

Teck Metals Ltd.

Sullivan TSF 2023

Annual Facility Performance Report

Platinum member

March 2024

A05807A23

March 26, 2024

Teck Metals Ltd. Bag 2000 Kimberley, British Columbia V1A 3E1

Chris Jeffrey, P.Eng. Senior Engineer, Tailings & Mine Waste

Dear Mr. Jeffrey:

Annual Facility Performance Report Sullivan TSF 2023

Klohn Crippen Berger is pleased to submit the 2023 Annual Facility Performance Report (AFPR) for Teck Metals Ltd.'s Sullivan Mine located near Kimberley, British Columbia. This report documents our visual observations of the existing conditions of the Sullivan Mine tailings and water management embankments and our review of the instrumentation data to August 31, 2023. The reporting period for this 2023 AFPR is September 1, 2022, through August 31, 2023.

We appreciate the opportunity to continue to provide our services to Teck Metals. Please call the undersigned at 780-733-4592 if you have any questions.

Yours truly, KLOHN CRIPPEN BERGER LTD.

Pamela Fines, M.A.Sc., P.Eng. Associate / Manager, Edmonton

PF/bb

2024-03-26R SUL 2023 TSF Annual Facility Performance Review.docx A05807A23

Klohn Crippen Berger Ltd. 109, 4208 97 St NW • Edmonton AB T6E 5Z9 • Canada t 780.444.0706 • www.klohn.com

Platinum

member

Teck Metals Ltd.

Sullivan TSF 2023

Annual Facility Performance Report

CLARIFICATIONS REGARDING THIS REPORT

This report is an instrument of service of Klohn Crippen Berger Ltd. (KCB). The report has been prepared for the exclusive use of Teck Metals Ltd. (Client) and the applicable regulatory authorities for the specific application to the 2023 Annual Facility Performance Report, and it may not be relied upon by any other party without KCB's written consent.

KCB has prepared this report in a manner consistent with the level of care, skill and diligence ordinarily provided by members of the same profession for projects of a similar nature at the time and place the services were rendered. KCB makes no warranty, express or implied.

Use of or reliance upon this instrument of service by the Client is subject to the following conditions:

- 1. The report is to be read in full, with sections or parts of the report relied upon in the context of the whole report.
- 2. The Executive Summary is a selection of key elements of the report. It does not include details needed for the proper application of the findings and recommendations in the report.
- 3. The observations, findings and conclusions in this report are based on observed factual data and conditions that existed at the time of the work and should not be relied upon to precisely represent conditions at any other time.
- 4. The report is based on information provided to KCB by the Client or by other parties on behalf of the client (Client-supplied information). KCB has not verified the correctness or accuracy of such information and makes no representations regarding its correctness or accuracy. KCB shall not be responsible to the Client for the consequences of any error or omission contained in Client-supplied information.
- 5. KCB should be consulted regarding the interpretation or application of the findings and recommendations in the report.

EXECUTIVE SUMMARY

This report presents the 2023 annual summary of tailings and water management facility performance at Sullivan Mine located in Kimberley, British Columbia. The 2023 annual facility performance report (AFPR) is the 32nd consecutive annual inspection of the embankments associated with the Sullivan TSFs carried out by Klohn Crippen Berger Ltd. (KCB).

As per previous AFPRs by KCB, off-site water discharge quality, groundwater quality and monitoring, and geochemical assessment and monitoring are excluded from the scope of this report. These aspects are reviewed by others and are reported separately. These issues would only be referred to if they were contributory to facility integrity for any of the tailings or water management structures. This has not been the case to date, including the 2023 review period.

The report presents the key findings from the site visit by the Engineer of Record (EoR), Ms. Pamela Fines, P.Eng. and Ms. Makayla Rettger, EIT (SK) on May 30 to 31, 2023, as well as a review of the instrumentation data collected, and routine work performed at Sullivan Mine between September 1, 2022, and August 31, 2023.

Based on the visual inspection of the site during the AFPR and a review of available instrument data, the embankments appear to continue to be in good physical condition, and the observed performance has been consistent with historical performance and is satisfactory. There was no evidence of any potential dam safety concerns for active facilities or those that have been inactive for at least >25 years and, in some cases, more than 50 years.

Facility Description

After almost a century of operations, the Sullivan Mine was closed at the end of 2001. Reclamation work on the tailings area was formally initiated in 1990 and was essentially completed by 2008.

There is a total of 15 earthfill embankment structures that create seven separate storage facilities for tailings, Acid Rock Drainage (ARD) water, and water treatment sludge. The earthfill structures have a combined length of about 10.4 km, with maximum heights varying from 4.2 m to 29 m. A summary of the maximum height and crest lengths of the main embankments for each facility is shown in Table ES.1 below.

While many of the tailings facilities were initially designed and constructed through the 1970s and 1980s or earlier, field investigations and design reviews (stability and performance assessments) have been periodically completed since that time. Over the 10 years leading up to closure, a significant amount of work was conducted to enhance long-term stability; modifications to the containment structures included flattening of slopes and/or construction of toe berms such that the structures meet or exceed industry recommended Factors of Safety (FoS) under static and dynamic loading, considering the Maximum Credible Earthquake and assuming all saturated tailings liquefy. In addition, a closure surface water management plan was put in place including construction of surface water diversions and spillways to safely handle flows from a probable maximum flood (PMF). Finally, these tailings facilities all reside above original ground and continue to drain at variable rates to the point where most of the contained tailings are largely unsaturated. As a result, the portion of tailings

vulnerable to liquefaction has significantly reduced from that assumed during design of the stabilization measures prior to closure.

The only active facility in terms of receiving solid materials is the Sludge Impoundment. No modifications have been required for the Sludge Impoundment embankments to date. This is because the original design capacity of the facility far exceeded production requirements and there had been little accumulation of sludge immediately against the embankments.

Table ES.1 Summary of Storage Facilities at Sullivan Mine

Storage Facility	Embankments	Туре	Approximate Embankment Length (m)	Approximate Maximum Embankment Height (m)	Starter Dike Constructed (Year) ¹	Year of Last Dike Raise (Year)
Iron TSF	Iron Dike	Iron Tailings	1500	29.0	1975	1999
Old Iron TSF	Old Iron Dike	Iron Tailings	520	7.6	Prior to 1948	Unknown
	Iron TSF Divider Dike	Iron Tailings	1190	3.6 ³	Post 1948	Unknown
	No. 1 Siliceous Dike	Silica Tailings	2000	4.9 ³	1923	1979
Siliceous TSF	No. 2 Siliceous Dike	Silica Tailings	730	9.5	1975	1982
	No. 3 Siliceous Dike	Silica Tailings	1540	12.5	1975	1984
	East Gypsum Dike	Gypsum	670	16.8	1969	1983
	West Gypsum Dike	Gypsum	640	22.9	1969	1986
Gypsum TSF	Northeast Dike	Gypsum, Seepage Water	120	10.0	1985	1985
	Recycle Dam	Seepage/ARD Water	90	6.0	1985	1985
Calcine TSF	Calcine Dike	Calcine	520	4.6 ³	1972	1986
ARD Pond ²	North Dam	ARD/Seepage Water	460	7.6	2001	2001
ARD PONG	South Dam	ARD/Seepage Water	330	16.8	1976	2001
Sludge	North Dike	Sludge	120	4.3	1978	1978
Impoundment	South Dike	Sludge	200	6.1	1978	1978

Notes:

¹ Starter Dike information based on data from Annual Inspection Report by SRK-Robinson dated June 1991.

² The ARD Pond is established at the site of the old Cooling Pond.

³ Tailings were placed downstream of both Iron TSF Divider Dike and No. 1 Siliceous Dike. The original height of the Iron TSF Divider and No. 1 Siliceous Dikes from original ground is 10.7 m and 16.8 m, respectively. A municipal landfill is downstream from the Calcine Dike. The height of the Calcine Dike from original ground is 15.2 m.

Credible Failure Modes Review

The Sullivan tailings risk register was reviewed by KCB and Teck in June 2023. There were no changes to the key hazards and the existing controls were adequate to manage potential failure modes.

To supplement the risk review, Teck, with support from KCB, conducted a credible failure scenario assessment in April 2022. Teck's definition of a "catastrophic" failure is one with a risk to life safety or irreversible impact to a rare or valued ecosystem, social or cultural heritage element. There are credible failure modes for the dams at Sullivan, however the assessment concluded that, based on the available information and current understanding of the site, no credible "catastrophic" failure scenarios have been identified for the Sullivan tailings facilities.

The following is a summary of the controls in place at Sullivan Mine to manage the risks associated with the credible failure modes for the facilities. Based on site observations and the available information, Teck is managing the potential failure mechanisms for the TSF, water management embankment, and sludge embankments appropriately.

Overtopping

Overtopping failures including extreme loading conditions are considered non-credible, for the inactive tailings storage facilities given the closure water management measures already in place (e.g. drainage channels, spillways, etc. designed to discharge the probable maximum flood (PMF)).

This is also applicable for the active water storage facilities, ARD Pond and Iron Pond, because they have emergency spillways designed to safely pass the PMF with storage maintained between the maximum operating level and the spillway invert. Overtopping is even less credible for the ARD Pond because it can store a PMF before the water level rises to the invert of the spillway.

For the active Sludge Impoundment, an overtopping failure is credible under extreme loading but is non-catastrophic as there is no population in the vicinity of the dam and no irreversible downstream consequences.

Internal Erosion / Piping

Internal erosion/piping failure modes are considered non-credible, for the tailings facilities because the pond water levels are low (Iron Pond) or completely absent (inactive facilities) and the associated piezometric surfaces within the tailings are very low.

Internal erosion/piping failure modes are considered non-credible for the ARD Pond Dams. These dams have well constructed and documented filter zones within the dam. There is a seepage pathway on the east abutment of the South Dam that responds to the reservoir water fluctuations, however investigations and assessments have determined that the soils are internally stable and unlikely to be susceptible to internal erosion (KCB 2023a). Additional monitoring of the abutment has been established to monitor for changes and TARPs will be established for the instruments in 2024. Internal erosion/piping of the east abutment is considered credible, but the current controls mitigate the risk such that the consequence of failure is not catastrophic.

For the Sludge Impoundment, internal erosion/ piping failure is non-credible due to the inclusion of filters in the embankment, low phreatic surface, and the lack of a permanent pond.

Slope Stability

Static stability factors of safety are well above the minimum recommended values for all the structures and failure under static loading is considered non-credible.

Seismic instability (foundation and slope) failure mode is non-credible for most of the tailings facilities because of the seismic stabilization measures completed prior to closure. As previously indicated, since closure in 2001, the phreatic surface in the tailings facilities has decreased significantly so that the portion of tailings vulnerable to seismic liquefaction has also significantly reduced compared to original design assumptions. Potentially liquefiable soils have been identified in localized portions of the foundation of Gypsum TSF and the Silicious TSF. However, due to the low phreatic surface and lack of pond there is no failure scenario for the Gypsum and Silicious TSFs that would result in catastrophic consequences. Slumping could occur within the facility based on loading from the 1:10,000 return period earthquake but would result in localized and reversible downstream consequences (this will be formally assessed in 2024).

There are no liquefiable materials present in the foundation and embankment fill of the ARD Pond Dams and the deformations induced by extreme loading are computed to be small and acceptable. Therefore, seismic instability is considered a non-credible failure mechanism for the ARD Pond Dams.

There are no liquefiable materials present in the foundation and embankment fill of the Sludge Impoundment. Therefore, seismic instability is considered a non-credible failure mechanism for the Sludge Impoundment.

A due diligence update of the seismic stability of all structures is underway to better reflect existing conditions and to incorporate the revised seismic hazard assessment. This work is important to update the supporting documentation but is not expected to materially change the current conclusions.

Consequence Classifications (CDA and HSRC)

Teck has provided the following with respect to consequence classification:

Teck is committed to the safe and environmentally responsible management of tailings facilities throughout the mining life cycle to minimize harm to the environment and protect the health and safety of their people and surrounding Communities of Interest. This commitment includes the implementation of the Global Industry Standard on Tailings Management (GISTM) and industryleading guidelines established by the International Council on Mining and Metals (ICMM), the Mining Association of Canada (MAC) and Canadian Dam Association (CDA).

For the purpose of assigning dam classifications, the consequences of potential failure modes are assessed as per the Canadian Dam Association (CDA) guidelines and the requirements of British

Columbia. The Global Industry Standard on Tailings Management (GISTM) bases consequence classification on credible failure modes only, which may result in a lower stated classification.

As part of Teck's commitment to the safety of tailings facilities, Teck has adopted evaluating their facilities against extreme loading criteria with a credible catastrophic flow failure mode, regardless of consequence classification. Risk assessments are performed for all tailings facilities, with the objective of reducing risks to As Low As Reasonably Practicable (ALARP). In some cases, this results in further risk reduction beyond applicable regulatory requirements and is consistent with the GISTM and industry-leading best practice.

Given that there have been no major changes to developments downstream of the tailings and supporting facilities at Sullivan Mine, no change to the consequence classifications was recommended. The current consequence classifications of each of the embankments at Sullivan Mine are summarized in Table ES.1 below.

Facility	Embankment	Consequence Classification ¹
Iron TSF	Iron Dike	Н
	Old Iron dike	L
Old Iron TSF	Iron TSF Divider Dike	L
	No. 1 Siliceous Dike	L
Siliceous TSF	No. 2 Siliceous Dike	L
	No. 3 Siliceous Dike	L
	East Gypsum Dike	Н
	West Gypsum Dike	Н
Gypsum TSF	Northeast Gypsum Dike	L
	Recycle Dam	L
Calcine TSF	Calcine Dike	L
	North Dike	L
Sludge Impoundment	South Dike	L
	North Dam	VH
ARD Pond	South Dam	VH

Table ES.1 Embankments and Consequence Classification

Note:

Consequence categories based on 2007 Canadian Dam Safety Guidelines (CDA 2013): E=Extreme, VH=Very High, H=High, S=Significant, L=Low

Key Observations (Instrumentation and Visual)

Notification levels have been established for all instruments installed prior to 2020. The current notifications levels for piezometers are not intended to be indicative of a dam safety concern but rather to identify any measured change from historic or expected behaviour that warrants a due diligence review by Teck and the Engineer of Record (or designate) to understand the likely cause of that change. The current monitoring period is from September 1, 2022, to August 31, 2023. The previous monitoring period was from September 1, 2021, to August 31, 2022.

Notification levels tied to seismic stability assumptions for two facilities are now in place. Internal erosion TARPs for the ARD Pond South Dam east abutment will be developed in 2024. The alert levels update also includes updated levels based on more recent historical performance.

A facility-by-facility indication of condition and stability follows, inclusive of those for facilities deemed to have no credible failure modes leading to catastrophic consequences.

No changes to instrument reading frequency or threshold levels are recommended.

Iron TSF

Based on the visual observations and instrumentation review, the Iron TSF and its emergency spillway are in good condition and are performing satisfactorily.

Seepage near station 5+00 is monitored by Weir #3 and Weir #4 installed in the drainage ditch. Seepage near station 24+00 is collected in an existing low-lying area beyond the toe of the embankment. There are no obvious changes in the seepage conditions compared to previous years.

All 30 piezometers showed relatively constant piezometric, or slightly decreased readings compared to the previous monitoring period. The readings were generally consistent with historic monitoring trends.

Old Iron TSF

Based on the visual observations and instrumentation review, the Old Iron TSF and the Iron TSF Divider Dike are in good condition, with no visible changes from previous inspections, and are performing satisfactorily.

All nine currently monitored piezometers in the Old Iron TSF showed steady or decreasing piezometric levels when compared to the previous monitoring period. The readings were generally consistent with historic monitoring trends.

Siliceous TSF

Based on the visual observations and instrumentation review, the Siliceous TSF is in good condition, with no visible changes from previous inspections, and is performing satisfactorily.

Visual observation of seepage indicates similar flows as previous years with no indication of sediment in the seepage flows.

All 18 piezometers currently being read showed stable or decreasing piezometric levels compared to the previous monitoring period. The readings were generally consistent with historic monitoring trends.

Gypsum TSF

Based on the visual observations and instrumentation review, the East and West Gypsum TSFs, including the Northeast Gypsum Dike and the Recycle Dam, are in good condition with no visual changes from previous inspections, and are performing satisfactorily.

All 15 piezometers currently being read at the Gypsum TSF showed reduced or stable piezometric levels compared to the previous monitoring period. The readings were generally consistent with historic monitoring trends.

There are continued indications of burrowing animal activity at the toe of the embankments; the extent of these observations is not considered a dam safety issue but represents a safety hazard for personnel. Teck has worked to fill in the burrows, and this will need to continue for the new burrows identified.

The Sondex gauge was not scheduled to be read during this monitoring period.

ARD Pond

Based on the visual observations and instrumentation review, the North and South Dams are in good condition with no visual changes from previous inspections and are performing satisfactorily.

All of the 13 currently monitored piezometers in the ARD Pond Dams indicated a slight increase or stable piezometric level compared to the previous monitoring period. The increase could be attributed to weather conditions such as increased precipitation from the previous year. The readings were generally consistent with historic monitoring trends. Two instruments exceeded their notification level during freshet. Teck and the EoR reviewed the notification level alerts that were detected during freshet, and they were not deemed to be dam safety concerns. Similar notification levels have been occasionally observed during previous freshets. Levels returned to below notification level by the end of the spring water treatment campaign.

Calcine TSF

Based on visual observations, the Calcine TSF is in good condition with no visual changes from previous inspections and is performing satisfactorily.

Sludge Impoundment

Based on the visual observations, the North and South Dikes of the Sludge Impoundment are in good condition with no visual changes from previous inspections and are performing satisfactorily. Reporting for these instruments began in October 2021 and readings have shown consistent trends since installation.

OMS and MERP Manuals

The Operation, Maintenance, and Surveillance (OMS) Manual for the Sullivan Mine Tailings Facilities was updated in July 2023.

The Mine Emergency Preparedness and Response Plan (MERP) was updated in March 2023.

Deficiencies and Non-conformances

There were no new deficiencies or non-conformances identified, and therefore, no new recommendations arising from the current AFPR.

One previous recommendation that is still outstanding is summarized in Table ES.2.

The levels of priority assigned to each item in the table are based on priority ratings developed by Teck (and consistent with HSRC) as follows:

<u>Priority 1</u>	A high probability or actual TSF safety issue considered immediately dangerous to
	life, health or the environment, or a significant risk of regulatory enforcement.
<u>Priority 2</u>	If not corrected could likely result in TSF safety issues leading to injury,
	environmental impact or significant regulatory enforcement; or a repetitive
	deficiency that demonstrates a systematic breakdown of procedures.
<u>Priority 3</u>	Single occurrences of deficiencies or non-conformances that alone would not be
	expected to result in TSF safety issues.
<u>Priority 4</u>	Best Management Practice as a suggestion for continuous improvement towards
	industry best practices that could further reduce potential risks.

Independent Dam Safety Review

The most recent Dam Safety Review (DSR) for the Sullivan Mine TSFs and dams was initiated by Haley and Aldrich in 2018. The DSR report was finalized in January 2021. The previous DSR was completed by Golder Associates in 2013 (Golder 2014). The HSRC regulations (EMLI 2022) mandate that a DSR be undertaken every five years regardless of the consequence classification of the structures. A DSR by Newfields was in progress during the 2023 AFPR reporting period with report anticipated in 2024.

Table ES.2 Summary of Outstanding Recommendations

Structure	ID No.	Deficiency of Non- Conformance	Applicable Regulation or OMS Reference	Recommended Action	Priority	Recommended Deadline/Status
Previous Recon	nmendat	tions Closed/Sup	erseded			
Previous Recon	nmendat	tions Ongoing				
Sludge Impoundment	2017- 3	A review of the Sludge Impoundment is needed.	EMLI HSRC (2022) & CDA Guidelines: Application to Mining Dams (2019)	Review of the current design freeboard and design sludge levels is required. To facilitate the design update, the Sludge Impoundment surface should be surveyed to obtain average sludge deposition rates. Review of entire facility should be completed to address storage, life expectancy of the facility, and regulatory requirements.	3	Q4 2024 UPDATE – Site investigation completed. The site investigation data will be combined with other groundwater information and form the basis for a workshop between Teck and KCB on the future of the facility. After the workshop is completed, a scope of work will be developed based on the workshop outcomes.

CLARIF	ICATIONS	REGARD	DING THIS REPORT	1			
EXECU	TIVE SUM	MARY		II			
1	INTRODU	JCTION		1			
	1.1	Purpose	, Scope of Work, and Methodology	1			
	1.2	Regulatory Requirements					
		1.2.1	Mines Act and HSRC	1			
		1.2.2	Water Act and BC Dam Safety Regulation	2			
		1.2.3	Permits and Licenses	2			
	1.3	Facility D	Description	3			
	1.4	Backgro	und Information and History	6			
		1.4.1	Units of Measure and Coordinates	7			
2	MINE AC	TIVITIES	IN 2023	8			
	2.1	Tailings/	Sludge Deposition and Available Storage	8			
	2.2	Main Co	nstruction Activities (September 2022 to August 2023)	8			
	2.3		stigation				
	2.4	-	to Embankment Cross-Sections				
	2.5	Dam Safety Review9					
3	CLIMATE		AND WATER MANAGEMENT – TAILINGS AREA				
	3.1	Overview	N	10			
	3.2	Climate.		10			
		3.2.1	Precipitation	10			
		3.2.2	Evaporation	12			
	3.3	Water Le	evels in ARD Pond and Iron Pond	13			
		3.3.1	Area-Volume Curves	13			
		3.3.2	Pond Water Levels	14			
	3.4	Tailings .	Area Water Balance	15			
		3.4.1	General	15			
		3.4.2	Water Balance Schematic	15			
		3.4.3	Inflows	17			
		3.4.4	Outflows	17			
		3.4.5	Water Balance Summary	18			
	3.5	Flood M	anagement	20			
	3.6	Freeboa	rd and Storage – Water Storage Ponds	20			
		3.6.1	Iron Pond	20			
		3.6.2	ARD Pond	21			

(continued)

	3.7	Off-Site Surface Water Discharge Volumes					
	3.8	Water D	ischarge Quality	. 22			
4	4 SITE OBSERVATIONS AND INSTRUMENTATION REVIEW						
	4.1	Visual O	bservations	. 23			
		4.1.1	ARD Pond	. 23			
		4.1.2	Iron TSF and Iron Dike	. 24			
		4.1.3	No. 1, 2, and 3 Siliceous TSFs	. 24			
		4.1.4	East and West Gypsum TSFs	. 25			
		4.1.5	Northeast Gypsum Dike and Recycle Dam	. 25			
		4.1.6	Sludge Impoundment	. 25			
		4.1.7	Calcine TSF	. 26			
		4.1.8	Old Iron TSF	. 26			
	4.2	Instrume	entation Data Review	. 26			
		4.2.1	Iron TSF	. 28			
		4.2.2	Old Iron TSF	. 28			
		4.2.3	Siliceous TSF	. 29			
		4.2.4	East and West Gypsum TSFs	. 30			
		4.2.5	ARD Pond	. 31			
		4.2.6	Calcine TSF	. 33			
		4.2.7	Sludge Impoundment	. 33			
5	TAILING	S FACILITY	Y ASSESSMENT	. 34			
	5.1	Dam / D	ike Consequence Classifications	. 34			
	5.2	Failure N	Aodes Review	. 35			
		5.2.1	Overtopping	. 35			
		5.2.2	Internal Erosion and Piping	. 36			
		5.2.3	Slope Instability	. 37			
	5.3	OMS Manual					
	5.4	Mine Err	nergency Response Plan	. 38			
6	SUMMA	RY		. 39			
7	CLOSING						
REFER	ENCES			. 42			

(continued)

List of Tables

Table 1.1	Summary of Storage Facilities at Sullivan Mine	5
Table 1.2	Historical Development	6
Table 3.1	Monthly Total Precipitation at Sullivan Mine 2022 – 2023 Compared to Normals from Kimberley PCC Station	11
Table 3.2	Mean Monthly Evapotranspiration Rates at Kimberley A Station	13
Table 3.3	ARD Pond Monthly Water Balance Summary	19
Table 3.4	Relevant Iron Pond Characteristics	21
Table 3.5	Relevant ARD Pond Characteristics	21
Table 3.6	Summary of Treated Water Discharge to St. Mary River	22
Table 4.1	Monitoring Frequencies for 2023 Reporting Period	27
Table 5.1	Tailings Embankments and Consequence Classification	35
Table 6.1	Summary of Outstanding Recommendations	40

List of Figures

igure 1 Location and Site Plan

- Figure 2 Tailings Seepage Collection and DWT Plant Location
- Figure 3 General Arrangement of Design Sections
- Figure 4 General Arrangement of Tailings Facilities, Photo Locations
- Figure 5 Instrument Location Plan Iron Dike
- Figure 6 Iron Dike Sections D and E
- Figure 7 Iron Dike Section F
- Figure 8 Instrument Location Plan Old Iron & Iron TSF Divider Dikes
- Figure 9 Old Iron Dike Section G
- Figure 10 Instrument Location Plan No. 1, 2, & 3 Siliceous Dikes
- Figure 11 No. 1 Siliceous Dike Section A
- Figure 12 No. 2 and No. 3 Siliceous Dikes Sections B and C
- Figure 13 Instrument Location Plan West Gypsum Dike

(continued)

- Figure 15 West Gypsum Dike Section R
- Figure 16 Instrument Location Plan East Gypsum Dike
- Figure 17 East Gypsum Dike Sections S and T
- Figure 18 Instrument Location Plan Northeast Gypsum Dike and Recycle Dam
- Figure 19 Northeast Gypsum Dike and Recycle Dam Section U
- Figure 20 ARD Storage Pond Plan and Layout
- Figure 21 ARD Storage Pond North Dam Sections H and I
- Figure 22 ARD Storage Pond North Dam Section J and K
- Figure 23 ARD Storage Pond South Dam Sections L and M
- Figure 24 ARD Storage Pond South Dam Section N
- Figure 25 Location Plan Calcine Dike
- Figure 26 Calcine Dike Section O
- Figure 27 Sludge Impoundment Dikes Plan
- Figure 28 Sludge Impoundment Dikes Section Z

List of Appendices

- Appendix I Visual Inspection Checklists
- Appendix II Site Visit Photographs
- Appendix III Quantifiable Performance Objectives and Instrumentation Monitoring
- Appendix IV Iron Dike Instrumentation
- Appendix V Old Iron Instrumentation
- Appendix VI Siliceous Dike Instrumentation
- Appendix VII W Gypsum Dike Instrumentation
- Appendix VIII E Gypsum Dike Instrumentation
- Appendix IX NE Gypsum Dike Instrumentation
- Appendix X ARD Instrumentation
- Appendix XI Sludge Pond Survey and Instrumentation
- Appendix XII Pond Storage Curves

1 INTRODUCTION

1.1 Purpose, Scope of Work, and Methodology

This report presents the results of the 2023 Annual Facility Performance Review (AFPR) of the tailings embankments and other dams at the Teck Metals Ltd. (Teck) former Sullivan Mine, located in Kimberley, British Columbia. The work was carried out in general accordance with our proposal letter dated March 18, 2022, and the Teck Guideline for Tailing and Water Retaining Structures (Teck 2019). It was also prepared to fulfil the requirements of a Dam Safety Inspection (DSI) in the Health, Safety and Reclamation Code for Mines in British Columbia (HSRC) (MEM 2016, EMLI 2022). It is also an essential document per the Global Industry Standard on Tailings Management (GISTM) which was released in August 2020.

The scope of work consists of:

- a visual inspection of the physical condition of the various containment embankments and water retention dams during the site visit May 30 and 31, 2023;
- a review of the climate and water balance data for the site;
- a review of the annual flow rates recorded from weirs for the Acid Rock Drainage (ARD) pond and Iron Tailings Storage Facility (TSF);
- a review of updated piezometer and settlement records provided by Teck in 2023; and
- a review of the risk register for the storage facilities.

The reporting period for this annual report (AFPR) is September 1, 2022, to August 31, 2023. The previous monitoring period was from September 1, 2021, to August 31, 2022. Figures 1 through 3 show the project location and general layout of the various facilities.

This is the 32nd AFPR of the Sullivan Mine tailings and supporting embankments carried out by Klohn Crippen Berger Ltd. (KCB). Annual reports for the periods preceding KCB's involvement were prepared by SRK-Robinson Inc. from 1989 to 1991 and by Robinson Dames and Moore from 1984 to 1988.

As per previous annual inspection reports by KCB, this report focuses on the geotechnical performance of the embankments and water balance for the facilities. Off-site water discharge quality, groundwater quality and monitoring, and geochemical assessment and monitoring are excluded from the scope of this report. These aspects are reviewed by others and are reported separately. These issues would only be referred to if they were contributory to facility integrity for any of the structures. This has not been the case to date, including the 2022 review period.

1.2 Regulatory Requirements

1.2.1 Mines Act and HSRC

This annual inspection addresses the performance of the tailings/sludge storage facilities and associated water management infrastructure in accordance with the Health, Safety, and Reclamation

Code for Mines in British Columbia (EMLI 2022) and Guidance Documents (MEM 2016), which forms part of the Mines Act (RSBC 1996).

As required by the HSRC, the following persons have been designated:

- Engineer of Record –Pamela Fines, P.Eng. (KCB)
- Responsible Tailings Facility Engineer (equivalent to Qualified Person) Chris Jeffrey, P.Eng. (Teck)
- Mine Manager Ryan Peterson, M.Sc. (Teck)

1.2.2 Water Act and BC Dam Safety Regulation

None of the tailings embankments or dams at Sullivan Mine require a water licence and are therefore not regulated by the BC Dam Safety Regulations. A conditional water licence (C050428) has been issued for the construction of the sludge impoundment. The BC Dam Safety Regulation was referenced for guidance related to dam safety, where appropriate.

1.2.3 Permits and Licenses

Sullivan Mine is regulated by the following permits:

- Reclamation Permit M-74 (amended Nov. 2, 2022) issued by the Ministry of Energy, Mines and Low Carbon Innovation (EMLI). This permit is issued under the provision of the Mines Act (RSBC 1996) and addresses reclamation, metal leaching, and acid rock drainage requirements at Sullivan Mine. The requirements of the permit are:
 - monitoring programs of vegetation, surface water, and groundwater;
 - annual reporting as required under the HSRC (EMLI 2022); and
 - informing EMLI of changes at the mine that might impact the amount of the reclamation security.
- Effluent Permit PE-00189 (October 24, 2016) issued by the Ministry of Environment and Climate Change Strategy. This permit is issued under the provision of the Environmental Management Act (SBC 2003) and authorizes the discharge of effluent from the drainage water treatment plant to the St. Mary River as well as sludge to the land-based storage pond, and effluent from the 3700-foot portal to Kimberley Creek. Requirements under this permit include:
 - General requirements (Section 2 of the permit) which state the conditions under which the Drainage Water Treatment Plant (DWTP) and Sludge Impoundment must be operated (i.e. maintaining the infrastructure in good working order, addressing emergencies, modification to infrastructure and processes, and suspension).
 - Monitoring and reporting requirements (Sections 3 and 6 of the permit) which describe monitoring work to conduct on the discharges and receiving environment as well as the reporting frequency (i.e., spring and fall).

- Permit PR6742 (issued January 2, 2018, with amendment in progress) issued by the Ministry
 of Environmental Protection & Sustainability: Waste Management. This permit is issued under
 the provision of the Environmental Management Act (SBC 2003) and authorizes the discharge
 of refuse to a landfill. The landfill is located within the boundaries of the Old Iron TSF
 (northwest corner) and is denoted as E242184 and E310949 by the Ministry. Requirements
 under this permit include:
 - reporting of volumes of material placed within the landfill; and
 - regular inspection and maintenance of the landfill works.

1.3 Facility Description

There is a total of 15 earthfill embankment structures that form the seven separate storage facilities. A summary of the seven facilities and their associated embankment structures is provided in Table 1.1. The earthfill structures have a combined crest length of just over 10.4 km, with the maximum heights varying from 4.2 m to 29 m. A plan of the storage facilities and their retaining structures is provided in Figure 1.

The two water retaining dams¹, designated as the North Dam and South Dam, that form the ARD Pond are shown in Figure 20. This pond, located at the former Cooling Pond site, annually stores the mine contact water collected from the Sullivan Mine site requiring treatment. The two sludge retention embankments, designated as the North and South Dikes, that form the Sludge Impoundment are shown in Figure 27. This impoundment is located south of the St. Mary River and stores sludge produced from treatment of mine contact water at the DWTP.

Other than the above earthfill structures, the other embankments listed in Table 1.1 have been used primarily for tailings storage. Typically, these embankments consist of an initial earthfill starter section raised incrementally over the years using the upstream method of construction. The design and construction records for the original Old Iron TSF Dikes and the No. 1 Siliceous Dike (which were constructed during the 1920s to 1940s), are not available, so it is unclear how these were originally constructed. In the 1990s, following the static liquefaction failure experienced at the Iron Dike (Davies et al, 1998) in 1991, the long-term stability of all the tailings embankments were assessed which led to the construction of stabilization measures (i.e. slopes flattening and/or toe buttresses) to meet required design criteria. A discussion of the design basis and criteria is provided in Section 5.1.

The Iron Pond, the ARD Pond, the West Gypsum Seepage Collection Pond, and the Northeast Gypsum and Recycle Dam seepage collection ponds are the only storage facilities that are still active as they are used as integral components of the overall surface water and groundwater management strategy at the Sullivan Mine. The Sludge Impoundment is also active but does not retain ponded water. The other tailings facilities have been decommissioned and surface reclamation is complete. The

¹ In this report KCB refers to water retaining earthfill embankments as "dams" and refers to the earthfill embankments that are constructed for tailings storage and sludge storage ask "dikes".

reclamation included draining and covering the TSF surface and constructing surface water runoff conveyance channels and spillways.

Water collected at Sullivan Mine through mine drainage, contaminated groundwater, and seepage from TSFs and waste dumps is stored in the ARD Pond and then pumped to the DWTP. The ARD Pond serves as a flow equalization basin to facilitate seasonal operating campaigns at the DWTP. The treated water is released to the environment (St. Mary River) and the sludge is deposited in the Sludge Impoundment. The ARD Pond was designed with a spillway, which connects to the Iron Pond in the Iron TSF. The Iron TSF has an emergency spillway to safely convey excess water offsite from flood events up to and including the PMF. This spillway would discharge flood flows into Cow Creek, which in turn discharges into the St. Mary River.

Site location plans and typical embankment sections are provided in Figures 5 through 28.

Table 1.1 Summary of Storage Facilities at Sullivan Mine

Storage Facility	Embankments	Туре	Approximate Embankment Length (m)	Approximate Maximum Embankment Height (m)	Starter Dike Constructed (Year) ¹	Year of Last Dike Raise (Year)
Iron TSF	Iron Dike	Iron Tailings	1500	29.0	1975	1999
Old Iron TSF	Old Iron Dike	Iron Tailings	520	7.6	Prior to 1948	Unknown
	Iron TSF Divider Dike	Iron Tailings	1190	3.6 ³	Post 1948	Unknown
	No. 1 Siliceous Dike	Silica Tailings	2000	4.9 ³	1923	1979
Siliceous TSF	No. 2 Siliceous Dike	Silica Tailings	730	9.5	1975	1982
	No. 3 Siliceous Dike	Silica Tailings	1540	12.5	1975	1984
	East Gypsum Dike	Gypsum	670	16.8	1969	1983
	West Gypsum Dike	Gypsum	640	22.9	1969	1986
Gypsum TSF	Northeast Dike	Gypsum, Seepage Water	120	10.0	1985	1985
	Recycle Dam	Seepage/ARD Water	90	6.0	1985	1985
Calcine TSF	Calcine Dike	Calcine	520	4.6 ³	1972	1986
ARD Pond ²	North Dam	ARD/Seepage Water	460	7.6	2001	2001
ARD PONG	South Dam	ARD/Seepage Water	330	16.8	1976	2001
Sludge	North Dike	Sludge	120	4.3	1978	1978
Impoundment	South Dike	Sludge	200	6.1	1978	1978

Notes:

1. Starter Dike information based on data from Annual Inspection Report by SRK-Robinson dated June 1991.

2. The ARD Pond is established at the site of the old Cooling Pond.

3. Tailings were placed downstream of both Iron TSF Divider Dike and No. 1 Siliceous Dike. The original height of the Iron TSF Divider and No. 1 Siliceous Dikes from original ground is 10.7 m and 16.8 m, respectively. A municipal landfill abuts the downstream slope of the Calcine Dike. The height of the Calcine Dike from original ground is 15.2 m.

1.4 Background Information and History

After almost a century of operations, the Sullivan Mine was closed at the end of 2001 with approximately 94,000,000 tonnes of tailings stored in various TSFs and approximately 16,900,000 tonnes of mine waste stored at the former mine. Reclamation work on the tailings areas was formally initiated in 1990 and was essentially complete by 2008.

The historical development of the tailings area is summarized in Table 1.2. Gypsum and circulation water from operation of the fertilizer plant have also been stored in the tailings area. These by-products from the fertilizer plant were produced from about 1969 to 1987.

The DWTP, which began operating in 1979, continues to operate as part of the water management plan for the site. The DWTP treats acid rock drainage and other seepage produced from the underground mine and waste storage facilities. Sludge from the DWTP is located in an impoundment about 2 km south of Marysville near the DWTP. Figure 2 illustrates the relative locations of the DWTP, the tailings facilities, and the pipelines from the underground mine and highlights the primary seepage collection system.

Date	Process	Storage Area	Comments
Prior to 1941	Milling/Flotation for lead and zinc recovery	One tailings stream to Old Iron TSF Construction of No. 1 Siliceous starter dyke.	
1941 to 1985	Tin Recovery Circuit	Iron Tailings to Old Iron TSF and Iron TSF Siliceous tailings to No. 1, 2, and 3 Siliceous Cells	
1953 to 1987	Fertilizer production including roasting of iron concentrate Waste products include iron oxide and gypsum	Iron oxide (known as calcine tailings) to Calcine TSF Gypsum tailings to East and West Gypsum Cells	Gypsum TSF not developed until 1968; prior to that gypsum tailings were stored and seasonally discharged to the St. Mary River during spring freshet
1975 to 1987	Fertilizer Plant effluent water	Stored and recycled from Cooling Ponds 1 and 2	
1987 to 2001	Fertilizer plant closed; single mill tailings stream	Single stream to Iron TSF	
1979 to present	Drainage Water Treatment Plant (DWTP) Sludge Impoundment	Sludge Impoundment	Located offsite, 1.5 km south of Marysville, 0.5 km south of DWTP
2001 to present	Water storage for feed to DWTP	Cooling Ponds 1 and 2 converted to ARD Pond	

Table 1.2Historical Development

1.4.1 Units of Measure and Coordinates

To facilitate the long-term monitoring of the site, this report has converted historical values recorded in imperial units of measure in the Sullivan Mine Grid coordinate system to metric units in UTM (NAD 83). Some figures still reference stationing along embankments in imperial units.

2 MINE ACTIVITIES IN 2023

2.1 Tailings/Sludge Deposition and Available Storage

The Sullivan Mine closed in 2001 and, therefore, all of the tailings storage facilities are no longer active.

The Sludge Impoundment continues to be active and provides storage of sludge generated from treatment of mine contact water through the DWTP. The average annual sludge deposition rate since closure is approximately 2,800 tonnes/year and the total deposited sludge volume is approximately 182,000 tonnes.

2.2 Main Construction Activities (September 2022 to August 2023)

Construction related activities that take place each year are primarily associated with ongoing care and maintenance, such as road grading, cleaning of ditches, rodent burrow infilling, removal of trees and shrubs from embankment slopes as necessary, maintenance of the seepage collection system, maintenance of instrumentation and management of instrumentation data.

Specific key activities conducted over the current inspection period from September 1, 2022, to August 31, 2023 included:

- Repair of steel v-notch weir plate at Weir No. 4.
- Lowering of low operating level in the 945/946 pond.

Prior to the site visit in 2022, site staff lowered the intake levels for the 945/946 pumps located near the West Gypsum seepage collection pond and drew down the pond level. This allowed for a cleanout and regrading of the weir channels that drain towards the seepage pond which was in progress at the time of the 2022 Site inspection. The area was inspected again in 2023 at the lower pond level and general maintenance of the area was noted. Reducing the storage of water anywhere on the TSF is an improvement and the area will be inspected again during the 2024 AFPR site visit.

2.3 Site Investigation

No site investigations were completed during the reporting period. Notification levels and TARPs for the instruments installed in 2020 and 2021 are being developed.

2.4 Updates to Embankment Cross-Sections

Typical cross-sections for each embankment have been previously updated using the 2012 LiDAR data and are shown in the figures included with this report.

A comparison of select cross-sections generated between the 2012 surfaces and the 2023 surfaces indicated no significant changes to the physical configuration of the embankments on the site. The updated sludge surface in the Sludge Pond from the 2023 survey is provided in Figure 27.

2.5 Dam Safety Review

The most recent Dam Safety Review (DSR) for the Sullivan Mine TSFs and dams was initiated by Haley and Aldrich in 2018. The DSR report was finalized in January 2021. The previous DSR was completed by Golder Associates in 2013 (Golder 2014). The HSRC regulations (EMLI 2017) mandate that a DSR be undertaken every five years regardless of the consequence classification of the structures. A DSR by Newfields was in progress during the 2023 AFPR reporting period with report anticipated to be issued in 2024.

3 CLIMATE REVIEW AND WATER MANAGEMENT – TAILINGS AREA

3.1 Overview

The water management system at Sullivan Mine involves the collection and treatment of mine drainage, contaminated groundwater, and seepage from TSFs and waste dumps. The only active storage facilities used as part of the water management system are the ARD Pond, Iron Pond, West Gypsum Seepage Collection Pond, and Recycle Pond. Details of the system are included in the Sullivan Mine Seepage Collection Manual (Teck 2021).

In general, water from the mine and tailings areas is collected and conveyed to the ARD Pond for storage to facilitate seasonal operating campaigns at the DWTP. The main sources of water include:

- Mine water from the underground workings is pumped seasonally from the 3700 ft portal and flows via gravity to the ARD Pond.
- Water collected from the Upper and Lower Mine Yard seepage collection systems flows via gravity in the 3900 line to the ARD Pond.
- Water from the tailings seepage collection pumps and sumps, is pumped as required to the ARD Pond.

The main function of the Iron Pond is to provide storage of contaminated/contact water during spring runoff events. In addition, the system has the flexibility to by-pass the ARD Pond with temporary routing of mine and seepage water to the Iron Pond, where it can then be pumped to the ARD Pond or directly to the DWTP if required.

The ARD Pond has a storage capacity that allows for efficient operation of the DWTP for discrete periods of time and provides control over the time period when treated effluent is discharged to St. Mary River.

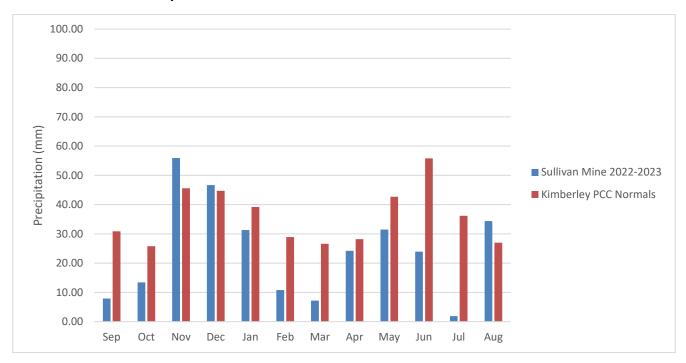
Studies are underway to identify options and opportunities to improve the current water management system which, at the same time, can contribute to Teck's overall objective of continual risk reduction for the Sullivan Mine.

3.2 Climate

3.2.1 Precipitation

Climate stations in the Environment Canada (EC) database relevant to the Sullivan Mine Tailings Facilities precipitation and active during the time period of this water balance assessment are Kimberley PCC (Station No. 1154203) located approximately 3 km southwest of the mine and Cranbrook A (Station No. 1152105) located about 13 km southeast of the mine.

For the purpose of this assessment, site precipitation was estimated as the daily precipitation recorded at Kimberley PCC, with any missing data filled by precipitation recorded at the Cranbrook A station. Table 3.1 summarizes the total precipitation and snowpack estimated for the mine from


September 1, 2022, to August 31, 2023, and provides a comparison with the corresponding climate normals for Kimberley calculated between 1981 – 2010 (EC 2019). The total precipitation for the current monitoring period and the climate normals are also graphically shown on Figure 3.1.

On an overall annual basis, the conditions over the current monitoring period were drier than the Kimberley PCC normal levels. However, on a monthly basis, it was wetter than normal in November and August, and drier than normal the remainder of the year.

Month	Total Precipitation (mm)	Normal Total Precipitation (mm)	Snow Depth (cm)	Normal Snow Depth (cm)
Sep	7.9	30.9	0	0.0
Oct	13.4	25.8	0	0.0
Nov	55.9	45.6	16.8	6.0
Dec	46.7	44.7	30.8	22.0
Jan	31.3	39.2	40.2	34.0
Feb	10.8	28.9	43.4	39.0
Mar	7.2	26.6	4.9	19.0
Apr	24.2	28.2	0	0.0
May	31.5	42.7	0	0.0
Jun	23.9	55.8	0	0.0
Jul	1.9	36.2	0	0.0
Aug	34.4	27.0	0	0.0
Total	289.1	431.6	176.0	120

Table 3.1Monthly Total Precipitation at Sullivan Mine 2022 – 2023 Compared to Normals from
Kimberley PCC Station

Figure 3.1 Monthly Total Precipitation at Sullivan Mine 2022-2023 Compared to Normals from Kimberley PCC Station

The precipitation data collected for the water balance is for the ARD Pond and its surrounding catchment. All water collected in the mine and tailings areas is pumped to the ARD Pond, and these flows are measured and recorded by Teck.

3.2.2 Evaporation

Monthly lake evaporation data at the tailings area for the reporting period was estimated using the WREVAP model by SRK (2014). The WREVAP model uses the dew point temperature, average temperature, and global solar radiation to estimate the lake evaporation. The mean monthly lake evaporation depths modelled for data collected at Kimberley A station is shown in Table 3.2.

Month	Mean Evaporation (mm)
September	65
October	30
November	5
December	0
January	0
February	4
March	36
April	71
May	117
June	135
July	163
August	130
Total	756

Table 3.2 Mean Monthly Evapotranspiration Rates at Kimberley A Station

3.3 Water Levels in ARD Pond and Iron Pond

The two key water storage ponds within the tailings and water management system are the ARD Pond and Iron Pond. The area-volume curves and measured water elevations for these ponds are provided in the following sections.

3.3.1 Area-Volume Curves

ARD Pond

The ARD Pond is formed by the South and North Dams built in 2001. The dam crest elevation is at El. 1048.0 m and the pond's spillway invert elevation is at 1047.4 m. In the event of a flood, ARD water discharges from the ARD Pond spillway to the Iron Pond. The Maximum Operating Level (MOL) for the ARD pond is set at El. 1046.5 m (KC 2000). Figure XII.1 shows the pond area-volume curve used for the water balance assessment. Based on that curve, the pond surface area is approximately 10 ha and its storage volume is approximately 710 dam³ at MOL.

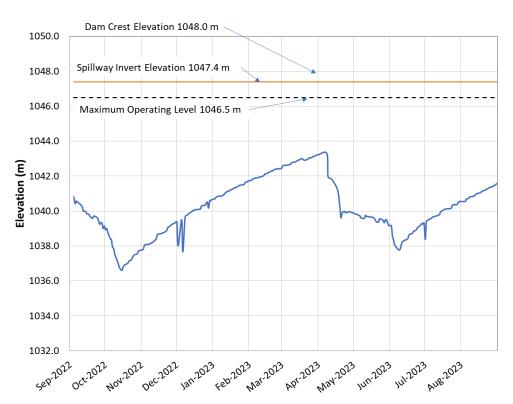
Iron Pond

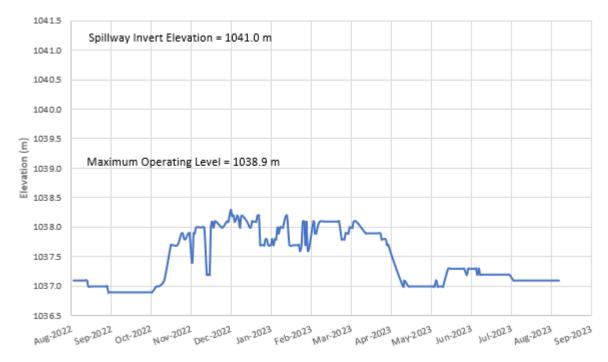
During normal operation, surface runoff from the Iron TSF and the upstream area is collected in the Iron Pond where it is then pumped to the ARD Pond or directly to the DWTP. In addition, the Iron Pond also provides emergency storage if the capacity of the ARD Pond were to be exceeded. The LiDAR survey from 2012, provided by Teck, shows the elevation of the top of the embankment to be at 1042.0 m and the elevation of the emergency spillway invert at 1041.0 m, which is consistent with the original design. The stage-storage curve (KCB 2007) for the pond is shown on Figure XII.2 and indicates that the storage capacity of the Iron Pond at the emergency spillway invert elevation of 1041.0 m is about 380 dam³.

3.3.2 Pond Water Levels

ARD Pond

Figure 3.2 shows the water levels measured by Teck in the ARD Pond from September 2022 to August 2023. The pond level is measured and recorded daily via automated site instrumentation.




Figure 3.2 ARD Pond Level 2022 – 2023

Based on the pond water levels, the maximum level observed during the reporting period was El. 1043.3 m, which occurred on April 1, 2023. This is 3.2 m lower than the maximum operating level (MOL) and is 4.1 m below the spillway invert elevation. There was no water discharged from the ARD Pond spillway to the Iron Pond during the water balance reporting period. The spillway has never discharged since the ARD pond was constructed.

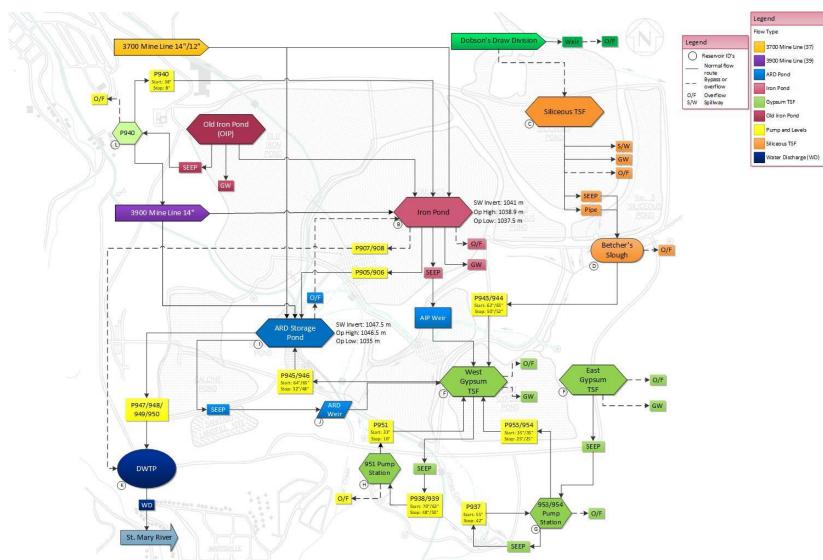
Iron Pond

Figure 3.3 shows the measured water levels by Teck in the Iron Pond from September 2022 to August 2023. The pond level is measured and recorded daily via automated site instrumentation. Noise in the readings in the winter is due to ice building up around the sensors.

Based on pond water levels, the maximum level observed during the reporting period was El. 1038.3 m on December 28, 2022, which is 2.7 m below the spillway invert elevation. There was no water discharged from the Iron Pond spillway during the water balance period, and records show that water has never been discharged to the spillway since it was constructed after mine closure.

Figure 3.3 Iron Pond Level 2022 – 2023

3.4 Tailings Area Water Balance


3.4.1 General

Teck manages and tracks the annual water balance for the Sullivan Mine. This section provides a review of the water balance for the current monitoring period from September 1, 2022, to August 31, 2023. The focus of the water balance is for the ARD Pond, as it is the central facility where all collected mine contact water is directed to for storage and then conveyed to the DWTP for treatment.

3.4.2 Water Balance Schematic

Figure 3.4 shows a schematic of the tailings area water balance system.

Figure 3.4 Tailings Area Water Balance Schematic (KCB 2023b)

3.4.3 Inflows

As shown on Figure 3.4, inflows to the ARD Storage Pond include the following:

- Seepage from the Iron Pond, Gypsum TSF, and Siliceous TSF, which is collected in the West Gypsum Seepage Collection Pond and directed to the ARD Pond through Pumps 945 and 946.
- Discharge from the mine through the 3700 and 3900 Mine Lines. The 3700 line carries water from the underground mine to the ARD Storage Pond. The 3900 line collects water from the waste dumps, aquifer dewatering wells, and Sullivan Creek as well as pump 940, which collects seepage from the Old Iron TSF, and carries the water to the ARD Pond.
- Pumped flows from the Iron Pond.
- Direct precipitation on the ARD Storage Pond surface and runoff from the surrounding catchment.

Pump data noted above was provided by Teck, rainfall data was obtained from Environment Canada weather stations and runoff was estimated using runoff parameters for the surrounding catchment.

Precipitation and runoff are calculated for the ARD Pond only. All other inflows are captured as measured pump flows to the ARD Pond, which already include precipitation and runoff from all other tailings areas. The ARD Pond catchment area is 0.179 km² (SRK 2014), including the pond and its surrounding catchment. Precipitation and runoff inflows were estimated based on the precipitation depths presented in Table 3.1, and estimated pond and catchment areas, which vary by pond level. The following inputs and assumptions were used for the precipitation and runoff estimates:

- monthly yield coefficients ranging from 0.15 to 0.30, as estimated by SRK (2014);
- precipitation accumulated as snow November through March; and
- 100% of accumulated snow melted in March, based on the snowpack data shown in Table 3.1.

3.4.4 Outflows

Outflows from the ARD Storage Pond include the following:

- Seepage through the South Dam (Weir #1 ARDWU), reporting to the West Gypsum Seepage Collection Pond. The weir also collects runoff from the dam face and upstream area. This seepage and runoff water is recirculated to the ARD pond through the West Gypsum Seepage collection pumping system.
- Water pumped from the ARD Pond to the DWTP.
- Evaporation from the pond surface.

Water is pumped from the ARD Pond to the DWTP through pumps 947/948/949/950/952. The water is treated and then released to the St. Mary River.

Evaporation losses from the ARD Pond were estimated by multiplying the monthly evaporation depth shown in Table 3.2 by the estimated water surface area of the pond based on the measured pond elevation. Evaporation losses from other areas are reflected in the measured pump flows.

3.4.5 Water Balance Summary

A summary of the estimated monthly inflow and outflow volumes for the ARD Pond is provided in Table 3.3. The water storage in the ARD Storage Pond is calculated monthly based on the inflows and outflows and compared to the observed storage (calculated from the measured water elevation and stage-elevation curve), as summarized in Table 3.3. These volumes are based on the original capacity of the pond, so the accumulation of solids in the pond means that the actual water volume is somewhat less than the table indicates but recent bathymetry indicate that accumulated sediment is minimal and will not have a significant impact on the storage volume.

Agreement between the observed and calculated storage is variable on a monthly basis. The difference between the observed and calculated year-end storage volumes amounts to 14% of the annual inflow to the pond.

The calculated annual difference of 14% over the current monitoring period is slightly lower than the calculated annual difference of 17% for the previous monitoring period. The water balance summary will be updated in 2024 to reflect findings from the GoldSim model that has been developed for the site.

Description	Units	Sep 2022	Oct 2022	Nov 2022	Dec 2022	Jan 2023	Feb 2023	Mar 2023	Apr 2023	May 2023	Jun 2023	Jul 2023	Aug 2023	Sept. 2022– Aug. 2023 ²
Water Level ¹	(m)	1040.81	1039.09	1037.83	1039.38	1040.67	1041.73	1042.55	1043.24	1039.71	1039.16	1038.92	1040.56	1041.50 ³
Stored Volume ¹	(dam³)	235.3	133.41	72.86	149.25	226.47	298.05	359.32	414.55	167.83	137.30	125.32	219.24	282.13 ³
Inflow:						-	-							
Pump 905/906/907/908	(dam³)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.1	3.0	0.8	0.0	0.0	21.9
Pump 945 / 946	(dam³)	32.0	35.8	37.6	39.4	37.3	36.6	47.4	62.3	43.7	35.9	31.8	33.2	472.9
Mine Line 3700	(dam³)	239.6	18.8	0.0	0.0	0.0	0.0	0.0	83.9	266.2	0.9	0.0	0.0	609.5
Mine Line 3900	(dam³)	60.4	59.7	51.8	48.9	43.7	41.6	45.0	64.7	87.7	74.5	67.7	61.5	707.1
Precipitation and Runoff	(dam³)	0.6	1.1	3.9	3.7	2.1	0.6	20.9	2.1	2.3	1.9	0.2	0.9	40.4
Total Inflow	(dam³)	332.6	115.5	93.3	92.0	83.1	78.9	113.3	231.1	402.9	114.0	99.7	95.6	1851.8
Outflow:														
Pump 947/948/949/950/952	(dam³)	467.2	183.7	0.0	0.0	0.0	0.0	16.4	429.9	364.5	84.0	0.0	9.9	1555.5
Weir 1 ARDWU	(dam³)							Negligible						
Evaporation	(dam³)	3.1	1.8	0.4	0.0	0.0	0.2	2.3	4.4	6.5	8.2	10.7	0.0	37.6
Total Outflow	(dam³)	470.4	185.2	0.3	0.0	0.0	0.3	18.9	433.8	370.7	91.7	10.9	9.9	1592.2
Calculated Net Change in Storage	(dam³)	-137.8	-69.8	92.4	91.4	83.2	78.8	93.2	-202.9	32.1	22.2	88.8	85.7	257.3
Calculated Month-End Storage	(dam³)	97.5	63.6	165.2	240.7	309.7	376.8	452.5	211.7	199.9	159.5	214.1	304.9	539.5
Observed Month-End Storage	(dam³)	133.4	72.9	149.2	226.5	298.1	359.3	414.5	167.8	137.3	125.3	219.2	282.1	282.1

Table 3.3ARD Pond Monthly Water Balance Summary

Notes:

1 Water level and Stored volume are calculated at the first of the month

2. Annual inflows and outflows is totalized monthly values

3. Annual water level and stored volume is determined at the end of the reporting period.

3.5 Flood Management

Reclamation work on the tailings areas commenced in 1990 and continued until it was completed in 2008. The reclamation work primarily comprised the development and construction of a multi-layer soil cover system of float rock (waste rock from the underground mine operations) and till over the tailings areas. A summary of the flood management structures, and applicable design criteria is presented below.

- Surface water collection/diversion channels and spillways have been designed and constructed in the tailings areas for flood management. The main channels and spillways are Dobson's Draw diversion, Siliceous Spillway and outlet channel, ARD Pond spillway, Channel C within the Iron Pond and the Iron Pond emergency spillway. They are designed to safely pass the Probable Maximum Flood (PMF) events. The channels are riprap lined and the spillways include stilling basins.
- As previously indicated, the ARD Pond is the central water storage facility where all collected contaminated/contact water is directed to for storage and then subsequently conveyed to the DWTP for treatment. The ARD Pond has been designed to store the 48-hour PMF and also includes a spillway designed to safely pass a 24 hr PMF (after the 48-hour PMF has been stored). Note that, in essence, the ARD Pond is capable of safely handling two 48-Hr PMFs occurring in succession. Key characteristics of the ARD Pond are provided in Section 3.6.2.

It should be highlighted that the 24-Hr PMF, which was selected as the Inflow Design Flood (IDF) for the Sullivan Mine tailings facilities, exceeds the minimum criteria for their respective consequence classifications, as specified in CDA (2013) and EMLI (2017).

3.6 Freeboard and Storage – Water Storage Ponds

3.6.1 Iron Pond

The maximum operating level of the Iron Pond is El. 1038.9 m. The stage-storage curve of the pond is shown on Figure XII.2, and its key design and performance characteristics are provided in Table 3.4.

Table 3.4 Relevant Iron Pond Characteristics

Item	Value
Top of the Iron Dike Elevation (m)	1042.0
Spillway Invert Elevation (m)	1041.0
Maximum Operating Level (m)	1038.9
Storage Capacity at the MOL (dam ³)	76.9
Designed Storage Capacity up to the Spillway (dam ³)	614.2
Minimum Water Level in 2022-2023 (m)	1036.9
Maximum Water Level in 2022-2023 (m)	1038.3
Maximum Volume Stored in 2022-2023 (dam ³)	21.3
Minimum Available Capacity Below MOL 2022-2023 (dam ³)	55.6

As previously discussed in Section 3.3.2, and shown on Figure 3.3, the maximum water level elevation recorded in the Iron Pond over this monitoring period was 1038.3 m, which is 2.7 m below the emergency spillway invert elevation and 3.7 m below the minimum Iron Dike crest elevation.

3.6.2 ARD Pond

The maximum operating level of the ARD Pond is set at El. 1046.5 m, which is 0.9 m lower than the spillway invert (El. 1047.4 m). It allows for a flood storage depth of 0.8 m for a 48-hour Probable Maximum Flood (PMF) plus 0.1 m freeboard to the spillway invert. The elevation of the top of the dam is set at 1048.0 m, providing a vertical distance of 0.6 m above the spillway invert. This vertical distance allows for a 0.3 m surcharge above the spillway invert and a dam freeboard of 0.3 m (KCB 2018) when routing the IDF (PMF) through the spillway to the Iron Pond.

The stage-storage curve of the pond is shown on Figure XII.1, and its key design and performance characteristics are provided in Table 3.5.

Table 3.5 Relevant ARD Pond Characteristics

Item	Value
Top of Dam Elevation (m)	1048.0
Spillway Invert Elevation (m)	1047.4
Maximum Operating Level (m)	1046.5
Storage Capacity at the MOL (dam ³)	710.7
Designed Storage Capacity for PMF (dam ³)	50.0
Designed Freeboard for PMF (m)	0.3
Minimum Water Level in 2022-2023 (m)	1036.6
Maximum Water Level in 2022-2023 (m)	1043.3
Maximum Volume Stored in 2022-2023 (dam ³)	419.0
Minimum Available Capacity Below MOL 2022-2023 (dam ³)	291.7

As previously discussed in Section 3.3.2, and shown on Figure 3.2, the maximum water level elevation recorded in the ARD Pond over this monitoring period was 1043.3 m, which is 4.1 m below the spillway invert elevation and 4.7 m below the dam crest elevation.

3.7 Off-Site Surface Water Discharge Volumes

There were no off-site water discharges from the ARD Pond and Iron Pond spillways during the reporting period. These spillways have not operated since they were constructed (in 2001 for the ARD Pond spillway, and in 2007 with modifications in 2009 for the Iron Pond emergency spillway).

The only discharge to the environment is treated effluent water from the DWTP, which enters the St. Mary River. Table 3.6 provides a summary of the monthly discharge volumes, as provided by Teck. As shown, the total water discharge volume from the DWTP between September 2022 and August 2023 was 1,555.5 dam³.

Month	Total Volume (dam ³)	Average Discharge per Day (dam ³)
Sep 2022	467.2	15.6
Oct 2022	183.7	5.9
Mar 2023	16.4	0.5
Apr 2023	429.9	14.3
May 2023	364.5	11.8
June 2023	84.0	2.8
August 2023	9.9	0.3
Total	1555.5	

Table 3.6 Summary of Treated Water Discharge to St. Mary River

The average daily discharge volumes over this monitoring period were less than the maximum daily limit of 28 dam³ as compliant with the permit PE-00189.

3.8 Water Discharge Quality

Water discharge quality is not included in the scope of this report. Teck separately reports groundwater quality and discharge water quality to the BC Ministry of Environment as specified in Permit PE-00189.

4 SITE OBSERVATIONS AND INSTRUMENTATION REVIEW

4.1 Visual Observations

The on-site inspection of the embankments was carried out by Ms. Pamela Fines, P.Eng. (Engineer of Record) and Ms. Makayla Rettger, EIT. (SK) of KCB from May 30 to May 31, 2023. The weather during the inspection was warm with mostly clear skies. The 2023 Inspection Checklists that were completed for each embankment are included in Appendix I. A summary of the visual observations of each embankment is below.

Selected photographs of the various embankments taken during the site visit are presented in Appendix II and are referenced throughout this report. Appendix II has been subdivided so as to group the photographs according to the facilities, as follows:

•	ARD Pond, ARD Spillway, Weirs 1 and 2	II-1 – 8
•	Iron TSF, Iron Pond, Emergency Spillway, Weir 3 and 4	II-9 – 20
•	Siliceous TSF, Siliceous Spillway, Siliceous Decants	II-21 – 27
•	Gypsum TSFs, Recycle Dam	II-28 – 31
•	Sludge Impoundment	II-32 - 34
•	Calcine TSF	II-35
•	Old Iron TSF, Iron TSF Divider Dike	II-36 - 38

4.1.1 ARD Pond

The visual inspection indicated that the North and South Dam were in good physical condition with no signs of structural distress. The riprap on the upstream side of both dams was in good condition with no evidence of movements or damage (Photo II.1 and II.2). It was noted that there is sporadic vegetation growth on the upstream face of both dams but is not a dam safety concern and should be managed as part of the ongoing vegetation management program on site. Some wood debris was observed on the upstream slope of the dams, the debris is not a dam safety concern but should be removed as part of good practice to prevent them from possibly blocking the spillway during a flood event.

An area of surface erosion was observed below an outlet pipe adjacent to the pumphouse located near the South Dam of the ARD Pond (Photo II.3). This area should be monitored and repaired if it begins to encroach on the pumphouse. This is not a dam safety concern but the pumphouse is an integral part of site water management.

The downstream slope of the North Dam appeared to be in similar condition to the previous years. The slope is well grassed with no significant patches of bare or loose soil observed (Photo II.4). Localized depressions/steepened slopes along the toe of the North Dam have been noted during the annual inspections. These areas were purposely constructed as intentional design features during construction of this dam in 2001 by locally excavating into the dam slope to manage seepage exiting

from the dam. Seepage collects in the toe ditch and flows to the seepage pond at the west end of the dam. Vegetation clearing was completed after the 2022 inspection and the slope and toe area were easier to observe during the 2023 inspection (Photo II.5).

The downstream slope of the South Dam appeared to be in similar condition to previous annual inspections (Photo II.6). The slope is well grassed with no significant patches of bare or loose soil observed.

The ditch south of the South Dam that feeds into Weir #1 and Weir #2 is heavily vegetated with grass and other plants, which may impede flow (Photo II.7). Teck has done significant work at all the weirs to reduce the amount of water bypassing the weirs, the low permeability cut-off material can be seen in Photo II.8. The ditches should be cleaned as part of the vegetation management program documented in the OMS manual.

4.1.2 Iron TSF and Iron Dike

The visual inspection indicated that the Iron Dike was in good physical condition with no signs of structural distress. No cracking or other unusual physical conditions were noted along the crest or downstream slopes. Dike slopes and crest were grassed with no significant areas observed with bare or loose soil (Photos II.9).

Seepage continued similarly to previous years at the downstream toe of the embankment near station 5+00. Seepage is monitored by two weirs (Weir #3 and Weir #4) installed within the drainage ditch (Photos II.13 through II.16). The notch in the weir plate in Weir #4 has become worn and should be replaced or repaired (Photo II.16). Seepage was also occurring near the downstream toe of the dike near station 24+00 and is being collected in the existing ditch and low-lying area, this seepage should continue to be monitored visually as part of routine inspections and collection of weir flow data.

The visual inspection of the Iron Pond (contained within the Iron TSF) indicated that it was in good condition.

The Emergency Spillway Channel extends from the southwest corner of Iron TSF and down the west side of the West Gypsum TSF. The visual inspection indicated the spillway was in good physical condition (Photos II.17 through II.20). Some grass, shrubs, and other vegetation were present in the lower portion of the spillway near the southwest corner of the West Gypsum TSF and the 951 Pump House. The rip rap appeared to be in good condition with no signs of movement or particle breakdown. Vegetation clearing in the spillway should be completed as part of the ongoing vegetation management program documented in the OMS manual.

4.1.3 No. 1, 2, and 3 Siliceous TSFs

The visual inspection indicated that the No. 1, 2, and 3 Siliceous Dikes were in good physical condition with no signs of structural distress (Photos II.21 through II.25). Seepage of variable amounts generally occurs from the toes of all Siliceous Dikes during the spring from runoff due to snowmelt water infiltration through the cover system. This seepage occurred during operations and has continued but

at much lower rates after mine closure. The observed seepage conditions appeared to be similar to those observed in previous annual inspections. The seepage water is collected by drainage ditches. Inspection of seepage locations along the Siliceous dikes is performed by Teck on a regular basis. Signs of surface seepage emerging from the downstream slopes of the embankments were not evident during KCB's site visit.

A small trickle of flow was observed from the historical drain pipe installed into the No. 3 Siliceous Dike (Photo II.25). It is KCB's understanding that flow is relatively constant through these pipes during the entire year. A decant installed in 2000 within the No. 2 Siliceous Dike was dry and generally only flows during freshet. Flow from both decants are monitored and recorded as part of the regular inspections by Teck and KCB as noted in the OMS manual. Any changes in flow rate or sediment in the flow are reported to KCB through the routine inspections.

The surface water runoff conveyance channel from No. 1 Siliceous Cell across No. 3 Siliceous Cell, the diversion channel to the north of No. 1 and No. 3 cells, and the emergency spillway channel constructed on the east slope of No. 3 Siliceous Dike were in good physical condition at the time of the site visit with no sign of movement or particle breakdown (Photo II.26 and II.27). The upper portion of the spillway across the No. 3 Siliceous cell is vegetated with grass.

4.1.4 East and West Gypsum TSFs

The visual inspection indicated that the East Gypsum Dike was in good physical condition with no signs of structural distress (Photo II.28). Embankment slopes were well-grassed with no significant areas of bare or loose soil observed. Several large rodent burrows were observed along the dam slopes and toe but are not considered to be a dam safety issue. However, the burrows are safety hazard to personnel walking along the dam toe and slope. Rodent burrows should be infilled as they are identified. No seepage was observed in the ditch at the toe of the embankment.

The visual inspection indicated that the West Gypsum Dike was in good physical condition with no signs of structural distress. Embankment slopes were well-grassed with no significant areas of bare or loose soil observed (Photo II.29). Animal burrows were observed near the embankment toe. These burrows are not a dam safety issue; however, the burrows are safety hazard to personnel walking along the dam toe and slope. Rodent burrows should be infilled as they are identified.

4.1.5 Northeast Gypsum Dike and Recycle Dam

The visual inspection indicated that the Northeast Gypsum Dike and the Recycle Dam were in good physical condition with no signs of structural distress. The slopes of both embankments were well grassed (Photos II.30 and II.31). Animal tracks were observed along the downstream slope of the Northeast Gypsum Dike and don't appear to have changed significantly since being observed during last year's inspection.

4.1.6 Sludge Impoundment

Both the North and South Dikes of the Sludge Impoundment were observed to be in good physical condition during the inspection. The sludge level in the impoundment adjacent to the North Dike is

nearing the design levels of approximately one metre below the crest elevation; deposited sludge is approximately 2.0 m below the crest elevation at the South Dike.

Woody vegetation is becoming established on both dams (Photo II.32 through II.34) and should be removed as part of the vegetation management program documented in the OMS manual. Vegetation management should include clearing of any slash piles created from past clearing activities at the sludge impoundment.

4.1.7 Calcine TSF

The visual inspection indicated that the Calcine Dike was in good physical condition with no signs of structural distress (Photo II.35). The downstream slope of the embankment is sporadically vegetated and is buttressed by a municipal landfill.

The old beach surface is at crest level upstream of the dike and gently slopes downward towards the north (upstream). There was no free water observed during the inspection and vegetation has become established over the entire impoundment but not on the dam crest or slopes and do not require removal. Calcine removal from a pit developed at the northwest side of the lower cell ceased in 2011/2012 and this area was reclaimed. The pit is well drained, and no standing water was observed.

4.1.8 Old Iron TSF

The visual inspection indicated that the Old Iron Dike and Iron TSF Divider Dike were in good physical condition with no signs of structural distress. The downstream slope of the Old Iron Dike was grassed with no significant areas of bare or loose soil (Photo II.37 and II.8). There were no signs of seepage. The Iron TSF Divider Dike is buttressed by the Iron TSF and is currently being used as an access road between the two TSFs (Photo II.39). No physical changes were observed from the previous annual inspection. The Iron TSF Divider Dike is buttressed on both sides with tailings.

4.2 Instrumentation Data Review

Based on the review of the instrumentation data, there were no dam safety concerns identified. The current monitoring schedule for all instruments will be generally unchanged for the 2024 monitoring period. The monitoring frequencies are summarized in Table 4.1 and are detailed for each item in Appendix III. Additional readings may be requested as required depending on trends observed during the 2024 reporting period. Based on the TSFs performance to date, the piezometers and reading frequency are considered sufficient for ongoing monitoring of the facility under current conditions (KCB 2022a).

Embankment		Monitoring Frequency (3x = three times per year, 3y = every 3 years, A = annually, AV = annual visual, M = monthly, W = weekly) Consult notes for conditional changes and special regimes.					
		Piezometers	Settlement	Inclinometers	Seepage ⁽⁸⁾	Water Levels	
Iron TSF	Iron Dike	3x ⁽¹⁾	A + 3y ⁽⁵⁾	-	W ⁽⁷⁾	Daily	
Old Iron TSF	Old Iron Dike	3x ⁽²⁾	-	-	-	-	
	Iron TSF Divider Dike	A ⁽³⁾	-	-	-	-	
Siliceous TSF	No. 1, 2, and 3 Dikes	A	-	-	-	-	
	West Gypsum Dike	3x ⁽²⁾	A + 3y ⁽⁶⁾	-	AV	-	
	East Gypsum Dike	А	A + 3y ⁽⁶⁾	Зу	AV	-	
Gypsum TSF	Northeast Gypsum Dike and Recycle Dam	-	Зу	-	-	-	
	North Dam	M ⁽⁴⁾	Зу	-	-	Daily	
ARD Pond	South Dam	M ⁽⁴⁾	Зу	-	W ⁽⁷⁾	Daily	
Sludge	North Dike	-	А	-	-	-	
Impoundment	South Dike	-	А	-	-	-	

Table 4.1 Monitoring Frequencies for 2023 Reporting Period

Notes:

¹ Three times per year (spring, summer, and fall) except P92-H which is recorded weekly by a datalogger and P92-02 and P92-25 which are read monthly.

² Three times per year (spring, summer, and fall).

³ Annually in the spring if possible, to capture peak level.

⁴ Read pneumatic piezometers weekly when pond is above 1045 m. Read standpipe piezometers weekly when ARD pond is above 1040 m and daily when ARD pond is above 1045 m.

⁵ Survey of Iron Dike from Station 0+00 to 12+00 now monitored using InSAR.

⁶ Settlement plates and Sondex gauge readings have been replaced by routine InSAR monitoring.

⁷ Weirs measured daily between March 1 and May 30. Read daily for three days following rainfall event > 10 mm in 24 hours.

⁸ Record pond levels when weirs read. When reading weirs, provide visual observations of ditch flows, e.g. ice build-up, flows around or under weir, etc.

Quantifiable Performance Objectives (QPOs) have been established in terms of notifications levels for the instrumentation installed within the embankments and notification levels relative to pond water elevations and corresponding freeboard for the ARD Pond and the Iron Pond. In addition, a checklist of qualitative indicators (e.g., observation of cracking, slumping, erosion, etc.) for routine visual inspections, event-driven visual inspections, and annual visual inspections have been developed. Additional details, including summary tales of instrumentation data and corresponding notification levels, are provided in Appendix III.

It is important to emphasize that the current notification levels for the available instruments, including piezometers, seepage weirs, settlement systems, and inclinometer casings, are not associated with any dam safety concerns. Rather, they are based on historical trends of reading in a particular instrument with the objective of highlighting readings that could be indicative of a potential change from historical norms in order to prompt a closer review as a matter of due

diligence. The specified notification levels are well below the assumed levels for stability assessments.

Teck contracts instrument reading and monitoring data collecting to Vast Resource Solutions (Vast), who provide the raw data for upload to GeoExplorer. Monitoring is also completed by Teck personnel.

4.2.1 Iron TSF

The locations of the existing instruments at the Iron Dike are shown on Figure 5. Typical sections showing geometry and pore pressure response are shown on Figures 6 and 7.

Piezometric Levels

Time plots of the piezometric readings received from Vast are presented on Figures IV-1 through IV-10 in Appendix IV. Peak values recorded over this period are reported in Table III-3.

The Iron Dike piezometer readings remained below notification levels and are well below the assumed levels for stability assessments.

Settlements

The most recent survey of settlement plates and embankment crest was carried out by Teck in October 2021. Teck is transitioning to InSAR for tracking of movements for the Sullivan TSFs and recently ran a historical assessment using available data from 2018 through 2022. Data for Sullivan shows minimal settlement over the past 3 years for the Iron TSF.

Seepage Flows

Two weirs (Weir #3 and Weir #4) exist to monitor seepage from the toe of the west portion of the Iron Dike. Weir #3 is located near the toe of the embankment and Weir #4 is located 300 m downstream.

Weir #3 measured peak flows of 3 m³/day in July 2023. Historical data for Weir #3 is presented in Figure IV- 11a.

Weir #4 flow data shows a peak flow of 65.3m³/day in April 2023. Historic data for Weir #4 is presented in Figure IV-11b. It should be noted that this weir is approximately 300 m downstream from the embankment toe and flow measurements will include surface runoff from surrounding terrain as well as seepage flows.

The weirs measured daily between March 1 and May 30 and also read daily for three days following rainfall event greater than 10 mm in 24 hours.

4.2.2 Old Iron TSF

The locations of existing instruments at the Old Iron TSF (Old Iron Dike and Iron TSF Divider Dike) are shown on Figure 8. A typical section showing the geometry is shown on Figure 9.

Piezometric Levels

Time plots of the piezometric readings received from Vast are presented on Figures V-1 through V-4 in Appendix IV. Peak values recorded over this period are reported in Table III-4.

All of the existing piezometers at the Old Iron TSF (10 of 10) were below the notification level for the monitoring period.

4.2.3 Siliceous TSF

The location of existing instruments on the Siliceous TSF are shown on Figure 10. Typical sections are shown on Figures 11 and 12.

Piezometric Levels

Plots of the piezometer readings for Siliceous TSF are shown on Figures VI-1 through VI-6. Peak values recorded over this period are reported in Table III-5.

No. 1 Siliceous Dike

The piezometers at No. 1 Siliceous Dike (7 of 7) recorded slight increases or stable peak pore water pressures compared to the previous monitoring period and were below the notification level for the monitoring period. P105, a standpipe piezometer installed in the embankment adjacent to No. 3 Cell, has been reading near or above its notification level for several years including after an attempted flush in 2014. It is suspected that the piezometer may be plugged internally.

No. 2 Siliceous Dike

All of the existing piezometers at No. 2 Siliceous Dike (3 of 3) recorded reduced peak pore water pressures compared to the previous monitoring period and were below the notification level for the monitoring period.

A non-functional pneumatic piezometer downstream of No. 2 Siliceous Dike and along Betcher's Slough has water flowing from the instrument. This instrument should be monitored by Teck. If a significant change in flow rate or cloudy flow is observed from the piezometer, KCB should be notified to determine if any action needs to be taken.

No. 3 Siliceous Dike

All of the existing piezometers at No. 3 Siliceous Dike (13 of 13) recorded stable or reduced peak pore water pressures compared to the previous monitoring period and were below the notification level for the monitoring period.

Seepage Flows

There are currently no flow measuring capabilities in the area of the Siliceous TSFs. During the site inspection, KCB inspected both the shallow decant and historical decant and observations were consistent with historic observations.

4.2.4 East and West Gypsum TSFs

The location of existing instruments on the Gypsum TSFs are shown on Figures 13, 16, and 18. Typical sections are shown on Figures 14, 15, 17, and 19.

Piezometric Levels

Plots of the piezometer readings for Gypsum TSFs are shown on Figures VII-2 and VII-3 for West Gypsum Dike and Figures VIII-1 through VII-3 for East Gypsum Dike. Peak values recorded over this period are reported in Table III-6.

West Gypsum Dike

All of the existing piezometers at West Gypsum Dike (12 of 12) recorded stable or reduced peak pore water pressures compared to the previous monitoring period and all were below the notification level during the monitoring period.

East Gypsum Dike

All of the existing piezometers at East Gypsum Dike (8 of 8) recorded stable or reduced peak pore water pressures compared to the previous monitoring period and were below the notification level during the monitoring period.

Northeast Gypsum Dike and Recycle Dam

Standpipe piezometers in the Northeast Gypsum Dike and Recycle dam have not been monitored since 2004. Piezometric levels consistently matched pond elevations and were not providing information to assess embankment performance. The Dike/Dam have a long history of good performance, relatively low heights, and any impacts in the unlikely event of a failure would be wholly contained within the impoundment area; ongoing monitoring of the piezometric levels was considered unnecessary.

Settlement

West Gypsum Dike

The most recent survey of settlement plates and embankment crest was carried out by Teck in October 2021. Teck is transitioning to InSAR for tracking of movements for the Sullivan TSFs and recently ran a historical assessment using available data from 2018 through 2022. InSAR data for the facility shows in the range of 3 mm per year of settlement within the Gypsum TSF.

Consolidation of the West Gypsum Cell tailings is monitored with a Sondex settlement gauge, S97-01, installed about 50 m upstream of the crest at Station 10+00 (Figure VII-1). A reading of the Sondex gauge was taken during the 2019 DSI. The Sondex gauge has recorded total consolidation settlement of about 1.7 m since 1994. This is within the expected settlement for the facility. As indicated in KCB's report Stability Review of Gypsum Dikes dated November 26, 1993, long term creep is a common characteristic of gypsum. Continued consolidation of the gypsum tailings is not considered a dam safety concern. Regular crest surveys are conducted to confirm that the dam crest remains at or

above the design elevation. The Sondex gauge is no longer readable as the manufacturer has discontinued support of this equipment. Long term settlement will now be tracked using InSAR data.

East Gypsum Dike

The most recent survey of settlement plates and embankment crest was carried out by Teck in October 2021. Teck is transitioning to InSAR for tracking of movements for the Sullivan TSFs and recently ran a historical assessment using available data from 2018 through 2022. InSAR data for the facility shows in the range of 3 mm per year of settlement within the Gypsum TSF.

Consolidation of the East Gypsum Cell tailings is monitored with a Sondex settlement gauge, S94-02, installed about 25 m upstream of the crest at Station 33+00 (Figure VIII-1). A reading of the Sondex gauge was taken during the 2019 DSI. The Sondex gauge has recorded total consolidation settlement of about 1.0 m since 1994. This is within expected settlement for the facility. As indicated in KCB's report Stability Review of Gypsum Dikes dated November 26, 1993, long term creep is a common characteristic in gypsum. Continued consolidation of the gypsum tailings is to be expected and is not considered a dam safety concern. Regular crest surveys are conducted to confirm that the dam crest remains at or above the design elevation. The Sondex gauge is no longer readable as the manufacturer has discontinued support of this equipment. Long term settlement will now be tracked using InSAR data.

Northeast Gypsum Dike and Recycle Dam

The most recent survey of settlement plates and embankment crest was carried out by Teck in October 2021. Teck is transitioning to InSAR for tracking of movements for the Sullivan TSFs and recently ran a historical assessment using available data from 2018 through 2022. InSAR data shows minimal settlement in the past 3 years.

Past surveys, presented in Appendix IX, indicated negligible settlements since 2007.

4.2.5 ARD Pond

The location of existing instruments on the ARD Pond Dams are shown on Figure 20. Typical sections are shown on Figures 21 through 24.

Piezometric Levels

Historic data for the piezometers installed in ARD North and South Dams is shown on Figures X-1 through X-4.

North Dam

All of the existing piezometers at ARD North Dam (8 of 8) recorded stable or decreasing water levels compared to the previous monitoring period. All were below the notification level during the monitoring period.

South Dam

All of the existing piezometers at ARD South Dam (9 of 9) recorded stable or slightly increased pore water pressures compared to the previous monitoring period. PP01-05 and PP01-06 were briefly above the notification level for the instruments for the 2023 max reading. The current notification level is based on historic readings only and this is not a dam safety concern. The instruments should continue to be monitored as per the schedule in Appendix III, Table III-7. The new instruments installed in 2020 are being monitored by an automated collection system. There are no previous records to compare maximum pore water pressures to previous monitoring periods. TARPs will be developed for the new ARD south instruments in 2024.

Settlement

South Dam

The most recent survey of settlement plates and embankment crest was carried out by Teck in October 2021. Teck is transitioning to InSAR for tracking of movements for the Sullivan facilities and recently ran a historical assessment using available data from 2018 through 2022. InSAR data shows minimal movement over the past 3 years.

Past data, included in Figure X-7, shows no notable settlement since 2001 and less than 25 mm of lateral movement since the end of construction.

North Dam

The most recent survey of settlement plates and embankment crest was carried out by Teck in October 2021. Teck is transitioning to InSAR for tracking of movements for the Sullivan facilities and recently ran a historical assessment using available data from 2018 through 2022.

Past data, included in Figure X-8, shows less than 20 mm of settlement since 2001 and less than 25 mm of lateral movement since the end of construction.

Seepage Flows

Two weirs (Weir #1 and Weir #2) exist to monitor seepage from the toe of the ARD South Dam. Weir #1 is located near the toe of the Dam and Weir #2 is located approximately 50 m downstream.

Weir #1 measured peak flows of 29.7 m³/day in April 2023. Historical data for Weir #1 is presented in Figure X-6.

Weir #2 flow data shows a peak flow of 10.4 m³/day in April 2023. Historic data for Weir #2 is presented in Figure X-7. It should be noted that this weir is approximately 50 m downstream from the embankment toe and flow measurements will include surface runoff from surrounding terrain as well as seepage flows.

The weirs are read at a minimum monthly, with daily or weekly readings performed during periods of higher flows and/or when the ARD Pond elevations are above 1045 m (daily) or 1040 m (weekly). Additional readings occur following heavy rainfall events.

4.2.6 Calcine TSF

A plan view of the Calcine Dike is shown on Figure 25. Typical sections showing geometry are shown on Figure 26.

Water Levels

Three standpipe piezometers are located on the embankment crest. The piezometers were last read in 2004 and have been dry since 1986. Given that the pit (where calcine was previously excavated) at the northwest side of the lower cell has always been dry and the Calcine Dike is buttressed on its downstream slope by the existing municipal landfill, continued reading of these piezometers was considered unnecessary.

4.2.7 Sludge Impoundment

A plan view of the Sludge Impoundment is shown on Figure 27. Typical sections showing geometry are shown on Figures 28.

Piezometric Levels

New instruments were installed in September 2021 and have been recording data since October 2021. There are no previous records to compare maximum pore water pressures to previous monitoring periods. Water levels in Sludge North and South have been relatively constant since installation as shown on Figures XI-1 through XI-3.

Settlement

In the previous annual inspection, 2019 LiDAR survey data was used to evaluate the embankment crest elevation compared to design elevation. Embankment crest elevation on the north and south dam was found to be above design elevation apart from the south side of the south dam briefly dipping below design. This was consistent with 2012 LiDAR data which indicates that there has been little to no settlement in the last 7 years. Teck is transitioning to InSAR for tracking of movements for the Sullivan facilities and recently ran a historical assessment using available data from 2018 through 2022 which confirms the limited settlement.

5 TAILINGS FACILITY ASSESSMENT

5.1 Dam / Dike Consequence Classifications

Teck has provided the following with respect to consequence classification:

Teck is committed to the safe and environmentally responsible management of tailings facilities throughout the mining life cycle to minimize harm to the environment and protect the health and safety of their people and surrounding Communities of Interest. This commitment includes the implementation of the Global Industry Standard on Tailings Management (GISTM) and industryleading guidelines established by the International Council on Mining and Metals (ICMM), the Mining Association of Canada (MAC) and Canadian Dam Association (CDA).

For the purpose of assigning a dam classification, the consequences of potential failure modes are assessed as per the Canadian Dam Association (CDA) guidelines and the requirements of British Columbia. The Global Industry Standard on Tailings Management (GISTM) bases consequence classification on credible failure modes only, which may result in a lower stated classification.

As part of Teck's commitment to the safety of tailings facilities, Teck has adopted evaluating their facilities against extreme loading criteria with a credible catastrophic flow failure mode, regardless of consequence classification. Risk assessments are performed for all tailings facilities, with the objective of reducing risks to As Low As Reasonably Practicable (ALARP). In some cases, this results in further risk reduction beyond applicable regulatory requirements and is consistent with the GISTM and industry-leading best practice.

Given that there have been no major changes to developments downstream of the tailings facilities at Sullivan Mine, no change to the consequence classifications was recommended. The current consequence classifications of each of the embankments at Sullivan Mine are summarized below.

Facility	Embankment	Consequence Classification ¹
Iron TSF	Iron Dike	Н
	Old Iron dike	L
Old Iron TSF	Iron TSF Divider Dike	L
	No. 1 Siliceous Dike	L
Siliceous TSF	No. 2 Siliceous Dike	L
	No. 3 Siliceous Dike	L
Gunsum TSE	East Gypsum Dike	Н
	West Gypsum Dike	Н
Gypsum TSF	Northeast Gypsum Dike	L
	Recycle Dam	L
Calcine TSF	Calcine Dike	L
	North Dike	L
Sludge Impoundment	South Dike	L
APD Doord	North Dam	VH
ARD Pond	South Dam	VH

Table 5.1 Tailings Embankments and Consequence Classification

Note:

Consequence categories based on 2007 Canadian Dam Safety Guidelines (CDA 2013): E=Extreme, VH=Very High, H=High, S=Significant, L=Low

5.2 Failure Modes Review

The Sullivan risk register was reviewed by KCB and Teck in June 2023. There were no changes to the key hazards and the existing controls were adequate to manage potential failure modes.

To supplement the risk review, Teck, with support from KCB, conducted a credible failure scenario assessment in April 2022. Teck's definition of a "catastrophic" failure is one with a risk to life safety or irreversible impact to a rare or valued ecosystem, social or cultural heritage element. There are credible failure modes for the dams at Sullivan, however the assessment concluded that, based on the available information and current understanding of the site, no credible "catastrophic" failure scenarios have been identified for the Sullivan tailings facilities.

The following is a summary of the controls in place at Sullivan Mine to manage the risks associated with the credible failure modes for the facilities. Based on site observations and the available information, Teck is managing the potential failure mechanisms for the TSFs appropriately.

5.2.1 Overtopping

Tailings Storage Facilities

The tailings facilities are no longer active. The Iron TSF does maintain a pond that is actively managed. The Iron Pond operates along with the ARD Pond as part of the site wide water management activities.

As previously discussed in Section 3.5, surface water collection/diversion channels and spillways have been constructed in the tailings areas for flood management, which are designed to safely pass the

Probable Maximum Flood (PMF) events. The overtopping failures including Extreme loading conditions are considered non-credible.

ARD Pond

The ARD Pond has been designed to store the 48-hour PMF and also includes a spillway designed to safely route a 24 hr PMF (after the 48-hour PMF has been stored) (see Section 3.5). Therefore, overtopping is considered non-credible.

Sludge Impoundment

According to Dames and Moore (1978), the 1:200-year return period flood event was adopted for design of the Sludge Impoundment. However, as the actual sludge production rate has been much lower than assumed in the original design by others, the impoundment currently has flood storage capacity in excess of the original design as the tailings have not reached full capacity. However, the volume of flood storage available needs to be compared to the code requirements for sludge impoundments. An overtopping failure of the sludge impoundment is credible under extreme loading but is non-catastrophic as there is no population in the vicinity of the dam and no irreversible downstream consequences.

5.2.2 Internal Erosion and Piping

Tailings Storage Facilities

The tailings storage facilities are no longer active, and since completion of the reclamation cover, the phreatic levels within the tailings have steadily decreased. As a result, the exit seepage gradients are correspondingly low, and therefore, internal erosion/piping related failure through the embankments and/or through their foundations is considered non-credible.

There are internal drains constructed in the Iron, Siliceous, and Gypsum TSFs, with pipes that extend through the embankments, which represent a potential vulnerability to internal erosion/piping as they deteriorate over time. Only the drain from the Silicious impoundment is still open and draining, all other drains have been covered with inverted filters. Because of the very low hydraulic gradients and small volume of free water available, this failure mode via the deteriorated conduits is non-credible. Local ponding could occur above these pipes during an extreme flood event that could potentially increase the local phreatic surface but even under such an extreme condition, the limited amount of free water source in direct contact with the conduits will greatly limit the extent to which piped materials can be transported and the potential for a catastrophic failure mode is considered non-credible. (KCB 2023c).

ARD Pond

Internal erosion/piping failure modes are considered non-credible for the ARD Pond Dams. These dams have well constructed and documented filter zones within the dam. There is a seepage pathway on the east abutment of the South Dam that responds to the reservoir water fluctuations, however investigations and assessments have determined that the soils are internally stable and unlikely to be

susceptible to internal erosion (KCB 2023a). Additional monitoring of the abutment has been established to monitor for changes and TARPs will be established for the instruments in 2024. Internal erosion/piping of the east abutment is considered credible, but the current controls mitigate the risk such that the consequence of failure is not catastrophic.

Sludge Impoundment

For the Sludge Impoundment, internal erosion/ piping failure leading to catastrophic consequences is considered non-credible, due to the inclusion of filters in the embankment and the lack of a permanent pond.

5.2.3 Slope Instability

The dikes have been observed over many years since closure and no visual signs of instability have been documented. Static stability factors of safety are well above the minimum recommended values for all the structures and failure under static loading is considered non-credible.

Seismic instability (foundation and slope) failure mode is non-credible for most of the tailings facilities because of the seismic stabilization measures completed prior to closure. As previously indicated, since closure in 2001, the phreatic surface in the tailings facilities has decreased significantly so that the portion of tailings vulnerable to seismic liquefaction has also significantly reduced compared to original design assumptions. Potentially liquefiable soils have been identified in localized portions of the foundation of Gypsum TSF and the Silicious TSF. However, due to the low phreatic surface and lack of pond there is no failure scenario for the Gypsum and Silicious TSFs that would result in catastrophic consequences. Slumping could occur within the facility based on loading from the 1:10,000 return period earthquake but would result in limited and reversible downstream consequences (this will be formally assessed in 2024).

There are no liquefiable materials present in the foundation and embankment fill of the ARD Pond Dams and the deformations induced by extreme loading are computed to be small and acceptable (KC 2000). Therefore, seismic instability is considered non-credible for the ARD Pond Dams.

There are no liquefiable materials present in the foundation and embankment fill of the Sludge Impoundment. Therefore, seismic instability is considered non-credible for the Sludge Impoundment.

A due diligence update of the seismic stability of all structures is underway to better reflect existing conditions and to incorporate the revised seismic hazard assessment. This work is important to update the supporting documentation but is not expected to materially change the current conclusions.

5.3 OMS Manual

The most recent version of the Operation, Maintenance, and Surveillance (OMS) Manual for the Sullivan Mine tailings facilities was updated in 2023 (SUL-OMS-001, July 31, 2023) by Teck. Teck will continue to review the manual annually and make revisions as necessary, with input from the EoR.

5.4 Mine Emergency Response Plan

The current version of the MERP was updated in March 2023. The plan meets the regulatory requirements and guidance documents from CDA and the Mining Association of Canada. The plan includes identification of communities of interest, failure modes, and responses to various emergencies.

As required by HSRC (EMLI 2022), the MERP is tested annually. The emergency reporting contact list is also reviewed and updated as required.

6 SUMMARY

The Sullivan Mine TSFs, ARD Pond and the Sludge Impoundment appear to be in good physical condition and the observed performance during the 2023 site inspections is consistent with the expected design conditions and historical performance.

There were no deficiencies, non-conformances or issues of concern identified in this year's review, and therefore, there are no new recommendations.

A summary of previous annual performance review recommendations that were outstanding, and their updated status, is included in Table 6.1. All of the recommendations pertain to the framework of continual improvements in the dam safety management program, such as documentation and maintenance/surveillance protocols. The recommendation for the Sludge Impoundment is part of the design review and update that is already being planned by Teck and KCB.

Table 6.1Summary of Outstanding Recommendations

Structure	ID No.	Deficiency of Non- Conformance	Applicable Regulation or OMS Reference	Recommended Action	Priority	Recommended Deadline/Status
Previous Recom	mendatio	ons Closed/Superseded				
Previous Recom	mendatio	ons Ongoing				
Sludge Impoundment	2017-3	A review of the Sludge Impoundment is needed.	EMLI HSRC (2022) & CDA Guidelines: Application to Mining Dams (2019)	Review of the current design freeboard and design sludge levels is required. To facilitate the design update, the Sludge Impoundment surface should be surveyed to obtain average sludge deposition rates. Review of entire facility should be completed to address storage, life expectancy of the facility, and regulatory requirements.	21	Q4 2024 UPDATE – Site investigation completed. The site investigation data will be combined with other groundwater information and form the basis for a workshop between Teck and KCB on the future of the facility. After the workshop is completed, a scope of work will be developed based on the workshop outcomes.

1. Priority definitions can be found in the Executive Summary.

7 CLOSING

We appreciate the opportunity to continue to provide our services to Teck Metals.

KLOHN CRIPPEN BERGER LTD.

B.C. Permit to Practice No. 1000171

Pamela Fines, P.Eng. Associate, Manager, Edmonton

Senior Reviewed by: Chris Grapel, P.Eng.

REFERENCES

Canadian Dam Association (CDA). 2013. Dam Safety Guidelines 2007 (Revised 2019).

Dames and Moore. 1978. Report on Final Design Studies Sludge Disposal Pond.

- Davies, M.P., Dawson, B.B., and Chin, B.G. 1998. "Static Liquefaction of Mine Tailings A Case History." Proceedings, 51st Canadian Geotechnical Conference.
- Environment Canada (EC). 2019. Canadian Climate Normals 1981-2010 (Kimberley PCC). Retrieved from:

https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnName &txtStationName=Kimberley+PCC&searchMethod=contains&txtCentralLatMin=0&txtCentralLatSe c=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=1194&dispBack=1

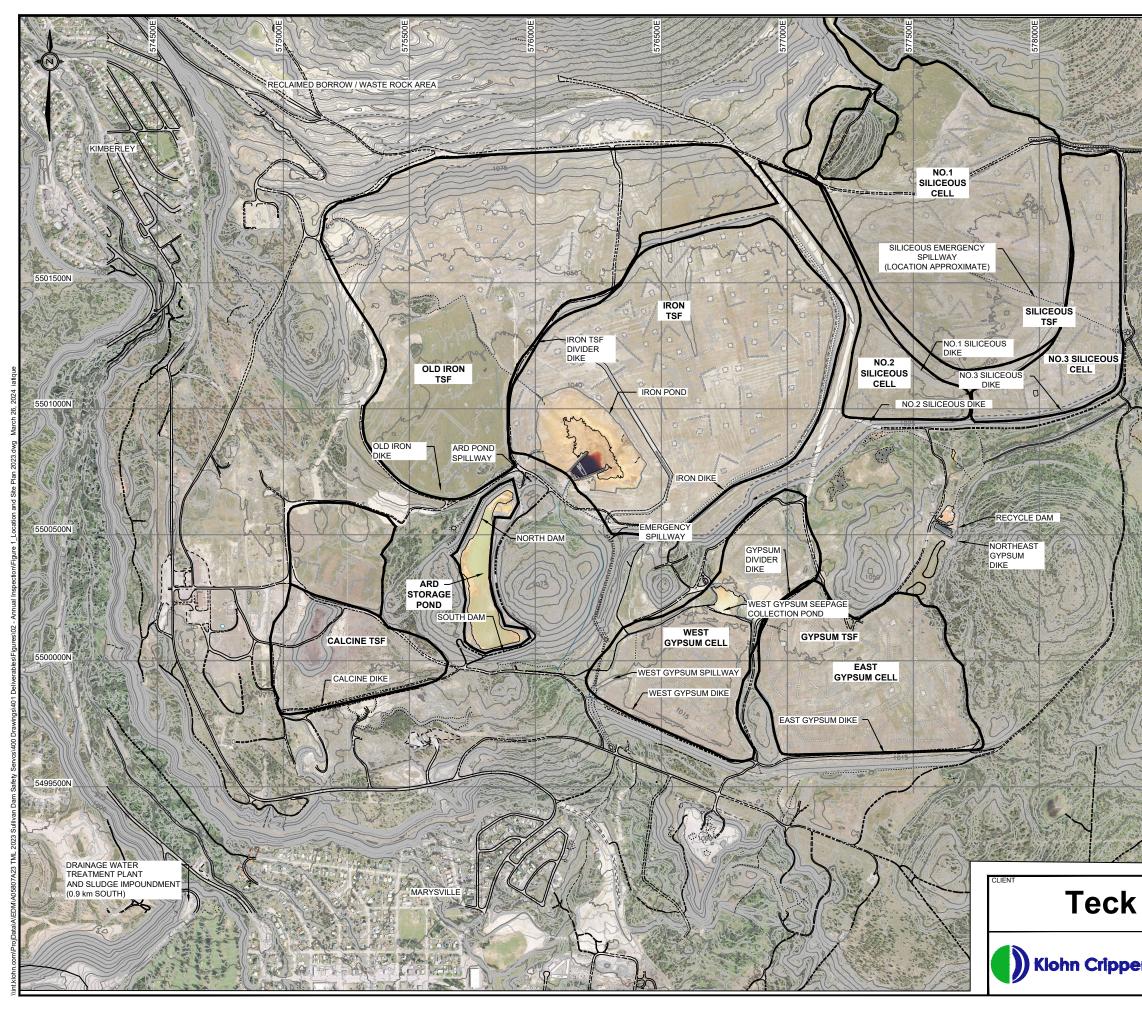
- GISTM. 2020. <u>Global Industry Standard on Tailings Management Global Tailings Review</u>. Accessed on March 14, 2021.
- Golder Associates (Golder). 2014. 2013 Dam Safety Review, Submitted to Teck Metals Ltd. September 11, 2014. Reference Number 1314270027-002-R-Rev 0-1000.
- Klohn Crippen Berger (KCB). 2007. Sullivan Mine Tailings Area, Emergency Storage Pond (ESP) Spillway Design (ESP). Submitted September 28, 2007 to TeckCominco Metals Ltd. Project No. A05807A04.
- Klohn Crippen Berger (KCB). 2018. Sullivan Mine Hydrology Update Draft. Submitted Nov. 1, 2018 to Teck Metals Ltd. Project No. A05807B23.
- Klohn Crippen Berger (KCB). 2023a. Sullivan Mine ARD Pond South Abutment Internal Stability Assessment – Draft. Submitted November 30, 2023 to Teck Metals Ltd. Project No. A05807A23.
- Klohn Crippen Berger (KCB). 2023b. Sullivan Mine Site Wide Water Balance Model. Submitted January 30, 2023 to Teck Metals Ltd. Project No. A05807B37.
- Klohn Crippen Berger (KCB). 2023c. Sullivan Mine TSF Summary of Decant Systems and Associated Seepage Collection Systems. Submitted September 22, 2023 to Teck Metals Ltd. Project No. A05807A23.
- Klohn Crippen Consultants (KC). 2000. Sullivan Mine Storage Pond No. 1 Design Report. Submitted March 20, 2000 to Cominco Ltd. Project No. PM5807.34.
- Klohn Crippen Consultants (KC). 2002. Sullivan Mine Geotechnical Design Basis for Tailings Dikes Overview Summary Report. Submitted January, 2002 to TeckCominco Ltd. Project No. PM5807.85.
- Ministry of Energy, Mines, and Petroleum Resources (MEM). 2016. "Guidance Document: Health, Safety and Reclamation Code for Mines in British Columbia. Version 1."

Ministry of Energy, Mines, and Low Carbon Innovation (EMLI). 2022. "Health, Safety and Reclamation Code for Mines in British Columbia."

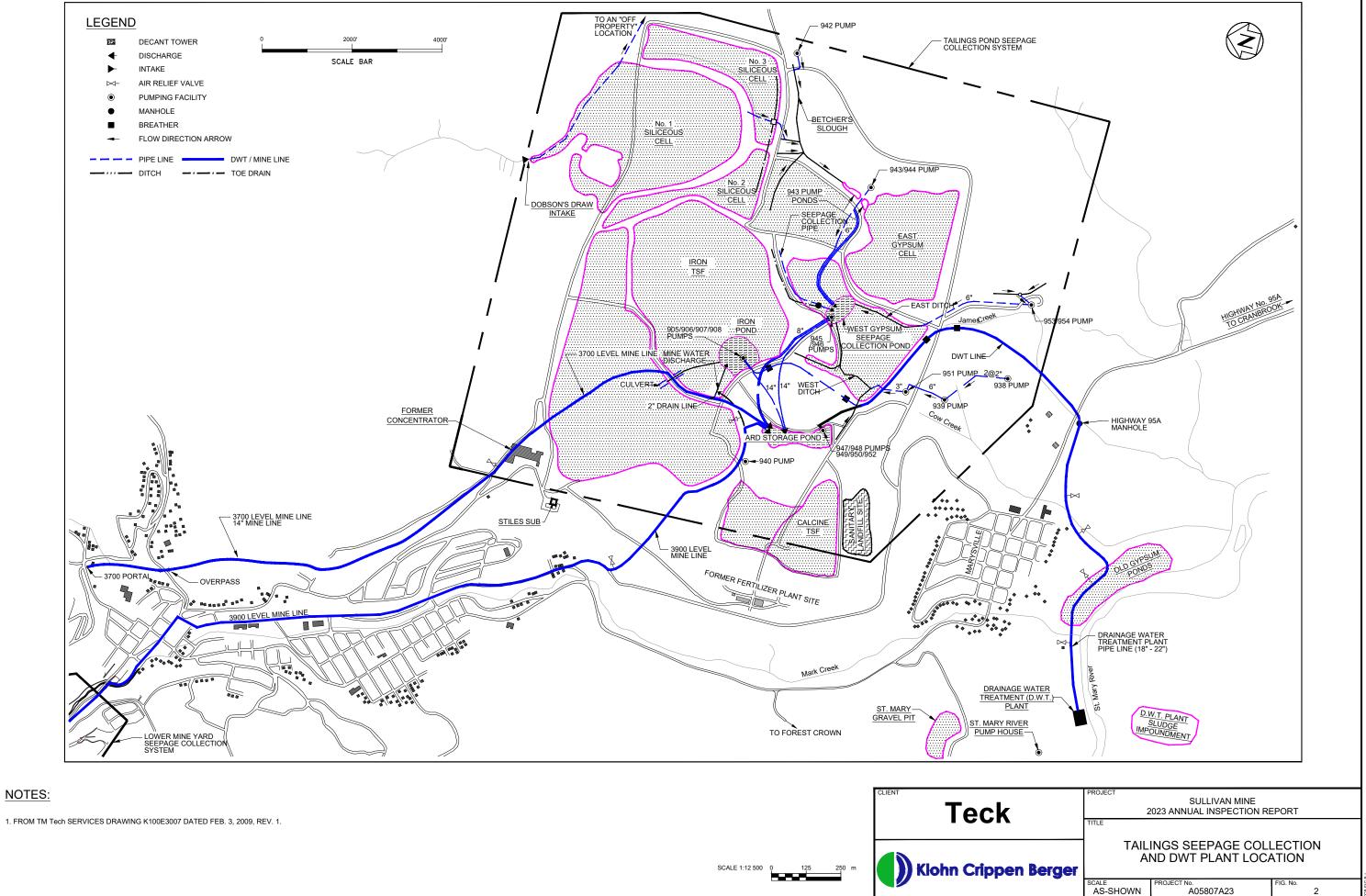
Revenue Services of British Columbia (RSBC). 1996. Mines Act.

Service BC (SBC). 2003. Environmental Management Act.

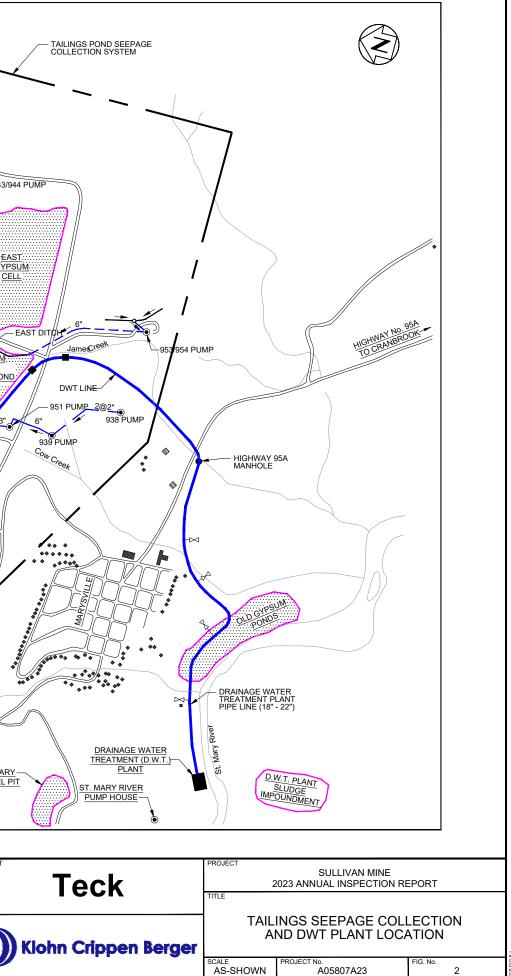
SRK. 2014 Sullivan Mine Post Closure Water Balance. A Report to Teck Metals Ltd.

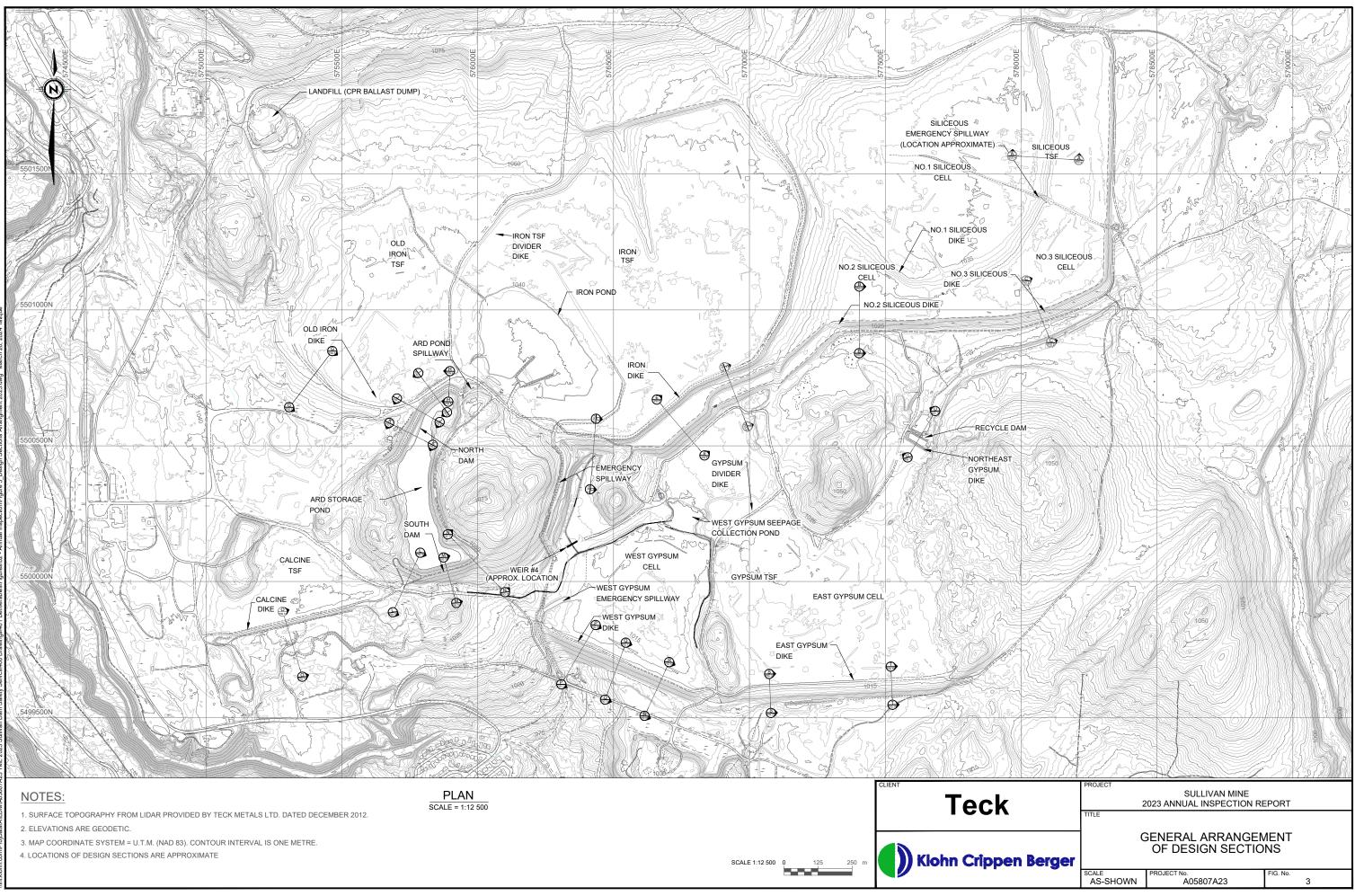

Teck Environmental Group (Teck). 2019. "Guideline for Tailings and Water Retaining Structures."

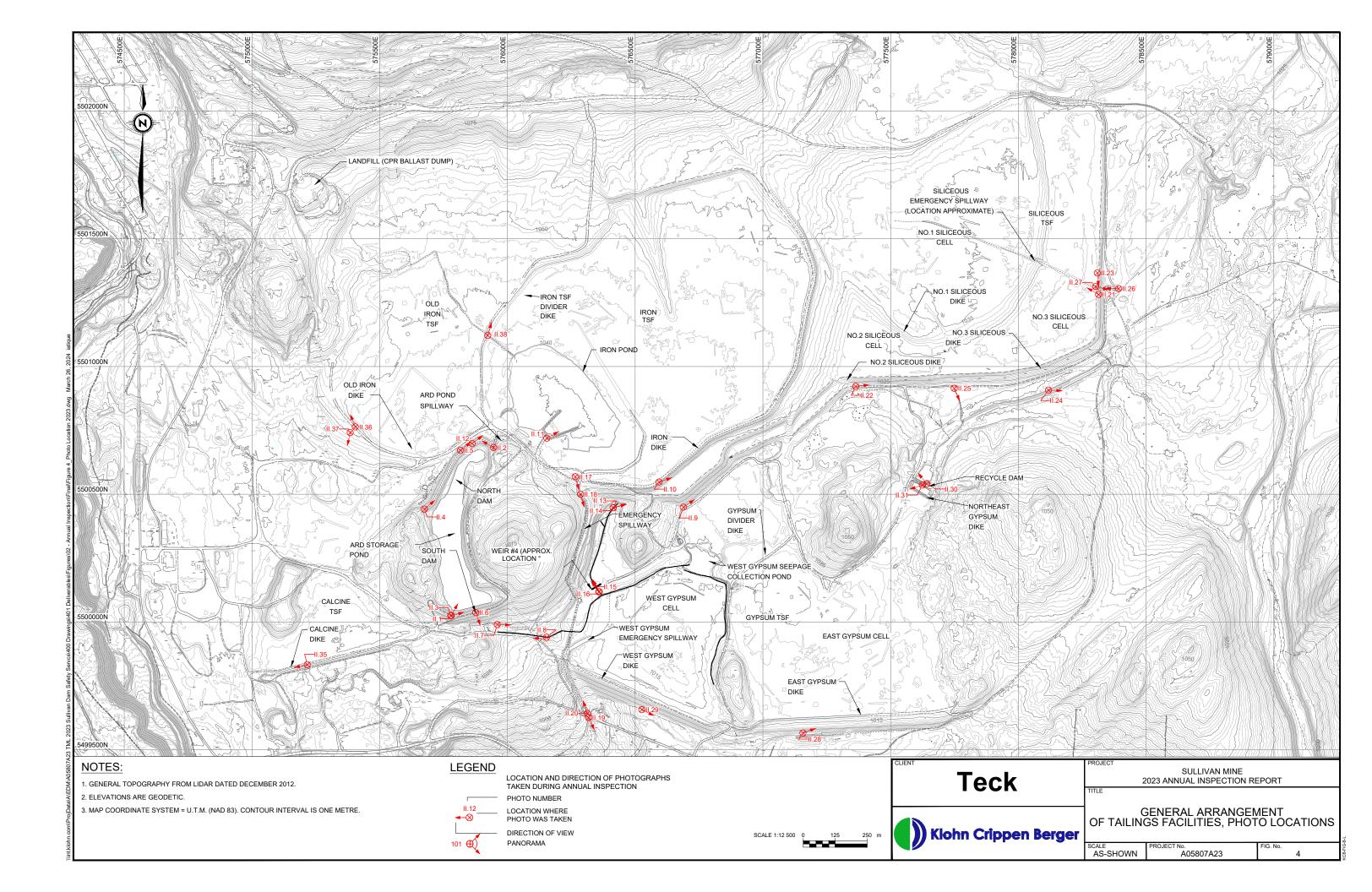
Teck Metals Ltd. 2021. Sullivan – Seepage Collection Manual.

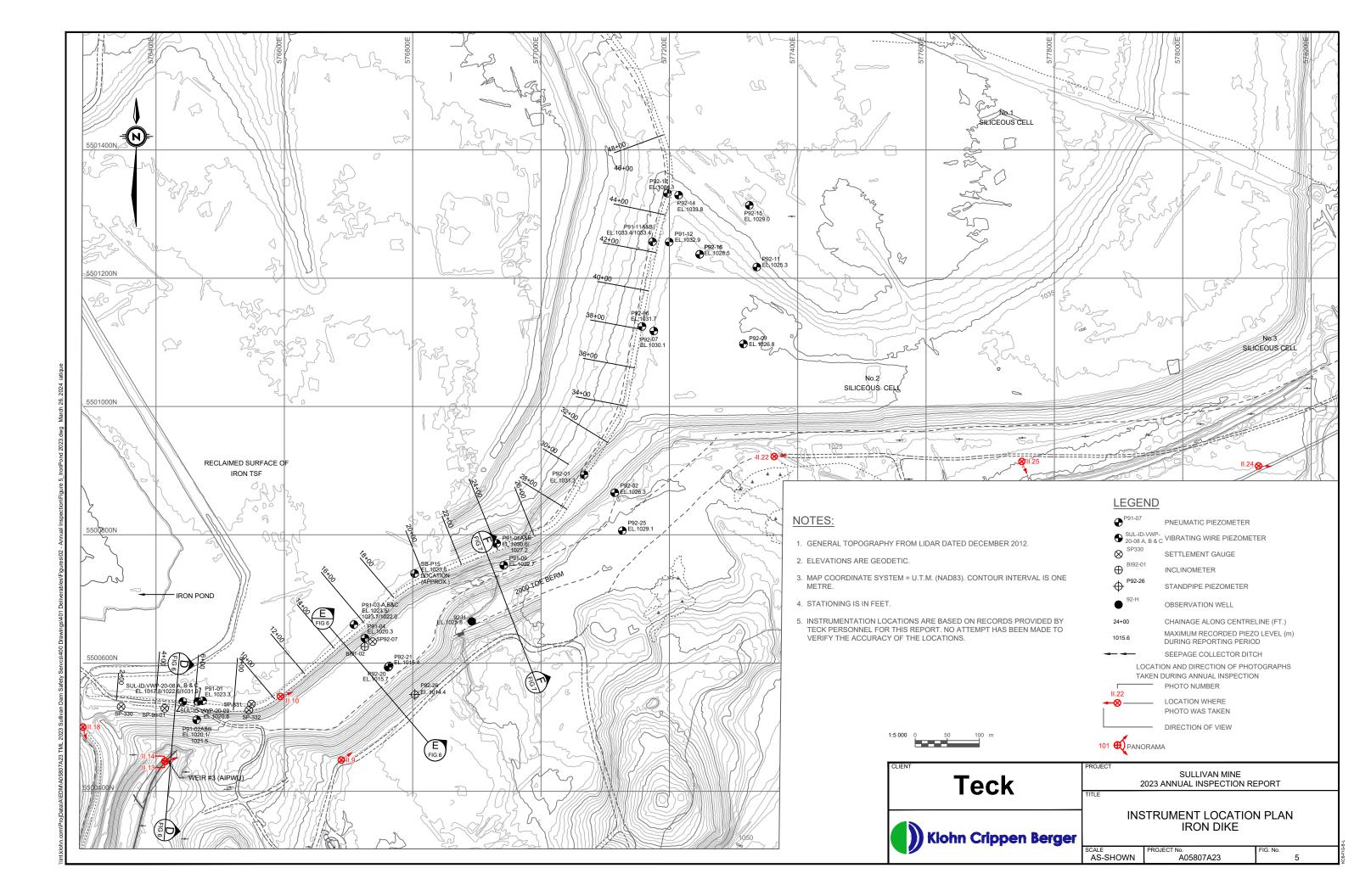


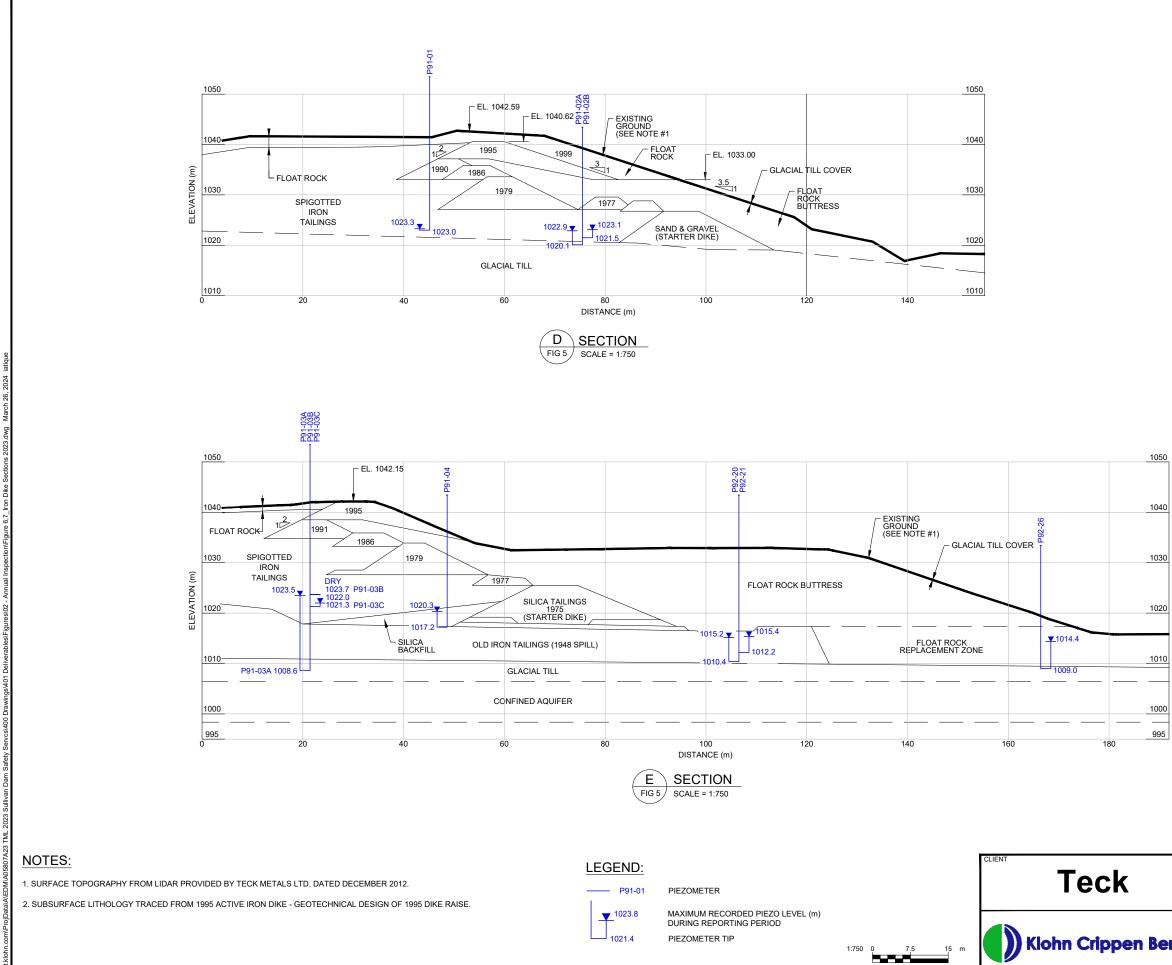
FIGURES

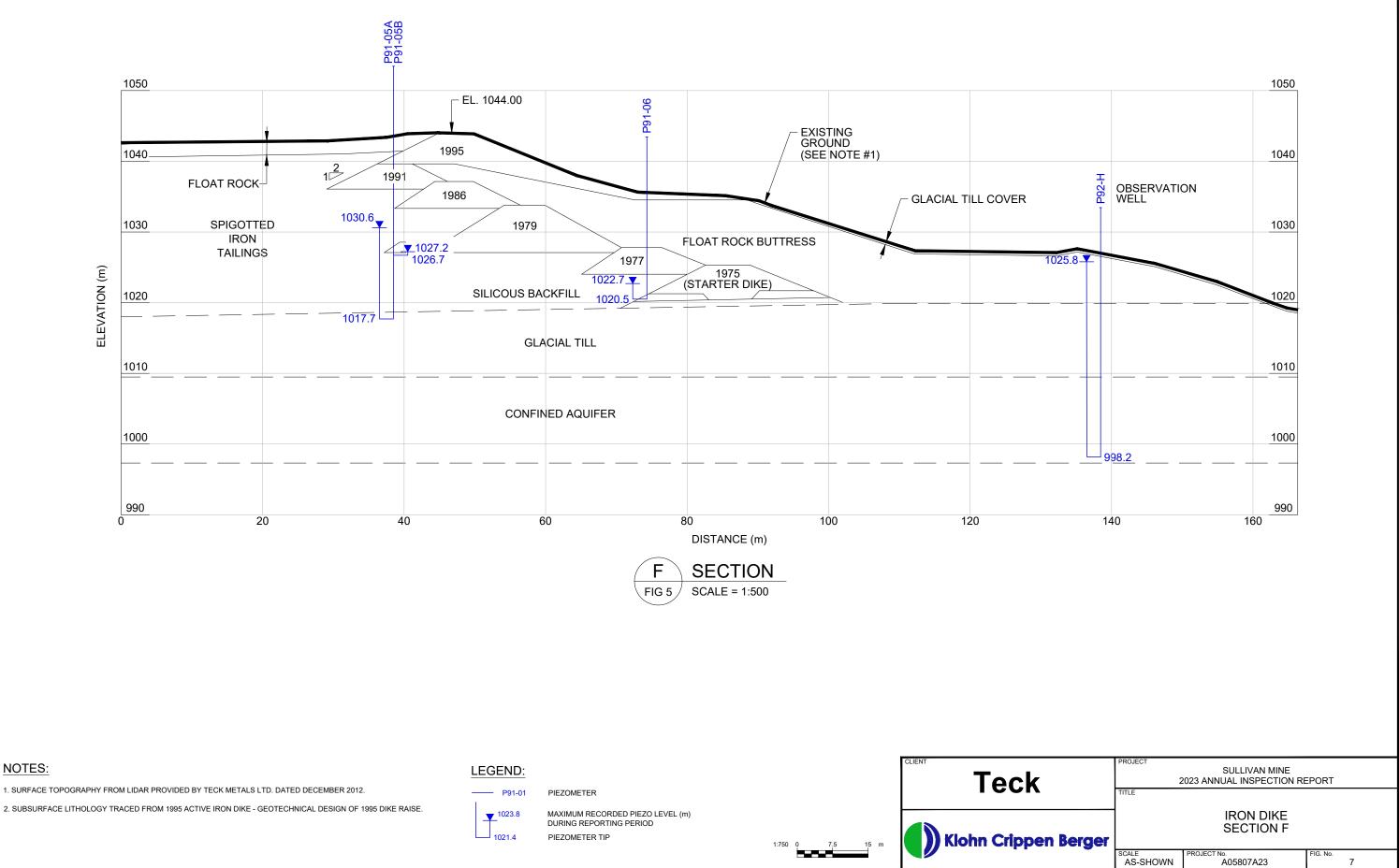


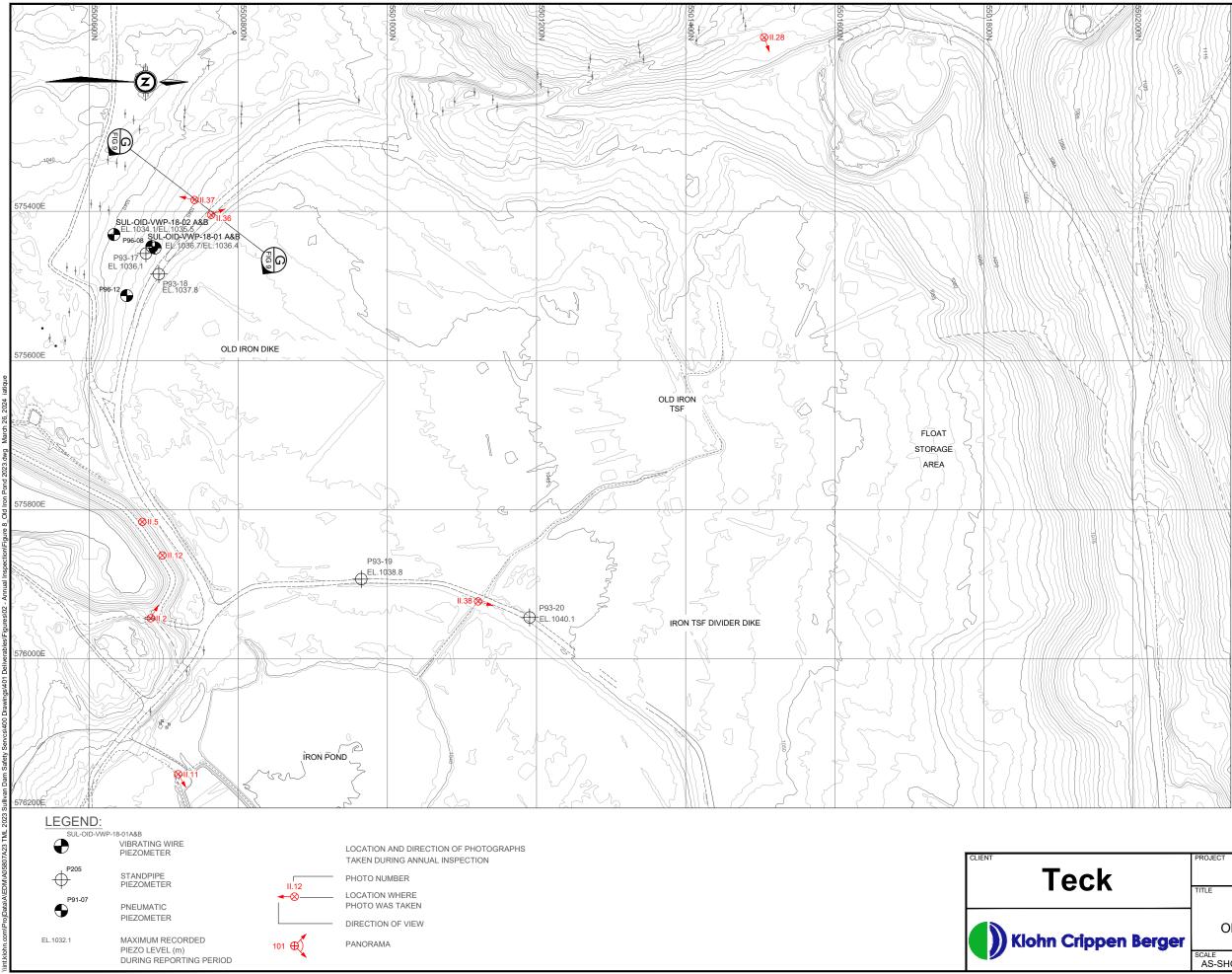



578500E					
578					
		YUKON			
PTC-					
					ALBERTA
			TISH IMBIA		EDMONTON
		\backslash			
3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TECK	[Calgary
		2 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		KIMPED	LEY
HA		PACIFIC OCEAN	$\sum \sqrt{-1}$	INITED STATES	
1		Ē	ROJECT LO	CATION	PLAN
			N	I.I.S	
		CE TOPOGRAPHY I	FROM LIDAR PROVID	ED BY TECK I	METALS LTD. DATED
	3. MAP C	TIONS ARE GEODE OORDINATE SYSTE	M = U.T.M. (NAD 83).		TERVAL IS ONE METRE.
	4. AERIAL	PHOTO PROVIDE) BY TECK METALS L	.TD. DATE: 200	08.
1/20					
12.5					
4 A A		PROJECT	SC	CALE 1:15 000 0) 150 300 m
			SULLIVA 023 ANNUAL INSI		EPORT
		L	OCATION AN	ID SITE I	PLAN
511 DE	erger	SCALE AS-SHOWN	PROJECT No. A05807A	.23	FIG. No. 1

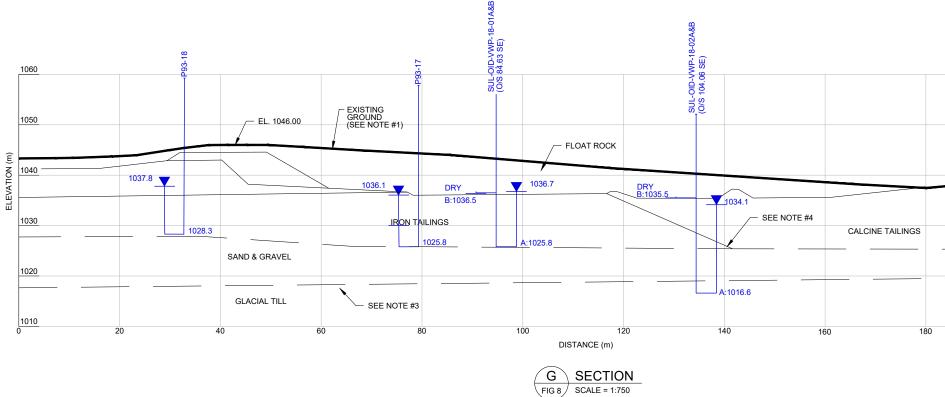



NOTES:





k	SULLIVAN MINE 2023 ANNUAL INSPECTION REPORT				
	TITLE				
pen Berger		IRON DIKE SECTIONS D AND	E		
	SCALE AS-SHOWN	PROJECT №. A05807A23	FIG. No. 6		



NOTES:

- 1. GENERAL TOPOGRAPHY FROM LIDAR DATED DECEMBER 2012.
- 2. ELEVATIONS ARE GEODETIC.
- 3. MAP COORDINATE SYSTEM = U.T.M. (NAD83).
- 4. INSTRUMENTATION LOCATIONS ARE BASED ON RECORDS PROVIDED BY TECK PERSONNEL FOR THIS REPORT. NO ATTEMPT HAS BEEN MADE TO VERIFY THE ACCURACY OF THE LOCATIONS.

k		SULLIVAN MINE 2023 ANNUAL INSPECTION RE	EPORT	
•	INS	STRUMENT LOCATIO	N PLAN	
pen Berger	012	ON & IRON TSF DIVI		8-L
	SCALE AS-SHOWN	PROJECT No. A05807A23	FIG. No. 8	KCB-FIG-

NOTES:

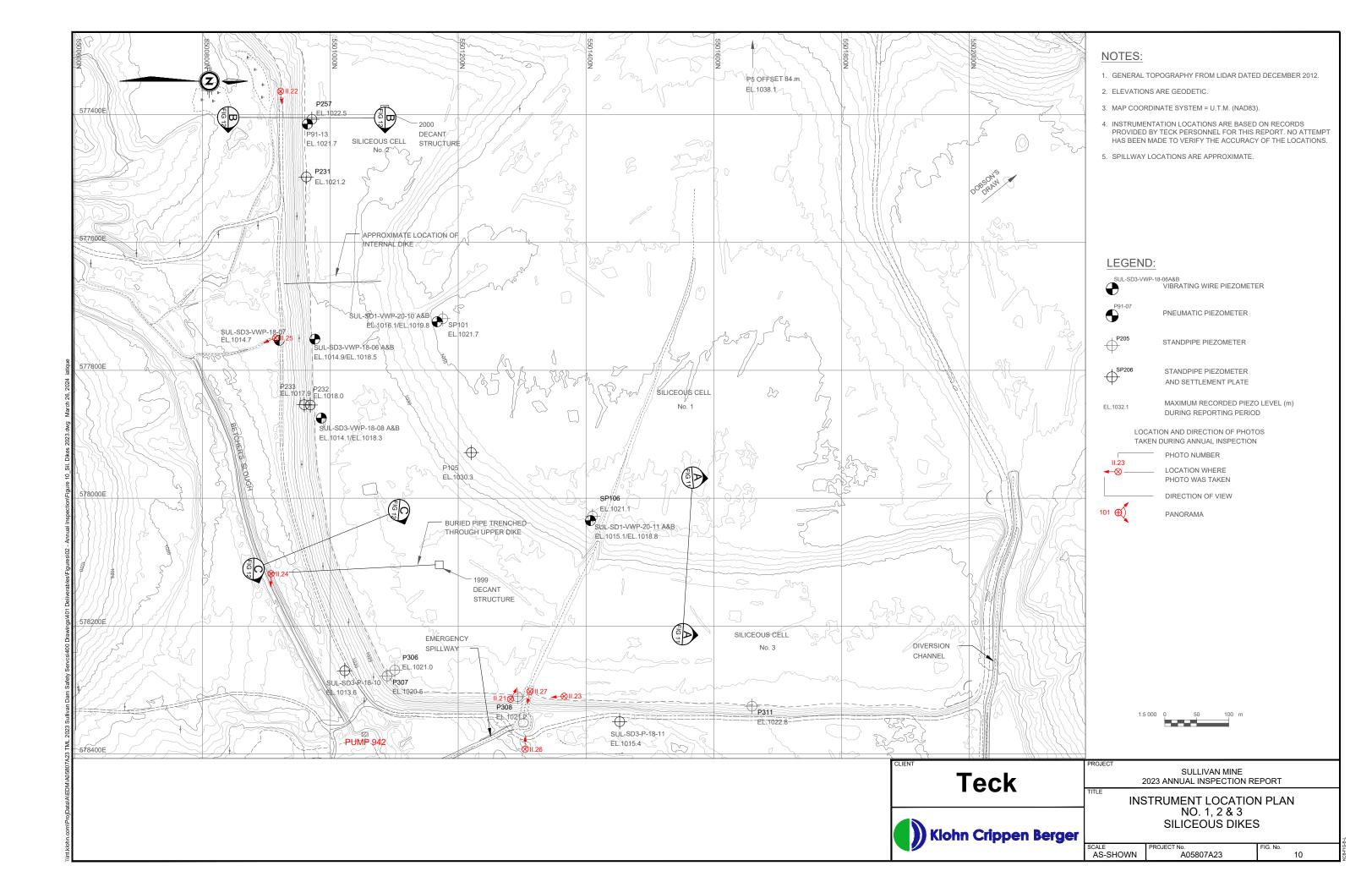
----- P91-01 PIEZOMETER

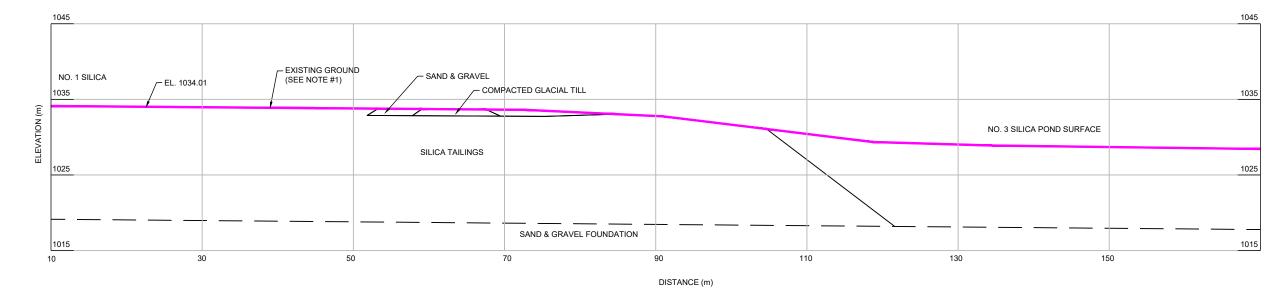
1023.8 MAXIMUM RECORDED PIEZO LEVEL (m) DURING REPORTING PERIOD 1021.4 PIEZOMETER TIP

LEGEND:

1:750 0 7.5 15 m

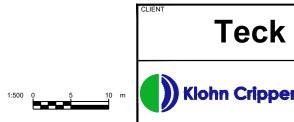
1021.4 PIEZOMETER TIP

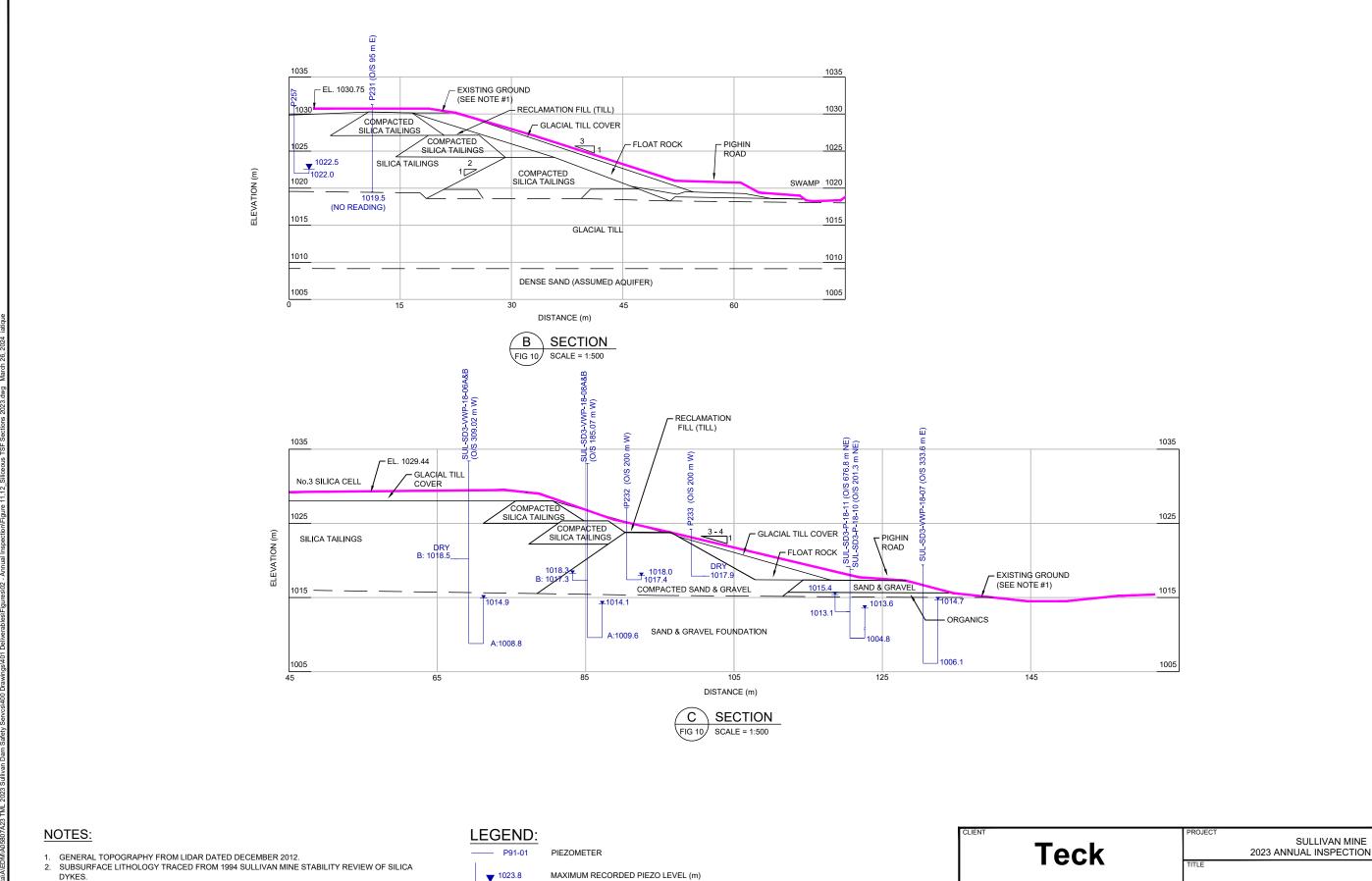

 SURFACE TOPOGRAPHY FROM LIDAR PROVIDED BY TECK METALS LTD. DATED DECEMBER 2012.
 SUBSURFACE LITHOLOGY TRACED FROM 1994 SULLIVAN MINE STABILITY REVIEW OF SOUTHWEST LIMB.
 APPROXIMATE ELEVATION OF GLACIAL TILL SURFACE FROM BOREHOLE 92-F (OFFSET 200 FT WEST).
 APPROXIMATE LOCATION OF "SOUTH DAM", AN EARLY DYKE WHICH EXPERIENCED TWO FAILURES IN 192 AND 1930. FROM 1964 TOPOGRAPHY. THE SOUTHWEST LIMB (WHICH INCLUDES SECTION G) OF THE IRON


4. APPROXIMATE LOCATION OF "SOUTH DAM", AN EARLY DYKE WHICH EXPERIENCED TWO FAILURES IN 1926 AND 1930, FROM 1964 TOPOGRAPHY. THE SOUTHWEST LIMB (WHICH INCLUDES SECTION G) OF THE IRON DYKE WAS PROBABLY THE FINAL INCREMENTAL RAISE OF THE "SOUTH DAM" ACCORDING TO THE 1994 SULLIVAN MINE STABILITY REVIEW OF SOUTHWEST LIMB.

k	PROJECT 2 TITLE	SULLIVAN MINE 2023 ANNUAL INSPECTION	REPORT	
pen Berger		OLD IRON DIK SECTION G	E	a
	SCALE AS-SHOWN	PROJECT No. A05807A23	FIG. No. 9	La.Che.et

	1050
	1040
	1030
	1020
	1010
200	

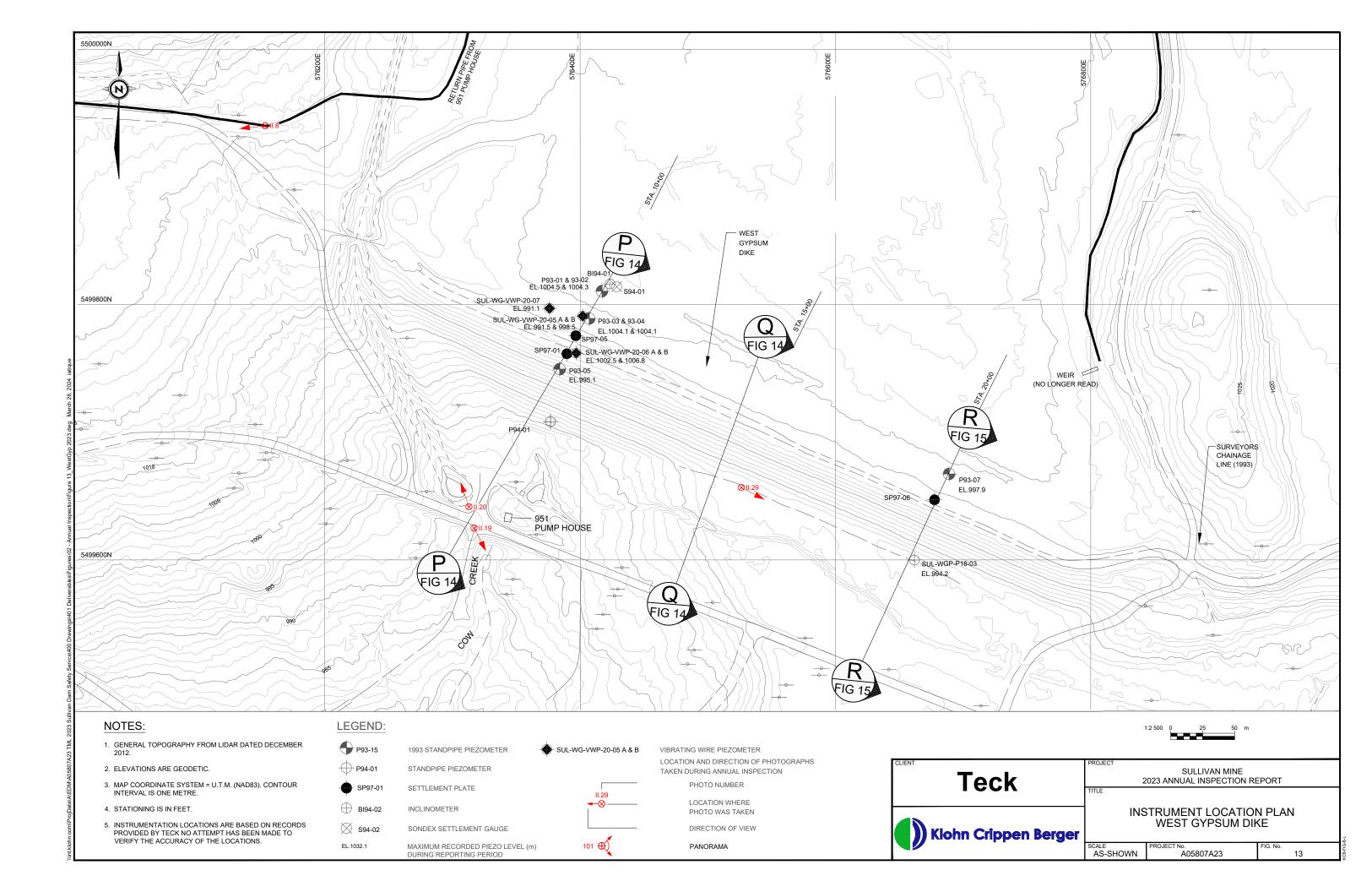

1060

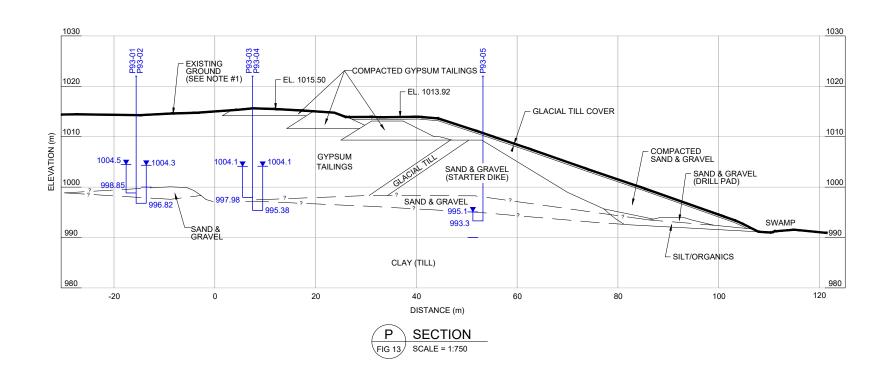


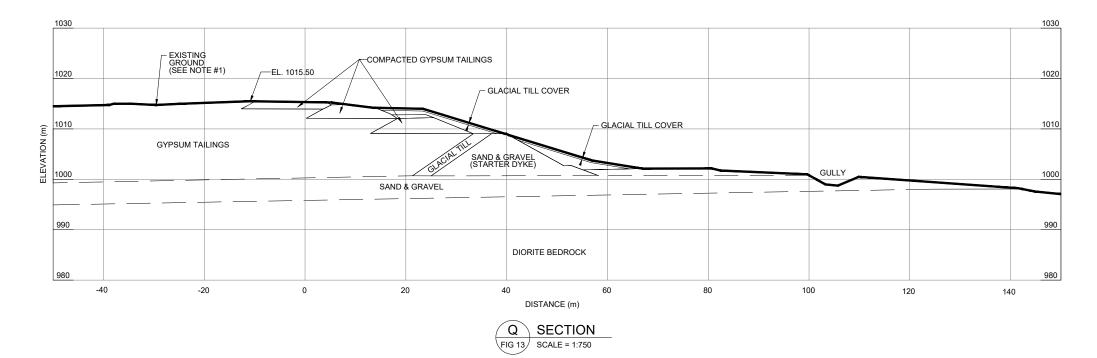
SURFACE TOPOGRAPHY FROM LIDAR PROVIDED BY TECK METALS LTD. DATED DECEMBER 2012.
 SUBSURFACE LITHOLOGY TRACED FROM 1994 SULLIVAN MINE STABILITY REVIEW OF SILICA DYKES.

k		SULLIVAN MINE 2023 ANNUAL INSPECTION RE	EPORT	
-	NO. 1 SILICEOUS DIKE			
pen Berger	SCALE	SECTION A	FIG. No.	_
	AS-SHOWN	A05807A23	11	

- DYKES.

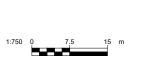



DURING REPORTING PERIOD PIEZOMETER TIP

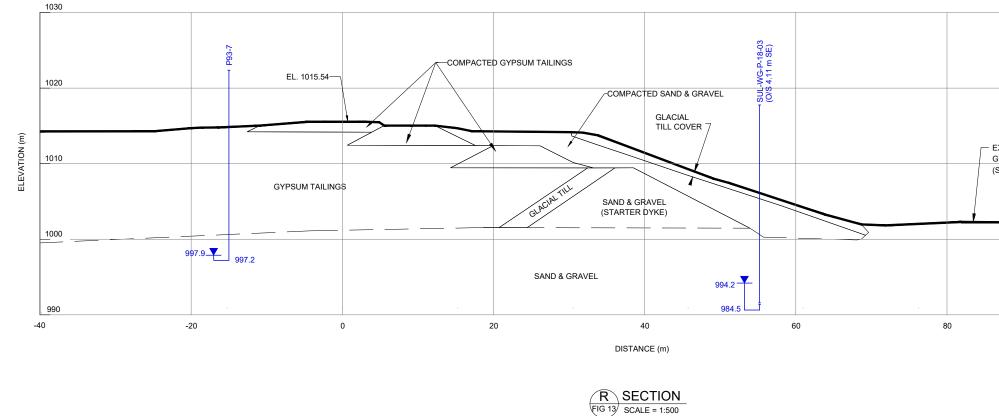

1:500 0 5

k	2023 ANNUAL INSPECTION REPORT				
pen Berger	NO. 2	2 AND NO. 3 SILICEO SECTIONS B AND		1-8	
	SCALE AS-SHOWN	PROJECT No. A05807A23	FIG. No. 12	KCB-FIG-I	
				_	

SURFACE TOPOGRAPHY FROM LIDAR PROVIDED BY TECK METALS LTD. DATED DECEMBER 2012.
 SUBSURFACE LITHOLOGY TRACED FROM 1993 SULLIVAN MINE STABILITY REVIEW OF GYPSUM DYKES.

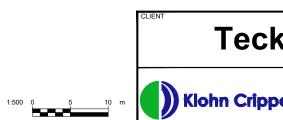

LEGEND:

P93-01 PIEZOMETER

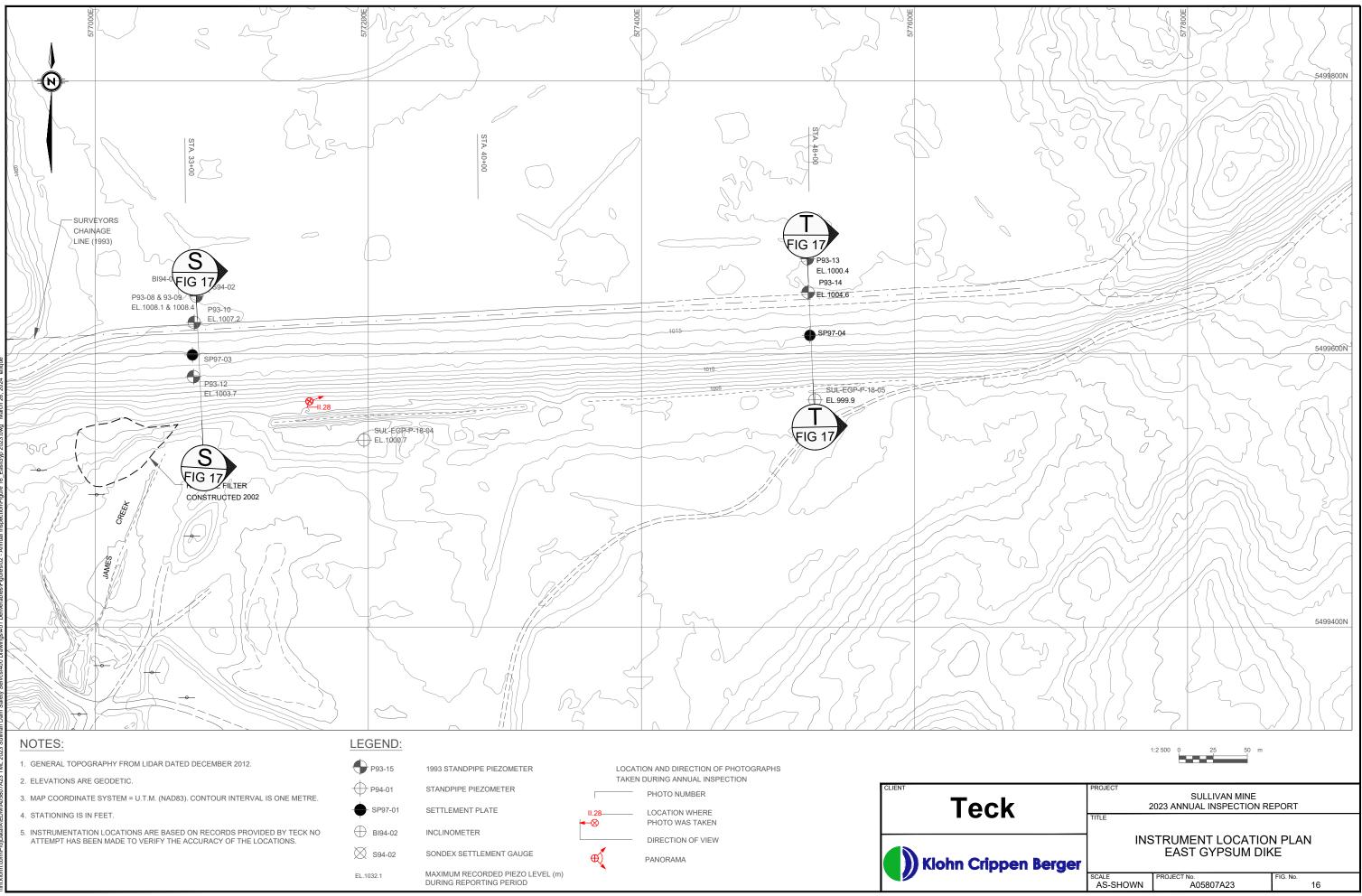

MAXIMUM RECORDED PIEZO LEVEL (m) DURING REPORTING PERIOD

PIEZOMETER TIP

k	SULLIVAN MINE 2023 ANNUAL INSPECTION REPORT			
pen Berger	TITLE	WEST GYPSUM SECTIONS P AN		
	SCALE AS-SHOWN	PROJECT No. A05807A23	FIG. No. 14	

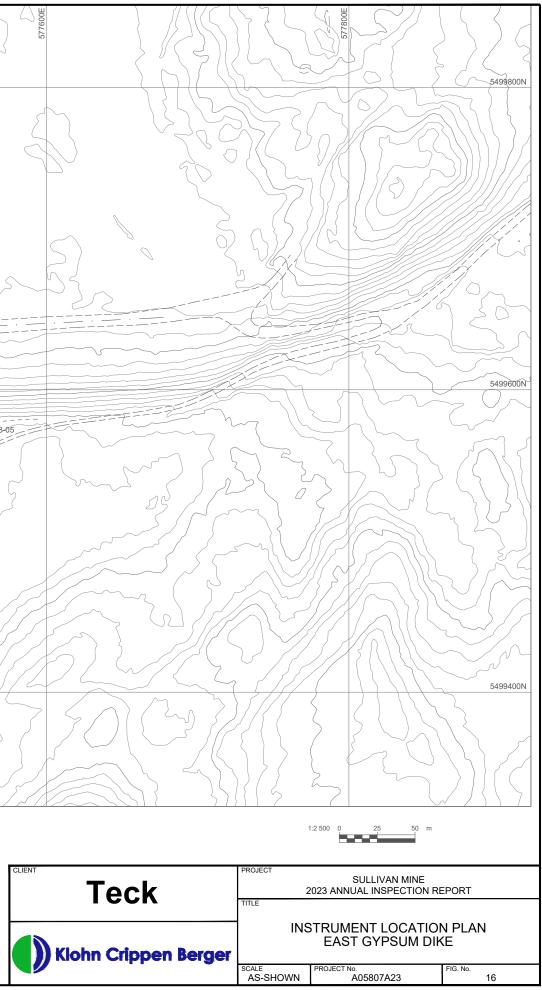

SURFACE TOPOGRAPHY FROM LIDAR PROVIDED BY TECK METALS LTD. DATED DECEMBER 2012.
 SUBSURFACE LITHOLOGY TRACED FROM 1993 SULLIVAN MINE STABILITY REVIEW OF GYPSUM DYKES.

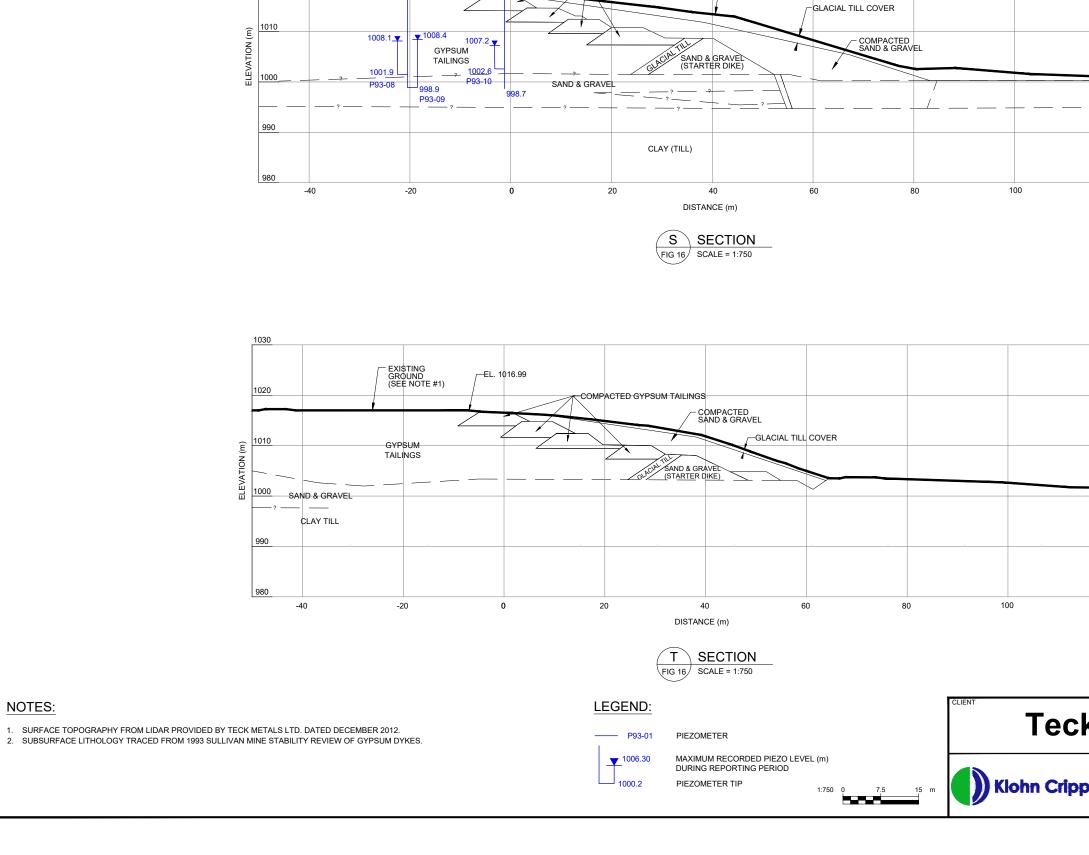
LEGEND:


----- P93-01 PIEZOMETER

1006.30

MAXIMUM RECORDED PIEZO LEVEL (m) DURING REPORTING PERIOD PIEZOMETER TIP

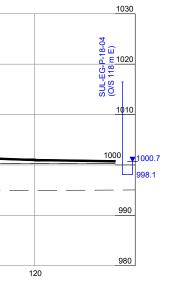


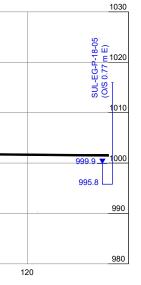

			1030		
			1020		
EXISTING					
GROUND			1010		
(SEE NOTE #1)					
		DITCH			
		\smile	1000		
	100		990		
	100				
_	PROJECT	SU	LLIVAN MINE	=	
k		2023 ANNUAL	INSPECTIO	N REPORT	
	TITLE				
		WEST	GYPSUM ECTION F	DIKE	
pen Berger		36		x .	
	SCALE AS-SHOWN	PROJECT No.	5807A23	FIG. No.	15
				1	ž

1030

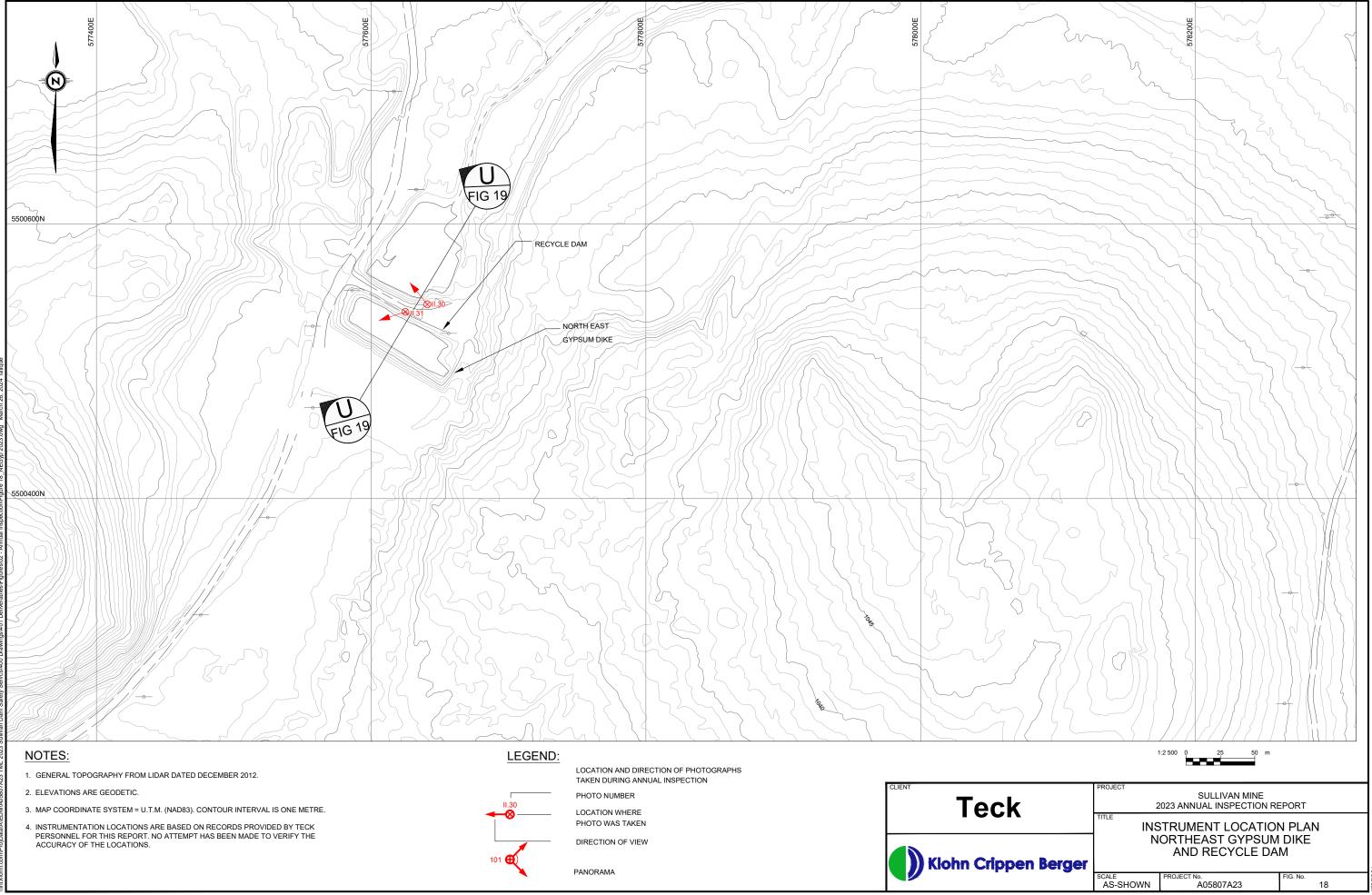
1020

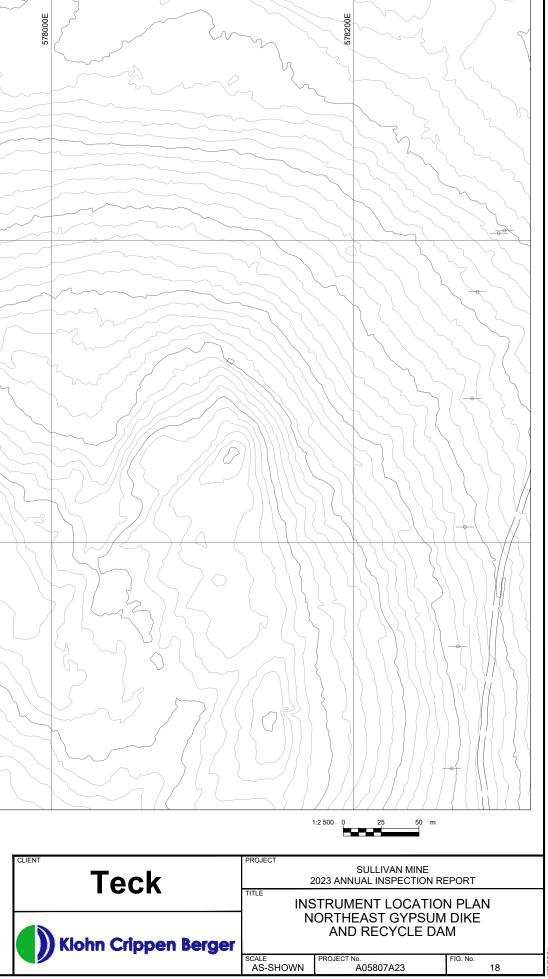
P93-09

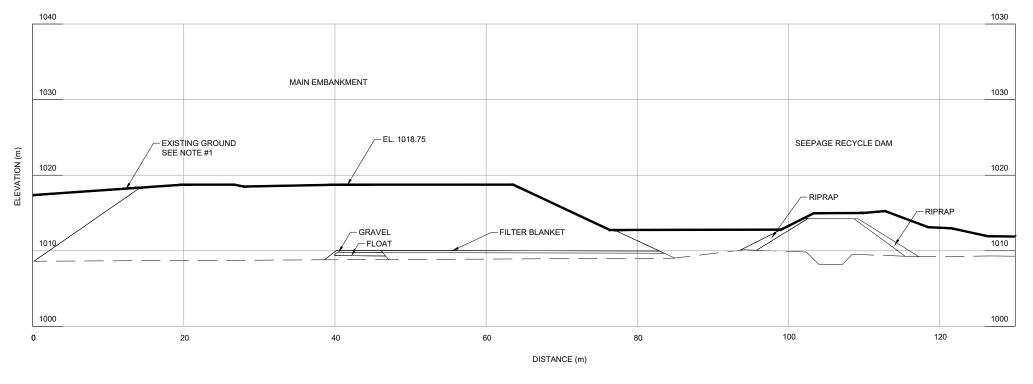

P93-10

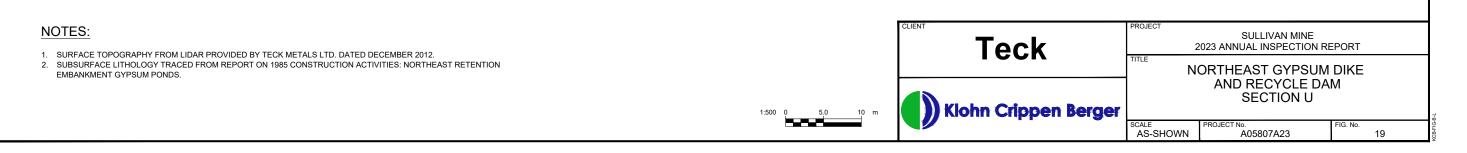

EL. 1017.05

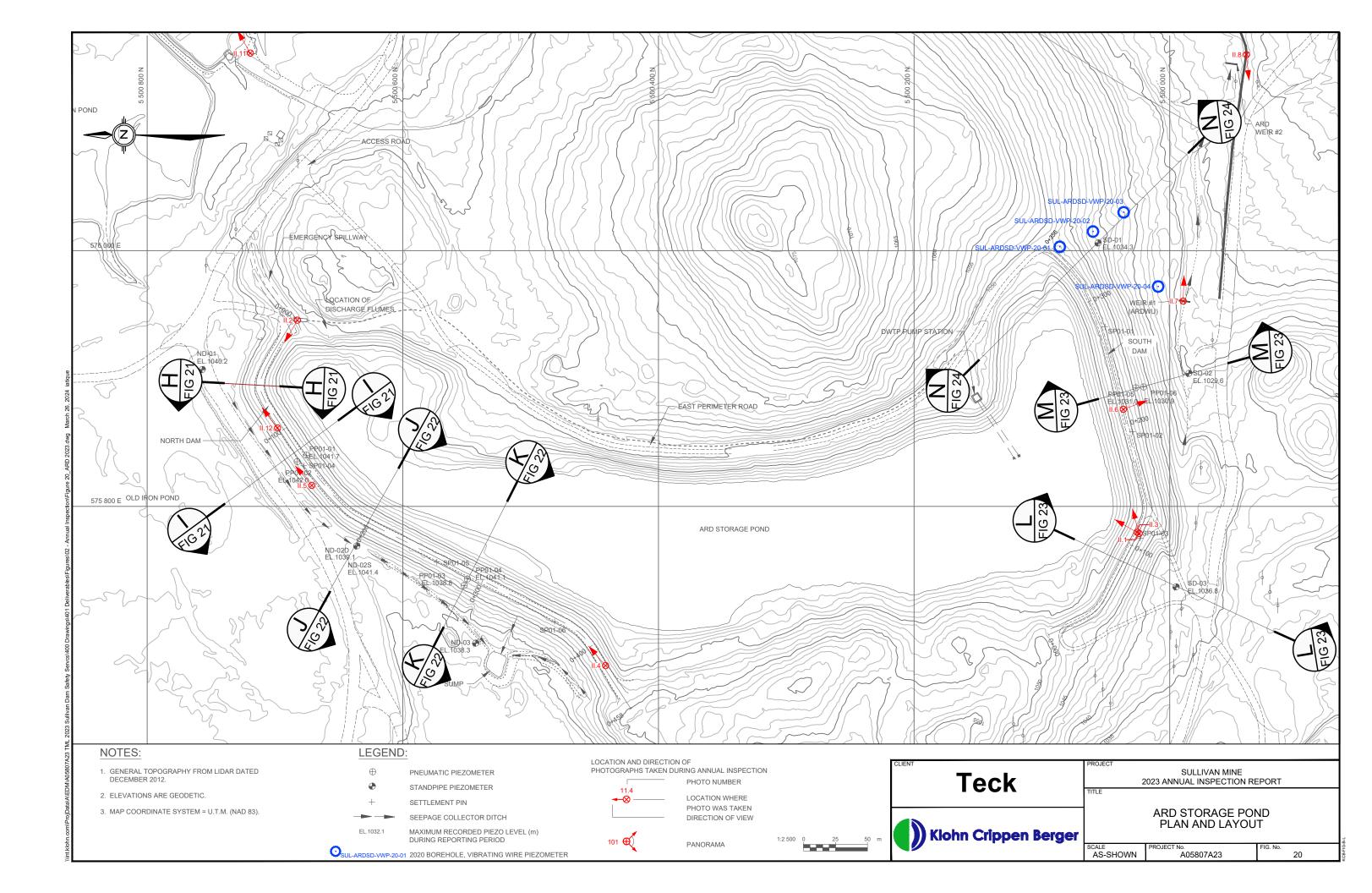
-COMPACTED GYPSUM TAILING

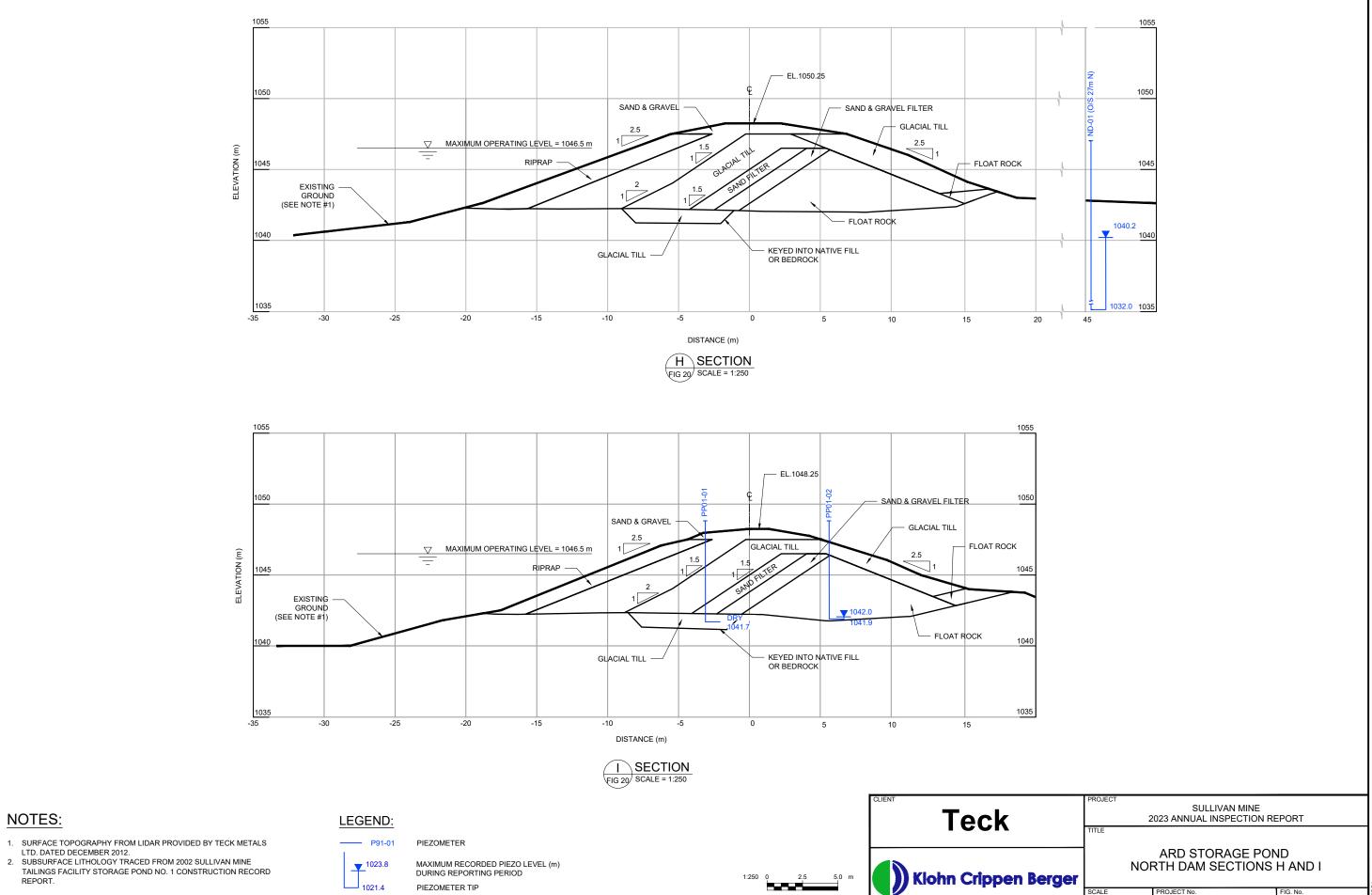

EL. 1017.43 –

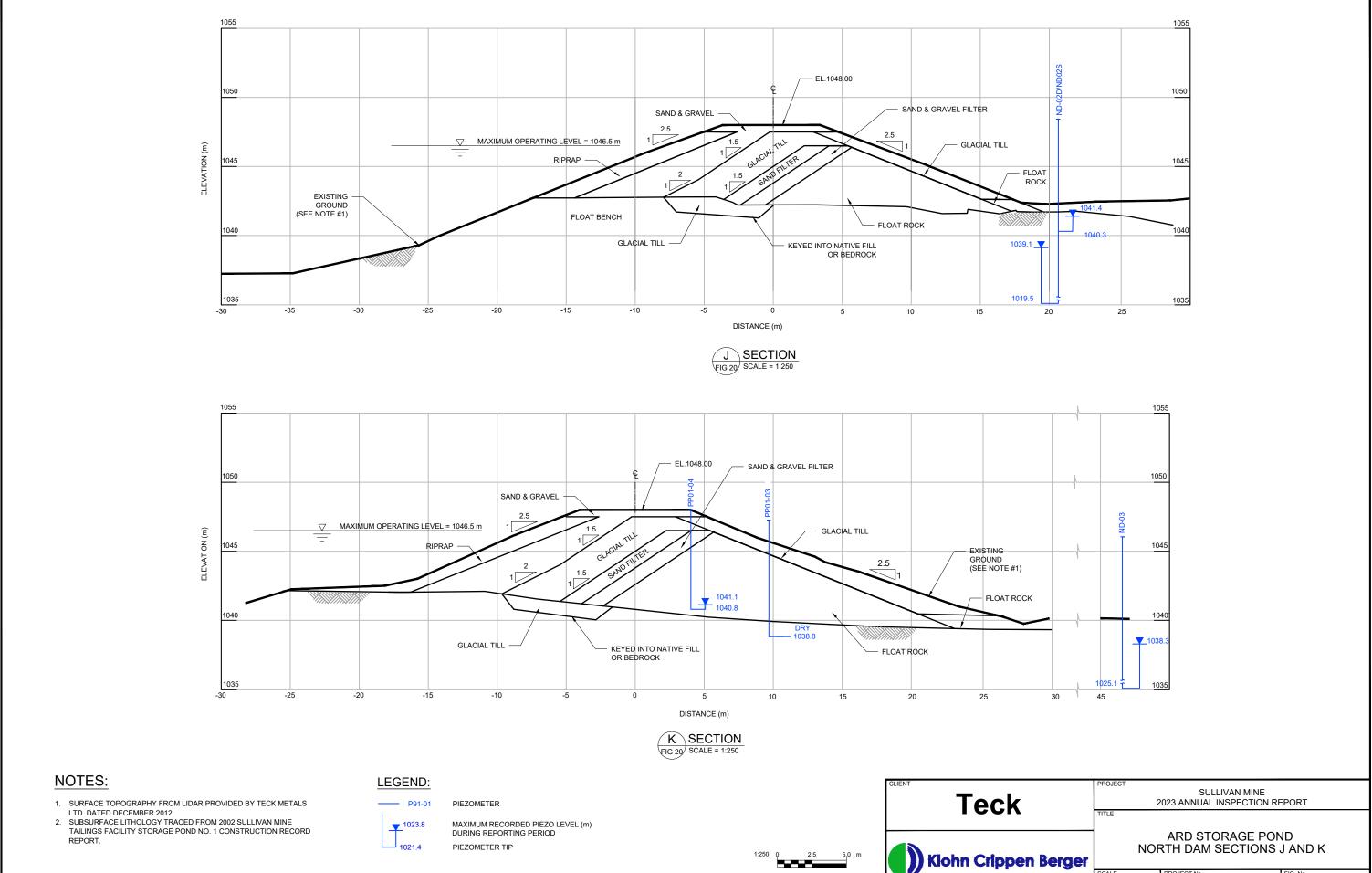

- EXISTING GROUND (SEE NOTE #1)

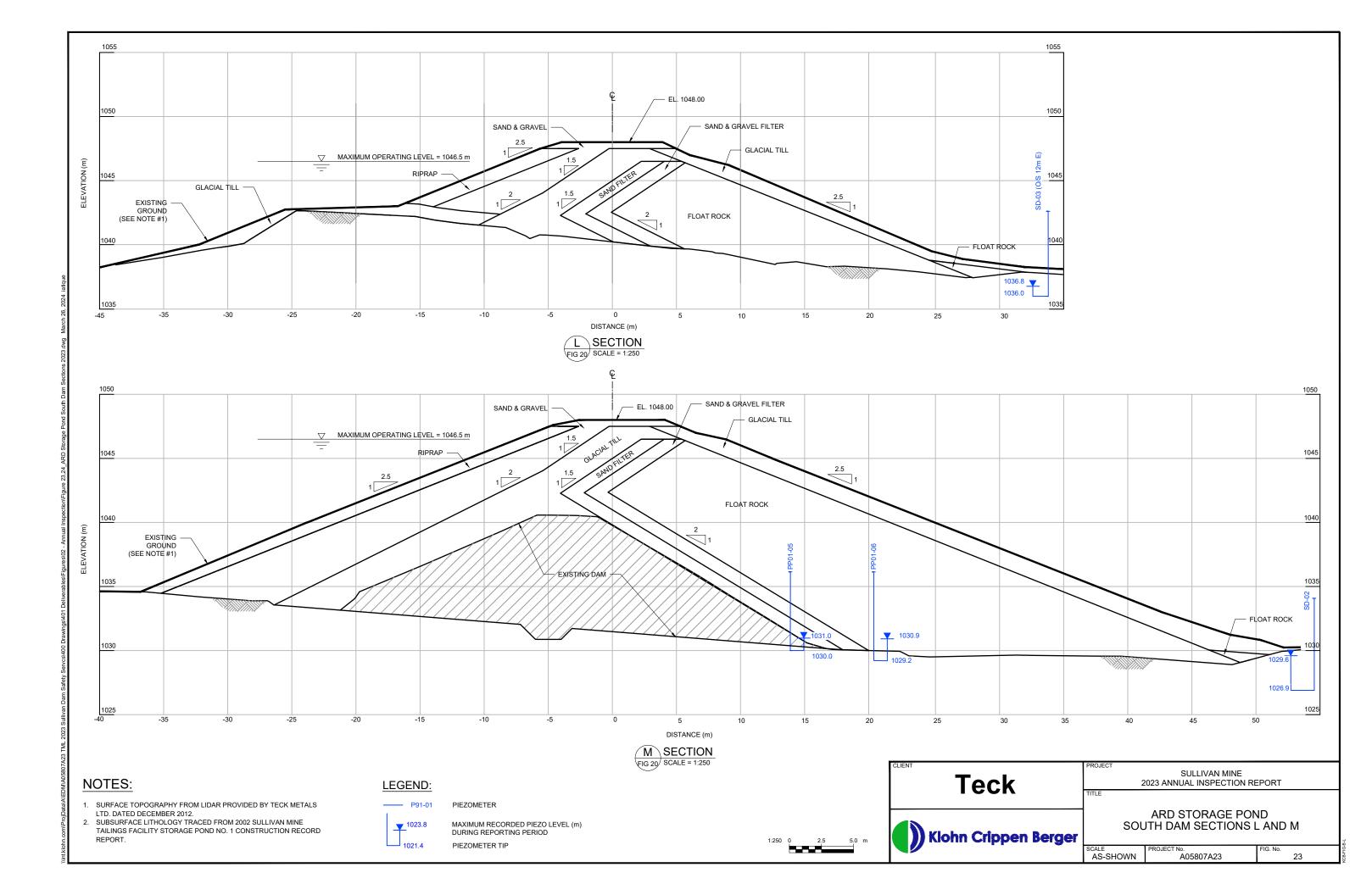


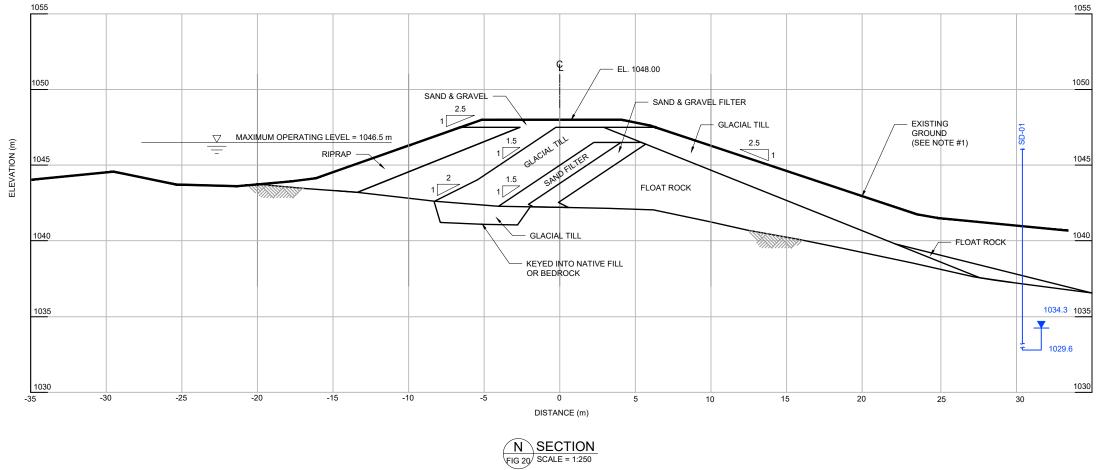

k	PROJECT SULLIVAN MINE 2023 ANNUAL INSPECTION REPORT			
pen Berger	TITLE	EAST GYPSUM DI SECTIONS S AND		7
	SCALE AS-SHOWN	PROJECT No. A05807A23	FIG. No. 17	KCR.FIG.R.I





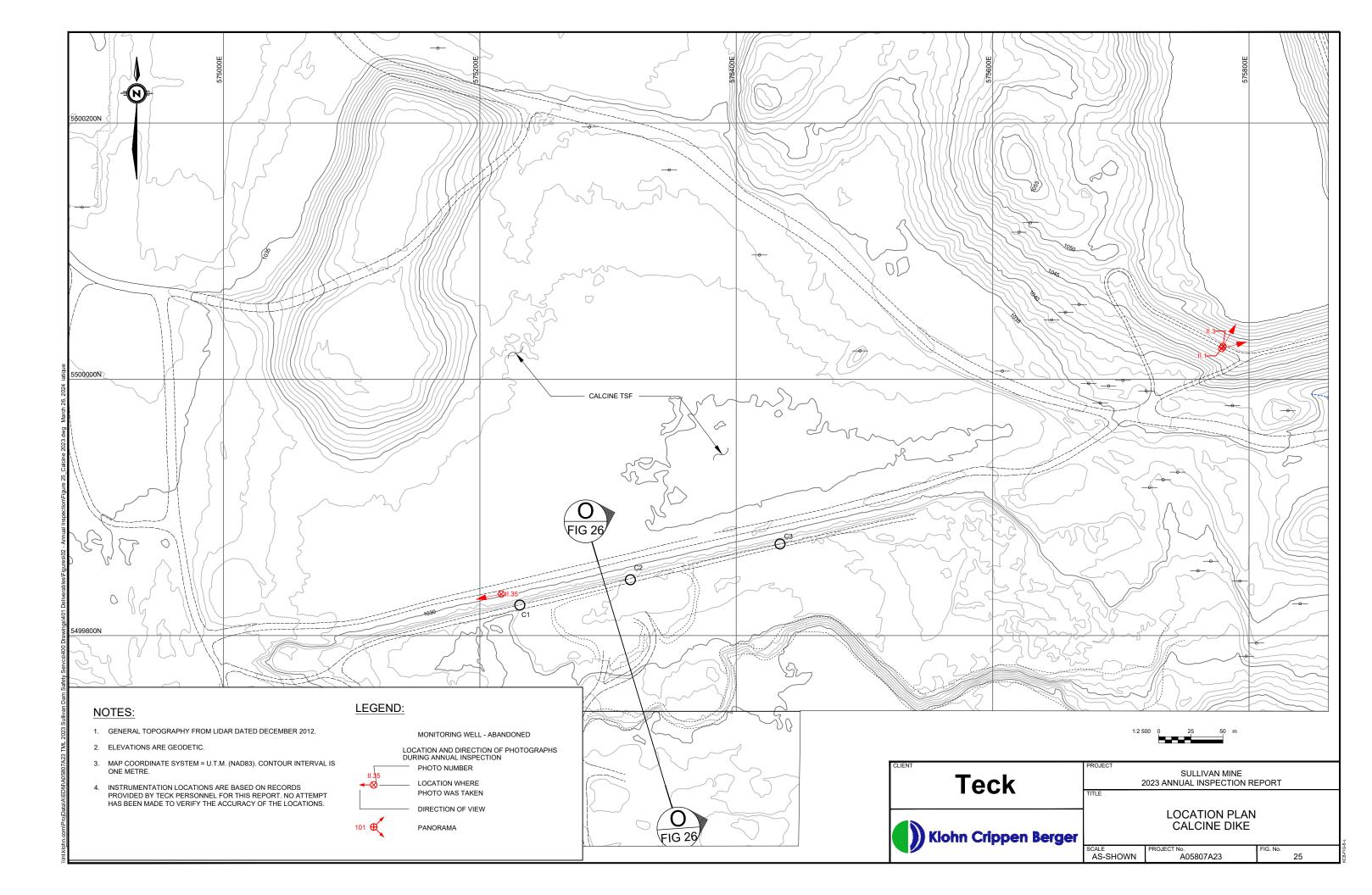


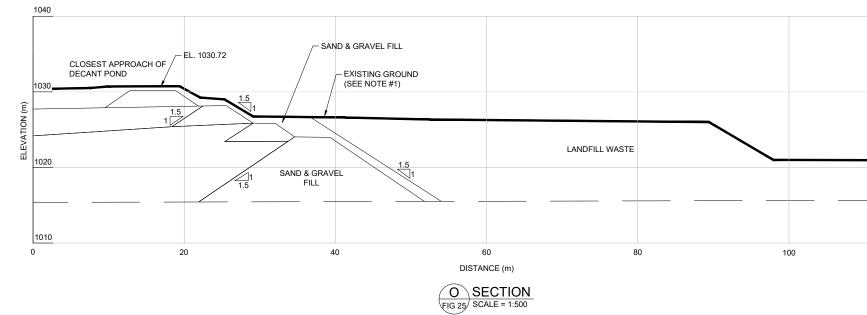




7 N			-		
	TITLE				
ppen Berger	ARD STORAGE POND NORTH DAM SECTIONS H AND I				
	SCALE AS-SHOWN	PROJECT No. A05807A23	FIG. No. 21		

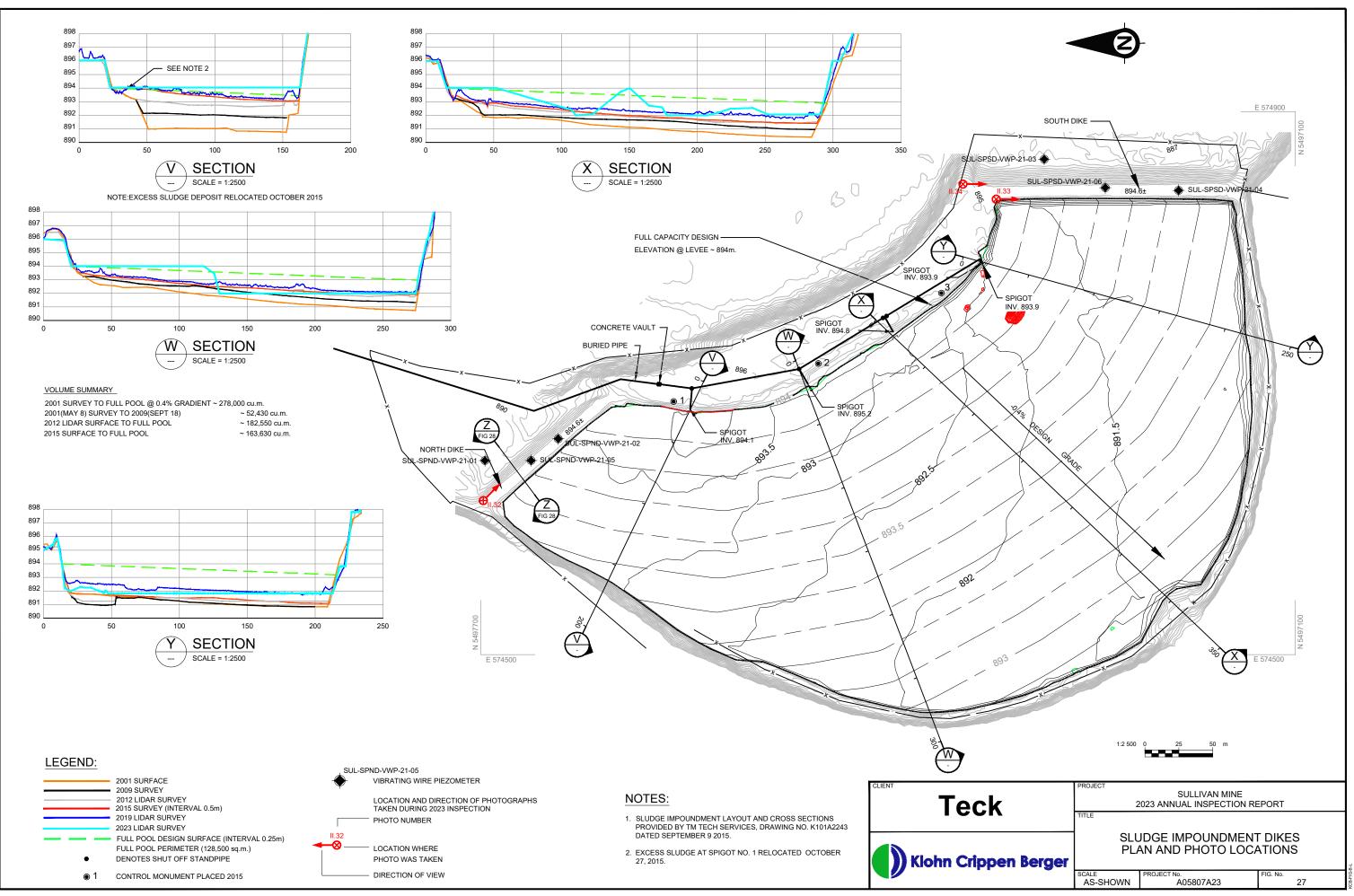
n beigei			
-	SCALE	PROJECT No.	FIG. No.
	AS-SHOWN	A05807A23	22



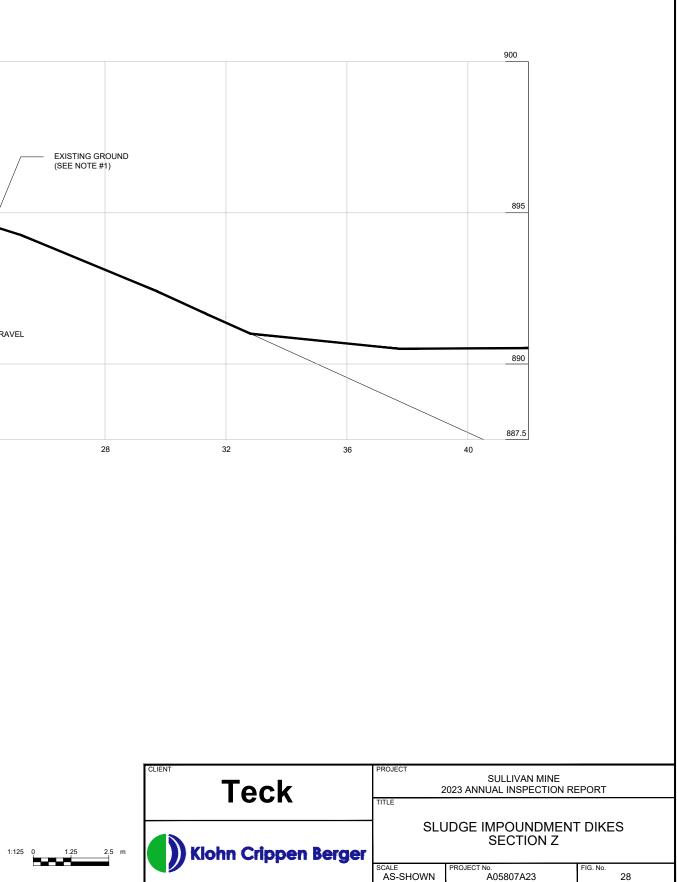


- SURFACE TOPOGRAPHY FROM LIDAR PROVIDED BY TECK METALS LTD. DATED DECEMBER 2012.
 SUBSURFACE LITHOLOGY TRACED FROM 2002 SULLIVAN MINE TAILINGS FACILITY STORAGE POND NO. 1 CONSTRUCTION RECORD REPORT.

k		SULLIVAN MINE 2023 ANNUAL INSPECTION RE	EPORT
	TITLE		
non Borgor		ARD STORAGE PON SOUTH DAM SECTIO	
pen Berger	SCALE AS-SHOWN	PROJECT No. A05807A23	FIG. No. 24


- SURFACE TOPOGRAPHY FROM LIDAR PROVIDED BY TECK METALS LTD. DATED DECEMBER 2012.
 SUBSURFACE LITHOLOGY TRACED FROM 1979 SOIL INVESTIGATION AND DESIGN SECOND DYKE EXTENSION CALCINE DYKE.

1:500 0 5.0 10 m



k	SULLIVAN MINE 2023 ANNUAL INSPECTION REPORT		
	TITLE		
pen Berger		CALCINE DIKE SECTION O	
	SCALE AS-SHOWN	PROJECT No. A05807A23	FIG. No. 26
	•	•	•

900 EXISTING GROUND (SEE NOTE #1) EL. 894.45 895 Ê ELEVATION DEPOSITED SLUDGE SANDY GRAVEL $\overline{}$ FILTER SANDY GRAVEL 890 887.5 24 28 32 12 20 0 8 16 DISTANCE (m)

NOTES:

SURFACE TOPOGRAPHY FROM LIDAR PROVIDED BY TECK METALS LTD. DATED DECEMBER 2012.
 SUBSURFACE LITHOLOGY TRACED FROM 1978 CONSTRUCTION ACTIVITIES SLUDGE STORAGE POND - STAGE I DYKES.

APPENDIX I

.

Visual Inspection

pumphouse 947 discharge pipe supported en palette

1-1	ppo care o prince
TMLS	Sullivan Inpsection Checklist
Structure: <u>ARD 50</u>	uth
Date: May 28/23	Inspected by: P. Fines + M. Rettger
Weather:	Pond Elevation:
Snow Cover? YES / NO	- Operational Limits:
Inspection Item	Remarks
Dam Crest Surface	Kemarks
Cracks	no.
Erosion	
Settlement/Depressions	
Vegetation growth	
Animal Activity (burrows)	
Any unusual conditions	
Ponding of water	
Dam Upstream Slope	
Slope protection (riprap)	ves, good,
Surface erosion/gullying	ho
Slides or sloughing	no
Settlement/Depressions	no
Bulging	no
Cracks	AMARM NO
Vegetation growth	yes, some small trees / hushes
Animal Activity (burrows)	no
Any unusual conditions	no, pond is how
Dam Downstream Slope and Toe	
Slope protection (grass)	yes, tall a alfalfa agrass
Surface erosion/gullying	no
Slides or sloughing	no
Settlement/Depressions	ho
Bulging	ho
Cracks	no
Vegetation growth	BOMMA grass + cottait in ditches.
Animal Activity (burrows)	no Durnaus, elt tracks & waste
Any unusual conditions	no, SD-2 reciding In higher than norma

- Stonding water in ditches - ditches have shellow grade

Weir 2 -> notch looks ok Standing water under weir,

	L Sullivan Inpsection Checklist
Structure: AKD	North
Date: May 30/23	Inspected by: P. Fines & M. Rettger
Weather: hot permy	Pond Elevation:
Snow Cover? YES / NO	Operational Limits:
V	
Inspection Item Dam Crest Surface	Remarks
Cracks	NQ
Erosion	Mo
Settlement/Depressions	MO Dy
Vegetation growth	no, lottle bit of grass
Animal Activity (burrows)	no
Any unusual conditions	aap at bottom & Rence, no driftwood
Ponding of water	0
Dam Upstream Slope	
Slope protection (riprap)	ves, above water fine but of
Surface erosion/gullying	no
Slides or sloughing	no
Settlement/Depressions	ho
Bulging	ho
Cracks	no
Vegetation growth	small bush up high
Animal Activity (burrows)	ho
Any unusual conditions	no driffwood v
Dam Downstream Slope and Toe	
Slope protection (grass)	mes, adequate
Surface erosion/gullying	no
Slides or sloughing	Mo
Settlement/Depressions	Mo-
Bulging	no
Cracks	Mer
Vegetation growth	better, peup bushes trimmed
Animal Activity (burrows)	A by
Any unusual conditions	drainage flatures, no change

	C	Sullivan Inpsection Checklist
Structu	ure:	nay Spillivay
Date:	May 30/23	Inspected by: P. Frnes & M. Rettger
Weather:	0 /	Pond Elevation:
Snow Cover?	YES / NO	Operational Limits:
	nspection Item	Remarks
Dam Crest Surf	ace	amera Iron pard.
Cracks		no deficiencies noted
Erosion	1	
Settlem	nent/Depressions	
Vegeta	tion growth	
Animal	Activity (burrows)	
Any un	usual conditions	
Ponding	g of water	8
Dam Upstream	Słope	Contro Section
Slope p	rotection (riprap)	apod rin rais.
Surface	erosion/gullying	0.000
Slides o	or sloughing	
Settlem	nent/Depressions	
Bulging		
Cracks		
Vegeta	tion growth	small bushes
Animal	Activity (burrows)	
Any uni	usual conditions	
Dam Downstrea	Slope and Toe	Botton Section
Slope p	rotection (grass)	
Surface	erosion/gullying	
Slides o	or sloughing	
Settlem	nent/Depressions	
Bulging		
Cracks		
Vegetat	tion growth	•
	Activity (burrows)	some bushed in spilleway
	usual conditions	the survey we splitting

Struct	ure: <u> </u>	Pond			
Date:	May 30/23	Inspected by:	p.	Fines	~ M. Rettopr
Weather:	hot, sunner	Pond Elevation:			0
Snow Cover?	YES / NO	Operational Limits:			

Inspection Item	Remarks
Dam Crest Surface	
Cracks	No
Erosion	NO
Settlement/Depressions	no
Vegetation growth	vos, some grass
Animal Activity (burrows)	ho
Any unusual conditions	no
Ponding of water	no.
am Upstream Slope	
Slope protection (riprap)	N/A reclamation rover /grass
Surface erosion/gullying	MOD
Slides or sloughing	no
Settlement/Depressions	Mo
Bulging	Mo-
Cracks	Mo
Vegetation growth	aras talkalfa
Animal Activity (burrows)	MO-
Any unusual conditions	Mrs
am Downstream Slope and Toe	
Slope protection (grass)	nes, no brush
Surface erosion/gullying	no, long notches have small rills
Slides or sloughing	Mo
Settlement/Depressions	MO
Bulging	MO
Cracks	MO
Vegetation growth	no accessive
Animal Activity (burrows)	the mes minor on two
Any unusual conditions	sepage at toe near weir#3, in

weir 3 -> plate seems low. Either rouse on clear out the weir hox. Was this sent repeaced?

TML Sullivan Inpsection Checklist				
Struct	ure: <u>NE Yu</u>	psun Diske		
Date:	Man 30/23	Inspected by:	P. Fines, M. Rettaer	
Weather:	Phot, sunner	Pond Elevation:		
Snow Cover?	YES / NO	Operational Limits:		

Inspection Item	Remarks		
Dam Crest Surface			
Cracks	Mo		
Erosion	mo		
Settlement/Depressions	no		
Vegetation growth	no, well gravelled		
Animal Activity (burrows)	me		
Any unusual conditions	MO		
Ponding of water	mo		
Dam Upstream Slope	(south)		
Slope protection (riprap)	MD, avansed		
Surface erosion/gullying	mo		
Slides or sloughing	Λιρ		
Settlement/Depressions	Mo		
Bulging	no		
Cracks	mo		
Vegetation growth	nest arass		
Animal Activity (burrows)	Mo		
Any unusual conditions	No		
Dam Downstream Slope and Toe	(morth)		
Slope protection (grass)	1120, Diparse.		
Surface erosion/gullying	some erosion fr. animal tracks		
Slides or sloughing	No		
Settlement/Depressions	Mo		
Bulging	Mo		
Cracks	no		
Vegetation growth	No		
Animal Activity (burrows)	MO		
Any unusual conditions	No		

Struct	ure: <u>Aecucle</u>	Dam	2
Date:	Man 30/23	Inspected by:	P. Fines + M. Retter
Weather:	Summy hat	Pond Elevation:	ð
Snow Cover?	YES / NO	Operational Limits:	

Inspection Item	Remarks
Dam Crest Surface	
Cracks	MQ
Erosion	no
Settlement/Depressions	MO
Vegetation growth	dead veg on creet (tall) + grass
Animal Activity (burrows)	No
Any unusual conditions	no
Ponding of water	MO
Dam Upstream Slope	(morth)
Slope protection (riprap)	(porthe anorthe wear
Surface erosion/gullying	nie
Slides or sloughing	no
Settlement/Depressions	no
Bulging	MO
Cracks	no
Vegetation growth	UB, orassed
Animal Activity (burrows)	no
Any unusual conditions	ma
Dam Downstream Slope and Toe	Kontaka (south)
Slope protection (grass)	grass, slightly taller
Surface erosion/gullying	ne
Slides or sloughing	MO
Settlement/Depressions	no
Bulging	Mo
Cracks	MQ
Vegetation growth	Mo
Animal Activity (burrows)	MQ
Any unusual conditions	Mo

		an inpococión one		
Struc	ture: <u></u>			
Date:	May 30/23	Inspected by:	P. Fines	~ M. Rettger
Weather:	Junny, hot	Pond Elevation:		0
Snow Cover?	YES / NO	Operational Limits:		

Inspection Item	Remarks
Dam Crest Surface	
Cracks	NO
Erosion	NO
Settlement/Depressions	
Vegetation growth	grass
Animal Activity (burrows)	not observed
Any unusual conditions	no
Ponding of water	mo
Dam Upstream Slope	
Slope protection (riprap)	no, grass boulders
Surface erosion/gullying	Mia
Slides or sloughing	ne
Settlement/Depressions	no
Bulging	no
Cracks	MQ
Vegetation growth	arass
Animal Activity (burrows)	not observed
Any unusual conditions	
Dam Downstream Slope and Toe	
Slope protection (grass)	Mes. grans
Surface erosion/gullying	MA
Slides or sloughing	NO
Settlement/Depressions	NO
Bulging	MO
Cracks	MQ
Vegetation growth	no, just grain
Animal Activity (burrows)	not observed
Any unusual conditions	

<u>,</u>	TML Sullivan	Inpsection	Checklist

Struct	ure: <u>Sil Z</u>	ĩ	
Date:	May 30/23	Inspected by:	P. Fines & M. Reltger
Weather:	penniz, hot	Pond Elevation:	1 0
Snow Cover?	YES / NO	Operational Limits:	

Inspection Item	Remarks
Dam Crest Surface	
Cracks	No
Erosion	MO
Settlement/Depressions	MO
Vegetation growth	grassy.
Animal Activity (burrows)	ma
Any unusual conditions	no
Ponding of water	MO
Dam Upstream Slope	butts inter Sil 1
Slope protection (riprap)	MO, aross
Surface erosion/gullying	no
Slides or sloughing	nA
Settlement/Depressions	ma
Bulging	MO
Cracks	no
Vegetation growth	ONNES
Animal Activity (burrows)	Mo
Any unusual conditions	Mo
Dam Downstream Slope and Toe	
Slope protection (grass)	Mar areas & allalla
Surface erosion/gullying	Ano aquit
Slides or sloughing	NO
Settlement/Depressions	ma
Bulging	NO
Cracks	1 MQ
Vegetation growth	ino large frushes
Animal Activity (burrows)	yes, small prosent at tac
Any unusual conditions	+
Betdeer's	Slough > cleaned out decant draining into ditch, activat

Better's slough = cleaned out

	TML Sullivan Inpsection Checklist				
Struct	ure: <u>Sil 3</u>				
Date:	Man 30/23	Inspected by:	P. Fines + M. Rettger		
Weather:	Osermis, het	Pond Elevation:			
Snow Cover?	YES / NO	Operational Limits	:		

Inspection Item	Remarks		
Dam Crest Surface			
Cracks	MO		
Erosion	MQ		
Settlement/Depressions	MO		
Vegetation growth	en nes, mass & allalla		
Animal Activity (burrows)	small purrows the spillway		
Any unusual conditions	No		
Ponding of water	MO		
Dam Upstream Slope	-> butts into sil		
Slope protection (riprap)	no, avass - boulders		
Surface erosion/gullying	no		
Slides or sloughing	Me		
Settlement/Depressions	MO		
Bulging	mo		
Cracks	Mo		
Vegetation growth	grass, vea		
Animal Activity (burrows)	no		
Any unusual conditions	NO		
Dam Downstream Slope and Toe			
Slope protection (grass)	Mes, good		
Surface erosion/gullying	ne		
Slides or sloughing	MQ		
Settlement/Depressions	no		
Bulging	no		
Cracks	Mo		
Vegetation growth			
Animal Activity (burrows)	Some lurrows on D/S slope adj to spille		
Any unusual conditions	Mo		

Spillway looks good, noveg one or 2 trees drop from Sil!

Struct	ure:	Iron	S•h		
Date:	May 30/23		Inspected by:	P.Fines +	MiRettger
Weather:	Sunnischot	4	Pond Elevation:		
Snow Cover?	YES / NO		Operational Limits:		

Inspection Item	Remarks
am Crest Surface	
Cracks	no
Erosion	no
Settlement/Depressions	MO
Vegetation growth	MO
Animal Activity (burrows)	no
Any unusual conditions	MO
Ponding of water	No
am Upstream Slope	
Slope protection (riprap)	no, arass
Surface erosion/gullying	ne
Slides or sloughing	MQ
Settlement/Depressions	mo
Bulging	mo
Cracks	ma
Vegetation growth	group + alballa
Animal Activity (burrows)	no
Any unusual conditions	Mo
am Downstream Slope and Toe	
Slope protection (grass)	grass & allalla
Surface erosion/gullying	210
Slides or sloughing	no
Settlement/Depressions	NO
Bulging	No
Cracks	NO .
Vegetation growth	
Animal Activity (burrows)	no excessive no
Any unusual conditions	no

TML	Sullivan	Inpsection	Checklist
-----	----------	------------	-----------

Structu	A 0 *	
Date: Weather: Snow Cover?	May 31/23 Summy, hot YES / NO	Inspected by: <u>A, Rettagen</u> & P. Simes Pond Elevation: Operational Limits:
	pection Item	Remarks
Dam Crest Surfac	e	
Cracks		MO
Erosion		no
	nt/Depressions	mo
Vegetatio	on growth	MO
Animal A	ctivity (burrows)	Mo
Any unus	ual conditions	Mo
Ponding	of water	Mo
Dam Upstream S	оре	
Slope pro	otection (riprap)	no, level.
Surface e	rosion/gullying	no
Slides or	sloughing	Mo
Settleme	nt/Depressions	Mo
Bulging		Mo
Cracks		Mo
Vegetatio	on growth	aruss & trees
Animal A	ctivity (burrows)	rio
Any unus	ual conditions	Mo
Dam Downstream	n Slope and Toe	
Slope pro	otection (grass)	groupus / rocky
Surface e	rosion/gullying	NO
Slides or	sloughing	MO
Settleme	nt/Depressions	Mo
Bulging		MO
Cracks		WO
Vegetatio	on growth	trues

NO

Animal Activity (burrows) Any unusual conditions

10. 1 (Mar 2013) -	> poud lower Chanprivious yors. decount in middle weir 4 tilted upstream, faxed weir plate, Sullivan Inpsection Checklist new plate/notion fixed on upstream side
rona (muy so/a.s)	descent in middle
· · · · · · · · · · · · · · · · · · ·	Twen 4 tilted upstream, based weir plate,
TML	Sullivan Inpsection Checklist new plate/notion fixed
Structure: West	Supsum an upstream side
Date: May 31/23	Inspected by: P. Fines & M. Rettger
Weather: Dummy hot	Pond Elevation:
Snow Cover? YES NO	Operational Limits:
Inspection Item	Remarks
Dam Crest Surface	
Cracks	NO
Erosion	
Settlement/Depressions	
Vegetation growth	
Animal Activity (burrows)	
Any unusual conditions	
Ponding of water	
Dam Upstream Slope	
Slope protection (riprap)	210 7 7 04
Surface erosion/gullying	mor, grains
Slides or sloughing	
Settlement/Depressions	///
Bulging	NO
Cracks	no
Vegetation growth	gress + alfalfa
Animal Activity (burrows)	No
Any unusual conditions	no
Dam Downstream Slope and Toe	
Slope protection (grass)	neo
Surface erosion/gullying	U (WQ
Slides or sloughing	NO
Settlement/Depressions	MÐ
Bulging	NO
Cracks	NO
Vegetation growth	no excessive
Animal Activity (burrows)	1920, opping bronow & ont hills
Any unusual conditions	ma meny-

Ene large badgee hole on Walnt

TML Su	Illivan Inpsection Checklist
Structure: Cast &	lispsum
Date: May 31/23	Inspected by: P Fings I M Reflace
Weather:	Pond Elevation:
Snow Cover? YES / NO	Operational Limits:
Inspection Item Dam Crest Surface	Remarks
Cracks	1.0
Erosion	<u>MO</u>
Settlement/Depressions	1110
Vegetation growth	Mo
Animal Activity (burrows)	Nome grass + gravel
Any unusual conditions	1 ps, small providus
	No
Ponding of water	NO
Dam Upstream Slope	
Slope protection (riprap)	mo, grass
Surface erosion/gullying	MQ
Slides or sloughing	Ma
Settlement/Depressions	Mo
Bulging	he
Cracks	Mo
Vegetation growth	Mes, grass
Animal Activity (burrows)	no
Any unusual conditions	no
Dam Downstream Slope and Toe	
Slope protection (grass)	NRO.
Surface erosion/gullying	NO
Slides or sloughing	Mo
Settlement/Depressions	mo
Bulging	mo
Cracks	mo
Vegetation growth	not excessive
Animal Activity (burrows)	and you at too or slope, ariund lurrow
Any unusual conditions	+ Annual + Other and
	- WILL WING

ditch dy

Structure:	th Shudge
Date: May 31/23	Inspected by: P. Fines & M. Rettger
Weather: sunner ho	Pond Elevation:
Snow Cover? YES NO	Operational Limits:
Inspection Item	Remarks
Dam Crest Surface	
Cracks	Mo
Erosion	Mo
Settlement/Depressions	NO
Vegetation growth	mas some grass, bushes.
Animal Activity (burrows)	Mes, a ben small hurrows
Any unusual conditions	No
Ponding of water	no
Dam Upstream Slope	
Slope protection (riprap)	some rocks a amy
Surface erosion/gullying	no
Slides or sloughing	no
Settlement/Depressions	NO
Bulging	MO
Cracks	no
Vegetation growth	some bushes
Animal Activity (burrows)	no
Any unusual conditions	Mo
Dam Downstream Slope and Toe	
Slope protection (grass)	lal
Surface erosion/gullying	mo
Slides or sloughing	mo
Settlement/Depressions	MO
Bulging	mo
Cracks	Mo
Vegetation growth	trimmed, in good condition
Animal Activity (burrows)	Mo.
Any unusual conditions	mo

	1L Sullivan Inpsection Checklist
Structure: 🖉 🖉	wth Eludae
Date: May 31/23	Inspected by: P. Fines + M. Rettger
Weather: Nummy, hot	
Snow Cover? YES NO	Operational Limits:
Inspection Item	Remarks
Cracks	MIQ
Erosion	
Settlement/Depressions	NO
Vegetation growth	Mo
	serve gass
Animal Activity (burrows)	ups, small hurrows
Any unusual conditions	mo
Ponding of water	mo
Dam Upstream Slope	
Slope protection (riprap)	some rocks
Surface erosion/gullying	no
Slides or sloughing	no
Settlement/Depressions	me
Bulging	no
Cracks	no
Vegetation growth	is shull on the up bream sloge
Animal Activity (burrows)	we small everious
Any unusual conditions	no
Dam Downstream Slope and Toe	
Slope protection (grass)	ense grass thrules & yooks
Surface erosion/gullying	mo
Slides or sloughing	ne
Settlement/Depressions	mo
Bulging	Mo
Cracks	Mo
Vegetation growth	yes, hots & trees a shruls all to
Animal Activity (burrows)	me, some burrows.
Any unusual conditions	deadfall Stree siles stackedat toe
	- mange / man / man / man

APPENDIX II

.

Site Visit Photographs

Appendix II Site Visit Photographs

Photo II.1 ARD South Dam Upstream Slope

Photo II.2 North Dam Upstream Slope

Photo II.3 Erosion adjacent to pumphouse

Photo II.4 ARD North Dam Downstream Slope

Photo II.5 Vegetation on slope of North Dam

Photo II.6 South Dam Downstream Slope

App II Site Visit Photos.docx A05807A23

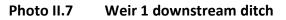


Photo II.8 Weir 2 – AIPWU

Photo II.9 Iron Dike Downstream Slope

Photo II.10 Iron Dike Crest and Crest of Toe Berm

App II Site Visit Photos.docx A05807A23

Photo II.11 Overview of Iron Pond

Photo II.12 Overview of Iron TSF looking towards Iron Pond

Photo II.13 Weir #3

Photo II.14 Channel Upstream of Weir #3

Photo II.15 Upstream of Weir #4

Photo II.16 Weir #4 worn notch

Photo II.17 Emergency Spillway Channel Inlet

Photo II.18 Emergency Spillway Channel looking downstream

Photo II.19 Emergency Spillway Channel outlet looking downstream

Photo II.20 Emergency Spillway Channel looking upstream, south of West Gypsum TSF

Photo II.21 No. 1 Siliceous Dike Downstream Slope

Photo II.22 No. 2 Siliceous Dike

App II Site Visit Photos.docx A05807A23

Photo II.23 No. 3 Siliceous Dike

Photo II.24 Seepage downstream of No. 2 Siliceous Dike

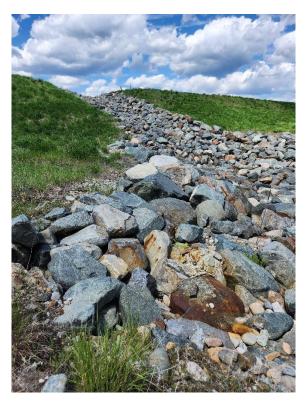


Photo II.25 Decant outlet channel downstream of No. 3 Siliceous

Photo II.26 Siliceous TSF Spillway

Photo II.27 Siliceous TSF Spillway on No. 3 Siliceous TSF

Photo II.28 East Gypsum Dike downstream slope

Photo II.29 West Gypsum Dike downstream slope

Photo II.30 Recycle Dam upstream slope

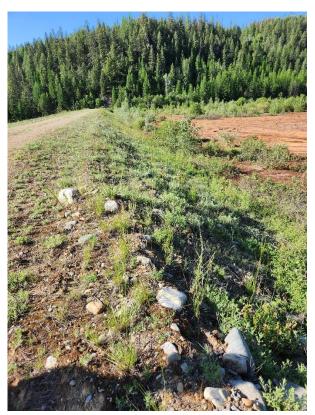


Photo II.31 Northeast Gypsum Dike Downstream Side

Photo II.32 Sludge Impoundment North Dike downstream slope

Photo II.33 Sludge Impoundment South Dike Crest and Upstream Slope

Photo II.34 Sludge Impoundment South Dike Downstream Slope

App II Site Visit Photos.docx A05807A23

Photo II.35 Calcine Dike Crest and Downstream Slope

Photo II.36 Old Iron Dike Crest and Upstream Slope

Photo II.37 Old Iron Dike downstream slope

Photo II.38 Iron TSF Divider Dike

APPENDIX III

Quantifiable Performance Objectives and Instrumentation Monitoring

Appendix III Quantifiable Performance Objectives and 2023 Instrumentation Monitoring

III.1 QUANTIFIABLE PERFORMANCE OBJECTIVES

Quantifiable Performance Objectives (QPOs) have been established for all of the instrumentation and for the freeboard under normal operating conditions for those tailings facilities which have ponds, i.e., ARD Pond and Iron Pond. The QPOs are discussed below.

III.1.1 Piezometric

Pneumatic, standpipe, and vibrating wire piezometers are all used at site to monitor phreatic surfaces within the tailings facilities and foundations. The notification levels established for the piezometers, required monitoring frequency and current readings are summarized in Section III.2 Table AIII.3.

The following is required when a notification level is reached for a single instrument:

- Data, data reductions, and calculations are checked for accuracy and correctness.
- If no errors are found in the calculations, the Mine Manager is notified that an anomalous reading has been observed and that further assessment must be conducted. The EOR is notified at this time. The EOR will evaluate data for reliability, review data within the general vicinity of the individual instrument. The EOR may require the following:
 - Check of readout equipment to verify that it is functioning correctly and to verify calibration;
 - reread instrument and other nearby instruments for confirmation; and,
 - adjust on-going monitoring frequency as required.
- If it is observed that an instrument or piece of readout equipment has stopped functioning, the Mine Manager and subsequently, the EOR should be notified immediately. If considered critical, a replacement instrument should be installed.

If several instruments within an area of the dikes or dams are observed to exceed the notification levels, then the following is required:

- The Mine Manager and EOR should be notified within 24 hours.
- Monitoring frequency will be increased as needed based on assessment of common trend.
- EOR to assess the dam integrity and may recommend analyses, site visit, or implementation of remedial actions as required.

III.1.2 Settlement

Historically several methods used to monitor settlement at the Sullivan Mine tailings facilities. These include settlement plates, Sondex settlement gauges, and surveys. Starting in 2021, InSAR is now being used to monitor for wide scale movement.

Notification levels were established for the various settlement measurements. These are summarized along with survey results and required monitoring frequency in Section III.2 Table AIII.4. InSAR data should be reviewed as soon as the reports are made available and ground based survey completed if areas of movement are identified.

The following response is required when the notification level is exceeded at one instrument:

- Notify EoR within 24 hours upon verification of reading exceedance.
- EoR to evaluate data for reliability, and review survey data within the general vicinity of the individual survey monument in question. EoR may recommend repeat measurement and increased on-going monitoring frequency.

III.1.3 Lateral Movement

There are no active inclinometers at Sullivan mine.

III.1.4 Seepage

There are four weirs installed to measure seepage from the ARD Pond South Dam and the Iron Dike. Notification levels have been established and are provided along with the required monitoring frequency in Section III.2 Table AIII.5.

The following response is required when the notification level is exceeded:

- Data and data reductions are checked for accuracy and correctness.
- EoR to evaluate data for reliability and review other instrumentation in the vicinity. Repeat measurement and/or measurement of other instruments may be recommended.
- EoR to assess dam integrity and may recommend analyses, site visit, or other action.

III.1.5 Freeboard

There are three notification levels which have been set for the ARD Pond and the Iron Pond, which are provided in Section III.2 Table AIII.6.

Notification Level 1 indicates when the pumps should be started to transfer water to either the Drainage Water Treatment Plant (ARD Pond) or to the ARD Pond (Iron Pond).

Notification Level 2 indicates when water levels are approaching maximum operating levels. When Notification Level 2 is met or exceeded, transfer of water should continue as well as notifying the EOR and minimizing inflows. For the ARD Pond, this could include diverting 3700/39000 to the Iron Pond and for the Iron Pond, stop pumping to the Iron Pond and divert runoff if possible.

Notification Level 3 indicates when water levels are within 0.5 m of the spillway inverts. When Notification Level 3 is met or exceeded, continue with transfer of water, minimizing inflows, notification of the EOR, and notify MEMPR/MOE of potential spill as well as enacting Emergency Preparedness and Response Plan (EPRP).

III.1.6 Visual Inspections

As part of the QPOs, a series of regularly scheduled inspections is required to ensure that the tailings facilities are operating as intended and to identify problems and issues so that necessary corrective actions may be implemented in a timely manner. The main types of inspections are as follows:

- routine inspections (performed by Teck staff);
- event driven inspections (performed by Teck staff, and the Engineer of Record depending on the event);
- annual inspection (performed by the Engineer of Record); and,
- dam safety review (performed by an independent and qualified professional engineer).

Routine Visual Inspections

Routine visual inspections are performed by Teck staff and documented using one of the standard inspection forms, which are included in Appendix E of the OMS Manual. Two types of forms are provided: one for Weekly/Bi-weekly inspections and forms for Monthly/Annual inspections.

The minimum visual inspection frequency for each of the structures can be found in Table III-1.

	Dike	CDA Classification	Pond Elevation	Visual Inspection Requirements
			< 1040 m	Monthly
ARD Pond Dik	06	Von High		Weekly (a Monthly Inspection form must be filled
ARD POILU DIK	es	Very High	>1040 m	in once per week if pond is high for an extended
				period of time, i.e., greater than one month)
Iron Dike (STA	0+00 to 10+00)	High	N/A	Monthly
Iron Dike (STA	10+00 to end of dam)	High	N/A ¹	Annually
	Old Iron Dike	Low		Annually
Old Iron TSF	Iron TSF Divider Dike	Low		Annually
Siliceous Cell I	Dikes #1, #2 and #3	Low		Annually
	West Gypsum Dike	High	N/A ¹	Annually
Gypsum TSF	East Gypsum Dike	High	N/A	Annually
Northeast Gyr Dam	osum Dike and Recycle	Low		Annually
Calcine Dike		Low		Annually
Sludge Pond		Low	N/A	Bi-Weekly during DWTP operations otherwise Annually

Table III-1 Visual Inspection Requirements for the Dikes and Dams at Sullivan Mine

Note:¹Closed facility, no active pond

The following is a list of general information that should be recorded (monthly and annual inspections):

- signs of depressions and/or movements of the downstream dam/dike slope;
- general condition of the dam/dike crest, toe, and faces, looking for settlement, erosion, seepage, cracking, animal burrows, vegetation growth or other abnormal conditions;
- water levels in active ponds;
- depth of flow in spillways (record zero flow in spillway as 0.0 m³);
- issues related to blockage and inadequate capacity of spillway channels; and,
- seepage, noting change in flow rate and visual cloudiness and any new seepage.

Documentation of the routine inspections should be submitted to the Mine Manager following each inspection. If any maintenance requirements or anomalies are identified during the inspection, these must be identified to the mine manager.

The annual routine inspection by Teck staff should be planned such that it does not coincide with the annual inspection performed by the Engineer of Record. The annual routine inspection should include photographs of key features and any potential dam/dike safety concerns.

The completed inspection forms are stored in an electronic data base system, and hard copies of the inspection forms are catalogued and stored at Sullivan Mine.

Event Driven Inspections

In addition to routine inspections, special inspections may be required for significant seismic or climatic events, or anomalous instrumentation readings. Table III-2 presents the specific inspections to be carried out following specified events. All events involve immediate inspection by Teck staff, followed if required by notification to or inspection by the Engineer of Record.

Item	Event	Action	Comment
	Earthquake M5 or bigger within 100	Immediate inspection by Teck staff	Call the Engineer of Record if damage is noted
	km	Read all instruments within one week	Send instrument data to the Engineer of Record
Embankments	Earthquake M6 or bigger within 100 km	Inspection by the Engineer of Record Read all instruments	
	Rainfall (50 year event): 6 hour > 40 mm 24 hour > 56 mm Snowpack (50 year event): Accumulated snow water equivalent > 360 mm	Check and record water ponding Check dam toe seepage daily Drawdown water level if necessary	

Table III-2 Event Driven Inspections

Item	Event	Action	Comment
	DWTP water delivery system fails	Check water level in the ARD Pond and Iron Pond daily Check rainfall daily Prepare standby pumps if required	Call the Engineer of Record if one pond is more than 75% full
	Instability or noticeable deformation, displacement of riprap.	Inspection by the Engineer of Record	
Surface Water Conveyance System	Rainfall (50 year event): 6 hour > 40 mm 24 hour > 56 mm Snowpack (50 year event): Accumulated snow water equivalent > 360 mm	Check and record water flow and ponding Check channels for debris Check channels for damage to riprap lining	

Annual Inspections

Annual inspections shall be carried out by the Engineer of Record for the tailings facilities for Sullivan Mine. The objective of the annual inspection is to confirm the routine inspections carried out, and to carry out a review of the conditions of the facilities and facility operation. The site water balance is reviewed to confirm the inputs and assumptions are still valid according to the current conditions.

The Engineer of Record issues an annual inspection report to the Mine Manager containing observations and recommendations. This report provides information to be used to revise the operation, maintenance, and surveillance programs as necessary and to assist in planning for future operation of the facility. The annual inspection reports are issued to the British Columbia Ministry of Environment (BC MOE) by March 31 each year (as stated in Permit No. 74). Copies of the annual inspection report are to be stored at Sullivan Mine.

III.2 INSTRUMENT DATA SUMMARY

The lists of active instruments and measurement points, along with alarm notification levels and maximum readings from the 2023 DSI reporting period, are shown in Tables AIII.3, AIII.4, AIII.5, and AIII.6. Updated instrument readings were provided to KCB by Vast Resources (Vast) and Teck staff via Geoexplorer on several occasions from September 2022 to August 2023. Vast of Cranbrook, British Columbia is contracted by Teck to read the pneumatic and standpipe piezometers. The daily/weekly readings for the weirs and ARD Pond standpipes were performed by Teck staff. Copies of the plots that were produced for each impoundment area are included in Appendix IV through Appendix X.

Table III-3 Active Piezometers – Iron TSF

Group Designation	Piezometer No.	Northing	Easting	Elevation Ground (m)	Top of Casing Elevation (m)	Tip/Bottom of Casing (m)	General Location	Instrument Type	Recommended Reading Frequency	Notification Level (m)	Max Measured Piezometer Level In 2023 ¹ (m)
								Iron TSF		·	·
	P91 – 1	5500541.5	576470.5	1037.3	N/A	1023.0	Dike	Pneumatic	Three times a user	1028.4	1023.1 2022-10-30
	P91 – 2A	5500512.5	576459.9	1029.7	N/A	1020.1	Road	Pneumatic	Three times a year (spring, summer and fall)	1026.9	1022.8 2022-10-30
	P91 – 2B	5500511.9	576462.4	1029.3	N/A	1021.5	Road	Pneumatic		1026.9	1023.0 2022-10-30
Line 6+00	SUL-ID-VWP-				Tip A:	1017.8		VWP		Pending Review	
	20-08 A, B &	5500540.0	576465.0	1042.0	Tip B:	1022.6	Crest	VWP		Pending Review	
					Tip C:	1031.9		VWP		Pending Review	
	SUL-ID-VWP- 20-09	5500540.0	576442.0	1025.9	N/A	1020.8	Тое	VWP		Pending Review	
	SB – P15	5500739.4	576803.0	1033.9	N/A	1029.0	Iron TSF	Pneumatic		1036.2	1032.3 2023-07-10
	P91 – 3A	5500660.4	576707.5	1038.4	N/A	1008.6	Dike	Pneumatic		1024.8	1023.2 2022-10-30
	P91 – 3B	5500661.3	576708.4	1038.3	N/A	1023.7	Dike	Pneumatic		1025.8	1023.7 N/A
Line 16+00	P91 – 3C	5500660.4	576709.0	1038.9	N/A	1021.3	Dike	Pneumatic		1025.8	1021.7 2023-04-08
	P91 – 4	5500630.6	576730.8	1031.5	N/A	1017.2	Bench	Pneumatic	Three times a year	1022.0	1020.0 2022-10-30
	P92 – 20	5500593.9	576760.7	1033.0	N/A	1010.4	Bench	Pneumatic (spring, summer and fall)		1015.9	1015.0 2023-07-10
	P92 – 21	5500595.8	576762.3	1033.0	N/A	1012.2	Bench	Pneumatic	,	1015.9	1015.4 2023-07-10
	P91 – 5A	5500482.1	576931.7	1039.7	N/A	1017.7	2400 Bench at Dike	Pneumatic		1031.8	1030.6 2023-07-10
Line 24+00	P91 – 5B	5500786.8	576930.2	1039.7	N/A	1026.7	2400 Bench at Dike	Pneumatic		1030.0	1027.4 2023-04-08
	P91 - 6	5500752.7	576941.0	1031.5	N/A	1020.5	2400 Bench at Dike	Pneumatic		1023.6	1022.6 2022-10-30
Line 30+00	P92 – 1	5500893.9	577066.3	1035.1	N/A	1021.1	91 Dike	Pneumatic		1033.0	1031.1 2023-07-10
	P92 – 2	5500865.9	577113.8	1028.6	N/A	1024.0	Slope	Pneumatic	Monthly	1027.8	1026.2 2023-07-10
	P92 – 6	5501125.1	577156.5	1042.1	N/A	1024.2	91 Dike	Pneumatic	Three times a year	1033.6	1031.6 2022-10-30
Line 38+00	P92 – 7	5501118.0	577174.9	1040.2	N/A	1029.6	Slope	Pneumatic	(spring, summer and fall)	1032.7	1030.1 2022-10-30
	P92 – 9	5501097.9	577314.6	1029.9	N/A	1025.3	Тое	Pneumatic		1028.4	1027.0 2023-07-13

Max 2023 Level Relative To 2022 ²	Comment
\leftrightarrow	
\checkmark	
\leftrightarrow	
\checkmark	
\checkmark	
\leftrightarrow	Dry
\checkmark	
\checkmark	
\checkmark	
\leftrightarrow	
\checkmark	
\uparrow	
\leftrightarrow	
\checkmark	

Group Designation	Piezometer No.	Northing	Easting	Elevation Ground (m)	Top of Casing Elevation (m)	Tip/Bottom of Casing (m)	General Location	Instrument Type	Recommended Reading Frequency	Notification Level (m)	Max Measured Piezometer Level In 2023 ¹ (m)	Max 2023 Level Relative To 2022 ²	Comment
	Iron TSF												
	P92 – 11	5501217.8	577335.4	1031.5	N/A	1025.0	Тое	Pneumatic		1028.4	1025.5 2022-10-30	\leftrightarrow	
	P91 – 11A	5501258.1	577172.2	1042.4	N/A	1027.0	91 Dike	Pneumatic		1036.7	1033.3 2022-10-30	\leftrightarrow	
Line 42+00	P91 – 11B	5501258.1	577172.2	1042.3	N/A	1029.9	91 Dike	Pneumatic		1036.7	1033.2 2022-10-30	\leftrightarrow	
	P91 – 12	5501209.4	577418.1	1040.9	N/A	1029.7	Slope	Pneumatic		1034.5	1032.8 2022-10-30	\leftrightarrow	
	P92 - 16	5501237.6	577246.4	1037.3	N/A	1027.6	Slope	Pneumatic		1030.6	1029.1 2023-07-13	\leftrightarrow	
	P92 - 13	5504074.8	577182.3	1040.5	N/A	1031.3	91 Dike	Pneumatic		1037.3	1031.3 2023-07-18	\leftrightarrow	Dry
Line 45+00	P92 - 14	5504071.7	577199.9	1037.4	N/A	1029.6	Slope	Pneumatic		1036.8	1033.8 2022-10-30	4	
	P92 - 15	5501320.2	577314.9	1030.3	N/A	1029.0	Тое	Pneumatic		1030.3	1029.0 2023-07-13	\leftrightarrow	Dry
Line 54+00	P5	5501660.5	577228.4	1039.1	1041.6	1037.4	Toe at Siliceous Cell #1	Standpipe	Annually	1039.5	1038.6 2023-04-08	\leftrightarrow	
	P92 – H	5500665.1	576891.7	1025.6	N/A	998.1	21+00	VWP	Remotely monitored (hourly readings). Review data monthly.	1032.0	1025.5 2022-09-01	\checkmark	
Toe Piezometers	P92 – 25	5500806.7	577125.8	1022.9	N/A	999.0	28+00	Pneumatic	Monthly	1032.0	1029.2 2023-05-12	\leftrightarrow	
	P92 – 26	5500550.3	576802.5		1019.8	1009.1	16+00	Standpipe	Three times a year (spring, summer and fall)	1015.0	1014.3 2023-07-10	\checkmark	

1. 2023 reporting period runs from September 1, 2022 to August 31, 2023.

2. Water levels are considered equal if differences are ≤ 0.1 m.

Table III-4Active Piezometers – Old Iron TSF

Group Designation	Piezometer No.	Northing	Easting	Ground Elevation (m)	Top of Casing Elevation (m)	Tip/Bottom of Casing (m)	General Location	Instrument Type	Recommended Reading Frequency	Notification Level	Max Measured Piezometer Level In 2023 ¹	Max 2023 Level Relative To 2022 ²	Comment
	Old Iron TSF												
	P93 – 17	5500680.3	575451.9	1043.0	1043.0	1025.8	Dike	Standpipe		1037.3	1036.1 2022-10-30	\checkmark	
	P93 – 18	5500701.7	575475.6	1044.4	1044.7	1028.3	Dike	Standpipe	Three times a year	1039.0	1037.8 2022-10-30	\leftrightarrow	
	P96 – 08				N/A	Unknown	MCE Buttress	Pneumatic	(spring, summer and fall)	2.6 ²	-		Replaced with new vibrating wire piezometer in 2018.
Old Iron Dike	P96 – 12	5500652.6	575518.6		N/A	Unknown	MCE Buttress	Pneumatic		0.9 ³	0.0 2022-10-30	\leftrightarrow	dry
Old Iron Dike	SUL-OID-VWP-	5500688.4	575449.2	1043.4	Tip A:	1025.8	MCE	VWP		Pending review	1036.7 2022-09-01	\checkmark	
	18-01 A&B	5500088.4	575449.2	1043.4	Tip B:	1036.5	Buttress	VWP	Remotely monitored (hourly	Pending review	1036.5 2022-11-07	\leftrightarrow	dry
	SUL-OID-VWP-	5500633.2	E7E421 2	1040.1	Tip A:	1016.6	MCE	VWP	readings). Review data monthly.	Pending review	1034.1 2022-09-01	\checkmark	
	18-02 A&B	5500655.2	575451.2	1040.1	Tip B:	1035.5	Buttress	VWP		Pending review	1035.4 2022-11-14	\leftrightarrow	
Iron TSF	P93 – 19	5500962.3	575892.0	1042.6	1043.6	1025.6	Dike	Standpipe	Annual	1040.15	1039.3 2023-04-08	\checkmark	
Divider Dike	P93 – 20	5501191.4	575943.2	1044.1	1045.3	1026.4	Dike	Standpipe	Annual	1041.25	1039.7 2023-04-08	\checkmark	

Notes:

1. 2023 reporting period runs from September 1, 2022 to August 31, 2023.

2. Water levels are considered equal if differences are ≤ 0.1 m.

3. Installation elevation not known.

Group Designation	Piezometer No.	Northing	Easting	Ground Elevation (m)	Top of Casing Elevation (m)	Tip/Bottom of Casing (m)	General Location	Instrument Type	Recommended Reading Frequency	Notification Level	Max Measured Piezometer Level In 2023 ¹	Max Le Relat 20
		1	1	1			1	Sili	ceous Dikes			1
	SP101	5501176.3	577719.3	1035.4	1036.4	1021.6	Cell #1	Standpipe		1023.9	1021.7 2023-04-10	÷
West Side Siliceous Dike #1	SUL-SD1-VWP-	5501167.0	577724.0	1035.0	Tip A:	1016.1	Cell #1	VWP	P105 annually unless change > 0.5	Pending Review		
	20-10 A & B	5501107.0	577724.0	1035.0	Tip B:	1019.8	Cell #1	VWP	m or at notification	Pending Review		
Middle Siliceous Dike #1	P105	5501220.6	577927.9	1033.0	1033.2	1021.3	Cell #1	Standpipe	Piezometers	1022.0 ³	1029.9 2023-04-10	+
	SP106	5501410.5	578028.7	1034.1	1034.7	1020.9	Cell #1	Standpipe		1021.4	1021.2 2023-04-10	+
East Side Siliceous Dike #1	SUL-SD1-VWP-	5501407	578035	1034.0	Tip A:	1015.1	Cell #!	VWP		Pending Review		
	20-11 A & B	5501407	578055	1034.0	Tip B:	1018.8	Cell #1	VWP		Pending Review		
	P231	5500962.2	577497.5	1031.2	1031.2	1019.5	Cell #2	Standpipe	Appual (Spring)	1022.3	1020.7 2023-04-10	÷
Crest Siliceous Dike #2	P257	5500971.0	577407.3	1031.3	1030.4	1022.0	Cell #2	Standpipe	– Annual (Spring)	1025.0	1022.4 2023-04-10	÷
Dike #2	P91 – 13	5500964.5	577413.7	1029.7	N/A	1020.0	Cell #2	Pneumatic	Three times a year (spring, summer and fall)	1025.0	1021.7 2022-10-30	÷
	P232	5500968.5	577854.3	1026.7	1027.3	1017.4	7+00 Slope	Standpipe	P232 annually unless change > 0.5	1019.3	1017.9 2023-04-10	÷
	P233	5500959.1	577853.8	1023.6	1024.3	1017.9	7+00 Slope	Standpipe	m then read all Piezometers	1019.3	1017.9 2023-04-10	÷
	SUL-SD3-VWP-	5500975.7	577751.2	1029.2	Tip A:	1008.8	3+00 Crest –	VWP		Pending review	1014.8 2022-11-15	+
Lines 3+00/7+00 Siliceous Dike #3	18-06 A&B	5500975.7	577751.2	1029.2	Tip B:	1018.5	3+00 crest	VWP	Remotely	Pending review	1018.0 2023-01-06	N,
	SUL-SD3-VWP- 18-07	5500920.1	577753.0	1017.1	Tip A:	1006.1	3+00 Toe	VWP	monitored (hourly readings). Review	Pending review	1014.5 2022-11-15	、
	SUL-SD3-VWP-	5500985.8	577874.7	1029.6	Tip A:	1009.6	- 7+00 Crest	VWP	data monthly.	Pending review	1014.0 2022-11-15	÷
	18-08 A&B	3300983.8	577874.7	1029.0	Tip B:	1017.3	7+00 crest	VWP		Pending review	1018.2 2023-08-29	÷
	P306	5501100.8	578268.9	1028.4	1029.6	1020.9	Crest	Standpipe		Pending review	1021.0 2023-08-07	÷
Siliceous Dike #3	P307	5501088.7	578278.1	1026.1	1027.0	1020.2	Crest	Standpipe	Monthly first 12	Pending review	1020.5 2023-08-07	÷
East Side	P308	5501293.0	578310.5	1028.8	1030.0	1020.8	Crest	Standpipe	– months then annual (in Spring)	Pending review	1021.2 2023-08-07	÷
	P311	5501659.8	578325.4	1028.8	1030.0	1022.5	Crest	Standpipe		Pending review	1022.8 2023-08-07	÷

x 2023 evel ative To 022 ²	Comment
\leftrightarrow	
	Max. 2019, 2020 & 2021 readings above notification
\leftrightarrow	level. Casing likely blocked.
\leftrightarrow	
\leftrightarrow	
N/A	Dry
\checkmark	
\leftrightarrow	
\leftrightarrow	
\leftrightarrow	Stopped reading in 2004 as dry since 1985. Reinstated 2019. Top of casing to be re-surveyed.
\leftrightarrow	Stopped reading in 2004 as dry since 1985. Reinstated 2019.Top of casing to be re-surveyed. Notification level to be determined following survey and review of readings since 2019.
\leftrightarrow	Stopped reading in 2004 as dry since 1985. Reinstated 2019. Top of casing to be re-surveyed. Notification level to be determined following survey and review of readings since 2019.
\leftrightarrow	Stopped reading in 2004 as dry since 1985. Reinstated 2019. Top of casing to be re-surveyed. Notification level

Group Designation	Piezometer No.	Northing	Easting	Ground Elevation (m)	Top of Casing Elevation (m)	Tip/Bottom of Casing (m)	General Location	Instrument Type	Recommended Reading Frequency	Notification Level	Max Measured Piezometer Level In 2023 ¹	Max 2023 Level Relative To 2022 ²	Comment
	Siliceous Dikes												
													to be determined following survey and review of
													readings since 2019.
	SUL-SD3-P-18-	5501022.5	578270.0	1018.1	1010.4	1004.9	Таа	Ctandaina		Pending	1013.4	\leftrightarrow	
Cilianaus Dika #2	10	5501022.5	578270.0	1018.1	1019.4	1004.8	Toe	Standpipe	Manthly	review	2022-11-05		
Siliceous Dike #3	SUL-SD3-P-18-	EE014E2 7	578349.6	1022.1	1022 5	1012 1	Таа	Standning	Monthly	Pending	1015.4	\leftrightarrow	
	11	5501452.7	578349.0	1022.1	1023.5	1013.1	Toe	Standpipe		review	2023-06-13		

1. 2023 reporting period runs from September 1, 2022 to August 31, 2023.

2. Water levels are considered equal if differences are ≤ 0.1 m.

3. P105 has exceed notification level since 2019 and after review of instrument data, is assumed to be blocked and not of concern for the stability of the Dike.

Table III-6	Active Piezometers – G	ypsum TSF
-------------	------------------------	-----------

Group Designation	Piezometer No.	Northing	Easting	Ground Elevation (m)	Top of Casing Elevation (m)	Tip/Bottom of Casing Elevation (m)	General Location	Instrument Type	Recommended Reading Frequency	Notification Level	Max Measured Piezometer Level In 2023 ¹	Max 2023 Level Relative To 2022 ²	Comment
			1		1		Gypsum	ISF	1				
	P93 – 1	5499811.6	576419.4	1013.8	1014.9	1000.0	Upstream	Standpipe		1008.0	1004.1 2022-11-05	\leftrightarrow	
	P93 – 2	5499811.0	576420.9	1014.4	1014.4	996.8	Upstream	Standpipe		1008.0	1004.0 2022-11-05	\leftrightarrow	
	P93 – 3	5499789.6	576411.6	1017.5	1016.1	998.0	Crest	Standpipe		1008.0	1003.7 2022-11-05	\leftrightarrow	
	P93 – 4	5499790.2	576409.5	1017.5	1016.4	995.4	Crest	Standpipe		1008.0	1003.8 2022-11-05	\checkmark	
West Gypsum Dike	P93 – 5	5499751.1	576388.7	1011.1	1011.9	993.3	Downstream	Standpipe	Three times a	Three times a 1008.0 year (spring,	994.9 2022-11-05	\leftrightarrow	
Line 10+00	SUL-WG- VWP-20-05	5499791.0	576402.0	1015.0	Tip A:	991.5	- Crest	VWP	summer and fall)	Pending Review			
	A & B	3499791.0	570402.0	1015.0	Tip B:	998.5	Crest	VWP		Pending Review			
	SUL-WG- VWP-20-06 A & B	5499762.0	576397.0	1014.0	Tip A:	1002.5	Slope	VWP		Pending Review			
		5499762.0	576597.0	1014.0	Tip B:	1006.8		VWP		Pending Review			
	SUL-WG- VWP-20-07	5499797.0	576376.0	994.1	N/A	991.1	Downstream	VWP		Pending Review			
West Gypsum Dike	P93 – 7	5499670.8	576688.2	1015.3	1016.6	997.2	Crest	Standpipe	Three times a year (spring, summer, and fall)	1008.0	997.4 2022-11-05	\leftrightarrow	
Line 20+00	SUL-WG-P- 18-03	5499599.9	576662.0	1001.5	1002.9	984.5	Тое	Standpipe	Monthly	Pending review	993.8 2022-09-09	\checkmark	
	P93 – 8	5499642.3	577074.1	1017.2	1017.7	1001.9	Upstream	Standpipe		1010.1	1007.6 2023-04-10	\checkmark	
East Gypsum	P93 – 9	5499642.6	577072.6	1017.2	1017.8	998.9	Upstream	Standpipe	- Annual	1010.1	1007.9 2023-04-10	\checkmark	
Dike Line 33+00	P93 – 10	5499640.6	580423.8	1017.5	1018.0	1002.6	Crest	Standpipe	Annuar	1009.5	1006.8 2023-04-10	\checkmark	
33700	P93 – 12	5499583.8	577073.5	1013.5	1013.0	1000.8	Тое	Standpipe		1004.7	1003.6 2023-04-10	\leftrightarrow	
	SUL-EG-P- 18-04	5499537.0	577196.9	1004.6	1005.9	998.1	Тое	Standpipe	Monthly	Pending review	1000.5 2023-05-12	\leftrightarrow	
East Gypsum	P93 – 13	5499669.6	577521.5	1016.8	1017.6	1000.3	Upstream	Standpipe	Annual	1002.5	1000.4 (5-Apr-2019)	N/A	Not read in 2020,2021, 2022 and 2023
Dike Line 48+00	P93 – 14	5499645.3	577521.9	1017.2	1017.7	1004.3	Crest	Standpipe		1005.6	1004.6 2023-04-10	\leftrightarrow	Dry, blocked at 13.3 m
-0100	SUL-EG-P- 18-05	5499566.3	577527.0	1003.1	1004.5	995.8	Тое	Standpipe	Monthly	Pending review	999.4 2022-09-09	\leftrightarrow	

1. 2023 reporting period runs from September 1, 2022 to August 31, 2023.

2. Water levels are considered equal if differences are ≤ 0.1 m.

3. P93 – 11 exceeded notification level but had not been read in last three monitoring periods. Continued monitoring required to confirm if instrument performing normally.

Table III-7	Active Piezometers – ARD Storage Pond

Group Designation	Piezometer No.	Northing	Easting	Ground Elevation (m)	Top of Casing Elevation (m)	Tip/Bottom of Casing Elevation (m)	General Location	Instrument Type	Recommended Reading Frequency	Notification Level	Max Measured Piezometer Level In 2023 ¹	Max 2023 Level Relative To 2022 ²	Comment
			1			1	ARD Storage Por	nd	1	1		1	
	PP01-01	5500675.6	575840.0	N/A	N/A	1041.7	North Dam	Pneumatic		1042.7	1041.7 2022-09-09	\downarrow	dry
	PP01-02	5500682.7	575834.9	N/A	N/A	1041.9	North Dam	Pneumatic		1042.7	1042.0 2023-05-12	\downarrow	
	PP01-03	5500552.0	575738.1	N/A	N/A	1038.8	North Dam	Pneumatic		1039.8	1038.8 2022-09-09	\downarrow	
	PP01-04	5500549.5	575743.1	N/A	N/A	1040.8	North Dam	Pneumatic		1041.8	1041.1 2023-04-10	\downarrow	
North Dam	ND-01	5500756.6	575907.3	1042.2	1042.7	1032.0	North Abutment	Standpipe	Monthly, with additional readings	1042.2	1040.2 2023-04-17	\downarrow	
	ND-02D	5500636.4	575769.0	1042.2	1042.7	1019.5	Тое	Standpipe	taken weekly when the Pond level is	1041.5	1040.3 2022-12-16	\downarrow	
	ND-02S	5500636.3	575768.9	1042.2	1042.7	1040.3	Тое	Standpipe	above 1040 masl, or daily when the	1041.5	1041.4 2023-04-08	\leftrightarrow	
	ND-03	5500542.8	575693.1	1038.4	1039.2	1025.1	Тое	Standpipe	Pond level is above 1045 masl. The pneumatic	1039.2	1038.3 2023-04-17	\downarrow	
	PP01-05	5500026.7	575892.8	N/A	N/A	1030.0	South Dam	Pneumatic	piezometers are to be read monthly.	1031.0	1031.1 2023-03-20	\leftrightarrow	2023 max above notification level
	PP01-06	5500020.4	575893.4	N/A	N/A	1029.2	South Dam	Pneumatic	- De read montiny.	1030.5	1031.1 2023-04-10	\leftrightarrow	2023 max and most recent reading above notification level
	SD-01	5500056.6	576006.3	1041.0	1041.6	1029.6	South Abutment	Standpipe		1041.0	1034.0 2023-04-08	\downarrow	
	SD-02	5499985.4	575904.0	1029.9	1030.5	1026.9	Тое	Standpipe		1029.9	1030.2 2023-05-22	\uparrow	2023 max and most recent reading above notification level
South Dam	SD-03	5499995.4	575737.2	1037.0	1038.1	1036.0	South Abutment	Standpipe		1037.0	1036.8 2022-09-09	\leftrightarrow	
	SUL-ARDSD- VWP-20-01	5500086.0	576003.0	1048.0	N/A	1037.54		VWP			1038.2 2022-09-01	\downarrow	Instrument began recording in October 2021
	SUL-ARDSD- VWP-20-02	5500060.0	576015.0	1041.0	N/A	1036.28		VWP	Remotely monitored (hourly	Pending	1037.7 2023-05-20	\downarrow	Instrument began recording in October 2021
	SUL-ARDSD- VWP-20-03	5500036.0	576030.0	1037.0	N/A	1033.19		VWP	readings). Review data monthly.	Review	1033.5 2022-11-16	\leftrightarrow	Instrument began recording in October 2021
	SUL-ARDSD- VWP-20-04	5500009.0	575972.0	1031.0000	N/A	1026.7700		VWP			1030.3 2023-03-27	\leftrightarrow	Instrument began recording in October 2021

2023 reporting period runs from September 1, 2022 to August 31, 2023.
 Water levels are considered equal if differences are ≤ 0.1 m.

 Table III-8
 Active Piezometers – Sludge Impoundment

Group Designation	Piezometer No.	Northing	Easting	Ground Elevation (m)	Top of Casing Elevation (m)	Tip/Bottom of Casing Elevation (m)	General Location	Instrument Type	Recommended Reading Frequency	Notification Level	Max Measured Piezometer Level In 2021 ¹	Max 2021 Level Relative To 2020 ²	Comment
	Sludge Impoundment												
	SUL-SPND- VWP-21-01	5497697.0	574643.0	890.5	N/A	884.71	North Dam	VWP			887.0 2022-11-15	\leftrightarrow	Instrument began recording in October 2021
North Dam	SUL-SPND- VWP-21-02	5497643.0	574659.0	894.5	N/A	879.57	North Dam	VWP			887.2 2022-11-15	\leftrightarrow	Instrument began recording in October 2021
	SUL-SPND- VWP-21-05	5497663.0	574643.0	894.5	N/A	884.04	North Dam	VWP	Remotely monitored (hourly	Pending	886.6 2022-11-15	\leftrightarrow	Instrument began recording in October 2021
	SUL-SPSD-VWP- 21-03	5497285.0	574865.0	888.0	N/A	879.85	South Dam	VWP	readings). Review data monthly.	review	886.1 2022-11-15	\leftrightarrow	Instrument began recording in October 2021
South Dam	SUL-SPSD-VWP- 21-04	5497186.0	574842.0	894.5	N/A	874.18	South Dam	VWP			885.7 2022-11-15	\leftrightarrow	Instrument began recording in October 2021
	SUL-SPSD-VWP- 21-06	5497240.0	574844.0	894.5	N/A	879.56	South Dam	VWP			885.3 2022-11-15	\leftrightarrow	Instrument began recording in October 2021

1. 2023 reporting period runs from September 1, 2022 to August 31, 2023.

2. Water levels are considered equal if differences are ≤ 0.1 m.

Table III-9 Active Settlement and Inclinometer Measuring Instruments

Туре	Instrument Number	Initial Elevation (m)	Location	Notification Level	Recommended Reading Frequency	Measured Level in 2021 (m)	
Iron Dike			·				
	SP330 ¹	1037.40	2+00			N/A	Surveyed
	SP331 ¹ 1042.44		9+00			N/A	Surveyed
Settlement plates	SP332 ²	1041.79	9+00	>25 mm over 3 years	Every 3 Years	N/A	Surveyed
	SP 92 – 07	1034.91	16+00			N/A	Surveyed
	SP 99 – 01 ³	1042.07	4+00			N/A	Surveyed
Dike Crest Survey	-	-	0+00 to 12+00 centerline, U/S, D/S dike crest	1042 m	Annually	N/A	
Gypsum TSF Dikes							
	SP97 – 01	1014.592	Line 10+00 Slope			N/A	
Settlement plates at West Gypsum Dike	SP97 – 05	1015.568	Line 10+00 Crest	>60 mm over 3 years	Annually	N/A	
	SP97 – 06	1015.936	Line 20+00 Slope			N/A	
Sondex gauge and Inclinometer at West	S94 – 01	N/A	Line10+00 Upstream	>90 mm over 3 years	Every 3 Years	N/A	Reading taken ir
Gypsum Dike	BI94-01	N/A	Line10+00 Upstream	N/A	Inactive	N/A	Inclinometer block
	SP97 – 03	1017.676	Line 33+00		Annually	N/A	
Settlement plates at East Gypsum Dike	SP97 – 04	1017.457	Line 48+00	- >60 mm over 3 years	Annually	N/A	
Sondex gauge and Inclinometer at East	S94 – 02	N/A	Line 33+00 Upstream	>60 mm over 3 years	Every 3 Years	N/A	Reading taken i
Gypsum Dike	BI94 – 02	N/A	Line 33+00 Upstream	>25 mm horizontal movement over 3 years	Every 3 Years	N/A	Reading in incl casing. Do not re
	SW (S1)	1019.264	Main Dike		Every 3 Years	N/A	Surveye
Settlement plates at N.E. Gypsum Dike	SE (S2)	1019.073	Main Dike	- >5 mm over 3 years	Every 3 Years	N/A	Surveyed
ARD Storage Pond							
	SP01-01	1048.009	North Dam			N/A	Surveye
	SP01-02	1048.224	North Dam			N/A	Surveyed
Settlement Plates	SP01-03	1048.113	North Dam	>25 mm over 3 years	Every 3 Years	N/A	Surveyed
Settlement Plates	SP01-04	1048.311	South Dam	>23 min over 3 years	Every 5 fears	N/A	Surveye
	SP01-05	1048.310	South Dam			N/A	Surveyed
	SP01-06	1048.351	South Dam			N/A	Surveye
Sludge Impoundment Dikes							
Dike Creet Survey			North Dike centerline, U/S, D/S dike crest	894.6	Annually	N/A	
Dike Crest Survey	-	-	South Dike centerline, U/S, D/S dike crest	894.6	Annually	N/A	

Notes:

1. SP330 and 331 lowered in 2006. (2) SP332 raised in 2004. (3) SP99-01 lowered in 2006.

2. Ground based survey is being replaced with InSAR review of settlement and movement trends.

Comment ²
urveyed in 2018. Less than 40 mm of settlement since 2007.
urveyed in 2018. Less than 65 mm of settlement since 2007.
urveyed in 2018. Less than 45 mm of settlement since 2007.
urveyed in 2018. Less than 35 mm of settlement since 2007.
urveyed in 2018. Less than 45 mm of settlement since 2007.
Moved to InSAR monitoring.
Settled 0 mm since 2017.
Settled 23 mm since 2017.
Settled 22 mm since 2017.
taken in 2019. Cumulative change since 1994 of 1.720, incremental
change since 2016 of 0.14.
er blocked since 2006 (last read in 2004). Do not replace unless other
instruments indicate signs of movement.
Settled 17 mm since 2017
Settled 28 mm since 2017.
taken in 2019. Cumulative change since 1994 of 1.02, incremental
change since 2016 of 0.08.
g in inclinometer are now very unreliable due to settlement of the
to not replace unless other monitoring indicate signs of movement.
Surveyed in 2018. Less than 2 mm of settlement since 2007.
urveyed in 2018. Essentially 0 mm of settlement since 2007.
Surveyed in 2018. Less than 7 mm of settlement since 2001
urveyed in 2018. Less than 15 mm of settlement since 2001.
urveyed in 2018. Less than 19 mm of settlement since 2001.
Surveyed in 2018. Less than 8 mm of settlement since 2001.
urveyed in 2018. Essentially 0 mm of settlement since 2001.
Surveyed in 2018. Less than 9 mm of settlement since 2001.

		Notification									We	ir Readin	gs and Obs	ervations	– Septembe	er 1, 2022 t	o August 3	31, 2023								
Structure/	Min. Current		September		Octo	ober	Nover	mber	Decem	nber	Janu	ary	Febru	lary	Ma	rch	A	oril	M	lay	Ju	ne	Jul	y	Au	gust
Weir	Reading Frequency		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max. flow	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max. flow	Min.	Max.	Min.
			flow m ³ /	flow	flow m ³ /	flow	flow m³/c	flow	flow m³/d	flow	flow m³/o	flow	flow m³/c	flow	m³/0	TIOW	flow m ³	flow /day	flow m ³	flow /day	flow m ³ /	flow	m³/c	TIOW	flow m ³	flow /day
	Weekly			uay				uay	iii /u	ay		2 a y														uay
ARD Pond/Weir #1 (ARDWU)	with daily readings between March 1 and May	150 m³/day	20.42	0.11	7.68	0.11	2.77	0.11	0.11	0.11	13.13	0.11	41.17	0.11	54.93	13.13	29.71	3.87	29.71	1.51	7.68	0.11	0.11	0.11	7.68	0.11
ARD Pond/Weir #2	30. Daily readings when the pond level is > 1045 m. Read for 3 days following rainfall event >10 mm.	175 m³/day	0.88	Dry	5.78	Dry	5.78	Dry	0.88	Dry	10.40	Dry	16.73	Dry	79.50	12.72	24.93	0.88	24.93	0.11	5.78	Dry	Dry	Dry	Dry	Dry
AIP ¹ Dike/Weir #3 (AIPWU)	Weekly with daily readings between March 1	50 m³/day	0.93	0.12	2.82	Dry	25.93	0.12	0.34	Dry	Dry	Dry	Dry	Dry	2.82	Dry	2.82	0.12	2.82	0.12	2.82	0.12	2.82	0.93	2.82	0.12
AIP ¹ Dike/Weir #4	and May 30. Read for 3 days following rainfall event >10 mm.	500 m³/day	26.17	9.56	20.76	1.73	34.01	3.51	26.17	Dry	19.53	Dry	27.64	Dry	333.59	26.17	93.33	14.02	65.35	14.02	26.17	14.02	14.02	9.56	14.02	3.51
West Gypsum Cell/Toe of Gravel Buttress at Cow Creek (STA. 11+00)	Visual Reading Annually	Cloudy flow		Flow is clear (observed as part of May 2023 site visit)																						
East Gypsum Cell/Toe of Dike Adjacent to James Creek	Visual Reading Annually	Cloudy flow										FI	ow is clear	(observed	as part of N	Лау 2023 si	ite visit)									

Table III-10 Active Seepage Measurements September 1, 2022 – August 31, 2023

Notes:

1. AIP = Iron Pond

App III_2023QPO_Rev.2.docx A05807A23

Table III-11 Active Pond Water Level Monitoring Locations

Туре	Description	Location	Primary Purpose	Reading Frequency	Notification Level 1	Notification Level 2	Notification Level 3	General Water Level Information (m)
lron Pond Water Level	Electronic readout unit.	Iron Dike Pump Station	Overtopping	Daily	1038.5 (Pump to ARD Pond)	1038.9 (As for Level 1 and notify EOR, minimize inflows, consider pumping to DWTP)	1040.5 (As for Level 2 and notify MEMPR/MOE, enact EPRP)	1037.3 Measured low water 1041.61 Measured high water 1041.0 ¹ (Spillway invert) 1042.0 (Top of dike)
Pond Water Level	Electronic readout unit with pressure transducer in bottom of wet well at el. 1034 m.	Pump wet well, data transmitted to DWT control room through the PLC system	Dam Stability	Daily	1045.5 (Pump to DWTP)	1046.5 (As for Level 1 and notify EOR, minimize inflows (e.g. divert 3700/3900 to Iron Pond))	1046.9 (As for Level 2 and notify MEMPR/MOE, enact EPRP)	1036.6 Measured low water 1043.4 Measured high water 1046.5 9 Maximum operating level) 1047.4 (Spillway invert) 1048.0 (Top of dam)

Notes:

1. The surveyed as-constructed invert elevations for the Iron Pond/Emergency Spillway varied from 1040.8 m to 1041.4 m, with the design elevation being 1041.0 m.

APPENDIX IV

.

Iron Dike Instrumentation

Iron Dike Line 6+00 Piezometer Readings

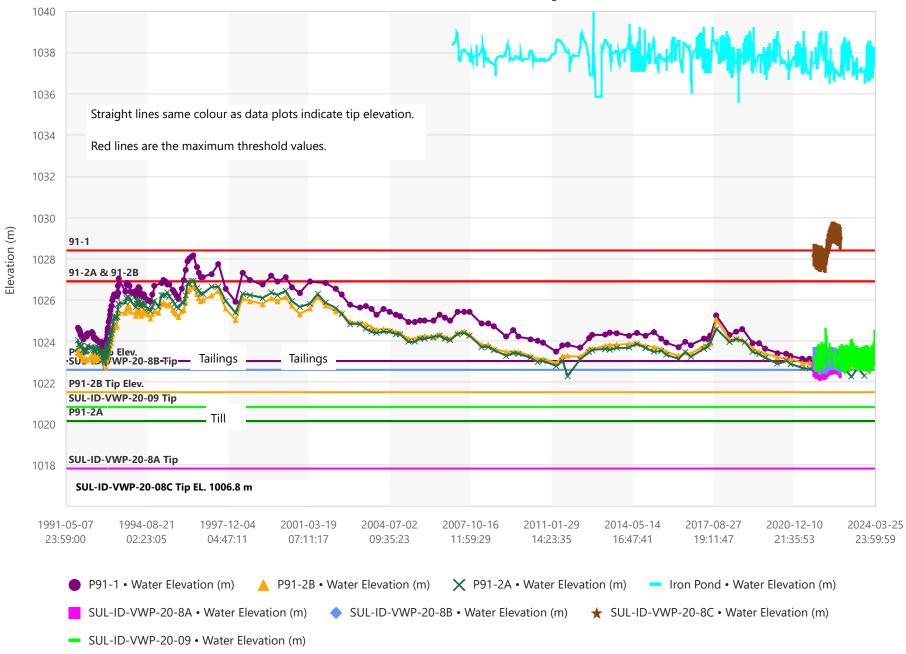
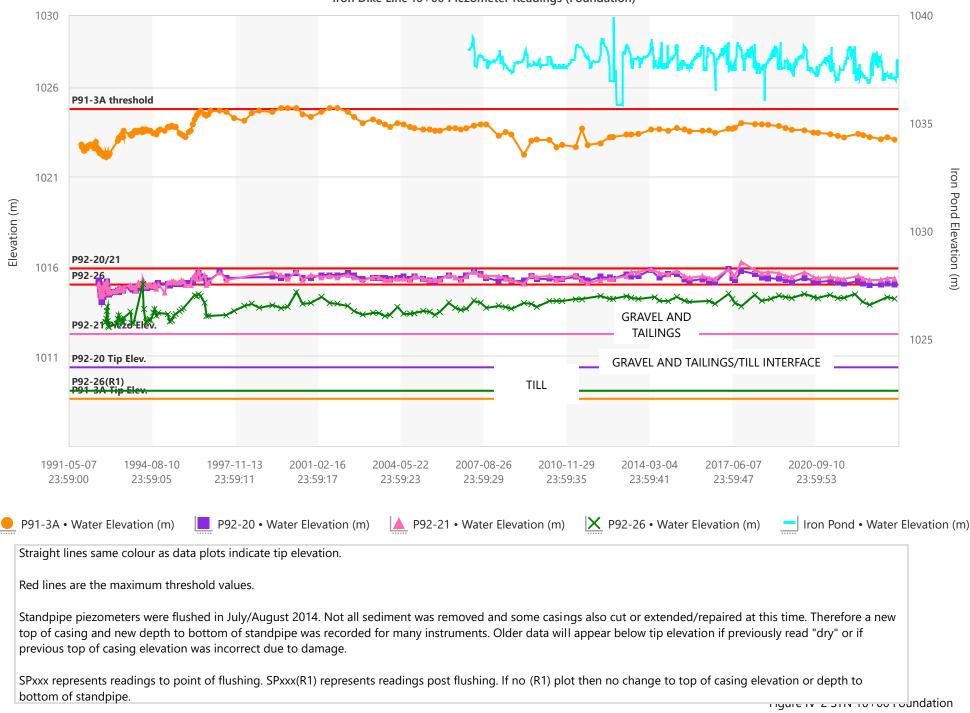



Figure IV-1 STN 6+00

Iron Dike Line 16+00 Piezometer Readings (Foundation)

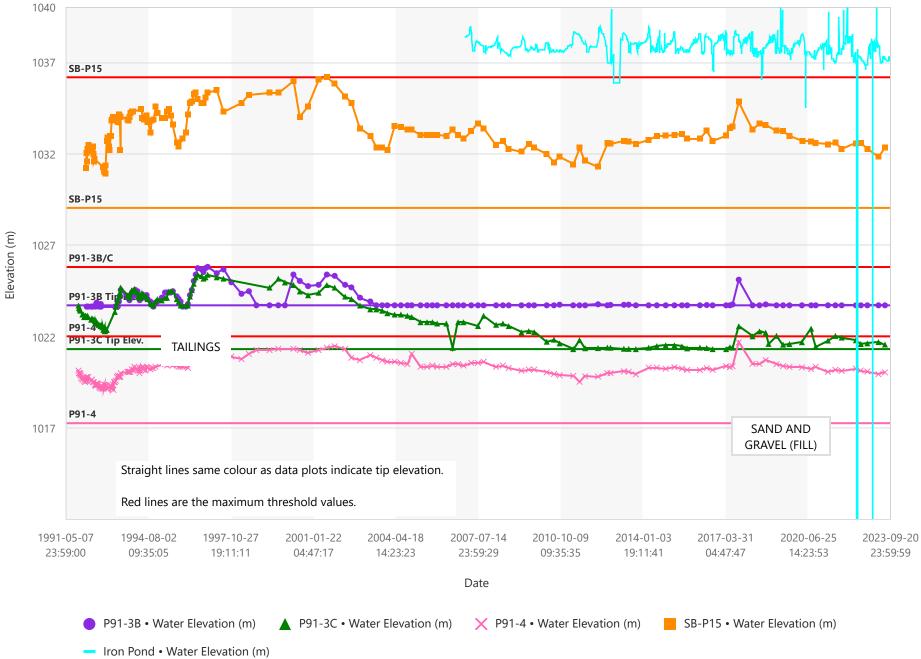


Figure IV-3 STN 16+00 Tailings

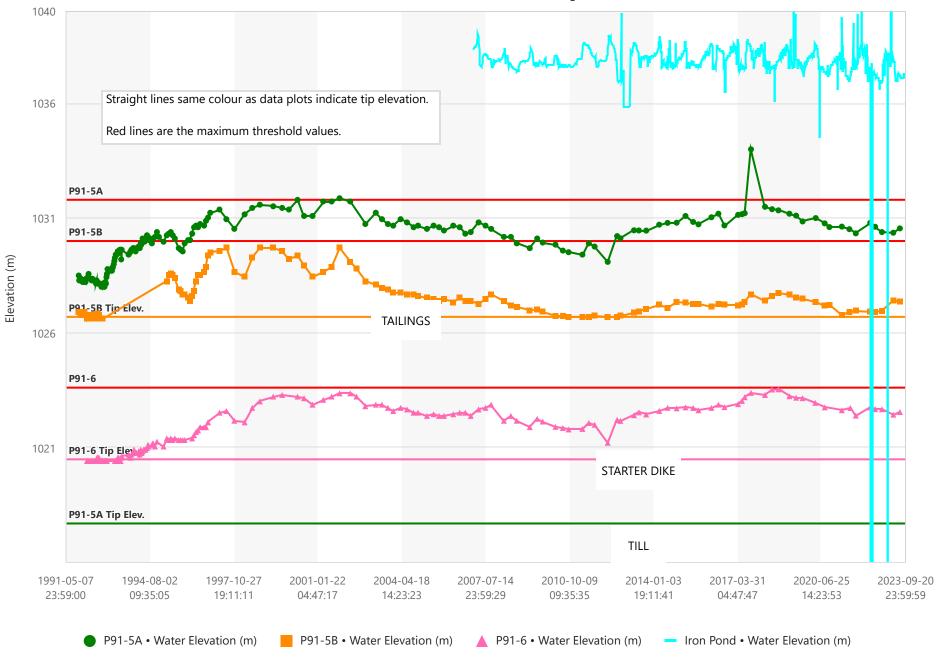
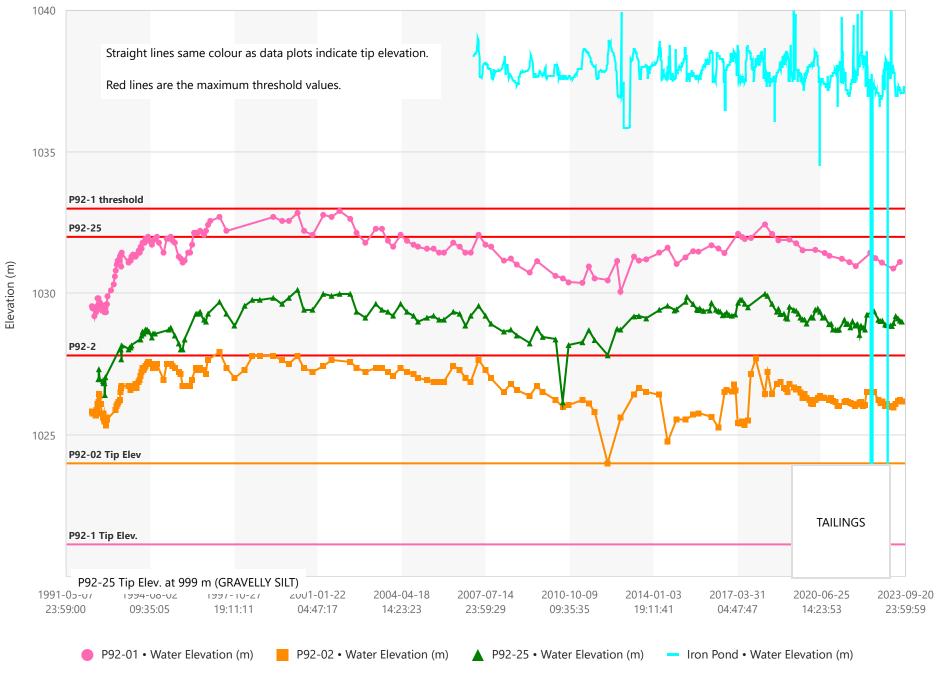
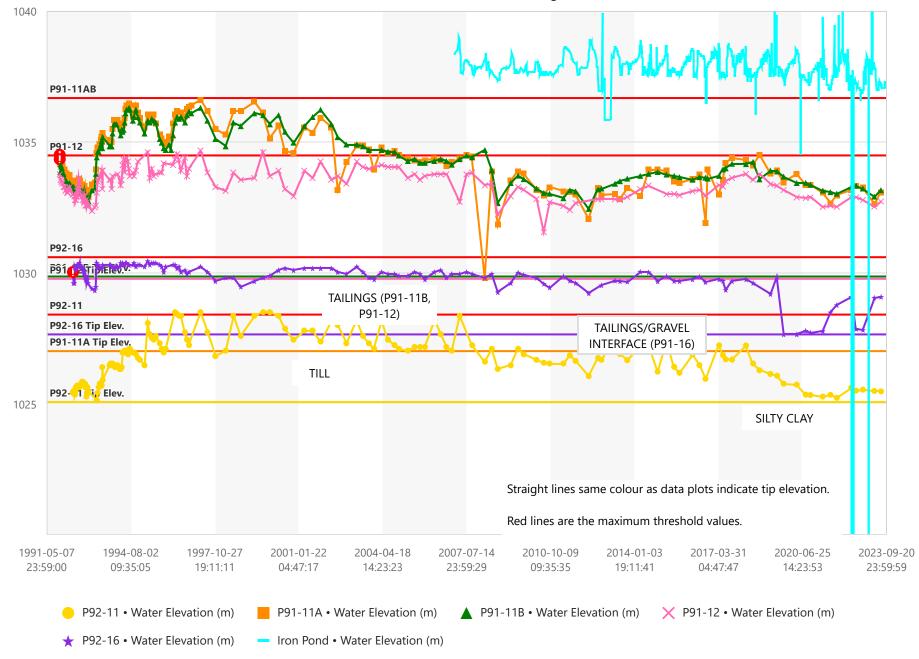


Figure IV-4 STN 24+00

Iron Dike Line 30+00 Piezometer Reading




Figure IV-5 STN 30+00

Iron Dike Line 38+00 Piezometer Readings

Elevation (m)

Figure IV-6 STN 38+00

Elevation (m)

Figure IV-7 STN 42+00

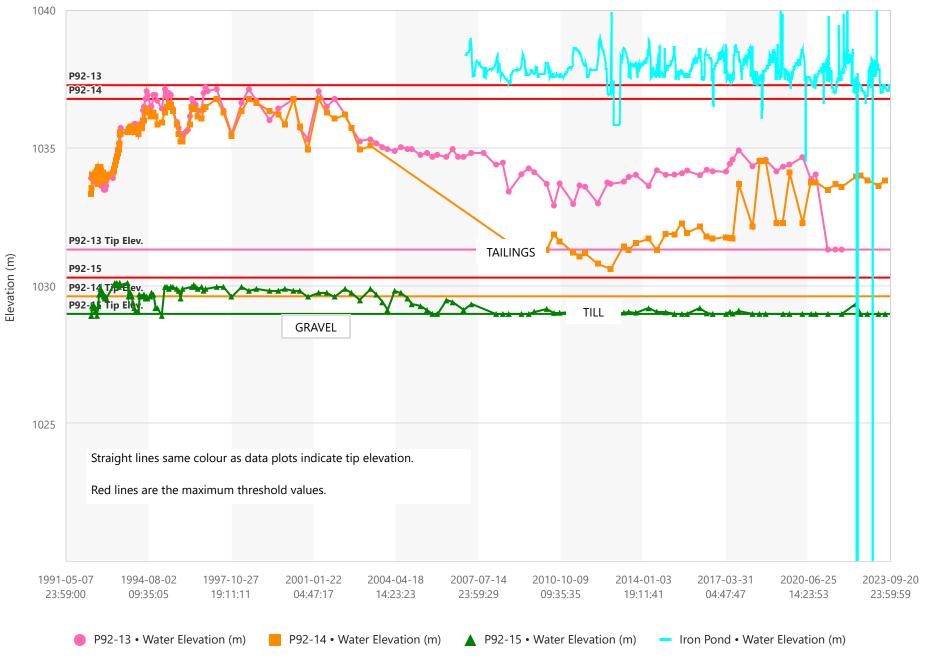
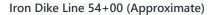
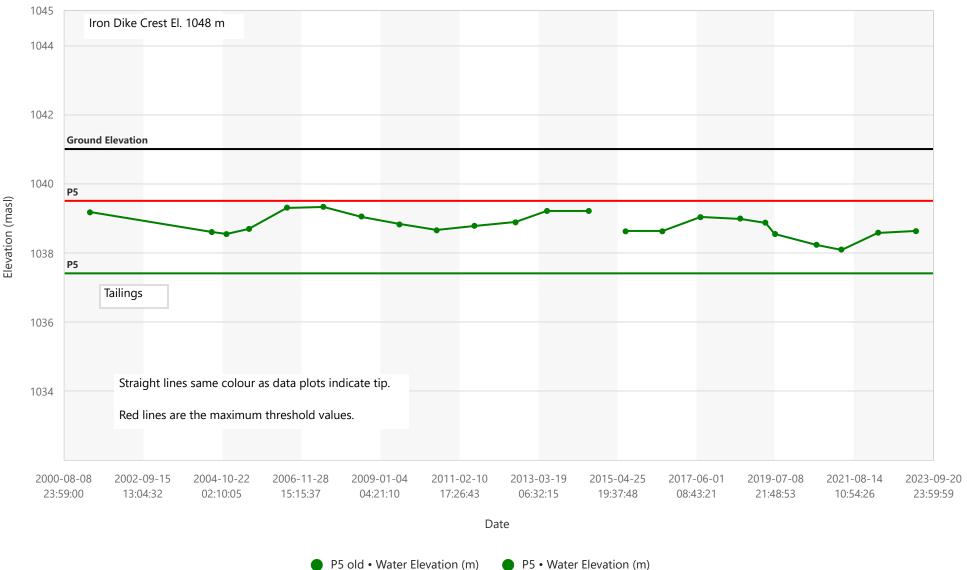
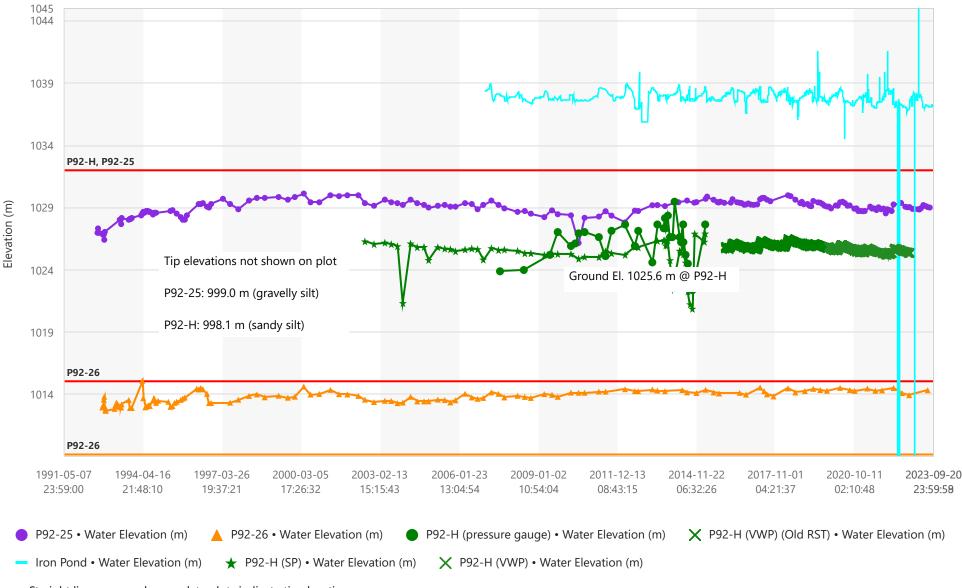




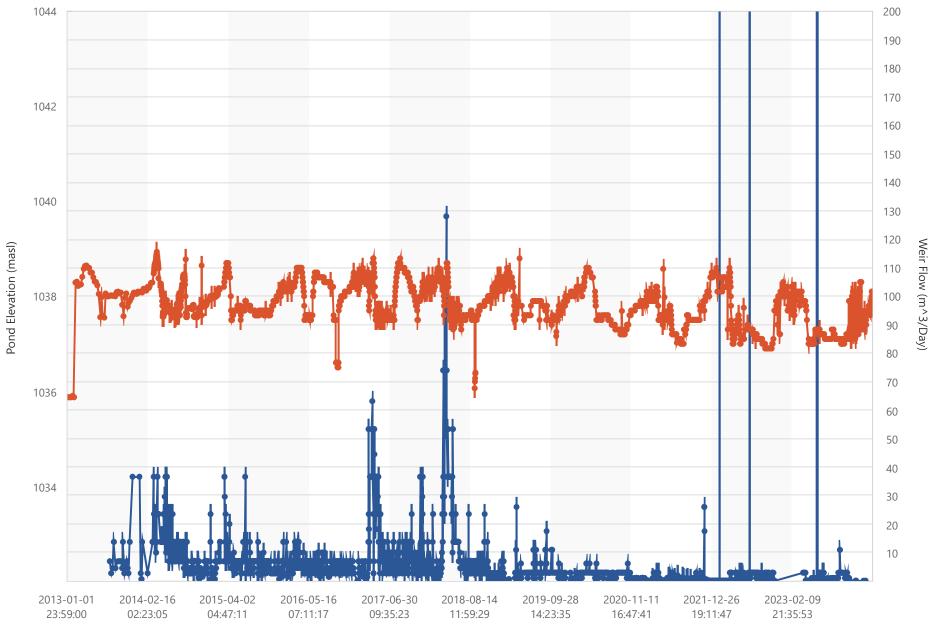
Figure IV-8 STN 45+00



Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

SPxxx represents readings to point of flushing. SPxxx(R1) represents readings post flushing. If no (R1) plot then no change to top of casing elevation or depth to bottom of standpipe. Figure IV-9 Line 54+00

Iron Dike Toe Piezometer Readings

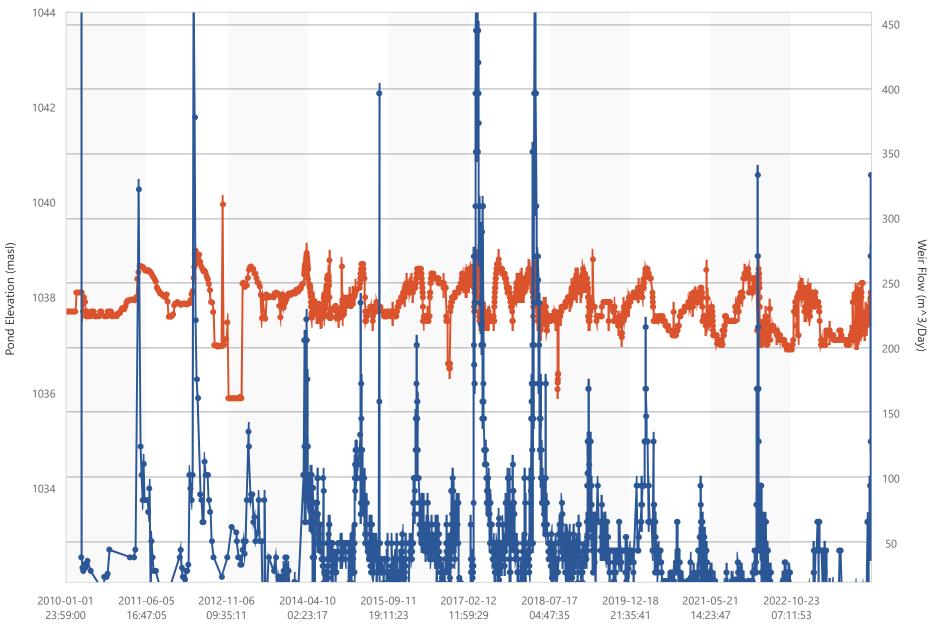


Straight lines same colour as data plots indicate tip elevation.

Red lines are the maximum threshold values.

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

Figure IV-10 Toe Piezometers

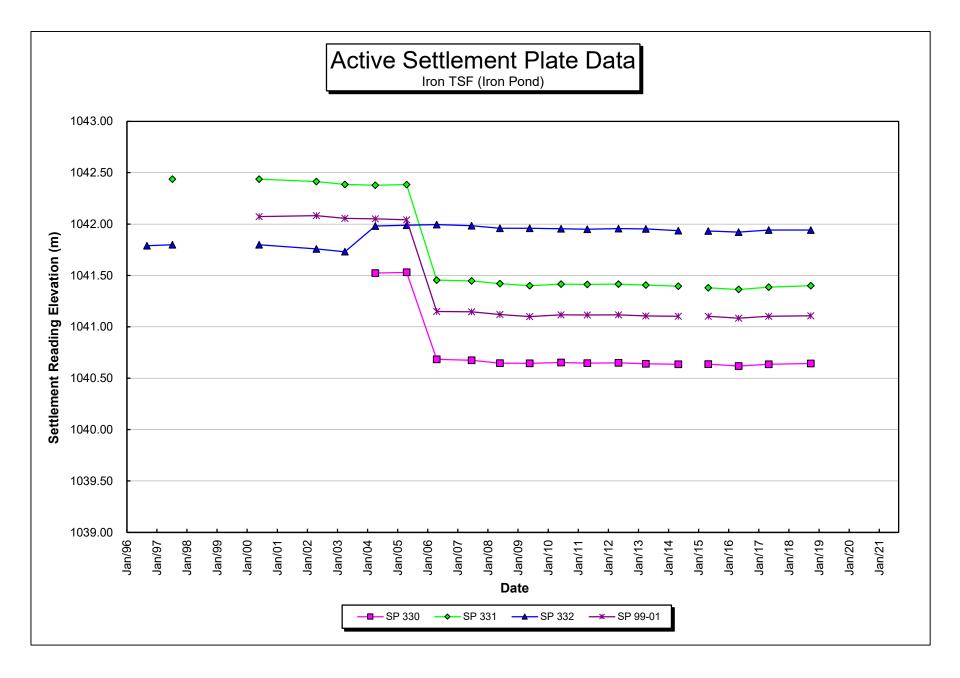


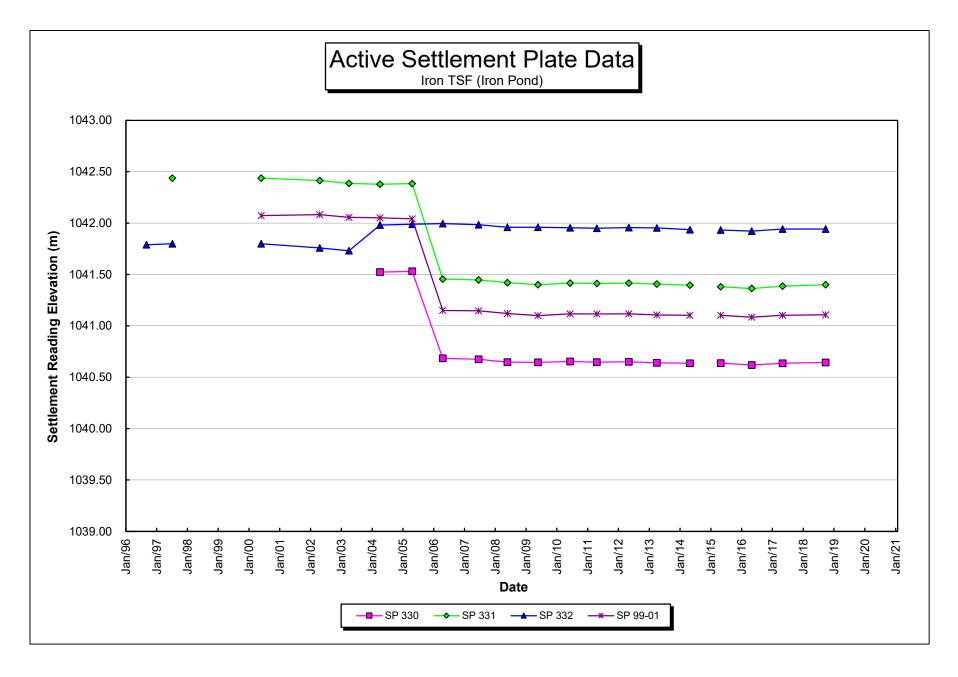
IRON TSF WEIR #3 (AIPWU) Flows

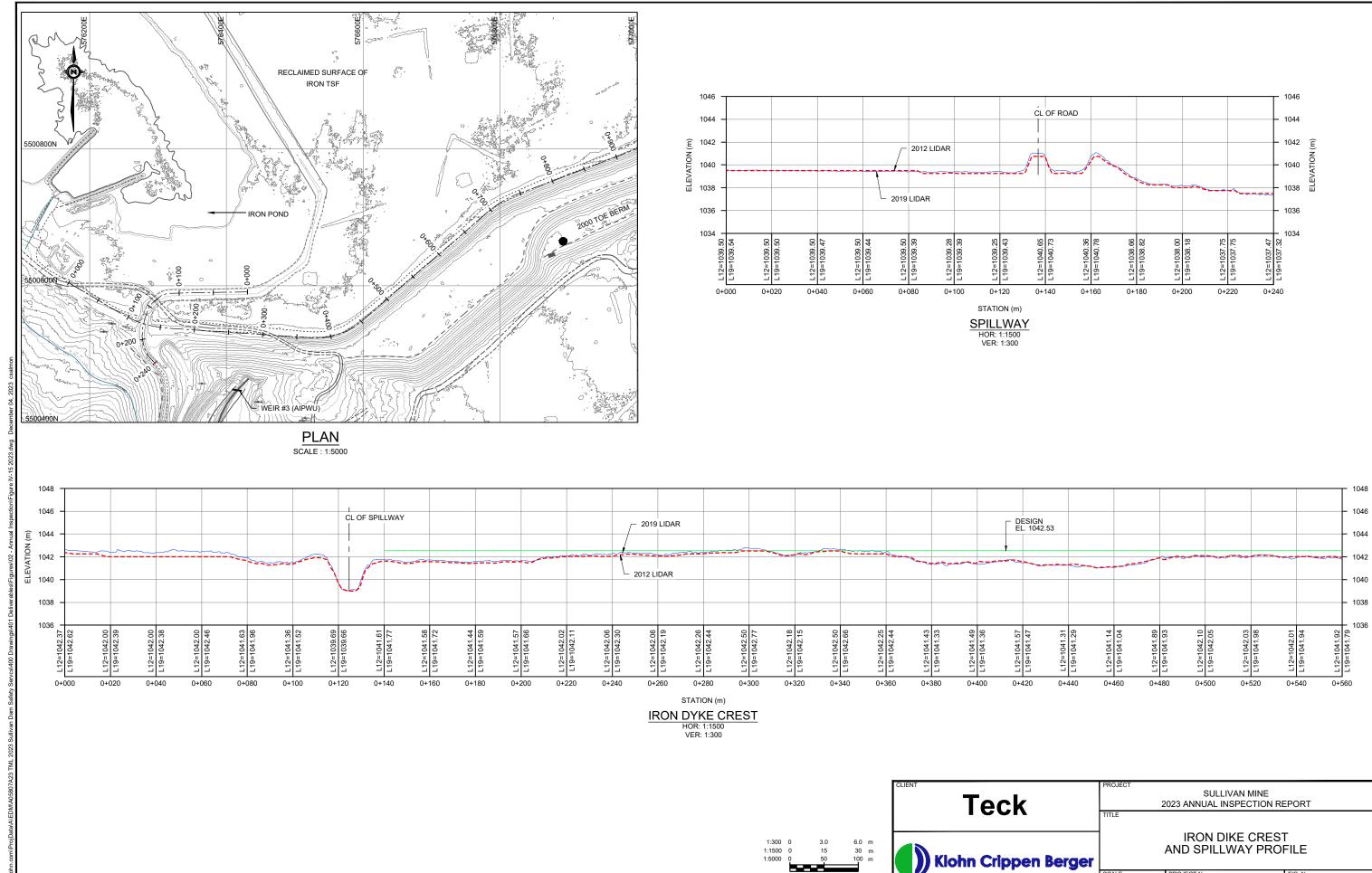
Date

Figure IV-11a AIPWU Weir Plot

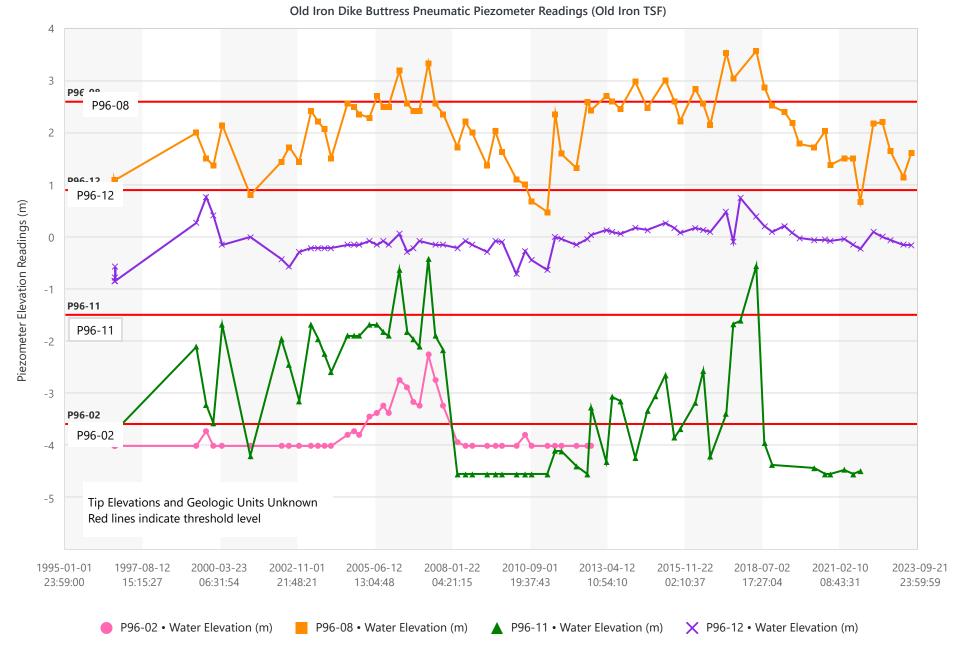
IRON TSF WEIR #4 Flows




Date


Figure IV-11b AIP Weir Plot

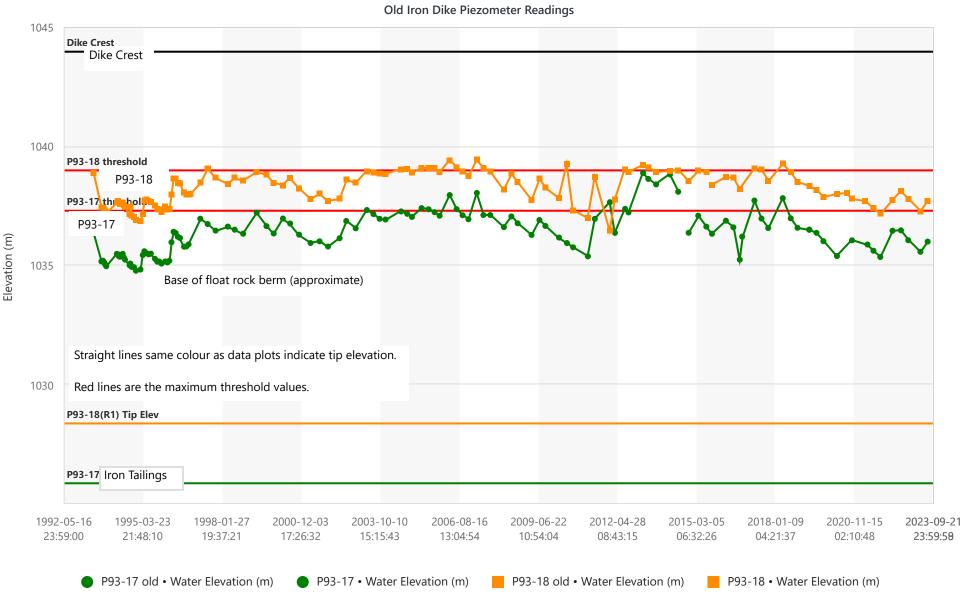
WEIR 4 ID • Calc1


k	SULLIVAN MINE 2023 ANNUAL INSPECTION REPORT			
• •	TITLE	IRON DIKE CRES	г	
pen Berger	AND SPILLWAY PROFILE			
	SCALE AS-SHOWN	PROJECT No. A05807A23	FIG. No. IV-15	KCB-FIG-E

APPENDIX V

.

Old Iron Instrumentation



Elevations are relative to elevation of top of tailings or original ground prior to construction of the toe berm in 1996, i.e. m of head measured - difference between top of berm in 1996 and estimated top of ground prior to berm construction.

P96-02: Destroyed P96-11: Slow leak 2008 unable to get reading until 2011, erratic data since 2012, replaced in 2018

Figure V-1 Old Iron Dike Buttress

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

P-xxx old represents readings to point of flushing. P-xxx represents readings post flushing. If no "old" plot then no change to top of casing elevation or depth to bottom of standpipe.

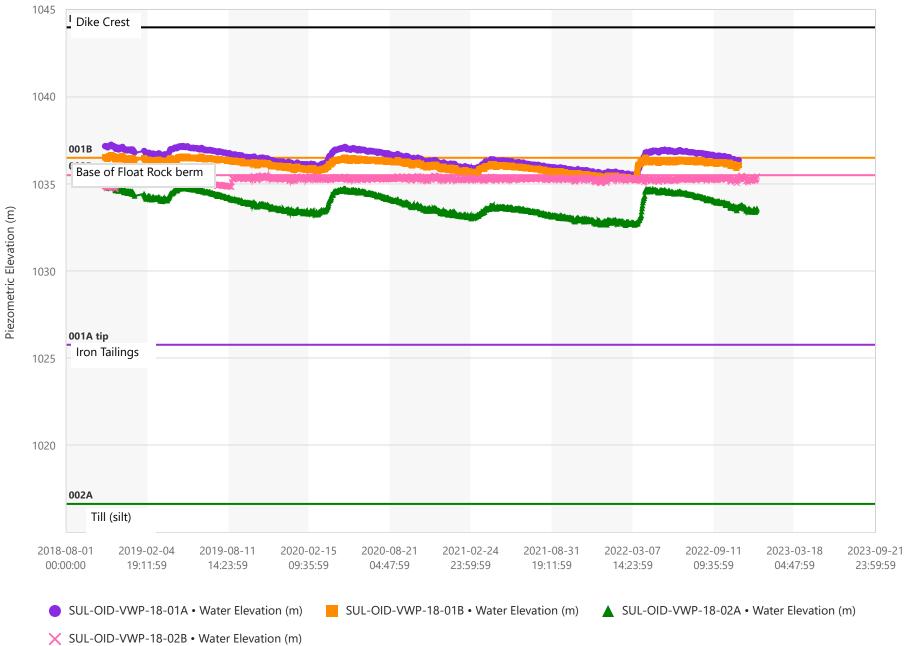
Figure V-2 Old Iron Dike

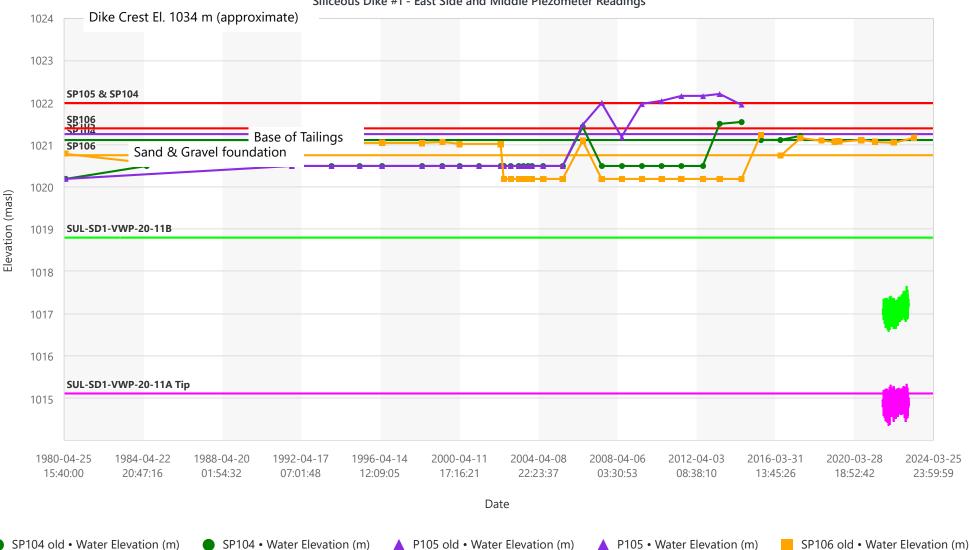
P93-19 • Water Elevation (m)

P93-20 • Water Elevation (m) — Iron Pond • Water Elevation (m)

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

Figure V-3 Iron TSF Divider Dike




Figure V-4 Old Iron Dike VWP

APPENDIX VI

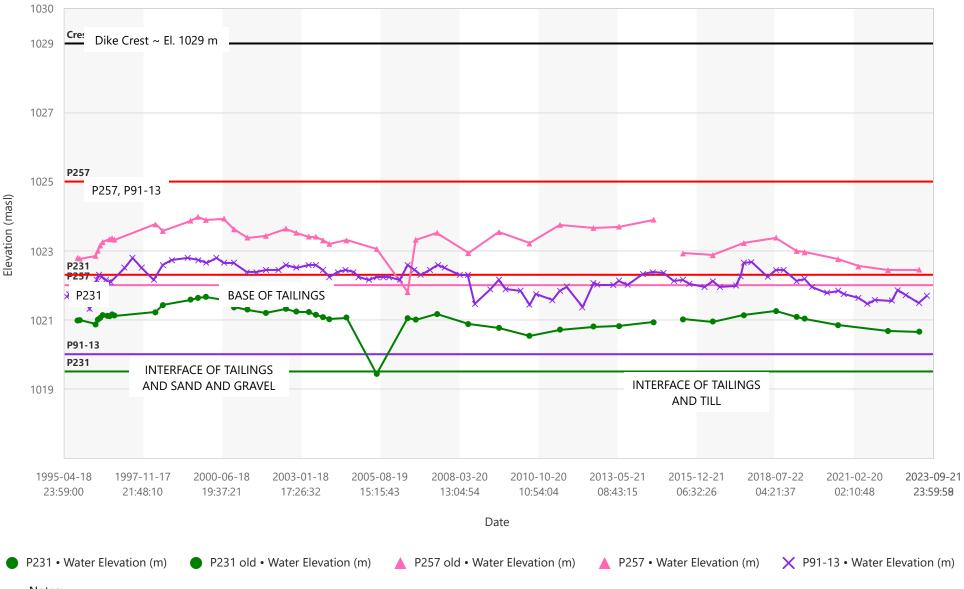
.

Siliceous Dike Instrumentation

Siliceous Dike #1 - East Side and Middle Piezometer Readings

SP106 • Water Elevation (m)

SUL-SD1-VWP-20-11A • Water Elevation (m) ★ SUL-SD1-VWP-20-11B • Water Elevation (m)


Notes:

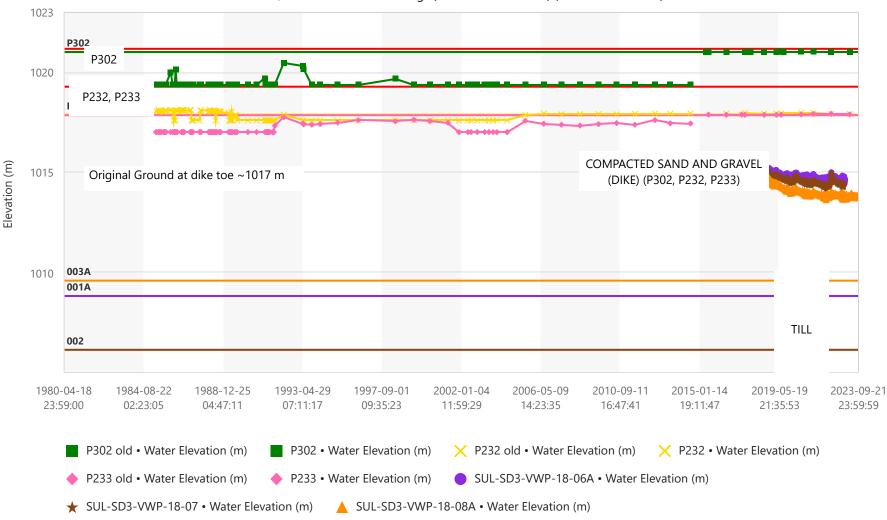
Straight lines same colour as data plots indicate bottom of standpipe/tip elevation.

Read lines are threshold values.

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

Pxxx old represents readings to point of flushing. Pxxx represents readings post flushing. If no "old" plot then no change to top of casing elevation or depth to bottom of standpipe.

Siliceous Cell #2 - Piezometer Readings


Notes:

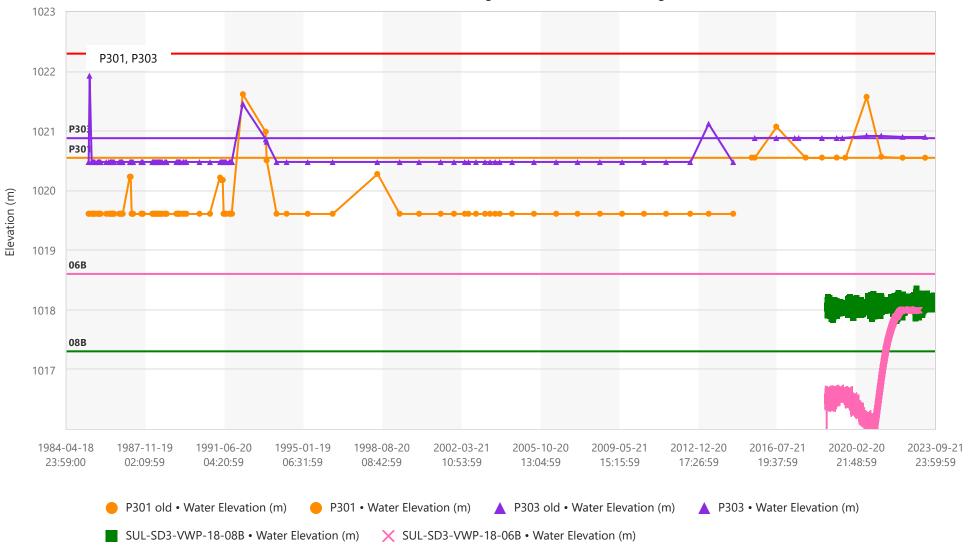
Straight lines same colour as data plots indicate bottom of standpipe/tip elevation.

Red lines are the threshold values.

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

Pxxx old represents readings to point of flushing. Pxxx represents readings post flushing. If no "old" plot then no change to top of casing elevation or depth to bottom of standpipe.

Lines 3+00/7+00 Piezometer Readings (Cell #3 Siliceous TSF) (Foundation & Dike)


Straight lines same colour as data plots indicate tip elevation.

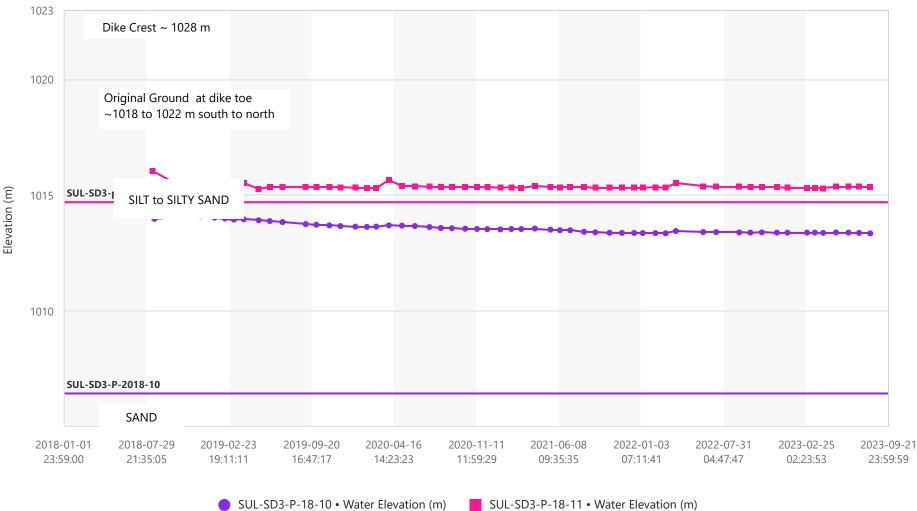
Red lines are the maximum threshold values.

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

Pxxx old represents readings to point of flushing. Pxxx represents readings post flushing. If no "old" plot then no change to top of casing elevation or depth to bottom of standpipe.

Figure VI-4 Siliceous Cell #3 TSF Line 3 +00/7+00 (Foundation and Dike)

Lines 3+00/7+00 Piezometer Readings (Cell #3 Siliceous TSF) (Tailings)


Straight lines same colour as data plots indicate tip elevation.

Red lines are the maximum threshold values.

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

Pxxx old represents readings to point of flushing. Pxxx represents readings post flushing. If no "old" plot then no change to top of casing elevation or depth to bottom of standpipe.

Figure VI-5 Silceous Cell #3 TSF Line 3+00/7+00 (Tailings)

East Side Piezometer Readings (Cell #3 Siliceous TSF) (Foundation)

Straight lines same colour as data plots indicate tip elevation.

Red lines are the maximum threshold values.

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

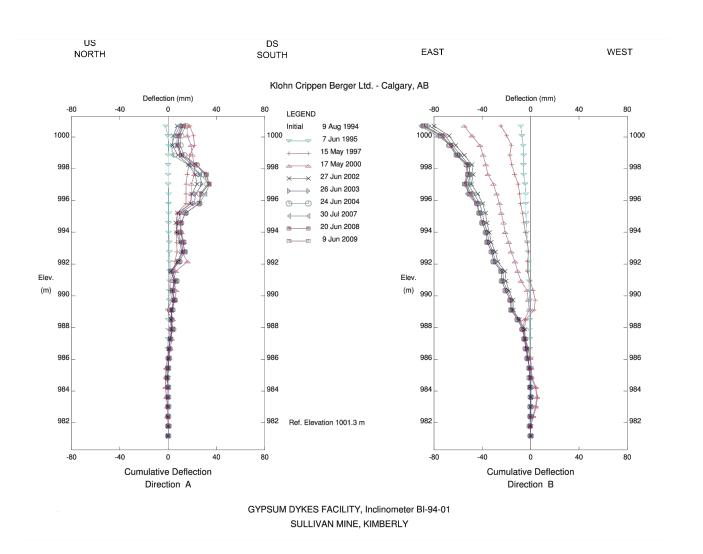
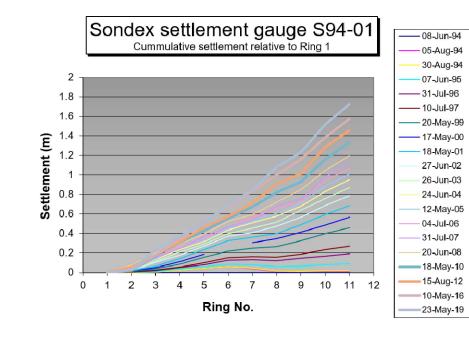
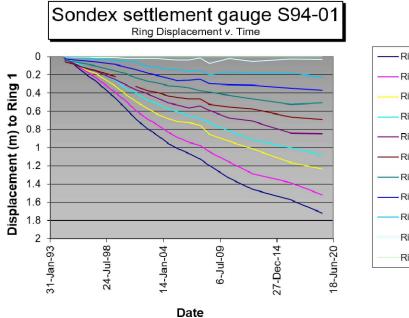
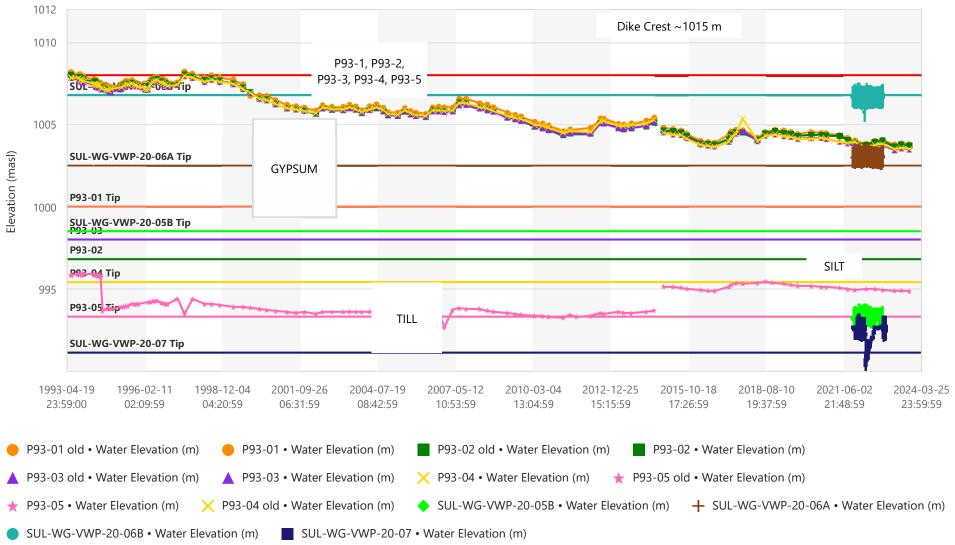

Pxxx old represents readings to point of flushing. Pxxx represents readings post flushing. If no "old" plot then no change to top of casing elevation or depth to bottom of standpipe.

Figure VI-6 Siliceous Cell #3 TSF East (Foundation)


APPENDIX VII

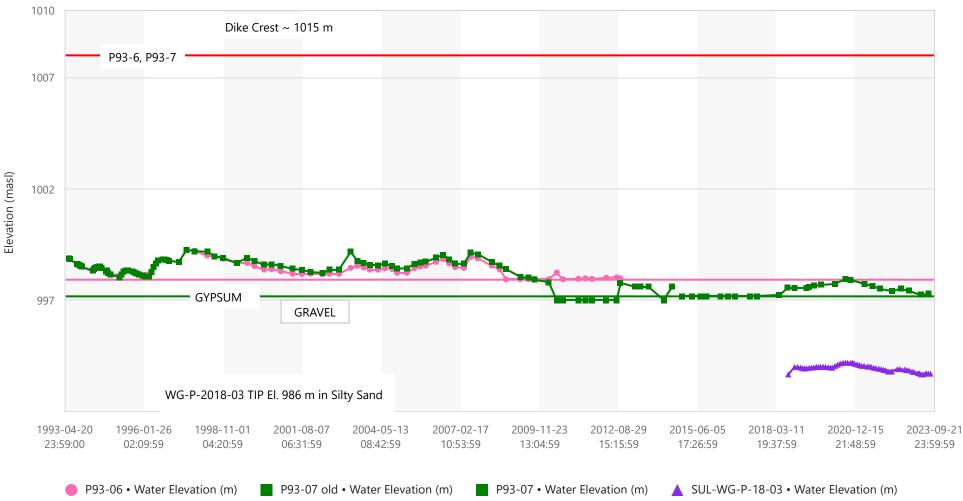

W Gypsum Dike Instrumentation





Ring 11
Ring 10
—— Ring 9
Ring 8
Ring 5
Ring 4
Ring 3
Ring 2
Ring 1

k	PROJECT SULLIVAN MINE 2023 ANNUAL INSPECTION REPORT			
	WEST GYPSUM DIKE			
pen Berger	SONDEX AND INCLINOMETER PLOTS			
	SCALE AS-SHOWN	PROJECT No. A05807A23	FIG. No. VII-1	

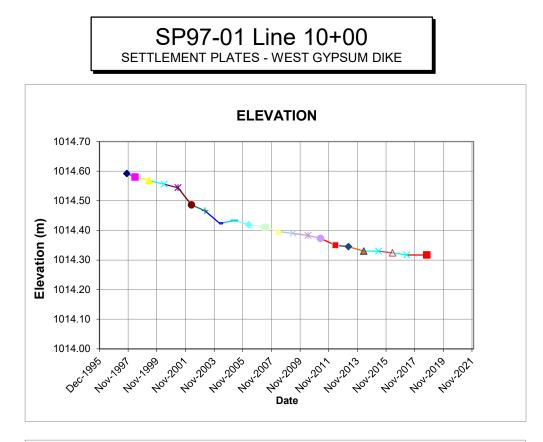


Straight lines same colour as data plots indicate tip elevation. Red lines are the maximum threshold values.

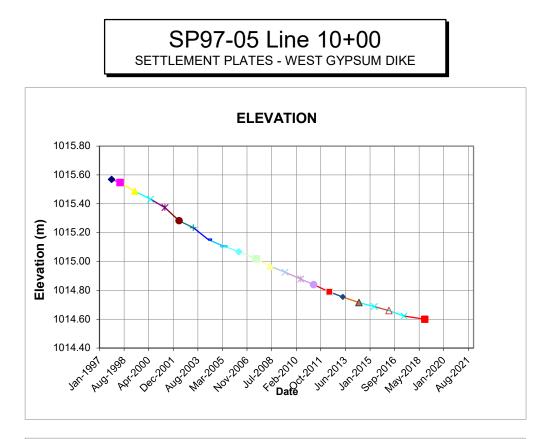
Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

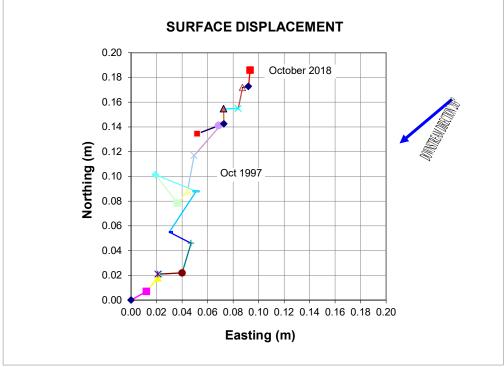
Pxxx old represents readings to point of flushing. SPxxx represents readings post flushing. If no "old" plot then no change to top of casing elevation or depth to bottom of standpipe.

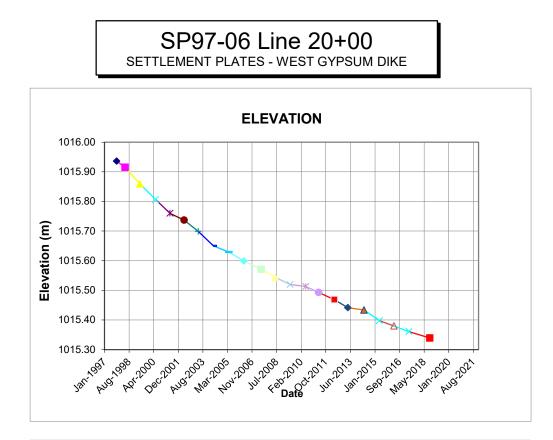
Line 20+00 Piezometer Readings (West Gypsum Dike)

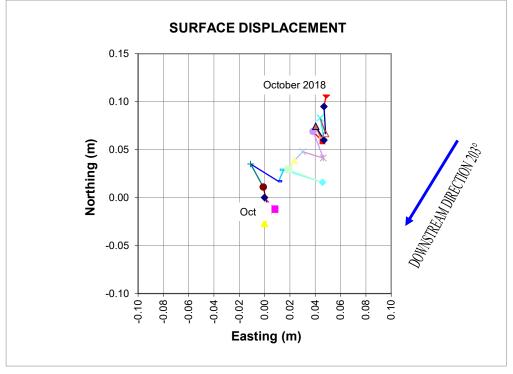


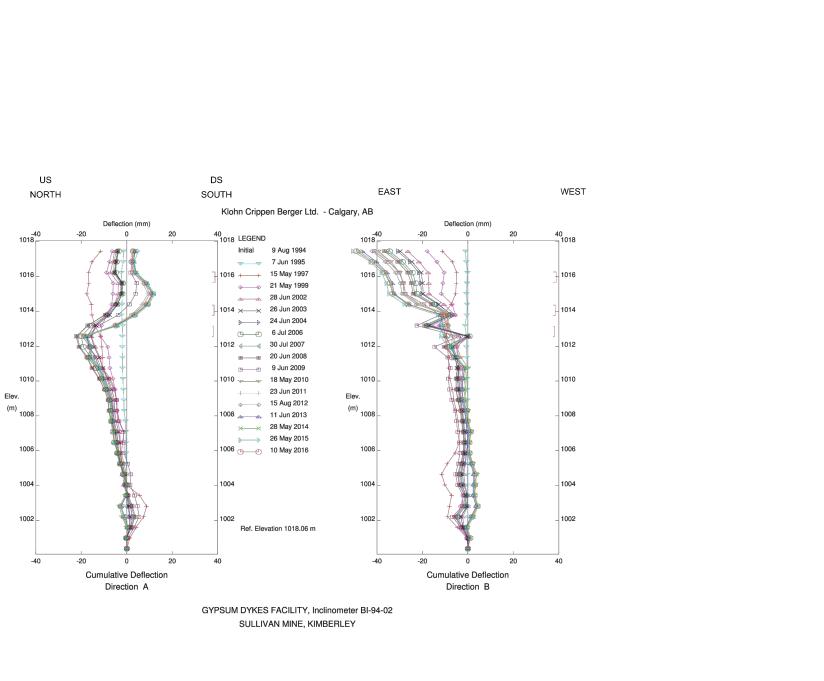

Straight lines same colour as data plots indicate tip elevation.

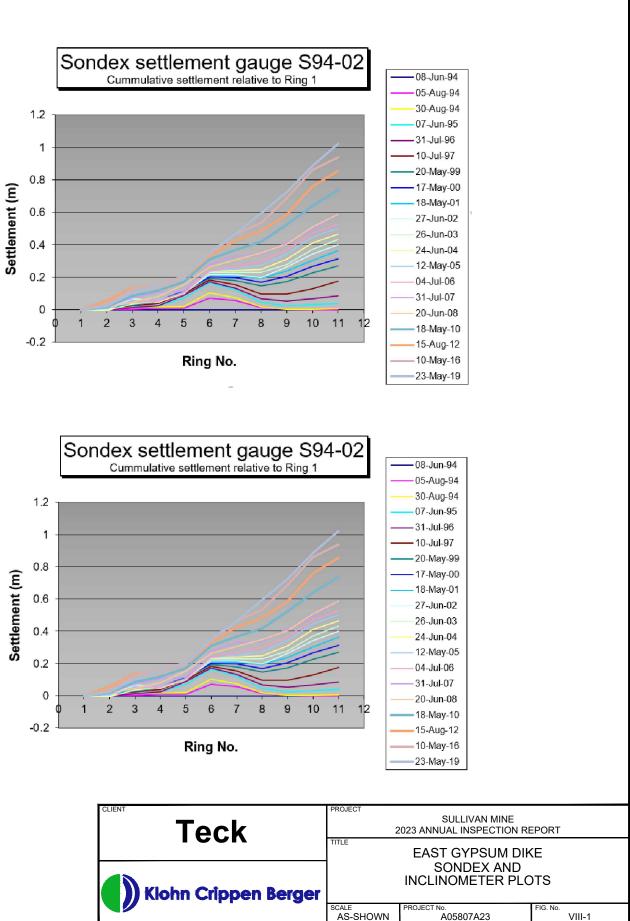

Red lines are the maximum threshold values.

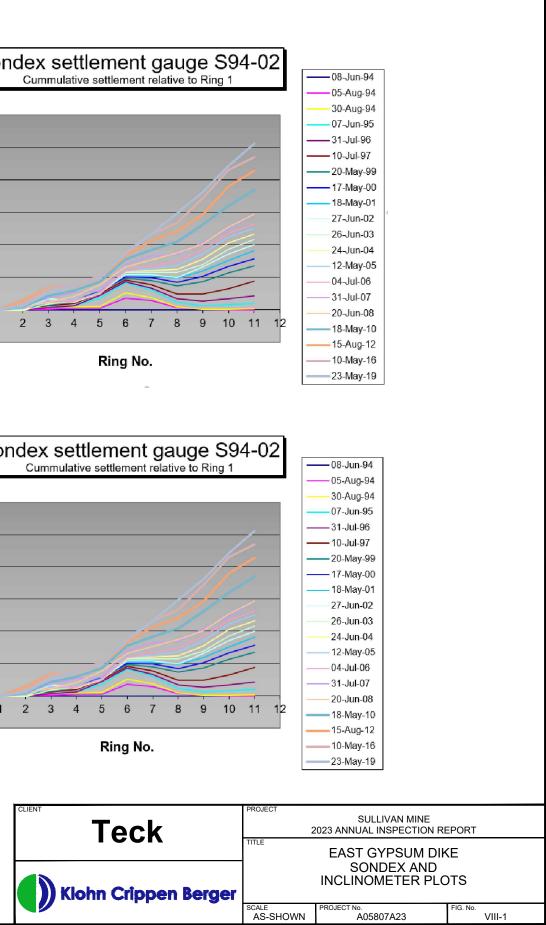

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.


SPxxx old represents readings to point of flushing. SPxxx represents readings post flushing. If no "old" plot then no change to top of casing elevation or depth to bottom of standpipe.

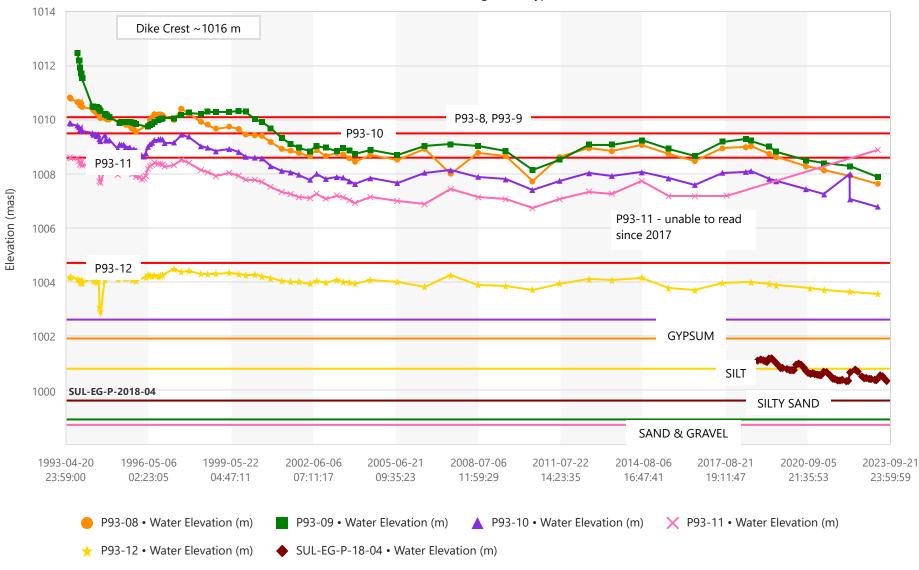




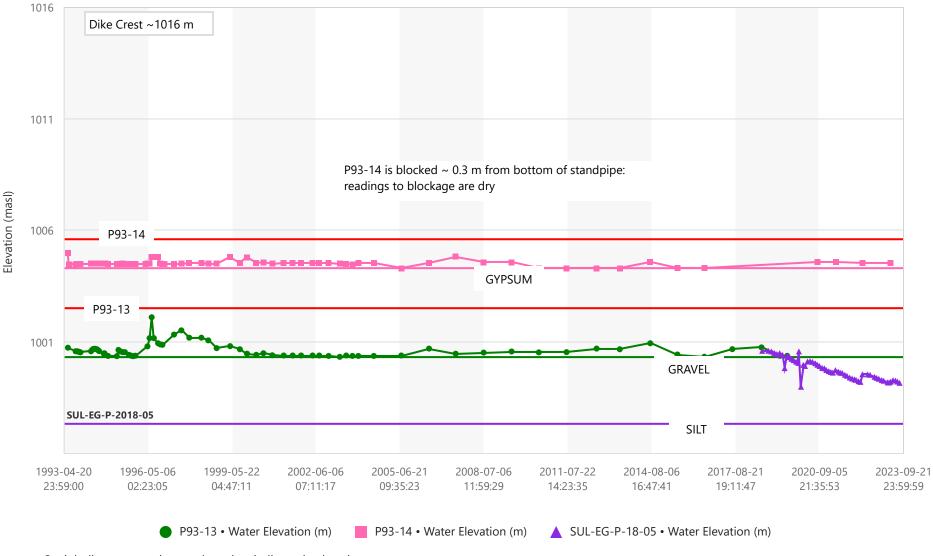



APPENDIX VIII

E Gypsum Dike Instrumentation



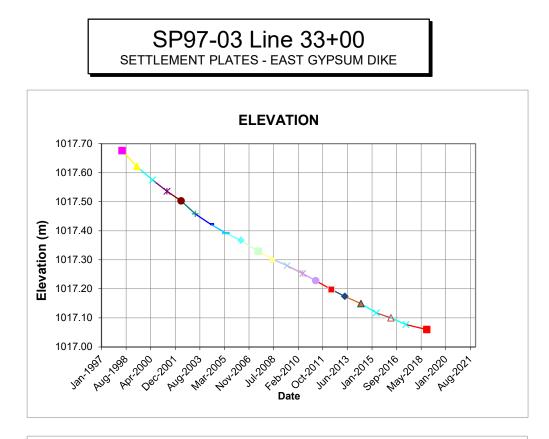
Elev.

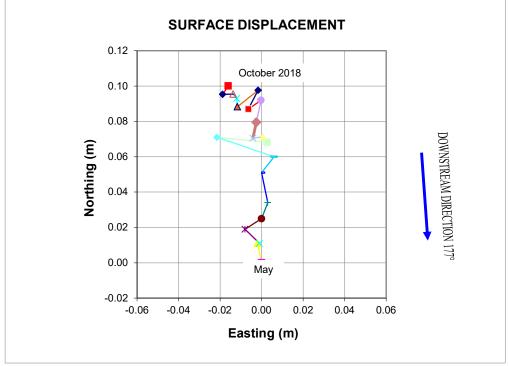

Line 33+00 Piezometer Readings (East Gypsum Dike)

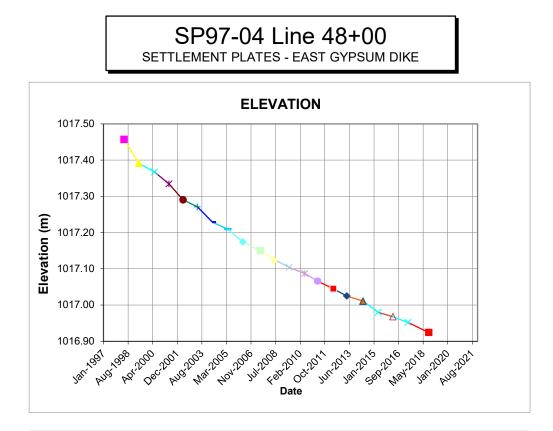
Straight lines same colour as data plots indicate tip elevation.

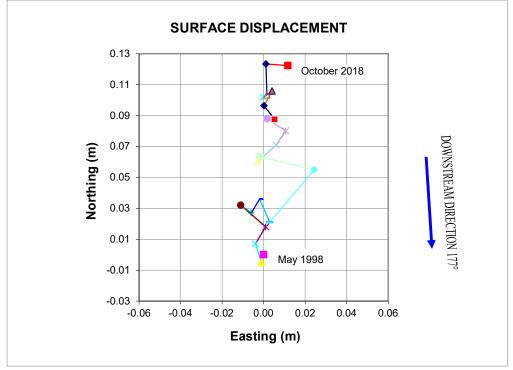
Red lines are the maximum threshold values.

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.

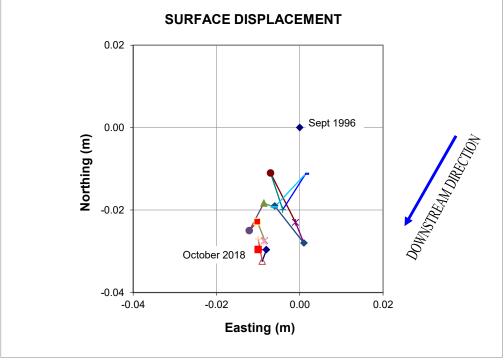

Line 48+00 Piezometer Readings (East Gypsum Dike)

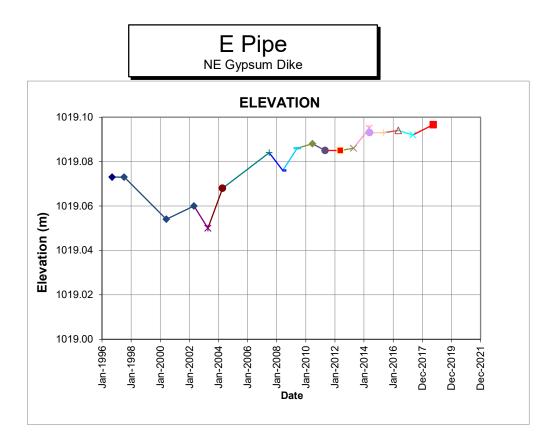


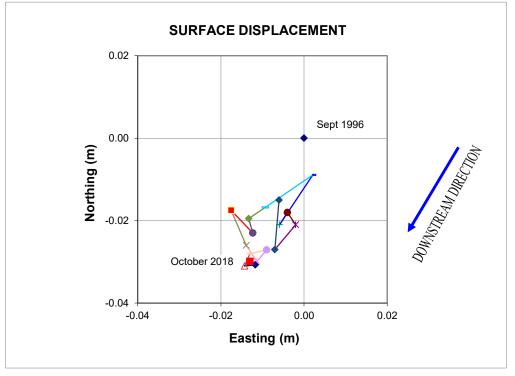

Straight lines same colour as data plots indicate tip elevation.

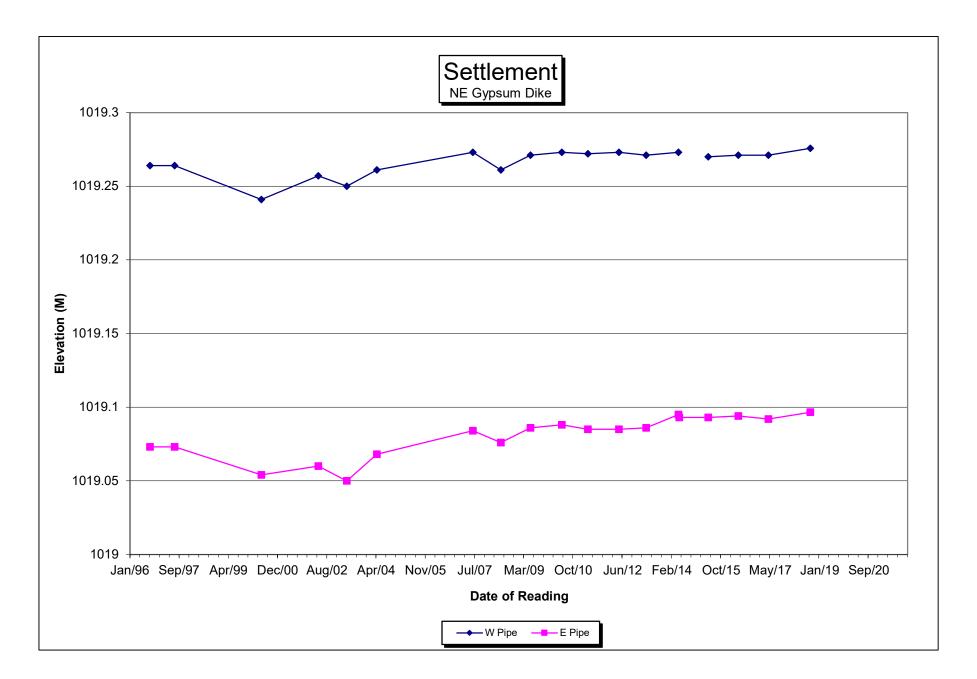

Red lines are the maximum threshold values.

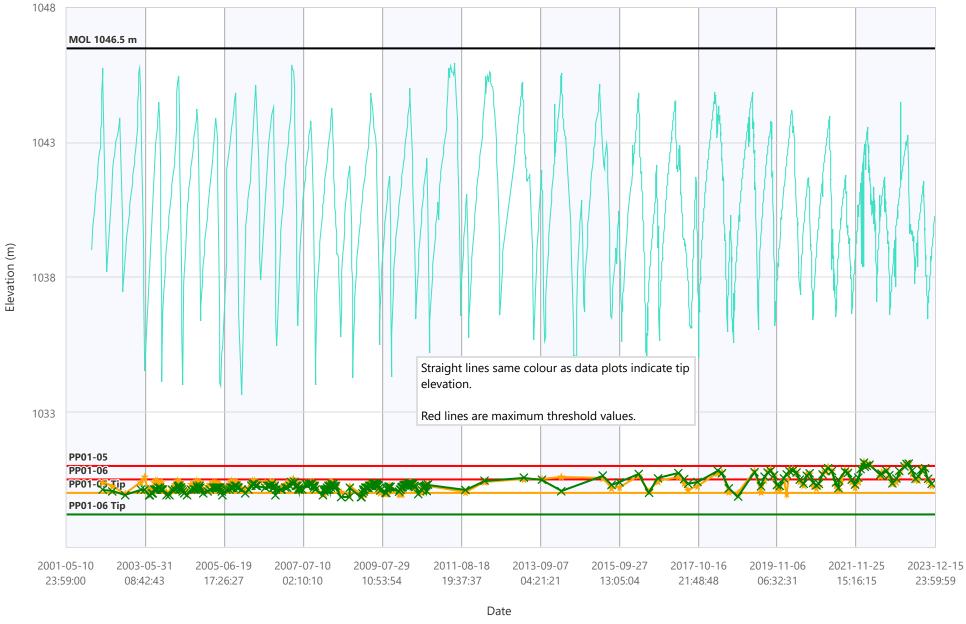
Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Older data will appear below tip elevation if previously read "dry" or if previous top of casing elevation was incorrect due to damage.




APPENDIX IX


NE Gypsum Dike Instrumentation

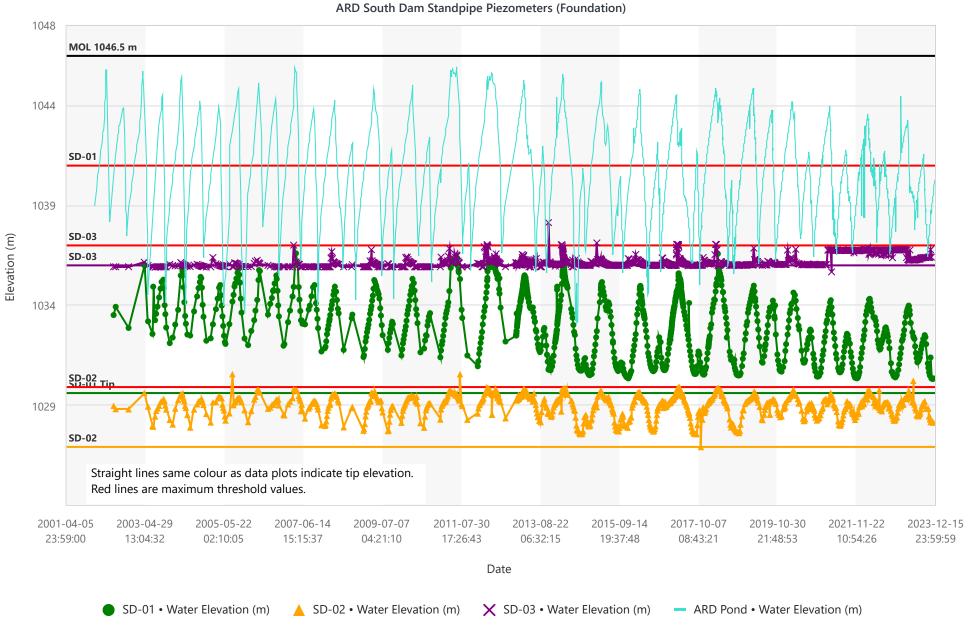




APPENDIX X

.

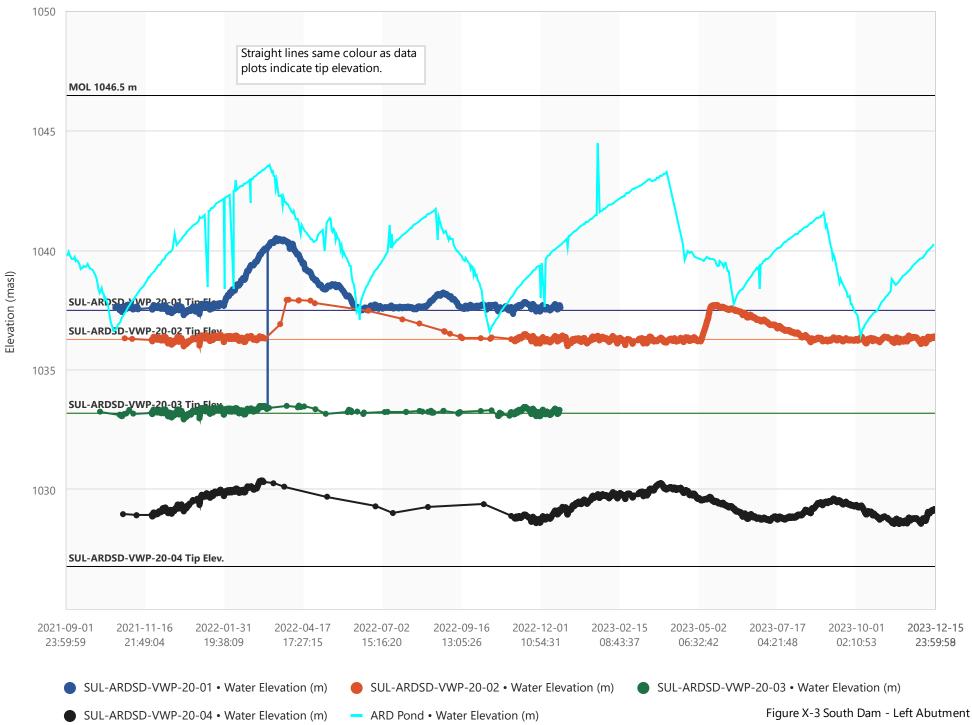
ARD Instrumentation



ARD Pond South Dam Pneumatic Piezometers (Interface of Fill and Foundation)

★ PP01-05 • Water Elevation (m)

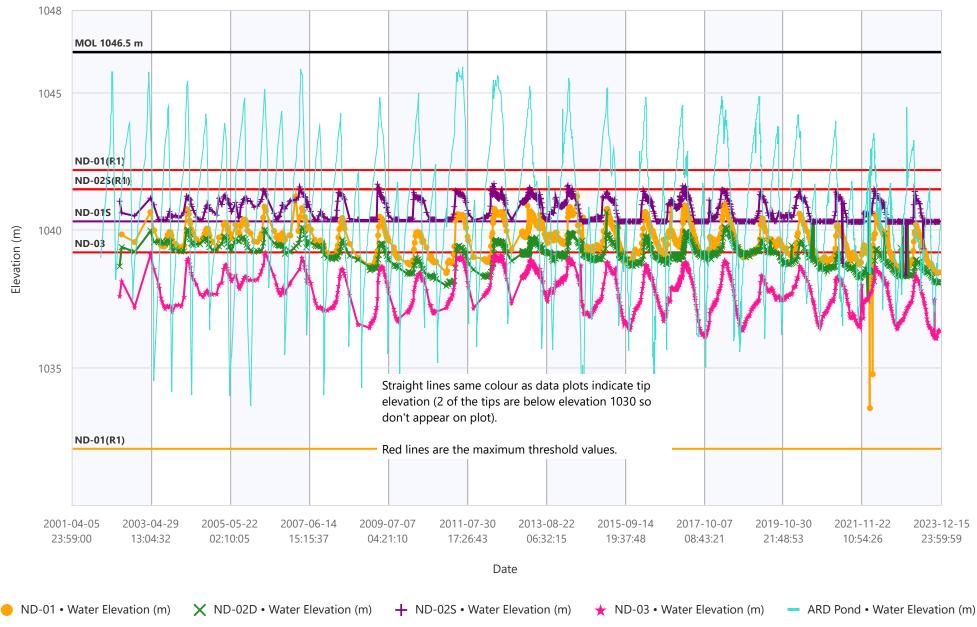
X PP01-06 • Water Elevation (m) — ARD Pond • Water Elevation (m)


Figure X-1 South Dam

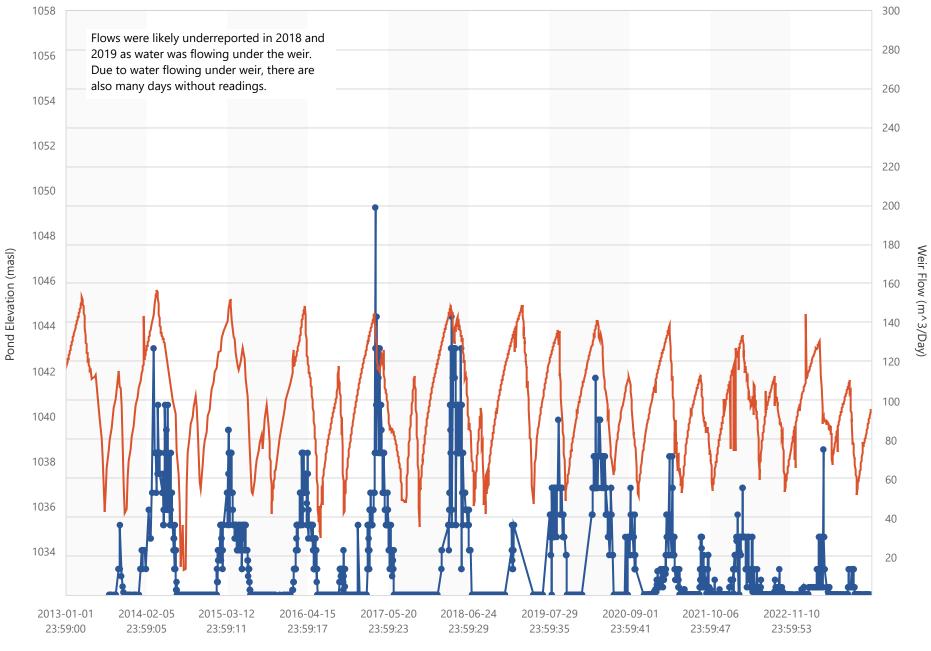
Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Only noticeable for those instruments which record "dry" or if previous top of casing elevation was incorrect due to damage.

Figure X-2 South Dam Standpipe

ARD South Dam - Left Abutment

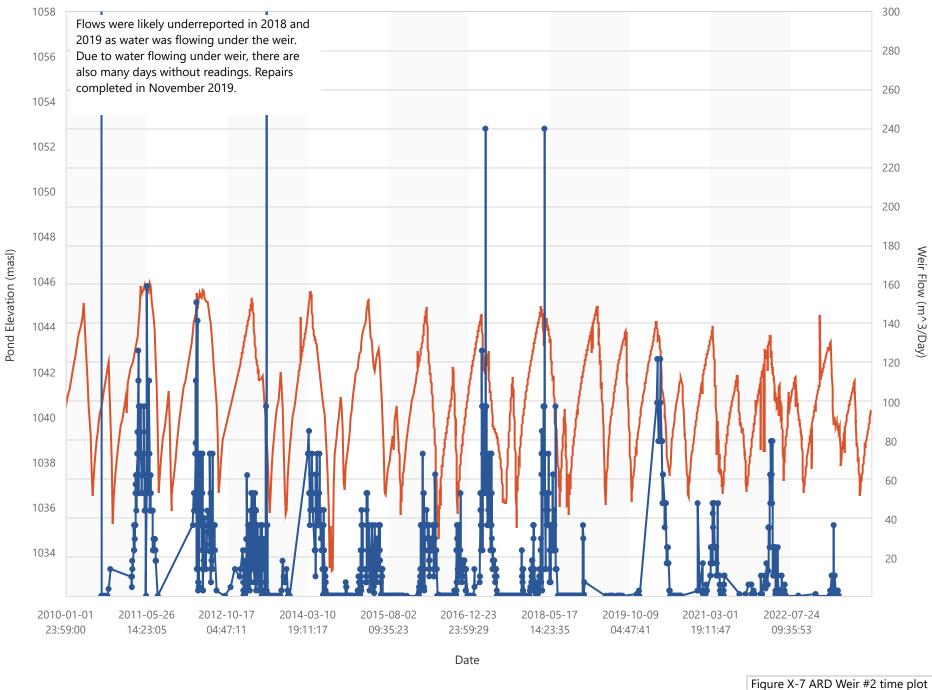


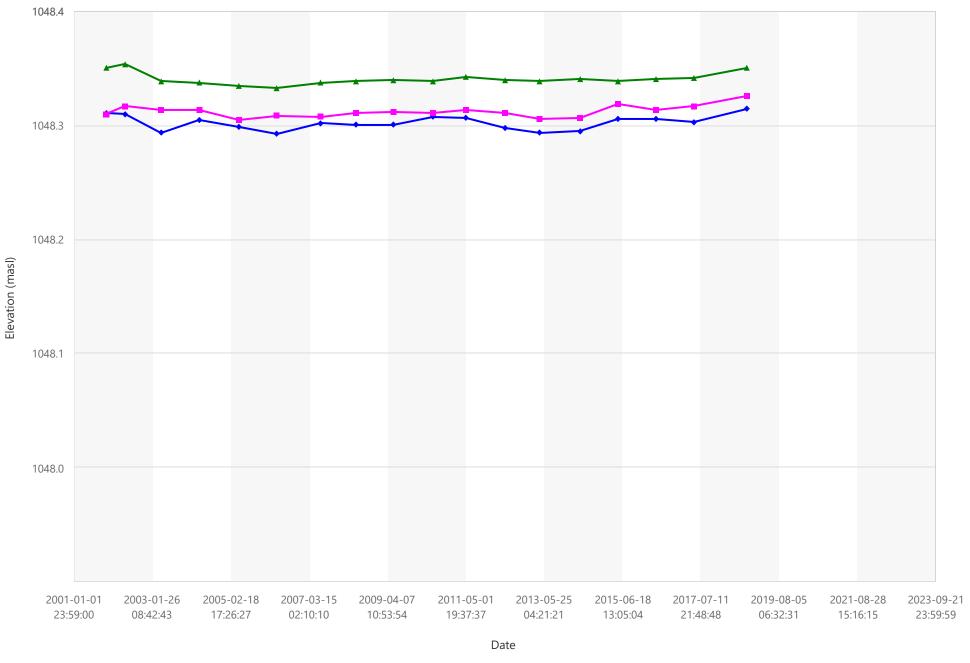
ARD Pond North Dam Pneumatic Piezometers (Interface of Fill and Foundation)


ARD Pond • Water Elevation (m)

ARD North Dam Standpipe Piezometers (Foundation)

Standpipe piezometers were flushed in July/August 2014. Not all sediment was removed and some casings also cut or extended/repaired at this time. Therefore a new top of casing and new depth to bottom of standpipe was recorded for many instruments. Only noticeable for those instruments which record "dry" or if previous top of casing elevation was incorrect due to damage.

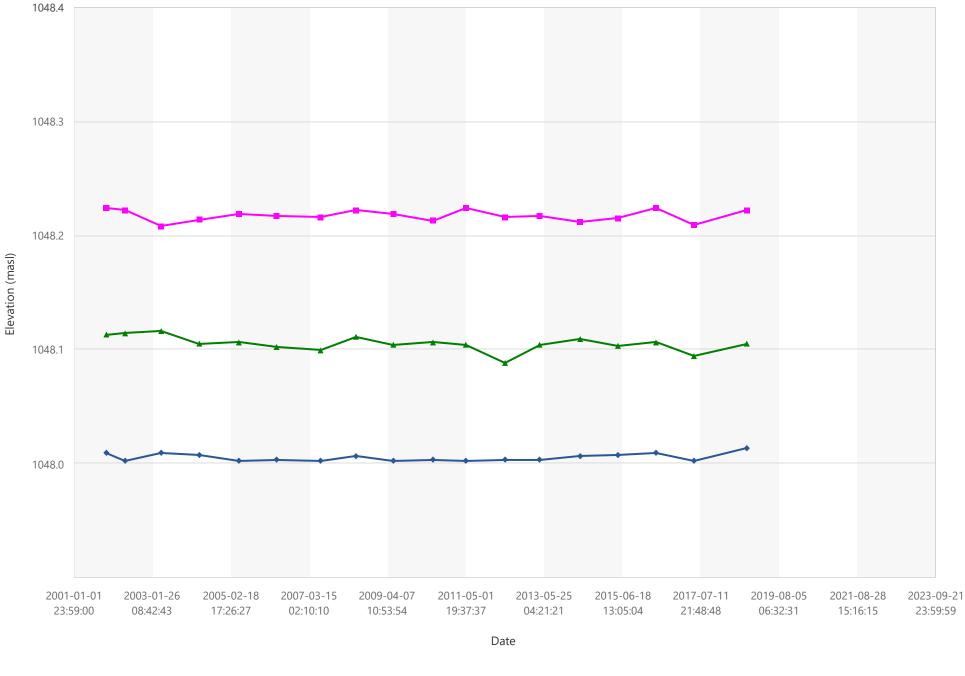

ARD POND - South Dam Weir #1 (ARDWU) Flows



Date

Figure X-6 ARD Weir #1 (ARDWU) time plot

ARD POND - South Dam Weir #2 Flows

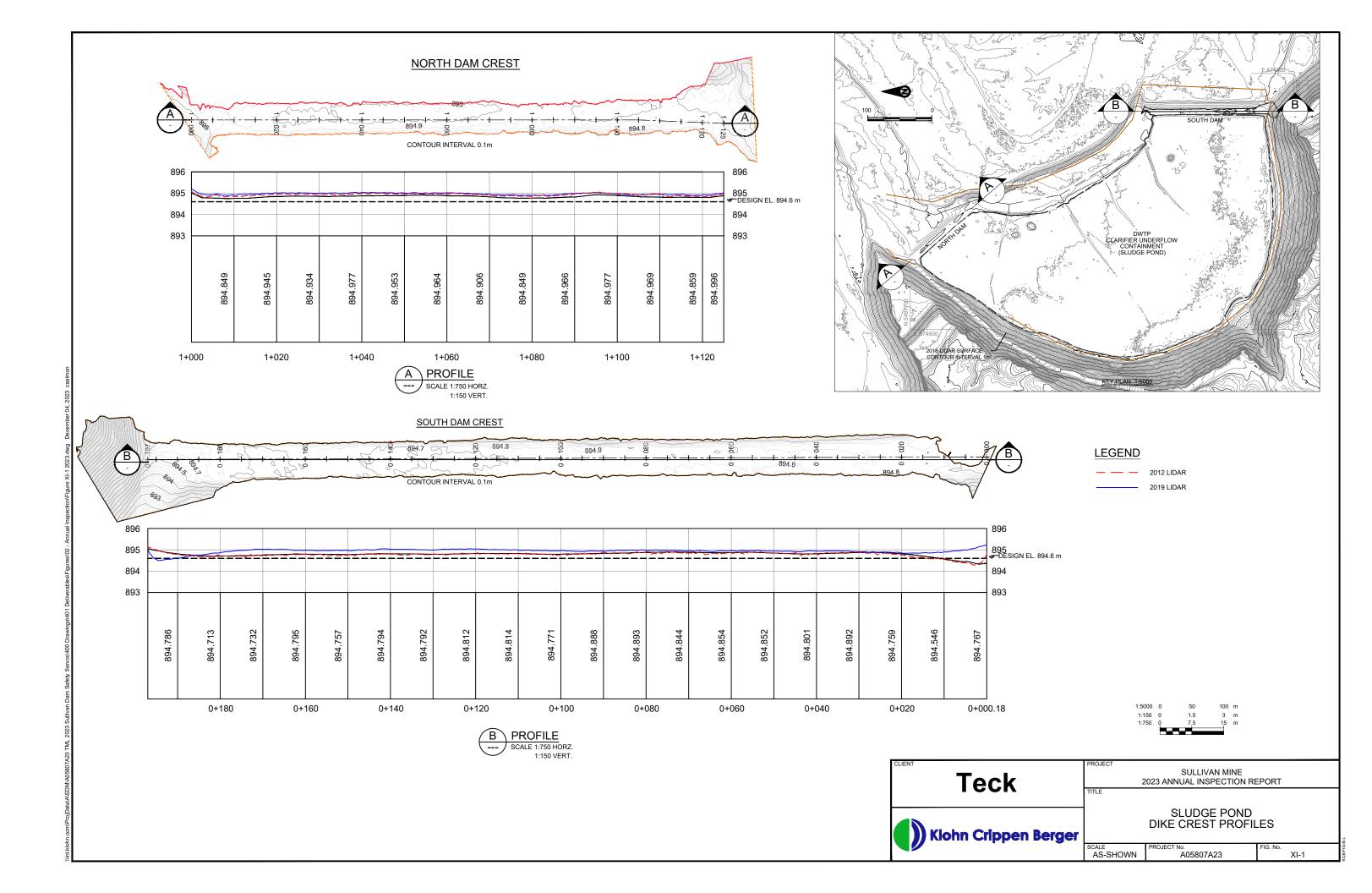


ARD SP4 • Elevation (m)

ARD SP5 • Elevation (m)

ARD SP6 • Elevation (m)

ARD Pond - North Dam Settlement Plate Data


ARD SP1 • Elevation (m) ARD SP2 • Elevation (m)

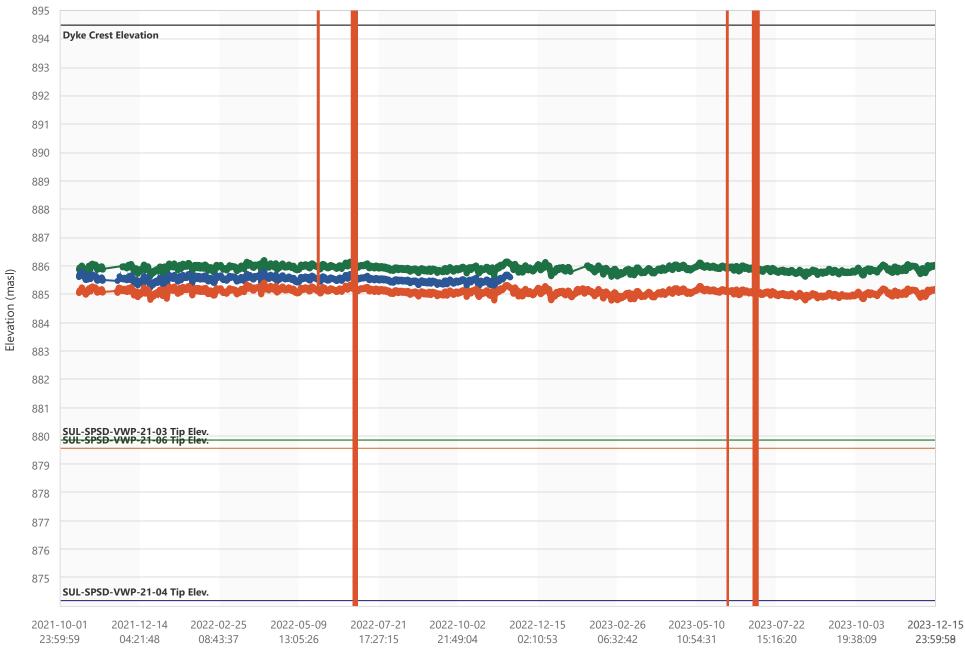
m) 💧 🔺 ARD SP3 • Elevation (m)

APPENDIX XI

Sludge Pond Survey and Instrumentation

895 **Dyke Crest Elevation** 894 893 892 891 890 889 888 887 886 885 SUL-SPND-VWP-21-01 Tip Elev. SUL-SPND-VWP-21-05 Tip Elev. 884 883 882 881 880 SUL-SPND-VWP-21-02 Tip Elev. 2023-12-15 2021-10-01 2021-12-14 2022-02-25 2022-05-09 2022-07-21 2022-10-02 2022-12-15 2023-02-26 2023-05-10 2023-07-22 2023-10-03 23:59:59 04:21:48 08:43:37 13:05:26 17:27:15 21:49:04 02:10:53 06:32:42 10:54:31 15:16:20 19:38:09 23:59:58

SUL-SPND-VWP-21-01 • Water Elevation (m)


Elevation (masl)

SUL-SPND-VWP-21-02 • Water Elevation (m)

SUL-SPND-VWP-21-05 • Water Elevation (m)

Figure XI-2 Sludge Pond North Dike

Sludge Pond - South Dike

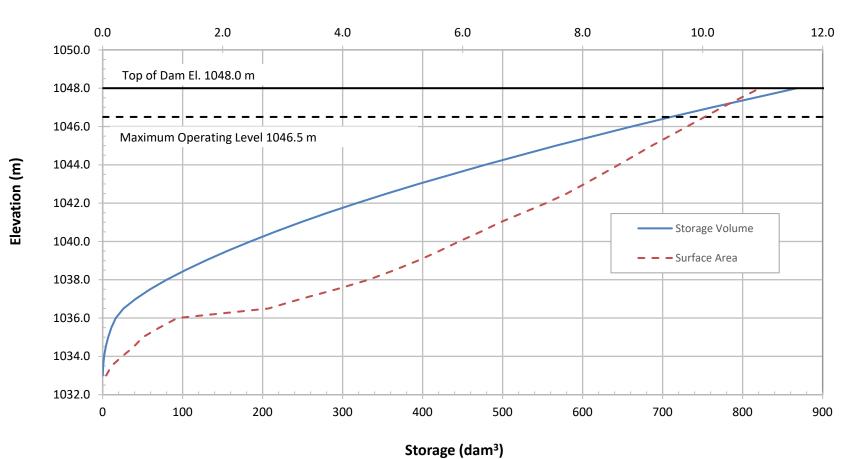
SUL-SPSD-VWP-21-03 • Water Elevation (m)

SUL-SPSD-VWP-21-04 • Water Elevation (m)

SUL-SPSD-VWP-21-06 • Water Elevation (m)

Figure XI-3 Sludge Pond South Dike

APPENDIX XII


•

Pond Storage Curves

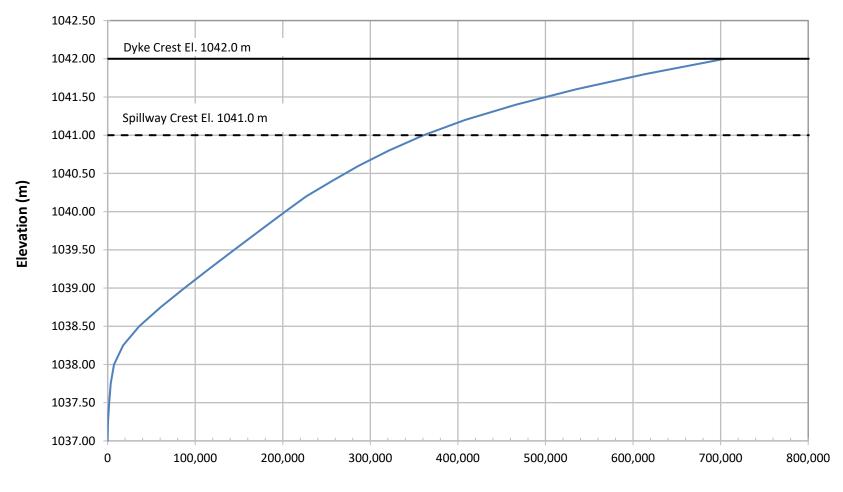

Appendix XII Pond Storage Curves

Figure XII-1 ARD Storage Pond Area - Volume Curve

Area (ha)

Storage (m³)