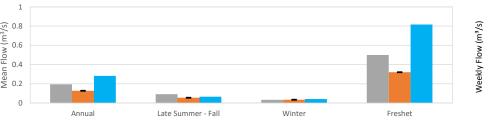


				FLO	w сомро	DNENT
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF		
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	6	
-low iviodelling	Snowmelt Runoff Module, Wast subcatchments East Tributary o Creek		Surface-Groundwater Partitioning	80% of LC_DCEF in downstream reach, maximum of 69,100 m3/d	5 (5/ _€ L	
Spinner ID	9	Mean annual surface rur	noff (monitored)	560	Weekly Flow (m ³ /s)	2
elected Year	2019	Mean annual total runof	f (2020 RWQM)	260	는 사이 가 가 다 다 가 다 다 다 다 다 다 다 다 다 다 다 다 다 다	,
Comparison Start Year	2004			783	lyaa Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	2
Comparison End Year	2018	Evaluation period (week		13%	-	
tation ID & Description	LC_DCDS	Weeks with monitoring	data (%) of Sedimentation Ponds (E		1 1	ι —
			of Sedimentation Ponds (1			
Drainage Area (2018)	1530 ha 2017 RWQM: Average	Disturbed Area (2018) 2020 RWQM: Median	2020 RWQM: Median	~ 13% Measured (Surface)	0	
Date	(Total) Weekly Flow in 2019	(Surface)	(Total) (m³/s)			Jan-2004
2019-01-03	0.044	0.032	0.032		1	ř
2019-01-10	0.042	0.030	0.030	0.068	<u> </u>	
2019-01-17	0.041	0.029	0.029	0.053	1	
2019-01-24	0.039	0.027	0.027	0.068	4.5	
2019-01-31	0.038	0.026	0.026	0.053		;
2019-02-07	0.037	0.024	0.024	0.053	4	
2019-02-14 2019-02-21	0.035	0.023	0.023		3.5	•
2019-02-21 2019-02-28	0.033	0.022	0.022			
2019-02-28	0.034	0.020	0.020		Weekly Flow (m ³ /s)	
2019-03-07	0.034	0.018	0.018		<u>ل</u>	T
2019-03-21	0.039	0.041	0.041		<u>o</u> 2.5	
2019-03-28	0.044	0.037	0.037	0.197		
2019-04-04	0.046	0.035	0.035	0.146	l a c	\rightarrow
2019-04-11	0.059	0.033	0.033	0.146		
2019-04-18	0.089	0.108	0.108	0.146	1.5	
2019-04-25	0.213	0.128	0.128	0.226	1	
2019-05-02	0.375	0.145	0.145	0.197	· ·	
2019-05-09	0.485	0.394	0.394	0.117	0.5	
2019-05-16 2019-05-23	0.690	0.331 0.236	0.331 0.236	0.582		
2019-05-20	1.015	0.218	0.218	0.686	0	
2019-06-06	0.957	0.157	0.157	0.741	•	0
2019-06-13	0.774	0.117	0.117	0.258		
2019-06-20	0.655	0.191	0.191	0.257		
2019-06-27	0.474	0.169	0.169	0.385	1	
2019-07-04	0.354	0.162	0.162	0.488		
2019-07-11	0.274	0.121	0.121	0.488		2017 R
2019-07-18	0.215	0.152	0.152	0.363	1	
2019-07-25	0.179	00	0.132	0.633		
2019-08-01	0.151	0.097	0.097	0.257	8.0 g	
2019-08-08 2019-08-15	0.135 0.120	0.085	0.085	0.197	E 06	
2019-08-22	0.120	0.073	0.073	0.089	- > °	
2019-08-22	0.102	0.067	0.067	0.171	E 0.4	
2019-09-05	0.095	0.060	0.060	0.146	8.0 % 8.0 % 9.0 (m ₃ /s) 8.0 %	
2019-09-12	0.091	0.054	0.054		≥ 0.2	
2019-09-19	0.096	0.047	0.047	0.146	0	
2019-09-26	0.099	0.045	0.045	0.035		
2019-10-03	0.120	0.048	0.048	0.444		
2019-10-10	0.098	0.048	0.048		Statistics of	on con
2019-10-17	0.096	0.066	0.066	0.146		
2019-10-24	0.093	0.077	0.077		Parameter	
2019-10-31 2019-11-07	0.078 0.083	0.066	0.066	0.103	Nash-Sutcl	liffo of
2019-11-07	0.085	0.065	0.065		Modified N	
2019-11-14	0.081	0.063	0.063		Index of ag	
2019-11-28	0.069	0.060	0.060	5.105	Modified in	ndex c
2019-12-05	0.061	0.057	0.057	0.103		
2019-12-12	0.056	0.053	0.053		RMSE	
2010 12 10	0.053	0.051	0.051		Coefficient Number of	t of De
2019-12-19 2019-12-26		0.040	0.048		Lotal num	ber of
2019-12-19 2019-12-26	01020				Total lulli	
2019-12-26	0.20	0.09	0.09	0.23	Mean of al	
2019-12-26 Annual		0.09 0.07	0.09	0.23 0.19		ll week
	0.20				Mean of a	ll week deviatio

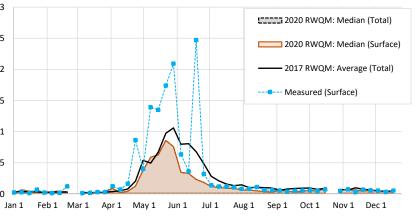

1.2

1

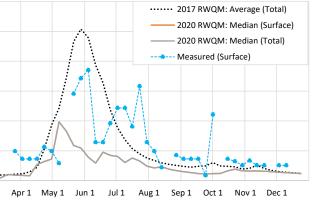
0.8


0.6

0.4

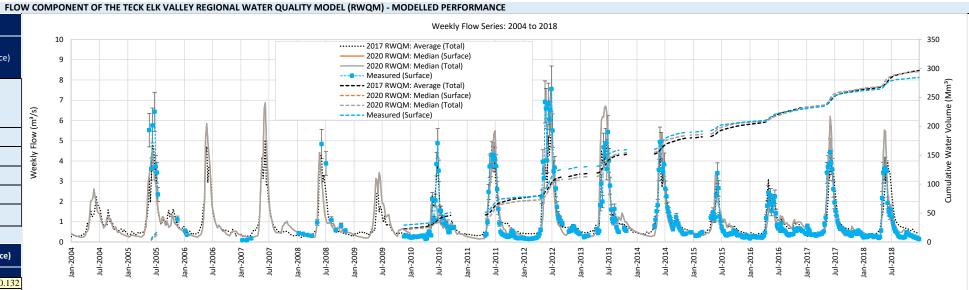

Mean Flow for Concurrent Data: 2004 to 2018

2017 RWQM: Average (Total) 2020 RWQM: Median (Surface) Measured (Surface) -2020 RWQM: Median (Total)



0.099	0.045	0.045	0.035	Annual Lat	te Summer - Fall	Winter	Fre	eshet	
0.120	0.048	0.048	0.444						0.2
0.098	0.048	0.048		Statistics on concurrent data: 2004 to 2018	Poor	Poor			0.2
0.096	0.066	0.066	0.146		2017 RWQM:	2020 RWQM:	2020 RWQM:	Measured	
0.093	0.077	0.077	0.129	Parameter		Median (Surface)			0
0.078	0.066	0.066	0.103		Average (Total)	wiedian (Surface)	wedian (Total)	(Surface)	Jan 1 Feb 1 Mar 1
0.083	0.065	0.065	0.135	Nash-Sutcliffe efficiency (E)	0.39	0.32	0.32		Jani Tepi Wali /
0.104	0.065	0.065	0.103	Modified Nash-Sutcliffe efficiency (E1)	0.49	0.52	0.52		
0.081	0.063	0.063	0.103	Index of agreement (d)	0.66	0.60	0.60		Notes
0.069	0.060	0.060		Modified index of agreement (d1)	0.70	0.71	0.71		Performance statistics: For E, E1, d, d1,
0.061	0.057	0.057	0.103	MAE	0.19	0.18	0.18		less than 0 indicate that the model is no
0.056	0.053	0.053		RMSE	0.52	0.54	0.54		generally indicates a better fit with more
0.053	0.051	0.051		Coefficient of Determination (R ²) Number of data in statistics	0.46	0.55	0.55		Notes on seasonal periods: Annual (Jan
0.050	0.048	0.048		Total number of weekly data	101 783	101 783	101 783	101	(December through early April) Freshe
0.20	0.09	0.09	0.23	Mean of all weekly data	0.225	0.147	0.147	0.313	n/a = Not available or unable to calcula
0.11	0.07	0.07	0.19	Standard deviation of all weekly data	0.291	0.218	0.218	0.662	missing data)
0.04	0.03	0.03	0.09	Approximated mean annual runoff (mm/yr)	390	260	260	560	Flows for the 2017 RWQM represent pr
0.50	0.18	0.18	0.36						December 2016)

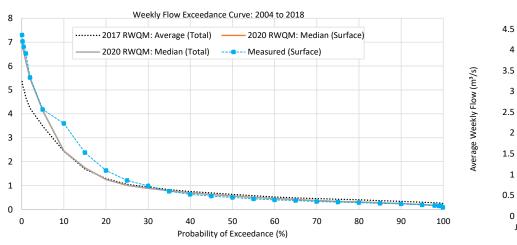
Mean Weekly Flow for Concurrent Data: 2004 to 2018



d1, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values is no better than using the mean of all the data. For MAE and RMSE, a lower number monitored data. (January through December); late Summer - Fall (late-July through November); Winter shet (mid-April through mid-July) culate a value (e.g., mean annual runoff is not calculated if certain weeks or months are it projected average flows from January 1, 2017 (i.e., historical predictions end in

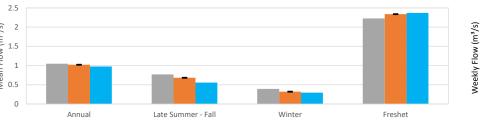
2019-01-10 0.390 0.215 0.215 0.166 2019-01-17 0.381 0.204 0.204 0.133 2019-01-24 0.380 0.193 0.193 0.110 2019-01-31 0.376 0.183 0.183 0.134 2019-02-07 0.378 0.174 0.165 0.225					FLO	W COME
Clas Description (Total) Surface) (Total) (Wathree) Flow Modelling Method Methods Methods Surface-Groundwate Indicationes (ER # 2.0.0pr in Core N.8.2.8.2. Not muchos (Moreina, N.7.4. Notes Naar Spini) Surface-Groundwate Partitioning Nut muchos Nates Naar Spinion Spinner ID 21 Mean annual surface runoff (monitored) 510 Selected Year 2019 Mean annual surface runoff (monitored) 533 Comparison Start Year 2001 Evaluation period (weeks) 783 Comparison Flort Year 2018 Weeks with monitoring data (%) 534 Station ID & Description LC_LCUSWLC Line Creek (D23) 7265 Date 2010-01-03 0.333 0.221 0.0215 0.0215 2010-01-03 0.333 0.221 0.0215 0.0121 0.0215 0.0121 2019-01-12 0.353 0.014 0.0143 0.0130 0.0221 0.0130 0.0132 2019-01-13 0.353 0.133 0.133 0.131 0.131 0.0130 0.011 0.0141 0.010 0.	cenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF	
Free worksetNumber of the sectorSectorNumber of the sectorSpiner I21Anamal curver ISinSpiner I21Manual curver ISinCompaison IV2000Manual curver ISinCompaison IVCompaison IVSinSinStatca VarianCompaison IVSinSinCompaison IVCompaison IVSinSinStatca VarianCompaison IVSinSinStatca VarianCompaiso	ase Description				Measured (Surface)	
Selected Year 2019 Mean annual total runoff (2020 RWQM) 530 Comparison Start Year 2004 Evaluation period (weeks) 783 Comparison End Year 2018 weeks with monitoring data (x) 53% Station D & Description LC_LCUSWLC line Creek upstream of West Line Creek (£293369) 2010 Date 2010/00/16 2020 RWOM. Moreage (100 a) 2020 RWOM. Severage (100 a) 2021 Control (100 a) 2010 2021 Control (100 a) 2020 RWOM. Severage (100 a) 2021 Control (100 a) 2010	ow Modelling lethod	subcatchments Centre Line Cree MSA West, Horseshoe Creek (1	ek, North Line Creek, HSR Pit, & 2), Upper Line Creek (1 & 2),		Not Implemented	Weekly Flow (m³/s)
Comparison Start Year 2004 Evaluation period (weeks) 783 Comparison End Year 2018 Weeks with monitoring data (%) 53% Station ID & Description LC_LCUSWLC Line Creek upstream of West Une Creek (£293369) Drainage Area (2018) 6110 ha Disturbed Area (2018) Test Date (Cota) (Cota) (Cota) Measured (Surface) 2019 -01-10 0.303 0.221 0.223 0.013 2019-01-11 0.350 0.221 0.215 0.013 2019-01-12 0.353 0.201 0.215 0.0165 2019-01-14 0.350 0.118 0.0183 0.0183 2019-01-24 0.368 0.0157 0.105 0.201 2019-01-24 0.368 0.0157 0.105 0.202 2019-01-24 0.373 0.149 0.142 0.201 2019-01-24 0.373 0.142 0.142 0.201 2019-01-24 0.373 0.177 0.206 0.201 0.201 2019-0	pinner ID	21	Mean annual surface rur	noff (monitored)	510) NO
Comparison End Vear 2018 Vector Min moliforing data (%) 53% Station ID & Description LC_LCUSWLC Line Creek upstream of Vest Line Creek (£29336) ~ Date 2017 RWQM: Average (Verta) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Surface) ~ 26% Date 2019 RWQM: Average (Verta) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Surface) Measured (Surface) Q109-01-03 0.330 0.227 0.233 0.131 0.131 Q109-01-17 0.338 0.0204 0.204 0.133 0.131 Q109-01-17 0.378 0.0143 0.138 0.131 0.113 Q109-01-17 0.378 0.0145 0.165 0.252 Q109-02-14 0.368 0.157 0.151 0.206 Q109-02-14 0.378 0.149 0.140 0.204 Q109-03-14 0.434 0.198 0.198 0.198 Q109-04-14 0.434 0.193 0.104 0.204 Q109-04-25 0.138 0.201 0.201 <td>elected Year</td> <td>2019</td> <td>Mean annual total runof</td> <td>f (2020 RWQM)</td> <td>530</td> <td>kly F</td>	elected Year	2019	Mean annual total runof	f (2020 RWQM)	530	kly F
Comparison End Year2018Weeks with monitoring duta (%)53%Station ID & DescriptionLC_LCUSWLCLine Creek upstream of Weine Creek (£293309)72%Drainage Area (2018)C110 have area (2018)2020 RWQM: Median (2018)728%Date(Total)2020 RWQM: Median (2018)2020 RWQM: Median (2018)Measured (surface) (1018)Date(Total)2019 All-010.3390.2210.02310.01312019-01-030.3390.02150.01510.01510.01512019-01-170.3310.02140.03410.01410.01412019-01-240.3300.01510.01510.01510.01512019-01-240.3300.01740.01410.01410.01412019-01-240.3300.01740.01410.01610.2022019-01-240.3300.01510.01510.01510.02612019-01-240.3320.14140.01410.01610.2042019-01-240.3320.14140.01410.01610.2042019-01-240.3440.17180.01710.02162019-01-240.3450.01310.01310.01612019-01-240.3450.01310.01310.01612019-01-250.3450.3450.02110.0212019-01-260.3450.3450.3450.3452019-01-270.3450.3450.3450.3452019-01-280.3450.3450.3450.3452019-01-290.345	omparison Start Year	2004	Evaluation period (week	s)	783	Wee
Station D & De scriptionLC LCUSWLCIner Creek upstream US	omparison End Year	2018			53%	
Date 2017 RWQM: Average (Total) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Total) Measured (Surface) 2019-01-10 0.593 0.227 0.227 0.132 2019-01-10 0.593 0.227 0.227 0.132 2019-01-10 0.593 0.227 0.227 0.132 2019-01-11 0.381 0.204 0.204 0.133 2019-01-12 0.581 0.204 0.204 0.133 2019-01-13 0.376 0.183 0.183 0.131 2019-02-17 0.578 0.174 0.157 0.202 2019-02-12 0.666 0.157 0.157 0.202 2019-02-12 0.634 0.199 0.142 0.142 2019-02-12 0.634 0.201 0.201 0.201 2019-02-12 0.434 0.198 0.198 0.198 2019-03-12 0.434 0.201 0.201 0.201 2019-04-14 0.613 0.201 0.201 0.201 2019-04	ation ID & Description	LC_LCUSWLC)	
Date (Total) (Surfac) (Total) (Messured (Surfac)) 2019-01-01 0.393 0.221 0.221 0.131 2019-01-10 0.390 0.221 0.215 0.161 2019-01-12 0.381 0.204 0.204 0.133 2019-01-12 0.383 0.193 0.113 0.132 2019-01-13 0.576 0.1183 0.113 0.132 2019-02-14 0.566 0.1151 0.165 0.222 2019-02-28 0.573 0.1149 0.1616 0.201 2019-02-28 0.673 0.149 0.149 0.201 2019-03-24 0.434 0.198 0.198 0.201 2019-03-25 0.464 0.201 0.201 0.201 2019-04-26 1.158 0.374 0.374 0.374 2019-04-27 1.338 0.623 0.623 0.623 2019-04-28 1.158 0.374 0.374 0.374 2019-04-52 1.38 0.733 <td>rainage Area (2018)</td> <td>6110 ha</td> <td>Disturbed Area (2018)</td> <td></td> <td>~ 26%</td> <td>l</td>	rainage Area (2018)	6110 ha	Disturbed Area (2018)		~ 26%	l
Usede (total) (total) 2019-01-10 0.393 0.227 0.227 2019-01-10 0.390 0.227 0.227 2019-01-12 0.381 0.204 0.204 2019-01-13 0.376 0.183 0.183 2019-01-14 0.380 0.193 0.113 2019-02-17 0.378 0.174 0.165 2019-02-21 0.368 0.157 0.157 2019-02-21 0.368 0.157 0.177 2019-02-22 0.373 0.149 0.142 2019-02-24 0.434 0.198 0.198 2019-03-21 0.434 0.198 0.198 2019-03-22 0.434 0.198 0.198 2019-03-23 0.464 0.201 0.201 2019-03-21 0.343 0.623 0.201 2019-04-25 1.158 0.374 0.374 2019-04-26 1.138 0.203 0.203 2019-04-27 2.336 1.467 0		2017 RWQM: Average		2020 RWQM: Median	Measured (Surface)	
2019-01-00 0.393 0.227 0.227 0.133 2019-01-17 0.381 0.204 0.204 0.133 2019-01-24 0.380 0.193 0.113 0.133 0.113 2019-01-31 0.576 0.1183 0.183 0.1183 0.113 2019-02-07 0.578 0.174 0.174 0.165 0.225 2019-02-21 0.568 0.157 0.137 0.206 2019-02-22 0.573 0.149 0.149 0.206 2019-03-41 0.425 0.139 0.139 0.206 2019-03-42 0.434 0.198 0.198 0.198 2019-03-42 0.434 0.201 0.201 0.201 2019-03-42 0.434 0.201 0.201 0.201 2019-04-44 0.474 0.325 0.325 0.326 2019-04-45 1.158 0.374 0.374 0.201 2019-05-16 2.446 2.336 2.203 0.203 0.203	Date		(Surface)			
2019-01-17 0.381 0.204 0.204 0.133 2019-01-31 0.376 0.133 0.193 0.113 2019-02-07 0.378 0.114 0.165 0.225 2019-02-14 0.366 0.157 0.157 0.206 2019-02-28 0.373 0.149 0.149 0.206 2019-02-28 0.373 0.149 0.149 0.206 2019-03-14 0.425 0.139 0.139 0.201 2019-03-28 0.464 0.201 0.201 0.201 2019-03-28 0.464 0.201 0.201 0.201 2019-04-14 0.613 0.201 0.201 0.201 2019-04-18 0.714 0.325 0.326 0.334 2019-04-25 1.158 0.374 0.374 0.201 2019-04-18 0.714 0.325 0.326 0.236 2019-04-25 1.158 0.374 0.217 0.201 2019-04-26 2.318 0.733 0.6	2019-01-03	0.393		0.227	0.132	1
2019-01-31 0.376 0.193 0.193 0.113 2019-02-07 0.378 0.174 0.174 0.168 2019-02-07 0.378 0.174 0.174 0.168 2019-02-21 0.366 0.157 0.157 0.202 2019-02-28 0.373 0.149 0.149 0.149 2019-03-07 0.332 0.142 0.142 0.142 2019-03-21 0.434 0.198 0.198 0.198 2019-03-21 0.434 0.198 0.198 0.198 2019-04-24 0.4047 0.204 0.204 0.204 2019-04-25 1.158 0.374 0.374 0.274 2019-04-18 0.714 0.325 0.325 0.201 2019-04-25 1.158 0.374 0.374 0.273 2019-05-20 1.338 0.623 0.623 0.623 2019-05-12 3.158 1.713 1.713 1.713 2019-05-13 3.548 0.921 0.					0.166	
2019-01-31 0.376 0.183 0.183 0.174 2019-02-14 0.369 0.165 0.125 2019-02-14 0.369 0.165 0.225 2019-02-28 0.373 0.149 0.149 2019-02-28 0.373 0.149 0.149 2019-03-07 0.392 0.142 0.142 2019-03-14 0.425 0.139 0.139 2019-03-28 0.464 0.201 0.201 2019-04-14 0.613 0.201 0.201 2019-04-18 0.714 0.325 0.325 2019-04-18 0.714 0.325 0.325 2019-05-02 1.338 0.623 0.623 2019-05-03 1.683 2.073 2.073 2019-05-04 1.633 2.073 2.073 2019-05-05 3.696 1.605 1.605 2019-05-30 3.696 1.605 1.605 2019-05-30 3.548 0.921 0.921 2019-06-13					0.133	
2019-02-07 0.378 0.174 0.174 0.165 2019-02-1 0.366 0.157 0.157 0.205 2019-02-28 0.373 0.149 0.149 0.206 2019-03-21 0.368 0.157 0.157 0.206 2019-03-24 0.422 0.142 0.142 0.142 2019-03-24 0.425 0.139 0.139 0.201 2019-03-28 0.464 0.201 0.204 0.204 2019-04-18 0.714 0.325 0.325 0.204 2019-04-18 0.714 0.325 0.325 0.201 2019-04-18 0.714 0.325 0.325 0.201 2019-05-02 1.338 0.623 0.623 0.201 2019-05-10 1.633 2.073 2.073 2.073 2019-05-23 3.183 1.713 1.713 1.713 2019-05-13 3.548 0.921 0.921 0.201 2019-06-13 3.548 0.921 0.20						8
2019-02-1 0.368 0.157 0.157 0.225 2019-02-28 0.373 0.149 0.149 0.206 2019-02-28 0.373 0.149 0.149 0.206 2019-03-07 0.392 0.142 0.142 0.142 2019-03-14 0.434 0.198 0.198 0.198 2019-03-28 0.444 0.201 0.201 0.201 2019-04-04 0.497 0.204 0.204 0.204 2019-04-18 0.714 0.325 0.325 0.325 2019-04-18 0.714 0.325 0.325 0.325 2019-04-25 1.158 0.374 0.374 0.374 2019-05-02 1.338 0.623 0.623 0.623 2019-05-30 3.696 1.605 1.605 0.053 2019-05-33 3.183 1.713 1.713 0.713 2019-06-43 3.548 0.921 0.921 0.921 2019-06-50 3.517 1.888 1.88						_
2019-02-21 0.368 0.157 0.157 0.206 2019-03-07 0.332 0.142 0.142 0.142 2019-03-07 0.332 0.142 0.142 0.142 2019-03-14 0.425 0.139 0.139 0.139 2019-03-28 0.464 0.201 0.201 2019-04-14 0.477 0.204 0.204 2019-04-18 0.714 0.325 0.325 2019-04-18 0.714 0.325 0.325 2019-04-25 1.158 0.374 0.374 2019-05-09 1.683 2.073 2.073 2019-05-23 3.183 1.713 1.713 2019-05-30 3.696 1.605 1.605 2019-06-66 4.090 1.191 1.191 2019-06-67 2.936 1.647 1.647 2019-06-72 2.936 1.647 1.647 2019-06-72 2.936 1.647 1.647 2019-06-74 2.301 1.636 1						7
2019-03-07 0.392 0.142 0.142 2019-03-14 0.425 0.139 0.139 2019-03-28 0.464 0.201 0.201 2019-03-28 0.464 0.201 0.201 2019-04-14 0.613 0.201 0.204 2019-04-18 0.714 0.325 0.325 2019-04-18 0.714 0.325 0.623 2019-04-25 1.158 0.374 0.374 2019-05-20 1.338 0.623 0.623 2019-05-30 3.696 1.605 1.605 2019-05-30 3.696 1.605 1.605 2019-06-66 4.090 1.191 1.191 2019-06-61 3.548 0.921 0.921 2019-06-61 3.548 0.921 0.921 2019-06-62 2.3517 1.888 1.888 2019-06-63 1.6163 1.636 1.636 2019-06-61 3.354 0.921 0.921 2019-06-61 0.381 <t< td=""><td></td><td></td><td></td><td></td><td>0.206</td><td></td></t<>					0.206	
2019-03-12 0.434 0.139 0.139 2019-03-28 0.464 0.201 0.201 2019-04-11 0.613 0.201 0.204 2019-04-41 0.613 0.201 0.201 2019-04-48 0.714 0.325 0.335 2019-04-18 0.714 0.325 0.335 2019-05-09 1.683 2.073 2.073 2019-05-09 1.683 2.073 2.073 2019-05-30 3.696 1.605 1.605 2019-05-30 3.696 1.605 1.605 2019-06-60 4.000 1.191 1.191 2019-06-61 3.548 0.921 0.921 2019-06-7 2.936 1.647 1.647 2019-07-4 2.301 1.636 1.636 2019-07-11 1.811 1.202 1.202 2019-07-12 1.150 1.322 1.322 2019-07-13 0.818 0.759 0.759 2019-07-2 0.151 0.8	2019-02-28	0.373	0.149	0.149		(s) 6
2019-03-21 0.434 0.198 0.198 2019-03-28 0.464 0.201 0.201 2019-04-4 0.497 0.204 0.204 2019-04-18 0.714 0.325 0.325 2019-04-25 1.158 0.374 0.374 2019-05-20 1.338 0.623 0.623 2019-05-20 1.338 0.623 2.073 2019-05-16 2.416 2.336 2.336 2019-05-30 3.696 1.605 1.605 2019-06-30 3.696 1.605 1.605 2019-06-30 3.696 1.605 1.605 2019-06-40 2.301 1.636 1.647 2019-06-72 2.936 1.647 1.647 2019-07-14 1.811 1.202 1.202 2019-07-25 1.150 1.322 1.322 2019-07-18 1.401 1.602 1.602 2019-07-25 1.150 1.322 1.322 2019-07-18 0.751 0	2019-03-07	0.392	0.142	0.142		° (m)
2019-03-28 0.464 0.201 0.201 2019-04-14 0.613 0.201 0.204 2019-04-18 0.714 0.325 0.335 2019-05-02 1.138 0.623 0.623 2019-05-02 1.338 0.623 0.623 2019-05-02 1.338 0.623 0.623 2019-05-16 2.416 2.336 2.336 2019-05-23 3.183 1.713 1.713 2019-06-60 4.090 1.191 1.191 2019-06-60 4.090 1.191 1.191 2019-06-60 3.548 0.921 0.921 2019-06-61 3.548 0.921 0.921 2019-06-72 2.936 1.647 1.647 2019-07-14 1.811 1.202 1.202 2019-07-25 1.150 1.322 1.322 2019-07-25 1.150 1.322 1.322 2019-07-25 0.571 0.882 0.828 2019-07-25 0.571))
2019-04-04 0.497 0.204 0.204 2019-04-18 0.714 0.325 0.325 2019-04-25 1.158 0.374 0.374 2019-05-02 1.338 0.623 0.623 2019-05-09 1.683 2.073 2.073 2019-05-09 1.683 2.073 2.073 2019-05-16 2.416 2.336 2.336 2019-05-23 3.183 1.713 1.713 2019-05-30 3.696 1.605 1.605 2019-06-6 4.090 1.191 1.191 2019-06-13 3.548 0.921 0.921 2019-06-20 3.517 1.888 1.888 2019-07-4 2.301 1.636 1.636 2019-07-18 1.401 1.602 1.602 2019-07-25 1.150 1.322 1.322 2019-07-18 1.401 1.602 1.602 2019-07-25 0.571 0.963 0.963 2019-08-10 1.008 0.						E A
2019-04-11 0.613 0.201 0.201 2019-04-18 0.714 0.325 0.325 2019-05-02 1.338 0.623 0.623 2019-05-09 1.683 2.073 2.073 2019-05-16 2.416 2.336 2.336 2019-05-23 3.183 1.713 1.713 2019-05-30 3.696 1.605 1.605 2019-06-60 4.090 1.191 1.191 2019-06-13 3.548 0.921 0.921 2019-06-20 3.517 1.888 1.888 2019-06-27 2.936 1.647 1.647 2019-07-14 1.811 1.202 1.202 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-07-18 0.951 0.828 0.931 2019-07-25 1.150 1.322 1.322 2019-08-80 0.951 0.828 0.828 2019-08-19 0.734						- skly
2019-04-18 0.714 0.325 0.325 2019-04-25 1.158 0.374 0.374 2019-05-02 1.338 0.623 0.623 2019-05-16 2.416 2.336 2.336 2019-05-30 3.696 1.605 1.605 2019-05-30 3.696 1.605 1.605 2019-06-60 4.090 1.191 1.191 2019-06-13 3.548 0.921 0.921 2019-06-27 2.936 1.647 1.647 2019-07-4 2.301 1.636 1.636 2019-07-4 2.301 1.636 1.632 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-08-15 0.871 0.963 0.963 2019-08-2 0.780 0.654 0.654 2019-08-2 0.780 0.654 0.654 2019-08-10 0.653 0.45						Weekly Flow (m³/s)
2019-04-25 1.158 0.374 0.374 2019-05-09 1.338 0.623 0.623 2019-05-16 2.416 2.336 2.336 2019-05-23 3.183 1.713 1.713 2019-05-23 3.183 1.713 1.713 2019-06-30 3.696 1.605 1.605 2019-06-13 3.548 0.921 0.921 2019-06-20 3.517 1.888 1.888 2019-06-27 2.936 1.647 1.647 2019-07-04 2.301 1.636 1.636 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-08-15 0.871 0.963 0.963 2019-09-10 0.654						
2019-05-09 1.683 2.073 2.073 2019-05-23 3.183 1.713 1.713 2019-05-30 3.696 1.605 1.605 2019-06-30 3.596 1.605 1.605 2019-06-13 3.548 0.921 0.921 2019-06-20 3.517 1.888 1.888 2019-07-27 2.936 1.647 1.647 2019-07-4 2.301 1.636 1.636 2019-07-18 1.401 1.602 1.602 2019-07-18 1.150 1.322 1.322 2019-07-25 1.150 1.322 1.322 2019-07-25 1.150 1.322 1.322 2019-08-10 0.828 0.828 0.828 2019-08-15 0.871 0.963 0.963 2019-08-15 0.871 0.963 0.963 2019-08-20 0.733 0.572 0.572 2019-09-12 0.733 0.572 0.572 2019-09-19 0.749 0	2019-04-25	1.158	0.374			2
2019-05-16 2.416 2.336 2.336 2019-05-30 3.696 1.605 1.605 2019-06-60 4.090 1.191 1.191 2019-06-13 3.548 0.921 0.921 2019-06-20 3.517 1.888 1.888 2019-06-27 2.936 1.647 1.647 2019-07-14 1.611 1.022 1.202 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-07-18 0.951 0.828 0.828 2019-08-15 0.871 0.963 0.963 2019-08-20 0.780 0.654 0.654 2019-08-21 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-12 0.734 0.510 0.510 2019-09-26 0.703 0.4424 0.424 2019-09-19 0.743 <td< td=""><td>2019-05-02</td><td>1.338</td><td></td><td>0.623</td><td></td><td>_</td></td<>	2019-05-02	1.338		0.623		_
2019-05-23 3.183 1.713 1.713 2019-05-30 3.696 1.605 1.605 2019-06-06 4.090 1.191 1.191 2019-06-13 3.548 0.921 0.921 2019-06-20 3.517 1.888 1.888 2019-06-27 2.936 1.647 1.647 2019-07-14 1.811 1.202 1.202 2019-07-15 1.150 1.322 1.322 2019-07-25 1.150 1.322 1.322 2019-08-00 0.951 0.828 0.828 2019-08-01 1.008 0.931 0.931 2019-08-15 0.871 0.963 0.963 2019-08-22 0.818 0.759 0.759 2019-08-15 0.871 0.963 0.963 2019-08-12 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-12 0.733 0.473 0.473 2019-09-14 0.653						1
2019-05-30 3.696 1.605 1.605 2019-06-13 3.548 0.921 0.921 2019-06-20 3.517 1.888 1.888 2019-06-37 2.936 1.647 1.647 2019-07-40 2.301 1.636 1.636 2019-07-14 1.811 1.202 1.202 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-08-10 1.008 0.931 0.931 2019-08-10 1.008 0.931 0.931 2019-08-15 0.871 0.963 0.654 2019-08-22 0.780 0.654 0.654 2019-09-12 0.733 0.572 0.572 2019-09-12 0.733 0.572 0.510 2019-09-19 0.749 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-10-17 0.653						
2019-06-06 4.090 1.191 1.191 2019-06-13 3.548 0.921 0.921 2019-06-27 2.936 1.647 1.647 2019-07-04 2.301 1.636 1.636 2019-07-14 1.811 1.202 1.202 2019-07-18 1.401 1.602 1.602 2019-07-18 1.401 1.602 1.602 2019-07-25 1.150 1.322 1.322 2019-08-08 0.951 0.828 0.828 2019-08-15 0.871 0.963 0.963 2019-08-15 0.871 0.963 0.963 2019-08-29 0.780 0.654 0.654 2019-08-29 0.780 0.654 0.654 2019-09-19 0.774 0.424 0.424 2019-09-19 0.774 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-10-10 0.653 0.551 0.551 2019-10-31 0.658						C
2019-06-13 3.548 0.921 0.921 2019-06-20 3.517 1.888 1.888 2019-06-27 2.936 1.647 1.647 2019-07-04 2.301 1.636 1.636 2019-07-14 1.811 1.202 1.202 2019-07-18 1.401 1.662 1.602 2019-07-18 1.100 1.322 1.322 2019-07-25 1.150 1.322 1.322 2019-08-01 1.008 0.931 0.931 2019-08-15 0.871 0.963 0.963 2019-08-22 0.818 0.759 0.759 2019-08-29 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-12 0.733 0.452 0.402 2019-09-26 0.703 0.402 0.402 2019-09-26 0.703 0.402 0.402 2019-10-30 0.668 0.392 0.392 2019-10-40 0.653						
2019-06-27 2.936 1.647 1.647 2019-07-04 2.301 1.636 1.636 2019-07-11 1.811 1.202 1.202 2019-07-12 1.150 1.322 1.322 2019-07-25 1.150 1.322 1.322 2019-08-01 1.008 0.931 0.931 2019-08-08 0.951 0.828 0.828 2019-08-15 0.871 0.963 0.963 2019-08-22 0.818 0.759 0.759 2019-08-22 0.780 0.654 0.654 2019-08-22 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-12 0.734 0.510 0.424 2019-09-12 0.703 0.402 0.424 2019-09-26 0.703 0.402 0.402 2019-10-03 0.658 0.392 0.392 2019-10-10 0.651 0.385 0.385 2019-10-17 0.6535 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
2019-07-04 2.301 1.636 1.636 2019-07-11 1.811 1.202 1.202 2019-07-18 1.401 1.602 1.602 2019-07-25 1.150 1.322 1.322 2019-08-01 1.008 0.931 0.931 2019-08-05 0.951 0.828 0.828 2019-08-05 0.871 0.963 0.963 2019-08-22 0.818 0.759 0.759 2019-08-22 0.780 0.654 0.654 2019-09-25 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-26 0.703 0.402 0.424 2019-09-26 0.703 0.402 0.424 2019-09-26 0.703 0.402 0.424 2019-09-26 0.703 0.402 0.424 2019-09-26 0.703 0.473 0.385 2019-10-17 0.653 0.551 0.551 2019-10-24 0.653	2019-06-20	3.517	1.888	1.888		
2019-07-11 1.811 1.202 1.202 2019-07-18 1.401 1.602 1.602 2019-07-25 1.150 1.322 1.322 2019-08-01 1.008 0.931 0.931 2019-08-02 0.828 0.828 0.828 2019-08-03 0.963 0.963 0.963 2019-08-15 0.871 0.963 0.963 2019-08-22 0.818 0.759 0.759 2019-08-29 0.780 0.654 0.654 2019-09-12 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-19 0.749 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-0-10 0.651 0.385 0.385 2019-10-13 0.653 0.440 0.440 2019-10-17 0.653 0.551 0.551 2019-10-18 0.501 0.473 0.473 2019-10-19 0.548 0						
2019-07-18 1.401 1.602 1.602 2019-07-25 1.150 1.322 1.322 2019-08-08 0.951 0.828 0.828 2019-08-08 0.951 0.828 0.828 2019-08-15 0.871 0.963 0.963 2019-08-22 0.818 0.759 0.759 2019-08-22 0.818 0.752 0.572 2019-09-05 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-19 0.749 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-09-26 0.703 0.402 0.402 2019-10-03 0.688 0.392 0.392 2019-10-10 0.651 0.385 0.385 2019-10-17 0.653 0.440 0.440 2019-10-24 0.635 0.551 0.551 2019-11-21 0.548 0.441 0.441 2019-11-21 0.548						
2019-07-25 1.150 1.322 1.322 2019-08-01 1.008 0.931 0.931 2019-08-08 0.951 0.828 0.828 2019-08-15 0.871 0.963 0.963 2019-08-22 0.818 0.759 0.759 2019-08-22 0.780 0.654 0.654 2019-09-05 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-19 0.749 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-09-26 0.703 0.402 0.402 2019-10-31 0.653 0.385 0.385 2019-10-10 0.651 0.385 0.385 2019-10-17 0.653 0.440 0.440 2019-10-14 0.658 0.451 0.451 2019-10-15 0.551 0.551 0.551 2019-11-14 0.645 0.456 0.456 2019-11-20 0.548						-
2019-08-01 1.008 0.931 0.931 2019-08-08 0.951 0.828 0.828 2019-08-15 0.871 0.963 0.963 2019-08-22 0.818 0.759 0.759 2019-08-29 0.780 0.654 0.654 2019-09-05 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-12 0.734 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-09-10 0.651 0.385 0.385 2019-10-03 0.668 0.392 0.392 2019-10-10 0.651 0.385 0.385 2019-10-17 0.653 0.440 0.440 2019-10-17 0.653 0.451 0.451 2019-10-17 0.653 0.451 0.456 2019-10-17 0.658 0.451 0.451 2019-11-21 0.548 0.441 0.441 2019-11-24 0.501						2.
2019-08-08 0.951 0.828 0.828 2019-08-15 0.871 0.963 0.963 2019-08-22 0.818 0.759 0.759 2019-08-29 0.780 0.654 0.654 2019-09-05 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-19 0.749 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-10-10 0.651 0.385 0.385 2019-10-10 0.653 0.402 0.402 2019-10-10 0.653 0.440 0.440 2019-10-10 0.653 0.551 0.385 2019-10-17 0.653 0.551 0.551 2019-10-24 0.635 0.551 0.551 2019-10-31 0.583 0.473 0.473 2019-11-21 0.548 0.441 0.441 2019-11-22 0.501 0.416 0.416 2019-11-24 0.501						s)
2019-08-22 0.818 0.759 0.759 2019-08-29 0.780 0.654 0.654 2019-09-05 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-19 0.749 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-10-03 0.688 0.392 0.392 2019-10-10 0.651 0.385 0.385 2019-10-17 0.653 0.440 0.440 2019-10-17 0.653 0.440 0.440 2019-10-17 0.653 0.440 0.440 2019-10-17 0.658 0.451 0.551 2019-10-24 0.635 0.551 0.551 2019-11-07 0.568 0.461 0.441 2019-11-14 0.645 0.446 0.441 2019-11-28 0.501 0.416 0.416 2019-12-12 0.471 0.373 0.373 2019-12-26 0.423						n3/.
2019-08-29 0.780 0.654 0.654 2019-09-05 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-19 0.749 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-10-03 0.688 0.392 0.392 2019-10-10 0.651 0.385 0.385 2019-10-17 0.653 0.440 0.440 2019-10-24 0.635 0.551 0.551 2019-10-24 0.635 0.551 0.551 2019-10-24 0.635 0.473 0.473 2019-10-24 0.635 0.551 0.551 2019-10-24 0.568 0.461 0.441 2019-11-07 0.568 0.456 0.456 2019-11-14 0.645 0.456 0.456 2019-11-28 0.501 0.416 0.416 2019-12-12 0.471 0.373 0.373 2019-12-26 0.423	2019-08-15		0.963	0.963		 ≥ 1.!
2019-09-05 0.733 0.572 0.572 2019-09-12 0.734 0.510 0.510 2019-09-19 0.749 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-10-03 0.688 0.392 0.392 2019-10-10 0.651 0.385 0.385 2019-10-17 0.653 0.440 0.440 2019-10-24 0.635 0.551 0.551 2019-10-24 0.635 0.551 0.551 2019-10-24 0.635 0.440 0.440 2019-10-24 0.635 0.551 0.551 2019-10-25 0.583 0.473 0.473 2019-11-14 0.645 0.456 0.456 2019-11-28 0.501 0.416 0.416 2019-12-25 0.479 0.335 0.335 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423						Mean Flow (m ³ /s)
2019-09-12 0.734 0.510 2019-09-19 0.749 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-09-26 0.703 0.402 0.402 2019-10-03 0.688 0.392 0.392 2019-10-10 0.651 0.385 0.385 2019-10-17 0.653 0.440 0.440 2019-10-24 0.635 0.551 0.551 2019-10-31 0.583 0.473 0.473 2019-11-4 0.668 0.461 0.441 2019-11-21 0.548 0.441 0.441 2019-11-21 0.548 0.441 0.441 2019-11-21 0.548 0.441 0.441 2019-11-22 0.501 0.416 0.416 2019-11-21 0.548 0.441 0.441 2019-11-22 0.479 0.395 0.395 2019-12-12 0.471 0.373 0.373 2019-12-12 0.471 0.353 0						an
2019-09-19 0.749 0.424 0.424 2019-09-26 0.703 0.402 0.402 2019-10-03 0.688 0.392 0.392 2019-10-03 0.651 0.385 0.385 2019-10-17 0.653 0.440 0.440 2019-10-17 0.653 0.440 0.440 2019-10-24 0.635 0.551 0.551 2019-10-31 0.583 0.473 0.473 2019-11-07 0.568 0.461 0.441 2019-11-10 0.548 0.441 0.441 2019-11-21 0.548 0.441 0.441 2019-11-22 0.501 0.416 0.441 2019-11-23 0.501 0.416 0.416 2019-11-24 0.501 0.416 0.416 2019-11-29 0.471 0.373 0.373 2019-12-26 0.423 0.334 0.355 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423						≚ 0.5
2019-09-26 0.703 0.402 0.402 2019-10-03 0.688 0.392 0.392 2019-10-10 0.651 0.385 0.385 2019-10-17 0.653 0.440 0.440 2019-10-24 0.635 0.551 0.551 2019-10-31 0.583 0.473 0.473 2019-10-31 0.568 0.461 0.461 2019-11-07 0.568 0.461 0.441 2019-11-14 0.645 0.456 0.456 2019-11-28 0.501 0.416 0.441 2019-11-28 0.501 0.416 0.416 2019-12-12 0.471 0.373 0.373 2019-12-12 0.471 0.373 0.373 2019-12-12 0.471 0.373 0.373 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423 0.334 0.355 2019-12-26 0.423 0.334 0.355 2019-12-26 0.423						
2019-10-03 0.688 0.392 0.392 2019-10-10 0.651 0.385 0.385 2019-10-17 0.653 0.440 0.440 2019-10-24 0.635 0.551 0.551 2019-10-31 0.583 0.473 0.473 2019-10-31 0.568 0.461 0.461 2019-11-07 0.568 0.456 0.456 2019-11-14 0.645 0.456 0.456 2019-11-21 0.548 0.441 0.441 2019-11-22 0.501 0.416 0.416 2019-12-23 0.501 0.416 0.416 2019-12-12 0.471 0.373 0.373 2019-12-12 0.471 0.373 0.353 2019-12-12 0.471 0.353 0.553 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423 0.354 0.551 2019-12-26 0.423 0.567 0.16 0.553 0.5						
2019-10-17 0.653 0.440 0.440 2019-10-24 0.635 0.551 0.551 2019-10-31 0.583 0.473 0.473 2019-11-31 0.568 0.461 0.461 2019-11-14 0.645 0.456 0.456 2019-11-21 0.548 0.441 0.441 2019-11-22 0.501 0.416 0.416 2019-11-23 0.501 0.416 0.416 2019-12-25 0.479 0.395 0.395 2019-12-19 0.436 0.533 0.373 2019-12-19 0.436 0.535 0.335 2019-12-19 0.4423 0.334 0.334 2019-12-19 0.423 0.334 0.334 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423 0.367 0.16 Late Summer - Fall 0.74 0.60 0.60 Winter 0.41 0.22 0.22 0.16						1
2019-10-24 0.635 0.551 0.551 2019-10-31 0.583 0.473 0.473 2019-11-07 0.568 0.461 0.441 2019-11-14 0.645 0.456 0.456 2019-11-21 0.548 0.441 0.441 2019-11-21 0.548 0.441 0.441 2019-11-28 0.501 0.416 0.416 2019-12-05 0.479 0.395 0.395 2019-12-12 0.471 0.373 0.373 2019-12-19 0.4436 0.455 0.456 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423 0.355 0.555 2019-12-26 0.423 0.324 0.334 2019-12-26 0.423 0.324 0.354 0.060 0.600 0.60						Statistics
2019-10-31 0.583 0.473 0.473 2019-11-07 0.568 0.461 0.461 2019-11-14 0.645 0.456 0.456 2019-11-21 0.548 0.441 0.441 2019-11-22 0.501 0.416 0.441 2019-11-28 0.501 0.416 0.416 2019-12-05 0.479 0.395 0.395 2019-12-12 0.471 0.373 0.373 2019-12-19 0.4436 0.455 0.555 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423 0.667 0.16 Late Summer - Fall 0.74 0.60 0.60 Winter 0.41 0.22 0.22 0.16						_
2019-11-07 0.568 0.461 0.461 2019-11-14 0.645 0.456 0.456 2019-11-21 0.548 0.441 0.441 2019-11-28 0.501 0.416 0.441 2019-11-29 0.501 0.416 0.416 2019-12-12 0.471 0.373 0.373 2019-12-12 0.471 0.353 0.353 2019-12-12 0.4436 0.353 0.353 2019-12-26 0.436 0.353 0.353 2019-12-26 0.436 0.553 0.553 2019-12-26 0.436 0.553 0.553 2019-12-26 0.436 0.553 0.553 2019-12-26 0.436 0.567 0.667 Annual 1.07 0.67 0.67 0.16 Late Summer - Fall 0.74 0.60 0.60 0.60 Winter 0.41 0.22 0.22 0.16						Paramet
2019-11-14 0.645 0.456 0.456 2019-11-21 0.548 0.441 0.441 2019-11-28 0.501 0.416 0.416 2019-11-28 0.501 0.416 0.416 2019-12-05 0.479 0.395 0.395 2019-12-12 0.471 0.373 0.373 2019-12-19 0.436 0.553 0.553 2019-12-26 0.423 0.334 0.334 2019-12-26 0.423 0.573 0.553 2019-12-26 0.423 0.567 0.567 Annual 1.07 0.67 0.67 0.16 Late Summer - Fall 0.74 0.60 0.60 0.16 Winter 0.41 0.22 0.22 0.16						Nash-Sut
2019-11-21 0.548 0.441 0.441 2019-11-28 0.501 0.416 0.416 2019-12-05 0.479 0.395 0.395 2019-12-12 0.471 0.373 0.373 2019-12-19 0.436 0.353 0.355 2019-12-26 0.423 0.334 0.334 Annual 1.07 0.67 0.67 0.16 Late Summer - Fall 0.74 0.60 0.60 0.16						Modified
2019-11-28 0.501 0.416 0.416 2019-12-05 0.479 0.395 0.395 2019-12-12 0.471 0.373 0.373 2019-12-19 0.436 0.555 0.555 2019-12-26 0.423 0.334 0.334 Annual 1.07 0.67 0.67 0.16 Late Summer - Fall 0.74 0.60 0.600 0.16						Index of
2019-12-12 2019-12-19 0.471 0.436 0.373 0.553 0.373 0.353 2019-12-26 0.423 0.334 0.334 Annual 1.07 0.67 0.67 0.16 Late Summer - Fall 0.74 0.60 0.60 Winter 0.41 0.22 0.22 0.16		0.501				Modified
2019-12-19 0.436 0.353 0.353 2019-12-26 0.423 0.334 0.334 Annual 1.07 0.67 0.67 0.16 Late Summer - Fall 0.74 0.60 0.60 Winter 0.41 0.22 0.22 0.16						MAE
2019-12-26 0.423 0.334 0.334 Annual 1.07 0.67 0.67 0.16 Late Summer - Fall 0.74 0.60 0.60 0.16 Winter 0.41 0.22 0.22 0.16	2019-12-12					RMSE
Annual 1.07 0.67 0.67 0.16 Late Summer - Fall 0.74 0.60 0.60 0.16 Winter 0.41 0.22 0.22 0.16						Coefficie Number
Late Summer - Fall 0.74 0.60 0.60 Winter 0.41 0.22 0.22 0.16						lotal nur
Winter 0.41 0.22 0.22 0.16					0.16	Mean of
					0.16	Standard Approxin
1.27 1.27					0.10	Approxiti
	i collet	2.29	1.29	1.29		1

Weekly Flow Series: 2004 to 2018 10 ······ 2017 RWQM: Average (Total)



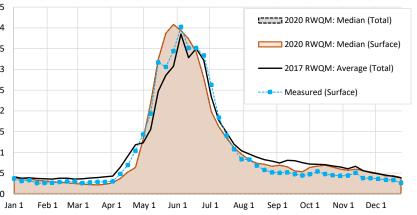
4.5

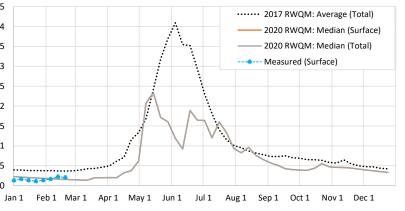
4


3.5

3

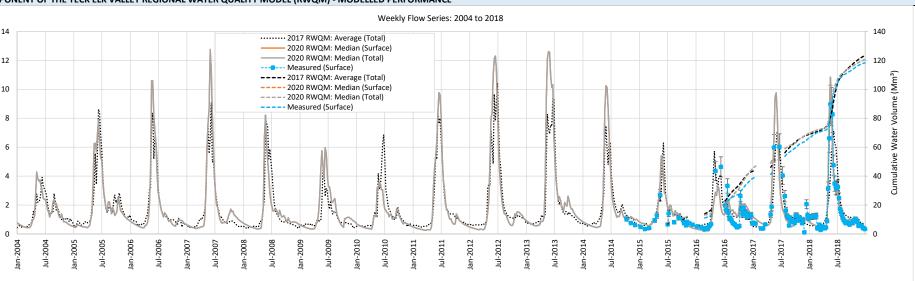
Mean Flow for Concurrent Data: 2004 to 2018


■ 2017 RWQM: Average (Total) ■ 2020 RWQM: Median (Surface) ■ Measured (Surface) = 2020 RWQM: Median (Total)


						ି <u>ଅ</u> 2.5			
						Weekly 5			
						1.5			t
nual	Late Sum	nmer - Fall	Winter	Fre	eshet	1			
lata: 2004 to 2018		Very good	Good			0.5			
		2017 RWQM:	2020 RWQM: Median (Surface)	2020 RWQM:	Measured (Surface)	0.5	•-•-•-	• • • •	•
			, í		(Surface)	-	Jan 1 F	eb1 Ma	aı
E)		0.83	0.74	0.74					

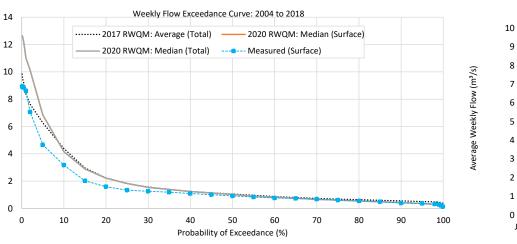
5411 1051		0.74	0.74	0.83	Nash-Sutcliffe efficiency (E)		0.461	0.461	0.568	019-11-07
		0.60	0.60	0.65	Modified Nash-Sutcliffe efficiency (E1)		0.456	0.456	0.645	019-11-14
Notes		0.93	0.93	0.95	Index of agreement (d)		0.441	0.441	0.548	019-11-21
Performance statistics: For E,		0.79	0.79	0.80	Modified index of agreement (d1)		0.416	0.416	0.501	019-11-28
less than 0 indicate that the r		0.40	0.40	0.36	MAE		0.395	0.395	0.479	019-12-05
generally indicates a better fi		0.73	0.73	0.58	RMSE		0.373		0.471	019-12-12
Notes on seasonal periods: A		0.75	0.75	0.85	Coefficient of Determination (R ²)		0.353		0.436	019-12-19
(December through early Ap	412	412 /83	412 /83	412 /83	Number of data in statistics Total number of weekly data		0.334	0.334	0.423	019-12-26
					,			0.67		
n/a = Not available or unable	1.140	1.182	1.182	1.189	Mean of all weekly data	0.16	0.67	0.67	1.07	
missing data)	1.419	1.411	1.411	1.123	Standard deviation of all weekly data		0.60	0.60	0.74	- Fall
Flows for the 2017 RWQM re	510	530	530	550	Approximated mean annual runoff (mm/yr)	0.16	0.22	0.22	0.41	
December 2016)							1.29	1.29	2.29	

Mean Weekly Flow for Concurrent Data: 2004 to 2018



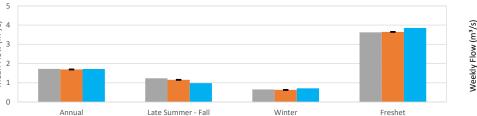
r E, E1, d, d1, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values he model is no better than using the mean of all the data. For MAE and RMSE, a lower number er fit with monitored data. s: Annual (January through December); late Summer - Fall (late-July through November); Winter April) Freshet (mid-April through mid-July) ble to calculate a value (e.g., mean annual runoff is not calculated if certain weeks or months are A represent projected average flows from January 1, 2017 (i.e., historical predictions end in

				FLO	W COMPO
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF	
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	14
Flow Modelling Method	LC_LC3 + South Line Creek (LC_S	SLC) (sum of modelled flows)	Surface-Groundwater Partitioning	Not Implemented	10 ج
Spinner ID	25	Mean annual surface rur	off (monitored)	480	Weekly Flow (m³/s) 9 ∞
Selected Year	2019	Mean annual total runof		480	6 Flo
Comparison Start Year	2004	Evaluation period (week	s)	783	
Comparison End Year	2018	Weeks with monitoring		17%	4
Station ID & Description	LC_LCDSSLCC	Line Creek downstream (point (E297110)	of South Line Creek conflu	ience / LCO compliance	2
Drainage Area (2018)	11180 ha	Disturbed Area (2018)		~ 17%	0
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	_
	Weekly Flow in 2019		(m³/s)		
2019-01-03	0.615	0.440	0.440	0.378	
2019-01-10	0.611	0.415	0.415	0.426	
2019-01-17	0.594	0.392	0.392	0.271	
2019-01-24	0.593	0.370	0.370	0.247	14
2019-01-31	0.587	0.350	0.350	0.181	
2019-02-07	0.592	0.330	0.330	0.323	12
2019-02-14 2019-02-21	0.576	0.312 0.295	0.312 0.295	0.224	
2019-02-21 2019-02-28	0.582	0.293	0.293	0.198	্রি 10
2019-02-28 2019-03-07	0.582	0.264	0.264	0.198	3 ³ /s
2019-03-07	0.674	0.258	0.258	0.143	<u>ب</u> (ت
2019-03-21	0.689	0.375	0.375	0.271	<u> </u>
2019-03-28	0.736	0.377	0.377	0.571	∠ F
2019-04-04	0.792	0.381	0.381	0.571	Weekly Flow (m ³ /s) 9 & 0
2019-04-11	0.965	0.374	0.374	0.503	Š
2019-04-18	1.129	0.627	0.627	0.477	4
2019-04-25	1.843	0.741	0.741	0.644	4
2019-05-02	2.194	1.299	1.299	1.071	
2019-05-09 2019-05-16	2.820	3.918 3.750	3.918 3.750	0.977 4.841	2
2019-05-10	5.585	2.769	2.769	2.658	
2019-05-23	6.479	2.698	2.698	3.620	0
2019-06-06	7.224	2.009	2.009	7.349	(
2019-06-13	6.231	1.561	1.561	3.950	
2019-06-20	6.166	3.448	3.448	2.658	
2019-06-27	5.131	2.985	2.985	4.339	
2019-07-04	3.947	2.988	2.988	2.232	
2019-07-11	3.054	2.167	2.167	3.794	2
2019-07-18	2.354	2.952	2.952	2.512	5
2019-07-25	1.905	2.419			
2019-08-01	1.661	1.674	1.674	2.658	4 (S/
2019-08-08 2019-08-15	1.551 1.414	1.490 1.766	1.490 1.766	<u>1.841</u> 1.841	E 3
2019-08-13	1.329	1.379	1.379	1.376	4 Mean Flow (m ³ /s) 1 2 2
2019-08-22	1.32)	1.183	1.183	1.376	ш 2 с
2019-09-05	1.191	1.032	1.032	0.977	leal
2019-09-12	1.193	0.919	0.919	0.977	≥ 1
2019-09-19	1.223	0.757	0.757	0.933	0
2019-09-26	1.142	0.721	0.721	0.977	
2019-10-03	1.120	0.720	0.720		
2019-10-10	1.057	0.701	0.701		Statistics or
2019-10-17	1.067	0.906	0.906	0.644	
2019-10-24	1.038	0.996	0.996		Parameter
2019-10-31 2019-11-07	0.946	0.838 0.821	0.838 0.821	0.689	Nash-Sutcli
2019-11-07 2019-11-14	1.065	0.821	0.821		Modified N
2019-11-14 2019-11-21	0.884	0.795	0.795	0.044	Index of ag
2019-11-21	0.797	0.748	0.748		Modified in
2019-12-05	0.757	0.706	0.706	0.503	
		0.664	0.664	0.503	RMSE
2019-12-12	0.745			0.407	
2019-12-19	0.682	0.626	0.626	0.403	Coefficient Number of
			0.626	0.403	Coefficient Number of Total numb
2019-12-19	0.682	0.626	0.626 0.589 1.20		Total numb
2019-12-19 2019-12-26	0.682 0.659	0.626	0.589	1.41	Mean of all
2019-12-19 2019-12-26 Annual	0.682 0.659 1.80	0.626 0.589 1.20	0.589	1.41 1.28	Coefficient Number of Total numb Mean of all Standard de Approximat

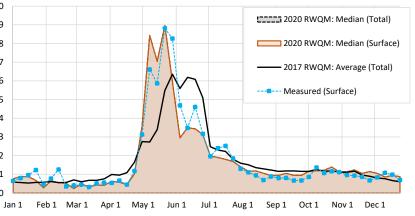


8

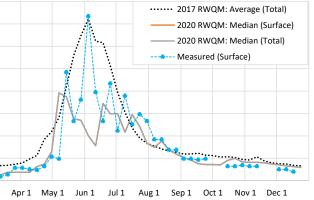
7


6

5 4

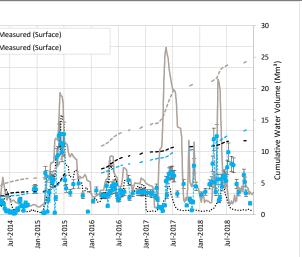

Mean Flow for Concurrent Data: 2004 to 2018

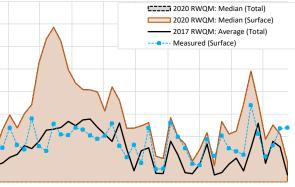
2017 RWQM: Average (Total) 2020 RWQM: Median (Surface) Measured (Surface) -2020 RWQM: Median (Total)



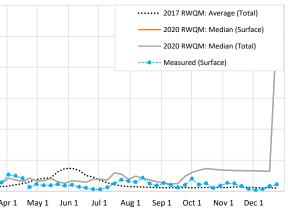
2019-09-26	1.142	0.721	0.721	0.977	Annual Late Su	mmer - Fall	Winter	Fre	shet	2
2019-10-03	1.120	0.720	0.720							-
2019-10-10	1.057	0.701	0.701		Statistics on concurrent data: 2004 to 2018	Good	Very good			1
2019-10-17	1.067	0.906	0.906	0.644		2017 RWOM:	2020 RWQM:	2020 RWQM:	Measured	
2019-10-24	1.038	0.996	0.996	0.644	Parameter		-		(Surface)	0
2019-10-31	0.946	0.838	0.838	0.689		Average (Total)	Median (Surface)	wedian (Total)	(Surface)	Jan 1 Feb 1 Mar 1 Ap
2019-11-07	0.921	0.821	0.821	0.644	Nash-Sutcliffe efficiency (E)	0.68	0.81	0.81		
2019-11-14	1.065	0.818	0.818	0.644	Modified Nash-Sutcliffe efficiency (E1)	0.46	0.53	0.53		-
2019-11-21	0.884	0.795	0.795		Index of agreement (d)	0.90	0.95	0.95		Notes
2019-11-28	0.797	0.748	0.748		Modified index of agreement (d1)	0.70	0.76	0.76		Performance statistics: For E, E1, d, d1, and
2019-12-05	0.757	0.706	0.706	0.503	MAE	0.52	0.46	0.46		less than 0 indicate that the model is no b
2019-12-12	0.745		0.664		RMSE	0.89	0.69	0.69		generally indicates a better fit with monit
2019-12-19	0.682		0.626	0.403	Coefficient of Determination (R ²) Number of data in statistics	0.69	0.82	0.82		Notes on seasonal periods: Annual (Janua
2019-12-26	0.659	0.589	0.589		Total number of weekly data	137	137 783	137 783	137	(December through early April) Freshet (
Annual	1.80	1.20	1.20	1.41	Mean of all weekly data	1.490	1.456	1.456	1.428	n/a = Not available or unable to calculate
Late Summer - Fall	1.20	1.09	1.09	1.28	Standard deviation of all weekly data	1.298	1.582	1.582	1.588	missing data)
Winter	0.65	0.41	0.41	0.33	Approximated mean annual runoff (mm/yr)	490	480	480	480	Flows for the 2017 RWQM represent pro
Freshet	3.95	2.29	2.29	2.78						December 2016)

Mean Weekly Flow for Concurrent Data: 2004 to 2018



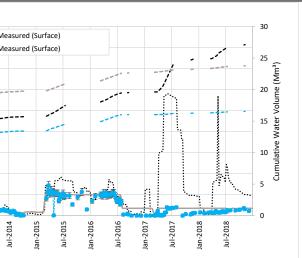

11, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values no better than using the mean of all the data. For MAE and RMSE, a lower number nonitored data. lanuary through December); late Summer - Fall (late-July through November); Winter het (mid-April through mid-July) llate a value (e.g., mean annual runoff is not calculated if certain weeks or months are c projected average flows from January 1, 2017 (i.e., historical predictions end in

Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF												Weekly	Flow Serie	es: 2004 to	2018				
	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median			0.9			201		Average (To	tal)	2020	DWOM:	Median (Sur	faca)		2020 RWQN	I: Modia	n (Total)		@ [Mor
Case Description	(Total)	(Surface)	(Total)	Measured (Surface)		0.8					Average (To		2020					2020 RWQN					
Flow Modelling Method	Snowmelt Runoff Module, Was catchment of Gate Creek, dewa Bodie Control Pond) and Natal F		Surface-Groundwater Partitioning	Not Implemented		0.7																	
Spinner ID	26	Mean annual surface run	loff (monitored)	610	Weekly Flow (m³/s)																		
elected Year	2019	Mean annual total runof	f (2020 RWQM)	990	Flow (0.5													I				
Comparison Start Year	2004	Evaluation period (week	s)	783	ekly	0.4													+				
Comparison End Year	2018	Weeks with monitoring o		31%	ž	0.3	-	I											٨				
Station ID & Description	EV_GT1	Gate Creek Sediment Po				0.2	1			.: -			<u>k</u> ė	٨								_	<u>.</u>
Drainage Area (2018)	430 ha	Disturbed Area (2018)		~ 63%	-	0.1	- Ma	~	<u></u>				Nm		M	ARIA.		m			Mus		A,
	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median			0	4 4	ο υ Γ	نون آن ر بو	خە ئۇر. . بو		····	☆☆☆☆ ∞	<u>م</u> ريد		0	् स्र					••••••••••••••••••••••••••••••••••••••	<mark>یک</mark> ج
Date	(Total) Weekly Flow in 2019	(Surface)	(Total) (m³/s)	Measured (Surface)		Jan -2 004	Jul-2004	c002-lul	Jan-2006	Jul-2006	Jan-2007	Jul-2007	Jan-2 008 Jul-2 008	Jan-2009	Jan-2010	Jul-2010	Jan-2011	1102-INL	Jul-2012	Jan-2013	Jul-2013	Jan-2014	101-201
1/3/2019	0.018		0.065		-	eľ		er Y	Ъ	Υ.	eſ	4	el JL	el 1	el el	-	el 1	n el	4	Ъ	Ĩ	Ъ	Ĩ
1/10/2019 1/17/2019	0.017	0.095	0.095	0.044	4 3																		
1/24/2019	0.017	0.094	0.094	0.052		0.9				1	eedance Cu		04 to 2018	2022 -	10M	- 10 5			_			Mea	in M
1/31/2019 2/7/2019	0.018	0.100 0.088	0.100 0.088	0.087		0.8					Average (Tot Median (Tota				/QM: Media ed (Surface)				0.4				
2/14/2019	0.020	0.040	0.040	0.074	4				2020	U KWQIVI.	weulan (100	ai)		wiedsuite	u (Suitace)				0.35				
2/21/2019 2/28/2019	0.018	0.031	0.031 0.035	0.038		0.7												(s,					
3/7/2019	0.018	0.043	0.043	0.040	(m ³ /s)	0.6												(m³/s)	0.3				
3/14/2019 3/21/2019	0.019	0.028	0.028	0.048	5 2	0.5												Flow	0.25				
3/28/2019	0.028	0.031	0.049	0.054	<u> </u>	<u> </u>												kly F					
4/4/2019 4/11/2019	0.032	0.083	0.083	0.105	veekly	0.4					_							Weekly	0.2				
4/11/2019 4/18/2019	0.041	0.072	0.072	0.097	$\frac{1}{2}$	0.3												age /	0.15				_
4/25/2019	0.060	0.084	0.084	0.024	4	0.2												Average	0.1				
5/2/2019 5/9/2019	0.077	0.065	0.065	0.045	5	0.2			-									-	0.1	8	\sim	1-1	<u> </u>
5/16/2019	0.087	0.083	0.083	0.036	5	0.1		•••••											0.05				/
5/23/2019 5/30/2019	0.125	0.059	0.059	0.043	3	0					••••	••••	60						0	4	\sim	~	
6/6/2019	0.147	0.067	0.067	0.039	9	0	10	20	3	30	40	50	60	70	80	90	100		Ũ	an 1 F	eb1 N	Mar 1	Арі
6/13/2019 6/20/2019	0.134	0.064	0.064	0.027	7					ŀ	Probability of	of Excee	dance (%)										
6/27/2019	0.090	0.077	0.077	0.012					Mea	an Flow f	or Concurre	nt Data	: 2004 to 2018										
7/4/2019 7/11/2019	0.070	0.077	0.077	0.010		■ 2017	RWQM: Avera	age (Total)	2020	0 RWQM: I	Median (Surf	ace) 🗖	Measured (Surfa	ce) – 20	20 RWQM: I	Median (Tot	al)		1.2				
7/18/2019	0.041	0.117	0.117	0.048	8	0.25																	
7/25/2019 8/1/2019	0.034	0.110 0.076	0.110 0.076	0.073	-													_	1				+
8/8/2019	0.028	0.096	0.096	0.057	7 [/] °µ	0.2												(m³/s)					
8/15/2019 8/22/2019	0.026	0.084	0.084	0.085		0.15												u) M	0.8				
8/29/2019	0.023	0.062	0.062	0.035	5 g	0.1							_					y Flo					
9/5/2019 9/12/2019	0.022	0.053 0.045	0.053 0.045	0.050	J @	0.05												Weekly Flow	0.6				
9/12/2019 9/19/2019	0.022	0.043	0.043	0.032		0												>					
9/26/2019	0.023	0.096	0.096	0.038		0	Annu	ual		Late Sur	mmer - Fall		Winter			Freshet			0.4				
10/3/2019	0.022	0.121	0.121	0.078	5																		
10/10/2019	0.024	0.135	0.135	0.042	Statis	tics on co	ncurrent dat	a: 2004 to	o 2018		Poo	r	Poor						0.2				
10/17/2019	0.023	0.146	0.146	0.050	0						2017 RW	OM:	2020 RWQM	; 20	20 RWQM:	Me	asured				A.	here	1
10/24/2019 10/31/2019	0.026	0.141 0.137	0.141 0.137	0.019	Paran	neter					Average (Median (Surfac		dian (Total		rface)						
11/7/2019	0.023	0.135	0.137			Sutcliffe e	efficiency (E)				0.05	5	-2.83		-2.83				Ja	n1 Fe	M Las	lar 1 A	λpr∶
11/14/2019	0.027	0.133	0.133	0.048	8 Modif	ied Nash-	Sutcliffe effic	ciency (E1))		0.09		-0.62		-0.62			Notes					
11/21/2019 11/28/2019	0.028	0.133 0.132	0.133 0.132			of agreen ied index	nent (d) of agreement	t (d1)			0.71		0.53		0.53 0.40			Notes Perform	ance sta	atistics: I	or E, E1,	., d, d1, a	and
12/5/2019	0.024	0.131	0.131	0.006	5 MAE		-				0.06	i	0.10		0.10							s no bett	
12/12/2019 12/19/2019	0.021	0.130 0.128	0.130 0.128		2 RMSE 2 Coeffi		etermination	1 (R²)			0.08		0.16		0.16	-		indicates	a bett	er tit wit	1 monito	ored data	a.
12/26/2019	0.022	1.051	1.051		2 Numb	er of data	a in statistics				241		241		241			Notes or					
Annual	0.04	0.10	0.10	0.04			f weekly data	9			783 0.08		783 0.167	-	783 0.167		241	(Decemb					
Annual Late Summer - Fall	0.04	0.10	0.10			of all we ard devia	tion of all wee	ekly data			0.08		0.167	+	0.167		.092 .084	n/a = No missing (ble of ur	able to (calculate	∶d V
Winter	0.02	0.13	0.13	0.05	Appro		mean annual		m/yr)		460		990		990		510	Flows fo	r the 20		M repre	sent pro	oject
Freshet	0.09	0.07	0.07	0.04														Decemb	er 2016)			

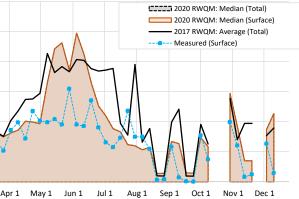


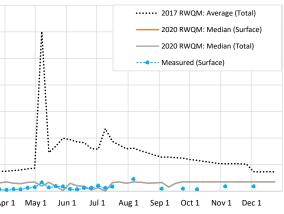
n Weekly Flow for Concurrent Data: 2004 to 2018

Weekly Flow in 2019


Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 1

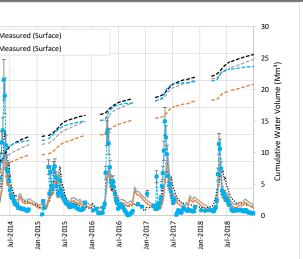
nd R⁺ a statistic of 1 indicates best fit with monitored data. For E and E1, values less ter than using the mean of all the data. For MAE and RMSE, a lower number generally

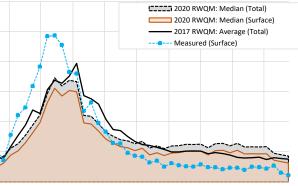

ary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July) e a value (e.g., mean annual runoff is not calculated if certain weeks or months are


Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF															Wee	dy Flow	Series: 2	2004 to	2018				
Case Description	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Measured (Surface)		0.9				201	7 RWQN	Л: Averag	ge (Total)		- 2020 R	NQM: M	edian (Su	urface)		2020	RWQM	I: Median	n (Total)		- N	Meası
	(Total)	(Surface)	(Total)		ļ	0.8				201	7 RWQN	Л: Averag	ge (Total)		- 2020 R	NQM: M	edian (Su	urface)		2020	RWQM	: Mediar	n (Total)		N	Measu
Flow Modelling Method	Snowmelt Runoff Module, Was catchments of Bodie Creek and Bodie Control Pond)	te Rock Hydrology Module in sub- dewatering of Natal Pits (via	Surface-Groundwater Partitioning	Not Implemented		0.7 0.6											_								I		
Spinner ID	28	Mean annual surface run	off (monitored)	170	Weekly Flow (m³/s)	0.5																		-	-		
Selected Year	2019	Mean annual total runof	f (2020 RWQM)	250	Flow	0.4			4											-	-[]	-		-	-#		
Comparison Start Year	2004	Evaluation period (week	s)	783	eekly					A	T				line.		k			-		-		-	-1		
Comparison End Year	2018	Weeks with monitoring o	data (%)	44%	≥	0.3	۶Å		Щ.,			J TT		T -	333 ···				I	-							
Station ID & Description	EV_BC1	Bodie Creek Sediment Po	ond Decant (E102685)			0.2		Mr.	J.	1	T		J	1		\mathbb{A}	- 1			L.	77		Ţ		Ŧ		
Drainage Area (2018)	1150 ha	Disturbed Area (2018)		~ 97%		0.1		V.I. Y				W T	J. <u> </u>		, (i tiv	•				5. 3.	
Dete	2017 RWQM: Average		2020 RWQM: Median			0	5 6	5 25	02	90	90	. 07	01	8	8		6 7 8	10	6	1 1	- 1	12		ц Т	13 13		14
Date	(Total) Weekly Flow in 2019	(Surface)	(Total) (m³/s)	Measured (Surface)			Jan-2004	100 2-101 and 2005	Jul-2005	Jan-2006	Jul-2006	an-2007	Jul-2007	Jan-2008	Jul-2008	lan-2 009	Jul-2009	Jan-2010	Jul-2010	an-2 01 1	Jul-2011	Jan-2012	Jul-2012	Jan-2013	Jul-2013	Jan-2014	Jul-2014
1/3/2019 1/10/2019	0.094	0.029	0.029	0.015	5		-	· _						-		-		-				~		-		~	
1/17/2019	0.072	0.035	0.035		1					Weekly	Flow F	readar	ca Cum	a. 2004	to 2010												
1/24/2019	0.072	2 0.032 0.035	0.032	0.011).8				Weekly					10 2018		120 814/0	M· Mod	ian (Surfa				0.2			Mea	n We
1/31/2019 2/7/2019	0.072	2 0.035	0.035	0.015	5 r).7	1					1: Averag 1: Mediar		1			leasured			<i>cej</i>			0.3				
2/14/2019	0.072	0.035	0.035							2020		ivicuidi				1	cusured	,surrace	,				0.25				
2/21/2019 2/28/2019	0.072	2 0.026	0.026		ر س).6	2																0.25				
3/7/2019	0.072	0.033	0.033	0.017	7 "																	(m³/s)	0.0				
3/14/2019 3/21/2019	0.072	0.023	0.023	0.021).5																Flow	0.2				
3/28/2019	0.074	0.031	0.033	0.001).4																kly F	0.45				
4/4/2019	0.075	0.035	0.035	0.004	/eekly																	Weekly	0.15				
4/11/2019 4/18/2019	0.078		0.030	0.007	7 Š).3		•														age /					
4/25/2019	0.084		0.033	0.012	2 0).2			•••													Average	0.1	N	4		<u>J</u>
5/2/2019 5/9/2019	0.087	0.034	0.034	0.014	+ 2																		0.05	1	Γ		<u> </u>
5/16/2019	0.145	0.033	0.033	0.013	3	0.1																	0.05			1	•
5/23/2019 5/30/2019	0.170		0.018	0.018	3	0																	0		7		
6/6/2019	0.194	0.030	0.030	0.007	7	(D	10	20	3	0	40		50	60	7	D	80	90		100		-	— n 1 F	eb1 M	/lar 1	Apr :
6/13/2019 6/20/2019	0.186		0.020	0.006	5							Probab	oility of I	Exceeda	nce (%)												
6/27/2019	0.160	0.004	0.004	0.012	2					Mea	an Flow	for Con	current	Data: 2	004 to 2	2018											
7/4/2019 7/11/2019	0.158 0.235	8 0.013 5 0.000	0.013	0.020)		2017 RWQI	M: Averag	e (Total)	2020) RWQM	I: Mediar	n (Surfac	e) 🗖 Mi	easured	(Surface)	- 2020	RWQM	: Median	(Total)			0.7				
7/18/2019	0.235		0.000	0.011	5	0.2			.= (: = :=:.)				. (-,		()				()							
7/25/2019	0.173	0.035	0.035		- I													_	_				0.6				
8/1/2019 8/8/2019	0.160		0.029 0.035	0.045	(m ³ /s)																	1 ³ /s)	0.5				
8/15/2019	0.152	0.034	0.034		- L	0.1		_														Weekly Flow (m³/	0.0				
8/22/2019 8/29/2019	0.144 0.135		0.030		L Flow	0.1					_					_						Flov	0.4				
9/5/2019	0.128	0.033	0.033	0.009	Mear	0.05					-							- 8		-		sekly					
9/12/2019 9/19/2019	0.128		0.015		-																	Ň	0.3				
9/26/2019	0.124	0.035	0.035	0.009)	0		Annua	al		Late S	ummer -	Fall		Wi	nter			Freshet								
10/3/2019	0.119	0.035	0.035																				0.2				
10/10/2010					Statist	ics o	n concurr	ent data	: 2004 to	o 2018			Poor		Poor impro								0.1				
10/10/2019 10/17/2019	0.116		0.035	0.006								- 200	7 0140				2000	Division						••••••			
10/24/2019	0.108	0.035	0.035		Param	eter							.7 RWQ rage (To		2020 R\ edian (NQM: Surface)		RWQN an (Tota		Measure (Surface			0	•	•	• •	1-9-8-
10/31/2019 11/7/2019	0.104		0.035	0.017	Nach 9	Sutcli	iffe efficie	ncy (F)					-1.87	/	-1.1			1.17					Jar	n1 Fe	b1 Ma	ar1 A	pr 1،
11/14/2019	0.103	0.035	0.035	0.017			ash-Sutcli		ency (E1)			-0.34		-0.0)8	-	0.08									
11/21/2019	0.103		0.035				reement ((d1)			-	0.42		0.6			0.62 0.52				otes enforma	ince sta	tistics. F	or E. F1	, d, d1, a	ind P
11/28/2019 12/5/2019	0.102		0.035	0.017	Modifi MAE	ea in	idex of agr	eement	(01)				0.43		0.5			0.52								no bette	
12/12/2019	0.073	0.035	0.035		RMSE								0.14		0.1	.3	(0.13								ored data	
12/19/2019 12/26/2019	0.073		0.035				of Determ data in sta		(R²)				0.02		0.2			0.23 342	_			otec or		al norice	1c. Ann	ıal (Janua	2n/+1
12/20/2019	0.072	0.035	0.035				data in sta oer of wee					+	783		34 78			342 783		342						iai (Janua Freshet (
Annual	0.12	0.03	0.03		Mean	of all	weekly da	ata					0.132		0.1	15	0).115		0.080	n/	/a = Not	t availat			calculate	
Late Summer - Fall Winter	0.13		0.03				eviation of ted mean			m/vr		+	0.118 290		0.1).136 250		0.085		issing d		17 0\4/0	Mrones	sent pro	viect-
** IIICI	0.07	0.03	0.03	0.01	-uhhio)	surid.	.cu medil	unnudi í l	unon (III	, yı j		1	230		25	~	1	200		1/0		ows for ecembe	the 20.	1/ N/VQ	wirehtes	sent hto	Jerre

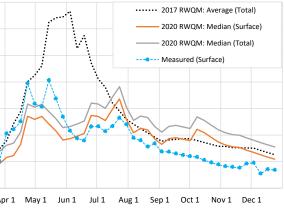
n Weekly Flow for Concurrent Data: 2004 to 2018

Weekly Flow in 2019



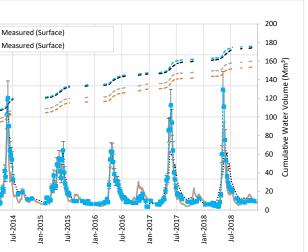

nd R⁻ a statistic of 1 indicates best fit with monitored data. For E and E1, values less r than using the mean of all the data. For MAE and RMSE, a lower number generally

ary through December); late Summer - Fall (late-July through November); Winter mid-April through mid-July) e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

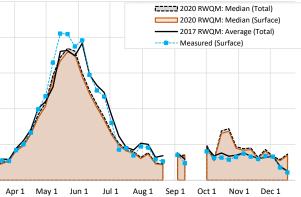

Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF												Weekly F	low Seri	es: 2004 to	2018				
Case Description	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Measured (Surface)	:	L.4			2017 RV	WQM: A	Average (To	otal)	20)20 RWC	QM: Median (Sur	face)		2020 RWQM	: Mediar	n (Total)		Me	1eas
	(Total)	(Surface)	(Total)	Flows < 20,000 m3/d: 100%,		L.2			• 2017 RV	WQM: A	Average (To	otal)	20	020 RWC)M: Median (Sur	face)	:	2020 RWQM	: Mediar	n (Total)	-	Ме	ieas
Flow Modelling Method	Snowmelt Runoff Module, Was catchment of EVO Dry Creek	ste Rock Hydrology Module in sub-	Surface-Groundwater Partitioning	maximum of 2,000 m3/d Flows > 20,000 m3/d: 10%, maximum of 5,000 m3/d	(5)	1			_												Ŧ		ŀ
Spinner ID	4	Mean annual surface run	off (monitored)	460	Flow (m ³ /s)	0.8				-							Т				Į.		-
Selected Year	2019	Mean annual total runoff	(2020 RWQM)	510	/ Flov	0.6											1		Ī		1		
Comparison Start Year	2004	Evaluation period (weeks	5)	783	Weekly												į						
Comparison End Year	2018	Weeks with monitoring d	lata (%)	34%	5).4							k.										F
Station ID & Description	EV_DC1	Dry Creek Sediment Pond	d Decant (E298590)			0.2		Å A		Λ					4						1		
Drainage Area (2018)	860 ha	Disturbed Area (2018)		~ 55%			Mar and a start of the start of			120		1 Acres				N							
Date	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median	Management (Courfage)	Ī	0 0	004	05	900	906	001	00		60	e00	010	2 5		112	013	113	114	14
	(Total) Weekly Flow in 2019		(Total) (m³/s)	Measured (Surface)		lan -2 004	Jul-2004 Jan-2005	Jul-2005	lan -2 006	Jul-2006	Jan-2 007	Jul-2007	Jan-2008 Jul-2008	lan-2 009	Jul-2009 Jan-2010	Jul-2010	1102-011	1102-INU	Jul-2012	Jan-2013	Jul-2013	Jan-2014	Jul-20
1/3/2019 1/10/2019	0.060		0.075	0.020	4	-	~		-1		-			~	-					-		_	
1/17/2019	0.059	0.044	0.067	0.034	•			We	ekly Flov	w Excer	edance C	urve: 200	4 to 2018										
1/24/2019 1/31/2019	0.059		0.064	0.020	1.2			1			verage (To		2010	2020) RWQM: Media	n (Surface)			0.6			Mean	W
2/7/2019	0.059	0.034	0.058	0.019							Aedian (Tot		@		sured (Surface)	()			0.0				
2/14/2019 2/21/2019	0.060		0.054	0.023	1	•													0.5				
2/28/2019	0.061	0.024	0.047		/s)	l l												³ /s)					
3/7/2019 3/14/2019	0.063		0.043	0.054	<u>_</u>	•												Weekly Flow (m³/s)	0.4				_
3/21/2019	0.068		0.052	0.021	Noli													Flow					
3/28/2019	0.074		0.069	0.050	l → 0.6													ekly	0.3				
4/4/2019 4/11/2019	0.089		0.081 0.085	0.103	Wee		\[We	0.0				
4/18/2019	0.144		0.106	0.125	0.4						-							Average	0.2				
4/25/2019 5/2/2019	0.200		0.158 0.152	0.197	-													Ave					¥
5/9/2019	0.230	0.135	0.158	0.153	0.2														0.1			-	ŀ
5/16/2019 5/23/2019	0.312		0.144 0.131	0.203						and some			·····							K			1
5/30/2019	0.322	0.091	0.114	0.134	(0	()•••	• •		
6/6/2019 6/13/2019	0.333		0.116	0.108		0	10	20	30		40 robability	50 of Excee	60 dance (%)	70	80	90	100		Ja	n 1 Fe	eb 1 Ma	ar1 A	٩pr
6/20/2019	0.287		0.121	0.090							,												
6/27/2019 7/4/2019	0.235		0.160	0.116					Mean F	low for	r Concurr	ent Data	2004 to 201	8					0.05				
7/11/2019	0.203		0.158	0.110		■ 2017 RWC	QM: Average (T	otal) 📕	2020 RW	VQM: M	1edian (Sur	rface) 🗖	Measured (Sur	face) -	- 2020 RWQM: N	Median (Tota	al)		0.35				
7/18/2019	0.160		0.171	0.117	0	35													0.3				
7/25/2019 8/1/2019	0.145		0.191 0.152	0.132	(9	0.3												-					
8/8/2019	0.120	0.104	0.127	0.095	(m ³ /s)	25										-		(m³/s)	0.25				
8/15/2019 8/22/2019	0.112		0.136	0.090		0.2												i) wc					
8/29/2019	0.096	5 0.092	0.116	0.084	an Fl		_				-							ly Flow	0.2				
9/5/2019 9/12/2019	0.088		0.106	0.068	- E	0.1							-					Weekly	0.15				
9/19/2019	0.092	0.095	0.118	0.065		0												3	0.15				
9/26/2019 10/3/2019	0.093		0.115 0.112	0.062			Annual		La	ate Sum	nmer - Fall		Winter	r		Freshet			0.1				•
10/3/2019	0.092	0.009	0.112	0.000	-																		Ë
10/10/2019	0.090	0.111	0.134	0.058	Statistic	s on concur	rrent data: 20	004 to 20	018		Goo	bd	Acceptab	le					0.05		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	\sim
10/17/2019	0.086	5 0.104	0.128	0.053							2017 RV	NOM:	2020 RWQ	M:	2020 RWQM:	Mea	sured			\sim	A.A.		
10/24/2019 10/31/2019	0.082		0.119 0.110	0.048	Paramet	er					Average				Median (Total)		face)		0				
11/7/2019	0.079	0.081	0.104			cliffe effici	ency (E)				0.6		0.59		0.62				Jai	ni Fe	b1 Mar	т Ар	n 1
11/14/2019	0.076		0.101 0.100				liffe efficiency	y (E1)			0.4		0.46		0.39			Notos				_	
11/21/2019 11/28/2019	0.076		0.100	0.046	Modified	agreement I index of ag	(d) greement (d1)		-+	0.8		0.81	\rightarrow	0.83	-		Notes Performa	ance sta	tistics: F	or E, E1, d	d, d1, an	nd F
12/5/2019	0.075		0.090	0.048	MAE						0.0		0.07		0.08						nodel is n		
12/12/2019 12/19/2019	0.071		0.086		RMSE Coefficie	nt of Deter	mination (R ²)				0.1		0.11		0.11			indicates	a pette	er rit with	monitore	eu data.	<u> </u>
12/26/2019	0.063		0.078		Number	of data in s	tatistics				26	3	263		263			Notes on					
Annual	0.13	0.00	0.11	0.00		nber of we					78		783		783		63 149				April) Fr		
Annual Late Summer - Fall	0.13		0.11 0.12			all weekly of the second se	data of all weekly o	data		-+	0.10		0.131		0.156		149 177	n/a = No missing c		bie or un	able to ca	nculate a	d Vi
Winter	0.07	0.04	0.06	0.03	Approxir		n annual runo		yr)		51		420		510		60	Flows for	the 20		V represe	ent proje	ecte
Freshet	0.24	0.11	0.14	0.13														Decembe	er 2016))			

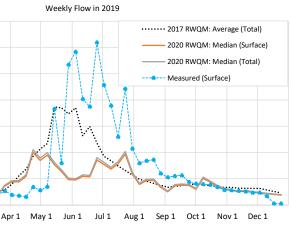
n Weekly Flow for Concurrent Data: 2004 to 2018

Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 1



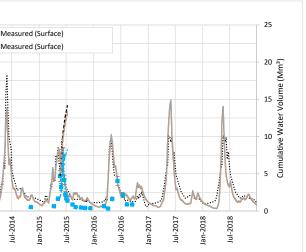
Weekly Flow in 2019

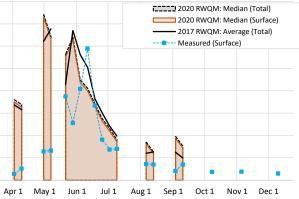

nd R⁺ a statistic of 1 indicates best fit with monitored data. For E and E1, values less er than using the mean of all the data. For MAE and RMSE, a lower number generally

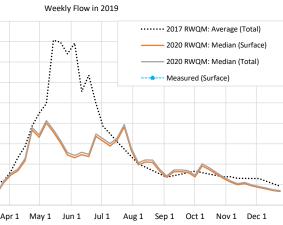

ary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July) e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

cenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF								Weekly Flow Se	ries: 2004 +-	2018		
	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median			6	2017 2010		0	2022 20		-			- - 0	
ase Description	(Total)	(Surface)	(Total)	Measured (Surface)			2017 RWQ				NQM: Median (Surfa NQM: Median (Surfa		– 2020 RWQN - 2020 RWQN			- Me
ow Modelling Method		O Dry Creek, Upper and Lower	Surface-Groundwater Partitioning	5%, maximum of 5,000 m3/d		5							т	Ţ	Т	
pinner ID	5	Mean annual surface run	off (monitored)	460	n³/s)	4						-		I	•	
elected Year	2019	Mean annual total runoff		450	Weekly Flow (m³/s)	3							4	I	E.	1
omparison Start Year	2004	Evaluation period (weeks)	783	ekly F		T. I.					т і			-	
omparison End Year	2018	Weeks with monitoring d	•	47%	We	2						2 5 3 5	1			
ation ID & Description	EV_HC1	Harmer Creek Dam Spillw	/ay (E102682)		1	1							Ĩ.			
Prainage Area (2018)	3830 ha	Disturbed Area (2018)		~ 13%	_						Mr. I					
Date	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median] 0 لا	00 00 05	6 8	07	8 8 8	60 01	1 10	1 2	12	ет ет	14
Ī	(Total) Weekly Flow in 2019		(Total) (m³/s)	Measured (Surface)		Jan-2004	Jul-2004 Jan-2005 Jul-2006 Jan-2006	Jan-2007	Jul-2007	Jan-2008 Jul-2008 Jan-2009	Jul-2009 Jan-2010	Jul-2010 Jan-2011	Jul-2011 Jan-2012	Jul-2012	Jan-2013 Jul-2013	Jan-2014
1/3/2019 1/10/2019	0.203	0.190	0.215	0.235	5			-			7	7	-		-	
1/17/2019 1/24/2019	0.204 0.205	0.177 0.166	0.187 0.175	0.066	-		Weekly Flow E	Exceedance (Curve: 200	04 to 2018						Mean
1/31/2019	0.206	0.160	0.168	0.221		1.5	2017 RWQI	M: Average (T	otal)	20	020 RWQM: Median	(Surface)		2.5		wicall
2/7/2019 2/14/2019	0.207	0.149 0.140	0.157 0.147	0.102	,	4	2020 RWQI	M: Median (Te	otal)	- M	leasured (Surface)					
2/14/2019 2/21/2019	0.214	0.140	0.147	0.102		8.5								2		
2/28/2019	0.228	0.113	0.119	0.079	(m³/s)								Flow (m³/s)	2		
3/7/2019 3/14/2019	0.235	0.088 0.073	0.093	0.079		3							د (ت م			
3/21/2019	0.265	0.184	0.194	0.190	正	2.5							, Flor	1.5		
3/28/2019 4/4/2019	0.291 0.395	0.362	0.381 0.463	0.267	≥	2							Weekly			
4/11/2019	0.557	0.442	0.465	0.177	N N N								Ň	1		
4/18/2019 4/25/2019	0.684	0.548	0.577	0.157		5							Average	_		
5/2/2019	1.064	0.848	0.893	0.343		1							Ave			
5/9/2019	1.172	0.949	0.999	0.349).5								0.5		
5/16/2019 5/23/2019	1.868	0.770 0.638	0.810	1.832	-									-	•	
5/30/2019	1.734	0.484	0.509	2.672	2	0 - 0	10 20 30	40	50	60 70	0 80	90 10	0	0		
6/6/2019 6/13/2019	1.849	0.477 0.546	0.502	2.916	7	0	10 20 50	Probability			0 80	50 10	0	Jan	1 Feb 1	Mar 1 A
6/20/2019	1.495	0.535	0.563	1.875	5											
6/27/2019 7/4/2019	1.177 0.928	0.855	0.900 0.812	3.095			Mean Flov	w for Concur	rent Data	: 2004 to 2018				3.5		
7/11/2019	0.842	0.683	0.719	1.892	2	■ 201	7 RWQM: Average (Total) 🗧 2020 RWQN	M: Median (Su	urface) 🗧	Measured (Surface)	-2020 RWQM: M	edian (Total)		3.5		
7/18/2019 7/25/2019	0.742	0.785	0.826	1.299		1.4								3		
8/1/2019	0.571	0.595	0.626	1.075	(s)	1.2						-	(r			
8/8/2019	0.493		0.412	0.797	(m ³ /	1 -							m³/s	2.5		
8/15/2019 8/22/2019	0.453 0.414	0.464 0.471	0.488 0.495	0.842	low	0.8) wo			
8/29/2019	0.375	0.338	0.356	0.600	an F	0.6		_					Weekly Flow (m³/s)	2		
9/5/2019 9/12/2019	0.337	0.251 0.368	0.264 0.387	0.529	Me	0.4							Veek	1.5		
9/19/2019	0.370	0.380	0.399	0.565	5	0							5	1.5		
9/26/2019 10/3/2019	0.386	0.370	0.390	0.440			Annual Late S	Summer - Fall		Winter	Fi	reshet		1		
10/5/2017	01101	0.001	0.017	01102												
10/10/2019	0.385	0.504	0.530	0.396	Statist	cs on c	oncurrent data: 2004 to 2018	Very	good	Very good				0.5		
10/17/2019	0.368	0.433	0.456	0.385				2017 R	WQM:	2020 RWQM:	2020 RWQM:	Measured		-	·····	
10/24/2019 10/31/2019	0.351	0.356	0.375	0.343	Param	eter		Average		Median (Surface)		(Surface)		0 –		
11/7/2019	0.336	0.275	0.289	0.282	Nash-S		efficiency (E)		91	0.78	0.80			Jan .	r LEDI	Mar 1 Ap
11/14/2019 11/21/2019	0.318	0.254 0.264	0.268				-Sutcliffe efficiency (E1) ment (d)	0.	85	0.61 0.93	0.61 0.94		Notes			
11/28/2019	0.316	0.243	0.256	0.237	⁷ Modifi		of agreement (d1)	0.	92	0.79	0.79		Perform			E1, d, d1, and
12/5/2019	0.315		0.240	0.237	MAE				09	0.24	0.23					el is no better
12/12/2019 12/19/2019	0.287	0.214 0.199	0.225		RMSE Coeffic	ient of	Determination (R ²)	0.	24 92	0.38 0.81	0.36 0.81		indicates	s a petter f	iii with mor	nitored data.
12/26/2019	0.230	0.199	0.199		Numbe	er of da	a in statistics	36	66	366	366					nnual (Januar
anual l	0.50	0.41	0.42	0.74			of weekly data		83	783	783	366				ril) Freshet (m
nnual	0.58	0.41	0.43				ekly data tion of all weekly data	0.7	790	0.696 0.656	0.725 0.672	0.798	n/a = No missing		e or unable	to calculate a
ate Summer - Fall			0.42	0.00	Juanua	Tu uevi		0.7	08	0.030	0.072	0.005				

ean Weekly Flow for Concurrent Data: 2004 to 2018

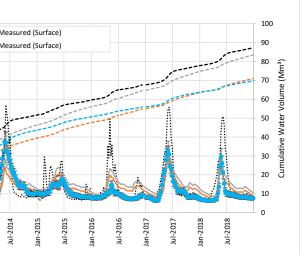



nd R⁻ a statistic of 1 indicates best fit with monitored data. For E and E1, values less tter than using the mean of all the data. For MAE and RMSE, a lower number generally


uary through December); late Summer - Fall (late-July through November); Winter t (mid-April through mid-July) الله a value (e.g., mean annual runoff is not calculated if certain weeks or months are

Scenario	2017RWQM TF MF	2020RWQM SF MF	2020RWQM TF MF	Monitored SF					,	Wookly Flow Co	ries: 2004 +o 204	18	
										-	ries: 2004 to 201		
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		2017 RWQM:			VQM: Median (Surfac		- 2020 RWQM: M - 2020 RWQM: M		- Mea
Flow Modelling Method	Snowmelt Runoff Module, Was catchments of Dry Creek, Uppe Grave above Harmer Creek, Lov		Surface-Groundwater Partitioning	5%, maximum of 5,000 m3/d	() ()	3 							
pinner ID	6	Mean annual surface rur	off (monitored)	N/A	Flow (m ³ /s)	j							
elected Year	2019	Mean annual total runof	f (2020 RWQM)	N/A	Flow	j		j.	1				
Comparison Start Year	2004	Evaluation period (week	s)	783	Weekly								
Comparison End Year	2018	Weeks with monitoring (data (%)	3%	Ň				<u>.</u>				
Station ID & Description	EV_GV1	Grave Creek at Bridge								A.			
Drainage Area (2018)	8060 ha	Disturbed Area (2018)		~ 6%	_	What When he	$\mathcal{A} \sim$	J Mm		m I	\mathbb{N}	\mathbb{N}	/ W
Date	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		004 005 005 004 000 000 000 000 000 000	2007	800	010	010 111	011	013	013
	Weekly Flow in 2019		(m³/s)	incusured (surrace)		Jul-2004 Jul-2005 Jul-2005 Jul-2006 Jan-2006	Jan-2007 Jul-2007	Jan-2008 Jul-2008 Jan-2009	Jul-2009 Jan-2010	Jul-2010 Jan-2011	Jul-2011 Jan-2012	Jul-2012 Jan-2013	Jul-2013 Jan-2014
1/3/2019 1/10/2019	0.399 0.402	0.312 0.286	0.329			•		•				-	
1/17/2019 1/24/2019	0.404 0.406	0.264	0.278			Weekly Flow Exc	eedance Curve: 20	04 to 2018					Mean V
1/31/2019	0.408	0.240	0.252		-	2017 RWQM:	Average (Total)	20	020 RWQM: Median (Surface)		4	ivicall
2/7/2019 2/14/2019	0.411 0.426	0.224	0.236			2020 RWQM:	Median (Total)	- M	leasured (Surface)		-	-	
2/21/2019	0.420	0.195	0.220		- :							.5	
2/28/2019 3/7/2019	0.457	0.172 0.144	0.181 0.151		(m³/s)						1 ³ /s)	3	
3/14/2019	0.473	0.144	0.131		_						Average Weekly Flow (m ³ /s) T	.5	
3/21/2019	0.536		0.291		Flow						/ Flo		
3/28/2019 4/4/2019	0.591 0.819	0.552	0.582		Weekly						eekly	2	
4/11/2019	1.160	0.837	0.881								Š a 1	5	
4/18/2019 4/25/2019	1.434	1.085	1.137		-						erag		
5/2/2019	2.247	7 1.660	1.718								Ave	1	
5/9/2019 5/16/2019	2.480	2.009	2.067		- :						0	.5	
5/23/2019	3.982	2 1.524	1.582						----		U		-
5/30/2019 6/6/2019	3.698		1.283		(0 10 20 30	40 50	60 70	0 80	90 10	0	0	
6/13/2019	2.779	1.130	1.291		-		Probability of Excee	edance (%)				Jan 1 Fo	eb1 Mar1 Ap
6/20/2019 6/27/2019	3.173	1.184 1.678	1.239		_	Moon Flow f	or Concurrent Data	2004 to 2018					
7/4/2019	1.929		1.624								4	.5	
7/11/2019	1.746		1.501			2017 RWQM: Average (Total) 2020 RWQM:	Median (Surface)	Measured (Surface)	- 2020 RWQM: Me	dian (Total)			
7/18/2019 7/25/2019	1.549		1.638		_ 2							4	
8/1/2019	1.183	3 1.332	1.390		(s/;					-	3/s)	.5	+
8/8/2019 8/15/2019	1.008		1.036		(s/ _e m) /							3	ļļ
8/22/2019	0.843	3 1.045	1.100		low						N		
8/29/2019 9/5/2019	0.761	0.830	0.874		Mean		-				Weekly Flow (m	.5	
9/12/2019	0.718	0.814	0.856	•	ΣO						Wee	2	++
9/19/2019 9/26/2019	0.755	5 0.816 2 0.797	0.859		-		5 11				1	5	
10/3/2019	0.828	0.689	0.725			Annual Late Sun	nmer - Fall	Winter	Fr	eshet			
					Statistic	on concurrent data: 2004 to 2018	Poor	Poor				1	j j
10/10/2019	0.793	0.958	1.008								0	.5	
10/17/2019 10/24/2019	0.759	0.867	0.912		Paramet		2017 RWQM:	2020 RWQM:	2020 RWQM:	Measured		0	
10/31/2019	0.690	0.651	0.686				Average (Total)	Median (Surface)		(Surface)		•	eb 1 Mar 1 Apr
11/7/2019 11/14/2019	0.693	0.561	0.591 0.521			iffe efficiency (E) Jash-Sutcliffe efficiency (E1)	-0.90 -0.21	-0.96 -0.24	-1.08 -0.29		_		
11/21/2019	0.651	0.524	0.552		Index of	reement (d)	0.68	0.63	0.62		Notes		
11/28/2019 12/5/2019	0.649	0.468	0.493 0.453		Modified MAE	ndex of agreement (d1)	0.50 0.75	0.47	0.45				or E, E1, d, d1, and model is no better t
12/3/2019	0.585	5 0.395	0.416		RMSE		1.07	1.09	1.12				n monitored data.
12/19/2019	0.522	0.356	0.375			of Determination (R ²)	0.43	0.29	0.29		Nictor	conclar	de April (Imm
12/26/2019	0.460	0.332	0.350			data in statistics per of weekly data	23 783	23 783	23 783	23			ds: Annual (January y April) Freshet (mi
Annual	1.21		0.87		Mean of	l weekly data	1.530	1.481	1.529	0.820	n/a = Not av	ailable or un	able to calculate a
Late Summer - Fall Winter	0.81	0.85	0.90			eviation of all weekly data ted mean annual runoff (mm/yr)	1.072 N/A	0.998 N/A	1.008 N/A	0.794 N/A	missing data		M represent projec
WHILE		1.45	0.32		whhtoxi	neu mean annudi runon (mm/yr)	IN/A	IN/A	N/A	IN/A	December 2		wirepresent projec

an Weekly Flow for Concurrent Data: 2004 to 2018



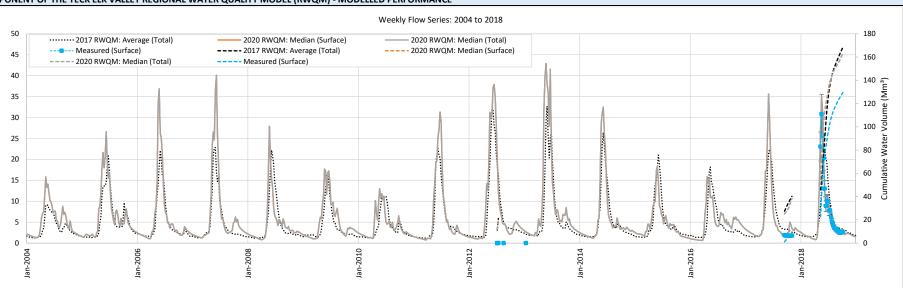

nd R⁻ a statistic of 1 indicates best fit with monitored data. For E and E1, values less ter than using the mean of all the data. For MAE and RMSE, a lower number generally a.

ary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July) e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF									Wee	kly Flow Se	eries: 20	04 to 2018			
	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median			2	201		Average (Tota	al)	2020 P	WQM: Median (S				WQM: Medi			Mea
Case Description	(Total)	(Surface)	(Total)	Measured (Surface)	:	.8			Average (Tota			WQM: Median (S	,			WQM: Medi			Mea
low Modelling Method	Snowmelt Runoff Module, Was catchments of Erickson Creek (I Ridge Pit plus West Fork Tailing:	ower, Bridge and Upper), Adit	Surface-Groundwater Partitioning	10%, maximum of 34,560 m3/d		4												•	
Spinner ID	17	Mean annual surface run	noff (monitored)	240	(m³/s)	.2													
Selected Year	2019	Mean annual total runof	f (2020 RWQM)	300	Flow	1						:			-				
Comparison Start Year	2004	Evaluation period (week	s)	783		.8			1 .						1	Λ			
Comparison End Year	2018	Weeks with monitoring o	•	58%	Š	.6 3		A											
Station ID & Description	EV_EC1	Erickson Creek at Mouth		1		4				T		- <u>A</u>		==			===		
Drainage Area (2018)	3190 ha	Disturbed Area (2018)		~ 30%	- I	2							<u> 7</u> 0						
	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median			0 4 4 Ñ	ν φ	۰		> 00	<u>∞</u> 0		0				m		4 4
Date	(Total) Weekly Flow in 2019	(Surface)	(Total) (m³/s)	Measured (Surface)		Jan-2 004 Jul-2 004 Jan-2 005	Jul-2005 lan-2006	Jul-2006	Jan-2 007	700.2-IUL	Jul-2008 lan-2009	Jul-2009 Jan-2010	Jul-2010	Jan-2011	Jul-2011	Jan-2012 Jul-2012	Jan-2013	Jul-2013	lan-2014 Jul-2014
1/3/2019 1/10/2019		0.167	0.197	0.150		el Jl el	JL EL	Ť	el -	r el	JL EL	JL EL	Ť	la	Ĭ	el J	eſ	т .	el J
1/10/2019	0.131	0.156	0.184	0.141			Wookhy		eedance Cur	2001 2004	to 2019								
1/24/2019 1/31/2019	0.150	0.151 0.150	0.178	0.139					Average (Tota			020 RWQM: Med	dian (Surfa	ace)		1			Mean W
2/7/2019	0.154	0.146	0.172	0.133	1.6				Median (Tota			Aeasured (Surface							
2/14/2019 2/21/2019	0.174	0.142 0.137	0.167	0.132	1.4											0.9			
2/28/2019	0.156	0.132	0.156	0.127											1	(s/ 0.8 (s/ 0.7			
3/7/2019 3/14/2019	0.157	0.128 0.125	0.151 0.147	0.127	(s/ ≝u) 1.2										-	<u>E</u> 0.7			
3/21/2019	0.224	0.132	0.155	0.131												80 			
3/28/2019 4/4/2019	0.233	0.143	0.168	0.132	8.0 eekly										-	Age Ki			
4/4/2019 4/11/2019	0.233	0.153 0.160	0.180	0.130	3														
4/18/2019	0.350	0.177	0.208	0.133	0.6					_						in D			
4/25/2019 5/2/2019	0.399	0.207 0.211	0.244	0.137	0.4										•	ē 0.3			
5/9/2019	0.555	0.233	0.275	0.150												0.2			
5/16/2019 5/23/2019	0.602	0.228	0.269	0.159							area area	torre arread core				0.1			
5/30/2019	0.995	0.210	0.247	0.168	(0 10		30	40	50		70 80	90			0			
6/6/2019 6/13/2019	1.011 0.918	0.210	0.247	0.167		0 10	20 5		Probability of			0 00	50	, 10	50	1	Jan 1 F	eb 1 Mar	1 Apr
6/20/2019	0.675	0.212	0.250	0.166															
6/27/2019 7/4/2019	0.607	0.226	0.265	0.166	-		Mea	an Flow fo	or Concurrer	nt Data: 2	2004 to 2018					1.2			
7/11/2019	0.350	0.223	0.263	0.163		2017 RWQM: Average (Total) 🗖 2020	DRWQM: I	Median (Surfa	ice) 🗖 M	easured (Surface) – 2020 RWQN	1: Median	(Total)		1.2			
7/18/2019 7/25/2019	0.275	0.237	0.278	0.171 0.182		5										1			
8/1/2019	0.202	0.226	0.266	0.188	0 (s)								-			5			
8/8/2019 8/15/2019	0.190	0.214 0.218	0.252	0.192		1						_	-		(m ³ /	0.8			
8/22/2019	0.177	0.215	0.253	0.192	No Ho	-									Ň	<u>,</u>			
8/29/2019 9/5/2019	0.169	0.205	0.241	0.191 0.191	E 0						-				Maakhy Elow	0.6			
9/12/2019	0.164	0.203	0.238	0.191	-											. 0.0			
9/19/2019 9/26/2019	0.165	0.203 0.205	0.239	0.189)										0.4			
10/3/2019			0.241	0.184		Annual		Late Sum	nmer - Fall		Winter		Freshe	t		0.4			
					Statistic	on concurrent data: 2	004 to 2018		Poor		Acceptable					0.2			
10/10/2019	0.179	0.230	0.270	0.182	Statistic		004 10 2010				Acceptuble					0.2			
10/17/2019 10/24/2019	0.180	0.231 0.225	0.272	0.189	Paramet	er			2017 RW		2020 RWQM:	2020 RWQ		Measured		0			
10/31/2019	0.182	0.217	0.256	0.185					Average (T		ledian (Surface		tal)	(Surface)		J	lan 1 Fe	eb 1 Mar :	1 Apr 1
11/7/2019 11/14/2019	0.179	0.210 0.205	0.247			cliffe efficiency (E) Nash-Sutcliffe efficien	w (F1)		-0.65		0.51	0.41							
11/14/2019	0.209		0.242			nash-Sutcliffe efficien greement (d)	γ(C1)		-0.07		0.33	0.15			Not				
11/28/2019	0.192	0.198	0.233	0.171	Modified	index of agreement (d	L)		0.58		0.59	0.52				formance si n 0 indicate			
12/5/2019 12/12/2019	0.185	0.193 0.188	0.227		MAE RMSE				0.12 0.19		0.07	0.09				n 0 indicate icates a bet			
12/19/2019	0.177	0.182	0.214	0.166	Coefficie	nt of Determination (R ²)		0.53		0.52	0.52							
12/26/2019	0.158	0.177	0.209	0.167		of data in statistics			452 783		452 783	452 783		460		tes on seaso			
Annual	0.30	0.19	0.23	0.16		ber of weekly data Il weekly data			/83 0.319)	0.259	0.305		452 0.255		cember thr = Not avail			
Late Summer - Fall	0.19	0.21	0.25	0.19	Standard	deviation of all weekly			0.261		0.094	0.110		0.151	mis	sing data)			
Winter	0.17	0.15	0.18	0.14	Annrovir	ated mean annual run	££ (290		250	300		240	Flor	for the "		M roprocor	nt project

n Weekly Flow for Concurrent Data: 2004 to 2018

Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 1



Weekly Flow in 2019

nd R⁺ a statistic of 1 indicates best fit with monitored data. For E and E1, values less ter than using the mean of all the data. For MAE and RMSE, a lower number generally

ary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July) e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

				FLO	w com
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitor	
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	
Notes on Flow Modelling Method	FR_FRABCH + Chauncey + Ewin GH_GH1 + unnamed areas betw (Sum of modelled flows)	+ Todhunter + LCO Dry + Grace + veen FR_FRABCH and GH_FR1	Surface-Groundwater Partitioning	Not implemented	s)
Spinner ID	17	Mean annual surface rur	off (monitored)	N/A	Weekly Flow (m³/s)
Selected Year	2019	Mean annual total runof	f (2020 RWQM)	N/A	Flow
Comparison Start Year	2004	Evaluation period (week	s)	783	eekly
Comparison End Year	2018	Weeks with monitoring o	data (%)	4%	≥
Station ID & Description	GH_FR1	Fording River downstrea	m of Greenhills Creek (20	0378)	Ī
Drainage Area (2018)	40750 ha	Disturbed Area (2018)		~ 15%	-
Date	2017 RWQM: Average (Total) Weekly Flow in 2019	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total) (m³/s)	Measured (Surface)	
2019-01-03			1.420		
2019-01-10 2019-01-17			1.411		
2019-01-17 2019-01-24			1.269		1.
2019-01-31		1.192	1.192		· ·
2019-02-07 2019-02-14			1.135		
2019-02-21			1.078		
2019-02-28			0.876		(s)
2019-03-07 2019-03-14			0.867		(m ³ ,
2019-03-21			2.061		ð :
2019-03-28			1.933		ΎΕ
2019-04-04 2019-04-11	1.791 2.190	1.832 1.572	1.832 1.572		Weekly Flow (m³/s)
2019-04-18			3.973		5
2019-04-25			4.656		
2019-05-02 2019-05-09		4.333	4.333		
2019-05-16			14.205		
2019-05-23			8.556		
2019-05-30 2019-06-06			9.732 6.733		-
2019-06-13	20.308	4.978	4.978		
2019-06-20			7.549		_
2019-06-27 2019-07-04			11.296 10.290		-
2019-07-11	9.704	7.671	7.671		
2019-07-18			6.974		
2019-07-25 2019-08-01	6.233 5.232		9.432 5.995		(s
2019-08-08	4.398	4.457	4.457		m³/
2019-08-15 2019-08-22			4.881 5.036) MO
2019-08-22 2019-08-29			3.998		Mean Flow (m ³ /s)
2019-09-05	3.424	3.782	3.782		Mea
2019-09-12 2019-09-19			3.331 2.808		
2019-09-26			2.763		
2019-10-03			2.572		
2019-10-10			2.581		Statisti
2019-10-17			3.171 3.111		Daram
2019-10-24 2019-10-31			3.111 3.013		Param
2019-11-07	2.521	2.735	2.735		Nash-S
2019-11-14			2.775		Modifi
2019-11-21 2019-11-28			2.742 2.564		Index of Modifie
2019-12-05	2.102	2.411	2.411		MAE
2019-12-12			2.265		RMSE
2019-12-19 2019-12-26			2.137		Coeffic Numbe
2017-12-20	1.309	2.020	2.020		Total n
Annual	5.36	4.08	4.08		Mean o
Late Summer - Fall	3.42	3.78	3.78		Standa
Winter Freshet	1.70 12.21	1.50 7.56	1.50 7.56		Approx
TESHEL	12.21	7.50	7.50		

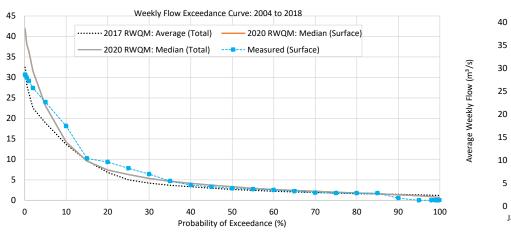
35

30

15

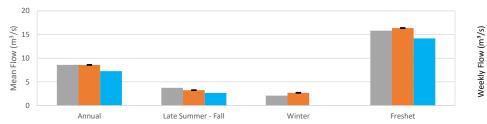
10

5

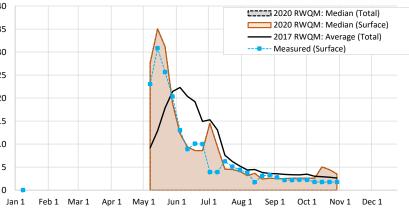

0

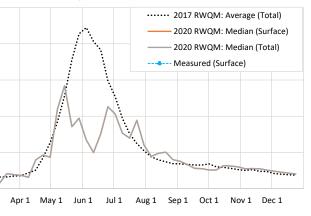
25

20


15

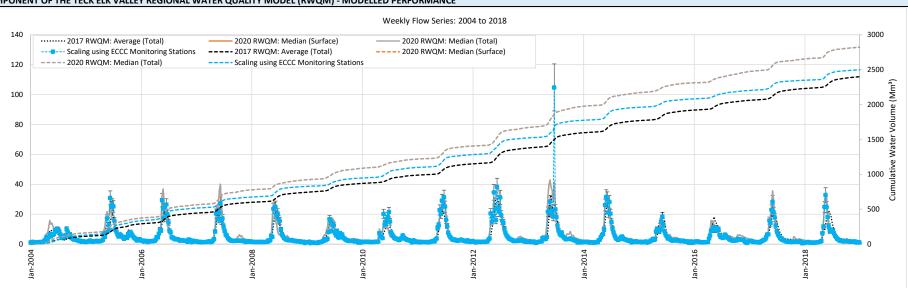
10


■ 2017 RWQM: Average (Total) ■ 2020 RWQM: Median (Surface) ■ Measured (Surface) - 2020 RWQM: Median (Total)


Statistics on concurrent data: 2004 to 2018	Poor. See notes	Good			5
Parameter	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	0 Jan 1 Feb 1 Mar 1
Nash-Sutcliffe efficiency (E)	0.19	0.65	0.65		
Modified Nash-Sutcliffe efficiency (E1)	0.24	0.58	0.58		
Index of agreement (d)	0.74	0.92	0.92		Notes
Modified index of agreement (d1)	0.61	0.79	0.79		Performance statistics: For E, E1, d, d2
MAE	4.22	2.33	2.33		less than 0 indicate that the model is
RMSE	6.84	4.48	4.48		generally indicates a better fit with m
Coefficient of Determination (R ²)	0.33	0.76	0.76		
Number of data in statistics	34	34	34		Notes on seasonal periods: Annual (Ja
Total number of weekly data	783	783	783	34	(December through early April) Fresh
Mean of all weekly data	8.189	7.912	7.912	6.300	n/a = Not available or unable to calcu
Standard deviation of all weekly data	6.635	8.673	8.673	7.718	missing data)
Approximated mean annual runoff (mm/yr)	N/A	N/A	N/A	N/A	Flows for the 2017 RWQM represent
					December 2016)

https://golderassociates.sharepoint.com/sites/106374/Project Files/6 Deliverables/02. Working/18111630-007-R-RevB-23050-HydrologyReport/Spreadsheets/Model Performance/SS/ GH-FR1-Monitored/Interface

Mean Weekly Flow for Concurrent Data: 2004 to 2018

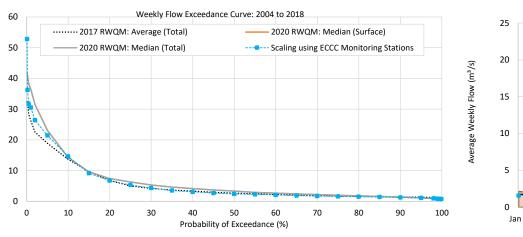


, d1, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values l is no better than using the mean of all the data. For MAE and RMSE, a lower number monitored data.

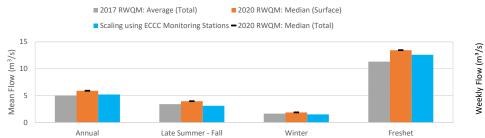
(January through December); late Summer - Fall (late-July through November); Winter eshet (mid-April through mid-July)

culate a value (e.g., mean annual runoff is not calculated if certain weeks or months are

				FLO\	V COMPONENT
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Scaling_Method	
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Scaling using ECCC Monitoring Stations	140
Notes on Flow Modelling Method	FR_FRABCH + Chauncey + Ewin GH_GH1 + unnamed areas betw (Sum of modelled flows)	+ Todhunter + LCO Dry + Grace + veen FR_FRABCH and GH_FR1	Surface-Groundwater Partitioning	Not implemented	120
Spinner ID	17	Mean annual surface rui	noff (monitored)	410	Weekly Flow (m ³ /s) 09 08
Selected Year	2019	Mean annual total runo	f (2020 RWQM)	460	Flow
Comparison Start Year	2004	Evaluation period (week	s)	783	00 eekl
Comparison End Year	2018	Weeks with monitoring	data (%)	100%	1 ≥ 40 -
Station ID & Description	GH_FR1	Fording River downstrea	m of Greenhills Creek (20	0378)	
Drainage Area (2018)	40750 ha	Disturbed Area (2018)		~ 15%	20
Date	2017 RWQM: Average (Total) Weekly Flow in 2019	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Scaling using ECCC Monitoring Stations	0 an-2004
2019-01-03		1.420	(m³/s) 1.420	0.987	
2019-01-10	1.693	1.411	1.411		
2019-01-17 2019-01-24		1.334	1.334		
2019-01-24 2019-01-31		1.269	1.269		60
2019-02-07	1.538	1.135	1.135		
2019-02-14	1.517	1.078	1.078		50
2019-02-21 2019-02-28	1.516	1.026 0.876	1.026 0.876		
2019-02-28 2019-03-07	1.547	0.867	0.867		(s) £ 40
2019-03-14		0.788	0.788		Weekly Flow (m ³ /s) 30
2019-03-21	1.622	2.061	2.061		No II
2019-03-28 2019-04-04		1.933 1.832	1.933 1.832		30
2019-04-04	2.190	1.572	1.572		veel veel
2019-04-18		3.973	3.973		> 20
2019-04-25		4.656	4.656		
2019-05-02 2019-05-09	<u>6.347</u> 9.196	4.333 10.943	4.333		10
2019-05-16		14.205	14.205		
2019-05-23		8.556	8.556		0
2019-05-30 2019-06-06		9.732 6.733	9.732 6.733		0
2019-06-13		4.978	4.978		
2019-06-20	19.152	7.549	7.549		
2019-06-27		11.296	11.296		
2019-07-04 2019-07-11	<u>12.700</u> 9.704	10.290 7.671	10.290		
2019-07-11		6.974	6.974		
2019-07-25	6.233	9.432	9.432		15
2019-08-01	5.232	5.995 4.457	5.995 4.457		
2019-08-08 2019-08-15		4.457 4.881	4.457		ر س س 10
2019-08-22		5.036	5.036		Mean Flow (m ³ /s)
2019-08-29		3.998	3.998		OH L 5
2019-09-05 2019-09-12		3.782 3.331	3.782 3.331		lear
2019-09-12 2019-09-19			2.808		≥
2019-09-26	3.247	2.763	2.763		0
2019-10-03	3.420	2.572	2.572		
2019-10-10		2.581	2.581		Statistics on con
2019-10-17		3.171	3.171		
2019-10-24 2019-10-31		3.111 3.013	3.111 3.013		Parameter
2019-10-31		2.735	2.735		Nash-Sutcliffe ef
2019-11-14	2.617	2.775	2.775		Modified Nash-S
2019-11-21		2.742	2.742		Index of agreeme
2019-11-28 2019-12-05		2.564 2.411	2.564		Modified index o MAE
2019-12-03		2.265	2.265		RMSE
2019-12-19	1.917	2.137	2.137		Coefficient of De
2019-12-26	1.869	2.020	2.020		Number of data
Annual	5.36	4.08	4.08	0.99	Total number of Mean of all week
Late Summer - Fall	3.42	3.78	3.78	0.99	Standard deviation
Winter	1.70	1.50	1.50	0.99	
Freshet	12.21	7.56	7.56		1

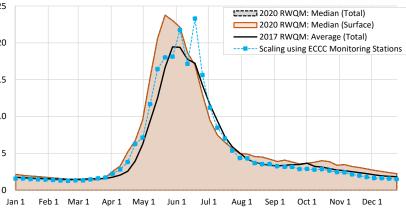


25

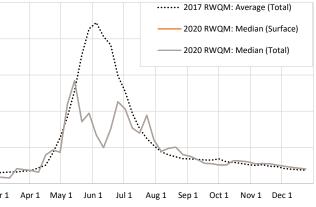

20

15

10

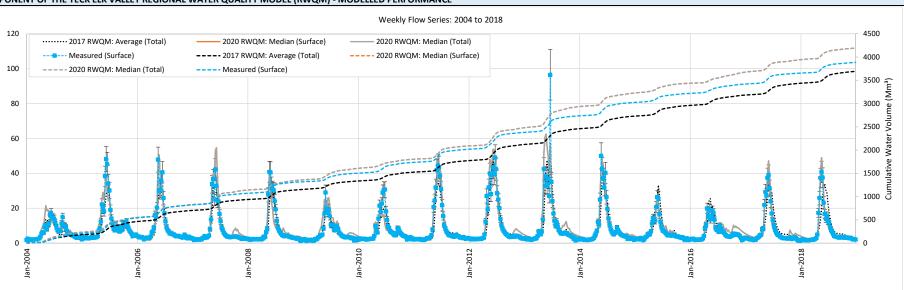


Mean Flow for Concurrent Data: 2004 to 2018



	Statistics on concurrent data: 2004 to 2018	Good	Good			5
	Parameter	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Scaling using ECCC Monitoring Stations	0 Jan 1 Feb 1 Mar 1
	Nash-Sutcliffe efficiency (E)	0.70	0.74	0.74		
	Modified Nash-Sutcliffe efficiency (E1)	0.66	0.62	0.62		
	Index of agreement (d)	0.90	0.93	0.93		Notes
	Modified index of agreement (d1)	0.82	0.81	0.81		Performance statistics: For E, E1, d, c
	MAE	1.53	1.73	1.73		less than 0 indicate that the model is
	RMSE	4.01	3.74	3.74		generally indicates a better fit with n
	Coefficient of Determination (R ²)	0.71	0.76	0.76		
	Number of data in statistics	783	783	783		Notes on seasonal periods: Annual (J
	Total number of weekly data	783	783	783	783	(December through early April) Fres
99	Mean of all weekly data	5.065	5.957	5.957	5.273	n/a = Not available or unable to calco
	Standard deviation of all weekly data	5.678	7.251	7.251	7.339	missing data)
99	Approximated mean annual runoff (mm/yr)	390	460	460	410	Flows for the 2017 RWQM represent
				•		December 2016)

Mean Weekly Flow for Concurrent Data: 2004 to 2018



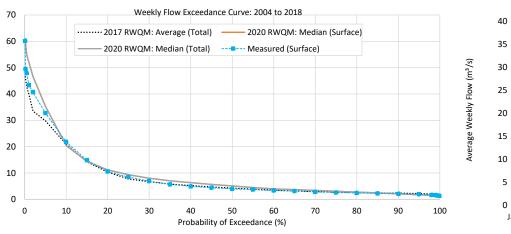
d, d1, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values It is no better than using the mean of all the data. For MAE and RMSE, a lower number h monitored data.

al (January through December); late Summer - Fall (late-July through November); Winter reshet (mid-April through mid-July)

alculate a value (e.g., mean annual runoff is not calculated if certain weeks or months are

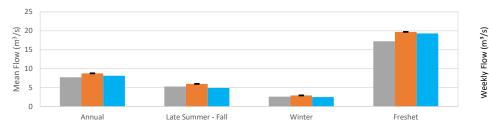
				FLO	V COMPO
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitor	
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	12
Notes on Flow Modelling Method	GH_FR1 + LC_LC4 + unnamed a LC_LC5 (Sum of modelled flows	_	Surface-Groundwater Partitioning	Not implemented	10
Spinner ID	18	Mean annual surface rur	noff (monitored)	420	Weekly Flow (m³/s)
Selected Year	2019	Mean annual total runof	f (2020 RWQM)	450	Flow
Comparison Start Year	2004	Evaluation period (week	s)	783	ekly
Comparison End Year	2018	Weeks with monitoring	•	100%	Š.
Station ID &	LC_LC5		m of Line Creek (0200028	3)	
Description Drainage Area (2018)	61760 ha	Disturbed Area (2018)		~ 13%	1 :
Date	2017 RWQM: Average (Total) Weekly Flow in 2019	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total) (m³/s)	Measured (Surface)	-
2019-01-03	•	2.121	2.121	2.070	
2019-01-10		2.070	2.070	1.920	
2019-01-17		1.953	1.953	1.939	
2019-01-24 2019-01-31	2.517 2.475	1.850 1.739	1.850 1.739	1.753	70
2019-01-31 2019-02-07	2.473	1.650	1.650	1.791	
2019-02-14		1.562	1.562	1.617	60
2019-02-21	2.369	1.482	1.482	1.479	
2019-02-28		1.304	1.304	1.243	<u>জ</u> 50
2019-03-07	2.448	1.271	1.271	1.393 1.847	m³/
2019-03-14 2019-03-21	2.500	2.882	2.882	3.469	02 05 04 (m ³ /s)
2019-03-21	2.786	2.820	2.820	3.487	FIG
2019-04-04		2.779	2.779	3.309	06 ^{ekl}
2019-04-11	3.505	2.509	2.509	3.149	We
2019-04-18	4.084	5.363 6.147	5.363 6.147	3.693 4.663	20
2019-04-25 2019-05-02	9.605	7.044	7.044	4.003	
2019-05-09		16.080	16.080	10.037	10
2019-05-16		18.960	18.960	13.551	
2019-05-23	27.015	12.261	12.261	11.584	0
2019-05-30 2019-06-06		13.801 9.817	13.801 9.817	25.400 17.043	-
2019-06-00		7.408	7.408	15.171	
2019-06-20		13.834	13.834	17.386	
2019-06-27	22.754	16.712	16.712	19.257	
2019-07-04	18.689 14.312	15.759 11.540	15.759 11.540	17.486	
2019-07-11 2019-07-18		11.340	11.340	12.043	
2019-07-25	9.164	13.823	13.823	11.743	25
2019-08-01	7.775	8.921	8.921	8.356	<u>(</u> 20
2019-08-08		7.041	7.041	7.081	ш ₁
2019-08-15 2019-08-22	6.108 5.692	8.027 7.421	8.027 7.421	6.953 5.903	8
2019-08-29		6.011	6.011	4.970	01 20 (m ³ /s) 01 10 2
2019-09-05		5.509	5.509	4.580	5 Mea
2019-09-12	5.180		4.846	4.716	2 5
2019-09-19		4.016	4.016	4.356	0
2019-09-26 2019-10-03		3.805	3.923 3.805	3.931	
					Statistics o
2019-10-10 2019-10-17		3.845 4.808	3.845 4.808	3.779	Statistics
2019-10-17		4.684	4.684		Parameter
2019-10-31	4.036	4.317	4.317	3.221	
2019-11-07		4.024	4.024		Nash-Sutcl
2019-11-14 2019-11-21		4.078 4.014	4.078 4.014		Modified N Index of ag
2019-11-21		3.766	3.766		Modified in
2019-12-05	3.224	3.569	3.569	2.649	MAE
2019-12-12		3.349	3.349		RMSE
2019-12-19		3.176	3.176		Coefficient
2019-12-26	2.854	3.000	3.000	2.272	Number of Total number
Annual	8.14	6.08	6.08	6.15	Mean of al
Late Summer - Fall	5.22	5.63	5.63		Standard d
Winter	2.66	2.21	2.21		Approxima
Freshet	18.43	11.31	11.31	12.57	

40

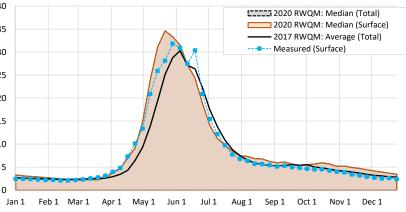

35

30

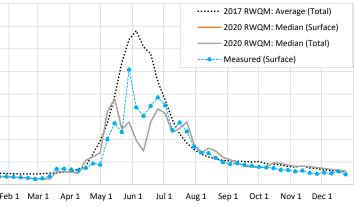
25 20


15

10

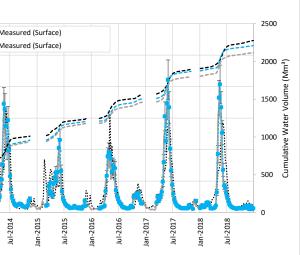

Mean Flow for Concurrent Data: 2004 to 2018

2017 RWQM: Average (Total) 2020 RWQM: Median (Surface) Measured (Surface) -2020 RWQM: Median (Total)



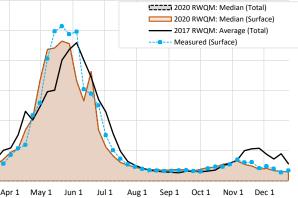
.779	Statistics on concurrent data: 2004 to 2018	Very good	Very good			5
.664 .256	Parameter	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)	0 Jan 1 Feb
.927	Nash-Sutcliffe efficiency (E)	0.80	0.84	0.84		- Jan 1 I er
.089	Modified Nash-Sutcliffe efficiency (E1)	0.70	0.69	0.69		
2.586	Index of agreement (d)	0.94	0.96	0.96		Notes
.383	Modified index of agreement (d1)	0.84	0.84	0.84		Performance statistics: Fo
.649	MAE	2.07	2.14	2.14		less than 0 indicate that t
2.487	RMSE	4.49	4.02	4.02		generally indicates a bett
.909	Coefficient of Determination (R ²)	0.81	0.86	0.86		
2.272	Number of data in statistics	783	783	783		Notes on seasonal period
	Total number of weekly data	783	783	783	783	(December through early
6.15	Mean of all weekly data	7.795	8.849	8.849	8.202	n/a = Not available or una
4.82	Standard deviation of all weekly data	8.589	10.473	10.473	10.151	missing data)
2.19	Approximated mean annual runoff (mm/yr)	400	450	450	420	Flows for the 2017 RWQ
2.57						December 2016)

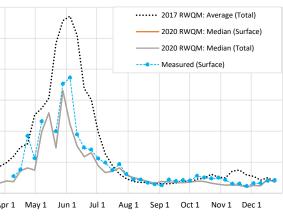
Mean Weekly Flow for Concurrent Data: 2004 to 2018



For E, E1, d, d1, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values It the model is no better than using the mean of all the data. For MAE and RMSE, a lower number etter fit with monitored data.

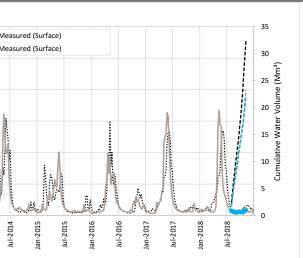
iods: Annual (January through December); late Summer - Fall (late-July through November); Winter rly April) Freshet (mid-April through mid-July)


nable to calculate a value (e.g., mean annual runoff is not calculated if certain weeks or months are

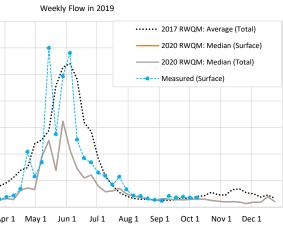

Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitored_SF										Weel	kly Flow Se	eries: 2004 to	o 2018			
	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median		12	0		······ 2017 R	RWQM: A	Average (Total)		2020 RV	VQM: Median (S			- 2020 RWQM		n (Total)		Meas
Case Description	(Total)	(Surface)	(Total)	Measured (Surface)						Average (Total)			VQM: Median (S			- 2020 RWQ				Meas
Flow Modelling Method	EV_MC3 + EV_EC1 + South Pit + EV_BC1 + other unnamed tribu EV_MC2 (sum of modelled flow		Surface-Groundwater Partitioning	Not Implemented		0											T	-		т
ipinner ID	30	Mean annual surface run	off (monitored)	560	Weekly Flow (m³/s)					ŧ						li l		1		
Selected Year	2019	Mean annual total runof	f (2020 RWQM)	530	Elow e	0							:			ž				-
Comparison Start Year	2004	Evaluation period (week	s)	783	eekly											1				5
Comparison End Year	2018	Weeks with monitoring o	data (%)	34%	3	0			1											-4
Station ID & Description	EV_MC2	Michel Creek downstrea	m of Hwy 3 Bridge (E3000	91)		0	1													
Drainage Area (2018)	63700 ha	Disturbed Area (2018)		~ 5%	1	•	MC LAN						Λ				K			
	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median			0 2 3	4 v	ο. φ 	 			<u> </u>	ن و سبست کی		میندینا ^{می} ج		7	m,	w 4	<u>।</u> स्र
Date	(Total) Weekly Flow in 2019	(Surface)	(Total) (m³/s)	Measured (Surface)		Jan-2004	Jan-2 005	Jul-2005 Jan-2006	Jul-2006	Jan-2007 Jul-2007	Jan-2 008	Jul-2008 Jan-2009	Jul-2009 lan-2010	Jul-2010	Jan-2011	Jul-2011 Jan-2012	Jul-2012	Jan-2013	Jul-2013	ul-201.
1/3/2019	3.362		1.832		1	e -	ין א	n el	4	el J	eſ	Ja L	J P	Ť.	Ъ	JL EL	Ť.	eſ		; =
1/10/2019 1/17/2019	3.135		1.593 1.433	2.870	1				_											
1/24/2019	3.153	1.580	1.580	3.986	120					edance Curve:	: 2004 to									Mean W
1/31/2019 2/7/2019	3.570	0.551	1.285 0.551	4.760	-					verage (Total)			020 RWQM: Med	•	ce)		60			
2/14/2019	4.901	0.438	0.438	6.584	100			2020 R	WQIVI: N	Лedian (Total)		- M	easured (Surface	e)						
2/21/2019 2/28/2019	3.708	0.420	0.420	5.557	~											(s	50			
3/7/2019	3.661		0.359	5.442	(s/ ^s m) 80											(m³/				
3/14/2019	3.997 8.176		0.895			N.										NO	40			
3/21/2019 3/28/2019	8.557		3.212		Weekly Flow 09											Average Weekly Flow (m³/s)				
4/4/2019	9.814		3.941	5.400	/eek											Veel	30			
4/11/2019 4/18/2019	11.937 14.851		3.727 7.257	5.439	≥ 40											ge V				
4/25/2019	15.927	8.153	8.153	18.448												vera	20			
5/2/2019 5/9/2019	25.265		7.455	11.201	20											<				
5/16/2019	30.636		25.891	23.142					Ten Providence								10		_	
5/23/2019 5/30/2019	48.345		14.606	19.889	0					and a reason of reasons of										~ ~
6/6/2019	57.096		22.250	37.185		0	10 20	30		40 50		60 70	0 80	90	10	00	0 la	n 1 Fel	b1 Mar	1 Anr
6/13/2019 6/20/2019	50.953 33.798	15.239	15.239 11.728	18.904	1				Pr	robability of Ex	ceedanc	e (%)								
6/27/2019	30.197	11.728	11.728	13.991	ł			Mean	Flow fo	r Concurrent D	Data: 200	4 to 2018								
7/4/2019	19.703		8.815	11.112	1,	1 2017 RW/O	M: Average (Tot	al) = 2020 B	WOM·N	Aedian (Surface)	Mea	sured (Surface)	- 2020 RWOM	1. Median	(Total)		60			
7/11/2019 7/18/2019	12.662		6.653 7.080	9.762	+	2017 11000	INI. AVEIAge (100	ai) = 2020 K	VV QIVI. IV		ivica:	sureu (surrace)	- 2020 NWQIV	n. meulan	(Total)					
7/25/2019	6.160	8.141	8.141	9.317	30									_			50			
8/1/2019 8/8/2019	4.696		5.872 5.014	6.077 4.376	25 (s) د 25											³ /5)				
8/15/2019	3.467	4.436	4.436	4.275	2											v (m ³ ,	40			
8/22/2019 8/29/2019	3.477		3.793 3.184				_									Flow				
9/5/2019	3.018	3.753	3.753	2.511	ие 10 М Б											Weekly	30			
9/12/2019 9/19/2019	3.029		3.619 3.415	4.288	2 5											Ň				
9/26/2019			3.378		, C		Annual	la	ate Sumr	ner - Fall		Winter		Freshet			20			
10/3/2019	3.515	3.577	3.577	3.962			, till dat	20				trance.								
					Statistics	on concur	rent data: 2004	to 2018		Acceptable		/ery good					10			
10/10/2019 10/17/2019	4.554		3.850 3.766																***	·].
10/24/2019	6.098	3.235	3.235	4.658	Paramete	r				2017 RWQN Average (Tota		20 RWQM: lian (Surface)	2020 RWQM Median (Tot		Measured (Surface)		0			
10/31/2019	5.137		2.880 2.604				anov (E)				ary iviec			carj	(Surface)		Jai	n 1 Feb	1 Mar 1	. Apr 1
11/7/2019 11/14/2019	4.962		2.604			liffe efficie Nash-Sutcl	ency (E) iffe efficiency (E1)		0.60		0.77	0.77 0.72			<u> </u>				
11/21/2019	7.441	2.521	2.521	3.013	Index of a	greement	(d)	•		0.87		0.94	0.94			Notes	ance cto	tistice: Lo	r E, E1, d, (d1 and 1
11/28/2019 12/5/2019	5.917		1.935 2.492		Modified MAE	index of ag	reement (d1)			0.75		0.86	0.86 3.60						odel is no	
12/12/2019	4.175	2.392	2.392	3.185	RMSE					11.38		8.58	8.58						monitored	
12/19/2019 12/26/2019	4.977		4.510 3.526			t of Deterr data in st	mination (R ²)			0.61 267	_	0.78	0.78 267			Notes o	n season	al neriodo	: Annual (J	lanuary +
12/20/2019	3.102	3.320	5.520	4.120		ber of wee				783		783	783		267				April) Fres	
Annual	11.83	5.96	5.96		Mean of	II weekly d	lata			14.095		13.101	13.101		13.674	n/a = N	ot availal		ble to calc	
Late Summer - Fall Winter	4.60 4.70		3.77 1.87				of all weekly dat annual runoff			15.705 590		16.814 530	16.814 530		18.026 560	missing		17 014/01/	1 represent	t project
	4.70	1.0/																		. uruecti

n Weekly Flow for Concurrent Data: 2004 to 2018

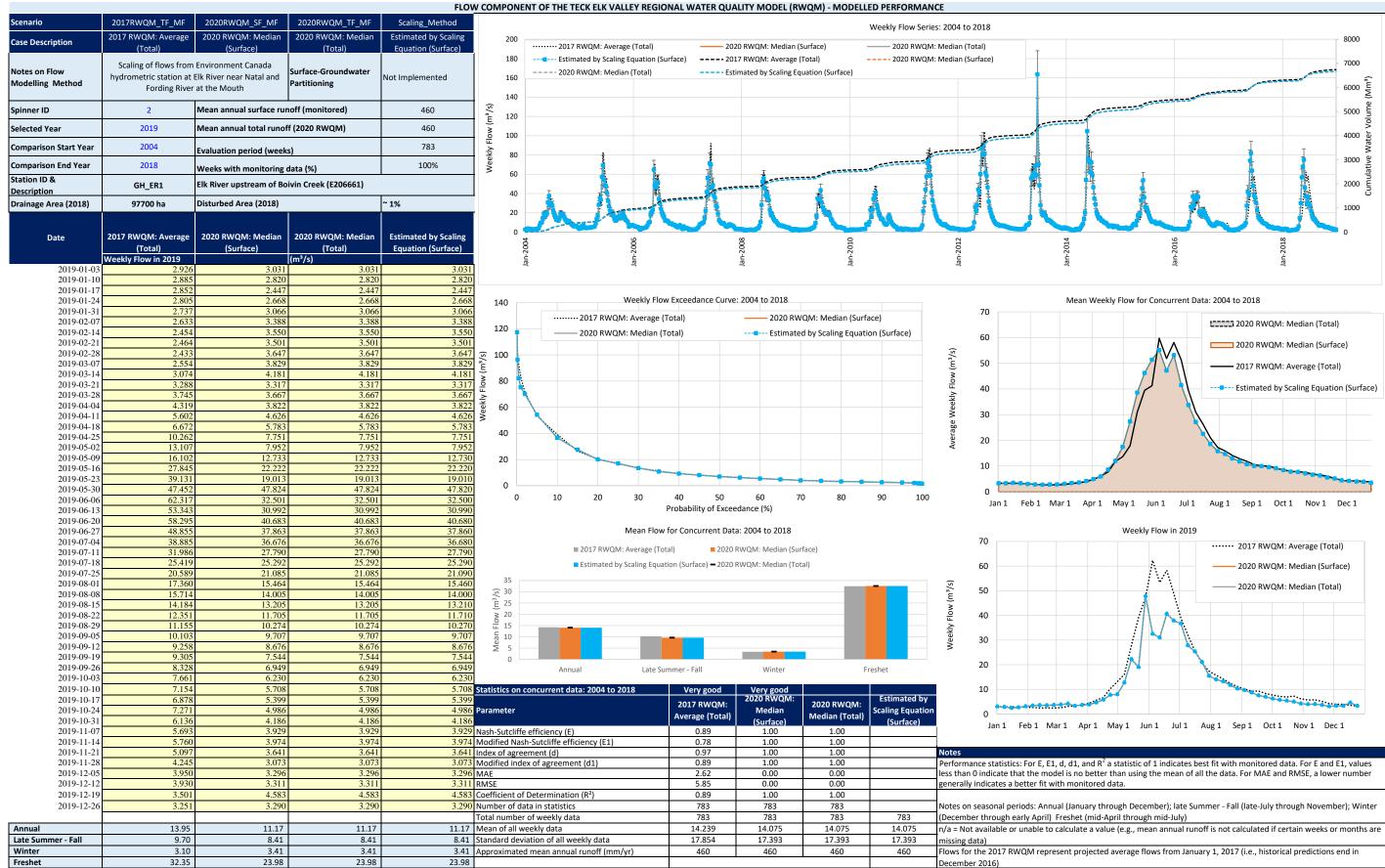
Weekly Flow in 2019

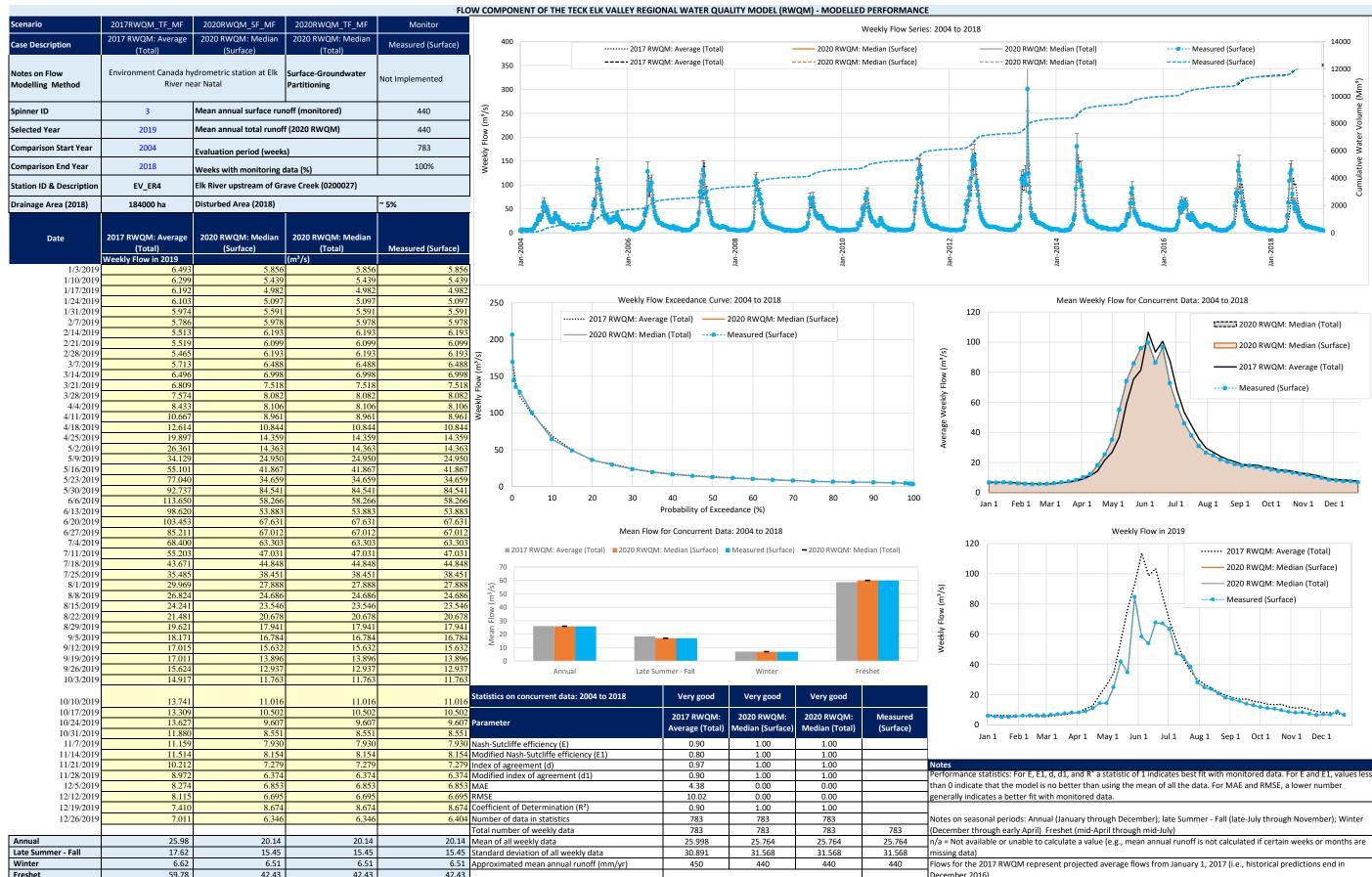


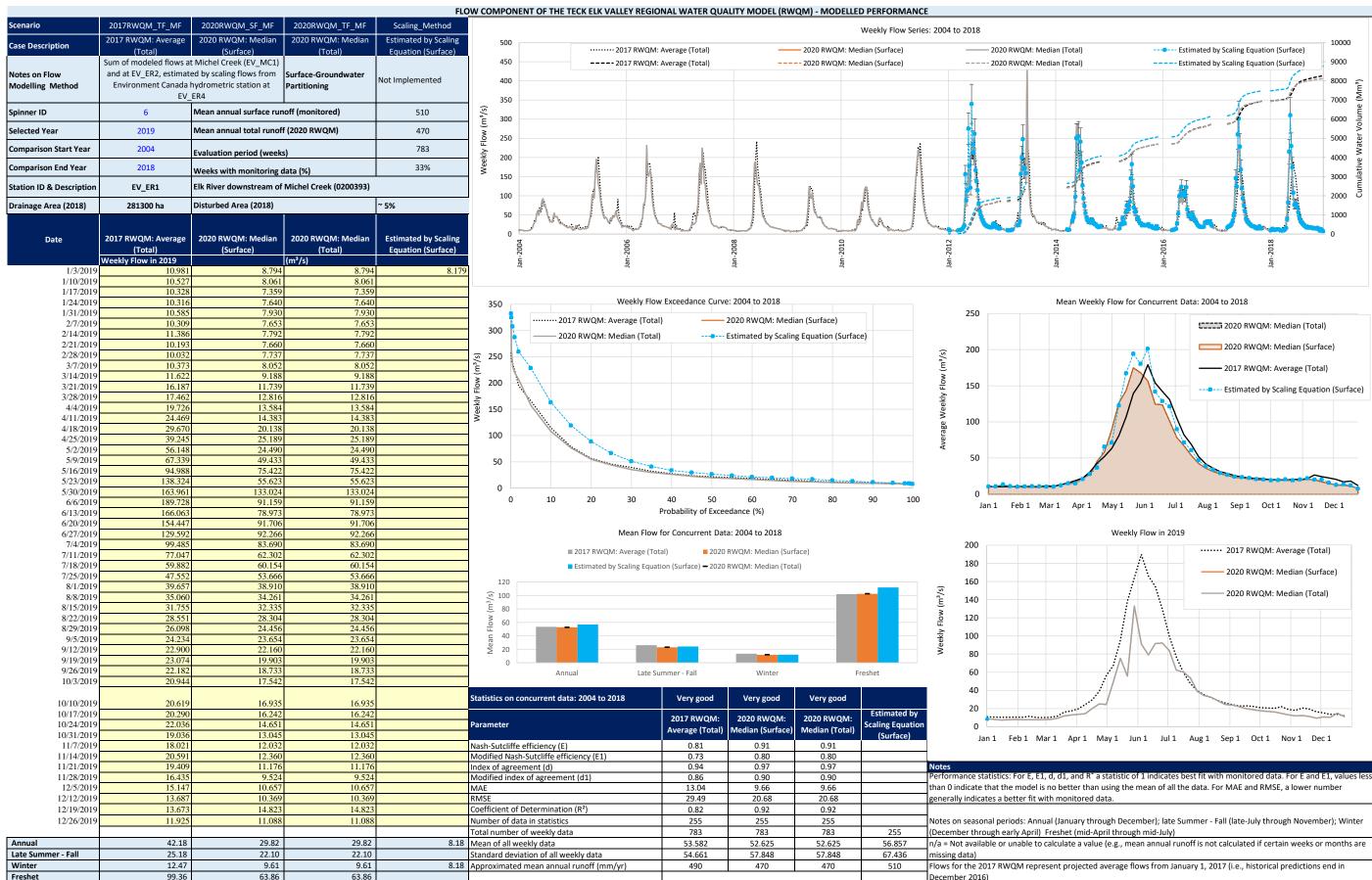
nd R² a statistic of 1 indicates best fit with monitored data. For E and E1, values less er than using the mean of all the data. For MAE and RMSE, a lower number generally


ary through December); late Summer - Fall (late-July through November); Winter mid-April through mid-July) e a value (e.g., mean annual runoff is not calculated if certain weeks or months are

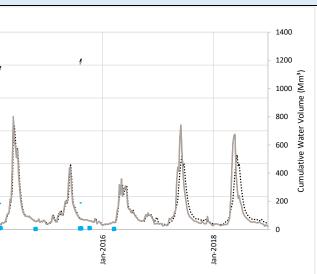
Case Description Scalar Flow Modelling Wethod Scalar Spinner ID Scalar Selected Year Scalar Comparison Start Year Scalar Station ID & Description Scalar Orainage Area (2018) 24	2018 EV_MC3	assed on ECCC data at Elk River Mean annual surface runo Mean annual total runoff Evaluation period (weeks Weeks with monitoring d Michel Creek upstream of Disturbed Area (2018) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Surface) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 3.197 2.862 6.399 7.255 6.641	(2020 RWQM)) ata (%) f Erickson Creek (0200203 2020 RWQM: Median (Total) (m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 3.197 2.862 6.399 7.255 6.641	Measured (Surface) ~130,000 m3/d N/A N/A 783 2% 3) ~ 2% Measured (Surface)	Weekly Flow (m ³ /s)	120 100 80 40 20 0 20 0 0 100 90 80 70 60 50 40	2017 RWQN 2017 RWQN 2017 RWQN 2017 RWQN 2017 RWQN 2017 RWQN 2017 RWQN 2017 RWQN 	V: Average (Total)	2020 R 2020 R 800 C C 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ace)	2020	Flow (m ³ /s) Ian-2012	Median (1 Median (1		Jan-2014	
Comparison Start Year Scalar Comparison Start Year Image: Start Year Image: Start Year Comparison Start Year Image: Start Year Image: Start Year Comparison Start Year Image: Start Year Image: Start Year Comparison End Year Image: Start Year Image: Start Year Comparison End Year Image: Start Year Image: Start Year Date Image: Start Year Image: Start Year	(Total) aling equation using flows estinked regression relationship b Fernie and Elk River at Natal 15 2019 2004 2018 EV_MC3 55770 ha 2017 RWQM: Average (Total) feekly Flow in 2019 2.992 2.797 2.728 2.816 3.214 3.161 4.485 3.3346 3.253 3.301 3.618 7.604 7.962 9.157 11.156	(Surface) mated at EV_MC2 using a seed on ECCC data at Elk River Mean annual surface runo Mean annual surface runo Mean annual total runoff Evaluation period (weeks Weeks with monitoring d Michel Creek upstream of Disturbed Area (2018) 2020 RWQ(N: Median (Surface) 2020 RWQ(N: Median (Surface) 0.176	(Total) Surface-Groundwater Partitioning off (monitored) (2020 RWQM)) ata (%) f Erickson Creek (0200203 2020 RWQM: Median (Total) (m³/s) 1.443 1.184 1.049 1.201 0.176 0.176 0.176 0.176 0.176 0.134 0.134 0.106 0.075 0.644 2.683 3.197 2.862 6.399 7.255 6.641	~130,000 m3/d N/A N/A 783 2% 3) ~ 2% Measured (Surface) 	the set of	80 60 40 20 0 100 90 80 70 60 50	2017 RWQM	V: Average (Total)	2020 R 2020 R 800 C C 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WQM: Median (Surfa	ace)	2020	20 RWQM: 1	Median (1	otal)	Jan-2014	Jul-2014
How Modelling Wethod ran at F spinner ID i selected Year i Comparison Start Year i Comparison End Year i Station ID & Description i Drainage Area (2018) i T/3/2019 i 1/3/2019 i 1/3/2019 i 1/1/1/2019 i 1/1/1/2019 i 2/21/2019 i 2/21/2019 i 2/21/2019 i 3/1/2019 i 3/1/2019 i 3/21/2019 i 5/2/2019 i 5/2/2019 i 5/3/2019 i 5/3/2019	nked regression relationship b Fernie and Elk River at Natal 2019 2004 2018 EV_MC3 55770 ha 2017 RWQM: Average (Total) (reekly Flow in 2019 2.797 2.728 2.816 3.214 3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156	assed on ECCC data at Elk River Mean annual surface runo Mean annual total runoff Evaluation period (weeks Weeks with monitoring d Michel Creek upstream of Disturbed Area (2018) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Surface) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 3.197 2.862 6.399 7.255 6.641	Partitioning (2020 RWQM)) ata (%) f Erickson Creek (0200203 Color RWQM: Median (Total) (m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.683 3.197 2.862 6.399 7.255 6.641	N/A N/A 783 2% 3) ~ 2% Measured (Surface) 	the set of	80 60 40 20 0 100 90 80 70 60 50	900 2 00 2 00 2 00 2 00 2 00 2 00 2 00	xceedance Curve: 21 f: Average (Total)	80 80 80 80 80 80 80 80 80 80 80 80 80 8	600 70 VEC P	Jul-2010	Jul-2011		6 5 4	~~~/	Jan-2014	Jul-2014
Selected Year Selected Year comparison Start Year Image Area comparison End Year Image Area line Image Area comparison End Year Image Area line Image Area comparison End Year I	2019 2004 2018 EV_MC3 55770 ha 2017 RWQM: Average (Total) (eekly Flow in 2019 2.992 2.797 2.728 2.816 3.214 3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	Mean annual total runoff Evaluation period (weeks Weeks with monitoring d Michel Creek upstream of Disturbed Area (2018) 2020 RWQM: Median (Surface) 1.443 1.184 1.049 1.201 0.176 0.0123 0.134 0.176 0.0134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	(2020 RWQM)) ata (%) f Erickson Creek (0200203 2020 RWQM: Median (Total) (m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 3.197 2.862 6.399 7.255 6.641	N/A 783 2% 3) ~ 2% Measured (Surface) 	the set of	40 20 0 100 90 80 70 60 50	900 2 00 2 00 2 00 2 00 2 00 2 00 2 00	xceedance Curve: 21 f: Average (Total)	80 80 80 80 80 80 80 80 80 80 80 80 80 8	600 70 VEC P	Jul-2010	Jul-2011		6 5 4	~~~/	Jan-2014	Jul-2014
Comparison Start Year Comparison End Year Date Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z <td>2004 2018 EV_MC3 55770 ha 2017 RWQM: Average (Total) /eekly Flow in 2019 2.992 2.797 2.728 2.816 3.214 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895</td> <td>Evaluation period (weeks Weeks with monitoring d Michel Creek upstream of Disturbed Area (2018) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Surface) 0.123 0.134 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641</td> <td>) ata (%) F Erickson Creek (0200203 2020 RWQM: Median (Total) (m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641</td> <td>783 2% 3) ~ 2% Measured (Surface) </td> <td>the set of the set of</td> <td>40 20 0 100 90 80 70 60 50</td> <td>900 2 00 2 00 2 00 2 00 2 00 2 00 2 00</td> <td>xceedance Curve: 21 f: Average (Total)</td> <td>80 80 80 80 80 80 80 80 80 80 80 80 80 8</td> <td>600 70 VEC P</td> <td>Jul-2010</td> <td>Jul-2011</td> <td></td> <td>6 5 4</td> <td>~~~/</td> <td>Jan-2014</td> <td>Jul-2014</td>	2004 2018 EV_MC3 55770 ha 2017 RWQM: Average (Total) /eekly Flow in 2019 2.992 2.797 2.728 2.816 3.214 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	Evaluation period (weeks Weeks with monitoring d Michel Creek upstream of Disturbed Area (2018) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Surface) 2020 RWQM: Median (Surface) 0.123 0.134 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641) ata (%) F Erickson Creek (0200203 2020 RWQM: Median (Total) (m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	783 2% 3) ~ 2% Measured (Surface) 	the set of	40 20 0 100 90 80 70 60 50	900 2 00 2 00 2 00 2 00 2 00 2 00 2 00	xceedance Curve: 21 f: Average (Total)	80 80 80 80 80 80 80 80 80 80 80 80 80 8	600 70 VEC P	Jul-2010	Jul-2011		6 5 4	~~~/	Jan-2014	Jul-2014
Comparison End Year tation ID & Description Drainage Area (2018) Date 21 Date 24 Date 24 1/3/2019 1/10/2019 1/10/2019 1/10/2019 1/1/1/2019 2/1/2/2019 2/1/2/2019 2/2/2/2019 2/1/2/2019 2/2/2/2019 2/2/2/2019 3/2/2/2019 3/1/2/2019 3/2/2/2019 3/2/2/2019 3/2/2/2019 3/2/2/2019 5/2/2019 5/2/2019 5/2/2/2019 5/2/2/2019 5/2/2/2019 5/2/2/2019 5/2/2/2019 5/2/2/2019 5/2/2/2019 6/6/2/2019 6/6/2/2019 6/1/2/2019 6/2/2/2019 7/1/2/2019 7/4/2/2019 7/1/2/2019 7/1/2/2019 7/1/2/2019 7/1/2/2019 7/2/2/2019 7/2/2/2/2019	2018 EV_MC3 55770 ha 2017 RWQM: Average (Total) /eekly Flow in 2019 2.992 2.797 2.728 2.816 3.214 3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	Weeks with monitoring d Michel Creek upstream of Disturbed Area (2018) 2020 RWQM: Median (Surface) 1.443 1.184 1.184 1.049 1.201 0.891 0.176 0.0123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	ata (%) F Erickson Creek (0200203 2020 RWQM: Median (Total) (m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 3.197 2.862 6.399 7.255 6.641	2% 3) ~ 2% Measured (Surface) 	the set of	20 0 100 90 80 70 60 50	900 2 00 2 00 2 00 2 00 2 00 2 00 2 00	xceedance Curve: 21 f: Average (Total)	80 80 80 80 80 80 80 80 80 80 80 80 80 8	600 70 VEC P	Jul-2010	Jul-2011		6 5 4	~~~/	Jan-2014	Jul-2014
Station ID & Description Drainage Area (2018) 21 Date 21 Date 21 1/3/2019 1/1/2/019 1/1/1/2019 1/1/2/019 1/1/2/2019 2/1/2/019 2/1/2/2019 2/2/2/2019 2/1/2/2019 2/2/2/2019 2/1/2/2019 3/2/2/2019 3/1/2/2019 3/2/2/2019 3/2/1/2019 3/2/2/2019 3/2/2/2019 3/2/2/2019 3/2/2/2019 5/2/2/2019 5/2/2/2019 5/2/2/2019 5/2/2/2019 5/2/2/2019 5/2/2/2019 5/3/2/2019 6/6/2/2019 6/2/2/2019 6/2/2/2019 6/2/2/2019 7/4/2/2019 7/4/2/2019 7/1/2/2019 7/1/2/2019 7/1/2/2019 7/1/2/2019 7/2/2/2019 7/2/2/2/2019	EV_MC3 55770 ha 2017 RWQM: Average (Total) (eekly Flow in 2019 2.992 2.797 2.728 2.816 3.214 3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	Michel Creek upstream of Disturbed Area (2018) 2020 RWQM: Median (Surface) 1.443 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	F Erickson Creek (0200203 2020 RWQM: Median (Total) (m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	3) ~ 2% Measured (Surface) 	the set of	20 0 100 90 80 70 60 50	900 2 00 2 00 2 00 2 00 2 00 2 00 2 00	xceedance Curve: 21 f: Average (Total)	80 80 80 80 80 80 80 80 80 80 80 80 80 8	600 70 VEC P	Jul-2010	Jul-2011		6 5 4	~~~/	Jan-2014	Jul-2014
Date 1/3/2019 1/10/2019 1/10/2019 1/17/2019 1/24/2019 2/14/2019 2/14/2019 2/14/2019 2/21/2019 2/21/2019 3/21/2019 3/21/2019 3/21/2019 3/21/2019 3/21/2019 3/21/2019 3/21/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/3/2019 6/6/2019 6/202019 6/202019 6/2/2019 7/4/2019 7/1/2019 7/1/2019 7/1/2019 7/1/2019 7/1/2019	55770 ha 2017 RWQM: Average (Total) /eekly Flow in 2019 2.992 2.797 2.728 2.816 3.214 3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	Disturbed Area (2018) 2020 RWQM: Median (Surface) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	2020 RWQM: Median (Total) (m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.104 0.106 0.005 0.044 2.463 2.683 3.197 2.862 6.399 7.255 6.641	~ 2% Measured (Surface) 	Weekly Flow (m ³ /s)	0 100 90 80 70 60 50	900 2 00 2 00 2 00 2 00 2 00 2 00 2 00	xceedance Curve: 21 f: Average (Total)	80 80 80 80 80 80 80 80 80 80 80 80 80 8	600 70 VEC P	Jul-2010	Jui-2011		6 5 4	~~~/	Jan-2014	Jul-2014
24 Date 1/3/2019 1/10/2019 1/17/2019 1/24/2019 1/31/2019 2/1/4/2019 2/14/2019 2/21/2019 2/28/2019 3/14/2019 3/14/2019 3/21/2019 3/28/2019 4/4/2019 4/18/2019 4/18/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/3/2019 6/6/2019 6/2/2019 6/2/2019 6/2/2019 7/4/2019 7/4/2019 7/18/2019 7/18/2019 7/18/2019 7/18/2019 7/18/2019 7/18/2019 7/25/2019	2017 RWQM: Average (Total) (eekly Flow in 2019 2.992 2.797 2.728 2.816 3.214 3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	2020 RWQM: Median (Surface) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	(Total) (m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	Measured (Surface)	Weekly Flow (m ³ /s)	100 90 80 70 60 50	Weekly Flow ED	xceedance Curve: 21 f: Average (Total)	004 to 2018	600 70 VEC P	Jul-2010	Jul-2011		6 5 4	~~~/	Jan-2014	Jul-2014
Date 1/3/2019 1/10/2019 1/10/2019 1/17/2019 1/24/2019 2/14/2019 2/14/2019 2/14/2019 2/21/2019 2/21/2019 3/21/2019 3/21/2019 3/21/2019 3/21/2019 3/21/2019 3/21/2019 3/21/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/3/2019 6/6/2019 6/202019 6/202019 6/2/2019 7/4/2019 7/1/2019 7/1/2019 7/1/2019 7/1/2019 7/1/2019	(Total) /eekly Flow in 2019 2.992 2.797 2.728 2.816 3.214 3.461 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	(Surface) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	(Total) (m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	1.10 1.52 2.919 3.700 4.25 6.79 20.818	Weekly Flow (m ³ /s)	100 90 80 70 60 50	Weekly Flow E	xceedance Curve: 24 1: Average (Total)	004 to 2018	020 RWQM: Median		Jul-2011		6 5 4	Jan 2013		
Wd 1/3/2019 1/10/2019 1/17/2019 1/17/2019 1/3/2019 2/7/2019 2/14/2019 2/21/2019 2/21/2019 2/21/2019 3/14/2019 3/28/2019 3/28/2019 4/12/2019 4/25/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 6/13/2019 6/2019 6/2019 6/202019 6/202019 6/202019 7/4/2019 7/1/2019 7/1/2019 7/1/2019 7/12/2019	/eekly Flow in 2019 2.992 2.797 2.728 2.816 3.214 3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	$\begin{array}{c} 1.443\\ 1.184\\ 1.049\\ 1.201\\ 0.891\\ 0.176\\ 0.123\\ 0.134\\ 0.106\\ 0.075\\ 0.644\\ 2.463\\ 2.683\\ 3.197\\ 2.862\\ 6.399\\ 7.255\\ 6.641\\ \end{array}$	(m³/s) 1.443 1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	1.10 1.52 2.919 3.700 4.25 6.79 20.818	Weekly Flow (m ³ /s)	90 80 70 60 50	Weekly Flow E	xceedance Curve: 24 1: Average (Total)	004 to 2018	020 RWQM: Median		Jul-20		6 5 4	Jan-20 Jul-20		
1/10/2019 1/17/2019 1/24/2019 2/17/2019 2/14/2019 2/21/2019 2/28/2019 3/14/2019 3/28/2019 3/28/2019 3/28/2019 4/12/2019 4/12/2019 4/12/2019 5/2/2019 5/2/2019 5/23/2019 5/23/2019 6/6/2019 6/6/2019 6/20/2019 6/27/2019 7/4/2019 7/18/2019 7/18/2019	2.797 2.728 2.816 3.214 3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	1.184 1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	$\begin{array}{c} 1.184\\ 1.049\\ 1.201\\ 0.891\\ 0.176\\ 0.123\\ 0.134\\ 0.106\\ 0.075\\ 0.644\\ 2.463\\ 2.683\\ 3.197\\ 2.862\\ 6.399\\ 7.255\\ 6.641\\ \end{array}$	1.522 2.919 3.709 4.254 6.791 20.818	Weekly Flow (m ³ /s)	90 80 70 60 50	Weekly Flow E	xceedance Curve: 24 1: Average (Total)	004 to 2018	020 RWQM: Median				6 5 4			
1/17/2019 1/24/2019 2/12/2019 2/14/2019 2/21/2019 2/21/2019 2/21/2019 3/14/2019 3/21/2019 3/21/2019 3/28/2019 4/12/2019 4/12/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 5/2/2019 6/2/2019 6/2/2019 6/27/2019 7/4/2019 7/12/2019 7/12/2019	2.728 2.816 3.214 3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	1.049 1.201 0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	$\begin{array}{c} 1.049\\ 1.201\\ 0.891\\ 0.176\\ 0.123\\ 0.134\\ 0.106\\ 0.075\\ 0.644\\ 2.463\\ 2.683\\ 3.197\\ 2.862\\ 6.399\\ 7.255\\ 6.641\\ \end{array}$	1.522 2.919 3.709 4.254 6.791 20.818	Weekly Flow (m ³ /s)	90 80 70 60 50	2017 RWQV	1: Average (Total)	2		(Surface)		(s/ɛm³ /s)	5		Mea	an We
1/31/2019 2/7/2019 2/14/2019 2/21/2019 3/7/2019 3/14/2019 3/21/2019 3/28/2019 4/12/2019 4/12/2019 4/12/2019 5/2/2019 5/2/2019 5/2/2019 5/16/2019 6/23/2019 6/2019 6/2019 6/20/2019 6/27/2019 7/12/2019 7/11/2019 7/11/2019 7/25/2019	3.214 3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	0.891 0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	$\begin{array}{c} 0.891 \\ 0.176 \\ 0.123 \\ 0.134 \\ 0.106 \\ 0.075 \\ 0.644 \\ 2.463 \\ 2.683 \\ 3.197 \\ 2.862 \\ 6.399 \\ 7.255 \\ 6.641 \end{array}$	1.522 2.919 3.709 4.254 6.791 20.818	Weekly Flow (m ³ /s)	90 80 70 60 50	2017 RWQV	1: Average (Total)	2		(Surface)		low (m³/s)	5			an W
2/7/2019 2/14/2019 2/21/2019 2/28/2019 3/14/2019 3/14/2019 3/28/2019 4/4/2019 4/12/2019 4/12/2019 4/18/2019 5/2/2019 5/2/2019 5/2/2019 5/30/2019 6/2/2019 6/2/2019 6/2/2019 6/2/2019 7/14/2019 7/18/2019 7/18/2019	3.161 4.485 3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	0.176 0.123 0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	$\begin{array}{c} 0.176\\ 0.123\\ 0.134\\ 0.106\\ 0.075\\ 0.644\\ 2.463\\ 2.683\\ 3.197\\ 2.862\\ 6.399\\ 7.255\\ 6.641\\ \end{array}$	1.522 2.919 3.709 4.254 6.791 20.818	^e Weekly Flow (m ²	80 70 60 50							low (m³/s)	5			
2/21/2019 2/28/2019 3/7/2019 3/14/2019 3/28/2019 4/4/2019 4/11/2019 4/11/2019 4/18/2019 5/2/2019 5/2/2019 5/2/2019 5/30/2019 6/6/2019 6/202019 6/202019 6/27/2019 7/4/2019 7/11/2019 7/11/2019	3.346 3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	0.134 0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	1.522 2.919 3.709 4.254 6.791 20.818	^e Weekly Flow (m ²	70 60 50							low (m³/s)	4			
2/28/2019 3/7/2019 3/14/2019 3/21/2019 3/28/2019 4/4/2019 4/12019 4/18/2019 4/25/2019 5/2/2019 5/2/2019 5/23/2019 6/6/2019 6/202019 6/20/2019 6/27/2019 7/12/2019 7/11/2019 7/18/2019 7/25/2019	3.253 3.301 3.618 7.604 7.962 9.157 11.156 13.922 14.895	0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	0.106 0.075 0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	1.522 2.919 3.709 4.254 6.791 20.818	^e Weekly Flow (m ²	60 50							low (m³/s)				
3/14/2019 3/21/2019 3/28/2019 4/12019 4/12019 4/18/2019 4/18/2019 4/25/2019 5/2/2019 5/16/2019 5/23/2019 6/2019 6/2019 6/2019 6/27/2019 7/4/2019 7/12/2019 7/12/2019	3.618 7.604 7.962 9.157 11.156 13.922 14.895	0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	0.644 2.463 2.683 3.197 2.862 6.399 7.255 6.641	1.522 2.919 3.709 4.254 6.791 20.818	Weekly Flov	50							low (m				
3/21/2019 3/28/2019 4/4/2019 4/12/2019 4/18/2019 4/25/2019 5/2/2019 5/16/2019 5/30/2019 6/6/2019 6/2019 6/202019 6/202019 6/202019 7/4/2019 7/18/2019 7/18/2019 7/18/2019	7.604 7.962 9.157 11.156 13.922 14.895	2.463 2.683 3.197 2.862 6.399 7.255 6.641	2.463 2.683 3.197 2.862 6.399 7.255 6.641	1.522 2.919 3.709 4.254 6.791 20.818	Weekly Flov	50							2				
4/4/2019 4/11/2019 4/18/2019 4/25/2019 5/2/2019 5/2/2019 5/16/2019 5/30/2019 6/20/2019 6/20/2019 6/20/2019 6/20/2019 7/4/2019 7/18/2019 7/18/2019 7/18/2019	9.157 11.156 13.922 14.895	3.197 2.862 6.399 7.255 6.641	3.197 2.862 6.399 7.255 6.641	3.709 4.254 6.791 20.818	Alyaew								Ē				
4/11/2019 4/18/2019 4/25/2019 5/2/2019 5/9/2019 5/16/2019 5/23/2019 6/2019 6/27/2019 6/27/2019 6/27/2019 7/4/2019 7/11/2019 7/18/2019 7/25/2019	11.156 13.922 14.895	2.862 6.399 7.255 6.641	2.862 6.399 7.255 6.641	4.254 6.79 20.818	4 ≥	40							Weekly I	3			
4/25/2019 5/2/2019 5/9/2019 5/16/2019 5/23/2019 6/2019 6/2019 6/202019 6/20/2019 6/27/2019 7/4/2019 7/11/2019 7/18/2019 7/25/2019	14.895	7.255 6.641	7.255 6.641	20.818	1								We				
5/2/2019 5/9/2019 5/16/2019 5/23/2019 6/30/2019 6/13/2019 6/20/2019 6/20/2019 7/4/2019 7/1/2/019 7/18/2019 7/12/2019		6.641	6.641		0	30							Average /	2			
5/9/2019 5/16/2019 5/30/2019 6/6/2019 6/2019 6/20/2019 6/27/2019 7/4/2019 7/11/2019 7/18/2019 7/25/2019	25.015			11.499	8	20							Ave				
5/23/2019 5/30/2019 6/6/2019 6/13/2019 6/20/2019 6/27/2019 7/4/2019 7/11/2019 7/18/2019 7/25/2019	25.357	19.065	19.065	16.793	3									1			
5/30/2019 6/6/2019 6/13/2019 6/20/2019 6/27/2019 7/4/2019 7/11/2019 7/18/2019 7/25/2019	28.882 45.739	25.050 13.828	25.050 13.828	59.886 27.358		10											
6/13/2019 6/20/2019 6/27/2019 7/4/2019 7/11/2019 7/18/2019 7/25/2019	52.666	32.380	32.380	49.230	0	0	10 20 20	40 50	<u> </u>	0 80	00	100		0			
6/20/2019 6/27/2019 7/4/2019 7/11/2019 7/18/2019 7/25/2019	54.041 48.195	21.525 14.498	21.525	58.00		,	10 20 30	40 50 Probability of Exce		0 80	90	100		Jan 1	L Feb 1	Mar 1	Apr
7/4/2019 7/11/2019 7/18/2019 7/25/2019	31.822	11.000	11.000	18.382	2												
7/11/2019 7/18/2019 7/25/2019	28.432 18.417	12.123 7.925	12.123 7.925	16.765			Mean Flow	for Concurrent Dat	a: 2004 to 2018					70			
7/25/2019	11.633	5.800	5.800	11.733	_		17 RWQM: Average (Total) 🛛 2020 RWQM	1: Median (Surface)	Measured (Surface)	- 2020 RWQM: M	1edian (Total)			70			
	8.166	6.100 7.048	6.100	8.385	5	4								60			
	5.531 4.156	4.981	7.048 4.981	11.375	4	3.5											
8/8/2019	3.261	4.216	4.216	4.290	0	2.5		-					(m³/s)	50		_	
8/15/2019 8/22/2019	2.996 3.019	3.647 3.028	3.647 3.028	4.100	8	2.5											
8/29/2019	2.762	2.506	2.506	2.671	1	2 1.5 1							dy Fl	40			
9/5/2019 9/12/2019	2.608 2.618	3.142 3.005	3.142 3.005	2.270	0	0.5							Weekly Flow	30			
9/19/2019	2.792	2.786	2.786	3.552	2	0.5			_		_		5	30			
9/26/2019 10/3/2019	3.481 3.097	2.698 2.885	2.698 2.885	3.849			Annual Late Su	ummer - Fall	Winter	F	Freshet			20			
10/3/2019	5.097	2.883	2.885	5.55					Poor but					-			
10/10/2019	4.095	3.087	3.087	3.48		stics o	concurrent data: 2004 to 2018	Poor	improved					10			
10/17/2019	4.267	3.003	3.003	51101				2017 RWQM:	2020 RWQM:	2020 RWQM:	Measu	red		ļ			
10/24/2019 10/31/2019	5.581 4.671	2.511 2.207	2.511 2.207		Para	neter		Average (Total)	Median (Surface)		(Surfa			0			 A = = 6
11/7/2019	4.506	1.980	1.980				e efficiency (E)	-9.02	0.39	0.39				Jan 1	re01	Mar 1 A	-γpr 1
11/14/2019 11/21/2019	6.555 6.872	2.083 1.923	2.083 1.923				h-Sutcliffe efficiency (E1)	-2.18 0.42	0.33 0.84	0.33			Notes				
11/21/2019	5.419	1.923	1.923				ement (d) ex of agreement (d1)	0.42	0.84	0.84				nce statis	tics: For E,	E1, d, d1, a	and R
12/5/2019	4.994	1.930	1.930		MAE			1.15	0.24	0.24	1					el is no bett	
12/12/2019 12/19/2019	3.786	1.843 3.990	1.843 3.990		RMS Coef		Determination (R ²)	1.36 0.31	0.34 0.56	0.34 0.56	+	ir	ndicates a	a petter f	it with mo	nitored dat	.a.
12/26/2019	3.337	2.094	2.094				ta in statistics	15	15	15		N	Notes on s	easonal	periods: A	nnual (Janu	uary t
							of weekly data	783	783	783	15					il) Freshet	
Annual Late Summer - Fall	4.12	5.30 3.06	5.30 3.06	13.24			eekly data ation of all weekly data	3.594 0.897	2.558 0.475	2.558 0.475	2.44		n/a = Not a missing da		or unable	to calculate	e a va
Winter Freshet	4.17	1.40 12.83	1.40 12.83	2.31	L Appr		d mean annual runoff (mm/yr)	N/A	N/A	N/A	N/A		0	,	RWQM re	present pro	ojecte


n Weekly Flow for Concurrent Data: 2004 to 2018

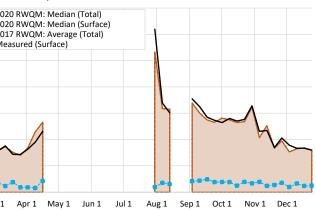


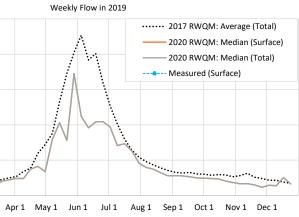

nd R⁺ a statistic of 1 indicates best fit with monitored data. For E and E1, values less er than using the mean of all the data. For MAE and RMSE, a lower number generally

ary through December); late Summer - Fall (late-July through November); Winter (mid-April through mid-July) e a value (e.g., mean annual runoff is not calculated if certain weeks or months are



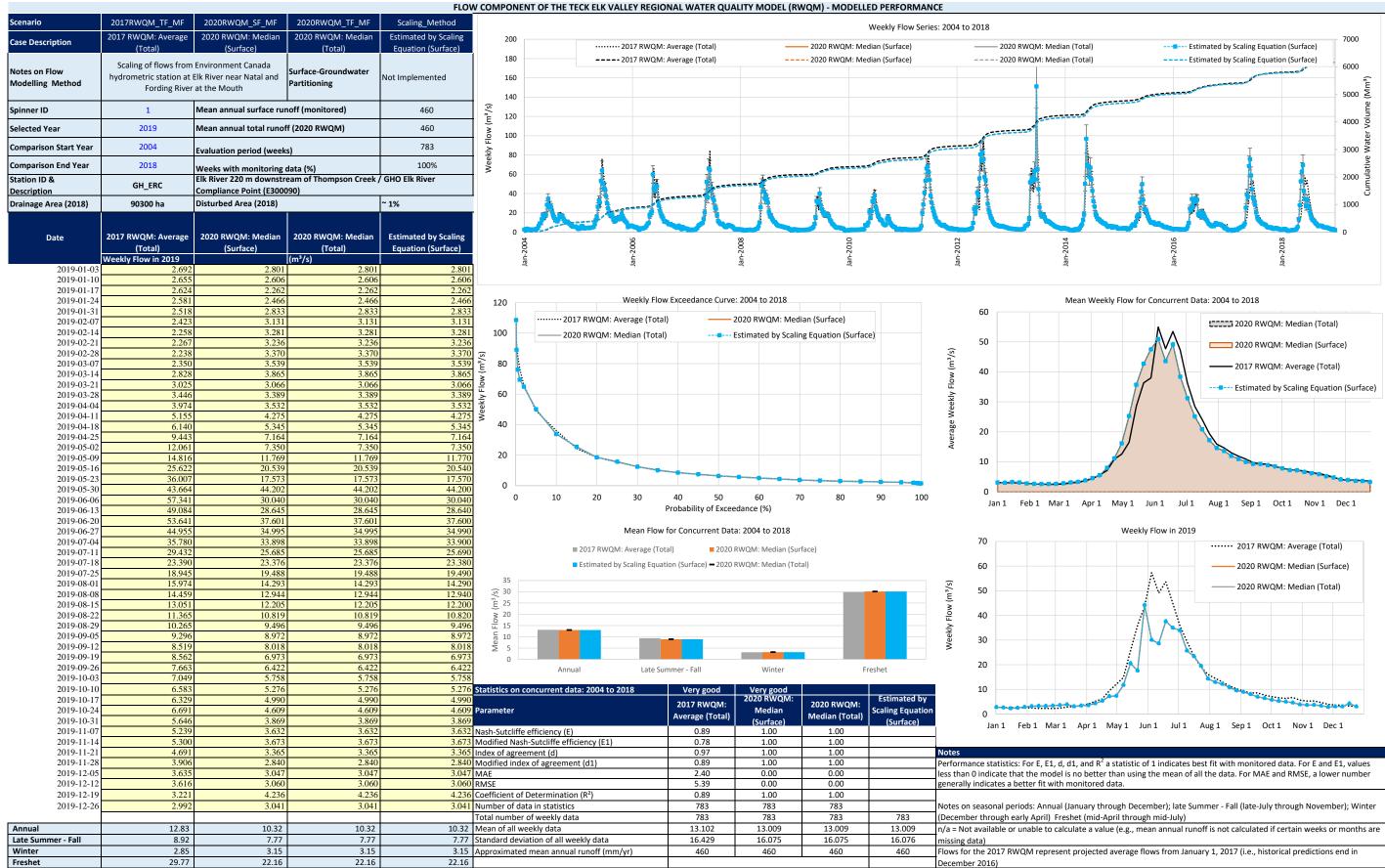
arepoint.com/sites/106374/Project Files/6 Deliverables/02. Working/18111630-007-R-RevB-23050-HydrologyReport/Spreadsheets/Model Performation Provided Performation Performation Provided Performation Performation Provided Performation Perform GH-ER1-Scaled-BL edit/Interface





				FLO	w con	иро	NENT OF THE TECK ELK VALLEY REGIO	NAL WATER QUA	LITY MODEL (R)	NQM) - MODELLE	D PERFORMAN	CE			
Scenario	2017RWQM_TF_MF	2020RWQM_SF_MF	2020RWQM_TF_MF	Monitor							Weekly Flow Serie		o 2018		
Case Description	2017 RWQM: Average (Total)	2020 RWQM: Median (Surface)	2020 RWQM: Median (Total)	Measured (Surface)		60	00		2020 RWQM: Media		2020 RWQ				
	, <i>,</i> ,	, , , , , , , , , , , , , , , , , , ,					Measured (Surface)		2020 RWQM: Media		2020 RWQ				
Notes on Flow Modelling Method	-	Environment Canada at Elk River at Fernie	Surface-Groundwater Partitioning	Not Implemented		50	00 2020 RWQM: Median (Total)		Measured (Surface)					1	55
						40	00							1	
Spinner ID	8	Mean annual surface ru		N/A	Weekly Flow (m³/s)								. /	, /	
Selected Year	2019	Mean annual total runo	ff (2020 RWQM)	N/A	Flow	30	00								
Comparison Start Year	2004	Evaluation period (weel	ks)	783	sekly				le					6	
Comparison End Year Station ID &	2018	Weeks with monitoring		14%	Ň	20	00	il.							
Description	RG_ELKORES	Elk River at Elko Reservo	oir (E294312)	1		10									
Drainage Area (2018)	355000 ha	Disturbed Area (2018)		~ 4%	-	10	" M., NA N	: 0			A P				
Data	2017 RWQM: Average	2020 RWQM: Median	2020 RWQM: Median					And S			Varia	Mili			2
Date	(Total)	(Surface)	(Total)	Measured (Surface)			lan-2006		Jan-2008	Jan-2010		Jan-2012		an-2014	-107
2010 01 02	Weekly Flow in 2019	12 405	(m³/s)				Jan-		Jan	Jan-		Jan-		-uer	-ing
2019-01-03 2019-01-10	16.684 16.627	13.405 11.483	5 13.405 5 11.483												
2019-01-17	16.436		10.687				Models Flam	v Excoodonce Curre	· 2004 +- 2019					-	Me
2019-01-24 2019-01-31	16.843 15.658	11.076 9.982	5 11.076 2 9.982		4	150		v Exceedance Curve					70		Mea
2019-02-07	16.274	6.721	6.721		4	100	········ 2017 RWQM: Averag	ge (Total) – 2	2020 RWQM: Med	ian (Surface)					
2019-02-14 2019-02-21	<u> </u>		6.583 6.443			350	2020 RWQM: Media	ın (Total) 🛛== N	Measured (Surface	2)			60	20	017
2019-02-28	14.817	6.609	6.609									3/s)		- M	leas
2019-03-07	15.686 20.030		5 8.956 8 14.103		(m³/s)	300						, (m	50		
2019-03-14 2019-03-21	20.030		20.097		2	250	<u>}</u>					Average Weekly Flow (m³/s)	40		
2019-03-28	24.882	22.100	22.100		κιν F	200	1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					ekly	40		
2019-04-04 2019-04-11	<u>26.728</u> 33.843	24.070 23.924	24.070		Weekly	200						Wee	30		
2019-04-18	38.871	37.327	37.327		1	150						age			
2019-04-25 2019-05-02	<u>59.791</u> 71.997	41.203	41.203 33.646		1	100						Aver	20		~
2019-05-09	88.003	79.637	79.637			50							40		
2019-05-16 2019-05-23	132.780 172.905		5 103.056 5 77.895		_	50							10		
2019-05-30	202.613		5 172.466			0	· · · · · · · · · · · · · · · · · · ·	····	•••	······			0		
2019-06-06 2019-06-13	226.819 191.901		2 112.062 95.727				0 10 20 30	40 50 Probability of Excee	60 7 dance (%)	0 80	90 100		Jar	1 Feb 1 Mar 1	1
2019-06-20	200.848		104.163	i i					uunice (70)						
2019-06-27	160.164		104.571				Mean Flow 1	for Concurrent Data	a: 2004 to 2018				250		
2019-07-04 2019-07-11	126.739 101.200		2 96.802 70.647				2017 RWQM: Average (Total) 2020 RWQM:	: Median (Surface)	Measured (Surface) – 2020 RWQM: Me	edian (Total)		250		
2019-07-18	79.490		73.204			35									
2019-07-25 2019-08-01	64.376 54.051	63.140 45.649			5	, 30		-				(s)	200		
2019-08-08	47.851	39.705	39.705		,m ³ /6	30						Weekly Flow (m³/s)			
2019-08-15 2019-08-22	43.140 38.841				1	20 20 15						low	150		
2019-08-29	35.315	27.800	27.800		an F	15						kly F			
2019-09-05 2019-09-12	32.708 31.597	28.060 27.653	28.060 27.653		M	10						Nee	100		
2019-09-19	32.632	26.497	26.497			0						~			
2019-09-26 2019-10-03	30.505 30.140		24.885		-		Annual Late Sun	mmer - Fall	Winter	Fr	eshet		F.0		
2019-10-03 2019-10-10	28.643	24.401 24.021	24.461		Statis	tics o	on concurrent data: 2004 to 2018	Poor	Poor but Improved				50		
2019-10-17	29.574	23.337	23.337					2017 RWQM:	2020 RWQM:	2020 RWQM:	Measured				
2019-10-24 2019-10-31	29.108 26.456		20.422		Paran	neter	r	Average (Total)	Median (Surface)	Median (Total)	(Surface)		0		
2019-11-07	28.126	16.530	16.530				liffe efficiency (E)	-212.62	-201.15	-201.15			Jan	1 Feb 1 Mar 1	A
2019-11-14 2019-11-21	31.345 25.818		16.693 14.836				Nash-Sutcliffe efficiency (E1)	-14.78 0.10	-14.54 0.11	-14.54 0.11		Notes			
2019-11-21 2019-11-28	25.818 23.919		2 11.692				greement (d) index of agreement (d1)	0.10	0.11 0.06	0.11 0.06			ance sta	tistics: For E, E1, d,	d1,
2019-12-05	21.687	14.429	14.429		MAE		<u> </u>	15.84	15.60	15.60		less thai	n 0 indica	ite that the model i	is no
2019-12-12 2019-12-19	21.467 18.894	13.810	13.810 5 25.406		RMSE Coeffi		t of Determination (R ²)	17.41 0.07	16.93 0.08	16.93 0.08		generall	y indicat	es a better fit with I	mor
2019-12-26	17.399				Numb	oer of	f data in statistics	109	109	109				al periods: Annual (
Annual		30.00					iber of weekly data	783	783	783	109			igh early April) Free	
Annual Late Summer - Fall	55.48 34.96	38.30 27.52	38.30 27.52				II weekly data deviation of all weekly data	18.773 7.484	18.531 6.860	18.531 6.860	2.932	n/a = No missing		le or unable to calc	Julat
Winter	18.50	13.46	13.46				ated mean annual runoff (mm/yr)	N/A	N/A	N/A	N/A	Flows fo	or the 20	17 RWQM represen	it pro
Freshet	125.86	81.76	81.76									Decemb	er 2016)		

lean Weekly Flow for Concurrent Data: 2004 to 2018



1, and R² a statistic of 1 indicates best fit with monitored data. For E and E1, values no better than using the mean of all the data. For MAE and RMSE, a lower number ionitored data.

anuary through December); late Summer - Fall (late-July through November); Winter net (mid-April through mid-July)

late a value (e.g., mean annual runoff is not calculated if certain weeks or months are

