

Report: Elk Valley Selenium Speciation Monitoring Program 2021 Annual Report

Overview: This report summarizes the findings of the 2021 selenium speciation monitoring program. This monitoring program was designed to identify areas with atypical selenium speciation and increase understanding of the potential mechanisms driving generation of organic and reduced forms of selenium.

This report was prepared for Teck by Adept Environmental Inc.

For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley.

Elk Valley Selenium Speciation Monitoring Program

2021 Annual Report

Submitted to: Teck Coal Limited

Submitted by: **ADEPT Environmental Sciences Ltd.** 2223 11th Ave. East, Vancouver, BC, Canada

+1 604 725 3727

Report No. 022-0004-01 Rev0

14 April 2022

Table of Contents

1.0	INTRO	DDUCTION1
2.0	BACK	(GROUND1
	2.1	Scope, Objectives, and Study Questions1
	2.2	Overview of 2021 SeSMP Study Design2
	2.3	Conceptual Site Model for Selenium Speciation
3.0	METH	ODS5
	3.1	Regional Survey5
	3.2	Longitudinal Patterns11
	3.3	Seasonality13
	3.4	Mechanisms13
	3.5	Bioaccumulation
4.0	RESU	LTS17
	4.1	Regional Survey17
	4.2	Longitudinal Patterns
	4.3	Seasonality25
	4.4	Mechanisms
	4.5	Bioaccumulation
5.0	INTER	PRETATION
	5.1	Study Question 140
	5.2	Study Question 240
	5.3	Study Question 341
	5.4	Study Question 442
6.0	RECO	MMENDATIONS43
	6.1	2022 SeSMP Study Design43
	6.2	Other Recommendations
7.0	REFE	RENCES

TABLES

Box 1. Goal, objectives, and study questions for the SeSMP	2
Table 1. Outline of how 2021 SeSMP study components address the study questions	3
Table 2. Compliance and Order stations monitored for selenium speciation	6
Table 3. Summary of speciation monitoring in 2021 at permitted sedimentation pond discharges	7
Table 4. Summary of local and regional monitoring programs that measured selenium speciation in 2021	8
Table 5. Selenium speciation at Compliance Points specified in Section 2 of Permit 107517 (2021)	17
Table 6. Selenium speciation at Order Stations specified in Section 3 of Permit 107517 (2021)	18
Table 7. Selenium speciation data from sedimentation pond and buffer pond discharge monitoring in 2021	19
Table 8. Selenium speciation and benthic invertebrate tissue selenium data from the regional survey of sedimentation ponds (24 August – 3 September 2021)	20
Table 9. Details of sampling locations for the longitudinal study	23
Table 10. Selenium speciation and benthic invertebrate tissue selenium data from the longitudinal study (24 August – 3 September 2021)	23
Table 11. Selenium speciation and benthic invertebrate tissue selenium data from the seasonal study (28 August – 7 December 2021)	26
Table 12. Forward stepwise GLM variable selection results for subsets of predictors	31
Table 13. Forward stepwise GLM variable selection results for combined sets of predictors	33
Table 14. Modelled and measured benthic invertebrate selenium data from the 2021 SeSMP	35

FIGURES

Figure 1.	Conceptual model for changes to selenium speciation at Teck's Elk Valley operations	5
Figure 2.	Longitudinal gradients of selenite (upper panels) and methylseleninic acid (lower panels)	24
Figure 3.	Partial seasonal cycle of selenium species concentrations at the inflow (open symbols) and outflow (filled symbols) of three study sedimentation ponds	27
Figure 4.	Partial seasonal patterns of benthic invertebrate selenium concentrations at the inflow (open symbols) and outflow (filled symbols) of three study sedimentation ponds	28
Figure 5:	Evaluation of bioaccumulation tool performance on the derivation dataset (grey symbols) and data collected in the 2021 SeSMP (coloured symbols)	36
Figure 6.	Model residuals (log-scale differences between modelled and observed benthic invertebrate selenium concentrations) in relation to selenium species concentrations	37
Figure 7.	Maximum organoselenium concentrations reported in 2021 in comparison to concentrations measured for the SeSMP (24 August – 3 September 2021)	38
Figure 8.	Relationship between benthic invertebrate selenium concentrations, organoselenium concentrations measured in the SeSMP, and 2021 peak organoselenium concentrations measured in other monitoring	39

ATTACHMENTS

- Attachment A. Speciation Sampling Locations for the 2021 Regional Survey of Sedimentation Ponds and Regional and Local Monitoring Programs
- Attachment B. Predictor Variables from the 2021 Regional Survey of Sedimentation Ponds
- Attachment C. Selenium Speciation Associated with Maximum Reported Organoselenium Concentrations in 2021 in Local and Regional Monitoring Programs
- Attachment D. Sedimentation Pond Summary Sheets
- Attachment E. Heat Maps of Maximum Organoselenium Concentrations in 2021 Regional and Local Monitoring
- Attachment F. Factor Loading Scores from Principal Components Analysis of Predictor Variables

GLOSSARY

μg/L	micrograms/Liter
AFDM	Ash Free Dry Mass
AIC	Akaike Information Criterion
BI [Se]	Benthic Invertebrate Tissue Selenium Concentration
Schwarz's BIC	Schwarz's Bayesian Information Criterion
CABIN	Canadian Aquatic Biomonitoring Network
CALA	Canadian Association for Laboratory Accreditation
CMm	Coal Mountain Mine
DMDSe	Dimethyldiselenide
DMSe	Dimethylselenide
DMSeO	Dimethylselenoxide
DO	Dissolved Oxygen
DOC	Dissolved Organic Carbon
DS	Downstream
EMC	Environmental Monitoring Committee
EVO	Elkview Operations
EVO SRF	Elkview Saturated Rock Fill
FRO	Fording River Operations
GHO	Greenhills Operations
GPS	Global Positioning System
GLM	General Linear Model
ICP-MS	Inductively Coupled Plasma Mass Spectrometry
km	kilometer
LAEMP	Local Aquatic Effects Monitoring Program
LCO	Line Creek Operations
MeSe(IV)	Methylseleninic acid
MeSe(VI)	Methaneselenonic acid
mg/kg dw	milligrams/kilogram dry weight
mL	milliliter
m/s	meters/second
ORP	Oxidation Reduction Potential
РСА	Principal Component Analysis
r ²	model coefficient of determination
RAEMP	Regional Aquatic Effects Monitoring Program
SeCN	Selenocyanate
SeMet	Selenomethionine
SeSMP	Elk Valley Selenium Speciation Monitoring Program
Se(VI)	Selenate
Se(IV)	Selenite
SeSO ₃	Selenosulphate
TDS	Total Dissolved Solids
тос	Total Organic Carbon
TSS	Total Suspended Solids
US	Upstream
WLC AWTF	West Line Creek Active Water Treatment Facility

1.0 INTRODUCTION

ADEPT Environmental Sciences Ltd. (ADEPT) is pleased to provide Teck Coal Limited (Teck) with the following 2021 Annual Report on the Elk Valley Selenium Speciation Monitoring Program (SeSMP). The study design for the 2021 SeSMP was developed with advice and input from the Elk Valley Environmental Monitoring Committee (EMC). The study design, as well as the data analysis and interpretation presented herein, also received input from Dr. Jen Ings and Dr. Robin Valleau (Minnow), Dr. Kevin Brix (EcoTox LLC), Dr. Sam Luoma (Samuel N Luoma PhD LLC), and Dr. Peter Campbell (Institut National de la Recherche Scientifique). Field data presented in this report were collected by Minnow Environmental Inc. (Minnow) and Teck.

In combination with the State of the Science Report (Golder 2021a) and the 2021 SeSMP Study Design (Golder 2021b), this Annual Report addresses requirements for selenium speciation monitoring in Sections 8.6 and 9.11 of *Environmental Management Act* Amended Permit 107517 (11 March 2021).

2.0 BACKGROUND

2.1 Scope, Objectives, and Study Questions

The scope of the SeSMP was specified in Section 8.6 of Amended Permit 107517, which states:

The permittee must develop and implement a Selenium Speciation Monitoring Program. The Selenium Speciation Monitoring Program is intended to:

- Identify sites in the Designated Area, affected or potentially influenced by the permittee's current operations, where organic and reduced forms of selenium are occurring or are likely to occur;
- Investigate the physical and/or biogeochemical mechanisms driving selenium speciation and the generation of organic and reduced forms of selenium species; and
- · Assess the site-specific bioaccumulation of selenium in biological resources.

The Selenium Speciation Monitoring Program must include the following elements:

- i. Assessment of water quality and selenium tissue concentrations in benthic invertebrates; and
- *ii.* Characterization of factors that lead to enhanced selenium bioaccumulation in the receiving environment, as applicable.

In developing the study design for the SeSMP (Golder 2021b), an overarching goal was established that links the specific requirements in Section 8.6 to the broader environmental management objectives outlined for Teck in Permit 107517. Objectives in support of the goal were adopted directly from the intended outcomes of the SeSMP, as summarized above. Study questions were then developed to address each of the objectives.

A detailed rationale for the scope of the study questions, and how these questions address the objectives, is provided in Golder (2021b). In brief, the analysis in Golder (2021a) highlighted the greater importance of organoselenium species over the inorganic species selenate and selenite, both in terms of exhibiting larger changes in mine sedimentation ponds (making organoselenium an appropriate focus for studying mechanisms of change and spatial and temporal patterns of speciation) and in terms of having a larger influence on bioaccumulation (making organoselenium an appropriate focus for studying spatial and temporal patterns of speciation) and in terms of neurophare sedimentation). Accordingly, the SeSMP study questions laid out in the study design focus on characterizing spatial and temporal patterns of organoselenium production, and testing the existing

bioaccumulation tool that predicts how organoselenium species (in combination with other selenium species) affect bioaccumulation. The goal, objectives, and study questions for the SeSMP are provided in Box 1.

Goal	To better understand areas with atypical selenium speciation conditions and how these conditions affect site-specific selenium bioaccumulation. This understanding will support Teck's adaptive management planning to attain area-based environmental management objectives of protection of aquatic ecosystem health and management of bioaccumulation of selenium in the receiving environment.
	Identify sites in the Designated Area, affected or potentially influenced by Teck's current operations, where organic and reduced forms of selenium are occurring or are likely to occur.
Objectives	Investigate the physical and/or biogeochemical mechanisms driving selenium speciation and the generation of organic and reduced forms of selenium species.
	Assess the site-specific bioaccumulation of selenium in biological resources.
	Study Question 1: What is the spatial extent of detectable organoselenium?
Study	Study Question 2: Are there temporal trends in organoselenium concentrations?
Questions	Study Question 3: What are the mechanisms of organoselenium production?
	Study Question 4: Do new data support refinement of the speciation bioaccumulation tool?

The annual reporting requirement for the SeSMP is specified in Section 9.11 of Amended Permit 107517:

The permittee must prepare an annual report documenting the activities and results of monitoring undertaken for each element of the Selenium Speciation Monitoring Program, as per Section 8.6. The report must be submitted to the director and the EMC by April 15th of each year.

Per this requirement, the remainder of this report documents the approach (Sections 2.2 and 2.3), specific methods (Section 3), and results (Section 4) of the 2021 SeSMP. An interpretation of results to date to answer the study questions is provided in Section 5. Recommendations for the 2022 SeSMP are provided in Section 6.

2.2 Overview of 2021 SeSMP Study Design

The overall approach to answering the SeSMP study questions is discussed in detail in Golder (2021b) and outlined in Table 1. This approach has two parts:

The first part (Section 4 of the Golder 2021b study design) is an extensive (studying many locations) and intensive (measuring many things) investigation, to be conducted in the first three-year cycle of the SeSMP (2021 – 2023), intended to characterize spatial patterns and seasonal trends in organoselenium, provide insight into the conditions that facilitate organoselenium production, and test the ability of the speciation bioaccumulation tool to predict the effect of measured organoselenium concentrations on selenium concentrations in biota. It is anticipated that the investigation component of the SeSMP and associated objectives and study questions will be refined with each three-year cycle to build on the findings of previous cycles and refocus on key residual uncertainties.

The second part (Section 5 of the Golder 2021b study design) is an ongoing monitoring program aimed specifically at the interannual element of Study Question 2: *Are there temporal trends in organoselenium concentrations?* It is anticipated that the study design for ongoing monitoring will be re-evaluated and updated

upon completion of the investigation studies to confirm that monitoring locations, timing, and parameters are appropriate to the objectives of ongoing monitoring.

Study Question	Study Component	Overview of Study Design		
	Regional survey	Regional sampling of speciation, water quality, and tissue selenium concentrations. Includes sampling at compliance and Order stations on the Elk River, Fording River, Line Creek, and Michel Creek, at the outflow of all sedimentation ponds with a permitted discharge, and upstream and downstream of a set of sedimentation ponds selected to help answer Study Questions 2, 3, and 4.		
Study Question 1 (Spatial Extent)		Reporting on this component herein includes data tables, maps, and an interpretation of regional spatial patterns of speciation, focusing on peak organoselenium concentrations at each location.		
		Local sampling of speciation, water quality, and tissue selenium concentrations along a longitudinal spatial gradient downstream of selected sedimentation ponds.		
	Longitudinal patterns	Reporting on this component herein includes data tables, plots, and an interpretation of local spatial gradients of speciation at the three study sedimentation ponds.		
		Monthly sampling of speciation, water quality, and tissue selenium concentrations upstream and downstream of selected sedimentation ponds.		
Study Question 2	Seasonality	Reporting on this component herein includes data tables and plots of the partial seasonal data collected to date at the three study sedimentation ponds. A detailed analysis of seasonality will be provided in the 2022 SeSMP when a full annual cycle of data is available.		
(Temporal Trends)	Long-term trends	Ongoing monitoring of speciation at compliance and Order stations (quarterly) and permitted sedimentation pond discharges (annually) in each management unit. Weekly to monthly local monitoring at sites with identified uncertainty in projected speciation, to be reviewed as uncertainty is reduced. Reporting on this component herein includes tables of speciation data collected in		
		2021. An evaluation of interannual trends will be provided in the 2022 SeSMP.		
Study Question 3	Mechanisms	Correlation- and ordination-type analyses to relate differences in speciation among ponds (regional survey) and over time within ponds (seasonality) to pond characteristics and conditions.		
	Michanisins	Reporting on this component herein includes data tables, statistical analyses, and interpretation of evidence for factors contributing to changes in selenium speciation at the study sedimentation ponds.		
Study Question 4	Bioaccumulation	Use of paired speciation and tissue selenium data collected for Study Questions 1 and 2 to test and, if warranted, update the speciation bioaccumulation tool. Reporting on this component herein includes data tables, plots, and an interpretation of how well (and why) data collected in 2021 do or do not conform to the bioaccumulation tool.		

Table 1. Outline of how 202	I SeSMP study	components address	the study questions
-----------------------------	---------------	--------------------	---------------------

2.3 Conceptual Model for Selenium Speciation

Selenium speciation can vary greatly across different kinds of aquatic environments, affecting its fate (Milne 1998; Maher et al. 2010), bioaccumulative potential (Reidel et al. 1996; Simmons and Wallschläger 2005; Stewart et al. 2010), and resulting toxicity (Besser et al. 1993; Janz et al. 2010). Selenium can occur in natural waters as the oxyanions selenate (SeO₄²⁻, oxidation state VI) and selenite (SeO₃²⁻, oxidation state IV), as organic or inorganic selenides (oxidation state -II), and as elemental selenium (oxidation state 0).

Selenate and selenite are thermodynamically stable and highly soluble in natural waters (Milne 1998), although selenite is more reactive and has a relatively strong tendency to adsorb to organic and mineral solid phases (Faust 1981; Maher et al. 2010). In contrast, elemental selenium is insoluble and generally occurs where microbial activity has resulted in the deposition of selenium in the solid phase in sedimentations (Faust 1981; Dungan and Frankenberger 1999; Maher et al. 2010). Selenides have variable properties: some are soluble (e.g., seleninic acids), some are insoluble (e.g., metal selenides), and some are volatile (e.g., dimethylselenide). The amino acids selenomethionine and selenocysteine are organoselenides that are ubiquitous in living systems but rarely detected in surface waters (LeBlanc and Wallschläger 2016). Many organoselenides are highly labile and are not expected to persist in natural waters (LeBlanc and Wallschläger 2016; Jain 2017).

The biotic and abiotic processes that transform selenium from one species to another are extremely complex. Detailed overviews of these processes are available elsewhere (e.g., Maher et al. 2010; Eswayah et al. 2016; Ponton et al. 2020). Selenium speciation data collected by Teck in focused investigations and in local and regional monitoring were summarized and analyzed in Golder (2021a), with the following key findings:

- Selenium species that are most often detected in the Elk Valley are selenate, selenite, dimethylselenoxide (DMSeO), and methylseleninic acid (MeSe(IV)). Methaneselenonic acid (MeSe(VI)), selenosulphate (SeSO₃), and selenocyanate (SeCN) have also been reported in some analyses but are localized and/or infrequently detected (<0.01 µg/L). Selenate is ubiquitous and predominates in Elk Valley waters. Selenite is detected in both reference and mine-affected waters but is generally present in higher concentrations at locations closer to mining. DMSeO and MeSe(IV) occur primarily in some mine sedimentation ponds and buffer ponds and in portions of tributaries immediately downstream of these ponds. Some pit waters contain relatively high concentrations of selenite but rarely have detectable organoselenium. Seeps rarely contain any detectable organoselenium and have consistently low concentrations of selenite. Organoselenium has been detected only rarely in Michel Creek or the Elk River but is occasionally detected in the Fording River.
- The most important species affecting selenium bioaccumulation in the Elk Valley are selenate, selenite, DMSeO, and MeSe(IV). An analysis of speciation and bioaccumulation data from the Elk Valley (de Bruyn and Luoma 2021) did not detect a contribution to bioaccumulation from any other species, although most other species were not detected in that dataset with sufficient frequency to provide a rigorous evaluation. Selenate and selenite alone can account for selenium bioaccumulation in most lotic areas in the Elk Valley, resulting in a consistent "typical" pattern of bioaccumulation relative to aqueous total selenium as described by the updated lotic bioaccumulation models (Golder 2020). Higher bioaccumulation in some areas is associated with DMSeO and MeSe(IV). The analysis of de Bruyn and Luoma (2021) indicates that the bioaccumulative potential of DMSeO and MeSe(IV) is on the order of 10× higher than selenate or selenite.
- Patterns of bioaccumulation support a draft screening value of 0.025 µg/L (expressed as the sum of DMSeO and MeSe(IV)) to indicate conditions that might cause an incremental increase in bioaccumulation relative to the normal range of variation in monitoring data. Organoselenium concentrations greater than 0.05 µg/L were more consistently associated with measured and modelled benthic invertebrate selenium concentrations outside the normal range of variability.
- The processes by which DMSeO and MeSe(IV) are generated have been linked to algal productivity and/or microbial activity in sedimentation ponds, consistent with published literature on biological reduction of selenium (e.g., Eswayah et al. 2016; Ponton et al. 2020). The inferred mechanism is assimilatory reduction of inorganic selenium to organoselenides, followed by enzymatic degradation and oxidation to form methylated selenium metabolites. The specific characteristics of sedimentation ponds that promote these processes appear to include nutrient availability and likely other factors that are not yet well understood (Lorax 2020).

 Concentrations of DMSeO and MeSe(IV) decline with distance downstream of where they are generated, and these rates of loss are faster than can be accounted for by dilution. This loss of organoselenium species from the aqueous phase is hypothesized to reflect some combination of chemical decomposition (LeBlanc and Wallschläger 2016; Jain 2017) and uptake by periphyton (de Bruyn and Luoma 2021).

The general and site-specific information summarized in Golder (2021a) was used to develop the conceptual model for organoselenium sources and fate at Teck's operations in the Elk Valley depicted in Figure 1. This conceptual model highlights the production of organoselenium in sedimentation ponds as the primary mechanism by which mine-related changes to speciation affect patterns of bioaccumulation in the Elk Valley.

Figure 1. Conceptual model for changes to selenium speciation at Teck's Elk Valley operations

3.0 METHODS

The following subsections describe the specific field, laboratory, and data analysis methods used to implement the study components outlined in Table 1. Each component followed the design outlined in Golder (2021b) with modifications as noted herein to adapt to field conditions and characteristics of the data collected.

All field sampling followed approved methods of the Elk Valley Regional Aquatic Effects Monitoring Program (RAEMP; Minnow 2020). Unless otherwise specified, all aqueous selenium speciation sampling, sample handling, and chemical analysis was conducted following standard methods provided by the analytical laboratory and adopted for Teck's regional water quality monitoring program. Speciation samples were submitted to Brooks Applied Labs (Brooks, Bothell, Washington) for analysis of selenate, selenite, DMSeO, MeSe(IV), MeSe(VI), SeCN, SeSO₃, and SeMet. Where noted, additional samples were collected and submitted for analysis of the volatile selenium species dimethylselenide (DMSe) and dimethyldiselenide (DMDSe).

3.1 Regional Survey

This study component focused on regional spatial patterns of selenium speciation in mainstem rivers and in relation to known or suspected sources of organoselenium, with a focus on sedimentation ponds per the conceptual model outlined in Section 2.3 (see analysis in Golder 2021a for further discussion). Speciation monitoring was conducted in 2021 at compliance and Order stations on the Elk River, Fording River, Line Creek, and Michel Creek, at most permitted sedimentation pond discharges, and in several local and regional monitoring programs in all major mine-affected drainages of the Elk Valley. All available data from these monitoring programs were retreived from Teck's water quality database and compiled to support the analyses below.

In addition to compiling data from ongoing and existing monitoring, a set of sedimentation ponds was selected for more intensive sampling in 2021 as described below. This intensive sampling program was intended to expand the spatial dataset to previously unsampled sedimentation ponds and supplement existing data for previously

sampled ponds. The focus of this intensive sampling was on sedimentation ponds with a surface discharge to downstream aquatic habitat, so that sampling could be paired with benthic invertebrate tissue selenium concentrations.

Sampling and Analysis – Local and Regional Monitoring

Monitoring of selenium speciation at compliance and Order stations (Table 2)¹ and permitted sedimentation pond discharges (Table 3) was conducted by Teck staff at Fording River Operations (FRO), Greenhills Operations (GHO), Line Creek Operations (LCO), Elkview Operations (EVO), and Coal Mountain Mine (CMM). Sedimentation Ponds shown in bold font in Table 3 were also included in the 2021 sedimentation pond study, discussed further below. Speciation monitoring under other local and regional programs (Table 4) was conducted by staff from Teck and Minnow. Monitoring locations sampled under the programs summarized in Tables 2 – 4 are shown on regional maps for each mine operation in Attachment A.

For all programs summarized below, water samples were taken in accordance with the procedures described in the most recent edition of the *British Columbia Field Sampling Manual for Continuous Monitoring Plus the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sedimentation, and Biological Samples* (BC MOE 2003) or by suitable alternative procedures as authorized by the Director. Speciation samples were submitted to Brooks for analysis.

Watercourse	Monitoring Location	EMS		
Compliance Points specified in Section 2 of I	Permit 107517			
Fording River	FR_FRABCH	E223753		
Fording River	GH_FR1	0200378		
Elk River	GH_ERC	0300090		
Line Creek	LC_LCDSSLCC	E297110		
Harmer Creek	EV_HC1	E102682		
Michel Creek	EV_MC2	E300091		
Michel Creek	CM_MC2	E258937		
Order Stations specified in Section 3 of Permit 107517				
Fording River	FR4/GH_FR1	0200378		
Fording River	FR5/LC_LC5	0200028		
Elk River	ER1/GH_ER1	0206661		
Elk River	ER2/EV_ER4	0200027		
Elk River	ER3/EV_ER1	0200393		
Elk River	ER4/RG_ELKORES	E294312		
Koocanusa Reservoir	LK2/RG_DSELK	E300230		

Table 2. Compl	liance and Order	stations monitored	for selenium s	peciation
----------------	------------------	--------------------	----------------	-----------

Notes: EMS = Environmental Monitoring System

¹ Water quality monitoring at the compliance and Order stations summarized in Table 2 is conducted in accordance with requirements in Sections 2 and 3 of Permit 107517. These monitoring points are intended to capture the combined effects of all upstream mining at representative locations along the major mine-affected watercourses in the Elk Valley. Accordingly, these locations are also being used by Teck to monitor regional patterns of selenium speciation in relation to mining.

Sedimentation Pond	EMS	Monitoring Location	Notes		
FRO Discharge Monitoring Program (Table 13 in Permit 107517)					
North Loop Pond	E102476	FR_NL1H	(a,b)		
Maintenance and Services Sed. Pond	E102478	FR_MS1	(a)		
Eagle Pond Decant	E102480	FR_EC1	(a)		
Clode Pond	E102481	FR_CC1	٠		
South Kilmarnock Sed. Pond – Phase I	E208394	FR_SKP1	(a)		
South Kilmarnock Sed. Pond – Phase II	E208395	FR_SKP2	(a,c)		
Smith Ponds	E261897	FR_SP1	•		
Swift-Cataract Sed. Pond to Fording River	E320694	FR_SCCAT	•		
Liverpool Sed. Ponds to Fording River	E304835	FR_LP1	(e)		
Post Sed. Ponds to Fording River	E304750	FR_PP1	•		
Lake Mountain Sed. Ponds to Lake Mountain Creek	E306924	FR_LMP1	(e)		
Floodplain Widening Sed. Pond Decant	E325311		(d)		
GHO Discharge Monitoring Program (Table 15 In Permit 107517)					
Greenhills Creek Sed. Pond Decant	E102709	GH_GH1	•		
Thompson Creek Sed. Pond Decant	E207436	GH_TC1	•		
Porter Creek Sed. Pond Decant	0200385	GH_PC1	•		
Wolfram Creek Sed. Pond Decant	E257795	GH_WC1	•		
Leask Creek Sed. Pond Decant	E257796	GH_LC1	• (c)		
Rail Loop Sed. Pond Decant	E207437	GH_RLP	• (c)		
Mickelson Creek at LRP Road	0200388	GH_MC2	(c)		
Wade Creek at LRP Road	E287433	GH_WADE	• (a)		
Wolf Creek Sed. Pond Decant	E305855	GH_WOLF_SP1	(c)		
Willow Creek Sed. Pond Decant	E305854	GH_WILLOW_SP1	(a)		
LCO Phase I Discharge Monitoring Program (Table 17 In Permit 107517)					
No Name Creek Pond Effluent to Line Creek	E221268	LC_LC9	(b)		
MSA North Ponds Effluent to Line Creek	E216144	LC_LC7	٠		
Contingency Treatment System Effluent To Line Creek	E219411	LC_LC8P1	(a)		
LCO Phase II Discharge Monitoring Program (Table 18 In Permit 107517)					
LCO Dry Creek Sed. Ponds Effluent to Dry Creek via Return Channel	E295211	LC_SPDC	•		
Diversion Structure Spillway (When In Use)	E295313	LC_DSSW	(d)		
Sed. Pond 1 Spillway (When In Use)	E295314	LC_SP1D	(d)		
Sed. Pond 2 Spillway (When In Use)	E295315	LC_SP2D	(d)		
EVO Discharge Monitoring Program (Tables 21 And 22 In Permit 107517)					
South Pit Creek Sed. Pond Discharge to Michel Creek	E296311	EV_SP1	•		
Milligan Creek Sed. Pond Discharge to Michel Creek	E208057	EV_MG1	•		
Gate Creek Sed. Pond Discharge to Michel Creek	E206231	EV_GT1	•		
Bodie Creek Sed. Pond Discharge to Michel Creek	E102685	EV_BC1	•		
Aqueduct Creek Control Structure to Aqueduct Creek	E302170	EV_AQ6	•		
Otto Creek at Mouth Discharge to Elk River	E102679	EV_OC1	(e)		
Goddard Creek Sed. Pond Discharge via Goddard Marsh to Elk River	E208043	EV_GC2	(e)		
Lindsay Creek Infiltration Basin Discharge to Ground	E258135	EV_LC1	• (c)		

Table 3. Summary of speciation monitoring in 2021 at permitted sedimentation pond discharges

Sedimentation Pond	EMS	Monitoring Location	Notes	
Dry Creek Sed. Pond Decant to Harmer Creek	E298590	EV_DC1	٠	
6 Mile Creek Sed. Pond Decant Discharge to Elk River	E102681	EV_SM1	(e)	
CMO Discharge Monitoring Program (Table 24 In Permit 107517)				
Decant Discharge from Main Interceptor Sed. Ponds	E102488	CM_SPD	٠	
Decant Discharge from Corbin Sed. Pond	E206438	CM_CCPD	٠	
Other Permitted Discharges				
Harmer Creek Sed. Pond	E102682	EV_HC1	٠	
West Line Creek AWTF Buffer Pond	E291569	WL_BFWB_OUT_SP21	•	

Notes: EMS = Environmental Monitoring System; Sed. = Sedimentation; ponds in **bold** were included in the 2021 SeSMP study (sampled upstream, downstream, and in-pond where possible); \bullet = sampled for selenium speciation in 2021; (a) = rarely discharges and/or was not discharging at time of sampling; (b) = flows to mine works; (c) = discharges to ground; (d) = not in use in 2021; (e) = not sampled in 2021, prioritized for sampling in 2022

|--|

Monitoring Program	Speciation Monitoring Locations in 2021
Corbin Sedimentation Pond	CM_CCPD, CM_CCRD, CM_CCOFF, CM_CCSC, CM_MC2, CM_14PIT-PIPE, CM_34PIPEDIS, CM_6PITDW, CM_CC1, CM_ND2, CM_SPD
LCO Dry Creek Water Management System / LCO Dry Creek LAEMP	LC_DC3, LC_DCEF, LC_SPDC, LC_DCDS, LC_DC1, LC_DC4, LC_FRUS, LC_FRB, LC_GRCK
LCO LAEMP	RG_SLINE/LC_SLC, RG_LI24/LC_LC1, RG_LCUT/LC_WLC, RG_LILC3/LC_LC3, RG_LISP24 /WL_DCP_SP24, RG_LIDSL/LC_LCDSSLCC, RG_LIDCOM/LC_LCC, RG_LI8/LC_LC4, RG_FRUL/LC_LC6, RG_FO23
Greenhills Creek and Gardine Creek	RG_GHUT, RG_GHNF, RG_GHBP, RG_GHFF / RG_GHFFA, RG_GAUT, RG_GANF, RG_GHP/GHPS
Fording River LAEMP	RG_UFR1/FR_UFR1, RG_HENUP/FR_HC3, RG_FRSCH2, RG_FRGHSC, RG_FOUCL/FR_FOUCL, RG_FOUNGD, RG_FODHE/FR_FR1, RG_FOUSH, RG_FRCP1SW, RG_MP1/FR_MULTIPLATE, RG_FOUKI/FR_FR2, RG_FOBKS/FR_FR3, RG_SCOUTDS/FR_SCOUTDS, RG_FOBSC/FR_FR4, RG_FRUPO/FR_FRRD, RG_FOBCP/FR_FRCP1, RG_FODPO/GH_PC2, RG_FOUEW/FR_FR5, RG_FO22/FR_FRABCH
West Line Creek AWTF	WL_BFWB_OUT_SP21, WL_LCI_SP02, WL_WLCI_SP01
EVO LAEMP	RG_ALUSM/EV_AC2, RG_MI25/CM_MC1, RG_ERCKUT, RG_ERCKDT/EV_ECOUT, RG_ERCK/EV_EC1, RG_GATE, RG_GATEDP, RG_BOCK, RG_MI3, RG_MIDER, RG_MIDBO, RG_MICOMP/EV_MC2
EVO SRF	F2_NWPI, F2_BPO, EV_MC2, EV_MC2a, EV_MC3, EV_EC1, EV_ECOUT, EV_BRD_LOT3, EV_BC1, EV_GT1, EV_ER1
EVO Dry Creek Water Treatment Project / Harmer Dam Removal Project	EV_HC1, EV_HC1a, EV_HCDSDAM, EV_DC2a, EV_DCOUT
RAEMP (not including LAEMP sites)	RG_CLODE, RG_KICKRG_GHCKD, RG_FODGH, RG_ALUSM, RG_HACKDS, RG_GRDS, RG_BACK, RG_ELELKO, RG_ELH93

Notes: FRO = Fording River Operations; LCO = Line Creek Operations; EVO = Elkview Operations; LAEMP = Local Aquatic Effects Monitoring Program; AWTF = Active Water Treatment Facility; SRF = Saturated Rock Fill; RAEMP = Regional Aquatic Effects Monitoring Program

Sampling and Analysis – 2021 Sedimentation Pond Study

A set of sedimentation ponds was selected for intensive sampling as described in Golder (2021b). Candidate ponds were required to have both safe access and a surface discharge to downstream aquatic habitat, to focus effort on sites with the greatest relevance to potential environmental effects, and so that benthic invertebrate

tissue could be collected for selenium analysis. Ponds were prioritized for sampling if they had no existing aqueous speciation and/or benthic invertebrate tissue selenium data, or if existing data indicated that the pond would help establish a range of low to high organoselenium concentrations. Of the 30 candidate ponds identified in Golder (2021b), 24 were prioritized for sampling following these criteria. Four of these (Willow Creek Secondary, Kilmarnock Creek Secondary, and LCO Dry Creek 1 and 2) had no inflow or outflow at the time of sampling. The remaining 20 ponds (those indicated in bold in Table 3) were sampled between 24 August and 3 September 2021.

At each sampled pond, locations were selected upstream of the pond inflow and downstream of the pond outflow. Locations were selected to be as close to the pond inflow and outflow as safely accessible and, where possible, suitable for collection of periphyton and benthic invertebrates. Sampling location maps for the 2021 regional survey of sedimentation ponds are provided in Attachment A.

Water quality samples and in situ water quality measurements (temperature, dissolved oxygen, pH, conductivity, specific conductance, oxidation-reduction potential, chlorophyll-a and phycocyanin) were collected from all upstream and downstream locations. Sampling was conducted as follows:

- Water samples were collected by wading into a mid-channel area (unless it was not practical or safe to do so), moving from downstream to upstream, so as not to collect water downstream of disturbed substrates. Samples were collected from mid-depth by inverting sample bottles below the surface of the water. Samples were taken to shore prior to adding applicable preservatives. Water samples being analyzed for dissolved parameters were filtered in the field using a clean syringe affixed with a 0.45-µm membrane. Once filtered, the sample was preserved immediately in the manner specified by the analytical laboratory. Global Positioning System (GPS) coordinates and sample date, time, and identifier were recorded on field sheets. Samples were kept cold until analysis. Samples were shipped to the analytical laboratory daily or every other day to achieve compliance with recommended analytical hold times.
- Water quality samples were analyzed by Canadian Association for Laboratory Accreditation Inc. (CALA)certified laboratories. Water samples were analyzed by ALS Environmental for the same suite of parameters as monthly samples collected by Teck, including total and dissolved metals, nutrients, major ions, and other conventional parameters such as total suspended and dissolved solids (TSS and TDS) and total and dissolved organic carbon (TOC and DOC). Speciation samples were analyzed by Brooks.
- Benthic invertebrate tissue chemistry samples were collected in triplicate at the nearest downstream or upstream riffle to the pond. Benthic invertebrate tissue chemistry samples were collected according to the Canadian Aquatic Biomonitoring Network (CABIN) protocol (Environment Canada 2012), using a net with a triangular aperture measuring 36 cm per side and a 400-µm mesh. During sampling, the technician moved across the stream channel from bank to bank in an upstream direction. The net was held immediately downstream of the technician's feet, so the detritus and invertebrates disturbed from the substrate were passively collected into the kick-net by the stream current. Upon collection of the sample using the kick and sweep sampling method, organisms in the sample were carefully removed from sample debris using tweezers until a minimum of approximately 0.5 g of wet tissue was obtained. Invertebrate tissue samples were then photographed to document taxa composition, placed into labelled, sterile, 20 mL scintillation vials, stored in a cooler with ice packs, and transferred to a freezer later in the day.
- Frozen samples were shipped by courier in coolers with ice packs to TrichAnalytics Inc. (Saanichton, BC).
 Samples were dehydrated upon receipt and were analyzed using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Results were reported on a dry weight basis.

- Triplicate composite samples of periphyton were collected for measurement of ash free dry mass (AFDM) and chlorophyll-*a*. Chlorophyll-*a* data provide an indication of the abundance of chlorophyll-producing algae within the periphyton community. AFDM data provide an indication of the total dried biomass of organisms comprising the periphyton community (e.g., algae, fungi, bacteria, protozoa). Composite samples were collected a minimum of 5 m apart.
- Periphyton samples were collected from riffle habitat with water depth of at least 5 cm and uniform substrate characteristics, including relatively flat rocks with a diameter of at least 12 cm. Five rocks were selected, excluding those that are too small, highly angular, or uncharacteristic in surface texture, and taken to shore. A thin rubber or acetate template with a 4 cm² opening in the middle was then placed firmly on each rock so that the periphyton could be scraped from the opening using a scalpel. Scrapings from each of the five rocks were placed on a wetted Whatman GF/F glass fiber filter (90 mm diameter, 0.7 µm pore size) to provide a single composite sample per station for chlorophyll-*a* analysis. The filter paper containing the composite sample was folded in half twice and then tightly wrapped with aluminum foil. The foil-wrapped sample was placed in a labelled Whirl-Pak® bag and stored in a cooler with freezer packs in the field until transfer later in the day to a freezer for storage. Samples can be stored frozen for up to 30 days as long as they are not exposed to light (APHA et al. 1998). The same five rocks sampled for chlorophyll-*a* were used to collect separate scrapings for analysis of AFDM. The material on the scalpel from each scraping was rinsed into a small prelabelled plastic jar with additional water added as necessary to cover the tissue. Each composite sample for AFDM analysis was then placed in a cooler until transfer to a freezer later in the day.

The following characteristics were recorded for each sedimentation pond:

- Aquatic vegetation was recorded as absent, sparse, common, or abundant. Recorded vegetation categories were cattails (*Typha* spp.), *Chara* spp., Bur-reed (*Sparganium* spp.), duckweed (*Lemna* spp.), blue-green algae, grasses, mare's tail (*Hippuris* spp.), water lily (Nymphaeaceae), rushes, sedges, water milfoil (*Myriophyllum* spp.), and 'other'.
- A description was recorded of features shading the pond.

Where possible, the following samples were collected within each sedimentation pond:

- Sedimentation samples were collected for grain size and TOC analysis from unlined ponds with accessible sedimentation. Sedimentation samples could not be collected from ponds that were lined (Corbin Reservoir, WLC AWTF Buffer Pond), could not be safely accessed (Wade Creek), or had vegetation that precluded access to sediment (Bodie North, Gate Creek, Milligan Creek, MSAN).
- In situ measurements of Secchi depth, water temp, DO, DO%, pH, conductivity and specific conductance, ORP, chlorophyll-*a*, and phycocyanin were collected from 3 locations at each pond. Depth profiles were collected at those locations if depth was >1 m.

Data Analysis

Speciation data from regional and local monitoring and the 2021 sedimentation pond study were compiled and summarized to provide a regional overview and visualization of patterns of selenium speciation across the Elk Valley. Concentration data were presented in tables, plotted to illustrate ranges at different types of sites, and used to generate maps to visually depict the spatial distribution of organoselenium concentrations across the major mine-affected drainages of the Elk Valley.

Heat maps were generated to show the maximum organoselenium concentration (as the sum of DMSeO and MeSe(IV)) measured at each location in 2021. These concentrations were colour-coded as in Golder (2021b) to show maximum measured concentrations relative to draft screening values, to support an interpretation of potential effects on bioaccumulation. Concentration ranges discussed in Golder (2021b) and the associated interpretation are:

- In lotic monitoring areas in the Elk Valley with no detectable organoselenium or detectable organoselenium <0.025 µg/L (shown as white symbols on the heat maps), selenium bioaccumulation is strongly inhibited by sulphate and organoselenium does not have a discernible effect on bioaccumulation.
- 0.025 to 0.05 µg/L organoselenium (shown as blue symbols) is sometimes associated with a discernible increment in bioaccumulation.
- 0.05 to 0.1 µg/L organoselenium (shown as yellow symbols) is often associated with a discernible increment in bioaccumulation.
- >0.1 µg/L organoselenium (shown as orange symbols) is consistently associated with a discernible increment in bioaccumulation.

3.2 Longitudinal Patterns

This study component was designed to repeat the longitudinal analysis in Golder (2021a) in three additional study reaches to test the consistency of selenium species loss rates across a range of creek conditions. Study reaches for longitudinal sampling were selected to meet the following criteria: 1) the source must have high enough concentrations and low enough dilution following discharge that organoselenium species should remain detectable at multiple downstream stations if they behave conservatively; 2) a downstream reach must be present with suitable habitat for benthic macroinvertebrates over several kilometres; and 3) the source and all downstream sites must be safely accessible for sampling anticipated peak organoselenium concentrations in late summer. Selected study reaches were lower Greenhills Creek downstream of Greenhills Main Sedimentation Pond, lower Harmer Creek downstream of Harmer Creek Sedimentation Pond, and upper Harmer Creek downstream of EVO Dry Creek Sedimentation Pond.

Sampling and Analysis

Multiple stations were sampled in each of the three study reaches to characterize longitudinal gradients in selenium species concentrations (Attachment A). Sample locations within each study reach were selected at the time of sampling based on considerations of safe access and available habitat, targeting locations near the source, 500 m to 1.5 km downstream of the source, 2 to 3 km downstream of the source, and 4 to 6 km downstream of the source. Speciation samples were also taken on Grave Creek upstream of Harmer Creek and on the Fording River upstream of Greenhills Creek. Four locations were sampled downstream of EVO Dry Creek and Harmer Creek sedimentation ponds. The planned location furthest downstream of Greenhills Creek Sedimentation Pond was not sampled because the Fording River flows through a steep canyon in this area and could not be safely accessed.

Field sampling methods were as described in Section 4.1. Water samples were taken for routine water chemistry and selenium speciation. In situ water quality parameters were recorded, triplicate composite benthic invertebrate tissue samples were collected for selenium analysis, and a periphyton sample was collected for measurement of AFDM and chlorophyll-a. Flow velocity was measured with a MF Pro velocity sensor at mid-depth at five points distributed across the channel.

Data Analysis

Data analysis followed the approach described in Golder (2021a) with modifications to accommodate differences between the sites analyzed therein and in the present study. Concentrations of each detected selenium species were adjusted for dilution using concurrent selenate concentrations, rather than sulphate as in the previous analysis. Golder (2021a) found that selenate exhibited no discernible loss after accounting for dilution (using sulphate) over 3.5 km in LCO Dry Creek or 6.1 km of Line Creek. Therefore, selenate provides an alternative conservative tracer of dilution that was more convenient for the present analysis for two reasons. First, the longitudinal gradients considered herein included stations above and below a confluence with a parent tributary. Use of selenate as a tracer simplified the calculation of dilution because upstream selenate concentrations were negligible (on Harmer Creek and Grave Creek) or well characterized (on the Fording River), whereas sulphate concentrations were non-negligible at all sites. Second, selenate concentrations were obtained from the same sample and analysis as the other species concentrations, and therefore were well matched and available for all calculations, whereas well-matched sulphate concentrations were not always available.

Where upstream selenate concentrations were negligible, selenium species concentrations were adjusted for dilution using the following equation:

$$[species]_{adj,a} = [species]_{raw,a} \times \frac{[Se(VI)]_{source}}{[Se(VI)]_a}$$

where [species] is the adjusted (*adj*) or unadjusted (*raw*) concentration of the species in question at site *a* and [Se(IV)] is the selenate concentration at the site nearest the sedimentation pond (*source*) or at site *a*. This calculation adjusts the measured concentration of a species to estimate what that concentration would have been if there had been no dilution, thereby permitting an unconfounded analysis of other factors that affect concentrations at successive sampling locations.

In the study reach downstream of Greenhills Main Sedimentation Pond, the concentration of selenate in the upstream Fording River ([Se(VI)]upstream) was taken into account in this adjustment using the following equation:

 $[species]_{adj,a} = \frac{[species]_{raw,a}}{1 - \left(([Se(VI)]_a - [Se(VI)]_{source}) / ([Se(VI)]_{upstream} - [Se(VI)]_{source}) \right)}$

This calculation adjusts the measured concentration of a species to estimate what that concentration would have been if there had been no mixing with Fording River water. This calculation can be applied to DMSeO and MeSe(IV) because there was no detectable organoselenium in upstream Fording River water, and therefore concentrations downstream of the confluence with Greenhills Creek reflect inputs from Greenhill Creek, dilution by Fording River water, and whatever additional factor(s) may cause changes in concentrations. This calculation would provide an incorrect estimate for selenite because there are detectable concentrations of selenite in the upstream Fording River.²

Travel time was calculated for each location downstream of the source sedimentation ponds by dividing distance from source (m) by flow velocity (m/s). The rate of loss of each species was estimated by calculating the slope (k) of the relationship between the natural logarithm of dilution-corrected concentration and travel time downstream of source. The apparent half-life of each species was then calculated as $t_{1/2} = ln(2)/-k$.

² Adjusting selenite concentrations in this case would require either accurate measurements of flow and mixing for Greenhills Creek and the upstream Fording River, or measured selenite concentrations just upstream of the confluence for both watercourses. Because these measurements were not taken in this program, the longitudinal analysis could not be conducted for selenite at this location.

3.3 Seasonality

This study component was designed to repeat the seasonal analysis in Golder (2021a) at three additional sedimentation ponds to test the consistency of seasonal patterns across a range of pond conditions. Locations for seasonal sampling were selected to meet the following criteria: 1) the site must have high enough concentrations that organoselenium species will be detectable in multiple months; 2) water quality at the site must not be confounded by variable inputs such as pit dewatering; and 3) the site must be safely accessible for sampling of both influent and effluent in all months. Selected sites were the same ponds identified in Section 3.2 for longitudinal sampling: Greenhills Main Sedimentation Pond, Harmer Creek Sedimentation Pond, and EVO Dry Creek Sedimentation Pond (Attachment A).

Sampling was planned to be conducted monthly for one year, with biweekly sampling during the peak growing season (July through September). At the time of preparation of this report, data were available from sampling in September through December 2021.

Sampling and Analysis

Field sampling methods were as described in Section 4.1. On each sampling date, water samples were taken upstream and downstream of each pond for routine water chemistry and selenium speciation. Field measurements were taken of pond conditions. Water samples were collected at the pond outflow for measurement of AFDM and chlorophyll-a. Composite benthic invertebrate and periphyton tissue samples were collected in triplicate upstream and downstream of each pond for selenium analysis. Documentation of periphyton (visual assessment of dominant taxa, coverage, CABIN scores) and benthic invertebrates (taxa present and proportional contribution, presence of annelids³) was conducted per RAEMP methods.

Data Analysis

For the present report, the available data were summarized to illustrate partial seasonal cycles. When a full annual cycle of data is available, data analysis will follow the approach described in Golder (2021a), including a comparison across the three sedimentation ponds sampled in this program and seasonal patterns described for Bodie Creek and Gate Creek sedimentation ponds in Golder (2021a). If seasonal patterns of organoselenium concentrations differ across sedimentation ponds, these differences will be evaluated with respect to pond characteristics and conditions as part of Study Question 3.

3.4 Mechanisms

The investigation of mechanisms was designed to identify factors related to sedimentation ponds that tend to be associated with relatively high (or low) concentrations of organoselenium. The overall goal of these analyses was to develop a basis for understanding what characteristics of sedimentation ponds, and under what conditions, cause relatively large changes to speciation. The intent is that the results of this analysis will help develop a mechanistic understanding of the processes underlying these changes. Such an understanding could inform Teck's adaptive management plan by helping to identify opportunities to mitigate the changes and thereby reduce selenium bioaccumulation risk.

³ Annelids can introduce variability in selenium chemistry results if included in composite tissue chemistry samples (Luoma 2021). The sampling protocol used in the RAEMP (and herein) addresses this effect as follows: if annelids are present in a sample, the field crew records on field sheets the number of annelids in the sample and the proportion of total biomass represented by annelids. If annelids represent ≤5% of total invertebrate biomass in the sample, annelids are excluded from the composite sample. If annelids represent >5%, annelids are included in the composite sample at roughly the same percentage of biomass as they are present in the kick sample and a separate annelid-only tissue sample is collected for analysis.

Rationale for the factors investigated in this analysis is provided in the study design (Golder 2021b). In brief, Golder (2021a) concluded that the mechanism of production of organoselenium is related to algal productivity and/or microbial activity. The inferred mechanism is assimilatory reduction of inorganic selenium to organoselenides, followed by enzymatic degradation and oxidation to form methylated selenium metabolites. Therefore, characteristics and conditions in sedimentation ponds that promote organoselenium production are expected to be those that promote biological activity in general, such as warm temperatures, long residence times, and ample nutrients and light. The 2021 SeSMP field program attempted to characterize these factors by measuring a range of site-specific characteristics of the sedimentation ponds (e.g., depth, aspect, vegetation, sediment, hydraulic residence time) and biogeochemical conditions in the sedimentation ponds (e.g., temperature, chlorophyll-*a*, nutrient concentrations, turbidity).

Data collected in the regional survey of sedimentation ponds were compiled into a set of dependent (*response*) variables that reflect changes to aqueous selenium speciation and a paired set of independent (*predictor*) variables that represent potential drivers of these speciation changes. The approach to data analysis was to use regression-type analysis to try to explain the variation in dependent variables using combinations of predictor variables. Exploratory ordination-type analyses were also conducted of how predictor variables vary and covary among ponds. It is anticipated that this analysis will also be able to consider seasonal patterns of predictors and dependent variables in the 2022 SeSMP annual report, when a full seasonal cycle of data is available.

There are several important caveats when interpreting the type of inferential analysis presented herein. First, correlation does not necessarily imply causation. Many of the predictor variables measured in this study are highly correlated, and regression algorithms may identify a relationship with one predictor that actually reflects an underlying causal relationship with another, correlated predictor. The measured predictor variables may also be correlated with unmeasured factors that may be the true, underlying cause of the observed patterns. Therefore, the relationships identified in such analyses must be considered indicative, not definitive, and should be interpreted in the context of other lines of evidence supporting or refuting causality. Such indicative relationships may be most useful to scope further studies, such as experimental manipulations that directly test causality. Second, the analysis herein is based on a "short and wide" dataset comprising many more potential predictors than independent observations of the dependent variable. Such an analysis is prone to an increased rate of false positive results because of the relatively large number of hypothesis tests being conducted. Applying more stringent criteria for statistical significance will reduce the rate of false positives, but will accordingly increase the rate of false negatives, potentially losing important information. For the objectives of an exploratory analysis such as that conducted herein, it may be more useful to accept an increased potential for false positives and to carefully interpret all statistically significant results in the context of other information and further studies.

Planned dependent variables for the analysis were: 1) aqueous concentrations of organoselenium species and selenite at the outflow of each pond; 2) incremental changes in organoselenium and selenite concentrations between inflow and outflow; and 3) benthic invertebrate tissue selenium concentrations downstream of each pond. Each of these dependent variables has strengths and limitations. Aqueous speciation is understood to be the main factor affecting bioaccumulation⁴ and reflects the overall outcome of processes in each pond that affect speciation. As a "snapshot" measure of this outcome, aqueous speciation is also temporally matched with the measurements of most predictor variables (e.g., pond conditions and water quality) taken during the study. The incremental change in species concentrations between inflow and outflow supplements this analysis by considering the potential influence of inflow speciation, but is less directly related to effects on bioaccumulation,

⁴ In addition to total selenium concentration, uptake-modifying factors such as sulphate, and other factors; however, sufficiently large changes in organoselenium concentrations can override all of these other factors.

can be confounded by temporal variability in inflow speciation, and could not be calculated for ponds where either inflow or outflow could not be sampled. Another limitation of both sets of aqueous speciation response variables is that one-time measurements may not accurately reflect longer-term average conditions at the pond. Therefore, benthic invertebrate tissue selenium concentrations downstream of each pond were included as a third type of dependent variable to provide an indirect measure of longer-term speciation conditions.

The review of speciation data in relation to benthic invertebrate selenium concentrations and in comparison to other speciation data collected in 2021 indicated that the one-time sampling conducted for the regional survey in late August and early September did not accurately reflect summer average or peak speciation downstream of all sedimentation ponds.⁵ Furthermore, the magnitude of difference between organoselenium concentrations collected in the regional survey and in other programs appeared to vary among ponds and was in some cases larger than differences among sedimentation ponds. These observations suggest that the speciation data collected in the regional survey may be subject to too much short-term variability to be relied upon for the present analysis. In light of this uncertainty, the analysis of mechanisms herein focused on benthic invertebrate selenium concentrations immediately downstream of the study sedimentation ponds as the dependent variable. Recommendations are provided in Section 6 for adjustments to the 2022 study design to better capture average speciation conditions, so that the evaluation of mechanism in future reporting will be able to include aqueous speciation as dependent variables.

Predictor variables for the analysis were site-specific characteristics of the sedimentation ponds (maximum depth, shade, various types of vegetation cover, sediment grain size and TOC, monthly mean hydraulic residence times), indicators of biogeochemical conditions in the ponds (various nutrient concentrations, chlorophyll-*a*, oxidation-reduction potential, turbidity and Secchi depth, dissolved oxygen, monthly mean temperatures), and water quality and in situ measurements taken upstream and downstream of the ponds. In total, 90 predictor variables were included in the analysis. Attachment B provides measured values of predictor variables included in the analysis. Where appropriate, predictors were log₁₀-transformed to linearize correlations with dependent variables and stabilize variance (e.g., concentrations of nutrients and other water quality parameters, temperature, and hydraulic residence time; transformation was not applied to pH, percentages, or scores for vegetation and shade).

The statistical tool used to analyze relationships between dependent and predictor variables was General Linear Models (GLM). GLM is a generalized form of analysis of variance that is able to consider continuous predictors (as in multiple linear regression), categorical predictors (as in analysis of variance), or both (as in analysis of covariance). Candidate GLMs were initially identified using stepwise variable selection, which is an approach that starts with a null model and progressively adds the most significant predictors (forward selection) or starts with a model including all predictors and progressively removes the least significant predictors (backward selection). Both types of stepwise variable selection proceed until some pre-defined criterion for significance is met, which for an exploratory analysis is often a liberal criterion (e.g., p<0.15). Forward variable selection was employed for the present analysis to facilitate comparison of a range of models of varying complexity.

When analyzing a large number of predictors, many of which are correlated, it is likely that there will be multiple sets of predictors that provide similarly good models (multiple "islands" of model fit in the predictor space). Because it selects only one predictor at each step (the most or least significant), stepwise regression is prone to gravitating to one set of predictors and missing other sets that may provide comparable explanatory power and may provide useful insights. One solution to this issue is to exhaustively test all possible combinations of

⁵ See Section 4.5 for details. The magnitude of short-term variability apparent in the 2021 data was greater than expected based on previous seasonal sampling reported in Golder (2020a). Reasons for this short-term variability may relate to large precipitation events that occurred shortly before the 2021 SeSMP field program.

predictors, but with a large set of predictors this is not always a feasible approach. A more efficient solution was adopted herein, modelled after approaches used to address a similar issue in cladistic analysis (Maddison 1991). The approach is to start the stepwise analysis with various subsets of starting predictors, which reduces the chance that a predictor that is informative in a later model step (in combination with other retained predictors) will be removed or skipped over because is outweighed in early steps by other, correlated predictors. Testing subsets of predictors also avoids the risk of losing information from the analysis because one or more predictors was not available for a case (e.g., ponds at which an upstream water sample could not be collected). Alternative GLMs identified in the various analyses can then be considered in combination to identify patterns of predictors or correlated predictors that warrant further evaluation.

Correlations among predictors were evaluated using Principal Component Analysis (PCA). PCA is an ordination technique that identifies the strongest axes of covariance among a set of variables. These axes are referred to as principal components (PCs). PCA reduces the multi-dimensional space described by many predictors into a lower-dimensional space described by these PCs, while retaining as much of the information in the original variables as possible. PCA can then be used to visualize how each of the original predictors correlates to the PCs, identifying clusters of predictors that covary. These clusters can be considered when interpreting the results of GLM, for example by identifying when a significant predictor added to a model might be reflecting the effect of another, correlated predictor.

Sets of predictors identified by GLM were considered along with the results of PCA to draw general conclusions about the predictors, types of predictors, and combinations of predictors that can explain the variation in organoselenium concentrations among sedimentation ponds, as reflected in observed benthic invertebrate selenium concentrations immediately downstream of the ponds.

3.5 Bioaccumulation

This study component tested our current understanding of the bioaccumulative potential of organoselenium. The analysis evaluated how well the speciation bioaccumulation tool was able to predict benthic invertebrate selenium concentrations from aqueous speciation using data collected in the regional survey and the longitudinal study.⁶ The degree of similarity between predicted and observed benthic invertebrate selenium concentrations in this new dataset was compared to the fit of the bioaccumulation tool to the dataset used to derive it. This comparison was performed as in de Bruyn and Luoma (2021): 1) by comparing modelled vs. measured benthic invertebrate selenium concentrations; and 2) by evaluating patterns of residuals as a function of concentrations of each selenium species.

⁶ This analysis will also consider data from the seasonality study in the 2022 SeSMP annual report, when a full seasonal cycle of data is available. This analysis will need to consider that the bioaccumulation tool was derived to predict benthic invertebrate selenium concentrations in the usual August-September sampling period. Application of the bioaccumulation tool to other months will help evaluate the magnitude and potential causes of seasonal changes in benthic invertebrate selenium concentrations.

4.0 **RESULTS**

4.1 Regional Survey

Field Data – Local and Regional Monitoring

Selenium speciation data are presented below for monitoring at regional compliance (Table 5) and Order stations (Table 6), permitted sedimentation pond discharges (Table 7), and locations included in the 2021 sedimentation pond study (Table 7, indicated by asterisks). Where benthic invertebrate selenium concentrations were collected under other programs in the same quarter, these data are also presented. Data from the other local and regional monitoring programs summarized in Table 4 are provided in Attachment C.

Chatian	•		Maxim	BI [Se]				
Station	Q	n	DMSeO	MeSe(IV)	MeSe(VI)	Se(IV)	Se(VI)	(mg/kg dw)
	Q1	1	< 0.01	<0.01	<0.01	0.11	91.9	-
FR_FRABCH - Fording River above Chauncey Creek (RG_FO22)	Q2	1	< 0.01	<0.01	< 0.01	0.17	94.2	9.3
	Q3	1	< 0.01	0.013	<0.01	0.15	55.1	8.7
	Q4	0	-	-	-	-	-	-
	Q1	2	<0.01	<0.01	<0.01	0.24	60.8	-
GH_FR1 - Fording	Q2	1	0.011	0.016	<0.01	0.27	66.8	-
Creek (RG_FODGH)	Q3	1	< 0.01	0.022	<0.01	0.26	37.1	10.1
	Q4	1	0.019	0.015	<0.01	0.60	65.0	-
	Q1	1	< 0.01	<0.01	< 0.01	0.010	2.8	-
GH_ERC - Elk River	Q2	3	< 0.01	<0.01	<0.01	0.022	3.6	-
below Thompson Creek (RG_EL20)	Q3	1	< 0.01	<0.01	<0.01	0.041	1.0	7.3
	Q4	2	< 0.01	<0.01	< 0.01	0.048	2.1	-
	Q1	12	0.015	0.032	0.076	0.46	47.1	-
LC_LCDSSLCC - Line	Q2	13	< 0.01	0.015	0.031	0.22	39.3	5.2
Line Creek (RG LIDSL)	Q3	12	< 0.01	0.014	0.008	0.15	48.7	7.0
	Q4	12	< 0.01	0.014	0.034	0.27	44.6	5.6
EV HC1 - Harmer	Q1	2	< 0.01	0.015	<0.01	0.17	44.6	-
Creek below spillway	Q2	4	< 0.01	0.021	<0.01	0.20	30.4	-
of Harmer Dam	Q3	5	0.013	0.033	<0.01	0.46	37.1	15.0
(RG_HACKDS)	Q4	3	0.013	0.014	< 0.01	0.25	35.7	13.8
	Q1	8	< 0.01	<0.01	<0.01	0.10	13.0	-
EV_MC2 - Michel Creek below Bodie Creek (RG_MICOMP)	Q2	10	< 0.01	<0.01	<0.01	0.073	10.3	-
	Q3	9	< 0.01	<0.01	<0.01	0.20	11.0	4.0
	Q4	7	< 0.01	<0.01	< 0.01	0.13	8.0	-
	Q1	8	< 0.01	<0.01	<0.01	0.072	7.9	-
CM_MC2 - Michel	Q2	10	< 0.01	< 0.01	< 0.01	0.06	4.2	-
	Q3	9	< 0.01	< 0.01	< 0.01	0.08	4.7	3.7
	Q4	7	< 0.01	<0.01	< 0.01	0.097	9.4	-

Table 5. Selenium speciation at Compliance Points specified in Section 2 of Permit 107517 (2021)

Notes: DMSeO = dimethylselenoxide; MeSe(IV) = methylseleninic acid; MeSe(VI) = methaneselenonic acid; Se(IV) = selenite; Se(VI) = selenate; BI [Se] = benthic invertebrate tissue selenium concentration (mean of 5 replicates); non-detect results shown in grey; these data are also shown in Attachment E as organoselenium = DMSeO + MeSe(IV)

Chatting.			Maxin	BI [Se]				
Station	Q	n	DMSeO	MeSe(IV)	MeSe(VI)	Se(IV)	Se(VI)	(mg/kg dw)
GH FR1 - Fording	Q1	2	< 0.01	<0.01	<0.01	0.24	60.8	-
River below	Q2	1	0.011	0.016	<0.01	0.27	66.8	-
River below Greenhills Creek	Q3	1	< 0.01	0.022	<0.01	0.26	37.1	10.1
(RG_FODGH)	Q4	1	0.019	0.015	<0.01	0.60	65.0	-
	Q1	1	< 0.01	<0.01	<0.01	0.15	42.8	-
LC_LC5 - Fording	Q2	1	< 0.01	<0.01	<0.01	0.20	56.5	6.3
Creek (BG EO23)	Q3	2	< 0.01	0.012	<0.01	0.32	35.6	7.7
	Q4	1	< 0.01	<0.01	<0.01	0.26	42.3	7.1
	Q1	1	< 0.01	<0.01	<0.01	0.049	2.7	6.3
GH_ER1 - Elk River	Q2	1	< 0.01	<0.01	<0.01	0.023	3.3	-
above Fording River (RG_ELUEL)	Q3	1	< 0.01	<0.01	<0.01	0.029	1.1	8.2
	Q4	1	< 0.01	<0.01	<0.01	0.036	2.1	-
EV_ER4 - Elk River below Fording Biver (RC El 10)	Q1	1	< 0.01	<0.01	<0.01	0.055	14.3	-
	Q2	1	< 0.01	<0.01	<0.01	0.078	13.5	-
	Q3	2	< 0.01	<0.01	<0.01	0.11	13.3	7.4
	Q4	1	< 0.01	<0.01	<0.01	0.055	12.1	-
	Q1	1	< 0.01	<0.01	<0.01	0.057	10.3	-
EV_ER1 - Elk River	Q2	1	< 0.01	0.014	<0.01	0.092	17.3	-
below Michel Creek (RG_EL1)	Q3	2	< 0.01	< 0.01	<0.01	0.091	10.8	6.8
	Q4	1	< 0.01	<0.01	<0.01	0.058	8.7	-
RG_FLKORES - Elk	Q1	1	< 0.01	<0.01	<0.01	0.099	8.5	-
River above Elko	Q2	1	< 0.01	<0.01	<0.01	0.051	4.0	-
Reservoir	Q3	1	< 0.01	0.018	<0.01	0.33	8.7	10.6
(RG_ELELKO)	Q4	1	<0.01	<0.01	<0.01	0.058	4.1	-
RG DSFLK -	Q1	1	< 0.01	<0.01	<0.01	0.036	2.0	-
Koocanusa	Q2	1	< 0.01	<0.01	<0.01	0.008	0.2	-
Reservoir below Elk	Q3	1	< 0.01	<0.01	<0.01	0.041	1.1	-
River	Q4	1	< 0.01	<0.01	<0.01	0.028	1.0	-

Table 6. Selenium speciation at Order Stations specified in Section 3 of Permit 107517 (2021)

Notes: DMSeO = dimethylselenoxide; MeSe(IV) = methylseleninic acid; MeSe(VI) = methaneselenonic acid; Se(IV) = selenite; Se(VI) = selenite; BI [Se] = benthic invertebrate tissue selenium concentration (mean of 5 replicates); non-detect results shown in grey; these data are also shown in Attachment E as organoselenium = DMSeO + MeSe(IV)

Sodimentation Dand (Monitoring Location)	Date of	Maximum Selenium Species Concentrations per Quarter (µg/L)						
Sedimentation Pond (Monitoring Location)	Max. OrgSe	DMSeO	MeSe(IV)	MeSe(VI)	Se(IV)	Se(VI)		
Eagle Pond (FR_EAGLENORTH)	06 May	< 0.01	<0.01	< 0.01	0.29	359		
Clode Main (FR_CC1)	09 Aug	0.016	0.015	< 0.01	0.38	169		
Henretta Pit (FR_HENLAKE)	18 Mar	< 0.01	0.026	< 0.01	0.75	45		
Smith Ponds (FR_SP1)*	31 Aug	< 0.01	0.032	< 0.01	0.47	28.5		
Swift-Cataract Sed. Pond (FR_SCCAT)*	31 Aug	0.018	0.13	< 0.01	1.1	521		
Post Sed. Ponds (FR_PP1)	23 Sep	< 0.01	0.10	< 0.01	3.0	282		
Floodplain Widening Sed. Pond (FR_FLD)	23 Dec	< 0.01	< 0.01	< 0.01	0	0		
Greenhills Creek Sed. Pond (GH_GH1)	14 Sep	0.16	0.12	< 0.01	3.4	133		
Thompson Creek Sed. Pond (GH_TC1)	09 Sep	0.43	0.18	< 0.01	4.4	140		
Porter Creek Sed. Pond (GH_PC1)*	31 Aug	< 0.01	<0.01	< 0.01	0.18	77.6		
Wolfram Creek Sed. Pond (GH_WC1)	22 Jun	0.037	0.11	< 0.01	2.2	229		
Leask Creek Sed. Pond (GH_LC1)	22 Jun	0.025	0.10	< 0.01	1.7	356		
Rail Loop Sed. Pond (GH_RLP)	06 Jul	0.012	0.011	< 0.01	1.6	10.8		
Wade Creek (GH_WADE)*	26 Aug	< 0.01	0.016	< 0.01	0.18	0.8		
MSA North Ponds (LC_LC7)*	30 Aug	< 0.01	<0.01	< 0.01	0.074	7.75		
LCO Dry Creek Sed. Ponds (LC_SPDC)	03 Aug	0.088	0.049	< 0.01	1.8	71.9		
South Pit Creek Sed. Pond (EV_SP1)*	27 Aug	0.027	0.19	< 0.01	0.48	116		
Milligan Creek Sed. Pond (EV_MG1)*	27 Aug	0.057	0.22	< 0.01	3.8	59.3		
Gate Creek Sed. Pond (EV_GT1)	26 Oct	0.087	0.083	< 0.01	1.0	223		
Bodie Creek Sed. Pond (EV_BC1)	05 Jul	0.18	0.097	< 0.01	2.7	207		
Aqueduct Creek Control Structure (EV_AQ6)*	30 Aug	< 0.01	0.029	< 0.01	0.44	3.8		
Lindsay Creek Infiltration Basin (EV_LC1)*	30 Aug	< 0.01	0.015	< 0.01	0.22	1.4		
Dry Creek Sed. Pond (EV_DC1)	12 Aug	0.017	0.22	< 0.01	2.2	148		
Main Interceptor Sed. Ponds (CM_SPD)	14 Apr	0.014	0.011	< 0.01	0.39	6.4		
Corbin Sed. Pond (CM_CCPD)	02 Feb	< 0.01	0.007	< 0.01	0.30	30.9		
Harmer Creek Sed. Pond (EV_HC1)	12 Aug	0.013	0.033	< 0.01	0.46	30.4		
WLC AWTF Buffer Pond (WL_BFWB_OUT_SP21)	27 Apr	0.12	0.027	0.583	1.0	15.3		

Table 7. Selenium speciation data from sedimentation pond and buffer pond discharge monitoring in 2021

Notes: DMSeO = dimethylselenoxide; MeSe(IV) = methylseleninic acid; MeSe(VI) = methaneselenonic acid; Se(IV) = selenite; Se(VI) = selenate; non-detect results shown in grey; * = sample from regional survey of sedimentation ponds (same value reported in Table 8); these data are also shown in Attachment E as organoselenium = DMSeO + MeSe(IV)

Field Data – 2021 Sedimentation Pond Study

Selenium speciation data and benthic invertebrate selenium concentrations upstream and downstream of the sedimentation ponds sampled in the 2021 regional survey are presented in Table 8. Sedimentation pond characteristics and conditions are summarized in Pond Summary Sheets (Attachment D) and provided in detail in tables (Attachment B).

Table 8. Selenium speciation and benthic invertebrate tissue selenium data from the regional survey of sedimentation ponds (24 August – 3 September 2021)

Codimentation Dand			BI [Se]					
Sedimentation Pond		DMDSe	DMSe	DMSeO	MeSe(IV)	Se(IV)	Se(VI)	(mg/kg dw)
Carbin Deconvoir	US	< 0.01	< 0.01	<0.01	<0.01	0.092	29.1	1.8
Cordin Reservoir	DS	< 0.01	<0.01	<0.01	0.015	0.12	23.4	6.5
CDD Dond	US	< 0.01	<0.01	<0.01	<0.01	0.58	4.4	10.0
SPD Pond	DS	< 0.01	<0.01	< 0.01	0.014	0.53	4.0	11.7
Aquaduat Control	US	< 0.01	< 0.01	<0.01	0.019	0.38	3.63	(a)
Aqueduct Control	DS	< 0.01	<0.01	< 0.01	0.029	0.44	3.75	18.3
Rodia North	US	< 0.01	<0.01	0.034	0.076	1.8	190	(a)
	DS	< 0.01	<0.01	<0.01	0.029	1.2	195	48.7
	US	< 0.01	<0.01	< 0.01	0.019	0.92	124	18.0
EVO DIV CIEEK	DS	< 0.01	0.16	< 0.01	0.066	1.3	131	55.3
Harmar Crack	US	< 0.01	< 0.01	< 0.01	0.023	0.31	30.8	14.7
Harmer Creek	DS	<0.01	<0.01	< 0.01	0.028	0.34	29.5	21.7
Cata Craak	US	<0.01	<0.01	< 0.01	0.026	0.86	207	(a)
Gale Creek	DS	< 0.01	<0.01	< 0.01	0.055	0.95	202	39.3
Lindsay 2	US	< 0.01	<0.01	< 0.01	<0.01	0.086	2.9	(a)
	DS	< 0.01	<0.01	< 0.01	0.015	0.22	1.45	11.3
Milligan Creek	US	< 0.01	<0.01	< 0.01	0.030	1.5	82.4	21.3
	DS	0.028	0.14	0.057	0.22	3.8	59.3	62.0
South Dit Crook	US				(a)			
South Pit Creek	DS	<0.01	<0.01	0.027	0.19	0.48	116	57.3
Swift Crook Secondary	US	< 0.01	<0.01	0.018	0.096	0.52	244	34.7
Swift Creek Secondary	DS	< 0.01	<0.01	< 0.01	0.133	1.1	521	(a)
Clada Main	US	< 0.01	<0.01	< 0.01	<0.01	0.15	271	5.4
Clode Main	DS	< 0.01	<0.01	<0.01	0.015	0.32	164	17.7
Dortor Crock Cocondon	US	< 0.01	<0.01	0.012	0.018	0.34	76.3	4.2
Porter Creek Secondary	DS	<0.01	<0.01	<0.01	<0.01	0.18	77.6	17.0
Smith Donde	US	<0.01	<0.01		(b)			(a)
Simili Polius	DS	< 0.01	0.031	< 0.01	0.032	0.47	28.5	24.3
Groophills Main	US	< 0.01	<0.01	< 0.01	0.031	1.1	140	17.7
	DS	< 0.01	0.026	0.042	0.082	3.8	120	20.3
Thompson Lower	US	< 0.01	<0.01	0.18	0.22	4.9	113	15.3
mompson Lower	DS	< 0.01	0.075	0.013	0.071	2.3	123	45.3
Wade Bond Lower	US	<0.01	< 0.01	<0.01	<0.01	0.14	0.78	20.3
	DS	< 0.01	< 0.01	<0.01	0.016	0.18	0.83	13.0
MSAN 1	US				(c)			
	DS	<0.01	< 0.01	< 0.01	<0.01	0.074	7.8	11.3
	US	< 0.01	<0.01	0.023	<0.01	0.39	5.8	(a)
	DS	<0.01	< 0.01	< 0.01	<0.01	0.16	30.1	17.3

Notes: US = upstream; DS = downstream; DMDSe = dimethyldiselenide; DMSe = dimethylselenide; DMSeO = dimethylselenoxide; MeSe(IV) = methylseleninic acid; Se(IV) = selenite; Se(VI) = selenate; BI [Se] = benthic invertebrate tissue selenium concentration (mean of 3 replicates); "-" = no datum available; non-detect results shown in grey; (a) = sample not collected because no suitable habitat present (e.g., because water enters or leaves the sedimentation pond through a pipe) or because inflow location could not be located; (b) = sample lost in transit; (c) = samples not collected because no safe access; these data are also shown in Attachment E as organoselenium = DMSeO + MeSe(IV)

Data Analysis

Selenium speciation data collected in regional and local monitoring (Tables 5 and 6; Attachment C), sedimentation ponds (Tables 7 and 8), and the longitudinal study (Table 10, below) were plotted on regional heat maps for each mine operation to provide a visual overview of patterns of speciation across the Elk Valley (Attachment E). As described in Section 3.1, the maps in Attachment E show the maximum measured organoselenium concentration at each location in 2021 relative to draft screening values, and the associated tables (Tables 5 and 6; Attachment C) show individual species concentrations associated with the sampling event that had that maximum measured organoselenium concentration. High-level regional patterns of maximum organoselenium concentrations apparent on the heat maps and local patterns apparent in Attachment C are discussed below.

At a regional scale, the patterns of organoselenium concentrations are consistent with the interpretation in Golder (2021b). The highest organoselenium concentrations occur immediately downstream of sedimentation ponds, with maximum reported concentrations ranging from <0.01 μ g/L to >0.2 μ g/L (Table 7). These concentrations decline with distance due to dilution and loss processes. Declines in concentrations are gradual along larger tributaries (e.g., Harmer Creek downstream of EVO Dry Creek) and are more discontinuous where smaller mine-affected tributaries enter larger mainstem creeks and rivers that provide high dilution (e.g., Clode Creek entering the Fording River). As a result, concentrations in upper Greenhills Creek, Harmer Creek, and Line Creek tend to be <0.025 μ g/L or 0.025 – 0.05 μ g/L, whereas concentrations in the upper Fording River, Elk River, and Michel Creek are usually below detection and almost always <0.025 μ g/L. A reach of the Fording River immediately downstream of Greenhills Creek (GH_FR1 in Table 6) is an exception to this general pattern, with maximum organoselenium concentrations 0.025 – 0.05 μ g/L, reflecting proximity to Greenhills Main Sedimentation Pond and the relatively high flow from Greenhills Creek compared to most other mine-affected tributaries.

Local monitoring programs provide more spatial resolution on the broad patterns described above in areas that have been identified with elevated uncertainty about potential changes to speciation. Detailed analyses of patterns of speciation and related factors are provided in program-specific reporting. In brief, general patterns apparent in these local monitoring programs are:

- Corbin Sedimentation Pond monitoring is described in Teck (2021). Monitoring in 2021 found few detectable
 organoselenium concentrations in mine works or receiving environment locations, consistent with previous
 sampling at CMO. Organoselenium was detected in 2021 at two locations, neither of which exceeded the
 draft screening value of 0.025 µg/L.
- LCO Dry Creek LAEMP monitoring is described in Minnow (2022a). Monitoring in 2021 found detectable
 organoselenium upstream of the LCO Dry Creek Water Management System (DCWMS), indicating that
 organoselenium generation is occurring either in upstream waste rock or in the reach of LCO Dry Creek
 between the spoils and the DCWMS. Maximum organoselenium concentrations at the outflow of the DCWMS
 were more than 2x higher than upstream of the DCWMS. After discharge to LCO Dry Creek, organoselenium
 concentrations declined progressively with distance to about one-third of the maximum outflow concentration.
 There was no discernible effect of LCO Dry Creek on organoselenium concentrations in the Fording River.
- LCO LAEMP monitoring is described in Minnow (2022b). Monitoring in 2021 found detectable
 organoselenium upstream of the WLC AWTF, indicating that organoselenium generation is occurring either in
 upstream waste rock or in the reach of Line Creek between the spoils and the AWTF. Maximum
 organoselenium concentrations at the outflow of the AWTF Buffer Pond were about 5x higher than upstream
 of the AWTF. Organoselenium concentrations in Line Creek declined progressively with distance from the
 AWTF and were below detection near the mouth of Line Creek. There was no discernible effect of Line Creek
 on organoselenium concentrations in the Fording River.

- Greenhills Creek and Gardine Creek monitoring is described in Minnow and Lotic (2022). Monitoring in 2021 found detectable organoselenium in upper Greenhills Creek, indicating that organoselenium generation is occurring either in upstream waste rock or in the reach of Greenhills Creek between the spoils and the sedimentation ponds. Maximum organoselenium concentrations downstream of Greenhills Main Sedimentation Pond were more than 10x higher than upstream. Organoselenium was not detected in Gardine Creek. As discussed in the regional overview above, there was a discernible effect of Greenhills Creek on organoselenium concentrations in a downstream reach of the Fording River.
- Fording River LAEMP monitoring is described in Minnow (2022c). Monitoring in 2021 found no detectable
 organoselenium at 14 of 19 locations along the Fording River and <0.025 µg/L organoselenium at the
 remaining five locations.
- EVO LAEMP monitoring is described in Minnow (2022d). Monitoring in 2021 found maximum organoselenium concentrations in Erickson Creek ranging from below detection in upstream reaches to 0.025 0.05 μg/L near the mouth. Higher organoselenium concentrations occurred downstream of sedimentation ponds on Gate Creek (0.05 0.1 μg/L) and Bodie Creek (>0.2 μg/L). Organoselenium concentrations in Michel Creek were mostly below detection and always <0.025 μg/L.
- EVO SRF monitoring is described in Minnow (2022e). Monitoring in 2021 found maximum organoselenium concentrations in the range 0.025 0.05 μg/L at the SRF Buffer Pond Outflow and upstream reaches of Erickson Creek, with higher concentrations (0.05 0.1 μg/L) near the mouth. Higher maximum organoselenium concentrations occurred downstream of sedimentation ponds on Gate Creek (>0.1 μg/L) and Bodie Creek (>0.2 μg/L). Organoselenium concentrations in Michel Creek and the Elk River were mostly below detection and always <0.025 μg/L.
- EVO Dry Creek Water Treatment Project / Harmer Dam Removal Project monitoring found the highest maximum organoselenium concentrations downstream of EVO Dry Creek Sedimentation Pond (>0.2 µg/L). Concentrations declined along Harmer Creek to <0.025 µg/L upstream of Harmer Creek Sedimentation Pond, increasing by about 1.5x downstream of the sedimentation pond.

4.2 Longitudinal Patterns

Field Data

Distances of sampling locations from the study sedimentation ponds, flow velocities at each location, and calculated travel times downstream of the ponds are summarized in Table 9.

Site			
Distance (km)	watercourse	Measured flow velocity (m/s)	Calculated travel time (n)
EVO Dry Creek Sedimentatio	on Pond		
0.01	EVO Dry Creek	-	0.00674
0.6	Harmer Creek	0.412 ± 0.186	0.679
2.3	Harmer Creek	0.246 ± 0.314	1.71
5.4	Harmer Creek	0.373 ± 0.329	4.02
Harmer Creek Sedimentation	n Pond		
0.09	Harmer Creek	-	0.0536
0.55	Harmer Creek	0.467 ± 0.266	0.282
3.5	Grave Creek	0.543 ± 0.201	1.88
4.7	Grave Creek	0.516 ± 0.258	2.53
Greenhills Main Sedimentat	ion Pond		
0.06	Greenhills Creek	-	0.0428
0.7	Fording River	0.389 ± 0.221	0.509
2.1	Fording River	0.382 ± 0.223	1.53

Table 9. Details of sampling locations for the longitudinal stud	 Details of sampling locations for the longitudinal st 	udy
--	---	-----

Notes: Distance is from sedimentation pond outflow; flow velocity is mean ± standard deviation of 5 measurements; "-" = not measured; measured flow velocity was applied to the reach between that location and the next upstream location

Selenium speciation and benthic invertebrate tissue selenium concentrations from the longitudinal study are summarized in Table 10. Note that data in Table 10 for the first location downstream of each sedimentation pond are the same data reported as "DS" for these three sedimentation ponds in Table 8.

Table 10. Selenium speciation and benthic invertebrate tissue selenium data fro	m the longitudinal study
(24 August – 3 September 2021)	

Site		Seleniu	m Species Co	ncentrations	(μg/L)		Dissolved Total [Se]		BI [Se]
Distance (km)	DMDSe	DMSe	DMSeO	MeSe(IV)	Se(IV)	Se(VI)	[Se] (µg/L)	(µg/L)	(mg/kg dw)
EVO Dry Creek Sedimentation Pond									
0.01	< 0.01	0.161	< 0.01	0.066	1.3	131	136	135	55.3
0.6	<0.01	<0.01	< 0.01	< 0.01	0.31	41.3	42.3	42.8	9.0
2.3	<0.01	< 0.01	< 0.01	0.014	0.34	40.2	47.7	(a)	14.7
5.4	<0.01	< 0.01	< 0.01	0.014	0.29	32.8	(a)		15.3
Harmer Creek Sedimentation Pond									
0.09	<0.01	< 0.01	< 0.01	0.028	0.34	29.5	(a)		21.7
0.55	< 0.01	<0.01	< 0.01	0.019	0.34	25.7	(a)		14.0
3.5	< 0.01	<0.01	< 0.01	0.021	0.31	26.4	21.9 22.8		12.0
4.7	< 0.01	<0.01	< 0.01	0.017	0.27	20.7	(a)		15.0
Greenhills Main Sedimentation Pond									
0.06	<0.01	0.026	0.042	0.082	3.8	120	(a)		20.3
0.7	<0.01	< 0.01	< 0.01	0.023	0.61	63.9	(a)		11.3
2.1	<0.01	<0.01	<0.01	0.017	0.30	42.0	45.1	45.2	8.53

Notes: Distance = distance from sedimentation pond outflow; DMDSe = dimethyldiselenide; DMSe = dimethylselenide; DMSeO = dimethylselenoxide; MeSe(IV) = methylseleninic acid; Se(IV) = selenite; Se(VI) = selenate; BI [Se] = benthic invertebrate selenium concentration (mean of 3 replicates); "-" = no datum available; non-detect results shown in grey; (a) = sample broken in storage; these data are also shown in Attachment E as organoselenium = DMSeO + MeSe(IV)

Data Analysis

Longitudinal concentration gradients for selenite and MeSe(IV) are plotted in Figure 2 as raw concentrations (left panels) and adjusted for dilution (right panels). DMSeO and DMSe were detected only at the site nearest the pond on Greenhills Creek, and DMDSe was not detected at any of the longitudinal study sites. The single reported concentration of DMSe was high enough to calculate an unbounded "greater than" estimate of loss rate at EVO Dry Creek (see below) because the dilution-corrected detection limit at the next downstream site (where DMSe was not detected) was less than the reported concentration near the pond outflow. Neither DMSeO nor DMSe were high enough to estimate a loss term on Greenhills Creek because the dilution-corrected detection limits at downstream locations were equal to or greater than reported concentrations near the pond outflow (i.e., all that can be inferred is that the loss rate was greater than zero).

Figure 2. Longitudinal gradients of selenite (upper panels) and methylseleninic acid (lower panels)

Notes: MeSe(IV) = methylseleninic acid; Se(IV) = selenite

An unbounded estimate of loss rate for DMSe was calculated from the detected concentration near the outflow of EVO Dry Creek Sedimentation Pond (0.161 μ g/L) and the dilution-corrected detection limit at the next downstream location (<0.0317 μ g/L) over an estimated travel time of 0.672 h (see Section 3.2 for methods). The estimated loss rate was k>-2.42, giving a half-life of <0.29 h for DMSe at this location. No previous estimates of the half-life of DMSe in surface water could be identified for comparison, but such rapid loss would be consistent with the volatile nature of this species.

The analysis for selenite gave loss rate estimates near zero (no discernible loss) at EVO Dry Creek and Harmer Creek). For comparison, the estimated half-life for selenite calculated in Golder (2021a) was 3 to 5 h. These apparent differences may simply reflect variability in selenite concentrations and the selenate concentrations used to adjust for dilution, or they may indicate that conditions in Harmer Creek and Grave Creek result in slower loss of selenite compared to the reaches studied in Golder (2021a).

The analysis for MeSe(IV) gave loss rate estimates that were near zero or slightly positive (i.e., indicating no discernible change in MeSe(IV) concentration at EVO Dry Creek and Harmer Creek) to k=-0.784 (half-life 0.9 h) at Greenhills Creek. For comparison, the estimated half-life for MeSe(IV) calculated in Golder (2021a) was 1.4 to 4.5 h. The apparent lack of a decline in MeSe(IV) in EVO Dry Creek and Harmer Creek may simply reflect variability in MeSe(IV) concentrations and the selenate concentrations used to adjust for dilution, or may reflect an actual increase, for example from oxidation of DMSe (accounting for part of the DMSe loss term calculated above for EVO Dry Creek).

4.3 Seasonality

Field Data

Sampling dates for the seasonal study were established as described in Section 3.3. The first sampling event occurred during the regional survey of sedimentation ponds (Section 4.1). Thereafter, sampling was biweekly through September and monthly in October, November, and December. Monthly sampling will continue until July 2022, at which time it will again be increased to biweekly.

Selenium speciation and benthic invertebrate tissue selenium concentrations from the seasonal study are summarized in Table 11. Note that data in Table 11 for the first sampling date upstream and downstream of each sedimentation pond (26 – 28 August 2021) are the same data reported for these three sedimentation ponds in Table 8.

Sito	Sample		Se	elenium Sp	ecies Conce	entrations (µ	ıg/L)		Dissolved	Total [Se]	BI [Se]
Sile	Date	DMDSe	DMSe	DMSeO	MeSe(IV)	OrganoSe	Se(IV)	Se(VI)	[Se] (µg/L)	(µg/L)	(mg/kg dw)
EVO L	Dry Creek So	edimentati	ion Pond								
	28 Aug	<0.01	<0.01	<0.01	0.019	0.019	0.92	124	140	82	18.0
	16 Sep	(a)	<0.01	0.035	0.035	0.94	152	137	135	13.7
US	05 Oct	<0.01	<0.01	0.011	0.026	0.037	0.89	141	140	144	18.7
	09 Nov	(a)	<0.01	0.013	0.013	0.55	130	135	134	9.4
	07 Dec	<0.01	<0.01	<0.01	<0.01	< 0.01	0.46	98.0	100	99	14.3
	28 Aug	<0.01	0.16	<0.01	0.066	0.066	1.3	131	136	135	55.3
	16 Sep					(a)	(a)				58.3
DS	05 Oct	<0.01	0.10	0.013	0.107	0.12	1.2	140	144	147	64.0
	09 Nov	-	-	<0.01	0.017	0.017	0.59	132	128	129	52.0
	07 Dec	<0.01	<0.01	<0.01	0.018	0.018	0.52	104	106	106	60.3
Harm	er Creek Se	dimentati	on Pond								
	28 Aug	<0.01	<0.01	<0.01	0.023	0.023	0.31	30.8	(4	a)	14.7
US	06 Oct	<0.01	<0.01	<0.01	<0.01	<0.01	0.23	32.0	34	32	11.3
	10 Nov	-	-	<0.01	0.011	0.011	0.21	36.6	36	37	9.1
	06 Dec	<0.01	<0.01	<0.01	<0.01	<0.01	0.19	32.7	32	33	5.0
	28 Aug	<0.01	<0.01	<0.01	0.028	0.028	0.34	29.5	(4	a)	21.7
DC	06 Oct	<0.01	<0.01				(a)				16.3
05	10 Nov	-	-	<0.01	0.011	0.011	0.21	36.2	37	37	10.2
	06 Dec	<0.01	<0.01	<0.01	<0.01	<0.01	0.18	31.2	31	32	15.0
Greer	nhills Main	Sedimenta	tion Pond								
	26 Aug	<0.01	<0.01	<0.01	0.031	0.031	1.1	140	(a)		17.7
	17 Sep	<0.01	0.026	<0.01	0.014	0.014	0.85	159	157	157	12.5
US	06 Oct	<0.01	<0.01	<0.01	0.021	0.021	0.84	149	162	151	15.3
	09 Nov	<0.01	<0.01	<0.01	<0.01	< 0.01	0.54	137	139	147	9.2
	06 Dec	<0.01	<0.01	<0.01	0.013	0.013	0.63	100	99	98	7.8
	26 Aug	<0.01	0.026	0.042	0.082	0.124	3.8	120	(6	а)	20.3
	14 Sep	<0.01	0.062	0.16	0.12	0.28	3.4	133	136	136	18.7
DS	06 Oct	<0.01	0.053	0.12	0.10	0.22	3.7	129	142	134	22.0
	09 Nov	<0.01	<0.01	0.065	0.069	0.13	2.3	136	137	136	17.7
	06 Dec	< 0.01	< 0.01	< 0.01	0.027	0.027	0.94	95.2	91	91	10.9

Table 11. Selenium speciation and benthic invertebrate tissue selenium data from the seasonal study (28 August – 7 December 2021)

Notes: US = upstream; DS = downstream; DMDSe = dimethyldiselenide; DMSe = dimethylselenide; DMSeO = dimethylselenoxide; MeSe(IV) = methylseleninic acid; OrganoSe = sum of DMSeO and MeSe(IV); Se(IV) = selenite; Se(VI) = selenate; BI [Se] = benthic invertebrate tissue selenium concentration (mean of 3 replicates); "-" = no datum available; non-detect results shown in grey; (a) = sample broken in storage

Data Analysis

Partial seasonal patterns of selenate, selenite, DMSeO, and MeSe(IV) upstream and downstream of the three study ponds are plotted in Figure 3. Because only a partial seasonal cycle of data was available at the time of preparing this report (because the program began in August 2021), the analysis below is preliminary and will be updated in the 2022 Annual Report when a full seasonal cycle is available.

Figure 3. Partial seasonal cycle of selenium species concentrations at the inflow (open symbols) and outflow (filled symbols) of three study sedimentation ponds

Notes: DMSeO = dimethylselenoxide; MeSe(IV) = methylseleninic acid; open symbols are upstream and filled symbols downstream of the indicated sedimentation pond; lines join symbols in each series for ease of interpretation, and do not indicate interpolated conditions between the sampling dates

Selenite (upper right panel of Figure 3) exhibited larger seasonal variation than selenate (upper left panel) and consistent increases in concentration between inflow and outflow at Greenhills Creek and EVO Dry Creek sedimentation ponds. Peak concentrations of selenite occurred in late August through early October, declining thereafter. These patterns are consistent with the seasonal patterns at Bodie Creek and Gate Creek sedimentation ponds described in Golder (2021a). In contrast, Harmer Creek Sedimentation Pond exhibited lower concentrations of selenite, smaller variation across sampling events, and little to no difference between inflow and outflow.

The non-volatile organoselenium species DMSeO and MeSe(IV) (bottom panels) exhibited a seasonal pattern similar to selenite in Greenhills Main Sedimentation Pond, although with a sharper peak in mid-September, later than peak selenite concentrations that occurred on or before the sampling event in late August. MeSe(IV) also exhibited a more pronounced but later peak than selenite in EVO Dry Creek Sedimentation Pond, whereas

DMSeO in this pond varied little across sampling events. As for selenite, organoselenium concentrations at Harmer Creek Sedimentation Pond were lower and varied less than in the other two study ponds.

The volatile organoselenium species DMSe and DMDSe were less often detected than other species (Tables 10 and 11). DMDSe was not detected on any date in the seasonal sampling. DMSe was detected between late August and early October downstream of EVO Dry Creek and Greenhills Main sedimentation ponds, exhibiting a roughly similar pattern to MeSe(IV). DMSe was detected both upstream and downstream of Greenhills Main Sedimentation Pond in the mid-September sampling event, which indicates production of this species both in the primary sedimentation pond immediately upstream and in the main sedimentation pond.

Partial seasonal patterns of benthic invertebrate selenium concentrations upstream and downstream of the three study ponds are plotted in Figure 4. Previous seasonal analyses (e.g., Golder 2020) have found that benthic invertebrate selenium concentrations vary across sampling events but exhibit no consistent seasonal trend. In contrast, the data plotted on Figure 4 indicate possible seasonality, with concentrations at most locations tending to be lower in November and/or December than other months. The sampling location downstream of EVO Dry Creek Sedimentation Pond, which had the highest benthic invertebrate selenium concentrations measured in this study, exhibited no apparent seasonal trend.

Notes: BI [Se] = benthic invertebrate selenium concentration (mean of 3 replicates); open symbols are upstream and filled symbols downstream of the indicated sedimentation pond; lines join symbols in each series for ease of interpretation, and do not indicate interpolated conditions between the sampling dates

4.4 Mechanisms

Downstream benthic invertebrate selenium concentrations were available as the dependent variable for 18 of the 20 sampled study ponds.⁷ Different sets of predictors had different coverage for these 18 ponds. Many predictors were available for all 18 ponds, including in situ field parameters measured in the ponds, observations of vegetation and shade, maximum depth, presence of a liner, temperature, and hydraulic residence time. In contrast, sediment grain size and TOC could be collected at only 11 ponds. Because of differences in coverage for different sets of predictors, analyses including some predictors were not able to include all cases of the dependent variable (e.g., including sediment grain size predictors caused 7 cases to be removed from the analysis). This inconsistency in cases that could be included in the GLM may account for some of the differences in selected predictors among model runs described below.

A PCA evaluating covariance of predictors identified four PCs that were able to account for 88% of the variance in the original 90 predictors. Factor loading scores, reflecting the correlation of each predictor to each PC, are provided in Attachment F. The largest positive and negative factor loading scores (absolute value > 0.75 in the bullets below) indicate which predictors correlate most strongly to each PC, and thereby can help to understand what each PC represents. The four PCs were:

- PC1 (34% of total variance) was strongly positively correlated with major ions (downstream hardness, conductivity, TDS, sulphate), several predictors related to biological activity (upstream and downstream chlorophyll-a, upstream and downstream TOC and DOC, abundance of algae and total aquatic vegetation in the pond, downstream AFDM), and several nutrient parameters (upstream and downstream total phosphorus, nitrate, and DOC). PC1 was strongly negatively correlated with pH (upstream, downstream, and in-pond), upstream total Kjeldahl nitrogen, and upstream phycocyanins.
- PC2 (22% of total variance) was strongly positively correlated with percent silt in pond sediment, downstream pH, upstream field-measured oxidation-reduction potential and dissolved oxygen, hydraulic residence time, downstream temperature, and upstream and downstream total and dissolved selenium. PC2 was strongly negatively correlated with several measures of productivity (downstream chlorophyll-a and phycocyanins, abundance of submerged vegetation), percent gravel in pond sediment, field-measured downstream ORP, and upstream and downstream ammonia.
- PC3 (18% of total variance) was strongly positively correlated with field-measured upstream chlorophyll-a and in-pond phycocyanins, upstream pH, downstream total Kjeldahl nitrogen, and percent sand in pond sediment.
 PC3 was strongly negatively correlated with upstream AFDM and upstream alkalinity.
- PC4 (14% of total variance) was strongly positively correlated with field-measured chlorophyll-a and phycocyanins in the pond, water temperature (August mean, July mean, in-pond during sampling), major ions (upstream sulphate, upstream and downstream chloride), and abundance of emergent vegetation. PC4 was not strongly correlated with any predictor.

Results of stepwise GLM runs are summarized below for initial evaluations of subsets of predictors (Table 12) and for evaluations including multiple sets of predictors (Table 13). Sediment parameters (grain size, TOC, liner) were not significant in any GLM run, potentially because of the smaller number of ponds for which these predictors

⁷ Benthic invertebrates were not collected downstream of Swift Creek Secondary because this sedimentation pond discharges through a pipe and does not have downstream aquatic habitat prior to mixing with the Fording River. No samples were taken downstream of LCO Contingency Upper because it had no surface outflow (nor inflow) at the time of sampling.

were available. The remaining groups of predictors all produced significant GLMs that may be informative with respect to the factors driving organoselenium export from sedimentation ponds.

The columns in Tables 12 and 13 are interpreted as follows:

- Step reflects the progressive addition of predictors by the forward stepwise algorithm.
- r² is the proportion of total variance in the dependent variable explained by the predictors added up to and including that step. Higher r² indicates a more explanatory model, although explanatory power does not necessarily indicate predictive power: adding more predictors will always increase r² but can result in overfitting, such that the ability of the model to describe the existing data is not a good reflection of the ability of the model to predict new data.
- Predictor Variable Entered is the predictor added by the GLM algorithm in that step.
- AIC is the Akaike information criterion, which is a model selection criterion that balances the fitness of a
 model with the number of predictors employed. AIC penalizes models with more predictors in the interest of
 parsimony, thereby avoiding overfitting. The AIC value of a model can be interpreted as an estimate of the
 relative discrepancy between the model and the unknown true model that generated the data. The idea of
 model selection using AIC is to select a model with a low AIC value.
- AIC_c is an alternative (corrected) form of the AIC for small samples. AIC_c addresses a bias in the AIC calculation that can cause it to violate parsimony when the number of predictors in the model exceeds ~30% of the number of cases.
- BIC is Schwarz's Bayesian information criterion, which is a model selection criterion similar to the AIC, but that applies a stronger penalty to more complex models. Schwarz's BIC can also be interpreted as an estimate of relative discrepancy between the model and the unknown true model that generated the data, with low Schwarz's BIC value indicating a preferred model.
- Std. Coefficient is the standardized coefficient (slope) of the predictor in the final GLM. Higher standardized coefficients indicate a greater influence on model outcomes, independent of the scale of each predictor.
- P-value reflects the statistical significance of the predictor in the final GLM. Low P-values indicate that the explanatory power of the predictor in the GLM is unlikely to have occurred by chance (and therefore is interpreted to be an actual effect).
| Step | r ² | Predictor Variable Entered | AIC | AICc | BIC | Std. Coefficient | P-value | | | |
|---|--|--|-------|------|-------|------------------|---------|--|--|--|
| Run 1 (n=18) – temperature, depth, hydraulic residence time, shade, vegetation abundance parameters | | | | | | | | | | |
| 1 | 0.29 | Shade score | 5.4 | 7.1 | 8.0 | 0.508 | 0.023 | | | |
| 2 | 0.40 Temperature (Aug) 4.3 7.4 7.9 0.333 0.118 | | | | | | | | | |
| Run 2 (n=9) – US and DS in situ field parameters | | | | | | | | | | |
| 1 | 0.71 | Field oxidation-reduction potential DS | -0.8 | 4.0 | -0.2 | -0.845 | <0.001 | | | |
| 2 | 0.86 | Field temperature US | -5.3 | 4.7 | -4.5 | 0.499 | 0.001 | | | |
| 3 | 0.95 | Field conductivity DS | -12.8 | 7.2 | -11.8 | 0.335 | 0.006 | | | |
| 4 | 0.99 | Field dissolved oxygen DS | -24.0 | 18.0 | -22.8 | 0.202 | 0.022 | | | |
| Run 3 (n=15) – DS water quality parameters | | | | | | | | | | |
| 1 | 0.46 | Oxidation-reduction potential DS | 1.3 | 3.5 | 3.4 | -0.633 | 0.001 | | | |
| 2 | 0.69 | Dissolved selenium DS | -4.9 | -0.9 | -2.1 | 0.411 | 0.008 | | | |
| 3 | 0.76 | Chlorophyll-a DS | -7.0 | -0.3 | -3.4 | -0.355 | 0.016 | | | |
| 4 | 0.86 | Dissolved organic carbon DS | -13.0 | -2.5 | -8.8 | 0.336 | 0.023 | | | |
| Run 4 (r | n=15) — U | S water quality parameters | | | | | | | | |
| 1 | 0.27 | Dissolved selenium US | 5.8 | 8.0 | 7.9 | 0.074 | 0.002 | | | |
| 2 | 0.47 | Hardness US | 2.9 | 6.9 | 5.8 | 0.255 | 0.012 | | | |
| 3 | 0.58 | pH US | 1.8 | 8.4 | 5.3 | 0.256 | 0.004 | | | |
| 4 | 0.67 | Chlorophyll-a US | -0.2 | 10.3 | 4.0 | 0.090 | 0.007 | | | |
| 5 | 0.81 | Ash-free dry mass US | -5.9 | 10.1 | -1.0 | 0.106 | 0.013 | | | |
| 6 | 0.88 | Total organic carbon US | -11.3 | 12.7 | -5.7 | 0.168 | 0.054 | | | |

Table 12. Forward stepwise GLM variable selection results for subsets of predictors

Notes: r^2 = model coefficient of determination; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; *n* = number of ponds that could be included in the run (constrained by availability of predictors); US = upstream of sedimentation pond; DS = downstream of sedimentation pond

The initial GLM runs summarized in Table 12 suggest the following hypotheses about potential drivers of organoselenium concentrations (as reflected in benthic invertebrate selenium concentrations) downstream of the study ponds:

• Run 1 evaluated predictors reflecting the physical structure and conditions of the sedimentation ponds. The strongest predictor in Run 1 was shade, which was a score assigned based on presence of trees, high banks, or other physical structures that could cause shading on portions of the pond. Shade score had a positive coefficient, indicating that higher benthic invertebrate selenium concentrations were associated with higher shade scores. This is the opposite of what would be expected if more shade caused lower primary productivity and thereby lower assimilatory reduction of selenium. An alternative mechanism that would have a positive coefficient would be if shade score is reflecting shelter from wind, such that higher shade scores indicate lower potential for wind-driven mixing, more stability in the water column, and a resulting greater potential for outcomes such as settling of TSS (which could increase light penetration), accumulation of floating algae, or depletion of dissolved oxygen from bacterial metabolism in the water column and/or sediment. Shade correlated strongly with PC1, where it clustered with major ions (downstream hardness, conductivity, TDS, sulphate), several predictors related to biological activity (upstream chlorophyll-a, downstream TOC and DOC, abundance of algae and total aquatic vegetation in the pond, downstream AFDM), and several nutrient parameters (upstream and downstream total phosphorus, nitrate, and DOC).

The only other predictor added by the stepwise algorithm in Run 1 was August mean water temperature, which could reflect a direct positive effect of warmer water on algal productivity or bacterial metabolism (i.e., directly increasing assimilatory reduction), or potentially an indirect effect via mechanisms such as promotion of aquatic vegetation or depletion of dissolved oxygen from enhanced bacterial metabolism. August

mean water temperature correlated strongly with PC4, where it clustered with major ions (upstream sulphate, TDS), field-measured chlorophyll-*a* and phycocyanins in the pond, and abundance of emergent vegetation.

 Run 2 evaluated the suite of in situ field parameters measured upstream and downstream of the study ponds. This run was able to include only 9 sedimentation ponds, and therefore would be more prone to overfitting. Stepwise variable selection added four predictors to this model, but AIC_c increased with each step, indicating that the model is likely overfit (noting that the number of predictors exceeded 30% of the number of cases at step 3). Therefore, the first and second predictors added to this model are more likely informative, whereas the third and fourth may not be.

The strongest predictor in Run 2 was field-measured oxidation-reduction potential (ORP) downstream of the sedimentation pond. Field ORP had a negative coefficient, indicating that higher benthic invertebrate selenium concentrations were associated with more reducing conditions in the water exiting the sedimentation pond.⁸ More reducing conditions could directly promote speciation changes by favouring bacteria that use electron acceptors other than oxygen, thereby facilitating the generation of organoselenium by these biota (e.g., via assimilatory reduction). Alternatively, low ORP could be an indicator of hypoxia resulting from heterotrophic acitivity (e.g., from decomposing algal blooms), which acts to release organoselenium from organic matter into the water column. Downstream field ORP correlated strongly (negatively) with PC2, where it clustered with some measures of productivity (downstream chlorophyll-a and phycocyanins, abundance of submerged vegetation) and reduced nitrogen species (upstream and downstream ammonia and nitrite).

The second predictor in Run 2 was field-measured water temperature upstream of the sedimentation ponds. As discussed above for Run 1, water temperature is expected to be a driver for all biological activity and could increase oganoselenium generation and/or release in a number of ways.

• Run 3 evaluated a suite of water quality parameters measured downstream of the study ponds. The strongest predictor in Run 3 was laboratory-measured ORP downstream. As in Run 2, ORP had a negative coefficient, supporting a role of reducing conditions in organoselenium production and/or release.

The second predictor in Run 3 was dissolved selenium concentration downstream. Benthic invertebrate selenium concentrations were positively correlated with dissolved selenium concentrations (log-log regression: r^2 =0.46; p=0.003), although this relationship may to some extent reflect that sedimentation ponds with low dissolved selenium concentrations typically had lower benthic invertebrate selenium concentrations, whereas ponds with higher dissolved selenium concentrations had a wider range of benthic invertebrate selenium concentrations. Dissolved selenium was moderately correlated with PC2, where it clustered with variables including total selenium, hydraulic residence time, maximum depth, percent silt, and field-measured ORP.

The third and fourth predictors in Run 3 were downstream chlorophyll-*a* (negative coefficient) and downstream DOC (positive coefficient). These two predictors could indicate that benthic invertebrate selenium concentrations are affected by organoselenium released from decomposition of algal cells. Algae generate organoselenium by assimilatory reduction (Cooke and Bruland 1987; Eswayah et al. 2016; Ponton et al. 2020) and this organoselenium is exported from a sedimentation pond when conditions cause a die-off of algae that is indirectly reflected in lower chlorophyll-*a* and higher DOC. Downstream chlorophyll-*a* and DOC both correlate strongly and positively with PC1, despite their opposite coefficients in the Run 3 GLM.

⁸ Field ORP downstream was correlated with field ORP measured in the pond for most study ponds (log-log regression: r²=0.24, p=0.05 for all ponds; r²=0.59, p=0.001 excluding MSAN 1). Therefore, this predictor could reflect an effect of ORP in the pond.

 Run 4 evaluated the same suite of water quality parameters measured upstream of the study ponds. As in Run 2, AIC_c started to increase after step 2, indicating that the first two predictors are potentially informative, whereas the remaining four more likely reflect overfitting.

The first predictor added in Run 4 was dissolved selenium concentration, but this predictor had a relatively low standardized coefficient in the final GLM, indicating relatively low influence on model results. As in Run 3, inclusion of this predictor may reflect a tendency for a wider range of organoselenium concentrations to occur at sedimentation ponds with relatively high dissolved selenium concentrations, or may reflect an underlying effect of a correlated predictor.

The strongest predictors in Run 4 were hardness and pH, which have no obvious role in organoselenium cycling. Upstream hardness was moderately correlated with PC4, where it clustered with pond temperature, major ions (upstream sulphate, TDS), field-measured chlorophyll-*a* and phycocyanins in the pond, and abundance of emergent vegetation.

Step	r ²	Predictor Variable Entered	AIC	AICc	BIC	Std. Coefficient	P-value				
Run 5 (I	Run 5 (n=15) – DS water quality, temp, depth, HRT, shade, vegetation parameters										
1	0.46	Oxidation-reduction potential DS	1.3	3.5	3.4	-0.241	0.001				
2	0.69	Dissolved selenium DS	-4.9	-0.9	-2.1	0.846	<0.001				
3	0.87	Maximum depth	-15.5	-8.8	-11.9	-0.646	<0.001				
4	0.93	Orthophosphate DS	-22.6	-12.1	-18.4	0.576	<0.001				
5	0.96	Chloride DS	-31.2	-15.2	-26.3	0.249	<0.001				
6	0.99	Algal abundance score	-44.2	-20.2	-38.6	-0.233	<0.001				
7	1.00	Chlorophyll-a DS	-57.0	-21.0	-50.6	0.142	0.005				
8	1.00	Shade score	-61.8	-6.8	-54.7	-0.066	0.113				
Run 6 (n=15) – US and DS water quality, temp, depth, HRT, shade, vegetation parameters											
1	0.58	Oxidation-reduction potential DS	-2.1	0.3	-0.2	-1.061	<0.001				
2	0.88	Turbidity DS	-17.5	-13.0	-14.9	-0.820	<0.001				
3	0.92	Ash-free dry mass US	-20.3	-12.8	-17.1	-0.155	<0.001				
4	0.95	Ammonia DS	-26.8	-14.8	-23.0	-0.213	<0.001				
5	0.97	Chlorophyll-a DS	-31.2	-12.6	-26.8	0.273	<0.001				
6	0.99	Hydraulic residence time (Aug)	-39.6	-10.8	-34.5	-0.101	0.001				
7	1.00	Total Kjeldahl nitrogen US	-51.5	-6.5	-45.8	0.130	<0.001				
8	1.00	Oxidation-reduction potential US	-67.2	6.1	-60.8	0.084	0.001				
9	1.00	Maximum depth	-78.8	53.2	-71.8	-0.083	0.001				
10	1.00	Alkalinity DS	-110	201.4	-102.9	-0.059	0.002				
11	1.00	Turbidity US	-151	-	-143.3	-0.017	0.023				

Table 13. Forward stepwise GLM variable selection results for combined sets of predictors

Notes: r^2 = model coefficient of determination; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; *n* = number of ponds that could be included in the run (constrained by availability of predictors); US = upstream of sedimentation pond; DS = downstream of sedimentation pond

The GLM runs summarized in Table 13 suggest the following hypotheses about potential drivers of organoselenium concentrations (as reflected in benthic invertebrate selenium concentrations) downstream of the study ponds:

• Run 5 evaluated predictors reflecting the physical structure and conditions of the sedimentation ponds in combination with downstream water quality. AIC_c continued to decline until step 7, indicating that the increase

in explanatory power over these steps outweighed the penalty for overfitting. However, the improvement in r^2 was small after about step 3, suggesting that that the first three predictors are likely the most informative.

The first predictor added in Run 5 was laboratory-measured downstream ORP, although this predictor had a relatively low standardized coefficient, indicating relatively low influence on model results. As in Run 3, downstream ORP had a negative coefficient, supporting a role of reducing conditions in organoselenium production and/or release.

The strongest predictor in Run 5 was dissolved selenium downstream. As in Run 3, inclusion of this predictor may reflect a tendency for a wider range of organoselenium concentrations to occur at sedimentation ponds with relatively high dissolved selenium concentrations, or may reflect an underlying effect of a correlated predictor.

The third predictor in Run 5 was maximum depth. Maximum depth had a negative coefficient, indicating that higher benthic invertebrate selenium concentrations tended to occur downstream of shallower sedimentation ponds. This relationship could reflect an effect of pond depth via light availability (shallower ponds would more likely have well-lit substrate), either directly by enhancing growth of attached algae or indirectly by facilitating growth of aquatic vegetation, which in turn have effects such as providing substrate for epiphytic algae, modifying sediment redox conditions by root activity and/or by creating a poorly-mixed boundary layer, or by contributing organic detritus to the sediment. Maximum depth was moderately correlated with PC2, where it clustered with variables including total and dissolved selenium, hydraulic residence time, percent silt, and field-measured ORP.

 Run 6 evaluated predictors reflecting the physical structure and conditions of the sedimentation ponds in combination with both upstream and downstream water quality. AIC_c declined only until step 2, fluctuated until 6, and then increased dramatically. These AIC_c results indicate that only the first two predictors are likely informative, the next four are likely overfit, and any subsequent to that are clearly overfit.

The first and strongest predictor added in Run 6 was laboratory-measured downstream ORP. As in Run 5, downstream ORP had a negative coefficient, supporting a role of reducing conditions in organoselenium production and/or release.

The second predictor in Run 6 was downstream turbidity. Downstream turbidity had a negative coefficient, indicating that higher benthic invertebrate selenium concentrations tended to occur with lower turbidity. This relationship could reflect an effect via light availability (e.g., lower turbidity increases light penetration, which increases algal productivity and thereby increases generation of organoselenium). Alternatively, it could reflect an effect of a correlated predictor. Downstream turbidity correlated strongly with PC1, where it clustered with major ions (downstream hardness, conductivity, TDS, sulphate), several predictors related to biological activity (upstream chlorophyll-a, downstream TOC and DOC, abundance of algae and total aquatic vegetation in the pond, downstream AFDM), and several nutrient parameters (upstream and downstream total phosphorus, nitrate, and DOC).

Despite different sets of predictors used in each run, some common themes emerged in the patterns of predictors that were significant in the resulting GLMs. Notably, ORP was included with a negative coefficient in the GLMs from runs 2, 3, 5, and 6, dissolved selenium concentration was included with a positive coefficient in the GLMs from runs 3, 4, and 5, and water temperature was significant with a positive coefficient in the GLMs from runs 1 and 2. Inclusion of these predictors in the GLMs indicates that these factors and/or some correlated factors play a role in driving selenium speciation changes. Further interpretation of these findings is provided in Section 5.3.

4.5 **Bioaccumulation**

The de Bruyn and Luoma (2021) bioaccumulation model was used to translate the speciation data in Tables 8 (regional survey) and 11 (seasonality study) into modelled benthic invertebrate selenium concentrations immediately upstream and downstream of the study sedimenation ponds. Modelled concentrations are presented in Table 14 in comparison to the benthic invertebrate selenium concentrations measured at these locations (note: these are the same data presented in the right-most columns of Tables 8 and 11).

Lasatian	Comulius Data	Upstream BI [S	e] (mg/kg dw)	Downstream BI [Se] (mg/kg dw)			
Location	Sampling Date	Modelled	Observed	Modelled	Observed		
Corbin Reservoir	25 Aug	4.2	1.8	5.3	6.5		
SPD Pond	25 Aug	3.9	10.0	4.9	11.7		
Aqueduct Control	30 Aug	9.1	-	9.9	18.3		
Bodie North	27 Aug	17.2	-	10.2	48.7		
	28 Aug	8.7	18.0	13.0	55.3		
	16 Sep	10.1	13.7	-	58.3		
EVO Dry Creek	05 Oct	10.1	18.7	17.1	64.0		
	09 Nov	7.8	9.4	8.2	52.0		
	07 Dec	7.0	14.3	8.6	60.3		
	28 Aug	8.9	14.7	9.3	21.7		
	06 Oct	7.0	11.3	-	16.3		
Harmer Creek	10 Nov	7.6	9.1	7.6	10.2		
	06 Dec	7.2	5.0	7.1	15.0		
Gate Creek	27 Aug	9.6	-	11.8	39.3		
Lindsay 2	30 Aug	5.6	-	6.5	11.3		
Milligan Creek	27 Aug	10.6	21.3	32.0	62.0		
South Pit Creek	27 Aug	-	-	23.4	57.3		
Swift Creek Secondary	31 Aug	17.4	34.7	18.1	-		
Clode Main	31 Aug	6.0	5.4	8.0	17.7		
Porter Creek Secondary	31 Aug	9.0	4.2	6.4	17.0		
Smith Ponds	31 Aug	-	-	9.4	24.3		
	26 Aug	10.0	17.7	20.2	20.3		
	14 Sep	8.4	12.5	32.4	18.7		
Greenhills Main	06 Oct	8.9	15.3	27.7	22.0		
	09 Nov	6.7	9.2	19.5	17.7		
	06 Dec	8.0	7.8	9.6	10.9		
Thompson Lower	26 Aug	43.0	15.3	15.2	45.3		
Wade Pond Lower	26 Aug	5.5	20.3	7.0	13.0		
MSAN 1	30 Aug	-	-	7.3	11.3		
AWTF Buffer	24 Aug	5.7	-	5.7	17.3		

Table	14	Modelled	and	measured	benthic	invertebrate	selenium	data fi	rom the	2021	SeSMP
Iable		Modelled	anu	measureu	Dentine	mventebrate	Selemun	uata n	on the		OCOMI

Notes: BI [Se] = benthic invertebrate selenium concentration (mean of 3 replicates)

The modelled and measured concentrations presented in Table 14 are plotted in Figure 5 in comparison to the dataset of measured and modelled benthic invertebrate selenium concentrations that was used to fit the parameters of the bioaccumulation tool. The dataset used to derive the bioaccumulation tool (grey symbols on Figure 5) illustrates the expected precision of modelled concentrations. As discussed in de Bruyn and Luoma (2021), the fitted model was able to calculate modelled concentrations within a factor of 2 of measured

concentrations for 97% of the 113 cases used to fit model parameters. The expected range of modelled values is depicted by the residual scatter of grey points around the diagonal 1:1 line on Figure 5.

Figure 5: Evaluation of bioaccumulation tool performance on the derivation dataset (grey symbols) and data collected in the 2021 SeSMP (coloured symbols)

Notes: BI [Se] = benthic invertebrate selenium concentration; US = upstream; DS = downstream; reported BI [Se] is mean of 3 replicates; modelled BI [Se] was calculated from aqueous selenium speciation data collected at the time of BI sampling

Concentrations modelled from aqueous speciation measured in the 2021 SeSMP were within a factor of 2 of measured concentrations for 64% of samples collected upstream of sedimentation ponds (open blue and red symbols on Figure 5) and 44% of samples collected downstream of sedimentation ponds (filled blue and red symbols on Figure 5), indicating reduced performance of the model for this dataset compared to previously available data. In addition, modelled values more often under-predicted than over-predicted measured concentrations. Potential explanations for this reduced performance are evaluated below.

Annelids were observed in only one replicate from one location (upstream of Corbin Reservoir), and therefore are not expected to have influenced measured concentrations in this study.

To explore whether the tendency of the model to under-predict measured concentrations in 2021 was related to systematic under-prediction of the bioaccumulative potential of one or more selenium species, model residuals were plotted as a function of individual species concentrations (Figure 6). Systematic under-estimation of the

bioaccumulative potential of a species would be evident on a residual plot as a negative slope: if the effect of a highly bioaccumulative species was being under-estimated, residuals would become increasingly negative (predictions would increasing under-estimate observations) as the influence of that species on measured concentrations increased and the model failed to accurately reflect that influence.

Figure 6. Model residuals (log-scale differences between modelled and observed benthic invertebrate selenium concentrations) in relation to selenium species concentrations

Notes: DMSeO = dimethylselenoxide; MeSe(IV) = methylseleninic acid; Se(IV) = selenite; Se(VI) = selenate

The patterns of residuals on Figure 6 do not indicate that current model systematically under-predicts the bioaccumulative potential of any species. The widest range of residuals occurred at the highest concentrations of selenate but relatively low concentrations of MeSe(IV) and the lowest concentrations (mostly below detection) of DMSeO. Data collected downstream of sedimentation ponds suggest a possible *positive* slope in the residuals for DMSeO, which could either indicate concentration dependence (i.e., higher bioaccumulative potential of DMSeO at lower concentrations, although this is not apparent in the upstream samples or the previous dataset) or,

perhaps more likely, could indicate that the longer-term average influence of DMSeO on bioaccumulation was underestimated by DMSeO concentrations measured in August 2021. The latter interpretation would be consistent with the large fluctuations in organoselenium concentrations observed between sampling events in 2021 (Figure 3) in comparison to the more stable concentrations in benthic invertebrates (Figure 4). The latter interpretation would also be consistent with the greater proportion of negative residuals observed downstream (where DMSeO more often occurs) compared to upstream of sedimentation ponds (Figure 6).

The possibility that SeSMP sampling in August – September 2021 may have understimated the recent organoselenium exposure of benthic invertebrates was tested by comparing peak organoselenium concentrations measured in 2021 from all regional and site-specific monitoring (Table 7) to concentrations measured in SeSMP sampling (Table 8). Such a comparison was possible at ten of the sedimentation ponds included in the regional survey. In all cases, SeSMP data were lower than peak concentrations, and in five of those cases SeSMP data were several-fold lower (up to an order of magnitude lower) than peak concentrations (Figure 7).

Notes: Organoselenium expressed as the sum of DMSeO (dimethylselenoxide) and MeSe(IV) (methylseleninic acid); dashed line is 1:1; open symbols locations with SeSMP data only, filled symbols are locations with additional monitoring data for comparison

The effect of variable organoselenium concentrations on apparent patterns of bioaccumulation is further explored in Figure 8. Figure 8 provides a somewhat simplified⁹ illustration of the pattern of bioaccumulation that was described by the bioaccumulation tool: the grey symbols enclosed in a grey polygon show the range of benthic invertebrate selenium concentrations previously observed across the studied range of organoselenium concentrations (de Bruyn and Luoma 2021). Blue symbols on Figure 8 show 2021 benthic invertebrate selenium concentrations measured in the SeSMP. Red symbols on Figure 8 show 2021 benthic invertebrate selenium concentrations in relation to organoselenium concentrations in relation to peak organoselenium concentrations measured in other monitoring (as in Figure 7). Locations that exhibited notable shifts between previous sampling (mostly in 2018) and sampling in 2021 are annotated on Figure 8 and discussed further below.

Figure 8. Relationship between benthic invertebrate selenium concentrations, organoselenium concentrations measured in the SeSMP, and 2021 peak organoselenium concentrations measured in other monitoring

Notes: BI [Se] = benthic invertebrate selenium concentration; organoselenium is the sum of DMSeO (dimethylselenoxide) and MeSe(IV) (methylseleninic acid); grey polygon encloses data used to derive the bioaccumulation tool (grey symbols); lines connect measurements from the same site in previous BI [Se] and organoselenium data (grey), 2021 BI [Se] data relative to SeSMP organoselenium data (blue), and 2021 BI [Se] data relative to 2021 peak organoselenium data (red)

⁹ This figure does not account for the effect of selenate or selenite, which account for some of the variability in benthic invertebrate selenium concentrations at a given organoselenium concentration.

Two notable patterns are apparent on Figure 8:

- Where previous data exist for comparison, benthic invertebrate selenium concentrations measured in 2021 were almost always (with the exception of Greenhills Main) associated with lower organoselenium concentrations in 2021 (blue symbols) compared to previous years (grey symbols). This shift resulted in many of the 2021 sites falling outside the previously-described pattern of bioaccumulation (grey polygon).
- Where additional 2021 speciation data were available from other regional or local monitoring programs, benthic invertebrate selenium concentrations conformed better to the previously-described pattern of bioaccumulation (grey polygon) when associated with peak 2021 organoselenium (red symbols) compared to organoselenium measured for the SeSMP (blue symbols).

Possible interpretations of the patterns summarized above are discussed further in Section 5.4.

5.0 INTERPRETATION

5.1 Study Question 1

The answer to Study Question 1: *What is the spatial extent of detectable organoselenium*? Is discussed below in terms of regional patterns and local-scale (longitudinal) patterns.

Regional patterns of organoselenium apparent on the heat maps in Attachment E are broadly consistent with those described in Golder (2021a). Locations immediately downstream of sedimentation ponds exhibited a range of organoselenium concentrations, ranging from below detection (Porter Creek Secondary, MSAN1, AWTF Buffer) to >0.1 ug/L (Milligan Creek, South Pit Creek, Swift Secondary). Detectable organoselenium was often present immediately downstream of sedimentation ponds and in tributaries whose water quality is strongly influenced by mine-related sources of organoselenium (e.g., Line Creek, Harmer Creek). In contrast, mainstem rivers rarely had detectable organoselenium, with the exception of reaches of the Fording River immediately downstream of GHO. These patterns are consistent with the expectation that organoselenium species are highly bioavailable (de Bruyn and Luoma 2021) and degradable (Zhang et al. 1999; Zhang and Frankenberger 2000; LeBlanc and Wallschläger 2016; Jain 2017), as well as the relatively large dilution that occurs when most mine-affected tributaries enter mainstem rivers.

The analysis of longitudinal patterns of DMSeO, DMSe, and DMDSe was hindered by concentrations less than the detection limit at most or all sites. The analysis was not able to detect a decline in concentrations of selenite or MeSe(IV) downstream of EVO Dry Creek and Harmer Creek sedimentation ponds. It was possible to derive an unbounded estimate of the loss rate of DMSe, and it was hypothesized that conversion of DMSe into MeSe(IV) might explain the lack of declines in concentration with distance from two of the study sedimentation ponds. However, it was not possible with the existing data to test this hypothesis or to estimate a loss rate for MeSe(IV) at these two sedimentation ponds. Recommendations for the 2022 SeSMP to help resolve these uncertainties are provided in Section 6.

5.2 Study Question 2

The answer to Study Question 2: Are there temporal trends in organoselenium concentrations? is discussed below in terms of a preliminary evaluation of seasonal trends. An evaluation of long-term trends will be undertaken in a future Annual Report when enough years of data are available to support interannual comparisons.

The partial seasonal cycle collected in 2021 supported the analysis in Golder (2021a) that found strong seasonal cycles in concentrations of selenite and organoselenium and expanded this characterization to include the volatile species DMSe at two of the study ponds. Peak organoselenium concentrations appeared to occur in mid-September to early October, although one possible explanation for observed patterns of bioaccumulation is that there were relatively higher organoselenium concentrations prior to the August sampling event (see Section 5.4 for further discussion). A comparison of seasonal cycles among sedimentation ponds will be included in the 2022 SeSMP Annual Report when a full annual cycle is available for the three additional sedimentation ponds studied herein. Recommendations for the 2022 SeSMP to help resolve seasonal peaks of organoselenium are provided in Section 6.

5.3 Study Question 3

The answer to Study Question 3: *What are the mechanisms of organoselenium production?* is discussed below in terms of how the results of the GLM analysis in Section 4.4 compare to the conceptual model described in Section 2.3.

The most commonly selected informative¹⁰ predictors in the stepwise GLM analysis were ORP (negative coefficient in runs 2, 3, 5, and 6), dissolved selenium concentration (positive coefficient in runs 3, 4, and 5), and water temperature (positive coefficient in runs 1 and 2). As discussed in Section 4.4, inclusion of these predictors in a model that predicts benthic invertebrate selenium concentrations indicates that these factors and/or some correlated factors play a role in driving selenium speciation changes.

Reducing conditions (low ORP) could directly promote speciation changes by favouring bacteria that use electron acceptors other than oxygen, thereby facilitating the generation of organoselenium by these biota (e.g., via assimilatory reduction). Alternatively, low ORP could be an indicator of heterotrophic acitivity (e.g., hypoxia resulting from decomposing algal blooms) that acts to release organoselenium from organic matter into the water column (Martin et al. 2018).

A possible mechanistic role of dissolved selenium concentration in driving organoselenium concentrations is not entirely clear. Sedimentation ponds with dissolved selenium concentrations <100 μ g/L had benthic invertebrate selenium concentrations <25 mg/kg dw, whereas ponds with dissolved selenium concentrations >100 μ g/L had benthic invertebrate selenium concentrations ranging from 18 to 62 mg/kg dw. It seems unlikely that this weak correlation indicates a dependence of organoselenium concentrations on dissolved selenium. It is perhaps more likely that organoselenium concentrations are increased by another factor that is most often present at ponds with higher dissolved selenium concentrations. PCA indicated that this factor may be related to water temperature (discussed below), hydraulic residence time, or ORP upstream of the pond.

Warmer water could directly promote speciation changes by increasing algal productivity and/or bacterial metabolism. Alternatively or in addition, temperature could act via an indirect mechanism such as promotion of aquatic vegetation or depletion of dissolved oxygen from enhanced bacterial metabolism. Both possibilities are supported by PCA, which showed that water temperature was correlated with chlorophyll-*a* and phycocyanins in the pond (indicating greater algal productivity) and with abundance of emergent vegetation (indicating structural and biological factors that could further enhance algal productivity and/or bacterial metabolism).

Overall, the analysis of mechanisms supports the current understanding that organoselenium generation and release are biologically-driven processes (Cooke and Bruland 1987; Eswayah et al. 2016; LeBlanc and

¹⁰ Excluding predictors for which AIC_C and/or *r*² indicate overfitting.

Wallschläger 2016; Ponton et al. 2020) and do not necessarily require photosynthesis (Neumann et al. 2003). This interpretation highlights the importance of understanding factors that promote biological productivity and confirms the focus of the SeSMP on sedimentation ponds, where biological productivity can be locally enhanced.

5.4 Study Question 4

The ability to answer to Study Question 4: *Do new data support refinement of the speciation bioaccumulation tool?* is affected by uncertainty around selenium speciation measurements taken for the SeSMP and how well these measurements reflect the exposure of benthic invertebrates immediately downstream of the study sedimentation ponds. The interpretation outlined in Section 4.5 suggests that the poor conformance of some 2021 SeSMP data to the bioaccumulation tool may be related to an underestimation of organoselenium exposure by the sampling event in late August and early September 2021, rather than an issue with the bioaccumulation tool.

The pattern of bioaccumulation evident in the 2021 SeSMP dataset overlapped with the pattern evident in previous data, but with some notable differences that appeared to be related to a systematic under-estimation of organoselenium concentrations in 2021 SeSMP sampling (Figures 7 and 8). Where data were available for comparison, the 2021 SeSMP dataset exhibited consistently lower organoselenium concentrations compared to previous years and compared to values measured in other 2021 monitoring. As a result, 2021 data tended to be under-predicted by applying the bioaccumulation tool to speciation data collected for the SeSMP.

There are several possible explanations for the inconsistencies in patterns of bioaccumulation between 2021 data and previous data (Figure 8). The following list is intended to explore all possibilities, not all of which may be plausible or likely. Possible explanations for the patterns on Figure 8 include:

- The bioaccumulative potential of organoselenium could be greater than was previously estimated. This explanation could be supported if for some reason (perhaps chance alone) previous data did not fully characterize the effect of organoselenium on benthic invertebrate selenium concentrations. If supported, this explanation would likely warrant recalibrating the bioaccumulation tool. This explanation seems unlikely, considering the large dataset used to derive the bioaccumulation tool and the sensitivity analyses conducted in support of that derivation. Figure 8 indicates that if the bioaccumulation tool was revised to align with the 2021 data, it would not align with previous data.
- There could be additional selenium species contributing to bioaccumulation in 2021 that did not affect
 previous data. This explanation could be supported if conditions in 2021 resulted in production of additional
 selenium species (volatile species or some uncharacterized species) that was not present in previous years. If
 supported, this explanation would warrant expanding the bioaccumulation tool to model additional species.
 This explanation would not be supported by the volatile selenium species concentrations and measured in
 2021, which were less than the detection limit at most sedimenation ponds.
- Benthic invertebrate selenium concentrations could be reflecting selenium speciation effects not completely captured in the SeSMP speciation data collected in late August to early September. Benthic invertebrate selenium concentrations could reflect variable organoselenium concentrations that were higher on average than was reflected in the single samples collected for the SeSMP. If supported, this explanation may warrant further study to better characterize short-term variability in organoselenium concentrations and the factors contributing to that short-term variability. Figure 8 and the supporting interpretation in Section 4.5 suggest that this may be the most likely explanation.
- Organoselenium analyses may have been biased high in previous sampling and/or biased low in SeSMP sampling, resulting in inconsistent estimates of one or more species concentrations used to calculate modelled concentrations. Alternatively, benthic invertebrate selenium concentrations may have been biased

low in previous data and/or biased high in 2021 sampling, resulting in inconsistent estimates of measured concentrations. Biased estimates could result from changes to sample handing and/or analysis methods. If supported, this explanation would warrant more careful standardization of methods and further study to evaluate if and how data from different years can be reconciled to provide a consistent interpretation. This explanation seems unlikely in light of the consistent use of standard methods recommended by the analytical laboratory. Effects on speciation from sample handling could introduce variability but would be unlikely to introduce bias.

An evaluation should be undertaken to identify plausible explanations (including but not necessarily limited to those outlined above) and evaluate the strength of evidence for each prior to finalizing an interpretation of data quality and model performance. Recommendations for such an evaluation are provided in Section 6.

6.0 **RECOMMENDATIONS**

6.1 2022 SeSMP Study Design

Recommendations for the 2022 SeSMP study design relate to refinements to methods and approaches in light of learnings and challenges encountered in the 2021 program. Recommendations are:

- Increase the frequency of aqueous speciation sampling in the period prior to benthic invertebrate sampling. This recommendation reflects the observation that aqueous speciation exhibited relatively large short-term variability at some sedimentation ponds, and that this variability may account for the poor conformance of some 2021 data to the bioaccumulation tool. The 2022 SeSMP study design should consider an appropriate period and sampling frequency to overcome this variability and develop a more reliable pairing of organoselenium concentrations and benthic invertebrate selenium concentrations.
- Volatile selenium analysis should continue until sufficient data exist to understand the persistence and bioaccumulative potential of these species or to conclude that these species are not important drivers of bioaccumulation. Too few detected values were obtained in the 2021 program to provide this understanding.
- A special study should be considered to evaluate the stability of both volatile and non-volatile organoselenium species after sampling. This study could involve collecting multiple water samples from a sedimentation pond at a time when organoselenium concentrations are relatively high, then handling and storing these samples in different ways to evaluate whether these factors can affect measured organoselenium concentrations. Sample treatments could include presence of headspace, exposure to light, storage temperature, hold time, or sterilization.
- Methods should be evaluated to more precisely quantify types and abundances of aquatic vegetation (e.g., via drone photography) and abundance or productivity of attached algae within ponds (e.g., by sampling from vegetation, liners, or baffles). Methods should also be evaluated to more precisely quantify shading.
- Installation of loggers should be evaluated in selected study ponds to obtain high-resolution time series of conditions such as temperature, dissolved oxygen, and ORP. These data will help understand how often (and when) these parameters need to be sampled to obtain reliable information on average conditions.
- Methods should be evaluated to obtain sediment characteristics from ponds with liners or extensive vegetation, so that the role of sediment can be more reliably tested.
- Consideration should be given to conducting longitudinal sampling downstream of more sedimentation ponds, subject to the availability of downstream reaches with suitable conditions at sedimentation ponds with sufficiently high organoselenium concentrations.

6.2 Other Recommendations

Other activities that could help attain the objectives of the SeSMP include:

- When activities are being planned that will modify a sedimentation pond (e.g., aeration, bypass, dredging), these should be treated as an opportunity to monitor how the modifications affect conditions and selenium speciation changes in the pond. Repeated monitoring should be conducted before, during, and after the modification, including aqueous speciation upstream and downstream of the pond and whatever conditions in the pond could be affected by the modification (considering what the modification will be, and drawing on the predictors considered in this study). If properly designed, such studies could directly test some of the hypothesized mechanisms for organoselenium generation and release.
- Any activities related to sedimentation ponds (e.g., use of flocculant, pumping of water in or out) should be recorded and stored in a way that is readily available to the SeSMP study team. Such information could be invaluable in helping to understand puzzling results, and could flag potential issues with data collection before they occur.
- All available engineering information on sedimentation pond characteristics (e.g., capacity, dimensions, baffles, liners) should also be compiled and stored in a way that is readily available to the SeSMP study team. Such information could help identify useful predictors of organoselenium concentrations.

Signature Page

ADEPT Environmental Sciences Ltd.

Adrian de Bruyn, PhD, RPBio Owner, Senior Environmental Scientist

AMD/SED/

7.0 **REFERENCES**

BC MOE (British Columbia Ministry of Environment). 2003. British Columbia field sampling manual for continuous monitoring and the collection of air, air-emission, water, wastewater, soil, sedimentation, and biological samples. British Columbia Ministry of Environment, Victoria, BC.

Besser JM, Canfield TJ, La Point TW. 1993. Bioaccumulation of organic and inorganic selenium in a laboratory food chain. Environ. Toxicol. Chem. 12: 57–72.

Cooke TD, Bruland KW. 1987. Aquatic chemistry of selenium: evidence of biomethylation. Environ. Sci. Technol. 21: 1214–1219.

de Bruyn AMH, Luoma SN. 2021. Selenium Species Bioaccumulation Tool Draft Version 2.0. Prepared for Teck Coal Limited. February 2021.

Dungan RS, Frankenberger WT, Jr. 1999. Microbial transformations of selenium and the bioremediation of seleniferous environments. Biorem. J. 3: 171–188.

Eswayah AS, Smith TJ, Gardiner PHE. 2016. Microbial transformations of selenium species of relevance to bioremediation. Appl. Environ. Microbiol. 82:4848–4859.

Faust SD, Aly OM. 1981. Chemistry of Natural Waters. Ann Arbor Science, Ann Arbor, MI. pp. 359-371.

Golder. 2020. Updates to the lotic and lentic statistical bioaccumulation models for selenium in the Elk Valley. Prepared for Teck Coal Limited. November 2020.

Golder. 2021a. Elk Valley Selenium Speciation Program: State of the Science Report. Prepared for Teck Coal Limited. March 2021.

Golder. 2021b. Elk Valley Selenium Speciation Program: 2021 Study Design. Prepared for Teck Coal Limited. July 2021.

Jain VK. 2017. Chapter 1: An Overview of Organoselenium Chemistry: From Fundamentals to Synthesis, in Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments, Editors: Jain VK, Priyadarsini KI, pp. 1-33.

Janz DM, DeForest DK, Brooks ML, Chapman PM, Gilron G, Hoff D, Hopkins WA, McIntyre DO, Mebane CA, Palace VP, Skorupa JP, Wayland M. 2010. Selenium Toxicity to Aquatic Organisms. In: Ecological assessment of selenium in the aquatic environment. Chapman PM, Adams WJ, Brooks ML, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw DP (Eds). SETAC Workshop on ecological assessment of selenium in the aquatic environment. CRC Press. Boca Raton, FL, New York, NY, London. 339 pp.

LeBlanc KL, Wallschläger D. 2016. Production and release of selenomethionine and related organic selenium. species by microorganisms in natural and industrial waters. Environ. Sci. Tec hnol. 50: 6164–6171.

Lorax. 2020. Line Creek Operations Assessment of Selenium Speciation and Bioavailability in Dry Creek. Prepared for Teck Coal Limited. February 2020.

Luoma S. 2021. Selenium Bioaccumulation in Annelids Collected from the Fording and Elk Rivers. Prepared for Teck Coal Limited, Sparwood, BC.

Maddison DR. 1991. The discovery and importance of multiple islands of most-parsimonious trees. Systematic Zoology 40: 315-328.

Maher W, Roach A, Doblin M, Fan T, Foster S, Garrett R, Möller G, Oram L, Wallschläger D. 2010. Chapter 4. Environmental sources, speciation, and partitioning of selenium. In: Ecological assessment of selenium in the aquatic environment. Chapman PM, Adams WJ, Brooks ML, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw DP (Eds). SETAC Workshop on ecological assessment of selenium in the aquatic environment. CRC Press. Boca Raton, FL, New York, NY, London. 339 pp.

Martin AJ, Fraser C, Simpson S, Belzile N, Chen YW, London J, Wallschläger D. 2018. Hydrological and biogeochemical controls governing the speciation and accumulation of selenium in a wetland influenced by mine drainage. Environ. Toxicol. Chem. 37: 1824–1838.

Milne JB. 1998. The Uptake and Metabolism of Inorganic Selenium Species. In: W.T. Frankenberger, Jr. and R.A. Engberg (eds.), Environmental Chemistry of Selenium. Marcel Dekker, New York. pp. 459-478.

Minnow (Minnow Environmental Inc.). 2020. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023 (RAEMP) Final. Prepared for Teck Coal Limited, Sparwood, British Columbia. December 2020.

Minnow and Lotic. 2022. Draft Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report. Prepared for Teck Coal Limited, Sparwood, British Columbia. In Draft.

Minnow. 2022d. Draft Elkview Operations Local Aquatic Effects Monitoring Program (LAEMP) Report. Report Prepared for Teck Resources Limited. In Draft.

Minnow. 2022e. Draft Elkview Operations Saturated Rock Fill Local Aquatic Effects Monitoring Program (LAEMP) Report. Report Prepared for Teck Resources Limited. In Draft.

Minnow. 2022a. Draft Line Creek Operations Local Aquatic Effects Monitoring Program (LAEMP) Report for Dry Creek. Prepared for Teck Coal Limited, Sparwood, BC. In Draft.

Minnow. 2022b. Draft Line Creek Local Aquatic Effects Monitoring Program (LAEMP). Report Prepared for Teck Resources Limited. In Draft.

Minnow. 2022c. Draft Fording River Operations Local Aquatic Effects Monitoring Program (LAEMP) Report. Prepared for Teck Coal Limited, Sparwood, British Columbia. In Draft.

Neumann PM, De Souza MP, Pickering IJ, Terry N. 2003. Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant, Cell Environ. 26: 897–905.

Ponton DE, Graves SD, Fortin C, Janz D, Amyot M, Schiavon M. 2020. Selenium interactions with algae: chemical processes at biological uptake sites, bioaccumulation, and intracellular metabolism. Plants 9: 528.

Simmons DBD, Wallschläger D. 2005. A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ. Toxicol. Chem. 24: 1331-1343.

Stewart, R., M. Grosell, D. Buchwalter, N. Fisher, S. Luoma, T. Mathews, P. Orr, and W.-X. Wang. 2010. Bioaccumulation and trophic transfer of selenium. In: Ecological assessment of selenium in the aquatic environment. Chapman PM, Adams WJ, Brooks ML, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw DP (Eds). SETAC Workshop on ecological assessment of selenium in the aquatic environment. CRC Press. Boca Raton, FL, New York, NY, London. 339 pp.

Teck. 2021. Corbin Dam Spillway Upgrade Water Quality Monitoring Plan. June 9, 2021

Wallschläger D, Feldmann J. 2010. Formation, occurrence, significance, and analysis of organoselenium and organotellurium compounds in the environment. Metal Ions Life Sci. 7:319–364.

Zhang Y, Frankenberger WT Jr. 2000. Formation of dimethylselenonium compounds in soil. Environ. Sci. Technol. 34: 776–783.

Zhang YQ, Frankenberger WT Jr, Moore JN. 1999. Effect of soil moisture on dimethylselenide transport and transformation to nonvolatile selenium. Environ. Sci. Technol. 33: 3415–3420.

Attachment A

Speciation Sampling Locations for the 2021 Regional Survey of Sedimentation Ponds and Other Monitoring Programs

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 227202.0023 - 2022 SeSMP Field Program\D - GIS\SeSMP\22-23 Figure 3a EVO.mxd

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 227202.0023 - 2022 SeSMP Field Program\D - GIS\SeSMP\22-23 Figure 3b FRO.mxd

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 227202.0023 - 2022 SeSMP Field Program\D - GIS\SeSMP\22-23 Figure 3c GHO.mxd

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 227202.0023 - 2022 SeSMP Field Program\D - GIS\SeSMP\22-23 Figure 3d LCO.mxd

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 227202.0023 - 2022 SeSMP Field Program\D - GIS\SeSMP\22-23 Figure 3e CMO.mxd

Attachment B

Predictor Variables from the 2021 Regional Survey of Sedimentation Ponds

Attachment B. Predictor variables from the 2021 regional survey of sedimentation ponds

Parameter	Units	Corbin Reservoir	SPD Pond	Aqueduct Control	Bodie North	EVO Dry Creek	Harmer	Gate	Lindsay 2	Milligan	South Pit	Swift Creek Secondary	Clode Main	Porter Creek Secondary	Smith Ponds	Greenhills Main	Thompson Lower	Wade Pond Lower	Contingency Upper	MSAN 1	AWTF Buffer
Benthic invertebrate selenium US Benthic invertebrate selenium DS	mg/kg dw	1.8	10.0	-	-	18.0	14.7	-	-	21.3	-	34.7	5.4	4.2	-	17.7	15.3	20.3		-	-
Alkalinity US	mg/Las CaCOs	379	266	203	195	295	178	203	522	197	391	226	355	219	24.5	20.5	45.5	239		11.5	274
Ammonia US	mg/L as N	0.005	0.0936	0.0218	0.0337	0.005	0.018	0.0786	0.0252	0.0101	0.005	0.0182	0.005	0.0175	0.005	0.0108	0.0089	0.0058	-	-	0.0064
Ash-free Dry Mass US	mg/L	5.6	3.3	8.4	8	1.5	1.6	3.1	1.5	1.5	1.5	4.4	7.9	1.5	1.5	1.5	1.5	30.2		-	1.5
Chloride US	mg/L	1.17	4.37	41.7	37.3	3.36	0.87	14.3	8	0.82	0.57	1.84	6.86	0.82	0.57	1.4	11.2	0.45	-	-	91.2
Chlorophyll-a US	µg/L	0.11	0.648	0.698	1.52	-		1.48	0.188	1.47	0.067	3.31	0.47	0.358	0.067	0.316	1.23	3.07	-	-	0.458
Dissolved Organic Carbon US	mg/L	2.42	2.1	1.36	1.52	2.23	1.44	1.63	990	3.91	3.79	5.77	2960	0.93	3.79	3.31	4.06	5.05			1.48
Hardness US	mg/L as CaCO ₃	1260	1090	291	1160	1030	360	1160	594	673	566	1020	1800	590	566	1090	1250	271	-	-	957
Nitrate US	mg/L as N	5.3	4.8	0.13	28.2	2.62	0.593	28.6	0.115	0.043	6.78	117	153	2.23	6.78	5.34	12	0.146	-	-	0.0743
Nitrite US	mg/L as N	0.005	0.0523	0.001	0.0735	0.005	0.001	0.0233	0.005	0.005	0.005	0.14	0.005	0.005	0.005	0.005	0.005	0.001	-	-	0.005
Oxidation-reduction Potential US	mV ug/l	379	461	456	271	230	445	284	267	239	463	473	478	469	463	450	469	479	-	-	454
pH US	- -	8.18	8.11	8.25	7.92	8.31	8.35	8.09	7.99	8.31	7.93	7.9	8.05	8.43	7.93	8.23	8.26	8.37			7.97
Total Phosphorus US	μg/L	0.002	0.0038	0.0332	0.0082	0.0037	0.0098	0.0095	0.002	0.0039	0.002	0.0908	0.002	0.0049	0.002	0.002	0.0065	0.0339		-	0.0109
Total Dissolved Solids US	mg/L	1370	1350	326	1530	1290	457	1480	621	901	652	1280	2410	764	652	1360	1580	312	-	-	1360
Dissolved Se US	μg/L	33.4	6.17	4.74	254	195	38.5	241	3.77	73.8	23.1	210	218	64.2	23.1	165	149	1.24	-	-	8.28
Sulphate US	mg/L mg/l	34.9	6.38 815	4.b 37.5	231	162	35	824	5.22	/3./	24.7	230	240	/0.8	24./	756	909	31.4		-	691
Total Kjeldahl Nitrogen US	mg/L as N	0.315	0.387	0.198	0.05	0.274	0.129	0.05	0.068	0.292	0.05	0.05	0.081	0.357	0.05	0.454	0.335	0.292		-	0.094
Total Organic Carbon US	mg/L	1.99	1.91	6.24	1.53	2.2	1.79	2.04	1.12	4.12	3.78	7.19	1.91	1.14	3.78	3.49	5.37	5.52		-	1.59
Total Suspended Solids US	mg/L	1	1.2	34.6	279	1	3.8	10.8	1	1.2	1	13.2	1.1	1.2	1	1.2	25.2	24.8	-	-	1
I Urbiaity US Alkalinity DS	NTU mg/Lac CaCC	0.5	2.8	19.3	154	0.15	2.19	4.47	0.25	1.52	0.1	15.8	0.15	0.42	0.1	0.66	11.2	9.15	-	-	0.52
Ammonia DS	mg/L as N	0.178	253	0.009	0.017	0.012	0,005	0.053	407	0.006	203	468	235	0.012	0.017	0.020	0.012	245	-	0.005	0.009
Ash-free Dry Mass DS	mg/L	3.7	2.3	11.9	1.5	-	1.6	1.5	1.5	1.5	1.5	7.7	1.5	1.5	1.5	4.4	1.5	1.5	-	1.5	1.5
Chloride DS	mg/L	1.45	4.85	58.4	52.7	3.35	0.89	15	9.8	0.97	0.83	3.1	2.52	0.85	0.65	1.36	12	0.45	-	0.82	26
Chlorophyll-a DS	μg/L	3.84	1.09	4.83	0.366	-		1.16	-	0.521	0.241	16.1	1.08	0.229	0.464	1.84	3.13	0.252	-	1.08	0.38
Lonductivity DS Dissolved Organic Carbon DS	μS/cm mg/l	1720	1620	583	1900	1560	630	1890	1 59	1240	1510	2990	1840	1040	1030	1510	1710	497	-	360	944
Hardness DS	mg/L as CaCO ₂	1200	1030	301	1160	2.8	349	1290	534	3.8 757	1.2 940	2070	2.92	584	584	3.64	4.2/	4.13		188	523
Nitrate DS	mg/L as N	4.77	4.07	0.138	27.5	2.47	0.564	25.8	0.0504	0.682	3.01	36.3	71.9	2.5	6.22	4.52	10.3	0.126	-	5.71	9.05
Nitrite DS	mg/L as N	0.0395	0.0579	0.001	0.0611	0.005	0.001	0.0763	0.005	0.005	0.0079	0.045	0.0732	0.005	0.0174	0.014	0.0102	0.001		0.0067	0.005
Oxidation-reduction Potential DS	mV	462	501	270	289	462	425	275	293	251	269	460	470	471	458	427	369	441	-	319	441
orthophosphate DS	µg/L	0.0013	0.001	0.001	0.001	0.0015	0.0041	0.0012	0.001	0.0209	0.002	0.001	0.001	0.0035	0.001	0.001	0.0012	0.0137	-	0.001	0.001
Total Phosphorus DS	µg/L	0.0043	0.0022	0.0622	0.002	0.0102	0.0082	0.0028	0.0079	0.0192	0.002	0.0257	0.002	0.0046	0.002	0.0037	0.0052	0.0139	-	0.0027	0.0043
Dissolved Se DS	μg/L	29.7	4.81	4.59	250	190	38.1	269	2.21	105	149	487	165	65.9	25.1	138	138	1.33		7.3	36.5
Total Se DS	μg/L	28	5.51	4.69	230	156	32	235	2.12	96.4	134	549	184	71.5	27	136	125	1.17	-	7.2	34.1
Sulphate DS	mg/L	785	785	39.5	837	734	181	905	63	538	689	1670	646	419	226	743	877	31.2	-	52	318
Total Kieldahl Nitrogen DS	mg/L as N	0.453	0.384	0.306	0.05	0.406	456	1640	0.143	985	0.44	2550	0.05	0.173	0.17	0.597	0.513	0.309		0.347	0.393
Total Organic Carbon DS	mg/L	2.61	1.88	9.52	3.93	2.84	2.08	2.4	2.09	3.96	1.06	6.48	3.11	1.06	3.99	3.97	4.57	5.68		0.5	1.24
Total Suspended Solids DS	mg/L	7.6	1	72.6	1	1	1.2	3.6	3.4	3	1	15.7	1	1	1	1	2	1.4	-	1	2.9
Turbidity DS	NTU	3.16	1.26	51.9	0.43	0.25	1.51	1.43	3.33	1.79	1.02	5.51	0.58	0.66	0.25	1.3	0.89	1.19	-	0.27	1.08
Field Temperature US Field Dissolved Oxygen US	°C mg/l	5.08	9.27	-	-	9.1	9.82	9.33	-	9.34	-	16.55	5.004	6.181	8.37	-	8.64	-	-	-	11.9
Field Percent Saturation US	%	71.6	9.6		-	9.72	9.96	88.9	-	9.95		102.2	81.1	84.3	54.5	-	88.2			-	168.8
Field Conductivity US	μS/cm	1290	1402	-	-	1282	527	1489	-	1002		1819	2119	747	709	-	1453	-	-	-	1402
Field pH US	-	6.94	8		-	8.16	8.42	8.24	-	8.35	-	7.7	7.55	8.41	7.04	-	8.34	-	-	-	7.08
Field Oxidation-reduction Potential US	mV NTU	156.4	0.64			95.9	88	115.5		95.1		126.5	120.2	104.1	126.2		105.3			-	146.9
Field Chlorophyll-a US	ug/L	0.803	0.115			0.193	0.055	0.179		0.75		0.158	0.074	-0.55	0.688		-0.05	-			0.032
Field Phycocyanins US	μg/L	0.93	0.399			0.402	0.323	0.405	-	0.434		0.222	0.475	0.552	1.202	-	0.403	-		-	0.327
Field Temperature DS	°C	11.83	5.08	12.328	13.62	9.23	9.53	-	14.595	13.37	11.68	10.6	11.9	8.002	-	12.6	13.5		-	8.048	6.85
Field Dissolved Oxygen DS	mg/L	9.19	9.02	9.33	8.84	9.63	9.98	-	8.62	9.19	9.56	11.6	9.54	10.56		8.87	13.2	-		12.86	11.23
Field Percent Saturation DS	% us/cm	15.5	71.6	87.4	84.8	1282	87.7	-	85	87.8	88.7	2492	88.8	89.6	-	1246	127.7	-		108.9	94.8
Field pH DS	-	7.76	6.94	8.24	7.87	8.09	8.32		7.58	8.31	7.89	7.5	7.99	8.35		8.24	8.23			8.53	7.47
Field Oxidation-reduction Potential DS	mV	143	156.4	86	113.7	77.5	96	-	102.6	72.9	102.1	135.8	102.8	103.2	-	92.2	105.4	-	-	104.1	139.8
Field Turbidity DS	NTU	0.68	-0.87	4.59	7.71	-1.08	0.45	-	3.72	1.74	0.24	0.8	-0.11	-0.5		0.1	-0.69	-		-0.99	-1.21
Field Chlorophyll-a DS Field Phycocyanias DS	µg/L	0.394	0.803	0.379	0.101	0.185	0.18	-	0.355	0.411	0.128	0.388	0.291	0.139	-	0.391	0.31	-	-	0.065	0.066
Pond Substrate % Gravel	%		70.4	0.302	-	0	0	-	0	-	25.1	0	0	16.5	25.1	0	3.6	-	0	-	-
Pond Substrate % Sand	%	-	18.8	0	-	46.3	4.7	-	0	-	35	17.9	0	7.1	35	8.9	18.7	-	12.6	-	-
Pond Substrate % Silt	%	-	9.1	49.3	-	49.3	83.5	-	54	-	34.7	60.4	71.5	57.6	34.7	68.6	71.9	-	74.9	-	-
Pond Substrate % Clay	%	-	1.6	50.4	-	3.9	11.4	-	44.7	-	5.3	21.8	27.8	16.9	5.3	21.9	5.8	-	11.6	-	-
Shade Score	score	1	4.3	15.8	-	3.3	3	- 2	25.1	- 3	19.4	1.00	10.9	0	19.4	9.42	16.2	1	9.77	0	- 1
Secchi Depth	m	2.4	1.5	1	2	2.4	3.2	2.7	1.2	1.6	1.2	2.2	3.67	3.6	1	1.8	1.5	1.67	1	1	2
Secchi Depth/Maximum Depth	%	0.312	1.000	0.625	0.758	0.857	0.533	1.000	0.619	0.842	0.930	0.733	1.000	1.000	1.000	0.650	0.682	1.000	0.909	0.667	1.000
Emergent Vegetation Score	score	3	1	1	3	2	3	3	3	2	3	1	1	1	2	2	3	0	3	2	0
Floating Vegetation Score	score	0	3	0	3	3	0	1	3	3	1	2	3	0	3	3	0	0	2	3	1
Algae Coverage Score	score	0	0	2	0	1	0	1	0	4	0	2	0	0	0	1	0	1	1	3	2
Total Aquatic Vegetation Score	score	3	4	3	6	6	3	5	7	9	4	5	4	1	5	6	3	1	6	8	3
Field Temperature In-pond	°C	8.5	12.0	12.2	13.7	9.1	8.1	11.0	13.9	12.4	11.9	9.2	11.8	7.6	9.5	12.6	12.0	9.97	8.4	8.0	12.4
Field Dissolved Oxygen In-pond	mg/L	9.3	9.9	10.0	9.1	9.5	10.1	12.8	6.8	14.2	9.5	11.5	9.6	10.5	8.8	9.3	13.2	10.34	9.1	12.0	19.4
Field Conductivity In-nord	% u\$/cm	83.7	92.5	92.7	88.4	83.5	85.9	117.2	66.7	133.6	88.6	101.5	89.2	87.7	78.0	87.8	121.9	91.4	78.0	98.9	149.7
Field pH In-pond	- -	7.4	7.9	8.3	7.9	8.1	8.3	8.3	7.3	265	8,0	7.4	7.9	8.4	7.4	459	8.3	8,4	7.6	8.3	7,1
Field Oxidation-reduction Potential In-pond	mV	136.9	106.0	85.2	116.4	68.6	97.7	121.0	94.2	100.9	108.5	130.7	104.5	105.4	118.6	93.8	99.2	105.6	-47.4	40.5	149.7
Field Turbidity In-pond	NTU	0.72	0.59	6.88	-0.44	-1.13	0.15	4.19	1.89	1.42	-0.18	-1.00	-0.04	-0.48	0.26	-0.36	-0.37	2.58	-0.89	0.93	-0.59
Field Chlorophyll-a In-pond	μg/L	0.59	0.23	0.84	0.13	0.13	0.50	0.54	0.17	0.45	0.08	0.11	0.35	0.06	0.09	0.46	0.77	0.89	0.07	0.11	0.08
Field Phycocyanins In-pond	µg/L ves/no	0.59	0.36	0.40	0.26	0.40	0.50	0.51	0.24	0.35	0.30	0.34	0.30	0.37	0.36	0.38	0.54	0.56	0.45	0.42	0.30
July Mean Hydraulic Residence Time	d	10.80	0.06	0.92	4.90	0.47	1.27	4.21	6.28	6.44	2.83	31.06	11.39	1.18	0.65	40.04	4,49	99.00	-	0.15	1.21
August Mean Hydraulic Residence Time	d	10.00	0.08	0.20	4.20	0.62	1.30	1.78	5.87	20.01	2.98	14.29	14.18	2.34	13.34	48.73	12.00	0.59	-	0.16	1.57
Maximum Depth	m	7.7	1.5	1.6	2.64	2.8	6	2.7	1.94	1.9	1.29	3	3.67	3.6	1	2.77	2.2	1.67	1.1	1.5	2
July Mean Temperature	°C	13.4	16.3	16.1	20.3	15.0	10.0	15.3	22.4	19.9	16.1	13.7	16.9	8.5	13.6	20.2	20.9	12.4	-	7.8	14.7
Notes: US = upstream of sedimentation pond; DS	= downstream of	sedimental	tion pond; v	alues below	10.8 detection a	13.9 are shown a	9.0 s the detect	12.5 ion limit	10.0	19.1	12.9	э.8	13.5	0.4	12.9	17.1	17.5	10.2	-	9.5	12.1

Attachment C

Selenium Speciation Associated with Maximum Reported Organoselenium Concentrations in 2021 in Local and Regional Monitoring Programs

Attachment C. Selenium speciation associated w	ith the sampling event that reported th	e maximum organoselenium concentration	on in 2021 local and regional monitorin	e program
				0 P0

Attachment C. Selenium speciation associated with the sampling event tha	t reported the maximum organos	elenium concenti	ation in 202	1 local and r	egional mon	itoring prog	rams	
Program / Location	Monitoring Location	Date of Max. OrgSe	MeSe(IV)	Seleniu DMSeO	m Species C OrganoSe	oncentratio MeSe(VI)	n (µg/L) Se(IV)	Se(VI)
FRO North Saturated Rock Fill Decant from Clode Sediment Pond	FR CC1	09 Διισ	0.015	0.016	0.031	<0.01	0.384	169
Corbin Sediment Pond	CM CCPD	02 Ech	20.04	20.01	20.04	<0.01	0.2	20.0
Consist Grand Benchin Consist Section Pond	CM_CCRD	19 Oct	<0.01	<0.01	<0.01	<0.01	0.081	17.8
orbin Offtake Valve by CCPD orbin Creek ds Scrubby Creek	CM_CCSC	16 Nov 07 Sep	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01	0.213	27.4
fichel Creek ds CMm, 50 m us Andy Good Creek 4 pit Dewatering Horizontal Pipe	CM_MC2 CM_14PIT-PIPE	05 Oct 07 Dec	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.097	9.41 4.75
4 Pit at Pipe Discharge (14 Pit Sump) ix Pit	CM_34PIPEDIS CM_6PITDW	07 Sep 21 Dec	0.013	0.011	0.024	<0.01	1.15	1.04
orbin Creek ds CMm Jorth Ditch by Floc Shark	CM_CC1 CM_ND2	02 Feb	<0.01	<0.01	<0.01	<0.01	0.603	17.4
Iain Pond Death Water Management System (JCO Day Creek LAEMD	CM_SPD	14 Apr	0.011	0.014	0.025	<0.01	0.387	6.36
ry Creek us East Tributary	LC_DC3	15 Nov	0.02	0.041	0.061	<0.01	1.15	63.2
ist Tributary of Dry Creek ry Creek Sedimentation Ponds effluent to Dry Creek	LC_DCEF LC_SPDC	06 Jan 03 Aug	<0.01 0.049	<0.01 0.088	<0.01 0.137	<0.01 <0.01	0.015	1.23 71.9
ry Creek ds Sedimentation Ponds ear mouth of Dry Creek	LC_DCDS LC_DC1	10 Aug 29 Jul	0.059	0.112 0.029	0.171 0.055	<0.01 <0.01	1.91 0.752	57.9 48.6
ownstream of marsh area where DCEF comes to surface ording River 100 m us Conveyance Outfall	LC_DC4	03 Aug 12 Sep	0.026	0.044	0.07	<0.01	1.01	52.2 54.1
ording River Bridge ds FRDSDC	LC_FRB	12 Sep	0.016	0.013	0.029	<0.01	0.329	54.4
CO LAEMP		13 Sep	<0.01	<0.01	<0.01	<0.01	0.039	1./4
outh Line Creek ne Creek us LCO	RG_LI24/LC_LC1	18 Jan 07 Apr	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.019	1.59 2.03
ine Creek us WLC AWTF ine Creek 200m ds WLC AWTF	RG_LCUT/LC_WLC RG_LILC3/LC_LC3	23 Apr 18 Jan	0.027	<0.01 0.052	0.027	<0.01 0.374	0.096	408 45.2
ne Creek ~50m ds Contingency Pond discharge	RG_LISP24 /WL_DCP_SP24	13 Sep 25 Jan	0.014	<0.01	0.014	0.015	0.157	29.5
ne Creek ds compliance location	RG_LIDCOM/LC_LCC	29 Apr	<0.01	<0.01	<0.01	0.016	0.176	31
re creek above canyon arding River us Line Creek	RG_FRUL/LC_LC6	11 Jan 12 Sep	0.021	0.013	0.034	<0.01	0.399	48.1
ording River at Elk reenhills Creek and Gardine Creek	RG_F023	14 Jul	0.016	<0.01	0.016	< 0.01	0.194	30.8
reenhills Creek us proposed treatment facility reenhills Near-Field ds proposed treatment facility	RG_GHUT RG_GHNF	13 Sep 10 Sep	<0.01 0.017	<0.01 <0.01	<0.01 0.017	<0.01 <0.01	0.363	230 189
low Greenhills Creek Sedimentation Pond	RG_GHBP RG_GHFF / RG_GHFFA	13 Sep 09 Sep	0.099	0.25	0.349	<0.01	4.23	132
iological monitoring	RG_GAUT	16 Sep	<0.01	<0.01	<0.01	<0.01	0.108	0.437
reenils Creek Secondary Pond	RG_GHP/GHPS	23 Sep	0.098	0.213	0.311	<0.01	3.52	124
ne. seument i dxxxxy ording River us Kilmarnock Creek	RG_FOUKI	17 Dec	<0.01	<0.01	<0.01	<0.01	0.289	62.6
rding River near Fording River Road arding River at bridge ds Kilmarnock Creek, us Swift Creek	RG_FRUPO RG_FOBKS/GH_FR3	18 Jun 09 Sep	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01	0.105	58.9 43.8
k River us Branch Creek and GHO ording River ds Cataract Creek. us Porter Creek	RG_ELUGH RG_FOBCP/FR_FRCP1	10 Sep 13 Sep	<0.01	<0.01	<0.01	<0.01	0.075	0.776
lichel Creek us CMm ordina River I AFMP	RG_MI25/CM_MC1	13 Sep	<0.01	<0.01	<0.01	<0.01	0.02	0.148
ording River us Henretta Creek	RG_UFR1/FR_UFR1	16 Dec	<0.01	<0.01	<0.01	<0.01	0.045	0.758
arretta Creek us all mine operations arding River side channel 2	RG_FRSCH2	17 Dec	<0.01	<0.01	<0.01	<0.01	0.021	86.2
reenhouse side channel, Fording River ds FRUPO ording River us Clode Creek	RG_FRGHSC RG_FOUCL/FR_FOUCL	13 Dec 13 Sep	<0.01	<0.01	<0.01	< 0.01	0.095	99.6 16.8
ording River us North Greenhills Diversion ording River ds Henretta Creek	RG_FOUNGD RG_FODHE/FR_FR1	16 Sep 14 Jun	<0.01	<0.01	<0.01 <0.01	<0.01	0.116	37.8 4.2
srding River us Shandley Creek	RG_FOUSH RG_FRCP1SW	17 Dec 15 Sen	<0.01	<0.01	<0.01	<0.01	0.319	67.1 76.2
ording River plate culvert Greenhills access road	RG_MP1/FR_MULTIPLATE	17 Dec	<0.01	<0.01	<0.01	<0.01	0.28	63.8
rding River us kilmarnock Creek rding River at Swift Creek Bridge	RG_FOBKS/FR_FR3	17 Dec 09 Sep	<0.01	<0.01	<0.01	<0.01	0.289	43.8
ording River ds Swift Cataract Outfall ording River ds Swift Creek, us Cataract Creek	RG_FOBSC/FR_FR4	14 Sep 13 Sep	0.012	<0.01 <0.01	0.012	<0.01 <0.01	0.398	72.3 83.2
rding River near Fording River Road rding River ds Cataract Creek	RG_FRUPO/FR_FRRD RG_FOBCP/FR_FRCP1	18 Jun 13 Sep	<0.01	<0.01	<0.01	<0.01	0.105	58.9 79.7
ording River ds Porter	RG_FODPO/GH_PC2 RG_FOUEW/FR_FR5	17 Jun 11 Sen	<0.01	<0.01	<0.01	<0.01	0.112	50.9 79.2
vrding River us Chauncey Creek	RG_FO22/FR_FRABCH	12 Sep	0.012	<0.01	0.012	<0.01	0.194	87.4
LC Active Water Treatment Pond Buffer Pond weir box	WL_BFWB_OUT_SP21	27 Apr	0.027	0.122	0.149	0.583	1.02	15.3
WTF Influent Line Creek WTF Influent West Line Creek	WL_LCI_SP02 WL_WLCI_SP01	02 Feb 12 Oct	<0.01 0.011	<0.01 0.036	<0.01 0.047	<0.01 <0.01	0.074 0.132	56.2 404
VO LAEMP exander Creek upstream of Michel Creek and EVO	RG_ALUSM /EV_AC2	12 Sep	<0.01	<0.01	<0.01	<0.01	0.015	0.562
ichel Creek upstream of CMm influence astream of proposed outfall	RG_MI25 /CM_MC1 RG_ERCKUT	13 Sep 15 Sep	<0.01	<0.01	<0.01 <0.01	<0.01	0.02	0.148
ickson Creek ds proposed outfall	RG_ERCKDT/EV_ECOUT	15 Sep	<0.01	<0.01	<0.01	<0.01	0.064	137
ate Creek us sedimentation pond	RG_GATE	16 Sep	0.018	<0.01	0.042	<0.01	0.912	224
ate Creek Sedimentation Pond Decant odie Creek Sedimentation Pond Decant	RG_BOCK	16 Sep 16 Sep	0.051	0.034 0.118	0.085	<0.01	0.91	201 201
fichel us Erickson and ds Alexander fichel Creek ds Erickson Creek	RG_MI3 RG_MIDER	10 Sep 09 Sep	<0.01	<0.01	<0.01 <0.01	<0.01	0.045	1.03
Aichel Creek ds Bodie Creek Aichel Creek ds Hwy #3 Bridge	RG_MIDBO RG_MICOMP/EV_MC2	11 Sep 13 Sep	0.012	<0.01	0.012	<0.01	0.17	8.16
VO SRF	E2 NWRI	22 Mar.	+0.01	0.00	0.00	+0.01	2.62	156
atar west Picintake - Injection Break tank uffer Pond Outlet	F2_BP0	04 Oct	0.017	0.03	0.034	<0.01	1.54	8.37
lichel Creek ds Highway 3 Bridge lichel Creek immediately us Gate Creek sedimentation pond	EV_MC2 EV_MC2a	30 Aug 13 Sep	<0.01	<0.01	<0.01	<0.01	0.11 0.142	5.13
ichel Creek us Erickson Creek ickson Creek at Mouth	EV_MC3 EV_EC1	16 Aug 27 Sep	<0.01	<0.01 0.039	<0.01 0.061	< 0.01	0.117	1.18
rickson Creek ds SRF Outfall odie Creek outlet of rock drain us water tank system	EV_ECOUT EV BRD LOT3	13 Sep 22 Mar	0.011	0.024	0.035	<0.01	1.77	15.4 329
odie Creek Sedimentation Pond Decant	EV_BC1	05 Jul	0.097	0.176	0.273	<0.01	2.67	207
k River ds Michel Creek at CPR Roadhouse	EV_ER1	07 Apr	0.033	<0.01	0.014	<0.01	0.092	17.3
armer Orgen Var freatment Project / Elkview Harmer Dam Remove armer Creek Dam Spillway	EV_HC1	12 Aug	0.033	0.013	0.046	<0.01	0.455	30.4
onitoring location	EV_HC1a EV_HCDSDAM	12 Aug 12 Aug	0.023	0.011	0.034	<0.01 <0.01	0.384	31.2 29.9
rmer Creek ds Harmer Dam		17 Jun	0.047	<0.01	0.047	<0.01	0.971	133 149
rmer Creek ds Harmer Dam nitoring location nitoring Location ds EVO Dry Creek Outfall Location	EV_DC2a EV_DCOUT	09 Sen	0.707					140
rmer Creek ds Harmer Dam inforing location minforing Location ds EVO Dry Creek Outfall Location rding River South AWTF rding River South Charance Control	EV_DC2a EV_DCOUT	09 Sep	0.207		0.047		0.241	4/1-
rmer Creek di Harmer Dam onitoring tocation noitoring tocation noitoring tocation di EVO Dry Creek Outfall Location dilag River di Suffic Cattarci Outfall giona Chronic Toxicity	EV_DC2a EV_DCOUT FR_SCOUTDS	09 Sep 29 Dec	0.012	<0.01	0.012	<0.01	0.311	107
armer Corek do Harmer Dam omboring tocation omboring tocation do EVO Dy Creek Outfall Location arding New South AVTF arding New South AVTF arding New South Carlan Couldall agginal Chronic Tackaby arding New Sol Scenets, and arding New Sol Scenets, and arding New Sol Scenets, and arding New Sol Scenets, and article South South Society, and article South Society, and article Society, and article Society, and article Society, and a	EV_DC2a EV_DCOUT FR_SCOUTDS FR_FRABCH GH_FR1	09 Sep 29 Dec 13 Jul 19 Oct	0.012	<0.01 <0.01 0.019	0.012	<0.01 <0.01 <0.01	0.311 0.146 0.602	107 55.1 65
armer Creek di Harmer Dam lomitoring tocation lomitoring tocation di EVO Dy Creek Outfall Location ording River Stark ANATI arding River Stark Anatori parting River di Screent Cattaract Outfall arging River di Screent Cattaract parting River di Screent River River di Strampson Creek en Creek Imodaletto S donul Line Creek confluence	EV_DC2a EV_DCOUT FR_SCOUTDS FR_FRABCH GH_FR1 GH_ERC LC_LOSSLCC	09 Sep 29 Dec 13 Jul 19 Oct 18 May 25 Jan	0.012 0.013 0.015 <0.01 0.02	<0.01 <0.01 0.019 <0.01 0.015	0.012 0.013 0.034 <0.01 0.035	<0.01 <0.01 <0.01 <0.01 0.062	0.311 0.146 0.602 0.022 0.391	107 55.1 65 1.3 36.9
amer Creek di Harme Dam lomitorigi pocation lomitorigi pocation di EVO Dy Creek Outfall Location ording New South AMFT andreg New South Cottanet Cottalla logginal Chronic Toullal logginal Chronic Toullal logginal Chronic Toullal regginal Chronic Toullal logginal Chronic Chronic Toullal logginal Chronic Chronic Chronic logginal Chronic Chronic Chronic Chronic logginal Chronic Chronic Chronic Chronic logginal Chronic Chronic Chronic Chronic logginal Chronic Chronic Chronic Chronic Chronic Chronic logginal Chronic Chro	FV_DC2a EV_DC2a FX_ECOUTD FR_FCABCH GH_FR1 GH_ERC LC_LCDSSLCC LC_SLC LC_LCD	09 Sep 29 Dec 13 Jul 19 Oct 18 May 25 Jan 18 Jan	0.012 0.013 0.015 <0.01 0.02 <0.01	<0.01 <0.01 0.019 <0.01 0.015 <0.01	0.012 0.013 0.034 <0.01 0.035 <0.01	<0.01 <0.01 <0.01 <0.01 0.062 <0.01	0.311 0.146 0.602 0.022 0.391 0.019	107 55.1 65 1.3 36.9 1.59
armer Creak di Harmer Dam Ionntonia pocioni Ionntonia pocioni Ionntonia (Decisioni di IVIO Dry Creak Dutfall Location ording River Stark MART Daring River Las Characto Utalial arginard Characta Tochiali arginard Characta Tochiali River di Simanya Creak River di Simanya Creak River di Simanya Creak Inter Cesh warta si de Mahin Roca Drain tali Line Creak vesta cie de Mahin Roca Drain en Carek Inter Genetaria Line de Mahin Roca Drain en Carek Inter Genetaria Line de Mahin Roca Drain en Carek Inter Cesh warta Characta Antonia en Carek Inter Cesh warta Cerek Inter Cesh en Cesh Cerek Inter Cerek vesta Cerek	FV_DC2a FV_DCOUT FR_SCOUTDS FR_FRABCH GH_FR1 GH_ERC LC_LCSSLCC LC_LCS	09 Sep 29 Dec 13 Jul 19 Oct 18 May 25 Jan 18 Jan 18 Jan 17 Aug	0.012 0.013 0.015 <0.01 0.02 <0.01 <0.01 <0.01	<0.01 <0.01 0.019 <0.01 0.015 <0.01 0.052 <0.01	0.012 0.013 0.034 <0.01 0.035 <0.01 0.052 <0.01	<0.01 <0.01 <0.01 <0.01 0.062 <0.01 0.374 <0.01	0.311 0.146 0.602 0.022 0.391 0.019 0.7 0.316	107 55.1 65 1.3 36.9 1.59 45.2 32.9
armer Creak da Harmer Dam Monthong Jocobin Monthong Jocobin Mon	EV_DC0a EV_DC0UT FR_SCOUTDS FR_FABCH GH_FR1 GH_FR2 LC_LCDSSECC LC_LCS LC_LCS	09 Sep 29 Dec 13 Jul 19 Oct 18 May 25 Jan 18 Jan 18 Jan 17 Aug 17 Sep	0.012 0.013 0.015 <0.01 0.02 <0.01 <0.01 <0.01 0.015	<0.01 <0.01 0.019 <0.01 0.015 <0.01 0.052 <0.01 <0.01	0.012 0.013 0.034 <0.01 0.035 <0.01 0.052 <0.01 0.015	<0.01 <0.01 <0.01 0.062 <0.01 0.374 <0.01 <0.01	0.311 0.146 0.602 0.022 0.391 0.019 0.7 0.316 0.34	107 55.1 65 1.3 36.9 1.59 45.2 32.9 164
armer Creek ds Harmer Dam Ionstroing Daciation ds HVD Dry Creek Dutfall Location fonstroing Journal of HVD Dry Creek Dutfall Location orging Never sub-Network Dutfall arginal Chronel Tauckty Staffing Never as Dhampoor Locate Autor Network 3 Thompoor Locate Autor Network 3 Thompoor Locate Autor Rever as Ling Creek Associated Mark Rock Datan Creek Astor Creek Associated Autor Marking Alexed Autor Reven Associate Revendence Autor Revend Associate Revendence Autor Marking Alexed Autor Revend Associated Autor Revend Associated Associated Autor Revend Associated Associated Autor Revend Associated	EV_DC2a EV_DC0uT FR_SCOUTOS FR_FRABCH GH_FR1 GH_ERC LC_SLC LC_SLC LC_LC3 LC_LC5 RG_CLODE RG_GICKD	09 Sep 29 Dec 13 Jul 19 Oct 18 May 25 Jan 18 Jan 17 Aug 17 Sep 14 Sep 11 Sep	0.012 0.013 0.015 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	<0.01 <0.01 0.019 <0.01 0.015 <0.01 0.052 <0.01 <0.01 <0.01 0.222	0.012 0.013 0.034 <0.01 0.035 <0.01 0.052 <0.01 0.015 <0.01 0.328	<0.01 <0.01 <0.01 <0.01 0.062 <0.01 0.374 <0.01 <0.01 <0.01	0.311 0.146 0.602 0.022 0.391 0.019 0.7 0.316 0.34 0.071 4.13	107 55.1 65 1.3 36.9 1.59 45.2 32.9 164 140 127
armer Creek di Harmer Dam Ionitoring Location Ionitoring Location di NUO Dyn Creek Duthal Location Ionitoring Location di NUO Dyn Creek Duthal Location Ording Nere Such Carlana (Lottala) Ording Nere da Creek Netti Jogiand Chronic Zontala Ording Nere da Creek Netti Al Roter 31 Thompson Creek and Creek Immediatello South Line Creek confluence and Line Creek west side of Main Noca Dram Creek Immediatello South Line Creek confluence and Creek Immediatello South Line Creek confluence and Creek Immediatello Ad South Line Creek Andre Such Creek Andre Such Strates Main Creek Andre Such Strates Thompson Creek Andre Such Strates Main Creek Andre Such Strates Thompson Creek Andre Strates Strates Strates Strates Strates Strates Netti Strates Strates Strates Strates Netti Strates Creek Andre Strates Strates Strates Strates Strates Strates Strates Strates Strates Strates Strates Strates Netti Strates Creek Strates Strates Strates Strates Strates Strates Strates Stra	EV_DC2a EV_DC2a EV_DC2a FR_SCOUTDS FR_FABCH GH_FR1 GH_FR2 LC_SLC LC_LC3 LC_LC3 BG_CLODE BG_GHCKD BG_CODGH BG_CODGH BG_CODGH BG_CAUSM	09 Sep 29 Dec 13 Jul 19 Oct 18 May 25 Jan 18 Jan 17 Jan 17 Sep 14 Sep 17 Sep 17 Sep 12 Seo	0.012 0.013 0.013 0.015 <0.01 0.02 <0.01 <0.01 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.016 0.0	<0.01 <0.01 0.019 <0.01 0.015 <0.01 0.052 <0.01 <0.01 <0.01 0.222 0.014 <0.01	0.012 0.013 0.034 <0.01 0.035 <0.01 0.052 <0.01 0.015 <0.01 0.328 0.038 0.031	<0.01 <0.01 <0.01 <0.01 0.062 <0.01 0.374 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.311 0.146 0.602 0.022 0.391 0.019 0.7 0.316 0.34 0.071 4.13 0.326 0.015	107 55.1 65 1.3 36.9 1.59 45.2 32.9 164 140 127 51.3 0.562
armer Creek di Harmer Dam Ionitoring Location Ionitoring Location di NVO Dyr Creek Dutfall Location Ording River South ANDF Ording River South ANDF Ording River South ANDF Ording River di Creek Rock Marker di South Creek And Der South Der Creek And Profit Ander South Line Creek confluence anti Line Creek west side of Main Rock Drain on Creek situ. Strict Dur Location and South ANDF AND AND AND AND AND AND AND ANDF AND AND AND AND AND AND AND ANDF AND AND AND AND AND AND AND ANDF AND AND AND AND AND AND AND AND AND ANDF AND	EV_DC2a EV_DC2a EV_DC2a FR_SC0UTDS FR_FABCH GH_FR1 GH_FR2 LC_SLC LC_SLC LC_LC3 GG_CLODE GG_CLODE<	09 Sep 29 Dec 13 Jul 19 Oct 18 May 25 Jan 18 Jan 18 Jan 17 Aug 17 Sep 14 Sep 17 Sep 17 Sep 12 Sep 04 Oct 15 Gen	0.012 0.013 0.013 0.015 0.02 0.01 0.02 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.011 0.015 0.011 0.012 0.011 0.02 0.011 0.02 0.011 0.02 0.011 0.02 0.011 0.02 0.011 0.02 0.011 0.02 0.011 0.02 0.011 0.02 0.011 0.02 0.011 0.02 0.011 0.02 0.011 0.02 0.015 0.015 0.011 0.02 0.015 0.015 0.015 0.011 0.02 0.015 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.022 0.022 0.019 0.022 0.022 0.019 0.022 0.022 0.019 0.022 0.022 0.022 0.019 0.022	<0.01 <0.01 0.019 <0.01 0.015 <0.01 0.052 <0.01 <0.01 <0.01 0.222 0.014 <0.01 <0.01 0.222 0.014 <0.01 <0.01 0.022 0.014 <0.01 <0.01 0.019 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 <0.01 0.05 0.0	0.012 0.013 0.034 <0.01 0.035 <0.01 0.052 <0.01 0.015 <0.01 0.328 0.033 <0.01 0.328	<0.01 <0.01 <0.01 <0.01 0.062 <0.01 0.374 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.311 0.146 0.602 0.022 0.391 0.7 0.316 0.34 0.071 4.13 0.326 0.015 0.015 0.392	107 55.1 65 1.3 36.9 1.59 45.2 32.9 32.9 164 140 127 51.3 0.562 27.5 27.5
armer Creek at Harmer Dam Tomotrong Location ds HVD Dry Creek Dutfall Location tomotrong Location ds HVD Dry Creek Dutfall Location ording New Sock ANN ANTF Ording New Sock Creation (2014) Beginal Chronic Teachy ording New Sock Creation (2014) Beginal Chronic Teachy and Creek New Sock Drive Creek confluence onth Line Creek west side of Main Rock Drain Creek west side of Main Rock Drain Creek west side ANN Ann Rock Drain Creek Sist Confl. (2014) AMP ford Including LAMP Alterol ddd Profest Sock Chronic Manneck Creek & Grodk Anni manneck Creek & Grodk Anni marric Creek Instanter Profest Buander Creek As Indon Creek Buander Creek As Indon Creek Buander Creek As Indon Creek Buander Creek Indon Main Marri Creek Instanter Profest Buander Creek Asternet Profest Buander Creek Sock Street Buander Creek Indon Street	IV_DC2a IV_DC2a IFR_FRABCH GH_FR1 GH_FR1 GH_FR1 GH_FR2 IC_LCDS IC_LC3	09 Sep 29 Dec 13 Jul 19 Oct 18 May 25 Jan 18 Jan 18 Jan 17 Sep 14 Sep 11 Sep 12 Sep 04 Oct 11 Sep	0.127 0.012 0.013 0.015 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.015 <0.01 0.02 0.013 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 0.015 <0.01 0.02 0.015 <0.01 0.02 0.015 <0.01 0.02 0.015 <0.01 0.02 0.015 <0.01 0.02 0.015 0.015 <0.01 0.02 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.019 <0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.022 0.019 0.019 0.022 0.019 0.019 0.022 0.019 0.019 0.019 0.022 0.019 0.019 0.022 0.019 0.	<0.01 <0.01 0.019 <0.01 0.052 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	0.012 0.013 0.034 <0.01 0.035 <0.01 0.052 <0.01 0.328 0.033 <0.01 0.328 0.033 <0.01 0.022 0.019 <0.01 <0.01 0.025 0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.032 0.033 <0.01 0.035 <0.01 0.035 <0.01 0.035 <0.01 0.032 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.0	<0.01 <0.01 <0.01 <0.01 0.062 <0.01 0.374 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.311 0.146 0.602 0.022 0.391 0.019 0.7 0.316 0.34 0.071 4.13 0.326 0.015 0.308 0.282 0.182 0.282 0.182	107 55.1 65 1.3 36.9 1.59 45.2 32.9 164 140 127 51.3 0.562 27.5 21.6 7.49

Attachment D

Pond Summary Sheets

Aque Mana	duct Pond Control Structur gement Unit 4	e
	Physical Char	acteristics
	Passive Drainage Area (km ²):	1.53
	Mean Annual Discharge (m2/s):	0.02
	Volume (m ³):	430
	Surface Area (m ²)	411
	Mean/Maximum Pond Depth (m)	0.5/1.6
	Liner:	Yes
	Fish Access:	Temporary fish barrier
	Habitat Chara	acteristics
	Dominant Riparian Vegetation:	Grasses, shrubs
	Dominant Aquatic Vegetation:	Filamentous algae
	Dominant Pond Substrate:	Silt
	Secchi Depth (m):	Bottom
•	Field Water	Quality
	Date(s) Collected:	30/Aug/2021
	Temperature (°C):	12.2
	Conductivity (µS/cm):	526.3
	DO (mg/L):	9.95
	pH:	8.30
	ORP (mV):	85.2
	Chlorophyll (µg/L):	0.843
	Phyococyanin (µg/L):	0.396
	Total Phosphorus (µg/L):	62.2
Ē	Site Desci	ription

The Aqueduct Pond Control Structure was constructed in 2015 with a primary purpose of directing flow from Aqueduct Creek into a sedimentation pond and to pass excess flow downstream. However, the construction of the Aqueduct Creek Sedimentation Pond was cancelled, thus the Aqueduct Pond Control Structure does not currently serve any purpose from a water management perspective. Substrate is silty with some filamentous algae. Shading potential exists due to steep banks and riparian trees. No evidence of fish use.

Water Flow Description

Flow enters the pond from the northeast and decants into the lower portion of Aqueduct Creek before discharging into Michel Creek. Since the new sedimentation pond has not been completed, all flows currently exit the pond via the high-flow spillway.

Teck

C

1

AWTF Buffer Pond	
Management Unit 2	
Physical Chara	acteristics
Passive Drainage Area (km ²):	-
Mean Annual Discharge (m2/s):	0.009
Volume (m ³):	7,787
Surface Area (m ²)	5,049
Mean/Maximum Pond Depth (m)	2
Liner:	Yes
Fish Access:	Downstream fish barrier
A Habitat Chara	cteristics
Dominant Riparian Vegetation:	None
Dominant Aquatic Vegetation:	Filamentous algae
Dominant Pond Substrate:	-
Secchi Depth (m):	Bottom
Field Water	Quality
Date(s) Collected:	24/Aug/2021
Temperature (°C):	12.42
Conductivity (µS/cm):	1,417.67
DO (mg/L):	19.41
pH:	7.10
ORP (mV):	149.7
Chlorophyll (µg/L):	0.081
Phycocyanin (μg/L):	0.304
Total Phosphorus (µg/L):	10.9
☑ Site Descr	iption

The AWTF Buffer Pond is located adjacent to the Line Creek outfall structure. The purpose of this pond is to provide a buffer between WLC AWTF effluent discharging from the plant and the receiving environment. It is not intended to or designed to provide additional water treatment, with the exception of pH. The pond has an HDPE liner and a volume of 8,000 m3 which is equivalent to just over 1 day of retention time at full plant flow.

Water Flow Description

The WLC AWTF receives water from the Line Creek Rock Drain through several flow paths. These streams converge at an area of pooled water at the intake gate where Line Creek water can be extracted for treatment at the WLC AWTF. Treated effluent from the facility is discharged to the buffer pond, which functions as a contingency containment structure supplementing the storage capacity of the AWTF effluent tank.

C

*			
Physical Characteristics			
Passive Drainage Area (km ²): 0.23			
	Mean Annual Discharge (m2/s):	0.11	
	Volume (m ³):	3,000	
	Surface Area (m ²)	1,228	
	Mean/Maximum Pond Depth (m)	1.87	
	Liner:	No	
	Fish Access:	Temporary Fish Barrier	
Habitat Characteristics			
	Dominant Riparian Vegetation:	Grasses	
	Dominant Aquatic Vegetation:	Pondweed	
	Dominant Pond Substrate:	Fully vegetated	
	Secchi Depth (m):	Bottom	
Field Water Quality			
	Date(s) Collected:	27/Aug/2021	
	Temperature (°C):	13.74	
	Conductivity (µS/cm):	1,723	
	DO (mg/L):	9.098	
	pH:	7.91	
	ORP (mV):	116.36	
	Chlorophyll (µg/L):	0.132	
	Phycocyanin (µg/L):	0.256	
	Total Phosphorus (ug/L):	8.2	
	rotal Phosphorus (µg/L).	0.2	

The Bodie Creek Sedimentation Pond system consists of two main sedimentation ponds (north and south) and a flocculant station located upstream. The inflow to the pond system is via a pipe (no immediate upstream habitat). The primary purpose of the pond is sedimentation control of runoff from areas with mining-related activities. The substrate is fully covered in submergent macrophyte growth (pondweed). Minimal shading potential exists. No evidence of fish use.

Water Flow Description

Flows enters the North Bodie Creek Sedimentation Pond from the South Bodie Creek Sedimentation Pond via a connection ditch (2x900 mm culverts). The Bodie Creek Control Pond located upstream makes it possible to divert flow away from the Bodie Creek Sedimentation Ponds to the Gate Creek Sedimentation Pond system via a buried pipeline and open channel. Flows discharging to the North Bodie Creek Sedimentation Pond decant into the lower portion of Bodie Creek and ultimately into Michel Creek.

Teck

•

Ole la Maise Ostilia a Dave l				
Clode Main Settling Pond Management Unit 1				
Physical Cl	Physical Characteristics			
Passive Drainage Area (km	²): 4.76			
Mean Annual Discharge (m2/	s): 0.07			
Volume (m	³): 140,000			
Surface Area (r	n ²) 38,383			
Mean/Maximum Pond Depth (r	n) 1.5/3.67			
Lin	er: No			
Fish Acces	ss: Fish exclusion screens on culverts			
Habitat Ch	aracteristics			
Dominant Riparian Vegetation	on: Grasses			
Dominant Aquatic Vegetation	on: Water Milfoil			
Dominant Pond Substra	te: Silt			
Secchi Depth (r	n): Bottom			
Field Wa	ter Quality			
Date(s) Collecte	ed: 31/Aug/2021			
Temperature (°	C): 11.80			
Conductivity (µS/cr	n): 1,358			
DO (mg/	L): 9.57			
p	H: 7.90			
ORP (m)	V): 104.5			
Chlorophyll (µg/	L): 0.353			
Phycocyanin (µg/	L): 0.303			
Total Phosphorus (µg/	L): 2			
🖻 Site De	scription			

FR_CCSP UTM (11U) E: 651002 N: 5564262

Clode Settling Ponds were constructed in 1976 and consist of a two-pond system (East and Main) separated by a separator dike. The Clode Settling Ponds are used for sediment management of pit water and mine-influenced surface water from spoils. The substrate is silty with some submerged vegetation. Minimal shading potential due to limited riparian cover. Fish exclusion screens were installed in 2014, and fish salvages have removed fish from the ponds.

Water Flow Description

Water enters the Clode East Settling Pond from the east via the Clode Rock Drain and multiple seeps around the primary (East) Pond, then flows to the Secondary (Main) Pond via a set of six CSP culverts. Water is discharged from the Secondary Pond to Clode Creek through a series of seven CSP culverts, which pass through the western dike of the Secondary Pond.

Teck

1

anagement Unit 2		
Physical Charact	eristics	
Passive Drainage Area (km ²):	-	
Mean Operating Range (m2/s):	0.009	
Volume (m ³):	4,133	
Surface Area (m ²)	5,496	
Mean/Maximum Pond Depth (m)	0.8/	
Liner:	No	
Fish Access:	No inflow or outflow	
Habitat Characte	eristics	
Dominant Riparian Vegetation:	Grasses	
Dominant Aquatic Vegetation:	Grasses	
Dominant Pond Substrate:	Silt	
Secchi Depth (m):	Bottom	
Field Water Qu	ality	
Date(s) Collected:	30/Aug/2021	
Temperature (°C):	10.58	
Conductivity (µS/cm):	1,076.1	
DO (mg/L):	10.7	
pH:	8.01	
ORP (mV):	94.5	
Chlorophyll (µg/L):	0.330	
Phycocyanin (µg/L):	0.411	
Total Phosphorus (µg/L):	-	
Site Descript	ion	
The Contingency Treatment System, also k	nown as Contingency Ponds, is	
cated across from the WLC AWTF and rec	eives water from the WLC Rock	
Drain, Line Creek Rock Drain, and the AWTF (regulated by gated culverts).		
when used, this system collects the entire flow of Line Creek and provides		
een operated since 2015 Substrate is cov	ered in patchy golden algae and	
rooted macrophytes. Minimal shading pote	ential exists and there was no	
evidence of fish	use.	
Water Flow Desc	ription	
The system consists of three sedimentation	on cells, as well as two gated	
culverts. The three cells flow in series from	north to south. The upper and	
iddle cells each contain a spillway and a fis	h barrier. There are currently no	
inflows or outflows to the Contin	gency Upper pond.	

Teck

Corbin Pon	d			UTM (1111) E: 670144	N: 5/86100
Managemen	u at Linit 4		Civi_COINDIN-POIND	ond	N. 5460199
Managemen	Physical Chara	cteristics			/ n
Pas	sive Drainage Area (km ²):	-			
Norma	I Operating Range (m ² /s):	0 to 2.75		CM CORBIN-POND	
	Volume (m ³):	124,450	and the second se	8	
	Surface Area (m ²)	29,600	1000		
Mean/M	Aximum Pond Depth (m)	1.75/7	CI	M_CCPD_US	
	Liner:	Yes	Corbin Pond Aerial		
	Fish Access:	Downstream fish barrier			
<u>**</u>	Habitat Charac	cteristics	CM_CORBIN-POND		
Domi	inant Riparian Vegetation:	Grasses	A CONTRACTOR OF THE OWNER		
Dom	ninant Aquatic Vegetation:	Grasses	and the start of the		
Γ	Dominant Pond Substrate:	-	Star A		
	Secchi Depth (m):	2.4	A DESCRIPTION OF THE OWNER OF THE	ALMA CON	
•	Field Water	Quality	Inge Herenand	Constant of the second second second second	HE-HINELANT IN
	Date(s) Collected:	25/Aug/2021			
	Temperature (°C):	8.58			
	Conductivity (µS/cm):	1,419			1
	DO (mg/L):	9.30	Corbin Pond		25/Aug/202
	pH:	7.45			
	ORP (mV):	123.1	CM_CCPD_US	UTM (11U) E: 670209	N: 5486015
	Chlorophyll (µg/L):	0.533			
	Phycocyanin (µg/L):	0.584			
-1-	Total Phosphorus (µg/L):	4.3			
2	Site Descri	ption		Dhoto Available	

Upstream Corbin Pond

25/Aug/2021

No Photo Available

Substrate is silty and grasses are the most abundant aquatic vegetation. Shading potential is limited due to minimal riparian cover, but tree cover on the east side of the pond may provide some shade. No evidence of fish use.

Water Flow Description

Corbin Pond receives flow from the upper Corbin Creek catchment area, infiltration through the overlying East Spoils, and runoff from the East Access Road and 6 Pit.

Teck

Physical Characteristics		
	Passive Drainage Area (km ²):	8.5
	Mean Annual Discharge (m2/s):	0.12
	Volume (m ³):	3,000
	Surface Area (m ²)	2,930
	Mean/Maximum Pond Depth (m)	1/2.8
	Liner:	No
	Fish Access:	Currently considered fish bearing
	Habitat Cha	racteristics
	Dominant Riparian Vegetation:	Deciduous/Coniferous Trees. Grasse
	Dominant Aquatic Vegetation:	Water Milfoil
	Dominant Pond Substrate:	Silt
	Secchi Depth (m):	Bottom
Field Water Quality		
	Date(s) Collected:	28/Aug/2021
	Temperature (°C):	9.11
	Conductivity (µS/cm):	1,280.3
	DO (mg/L):	9.55
	pH:	8.11
	ORP (mV):	68.6
	Chlorophyll (µg/L):	0.131
	Phycocyanin (µg/L):	0.399
0 7,	Total Phosphorus (μg/L):	10.2
Site Description		

Initial sampling records for Dry Creek Sedimentation Pond started in 2005, however, the pond is thought to have been constructed around 1969. The Dry Creek Sedimentation Pond serves as a sediment removal facility for the mineinfluenced waters within the Dry Creek drainage, and specifically water reporting from the Dry Creek Spoils. The Dry Creek Sedimentation Pond is an active sedimentation pond but currently receives no flow from active mining areas. Substrate is silty with some aquatic vegetation. Shading potential exists due to riparian trees. A fish salvage was conducted in 2017, but the pond is still considered fish bearing upstream of the pond decant as a permanent barrier has not yet been installed.

Water Flow Description

Flows enters the pond at the east end and decants out of the pond via a set of corrugated steel pipes in the pond's southwest corner. The pond decants into Michel Creek.

Teck

0

EV_DCSP UTM (11U) E: 659353 N: 5517556 28/Aug/2021 Dry Creek Pond

0.1	Cata Crook Sodimontation Band				
Man	Management Unit 4				
	Physical Characteristics				
	Passive Drainage Area (km ²):	3.45			
	Mean Annual Discharge (m2/s): 0.01				
	Volume (m ³):	7,394			
	Surface Area (m ²)	5,384			
	Mean/Maximum Pond Depth (m)	1.3/2.7			
	Liner:	No			
	Fish Access:	Permanent Fish Barrier			
	Habitat Cha	racteristics			
	Dominant Riparian Vegetation:	Deciduous/Coniferous Trees, Grasses			
	Dominant Aquatic Vegetation:	Grasses/Sedges/Rushes			
	Dominant Pond Substrate:	Fully vegetated			
	Secchi Depth (m):	Bottom			
	Field Wate	er Quality			
	Date(s) Collected:	27/Aug/2021			
	Temperature (°C):	10.99			
	Conductivity (µS/cm):	1,600.3			
	DO (mg/L):	12.79			
	pH:	8.27			
	ORP (mV):	121			
	Chlorophyll (µg/L):	0.542			
	Phycocyanin (µg/L):	0.507			
dia.	Total Phosphorus (µg/L):	2.8			
	Site Description				

The Gate Creek Sedimentation Ponds receive runoff from Gate Creek, South Gate Creek, and Bodie Creek (via the Bodie Control Pond) with the primary purpose of sediment control/settling of suspended solids. Substrate is silty but dominated by thick submerged vegetation/macrophyte growth. Limited shading potential exists due to sparse riparian trees. Fish salvages have been conducted in the ponds and a fish barrier has been constructed.

Water Flow Description

The primary cell is U-shaped in plan, with flow entering the system through a set of twin corrugated steel pipe culverts at the north end of its east arm. narrow channel connects the primary cell to the secondary cell. The secondary cell is rectangular in shape with inflow at its southeast corner and outflow at its northwest corner. The pond discharges directly to Michel Creek through a concrete box structure with an engineered fish barrier in the outlet channel.

Teck

Gree Man	Greenhills Creek Secondary Pond Management Unit 1				
	Physical Characteristics				
	Passive Drainage Area (km ²):	0.14			
	Normal Operating Range (m ² /s):	-			
	Volume (m ³):	160,000			
	Surface Area (m ²)	49,458			
	Mean/Maximum Pond Depth (m)	3.12 / 5.9			
	Liner:	No			
	Fish Access:	Fish access from upstream			
	Habitat Chara	acteristics			
	Dominant Riparian Vegetation:	Grasses, Shrubs, Coniferous Trees			
	Dominant Aquatic Vegetation:	Grasses/Sedges			
	Dominant Pond Substrate:	Silt			
	Secchi Depth (m):	1.8			
	Field Water	r Quality			
	Date(s) Collected:	26/Aug/2021			
	Temperature (°C):	12.63			
	Conductivity (µS/cm):	459.4			
	DO (mg/L):	9.3			
	pH:	8.29			
	ORP (mV):	93.8			
	Chlorophyll (µg/L):	0.455			
	Phycocyanin (µg/L):	0.381			
-	Total Phosphorus (µg/L):	3.7			
e	Site Desc	ription			

The Greenhills Creek Sediment Ponds provide sediment control for water transferred from upstream ponds and the Greenhills Creek catchment. Substrate is Shading potential. Sedimentation curtains were installed to increase residence time for the deposition of suspended solids. The primary and secondary ponds are accessible to fish from upper Greenhills Creek, but the spillway presents a barrier to fish from downstream.

Water Flow Description

The Greenhills Creek Sediment Ponds are fish-bearing ponds connected to Greenhills Creek that collects inflows from the entire catchment prior to release to the Fording River. The system consists of three ponds: a primary pond (Greenhills Primary Settling Pond), an overflow/bypass sump (Greenhills Pond Overflow/Bypass Sump) and a large rectangular secondary pond (Greenhills Secondary Settling Pond). Flows enter the secondary pond via a low rock weir dyke and discharges through a 6 m wide concrete spillway into a stilling basin before entering lower Greenhills Creek.

Teck

 GH_GH1A
 UTM (11U)
 E: 653525
 N: 5546087

 Image: Stream Greenhills Pond
 Image: Stream Gre

26/Aug/2021

Greenhills Creek Secondary Pond

Physical Characteristics			
Passive Drainage Area (km ²):	21.3		
Mean Annual Discharge (m3/s):	0.681		
Volume (m ³):	42,500		
Surface Area (m ²):	15,490		
Mean/Maximum Pond Depth (m):	2.0 / 5.7		
Liner:	No		
Fish Access:	From upstream only		
Habitat Characteristics			
Dominant Riparian Vegetation:	Ferns/Grasses, Shrubs, Conifers		
Dominant Aquatic Vegetation:	Grasses, Burreed		
Dominant Substrate:	Silt		
Secchi Depth (m):	3.2		
Field Water Quality			
Date(s) collected:	28/Aug/2021		
Temperature (*°C):	7.75		
Conductivity (µS/cm):	494		
DO (mg/L):	10.2		
pH:	8.24		
ORP (mV):	97.7		
Chlorophyll (µg/L):	0.800		
Phyococyanin (µg/L):	0.591		
Total Phosphorus (µg/L):	9.8		
Site Descr	iption		

1971. Substrate predominantly silt, some emergent grasses at pond margins, little to no submergent vegetation. Riparian trees shade the southeast side of the pond during part of the day. Shallow near inflow, steep-sided and deep elsewhere. Little to no evidence of fish use. Generally low abundance of benthic invertebrates.

Hydrology

In-line with Harmer Creek. Constructed to treat mine-influenced water from Dry Creek, a tributary of upper Harmer Creek. Harmer Creek flows in from the southeast corner of the pond and flows out over a weir in the northeast corner of the pond.

Teck

Lindsav Creek Infiltration Pond				
Management Unit 4				
Physical Chara	Physical Characteristics			
Passive Drainage Area (km ²):	1.13			
Normal Operating Range (m ² /s):	0 - 0.05			
Volume (m ³):	1,900			
Surface Area (m ²)	790			
Mean/Maximum Pond Depth (m)	0.75/1.5			
Liner:	No			
Fish Access:	Pond is unconnected			
👲 Habitat Chara	cteristics			
Dominant Riparian Vegetation:	Grasses, Shrubs			
Dominant Aquatic Vegetation:	Pondweed, Grasses			
Dominant Pond Substrate:	Silt, Clay			
Secchi Depth (m):	Bottom			
Field Water Quality				
Date(s) Collected:	30/Aug/2021			
Temperature (°C):	13.86			
Conductivity (µS/cm):	682.9			
DO (mg/L):	6.80			
pH:	7.34			
ORP (mV):	94.2			
Chlorophyll (µg/L):	0.168			
Phycocyanin (µg/L):	0.238			
Total Phosphorus (µg/L):	7.9			
☑ Site Descr	ription			

The primary purpose of the Lindsay Creek Sediment is to provide sediment control for the CCR spoil. Substrate is dominated by silt and clay. Minimal shading potential exists due to its location at the base of the spoil with minimal riparian cover. No evidence of fish use. Most recently dredged in 2019.

Water Flow Description

The Lindsay Creek rock drain collects infiltration through the CCR Spoil and discharges at the base of the CCR into the Lindsay Creek Infiltration Ponds . Water collected within the ponds and the discharge channel infiltrates to the ground with no direct connection to the Elk River.

Lower Milligen Creek Sedimentation Dand (EV. MCCD)		
Management Unit 4		
* Physical Characteristics		
Passive Drainage Area (km ²):	1.92	
Mean Annual Discharge (m2/s):	0.009	
Volume (m ³):	3.093	
Surface Area (m ²)	2,653	
Mean/Maximum Pond Depth (m)	1.2 / 1.6	
Liner:	No	
Fish Access:	Downstream barrier - spillway	
🚣 Habitat Chara	acteristics	
Dominant Riparian Vegetation:	Grasses, shrubs, coniferous trees	
Dominant Aquatic Vegetation:	Filamentous algae	
Dominant Pond Substrate:	Silt/Filamentous algae	
Secchi Depth (m):	Bottom	
Field Water Quality		
Date(s) Collected:	27/Aug/2021	
Temperature (°C):	12.44	
Conductivity (µS/cm):	985.4	
DO (mg/L):	14.152	
pH:	8.34	
ORP (mV):	100.88	
Chlorophyll (µg/L):	0.4534	
Phyococyanin (µg/L):	0.353	
Total Phosphorus (μg/L):	3.9	
Site Desc	ription	

The Lower Milligan Creek Sedimentation Pond is located on the valley bottom, between Michel Creek and the CP Rail line. The pond was originally constructed in response to TSS non-compliances in Milligan creek, following the start of mining in the upper catchment. Substrate is silty but dominated by thick filamentous algae. Shading potential exists due to steep banks and riparian trees. No evidence of fish use.

Water Flow Description

Flows enters the pond at the east end and decants out of the pond via a set of corrugated steel pipes in the pond's southwest corner. The pond decants into Michel Creek.

Teck

MSAN 1 Pond			
Management Unit 2			
Physical Characteristics			
Passive Drainage Area (km ²):			
Mean Annual Discharge (m2/s): 0.009			
Volume (m ³): 1826			
Surface Area (m ²) 1820			
Mean/Maximum Pond Depth (m) 0.3/1.5			
Liner: No			
Fish Access: Downstream fish barrie	r		
Habitat Characteristics			
Dominant Riparian Vegetation: Grasses			
Dominant Aquatic Vegetation: Filamentous Algae, Water I	Ailfoil		
Dominant Pond Substrate: Fully vegetated			
Secchi Depth (m): Bottom			
Field Water Quality			
Date(s) Collected: 30/Aug/2021			
Temperature (°C): 7.97			
Conductivity (µS/cm): 317.175			
DO (mg/L): 11.96			
pH: 8.27			
ORP (mV): 40.525			
Chlorophyll (µg/L): 0.1105			
Phycocyanin (µg/L): 0.416			
Total Phosphorus (µg/L): 2.7			
Site Description			

The Mine Services Area North (MSAN) Ponds consists of three contiguous cells and located upstream from the MSA building and below the MSAN spoils. The lower cell of MSAN Pond has a fish barrier and an outlet spillway consisting of a concrete, broad-crested weir and an adjacent staff gauge for measuring water level. The substrate was covered by think macrophyte beds with a visible blue plume suggestive of algal/microbial activity. There is limited shading potential and no evidence of fish use.

Water Flow Description

The MSAN Ponds collect surface water runoff from the MSA North Pit, providing sediment collection and clarification of water prior to release to Line Creek. Flow enters the pond system through an armoured channel with a gated culvert at the north end of the facility, flows though the three contiguous cells before being discharged to Line Creek.

No Samples Collected (Upstream area in RAZ)

Upstream MSAN 1 Pond

30/Aug/2021

MSAN 1 Pond

Denten Oreale Oedineent Dend				
Porter Greek Sediment Pond Monogoment Unit 1				
Physical Chara	Physical Characteristics			
Passive Drainage Area (km ²):	1.17			
Mean Annual Discharge (m2/s):	0.009			
Volume (m ³):	4,074			
Surface Area (m ²)	2,348			
Mean/Maximum Pond Depth (m)	- / 3.6			
Liner:	No			
Fish Access:	Downstream fish barrier			
🔬 Habitat Charac	cteristics			
Dominant Riparian Vegetation:	Grasses, Coniferous Trees			
Dominant Aquatic Vegetation:	Grasses (sparse)			
Dominant Pond Substrate:	Silt			
Secchi Depth (m):	Bottom			
Field Water	Quality			
Date(s) Collected:	31/Aug/2021			
Temperature (°C):	7.65			
Conductivity (µS/cm):	750.5			
DO (mg/L):	10.47			
pH:	8.40			
ORP (mV):	105.38			
Chlorophyll (µg/L):	0.063			
Phycocyanin (µg/L):	0.373			
Total Phosphorus (µg/L):	4.6			
🖹 Site Descri	iption			

Porter Creek Sedimentation Pond consists of a single U-shaped cell with bypass works to bypass the pond as needed. The mining area above the pond has been relatively inactive over the past decade and therefore there has been no need to remove sediment. Porter Creek is considered fish bearing up to the bypass culvert above the sediment pond. Substrate is typically fine material and shading potential is minimal.

Water Flow Description

The inlet culvert discharges to an approach channel, and water levels in the pond are regulated by an open-channel outlet. In a flood event the pond can be bypassed and the water discharged directly to the Fording River.

Teck

0

GH_PCSP_DS UTM (11U) E: 653545 N: 5555321 31/Aug/2021 Downstream Porter Creek Pond

Smith Ponds		FR SP1SP UTM (11U) E: 650961 N: 5560555
Management Unit 1		Smith Ponds
Physical Chara	cteristics	
Passive Drainage Area (km ²):	0.04	FR_SP1SP
Normal Operating Range (m ² /s):	-	
Volume (m ³):	2,300	
Surface Area (m ²)	6,000	
Mean/Maximum Pond Depth (m)	0.5/0.5	FR_SP1SP_US
Liner:	No	Smith Ponds Aerial
Fish Access:	Downstream fish barrier	
Habitat Charac	teristics	FR_SP1SP
Dominant Riparian Vegetation:	Grasses	UTM (11U)
Dominant Aquatic Vegetation:	Grasses, Water Milfoil	E: 650961
Dominant Pond Substrate:	Silt	N: 5560555
Secchi Depth (m):	Bottom	
Field Water 0	Quality	and the second s
Date(s) Collected:	31/Aug/2021	31/Aug/2021
Temperature (°C):	9.52	
Conductivity (µS/cm):	821.8	Smith Ponds
DO (mg/L):	8.84	
pH:	7.38	
ORP (mV):	118.6	FR_SP1SP_US
Chlorophyll (µg/L):	0.092	UTM (11U)
Phycocyanin (µg/L):	0.363	E: 651070
Total Phosphorus (µg/L):	2	N: 5560370
🖄 Site Descri	ption	and the second sec
The Smith Ponds are located on the west si the South Tailings Pond. The ponds were water overflow from historical pits (2 Pit) th spoils. The ponds now provide a passive so	de of the Fording River across from originally constructed to collect pit at have since been backfilled with ediment removal function for runoff	31/Aug/2021 Upstream Smith Ponds
is low due to minimal riparian cove	r. No evidence of fish use.	FR_SP1SP_DS

Water Flow Description

The Smith Ponds consist of a four-pond system operated in series and connected via open channels between them. The ponds discharge via two 600 mm CSP culverts elevated by approximately 10 m above the Fording River flood plain, which acts as a fish barrier. Following the water entering the flood plain it travels through a historical side channel of the Fording River for approximately 200 m prior to discharging to the Fording River.

Teck

0

No Photo Available

Downstream Smith Ponds

UTM (11U)

E: 650996

N: 5560576

31/Aug/2021

Lower South Pit Creek Pond				
Physical Characteristics				
Passive Drainage Area (km ²):	0.73			
Mean Annual Discharge (m2/s):	0.01			
Volume (m ³):	1,075			
Surface Area (m ²)	1,940			
Mean/Maximum Pond Depth (m)	0.5/1.3			
Liner:	No			
Fish Access:	Downstream fish barrier (natural drop)			
Habitat Characteristics				
Dominant Riparian Vegetation:	Grasses, Coniferous/Deciduous Trees			
Dominant Aquatic Vegetation:	Grasses			
Dominant Pond Substrate:	Silt			
Secchi Depth (m):	Bottom			
Field Water Quality				
Date(s) Collected:	30/Aug/2021			
Temperature (°C):	11.90			
Conductivity (µS/cm):	1,329.0			
DO (mg/L):	9.52			
pH:	7.97			
ORP (mV):	108.5			
Chlorophyll (µg/L):	0.0797			
Phycocyanin (µg/L):	0.304			
Total Phosphorus (µg/L):	2			
Site Description				

The Lower South Pit Creek Sedimentation Pond is located immediately adjacent to the CP Rail line and 50 m away from Michel Creek. It serves as a polishing pond for flows in the South Pit Creek drainage (receiving runoff and seepage from the South Pit spoil) before discharging to Michel Creek. Substrate is silty with some aquatic vegetation. Shading potential exists due to steep banks and riparian trees. A fish salvage was conducted in 2019 (trapping only).

Water Flow Description

Inflow to the lower pond is through two culverts beneath the rail line at the pond's north end. The discharge pipe from the Upper South Pit Creek Sedimentation Pond passes through the lower of these two culverts, and natural flow from the original South Pit Creek drainage channel passes through the higher of the two. The pond decants into South Pit Creek before entering Michel Creek.

C

Lower South Pit Creek Pond Aerial

Carbin Crook SPD Band					
Management Unit 4					
Physical Charac	- Physical Characteristics				
Passive Drainage Area (km ²)	_				
Normal Operating Range (m^2/s) :	0 - 1 36				
Volume (m ³):	-				
Surface Area (m ²)	585				
Mean/Maximum Pond Depth (m)	0.5/1.0				
Liner:	No				
Fish Access:	Downstream fish barrier				
Habitat Characteristics					
Dominant Riparian Vegetation:	Grasses				
Dominant Aquatic Vegetation:	Water Milfoil				
Dominant Pond Substrate:	Gravel				
Secchi Depth (m):	Bottom				
Field Water Quality					
Date(s) Collected:	25/Aug/2021				
Temperature (*C):	11.95				
Conductivity (µS/cm):	1,453.3				
DO (mg/L):	9.90				
pH:	7.92				
ORP (mV):	106				
Chlorophyll (µg/L):	0.226				
Phycocyanin (µg/L):	0.357				
Total Phosphorus (µg/L):	4.3				
Site Description					

CM_SPDSP UTM (11U) E: 668870 N: 5487380

US
No Photo Available

Main Pond (SPD Pond) is a two-pond sediment control system in the northwest corner of CMO. The inflow is a riprap-lined spillway in the southwest corner and then though a divider dyke spillway to the east pond. The outlet is a spillway and is an engineered fish barrier blocking upstream passage of fish from Corbin Creek into the pond. The substrates are nearly all overed by macrophytes and the shading potential is minimal.

Water Flow Description

Main (SPD) Pond collects water from the north and west areas of the CMO property. The West and North Interceptor Ditches both discharge into the Main Ponds and the discant discharges through a short-constructed channel before it converges with Corbin Creek.

C

Management Unit 1				
Physical Characteristics				
Passive Drainage Area (km ²): 6.48				
Mean Annual Discharge (m2/s): 0.13				
Volume (m ³): 36,600				
Surface Area (m ²) 12,800				
Mean/Maximum Pond Depth (m) 1.3/2.5				
Liner: No				
Fish Access: Downstream fish barrier				
Habitat Characteristics				
Dominant Riparian Vegetation: Grasses, Coniferous Trees				
Dominant Aquatic Vegetation: Filamentous/Brown Algae, Chara s				
Dominant Pond Substrate: Silt				
Secchi Depth (m): 2.2				
Field Water Quality				
Date(s) Collected: 31/Aug/2021				
Temperature (°C): 9.17				
Conductivity (µS/cm): 2,400.5				
DO (mg/L): 11.5				
pH: 7.39				
ORP (mV): 130.7				
Chlorophyll (µg/L): 0.105				
Phycocyanin (μg/L): 0.344				
Total Phosphorus (µg/L): 25.7				
Site Description				

FR SCSSP UTM (11U) E: 652147 N: 5558310 FR_SCCAT FR SCSS FR_SCCBO

A

Swift Creek Sediment Pond (Secondary) Aerial

Swift Creek Sediment Ponds consist of a Primary and a Secondary Pond that functions to settle water entering through the Swift and Cataract Creek Drainages. Substrate is silty but dominated by thick filamentous algae. Shading potential exists due to steep banks and riparian trees. No evidence of fish use.

Water Flow Description

The mine-influenced water from the Swift/Cataract Creek catchment is conveyed to the Swift Creek Sediment Ponds via the Cataract and Swift Creek Rock Drains. The two rock drains discharge into small head ponds before being piped to the Swift Creek Sediment Ponds. In addition, the Swift Primary Pond collects drainage from Swift Creek, Cataract Creek, and collection channels along the toe of the Swift South Spoil and C Spoil. Water then supplies the FRO South Active Water Treatment Facility where it is treated before being discharged into the Fording River.

Passive Drainage Area (km ²): 4.82 Mean Annual Discharge (m2/s): 0.009 Volume (m ³): 16,951 Surface Area (m ²) 13,382 Mean/Maximum Pond Depth (m) 1 / 1.4 Liner: No Fish Access: Downstream fish barrier Habitat Characteristics Dominant Riparian Vegetation: Grasses, Shrubs Dominant Aquatic Vegetation: Grasses Dominant Pond Substrate: Silt Secchi Depth (m): 1.5 Field Water Quality Date(s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description Site Description The Lower Thompson Creek Sediment Ponds system consistes of three on system to all during upset condition. The Tertary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been onstructed using traditional cut and fill methods, with the West Dam being nstructed of locally excavated material. T	Physical Chara	acteristics		
Mean Annual Discharge (m2/s): 0.009 Volume (m3): 16,951 Surface Area (m2) 13,382 Mean/Maximum Pond Depth (m) 1 / 1.4 Liner: No Fish Access: Downstream fish barrier Habitat Characteristics Dominant Riparian Vegetation: Grasses, Shrubs Dominant Aquatic Vegetation: Grasses Dominant Pond Substrate: Silt Secchi Depth (m): 1.5 Field Water Quality Date(s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description Site Description The Lower Thompson Creek Sediment Ponds system consistes of three nost, with a bypass works to allow the bypass of the entire pond system to cilitate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been onstructed using traditional cut and fill methods, with the West Dam being nstructed of locally excava	Passive Drainage Area (km ²):	4.82		
Volume (m³):16,951Surface Area (m²)13,382Mean/Maximum Pond Depth (m)1 / 1.4Liner:NoFish Access:Downstream fish barrierHabitat CharacteristicsDominant Riparian Vegetation:GrassesDominant Aquatic Vegetation:GrassesDominant Pond Substrate:SiltSecchi Depth (m):1.5Field Water QualityDate(s) Collected:26/Aug/2021Temperature (°C):12.05Conductivity (µS/cm):906.6DO (mg/L):13.24pH:8.25ORP (mV):99.2Chlorophyll (µg/L):0.769Phycocyanin (µg/L):0.540Total Phosphorus (µg/L):5.2Site DescriptionThe Lower Thompson Creek Sediment Ponds system consistes of threeands, with a bypass works to allow the bypass of the entire pond system to cilitate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been ponstructed using traditional cut and fill methods, with the West Dam being nstructed of locally excavated material. The storage volume for the facility was calculated as 53,656 m³. Substrate is macrophyte covered. Shading potential is minimal with the pond system considered to be fish-bearing.Water Flow DescriptionE Lower Thompson Creek Sediment Ponds catchment is downslone of the	Mean Annual Discharge (m2/s):	0.009		
Surface Area (m²) 13,382 Mean/Maximum Pond Depth (m) 1 / 1.4 Liner: No Fish Access: Downstream fish barrier Habitat Characteristics Dominant Riparian Vegetation: Grasses, Shrubs Dominant Aquatic Vegetation: Grasses Silt Dominant Pond Substrate: Silt Secchi Depth (m): 1.5 Field Water Quality Image: Secchi Depth (m): 1.5 Odd (s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description Site Description The Lower Thompson Creek Sediment Ponds system consistes of three nds, with a bypass works to allow the bypass of the entire pond system to illitate sediment removal and during upset condition. The Tertiary Cell is a structed of locally excavated material. The storage volume for the facility as acclulated as 53,656 m³. Substrate is macrophyte covered. Shading potential is minimal with the pond system considered to be fish-bearing. Water Flow Description	Volume (m ³):	16,951		
Mean/Maximum Pond Depth (m) 1 / 1.4 Liner: No Fish Access: Downstream fish barrier Habitat Characteristics Dominant Riparian Vegetation: Grasses Dominant Aquatic Vegetation: Grasses Dominant Pond Substrate: Silt Secchi Depth (m): 1.5 Field Water Quality Interpretation Date(s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description Site Description The Lower Thompson Creek Sediment Ponds system consistes of three nds, with a bypass works to allow the bypass of the entire pond system to allow the bypass of the entire pond system to site acculated as 53,656 m ³ . Substrate is macrophyte covered. Shading botential is minimal with the pond system considered to be fish-bearing. Water Flow Description Water Flow Description	Surface Area (m ²)	13,382		
Liner: No Fish Access: Downstream fish barrier Habitat Characteristics Dominant Riparian Vegetation: Grasses, Shrubs Dominant Aquatic Vegetation: Grasses Dominant Pond Substrate: Silt Secchi Depth (m): 1.5 Field Water Quality Date(s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description Site Description The Lower Thompson Creek Sediment Ponds system consistes of three nds, with a bypass works to allow the bypass of the entire pond system to allitate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed using traditional cut and fill methods, with the West Dam being nstructed of locally excavated material. The storage volume for the facility ras calculated as 53,656 m³. Substrate is macrophyte covered. Shading botential is minimal with the pond system considered to be fish-bearing. Water Flow Description Datenon beard of the facility ras calculated a	Mean/Maximum Pond Depth (m)	1 / 1.4		
Fish Access: Downstream fish barrier Habitat Characteristics Dominant Riparian Vegetation: Grasses, Shrubs Dominant Aquatic Vegetation: Grasses Dominant Pond Substrate: Silt Secchi Depth (m): 1.5 Field Water Quality Date(s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description Site Description The Lower Thompson Creek Sediment Ponds system consistes of three nots, with a bypass works to allow the bypass of the entire pond system to ilitate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed using traditional cut and fill methods, with the West Dam being nstructed of locally excavated material. The storage volume for the facility as calculated as 53,656 m ³ . Substrate is macrophyte covered. Shading botential is minimal with the pond system considered to be fish-bearing. Water Flow Description Date storage volume for the facility as calculated as 53,656 m ³ . Substrate is macrophyte covered. Shad	Liner:	No		
Habitat Characteristics Dominant Riparian Vegetation: Grasses, Shrubs Dominant Aquatic Vegetation: Grasses Dominant Pond Substrate: Silt Secchi Depth (m): 1.5 Field Water Quality Date(s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description The Lower Thompson Creek Sediment Ponds system consistes of three ands, with a bypass works to allow the bypass of the entire pond system to allow the bypass of the entire pond system to allow the bypass of the entire pond system to allow the bypass of the entire pond system to allow must preve condition. The Tertiary Cell is a sumed to have been anstructed using traditional cut and fill methods, with the West Dam being astructed of locally excavated material. The storage volume for the facility ras calculated as 53,656 m ³ . Substrate is macrophyte covered. Shading botential is minimal with the pond system considered to be fish-bearing.	Fish Access:	Downstream fish barrier		
Dominant Riparian Vegetation:Grasses, ShrubsDominant Aquatic Vegetation:GrassesDominant Pond Substrate:SiltSecchi Depth (m):1.5Field Water QualityDate(s) Collected:26/Aug/2021Temperature (°C):12.05Conductivity (µS/cm):906.6DO (mg/L):13.24pH:8.25ORP (mV):99.2Chlorophyll (µg/L):0.769Phycocyanin (µg/L):0.540Total Phosphorus (µg/L):5.2Site DescriptionThe Lower Thompson Creek Sediment Ponds system consistes of threends, with a bypass works to allow the bypass of the entire pond system toillitate sediment removal and during upset condition. The Tertiary Cell is a100 m by 170 m rectangle. The Tertiary Cell is assumed to have beennstructed of locally excavated material. The storage volume for the facility <i>r</i> as calculated as 53,656 m³. Substrate is macrophyte covered. Shading potential is minimal with the pond system considered to be fish-bearing.Water Flow Description	Habitat Chara	cteristics		
Dominant Aquatic Vegetation:GrassesDominant Pond Substrate:SiltSecchi Depth (m):1.5Field Water QualityDate(s) Collected:26/Aug/2021Temperature (°C):12.05Conductivity (µS/cm):906.6DO (mg/L):13.24pH:8.25ORP (mV):99.2Chlorophyll (µg/L):0.769Phycocyanin (µg/L):0.540Total Phosphorus (µg/L):5.2Site Descriptionhe Lower Thompson Creek Sediment Ponds system consistes of threends, with a bypass works to allow the bypass of the entire pond system to alitate sediment removal and during upset condition. The Tertiary Cell is a asumed to have been nstructed using traditional cut and fill methods, with the West Dam being ustructed of locally excavated material. The storage volume for the facility as calculated as 53,656 m³. Substrate is macrophyte covered. Shading ootential is minimal with the pond system considered to be fish-bearing.Water Flow Description	Dominant Riparian Vegetation:	Grasses, Shrubs		
Dominant Pond Substrate: Silt Secchi Depth (m): 1.5 Field Water Quality Date(s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description he Lower Thompson Creek Sediment Ponds system consistes of three ods, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed using traditional cut and fill methods, with the West Dam being structed of locally excavated material. The storage volume for the facility as calculated as 53,656 m³. Substrate is macrophyte covered. Shading otential is minimal with the pond system considered to be fish-bearing. Water Flow Description	Dominant Aquatic Vegetation:	Grasses		
Secchi Depth (m): 1.5 Field Water Quality Date(s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description he Lower Thompson Creek Sediment Ponds system consistes of three nds, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed using traditional cut and fill methods, with the West Dam being structed of locally excavated material. The storage volume for the facility as calculated as 53,656 m³. Substrate is macrophyte covered. Shading otential is minimal with the pond system considered to be fish-bearing. Water Flow Description Lower Thompson Creek Sediment Ponds catchment is downslope of the	Dominant Pond Substrate:	Silt		
Field Water Quality Date(s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description The Lower Thompson Creek Sediment Ponds system consistes of three nds, with a bypass works to allow the bypass of the entire pond system to ilitate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed using traditional cut and fill methods, with the West Dam being 101 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed of locally excavated material. The storage volume for the facility ras calculated as 53,656 m³. Substrate is macrophyte covered. Shading otential is minimal with the pond system considered to be fish-bearing. Water Flow Description	Secchi Depth (m):	1.5		
Date(s) Collected: 26/Aug/2021 Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description he Lower Thompson Creek Sediment Ponds system consistes of three nds, with a bypass works to allow the bypass of the entire pond system to ilitate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed of locally excavated material. The storage volume for the facility as calculated as 53,656 m³. Substrate is macrophyte covered. Shading obtential is minimal with the pond system considered to be fish-bearing. Water Flow Description	Field Water	Quality		
Temperature (°C): 12.05 Conductivity (µS/cm): 906.6 DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description he Lower Thompson Creek Sediment Ponds system consistes of three nds, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed using traditional cut and fill methods, with the West Dam being ustructed of locally excavated material. The storage volume for the facility as calculated as 53,656 m³. Substrate is macrophyte covered. Shading otential is minimal with the pond system considered to be fish-bearing. Water Flow Description	Date(s) Collected:	26/Aug/2021		
Conductivity (μS/cm):906.6DO (mg/L):13.24pH:8.25ORP (mV):99.2Chlorophyll (μg/L):0.769Phycocyanin (μg/L):0.540Total Phosphorus (μg/L):5.2Site Descriptionhe Lower Thompson Creek Sediment Ponds system consistes of threends, with a bypass works to allow the bypass of the entire pond system tolitate sediment removal and during upset condition. The Tertiary Cell is a100 m by 170 m rectangle. The Tertiary Cell is assumed to have beennstructed using traditional cut and fill methods, with the West Dam beingstructed of locally excavated material. The storage volume for the facilityas calculated as 53,656 m³. Substrate is macrophyte covered. Shadingotential is minimal with the pond system considered to be fish-bearing.Water Flow Description	Temperature (°C):	12.05		
DO (mg/L): 13.24 pH: 8.25 ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description he Lower Thompson Creek Sediment Ponds system consistes of three ods, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed using traditional cut and fill methods, with the West Dam being structed of locally excavated material. The storage volume for the facility as calculated as 53,656 m³. Substrate is macrophyte covered. Shading otential is minimal with the pond system considered to be fish-bearing. Water Flow Description	Conductivity (µS/cm):	906.6		
pH: 8.25 ORP (mV): 99.2 Chlorophyll (μg/L): 0.769 Phycocyanin (μg/L): 0.540 Total Phosphorus (μg/L): 5.2 Site Description he Lower Thompson Creek Sediment Ponds system consistes of three ods, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed using traditional cut and fill methods, with the West Dam being structed of locally excavated material. The storage volume for the facility as calculated as 53,656 m ³ . Substrate is macrophyte covered. Shading otential is minimal with the pond system considered to be fish-bearing. Water Flow Description	DO (mg/L):	13.24		
ORP (mV): 99.2 Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description he Lower Thompson Creek Sediment Ponds system consistes of three ds, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been netructed using traditional cut and fill methods, with the West Dam being structed of locally excavated material. The storage volume for the facility as calculated as 53,656 m³. Substrate is macrophyte covered. Shading otential is minimal with the pond system considered to be fish-bearing. Water Flow Description	pH:	8.25		
Chlorophyll (µg/L): 0.769 Phycocyanin (µg/L): 0.540 Total Phosphorus (µg/L): 5.2 Site Description he Lower Thompson Creek Sediment Ponds system consistes of three ds, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been enstructed using traditional cut and fill methods, with the West Dam being structed of locally excavated material. The storage volume for the facility as calculated as 53,656 m ³ . Substrate is macrophyte covered. Shading otential is minimal with the pond system considered to be fish-bearing. Water Flow Description	ORP (mV):	99.2		
Phycocyanin (μg/L): 0.540 Total Phosphorus (μg/L): 5.2 Site Description he Lower Thompson Creek Sediment Ponds system consistes of three ods, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed using traditional cut and fill methods, with the West Dam being structed of locally excavated material. The storage volume for the facility as calculated as 53,656 m³. Substrate is macrophyte covered. Shading otential is minimal with the pond system considered to be fish-bearing. Water Flow Description	Chlorophyll (µg/L):	0.769		
Total Phosphorus (µg/L): 5.2 Site Description he Lower Thompson Creek Sediment Ponds system consistes of three ads, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been nstructed using traditional cut and fill methods, with the West Dam being structed of locally excavated material. The storage volume for the facility as calculated as 53,656 m³. Substrate is macrophyte covered. Shading otential is minimal with the pond system considered to be fish-bearing. Water Flow Description	Phycocyanin (µg/L):	cocyanin (μg/L): 0.540		
Site Description the Lower Thompson Creek Sediment Ponds system consistes of three hds, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been instructed using traditional cut and fill methods, with the West Dam being istructed of locally excavated material. The storage volume for the facility as calculated as 53,656 m ³ . Substrate is macrophyte covered. Shading iotential is minimal with the pond system considered to be fish-bearing. Water Flow Description	Total Phosphorus (µg/L):	5.2		
the Lower Thompson Creek Sediment Ponds system consistes of three nds, with a bypass works to allow the bypass of the entire pond system to litate sediment removal and during upset condition. The Tertiary Cell is a 100 m by 170 m rectangle. The Tertiary Cell is assumed to have been instructed using traditional cut and fill methods, with the West Dam being istructed of locally excavated material. The storage volume for the facility as calculated as 53,656 m ³ . Substrate is macrophyte covered. Shading istential is minimal with the pond system considered to be fish-bearing. Water Flow Description	Site Descr	iption		
E Lower Thompson Creek Sediment Ponds catchment is downslope of the	he Lower Thompson Creek Sediment nds, with a bypass works to allow the b ilitate sediment removal and during up 100 m by 170 m rectangle. The Tertian nstructed using traditional cut and fill n instructed of locally excavated material. vas calculated as 53,656 m ³ . Substrate potential is minimal with the pond syste	Ponds system consistes of three oppass of the entire pond system to set condition. The Tertiary Cell is a ry Cell is assumed to have been nethods, with the West Dam being The storage volume for the facility is macrophyte covered. Shading em considered to be fish-bearing.		
e Lower Thompson Creek Sediment Ponds catchment is downsidde of the	Water Flow De	escription		
Jpper Thompson Creek Sediment Ponds catchment, and it drains mine- influenced water to the Elk River	e Lower Thompson Creek Sediment Po Jpper Thompson Creek Sediment Pone influenced water to	onds catchment is downslope of the ds catchment, and it drains mine- the Elk River		

Wade Creek Inlet Pond Management Unit 3				
Physical Characteristics				
Passive Drainage Area (km ²):	0.59			
Mean Annual Discharge (m ² /s):	0.009			
Volume (m ³):	85			
Surface Area (m ²)	70			
Mean/Maximum Pond Depth (m)	- / 2.0			
Liner:	No			
Fish Access:	Downstream fish barrier			
Habitat Characteristics				
Dominant Pinarian Vegetation:	Grasses, Shrubs,			
Dominant Ripanan vegetation.	Coniferous/Deciduous Trees			
Dominant Aquatic Vegetation:	Grasses			
Dominant Pond Substrate:	-			
Secchi Depth (m): -				
Field Water Quality				
Date(s) Collected:	26/Aug/2021			
Temperature (°C):	9.97			
Conductivity (µS/cm):	419			
DO (mg/L):	10.34			
pH:	8.41			
ORP (mV):	105.6			
Chlorophyll (µg/L):	0.893			
Phycocyanin (µg/L):	0.564			
Total Phosphorus (µg/L):	13.9			
Site Description				

The Wade Creek Sediment Ponds include the Wade Inlet Pond (small head pond) and Wade Catch Basin with a gated culvert (manual operation) bypass of the catch basin for sediment removal and to protect infrastructure during flooding if needed. Substrate is silty and there is potential for shading (trees are located near to pond inflow). No evidence of fish use.

Water Flow Description

Wade Creek flows southwest to the Elk River from a catchment that has been affected by historic cast-over material from the development of Phase 6 Pit. The Wade Creek Sediment Ponds include the Wade Inlet Pond and the Wade Catch Basin with a manually operated gated culvert for bypass and protection of infrastructure as needed. Water levels within the system are regulated by culverts between the inlet pond and secondary pond and the outlet to the secondary pond.

Teck

Attachment E

Heat Maps of Maximum Organoselenium Concentrations in 2021 Regional and Local Monitoring

Attachment F

Factor Loading Scores from Principal Components Analysis of Predictor Variables Attachment F. Factor loading scores from Principal Components Analysis of predictor variables

Parameter	Units	PC1	PC2	PC3	PC4
Percent Total Variance Explained	%	34%	22%	18%	14%
Alkalinity US	mg/L as CaCO ₃	-0.051	-0.221	-0.951	0.211
Ammonia US	mg/L as N	-0.144	-0.875	0.416	-0.203
Ash-free Dry Mass US	mg/L	0.451	-0.269	-0.851	-0.02
Chloride US	mg/L	0.202	-0.013	-0.157	0.967
Chlorophyll-a US	μg/L	0.929	0.005	0.369	-0.036
Conductivity US	μs/cm	0.506	0.005	-0.702	0.501
Hardness US	mg/L as CaCO	0.725	-0.101	-0.591	0.105
Nitrate US	mg/L as N	0.769	0.193	-0.605	0.055
Nitrite US	mg/L as N	0.655	-0.638	0.188	-0.36
Oxidation-reduction Potential US	mV	0.358	0.677	-0.635	-0.103
Orthophosphate US	μg/L	-0.49	0.626	0.595	0.117
pH US	-	-0.856	0.352	0.378	0.009
Total Phosphorus US	μg/L	0.783	0.049	0.409	-0.466
Total Dissolved Solids US	mg/L	0.377	0.001	-0.634	0.675
Dissolved Se US	μg/L	0.464	0.85	-0.247	-0.039
Total Se US	μg/L	0.459	0.853	-0.246	-0.042
Sulphate US	mg/L	-0.056	-0.107	-0.437	0.891
Total Kjeldahl Nitrogen US	mg/L as N	-0.776	-0.178	0.529	0.293
Total Organic Carbon US	mg/L	0.894	0.158	0.352	0.226
Total Suspended Solids US	mg/L	0.659	0.381	0.583	0.283
Alkalinity DS		0.042	-0.134	0.742	0.139
Ammonia DS	mg/L as CaCO ₃	0.089	-0.234	0.442	-0.086
Ash-free Dry Mass DS	mg/L as it	0.821	-0.365	0.159	-0.478
Chloride DS	mg/L	0.412	-0.135	0.327	0.84
Chlorophyll-a DS	μg/L	0.98	-0.02	0.171	0.102
Conductivity DS	μS/cm	0.985	-0.119	-0.121	0.036
Dissolved Organic Carbon DS	mg/L	0.901	0.089	-0.002	0.425
Hardness DS	mg/L as CaCO ₃	0.987	-0.139	0.027	0.077
Nitrate DS	mg/L as N	0.698	0.253	-0.65	0.161
Nitrite DS	mg/L as N	0.511	-0.57	-0.621	0.166
Oxidation-reduction Potential DS	mV	-0.189	-0.634	-0.467	-0.587
Orthophosphate DS	μg/L	-0.697	0.398	0.277	-0.527
pH DS	-	-0.874	0.311	0.371	-0.047
Total Phosphorus DS	μg/L	0.717	0.251	0.435	-0.483
Dissolved Se DS	μg/L	0.593	0.771	-0.133	-0.19
Total Se DS	μg/L	0.603	0.747	-0.163	-0.228
Sulphate DS	mg/L	0.964	-0.178	0.193	0.036
Total Dissolved Solids DS	mg/L	0.981	-0.115	-0.081	0.135
Total Organic Carbon DS	mg/L dS N	0.445	-0.235	0.865	-0.007
Total Suspended Solids DS	mg/L	0.930	0.103	0.02	-0.338
Turbidity DS	NTU	0.832	-0.262	0.304	-0.384
Field Temperature US	°C	0.762	-0.285	0.534	-0.231
Field Dissolved Oxygen US	mg/L	-0.392	0.902	-0.128	-0.128
Field Percent Saturation US	%	0.828	0.04	0.423	-0.365
Field Conductivity US	μS/cm	0.732	-0.121	-0.521	0.423
Field pH US	-	-0.596	0.219	0.771	0.052
Field Oxidation-reduction Potential US	mV	0.243	0.944	-0.126	-0.185
Field Turbidity US	NTU	0.759	-0.411	0.318	-0.393
Field Chlorophyll-a US	ug/L	0.009	0.408	0.909	0.09
Field Phycocyanins US	μg/L	-0.937	0.194	-0.222	0.187
Field Temperature DS	°C	0.421	0.852	-0.134	0.282
Field Dissolved Oxygen DS	mg/L	0.382	0.667	0.613	0.184
Field Percent Saturation DS	%	0.444	0.757	0.397	0.267
Field Conductivity DS	μS/cm	0.979	-0.051	-0.111	0.165
Field pH DS	-	-0.326	0.945	0.017	0.012
Field Turbidity DS	NTU	0.339	-0.907	-0.234	-0.12
Field Chlorophyll-a DS	1410 11g/l	0.384	-0.841	0.025	-0.324
Field Phycocyanins DS	ug/L	-0,305	-0,921	0,236	-0,057
Pond Substrate % Gravel	%	-0.391	-0.898	0.188	0.072
Pond Substrate % Sand	%	0.395	-0.397	0.81	0.176
Pond Substrate % Silt	%	0.233	0.953	-0.182	0.061
Pond Substrate % Clay	%	0.268	0.485	-0.706	-0.441
Pond Substrate % Total Organic Carbon	%	-0.577	0.701	0.181	0.378
Shade Score	score	0.938	0.332	-0.094	-0.036
Secchi Depth	m	-0.365	0.459	-0.651	-0.482
Secchi Depth/Maximum Depth	%	-0.689	-0.381	-0.558	-0.263
Emergent Vegetation Score	score	0.067	0.44	0.526	0.725
Submergent Vegetation Score	score	0.299	-0.673	-0.674	0.057
Algae Coverage Score	score	0.851	-0.01	0.126	-0.509
Liotal Aquatic Vegetation Score	score	0.841	-0.419	-0.289	0.184
Field Dissolved Oxygon In pond	c mg/l	0.383	-0.309	-0.226	0.906
Field Percent Saturation In-pond	111g/L	0.382	0.469	0.734	0.308
Field Conductivity In-pond	uS/cm	0.445	-0.435	-0.246	-0.201
Field pH In-pond	-	-0.87	0.348	0.240	0.201
Field Oxidation-reduction Potential In-nond	mV	0,746	-0,152	0.018	-0,648
Field Turbidity In-pond	NTU	-0.513	-0.67	-0.242	0.48
Field Chlorophyll-a In-pond	μg/L	0.137	0.1	-0.056	0.984
Field Phycocyanins In-pond	μg/L	-0.065	0.336	0.779	0.526
July Mean Hydraulic Residence Time	d	0.642	0.712	-0.252	-0.131
August Mean Hydraulic Residence Time	d	0.473	0.858	-0.2	0.017
Maximum Depth	m	-0.001	0.737	-0.466	-0.489
July Mean Temperature	*C	0.42	-0.123	-0.067	0.897
August Mean Temperature	1°C	0.253	-0.277	-0.05	0.926

 August Mean Temperature
 C
 U.235
 U.277
 U.035
 U.270
 U.260

 Notes: US = upstream of sedimentation pond; DS = downstream of sedimentation pond; conditional formatting indicates magnitude of positive (green) and negative (red) loadings
 Description
 Description</t