



Report: Regional Groundwater Monitoring Program 2017 Report

**Overview:** This report presents the 2017 results of the regional groundwater monitoring program required under Permit 107517. This report summarizes the results of groundwater quality in 2017 and compares groundwater chemistry to nearby surface water chemistry to understand groundwater transport pathways.

This report was prepared for Teck by SNC-Lavalin Inc.

#### For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley



# 2017 Annual Report

#### Regional Groundwater Monitoring Program

May 16, 2018 Internal Ref: 635544

Prepared For:

Teck Coal Limited

Prepared By:



Genevieve Pomerleau, M.Sc., P.Eng. Senior Hydrogeologist Environment & Geoscience

G. POMERLEAU # 29857 (10) P.Eng.

Prepared By:

Infrastructure



Leslie Harker, M.Sc., P.Geo. Project Hydrogeologist Environment & Geoscience Infrastructure Prepared By:

Kirsti Medig, Ph.D. Project Geologist Environment & Geoscience Infrastructure

**Reviewed By:** 

OVINC OF S. A. HUMPHRIES #31909 Ma. BRITISH COLUMBIA SCIEN

Stefan Humphries, M.Sc., P.Geo. Senior Hydrogeologist/Senior Project Manager Environment & Geoscience

Infrastructure





# **Executive Summary**

This 2017 Annual Report meets reporting requirements for regional groundwater monitoring in the Elk Valley as outlined in Section 10.4 of Permit 107517 (updated October 13, 2017). The Elk Valley Regional Groundwater Monitoring Program (RGMP) started in 2015 and consists of data from selected locations in the following groundwater monitoring programs:

- > Fording River Operations (FRO);
- Greenhills Operations (GHO);
- Line Creek Operations (LCO);
- > Elkview Operations (EVO);
- > Coal Mountain Operations (CMO); and
- > The Regional Drinking Water Sampling Program (RDW).

The RGMP focuses on twelve areas ("Study Areas") identified in the Regional Groundwater Synthesis Report for the Elk Valley (the "Synthesis Report", 2015b) including the 2017 RGMP (SNC-Lavalin, 2017a). This 2017 Annual Report for the RGMP has been prepared following the approved 2015 RGMP (SNC-Lavalin, 2015a) and incorporates feedback received from the Environmental Monitoring Committee (EMC) and Groundwater Working Group (GWG) on numerous reports.

Quarterly samples were collected from all wells included in the RGMP with the exception of the Q1 sample from FR\_HMW5 (Background Study Area) due to a frozen well. Samples from site-specific programs were submitted for all parameters on the analyte list except: 1) Total Kjeldahl Nitrogen and Total Organic Carbon at LC\_PIZDC1307 and LC\_PIZDC1308 in Q2 (located in Study Area 2); 2) hardness from the field duplicate of GH\_GA-MW-4 (located in Study Area 4); and 3) field-measured pH from RG\_DW-series wells in Q1 (due to pH probe malfunction). Quarterly water levels were measured at all required RGMP dedicated monitoring wells except for FR\_HMW5 in Q1 (due to a frozen well), GH\_GA-MW-2 in Q4 (due to water level tape malfunction), and EV\_ECgw in Q1 (due to a frozen well). These modifications to the RGMP do not impact the overall quality or interpretation of the data.

Groundwater quality at all groundwater monitoring locations were compared to applicable primary and secondary screening criteria and discussion of trends as well as interpretation of water levels and selected parameters were completed by Study Area. To assess groundwater and surface water interaction and increase our understanding of groundwater transport pathways, groundwater chemistry was compared to chemistry at nearby surface water stations in some Study Areas where relevant.

In general, groundwater results in 2017 were relatively similar to those from 2015 and 2016. Concentrations of Constituents of Interest (CI; nitrate-N, sulphate, dissolved cadmium, and dissolved selenium) above primary and secondary screening criteria were generally consistent with previous observations and are summarized by Study Area within the report. The following exceptions were noted.

Study Area 4: The dissolved selenium concentration in Q4 (18.9 µg/L) in GH\_GA-MW-2 and GH\_MW\_ERSC-1 in Q4 (68.7 µg/L) were historical highs. At GH\_MW\_ERSC-1 concentrations were similar in magnitude to the highest concentrations measured in 2014 (52.6 µg/L) and 2015 (28.2 µg/L). Concentrations were higher than upgradient wells, suggesting either a surface water influence or another source. The GHO SSGMP did not identify a source and it is possible that infiltration from the proximate Elk River side channel may be influencing the groundwater quality.



Study Area 11: Dissolved selenium concentrations at RG\_DW-07-01 (6.85 to 15.4 µg/L) have fluctuated, but increased slightly compared to previous years (3.81 to 10.2 µg/L in 2014 to 2016) and were above the CSR DW standard in 2017 Q2 (15.4 µg/L) and Q3 (11.6 µg/L). Teck is currently supplying alternate drinking water to the owners of this domestic well. Elevated concentrations of selenium in groundwater appear to be related to infiltration of selenium from surface water in Corbin Creek (10.6 to 27 µg/L) and/or Michel Creek (5.2 to 12.2 µg/L); concentrations at both surface water locations increased in 2017.

The 2017 RGMP included a review of non-order constituents in groundwater other than the CI with concentrations greater than primary screening criteria, including chloride, fluoride, dissolved barium, boron, manganese, molybdenum, and sodium, which may originate from natural sources (e.g., interaction with bedrock or unconsolidated materials); results from non-order constituents in 2017 were consistent with the review conducted to support the 2017 RGMP and these constituents are inferred to originate from natural sources. In Study Area 9, non-order constituent dissolved copper concentrations were interpreted as locally sourced and likely mine-influenced.

Dissolved lithium was not identified in the 2017 RGMP as the new standard was not yet in effect; however, concentrations greater than primary screening criteria were prevalent in RGMP wells. Because dissolved lithium exceeded the new standard in the majority of sampling events, a similar non-order constituent review was conducted. Wells installed in bedrock at CMO had concentrations >  $3,000 \mu g/L$ . It is interpreted that marine sedimentary rocks, such as those in the Elk Valley, typically have high lithium concentrations and are contributing to elevated lithium concentrations measured above primary screening criteria in wells in the RGMP.

General recommendations for the RGMP are as follows:

- > Increase water level data quality by:
  - collecting concurrent (before and after) manual water level measurements each time a water level logger is deployed or removed from a well and prior to each sampling event;
  - re-deploying level logger at exact same depth in monitoring well after it was removed for downloading; and
  - using a barometer and manual water level measurements to compensate and correct the data.
- Review the QA/QC programs, specifically related to field and trip blanks, to evaluate the source of constituents above the detection limit; and
- > Review sampling protocols to confirm which parameters should be analyzed for Study Area 6;
- For samples from RDW wells (RG\_DW-series), continue to analyse for all the parameters listed in the RGMP in 2018.

Data gaps in the RGMP and the requirement for additional studies was outlined in the 2017 RGMP (SNC-Lavalin, 2017a). The 2017 monitoring data supported the conclusions from the 2017 RGMP, with the following additional recommendations:

- Study Area 3: The supply wells have been instrumented with continuous level monitors. We recommend reviewing these data to further understand the groundwater-surface water interactions in this portion of the Fording River valley-bottom.
- Study Area 4: A localized gap in the groundwater understanding was identified as result the historical highs at two monitoring wells. Groundwater and surface water interactions in the Elk River side channel will be assessed as part of the GHO local aquatic effects monitoring program currently being undertaken.





### **Table of Contents**

| Executive Summary |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                                                    |
|-------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1                 | Intr                     | roduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                    |
|                   | 1.1                      | Regulatory History and Permit Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                    |
|                   | 1.2                      | Purpose and Objectives of the RGMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                    |
|                   |                          | 1.2.1 Purpose Statements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                    |
|                   |                          | 1.2.2 Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                    |
|                   | 1.3                      | Linkages Between the Site-Specific and Regional Programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                    |
|                   | 1.4                      | Report Structure and Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                    |
|                   | 1.5                      | Data Sources and Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                    |
|                   | 1.6                      | Linkage to Adaptive Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                    |
| 2                 | RG                       | GMP Background and Regional Conceptual Site Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                    |
|                   | 2.1                      | RGMP Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                    |
|                   | 2.2                      | Summary of SSGMP 2017 Annual Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                    |
|                   | 2.3                      | Regional CSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                    |
| -                 | Do                       | arianal Croundwater Manitaring Dragram Departiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |
| 3                 | Reį                      | gional Groundwater Monitoring Program Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                   |
| 3                 | 3.1                      | Monitoring Locations and Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                   |
| 3                 |                          | Monitoring Locations and Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |
| 3                 | 3.1                      | Monitoring Locations and Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                   |
| 3                 | 3.1                      | Monitoring Locations and Rationale<br>Sampling Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>15                                                             |
| 3                 | 3.1                      | Monitoring Locations and Rationale<br>Sampling Methodology<br>3.2.1 Fording River Operations (FRO)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11<br>15<br>15                                                       |
| 3                 | 3.1                      | Monitoring Locations and Rationale<br>Sampling Methodology<br>3.2.1 Fording River Operations (FRO)<br>3.2.2 Greenhills Operations (GHO)                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>15<br>15<br>15                                                 |
| 3                 | 3.1                      | Monitoring Locations and Rationale         Sampling Methodology         3.2.1       Fording River Operations (FRO)         3.2.2       Greenhills Operations (GHO)         3.2.3       Line Creek Operation (LCO)                                                                                                                                                                                                                                                                                                                                         | 11<br>15<br>15<br>15<br>15                                           |
| 3                 | 3.1                      | Monitoring Locations and Rationale         Sampling Methodology         3.2.1       Fording River Operations (FRO)         3.2.2       Greenhills Operations (GHO)         3.2.3       Line Creek Operation (LCO)         3.2.4       Elkview Operations (EVO)                                                                                                                                                                                                                                                                                            | 11<br>15<br>15<br>15<br>15<br>15                                     |
| 3                 | 3.1                      | Monitoring Locations and RationaleSampling Methodology3.2.1Fording River Operations (FRO)3.2.2Greenhills Operations (GHO)3.2.3Line Creek Operation (LCO)3.2.4Elkview Operations (EVO)3.2.5Coal Mountain Operations (CMO)3.2.6Regional Drinking Water Sampling Program (RDW)                                                                                                                                                                                                                                                                               | 11<br>15<br>15<br>15<br>15<br>15<br>16<br>16                         |
| 3                 | 3.1<br>3.2               | Monitoring Locations and RationaleSampling Methodology3.2.1Fording River Operations (FRO)3.2.2Greenhills Operations (GHO)3.2.3Line Creek Operation (LCO)3.2.4Elkview Operations (EVO)3.2.5Coal Mountain Operations (CMO)3.2.6Regional Drinking Water Sampling Program (RDW)Sample Handling, Shipment and Analysis                                                                                                                                                                                                                                         | 11<br>15<br>15<br>15<br>15<br>16<br>16<br>16                         |
| 3                 | 3.1<br>3.2<br>3.3        | Monitoring Locations and RationaleSampling Methodology3.2.1Fording River Operations (FRO)3.2.2Greenhills Operations (GHO)3.2.3Line Creek Operation (LCO)3.2.4Elkview Operations (EVO)3.2.5Coal Mountain Operations (CMO)3.2.6Regional Drinking Water Sampling Program (RDW)Sample Handling, Shipment and AnalysisMonitoring Specifications in the RGMP3.4.1Sampling Frequency                                                                                                                                                                             | 11<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16                   |
| 3                 | 3.1<br>3.2<br>3.3        | Monitoring Locations and RationaleSampling Methodology3.2.1Fording River Operations (FRO)3.2.2Greenhills Operations (GHO)3.2.3Line Creek Operation (LCO)3.2.4Elkview Operations (EVO)3.2.5Coal Mountain Operations (CMO)3.2.6Regional Drinking Water Sampling Program (RDW)Sample Handling, Shipment and AnalysisMonitoring Specifications in the RGMP                                                                                                                                                                                                    | 11<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>16       |
| 3                 | 3.1<br>3.2<br>3.3        | Monitoring Locations and Rationale         Sampling Methodology         3.2.1       Fording River Operations (FRO)         3.2.2       Greenhills Operations (GHO)         3.2.3       Line Creek Operation (LCO)         3.2.4       Elkview Operations (EVO)         3.2.5       Coal Mountain Operations (CMO)         3.2.6       Regional Drinking Water Sampling Program (RDW)         Sample Handling, Shipment and Analysis         Monitoring Specifications in the RGMP         3.4.1       Sampling Frequency         3.4.2       Analyte List | 11<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>17       |
| 3                 | 3.1<br>3.2<br>3.3<br>3.4 | Monitoring Locations and RationaleSampling Methodology3.2.1Fording River Operations (FRO)3.2.2Greenhills Operations (GHO)3.2.3Line Creek Operation (LCO)3.2.4Elkview Operations (EVO)3.2.5Coal Mountain Operations (CMO)3.2.6Regional Drinking Water Sampling Program (RDW)Sample Handling, Shipment and AnalysisMonitoring Specifications in the RGMP3.4.1Sampling Frequency3.4.2Analyte List                                                                                                                                                            | 11<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>17<br>17 |



# Table of Contents (Cont'd)

|   | 3.6 | QA/Q0   | C Program                                                                                         | 19 |
|---|-----|---------|---------------------------------------------------------------------------------------------------|----|
|   |     | 3.6.1   | Site-specific Programs                                                                            | 19 |
|   |     |         | 3.6.1.1 Shipping and Handling Issues                                                              | 19 |
|   |     |         | 3.6.1.2 Duplicate Samples                                                                         | 21 |
|   |     |         | 3.6.1.3 Field Blanks                                                                              | 22 |
|   |     |         | 3.6.1.4 Trip Blanks                                                                               | 24 |
|   |     | 3.6.2   | Regional Drinking Water Sampling Program (RDW)                                                    | 26 |
|   |     | 3.6.3   | Summary of QA/QC Results                                                                          | 27 |
| 4 | Ass | sessm   | ent Criteria                                                                                      | 28 |
|   | 4.1 | Prima   | y Screening Criteria                                                                              | 28 |
|   | 4.2 | Secon   | dary Screening                                                                                    | 29 |
| 5 | Re  | sults a | nd Discussion                                                                                     | 31 |
|   | 5.1 | Backg   | round (Reference) Conditions                                                                      | 31 |
|   |     | 5.1.1   | Groundwater Levels                                                                                | 31 |
|   |     | 5.1.2   | Groundwater Quality                                                                               | 32 |
|   |     | 5.1.3   | Discussion                                                                                        | 32 |
|   |     |         | 5.1.3.1 Dissolved Lithium in Groundwater                                                          | 33 |
|   | 5.2 |         | Area 1: Fording River Valley-bottom Downgradient of Fording River Operations, Cataract and Creeks | 34 |
|   |     | 5.2.1   | Potential Sources and Transport Pathways                                                          | 34 |
|   |     | 5.2.2   | Groundwater Levels                                                                                | 35 |
|   |     | 5.2.3   | Groundwater Quality                                                                               | 36 |
|   |     | 5.2.4   | Discussion                                                                                        | 37 |
|   | 5.3 | Study   | Area 2: Fording River Valley-bottom Downgradient of LCO Dry Creek                                 | 38 |
|   |     | 5.3.1   | Potential Sources and Transport Pathways                                                          | 38 |
|   |     | 5.3.2   | Groundwater Levels                                                                                | 39 |
|   |     | 5.3.3   | Groundwater Quality                                                                               | 39 |
|   |     | 5.3.4   | Discussion                                                                                        | 40 |
|   | 5.4 | Study   | Area 3: Fording River Valley-bottom Downgradient of GHO Rail Loop and Greenhills Creek            | 41 |
|   |     | 5.4.1   | Potential Sources and Transport Pathways                                                          | 41 |
|   |     | 5.4.2   | Groundwater Levels                                                                                | 42 |
|   |     | 5.4.3   | Groundwater Quality                                                                               | 42 |
|   |     | 5.4.4   | Discussion                                                                                        | 43 |



| 5.5  | Study / | Area 4: Elk River Valley-bottom Downgradient of Leask, Wolfram, and Thompson Creeks       | 44 |
|------|---------|-------------------------------------------------------------------------------------------|----|
|      | 5.5.1   | Potential Sources and Transport Pathways                                                  | 45 |
|      | 5.5.2   | Groundwater Levels                                                                        | 45 |
|      | 5.5.3   | Groundwater Quality                                                                       | 46 |
|      | 5.5.4   | Discussion                                                                                | 48 |
| 5.6  | Study   | Areas 5 and 6: Fording River Valley-bottom Downgradient of LCO                            | 49 |
|      | 5.6.1   | Potential Sources and Transport Pathways                                                  | 50 |
|      | 5.6.2   | Groundwater Levels                                                                        | 50 |
|      | 5.6.3   | Groundwater Quality                                                                       | 51 |
|      | 5.6.4   | Discussion                                                                                | 52 |
| 5.7  | Study   | Area 7: Elk River Valley-bottom Downgradient of Grave Creek                               | 52 |
|      | 5.7.1   | Potential Sources and Transport Pathways                                                  | 53 |
|      | 5.7.2   | Groundwater Levels                                                                        | 53 |
|      | 5.7.3   | Groundwater Quality                                                                       | 53 |
|      | 5.7.4   | Discussion                                                                                | 54 |
| 5.8  | Study   | Area 8: Elk River Valley-bottom Downgradient of Balmer, Lindsay and Otto/Cossarini Creeks | 55 |
|      | 5.8.1   | Potential Sources and Transport Pathways                                                  | 55 |
|      | 5.8.2   | Groundwater Levels                                                                        | 56 |
|      | 5.8.3   | Groundwater Quality                                                                       | 56 |
|      | 5.8.4   | Discussion                                                                                | 57 |
| 5.9  | Study   | Area 9: Michel Creek Valley-bottom Downgradient of EVO                                    | 58 |
|      | 5.9.1   | Potential Sources and Transport Pathways                                                  | 58 |
|      | 5.9.2   | Groundwater Levels                                                                        | 59 |
|      | 5.9.3   | Groundwater Quality                                                                       | 59 |
|      | 5.9.4   | Discussion                                                                                | 62 |
| 5.10 | Study   | Area 10: Michel Creek Valley-bottom Downgradient of Erickson Creek                        | 63 |
|      | 5.10.1  | Potential Sources and Transport Pathways                                                  | 63 |
|      | 5.10.2  | Groundwater Levels                                                                        | 64 |
|      | 5.10.3  | Groundwater Quality                                                                       | 64 |
|      | 5.10.4  | Discussion                                                                                | 65 |
| 5.11 | Study   | Area 11: Michel Creek Valley-bottom Downgradient of CMO                                   | 66 |
|      | 5.11.1  | Potential Sources and Transport Pathways                                                  | 66 |
|      | 5.11.2  | Groundwater Levels                                                                        | 67 |
|      | 5.11.3  | Groundwater Quality                                                                       | 67 |
|      | 5.11.4  | Discussion                                                                                | 68 |



|   | 5.12 Study Area 12: Elk River Valley-bottom at Study Area Boundary    | 69 |
|---|-----------------------------------------------------------------------|----|
|   | 5.12.1 Potential Sources and Transport Pathways                       | 70 |
|   | 5.12.2 Groundwater Levels                                             | 70 |
|   | 5.12.3 Groundwater Quality                                            | 71 |
|   | 5.12.4 Discussion                                                     | 72 |
|   | 5.13 Groundwater Surface Water Interactions in Other Management Units | 73 |
| 6 | Conclusions and Recommendations                                       | 74 |
|   | 6.1 Background (Reference) Conditions                                 | 75 |
|   | 6.2 Study Area 1                                                      | 76 |
|   | 6.3 Study Area 2                                                      | 76 |
|   | 6.4 Study Area 3                                                      | 76 |
|   | 6.5 Study Area 4                                                      | 77 |
|   | 6.6 Study Areas 5 and 6                                               | 77 |
|   | 6.7 Study Area 7                                                      | 77 |
|   | 6.8 Study Area 8                                                      | 78 |
|   | 6.9 Study Area 9                                                      | 78 |
|   | 6.10 Study Area 10                                                    | 78 |
|   | 6.11 Study Area 11                                                    | 79 |
|   | 6.12 Study Area 12                                                    | 79 |
| 7 | References                                                            | 81 |
| 8 | Notice to Reader                                                      | 83 |

#### **In-Text Figures**

| Figure A: Potential Pathways for Mining-Influenced Groundwater in the Elk Valley |                                                                                     | 10 |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----|--|
| In-Text                                                                          | In-Text Tables                                                                      |    |  |
| Table A:                                                                         | Submissions and Activities since Submission of the 2015 RGMP                        | 2  |  |
| Table B:                                                                         | RGMP Purpose and Objectives                                                         | 3  |  |
| Table C:                                                                         | Summary of the Report Structure                                                     | 4  |  |
| Table D:                                                                         | Study Areas for Groundwater Monitoring as Defined in SNC-Lavalin (2017a)            | 8  |  |
| Table E:                                                                         | Groundwater Monitoring Locations by Study Area, Well Type, Associated Operation and |    |  |
|                                                                                  | Description                                                                         | 13 |  |
| Table F:                                                                         | Summary of Program Modifications                                                    | 18 |  |



#### In-Text Tables (Cont'd)

| Table G:   | Summary of Shipping and Handling Issues at EVO                                                                    | 19       |
|------------|-------------------------------------------------------------------------------------------------------------------|----------|
| Table H:   | Summary of Duplicate Sample Results above Acceptable Levels                                                       | 21       |
| Table I:   | Summary of Field Blank Sample Results                                                                             | 22       |
| Table J:   | Summary of Trip Blank Sample Results                                                                              | 24       |
| Table K:   | Summary of Field and Trip Blank Sample Results at RG_DW-series Wells                                              | 27       |
| Table L:   | November 1, 2017 Primary Screening Criteria Changes to the CSR                                                    | 29       |
| Table M:   | November 1, 2017 Primary Screening Criteria Changes to the CSR for Study Area 9                                   | 29       |
| Table N:   | Secondary Groundwater Screening Criteria for Aquatic Life                                                         | 30       |
| Table O:   | Summary of Constituents above Primary Screening Criteria in Background Well                                       | 32       |
| Table P:   | Potential Sources and Transport Pathways to Study Area 1 (After SNC-Lavalin, 2017a)                               | 34       |
| Table Q:   | Summary of Constituents above Primary Screening Criteria for Study Area 1                                         | 36       |
| Table R:   | Summary of Results above Secondary Screening Criteria in Study Area 1                                             | 37       |
| Table S:   | Potential Sources and Transport Pathways for Study Area 2 (After SNC-Lavalin, 2017a)                              | 39       |
| Table T:   | Summary of Non-order Constituents above Primary Screening Criteria Upgradient of Study                            |          |
|            | Area 2                                                                                                            | 39       |
| Table U:   | Potential Sources and Transport Pathways to Groundwater in Study Area 3                                           |          |
|            | (After SNC-Lavalin, 2017a)                                                                                        | 42       |
| Table V:   | Summary of Non-order Constituents above Primary Screening Criteria for                                            |          |
|            | Study Area 3 (1/2)                                                                                                | 42       |
| Table W:   | Summary of Non-order Constituents above Primary Screening Criteria for                                            |          |
|            | Study Area 3 (2/2)                                                                                                | 43       |
| Table X:   | Potential Sources and Transport Pathways to Groundwater in Study Area 4                                           |          |
| <b>-</b>   | (After SNC-Lavalin, 2017a)                                                                                        | 45       |
| Table Y:   | Summary of CI above Primary Groundwater Screening Criteria for Study Area 4 (1/2)                                 | 46       |
| Table Z:   | Summary of CI above Primary Groundwater Screening Criteria for Study Area 4 (2/2)                                 | 46       |
| I able AA: | Summary of Non-order Constituents above Primary Groundwater Screening Criteria for                                | 40       |
| Table DD.  | Study Area 4                                                                                                      | 46       |
|            | Summary of CI above Secondary Screening Criteria for Study Area 4                                                 | 48       |
| Table CC.  | Potential Sources and Transport Pathways to Groundwater in Study Areas 5/6                                        | 50       |
|            | (After SNC-Lavalin, 2017a)<br>Summary of Non-order Constituents above Primary Screening Criteria for Study Area 6 | 50<br>51 |
|            | Potential Sources and Transport Pathways to Groundwater in Study Area 7                                           | 51       |
|            | (After SNC-Lavalin, 2017a)                                                                                        | 53       |
| Table EE:  | Summary of Constituents above Primary Screening Criteria for Study Area 7                                         | 53<br>54 |
|            | Potential Sources and Transport Pathways to Groundwater in Study Area 8                                           | 54       |
| Table 00.  | (After SNC-Lavalin, 2017a)                                                                                        | 55       |
| Table HH·  | Summary of Constituents above Primary Screening Criteria for Study Area 8                                         | 56       |
| Table II:  | Potential Sources and Transport Pathways to Groundwater in Study Area 9                                           | 00       |
| rabie II.  | (After SNC-Lavalin, 2017a)                                                                                        | 58       |
| Table JJ:  | Summary of Constituents above Primary Screening Criteria for Study Area 9 (1/2)                                   | 60       |
|            | Summary of Constituents above Primary Screening Criteria for Study Area 9 (2/2)                                   | 60       |
|            | Summary of Results above Secondary Screening Criteria for Study Area 9                                            | 62       |
|            |                                                                                                                   | -        |



#### In-Text Tables (Cont'd)

| Table MM: Potential Sources and Transport Pathways to Groundwater in Study Area 10   |                |
|--------------------------------------------------------------------------------------|----------------|
| (After SNC-Lavalin, 2017a)                                                           | 63             |
| Table NN: Summary of Non-order Constituents above Primary Screening Criteria for Stu | udy Area 10 64 |
| Table OO: Potential Sources and Transport Pathways to Groundwater Study Area 11      |                |
| (After SNC-Lavalin, 2017a)                                                           | 66             |
| Table PP: Summary of Constituents above Primary Screening Criteria for Study Area 11 | l 67           |
| Table QQ: Potential Sources and Transport Pathways to Groundwater in Study Area 12   |                |
| (After SNC-Lavalin, 2017a)                                                           | 70             |
| Table RR: Summary of Constituents above Primary Screening Criteria for Study Area 12 | 2 71           |
| Table SS: November 1, 2017 Primary Screening Criteria Changes to the CSR             | 74             |
| Table TT: November 1, 2017 Primary Screening Criteria Changes to the CSR for Study   | Area 9 74      |
|                                                                                      |                |

#### Tables

- 1: Summary of Applicable Primary and Secondary Screening Criteria
- 2: Well Installation Details, Monitoring Values and Hydrogeological Information
- 3: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Inorganics in Groundwater
- 4: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Metals in Groundwater
- 5: Summary of Analytical Results compared to Secondary Screening Criteria for Selenium

#### Drawings

- > 635544-301: Site Location and Management Units
- > 635544-302: Surficial Geology North Half of Study Area
- > 635544-303: Surficial Geology South Half of Study Area
- > 635544-304: Bedrock Geology North Half of Study Area
- > 635544-305: Bedrock Geology South Half of Study Area
- 635544-306: Groundwater Elevations from Q4 and Conceptual Regional Groundwater Flow North Half of Study Area
- 635544-307: Groundwater Elevations from Q4 and Conceptual Regional Groundwater Flow South Half of Study Area
- > 635544-308: Study Areas 1 to 4 and Sample Location Plan
- > 635544-309: Study Areas 5 7 and Sample Location Plan
- > 635544-310: Study Areas 8 10 and 12 and Sample Location Plan
- > 635544-311: Study Area 11 and Sample Location Plan
- > 635544-312: Study Area 1 Inferred Geological Cross Section A-A'
- > 635544-313: Study Area 1 Inferred Geological Cross Section B-B'
- > 635544-314: Study Area 1 Inferred Geological Cross Section C-C'
- > 635544-315: Study Area 3 Inferred Geological Cross Section D-D'
- > 635544-316: Study Area 3 Inferred Geological Cross Section E-E'



#### Drawings (Cont'd)

- > 635544-317: Study Area 4 Inferred Geological Cross Section F-F'
- > 635544-318: Study Area 5/6 Inferred Geological Cross Section G-G'
- > 635544-319: Study Area 5/6 Inferred Geological Cross Section H-H'
- > 635544-320: Study Area 7 Inferred Geological Cross Section I-I'
- > 635544-321: Study Area 8 Inferred Geological Cross Section J-J'
- > 635544-322: Study Area 8 Inferred Geological Cross Section K-K'
- > 635544-323: Study Area 9 Inferred Geological Cross Section L-L'
- > 635544-324: Study Area 9 Inferred Geological Cross Section M-M'
- > 635544-325: Study Area 12 Inferred Geological Cross Section N-N'
- > 635544-326: Study Area 12 Inferred Geological Cross Section O-O'
- > 635544-327: Spatial Distribution of Selected Groundwater Analytical Data Study Areas 1 to 4
- > 635544-328: Spatial Distribution of Selected Groundwater Analytical Data Study Areas 5 7
- 635544-329: Spatial Distribution of Selected Groundwater Analytical Data Study Areas 8 10 and 12
- > 635544-330: Spatial Distribution of Selected Groundwater Analytical Data Study Area 11

#### Appendices

- I: Summary of SSGMP 2017 Annual Reports and Regional Conceptual Site Model
  - > I-1: FRO 2017 Annual Groundwater Monitoring Summary and Recommendations
  - > I-2: GHO 2017 Annual Groundwater Monitoring Summary and Recommendations
  - > I-3: LCO 2017 Annual Groundwater Monitoring Summary and Recommendations
  - > I-4: EVO 2017 Annual Groundwater Monitoring Summary and Recommendations
  - > I-5: CMO 2017 Annual Groundwater Monitoring Summary and Recommendations
  - > I-6: Regional Conceptual Site Model

#### II: Borehole Logs

- III: Time-Series Graphs
  - Graph B-1: Groundwater Elevation of FR\_HWM5 (Background Well) (2015 2017)
  - Graph B-2: Selenium Concentrations in Background Well FR\_HMW5
  - Graph B-3: Sulphate Concentrations in Background Well FR\_HMW5
  - Graph 1-1: Groundwater Elevation of Study Area 1 Wells (2015 2017)
  - Graph 1-2: Selenium Concentrations in Study Area 1
  - Graph 1-3: Nitrate Concentrations in Study Area 1
  - Graph 2-1: Groundwater Elevation of Study Area 2 Wells (2015 2017)
  - Graph 2-2: Selenium Concentrations in Study Area 2
  - Graph 3-1: Groundwater Elevation of Study Area 3 (2016 2017)
  - Graph 3-2: Selenium Concentrations in Study Area 3
  - Graph 3-3: Sulphate Concentrations in Study Area 3
  - Graph 4-1: Groundwater Elevation of Study Area 4 Wells (2015 2017)
  - Graph 4-2: Selenium Concentrations in Study Area 4
  - Graph 6-1: Groundwater Elevation of Study Area 6 Well (March 2015 to December 2017)



#### Appendices (Cont'd)

- Graph 6-2: Selenium Concentrations in Study Area 6
- Graph 7-1: Groundwater Elevation of Study Area 7 Well (2015 2017)
- Graph 7-2: Selenium Concentrations in Study Area 7
- Graph 8-1: Groundwater and Surface Water Elevation in Study Area 8 (2015 2017)
- Graph 8-2: Selenium Concentrations in Study Area 8
- Graph 9-1: Groundwater and Surface Water Elevation in Study Area 9 (2015 2017)
- Graph 9-2(1): Selenium Concentrations in Study Area 9 (up to 550 µg/L)
- Graph 9-2(2): Selenium Concentrations in Study Area 9 (up to 60 μg/L)
- Graph 9-3: Nitrate Concentrations in Study Area 9
- Graph 9-4: Sulphate Concentrations in Study Area 9
- Graph 10-1: Groundwater Elevation of Study Area 10 Wells (2015 2017)
- Graph 10-2(1): Selenium Concentrations in Study Area 10 (up to 300 µg/L)
- Graph 10-2(2): Selenium Concentrations in Study Area 10 (up to 12 µg/L)
- Graph 11-1: Groundwater Elevation of Study Area 11 Wells (2015 2017)
- Graph 11-2: Selenium Concentrations in Study Area 11
- Graph 11-3: Sulphate Concentrations in Study Area 11
- Graph 12-1: Groundwater Elevation and Pumping Rate in Study Area 12 (2015 2017)
- Graph 12-2: Selenium Concentrations in Study Area 12 and Elk River Water Level
- IV: Block Diagrams
- V: Vertical Hydraulic Gradient Calculation

P\CP\Teck\635544\5.0\5.3\20180516\_635544\_Rpt\_Rgmp\_2017 Annual\_Report\_Final.Docx

2017 Annual Report Teck Coal Limited



## Acronyms

| AMP   | Adaptive Management Plan                                                                                                                                                                                    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AW    | Aquatic Life Water Use                                                                                                                                                                                      |
| BCWQG | British Columbia Approved Water Quality Guidelines, includes Working Water Quality Guidelines for BC (BCWQG). British Columbia Ministry of Environment & Climate Change Strategy (ENV), updated March, 2018 |
| BQ    | Big Question (part of the AMP)                                                                                                                                                                              |
| CCME  | Canadian Council of Ministers of the Environment                                                                                                                                                            |
| CCR   | Coarse Coal Rejects Dump                                                                                                                                                                                    |
| CI    | Constituents of interest                                                                                                                                                                                    |
| CMO   | Coal Mountain Operations                                                                                                                                                                                    |
| CP    | Compliance Point                                                                                                                                                                                            |
| CSM   | Conceptual Site Model                                                                                                                                                                                       |
| CSR   | Contaminated Sites Regulation (CSR), B.C. Reg. 375/96, includes amendments up to B.C. Reg. 196/2017, November 1, 2017                                                                                       |
| DCWMS | Dry Creek Water Management System                                                                                                                                                                           |
| DO    | Dissolved Oxygen                                                                                                                                                                                            |
| DW    | Drinking Water Use                                                                                                                                                                                          |
| EMC   | Environmental Monitoring Committee                                                                                                                                                                          |
| ENV   | Ministry of Environment & Climate Change Strategy                                                                                                                                                           |
| EVO   | Elkview Operations                                                                                                                                                                                          |
| EVWQP | Elk Valley Water Quality Plan                                                                                                                                                                               |
| FRO   | Fording River Operations                                                                                                                                                                                    |
| GHO   | Greenhills Operations                                                                                                                                                                                       |
| GWG   | Groundwater Working Group                                                                                                                                                                                   |
| GCDWQ | Guidelines for Canadian Drinking Water Quality                                                                                                                                                              |
| IW    | Irrigation Water Use                                                                                                                                                                                        |
| KNC   | Ktuxana Nation Council                                                                                                                                                                                      |
| KU    | Key Uncertainty (part of the AMP)                                                                                                                                                                           |
| LAEMP | Local Aquifer Effects Monitoring Program                                                                                                                                                                    |
| LCO   | Line Creek Operations                                                                                                                                                                                       |
| LW    | Livestock Water Use                                                                                                                                                                                         |
| MU    | Management Unit                                                                                                                                                                                             |
| MDL   | Method Detection Limit                                                                                                                                                                                      |
| MEM   | Ministry of Energy and Mines                                                                                                                                                                                |
| MoE   | Ministry of Environment, now known as Ministry of Environment & Climate Change Strategy (ENV)                                                                                                               |
| RDW   | Regional Drinking Water Sampling Program                                                                                                                                                                    |





# Acronyms (Cont'd)

| RGMP  | Regional Groundwater Monitoring Program      |
|-------|----------------------------------------------|
| SPO   | Site Performance Objective                   |
| STP   | South Tailings Pond                          |
| SWMP  | Surface Water Monitoring Program             |
| SSGMP | Site-Specific Groundwater Monitoring Program |
| UCC   | Upper Cap Concentration                      |



# 1 Introduction

This report was generated to meet annual reporting requirements for Teck Coal Limited (Teck) for regional groundwater monitoring in the Elk Valley outlined in Permit 107517<sup>1</sup> issued by the Ministry of Environment & Climate Change Strategy<sup>2</sup> (ENV). SNC-Lavalin Inc. (SNC-Lavalin) and Teck developed a Regional Groundwater Monitoring Program (RGMP) to monitor groundwater in the valley bottoms of defined areas within Management Units (MU[s]) 1, 2, 3 and 4 as described in the Elk Valley Water Quality Plan (EVWQP; Teck, 2014) and shown on Drawing 635544-301. This report fulfills reporting requirements listed in Section 10.4 of Permit 107517, specifically:

Regional groundwater monitoring results and interpretation must be compiled into a written report and submitted on an annual basis for each calendar year to the Director by May 16 of the following year. The Annual Report must include summaries of the site-specific groundwater reports.

The report(s) must include, but is not limited to:

- i. A map of monitoring locations with EMS and Permittee descriptors;
- *ii.* Cross sections showing well installation details, stratigraphy, groundwater elevations, and flow. Cross sections should be in the direction of groundwater flow and perpendicular to groundwater flow;
- iii. Drawings showing locations and water quality data of groundwater sampling points;
- *iv.* A summary of background information on that year's program, including discussion of program modifications relative to previous years;
- v. A summary of measured parameters, including appropriate graphs and comparison of results to, Approved and Working Water Quality Guidelines, or other criteria and benchmarks as specified by the Director;
- vi. If applicable, a summary of exceedances of screening benchmarks;
- vii. Evaluation and discussion of spatial patterns and temporal trends;
- viii. A summary of all QA/QC issues during the year; and
- ix. Recommendations for further study or measures to be taken.

## 1.1 Regulatory History and Permit Requirements

A RGMP is required in Permit 107517. In July 2015, a RGMP was submitted ("2015 RGMP"; SNC-Lavalin, 2015a) focusing on mine-related constituents including selenium, cadmium, sulphate, and nitrate, or "constituents of interest" (hereafter referred to as CI). Since submission of the 2015 RGMP, the following related submissions and activities have taken place, listed in Table A below.

<sup>&</sup>lt;sup>1</sup> Permit 107517, amended October 13, 2017.

<sup>&</sup>lt;sup>2</sup> Formerly known as Ministry of Environment (MoE).



| Timeline                    | Activity                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| July 30, 2016               | <ul> <li>Submission of the Water Quality Adaptive Management Plan (AMP) which considers<br/>results from the 2015 RGMP (i.e., Big Question (BQ) 6 and Key Uncertainty (KU) 6.1;<br/>Teck, 2016).</li> </ul>                                                                                                              |
| March 31, 2016              | Submission of 2015 regional and site-specific Groundwater Annual Reports.                                                                                                                                                                                                                                                |
| October 26/27, 2016         | Workshop with Teck, Ktunaxa Nation Council (KNC) and MoE (now ENV)<br>representatives. This group has been termed 'the Groundwater Working Group (GWG)'<br>and in the workshop the group discussed key concepts related to groundwater in the<br>Elk Valley, and feedback on the 2015 RGMP and other related submittals. |
| March 1 and<br>June 5, 2017 | <ul> <li>Amendment of Permit 107517 by the MoE with additional requirements for regional and<br/>site-specific groundwater monitoring programs and reporting.</li> </ul>                                                                                                                                                 |
| March 31, 2017              | Submission of 2016 site-specific Groundwater Annual Reports.                                                                                                                                                                                                                                                             |
| April 18, 2017              | > 2015 RGMP was approved by the MoE with conditions.                                                                                                                                                                                                                                                                     |
| May 16, 2017                | Submission of the 2016 RGMP Annual Report.                                                                                                                                                                                                                                                                               |
| June 28, 2017               | GWG meeting to review and gain alignment on the major components of the RGMP<br>update, discuss feedback received on the 2016 Annual RGMP report that could<br>influence the RGMP update and discuss other GW supporting studies and how they<br>could be prioritized within the RGMP update.                            |
| September 30, 2017          | > Submission of the 2017 RGMP.                                                                                                                                                                                                                                                                                           |
| March 31, 2017              | Submission of 2017 site-specific Groundwater Annual Reports.                                                                                                                                                                                                                                                             |

#### Table A: Submissions and Activities since Submission of the 2015 RGMP

The 2015 RGMP was approved on April 18, 2017 with a number of conditions with one of the conditions requiring an update to the RGMP, which was submitted on September 29, 2017 by Teck ("2017 RGMP"; SNC-Lavalin, 2017a) to meet conditions listed by ENV in the approval letter. The 2017 RGMP included:

- > An updated Conceptual Site Model (CSM) with well-presented data to support the model;
- Maps and visual data presentation;
- > Definitions and conceptual boundaries of site-specific and regional groundwater programs and the linkages between them;
- > Screening criteria with rationale;
- Integration of information from the site-specific groundwater monitoring programs (SSGMP), used to identify potential areas of additional study;
- A list of areas requiring additional study, a system for prioritizing the implementation of groundwater studies for the specific areas identified, and a tentative schedule of the additional studies; and
- A framework for developing and prioritizing groundwater triggers that integrate with the AMP for Teck's coal operations in the Elk Valley.

### 1.2 Purpose and Objectives of the RGMP

Teck has developed three purpose statements and supporting objectives for the RGMP. These were developed in consultation with the GWG during the October 2016 and June 2017 meetings and were presented in the 2017 RGMP (SNC-Lavalin, 2017a). Purpose statements and supporting objectives are described in the following sections.

2017 Annual Report Teck Coal Limited



#### 1.2.1 Purpose Statements

Using the framework of the EVWQP, the RGMP has been updated to:

- 1: Monitor and evaluate potential quality effects to groundwater resources from mining activities to protect current groundwater users (initial focus) in the Elk Valley. Monitoring and evaluations will continue to inform management decisions that work towards protection of future groundwater users in the Elk Valley.
- 2: To monitor and evaluate groundwater as a potential pathway for transport of mine-related constituents of interest to surface water to support management decisions under the Water Quality AMP.
- 3: Evaluate and refine the conceptual site model for source, transport and fate of mine-related constituents of interest in groundwater in the Elk Valley.

#### 1.2.2 Objectives

Teck has developed objectives that relate to each of these purposes, described in Table B below:

#### Table B: RGMP Purpose and Objectives

| Purpose                                                                                                                                                                                                                                                                                                                               | Objectives                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purpose 1: Using the framework of the EVWQP, the                                                                                                                                                                                                                                                                                      | <ul> <li>To identify the current receptors (i.e., drinking water,<br/>aquatic life, livestock watering and irrigation<br/>watering) and evaluate the potential for a complete<br/>transport pathway between source and receptors.</li> </ul>                                                                                                                                                                                  |
| RGMP will be updated to monitor and evaluate<br>potential quality effects to groundwater resources from<br>mining activities to protect current groundwater users<br>in the Elk Valley. Monitoring and evaluations will<br>continue to inform management decisions that work<br>towards protection of future groundwater users in the | <ul> <li>To collect groundwater quality information from a monitoring network with appropriate locations to assess the presence of complete transport pathways (i.e., between source and receptors) for constituents of interest.</li> <li>Evaluate groundwater quality information against established screening criteria to assess potential effects to identified users and evaluate temporal / spatial trends.</li> </ul> |
| Elk Valley.                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Purpose 2:</b> Using the framework of the EVWQP, the RGMP will be updated to monitor and evaluate groundwater as a potential pathway for transport of                                                                                                                                                                              | <ul> <li>To collect necessary groundwater information to<br/>support the refinement of surface water quality<br/>predictions.</li> </ul>                                                                                                                                                                                                                                                                                      |
| mine-related constituents of interest to surface water to support management decisions under the AMP.                                                                                                                                                                                                                                 | <ul> <li>To evaluate the need to manage groundwater to<br/>meet surface water quality compliance.</li> </ul>                                                                                                                                                                                                                                                                                                                  |
| <b>Purpose 3:</b> Using the framework of the EVWQP, the RGMP will be updated to evaluate and refine the conceptual model for source, transport and fate of mine-related constituents of interest in groundwater in the Elk Valley.                                                                                                    | <ul> <li>To review and synthesize regional and site-specific<br/>groundwater monitoring data on a three year<br/>timeframe to update and refine the Regional<br/>Conceptual Site Model.</li> </ul>                                                                                                                                                                                                                            |



# 1.3 Linkages Between the Site-Specific and Regional Programs

In addition to requirements for a RGMP, Permit 107517 requires a SSMGP at each of Teck's five active coal mines in the Elk Valley. The 2017 RGMP defined conceptual boundaries of site-specific and regional groundwater monitoring programs and the linkages between them. The following definitions of site specific and regional programs were proposed and accepted at the June 2017 GWG meeting and were reported in the 2017 RGMP submitted in September 2017:

- SSGMPs will focus on potential sources of mine-related constituents in groundwater and transport pathways to groundwater in the valley-bottom of the main stem rivers (i.e., Elk and Fording Rivers, Michel Creek). It is anticipated that the majority of the site-specific groundwater monitoring will be located within mine operations permitted boundaries; and
- The RGMP will focus on groundwater fate and transport in the valley-bottom of the main stems, and how they relate to applicable receptors. It is anticipated that the majority of the regional groundwater monitoring will be located outside mine operations permitted boundaries.

# 1.4 Report Structure and Content

The 2017 Annual Report for the RGMP has been prepared following the approved 2015 RGMP (SNC-Lavalin, 2015a) and the annual groundwater reporting requirements listed in Section 10.4 of Permit 107517. The structure and content of this report has incorporated past feedback from Environmental Monitoring Committee (EMC) and GWG on the Synthesis Report (SNC-Lavalin, 2015b), 2015 Annual Report (SNC-Lavalin, 2016) and the 2016 Annual Report (SNC-Lavalin, 2017c), as well as the 2017 RGMP (SNC-Lavalin, 2017a), where appropriate.

The 2017 Annual Report for the RGMP is structured as follows:

| Section    | Description of Hydrogeological Information and Relevant Permit Requirement                                                                                                                                                           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sections 1 | > includes background information on the RGMP and a brief presentation of the Regional CSM; and                                                                                                                                      |
| and 2      | <ul> <li>Section 2.2 provides a summary of site-specific groundwater reports.</li> </ul>                                                                                                                                             |
|            | <ul> <li>provides a description of the RGMP including monitoring locations, sampling methodologies and<br/>Quality Assurance/Quality Control (QA/QC). This Section meets the Permit 107517 Section 10.4<br/>requirements:</li> </ul> |
| Section 3  | - i. a map of monitoring locations with EMS and Permittee descriptors;                                                                                                                                                               |
|            | <ul> <li>iv. a summary of background information on that year's program, including discussion of<br/>program modifications relative to previous years; and</li> </ul>                                                                |
|            | - viii. a summary of all QA/QC issues for the year.                                                                                                                                                                                  |
| Section 4  | <ul> <li>provides a description and explanation of primary and secondary screening criteria for comparison<br/>of groundwater quality data as defined in the approved RGMP.</li> </ul>                                               |

#### Table C: Summary of the Report Structure



| Section   | Description of Hydrogeological Information and Relevant Permit Requirement                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <ul> <li>includes presentation of 2017 results and discussion, including comparison to screening criteria<br/>outlined in Section 4, by Study Area. Trends for water levels and groundwater quality and a<br/>comparison against available surface water data, where sufficient data are available, are<br/>presented and used for data interpretation by Study Area. This Section meets the Permit 107517<br/>Section 10.4 requirements:</li> </ul> |
| Section 5 | <ul> <li>ii. cross sections showing well installation details, stratigraphy, groundwater elevations, and<br/>flow. Cross sections should be in the direction of groundwater flow and perpendicular to<br/>groundwater flow;</li> </ul>                                                                                                                                                                                                               |
|           | - iii. drawings showing locations and water quality data of groundwater sampling points;                                                                                                                                                                                                                                                                                                                                                             |
|           | <ul> <li>v. a summary of measured parameters, including appropriate graphs and comparison of result<br/>to, Approved and Working Water Quality Guidelines, or other criteria and benchmarks as<br/>specified by the Director;</li> </ul>                                                                                                                                                                                                             |
|           | - vi. if applicable, a summary of exceedances of screening benchmarks; and                                                                                                                                                                                                                                                                                                                                                                           |
|           | - vii. evaluation and discussion of spatial patterns and temporal trends.                                                                                                                                                                                                                                                                                                                                                                            |
| Section 6 | <ul> <li>provides the conclusions as well as any recommendations for monitoring, intended to meet Permit<br/>107517 Section 10.4 requirement:</li> </ul>                                                                                                                                                                                                                                                                                             |
|           | - ix: recommendations for further study or measures to be taken.                                                                                                                                                                                                                                                                                                                                                                                     |
| Section 7 | > lists references.                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Table C (Cont'd): Summary of the Report Structure

### 1.5 Data Sources and Limitations

SNC-Lavalin received field and chemistry data from both the SSGMP and Regional Drinking Water Sampling Program (RDW) (including both manual and level logger groundwater levels, top of casing information, field measurements and laboratory analytical results, where applicable). Teck also received some data from the District of Sparwood that has been transferred to SNC-Lavalin through Teck. SNC-Lavalin has relied on data and information provided by Teck and, as such, has assumed that the information provided is both complete and accurate. To confirm that field activities are conducted in a manner that meets the overall data quality objective of the QA/QC program, Teck's sampling activities are conducted in accordance with the 2013 Edition of the British Columbia Field Sampling Manual (Clark, 2002). Environmental personal are trained using on-site Standard Practice and Procedure (SP&P) as detailed in the "Teck Field Sampling Manual". Interpretations and conclusions within this report are made with the assumption that data collection was performed following these standards using the proper duty of care.

### 1.6 Linkage to Adaptive Management

As required in Permit 107517 Section 11, Teck has developed an AMP to support implementation of the EVWQP, to achieve water quality targets including calcite targets, ensure that human health and the environment are protected, and where necessary, restored, and to facilitate continuous improvement of water quality in the Elk Valley.



Following an adaptive management framework, the AMP identifies six Big Questions (now referred to as Management Questions) that will be re-evaluated at regular intervals as part of AMP updates throughout the duration of EVWQP implementation. For each Management Question (MQ), the AMP describes how the MQ will be periodically re-evaluated, and how the key uncertainties under the MQ will be reduced.

The AMP was submitted to the Environmental Monitoring Committee and ENV Director July 31, 2016 as required (hereafter referred to as the "July 2016 AMP"). Study designs for many programs (including the RGMP) were established before the July 2016 AMP was submitted. Teck has been working to embed elements of the AMP within each program through reviews of monitoring programs at the study design and annual report stages.

Through stakeholder review of the July 2016 AMP, it was determined that an update to the AMP was required to advance several elements that were in development at the time of the July 2016 AMP submission. Teck is currently working in collaboration with the KNC and EMC to update AMP content and will submit an updated AMP for acceptance by the ENV Director by December 21, 2018.

Related to the RGMP, the AMP will be updated to reflect advances made in the RGMP by incorporating groundwater into Management Questions 1, 3, 4 and 5 and strengthening it under Management Question 6. Specific groundwater-related key uncertainties, hypothesis, and documentation of potential continuous improvement goals will be incorporated into the 2018 AMP as developed in consultation with the GWG and/or the EMC. A meeting with the GWG in May 2018 will advance inclusion of groundwater-related uncertainties and the RGMP/SSGMP into the 2018 AMP.



# 2 RGMP Background and Regional Conceptual Site Model

### 2.1 RGMP Background

The basis for the 2015 RGMP was a regional hydrogeological conceptual site model ('Regional CSM') developed to describe regional groundwater flow patterns and quality, focusing on mine-related CI (i.e., order constituents). A hydrogeological conceptual model is typically a representation of groundwater recharge, flow, and discharge for a given area, and, where water quality may be affected. Additional components include presentation of constituent sources, transport pathways and receptors for groundwater. In general, hydrogeological conceptual models are 'living' or 'dynamic' and continue to be modified as various aspects of the physical and chemical hydrogeology continue to be monitored, investigated and understood.

The Regional CSM was initially developed in 2015 and described in a Regional Groundwater Synthesis Report for the Elk Valley (the "Synthesis Report", SNC-Lavalin, 2015b). The Synthesis Report compiled and interpreted all relevant groundwater information available in the Elk Valley and provided technical rationale for the 2015 RGMP, which consisted of collecting monitoring data from selected locations in the following groundwater monitoring programs:

- > Fording River Operations (FRO);
- Greenhills Operations (GHO);
- Line Creek Operations (LCO);
- > Elkview Operations (EVO);
- > Coal Mountain Operations (CMO); and
- > Regional Drinking Water Sampling Program (RDW).

The Regional CSM indicated the main potential pathway for regional groundwater transport of mine-influenced water was through the valley bottom sediments in the main stems (i.e., Elk and Fording Rivers, and Michel Creek) and not through bedrock due to low permeability bedrock and the steep topographic gradient in mountainous terrain. In addition, the Regional CSM identified that the principal groundwater systems of interest for transport of CI to receptors in the Elk Valley were at the local scale. As such, 12 areas (originally called "Key Areas" and now referred to as "Study Areas") at the local scale (i.e., on the order of tens of metres to a few kilometres) were defined as being areas where groundwater monitoring may be required to understand potential groundwater transport of mining-related CI in the valley bottoms of the main stems.

These Study Areas were described in detail in the Synthesis Report and summarized in Table D below.



| Study<br>Area | Description                                                                                                                                                                                                                                                                                        | MU      | Program(s)         |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|
| 1             | Fording River Valley Bottom Downgradient of FRO, Cataract and<br>Porter Creeks: This area is the focal point for the majority of upland and<br>tributary flow to the Fording River valley bottom near the FRO and GHO<br>property boundaries, and the primary off-site migration pathway from FRO. | 1       | FRO                |
| 2             | <b>Fording River Valley Bottom Downgradient of LCO Dry Creek</b> : This area receives drainage from the planned LCO Phase II development as well as upgradient Fording River valley-bottom groundwater from FRO and GHO.                                                                           | 1       | LCO                |
| 3             | Fording River Valley Bottom Downgradient of GHO Rail Loop and Greenhills Creek: This area receives upland groundwater from GHO.                                                                                                                                                                    | 1       | GHO                |
| 4             | Elk River Valley Bottom Downgradient of Leask, Wolfram and Thompson Creeks: This area receives groundwater recharge from upgradient mining activities along the western slope of GHO, and is a potential off-site migration pathway.                                                               | 2       | GHO / RDW          |
| 5             | <b>Fording River Valley Bottom Downgradient of Line Creek:</b> The valley bottom in this area receives inputs from Line Creek, the Fording River and the LCO Process Plant.                                                                                                                        | 2 and 4 | LCO                |
| 6             | <b>Elk River Valley Bottom Downgradient of Confluence with Fording River:</b> This area receives input from the Fording River valley-bottom, the Elk River valley-bottom and the Line Creek Process Plant site.                                                                                    | 4       | LCO                |
| 7             | <b>Elk River Valley Bottom Downgradient of Grave Creek:</b> This area receives input from drainages flowing from the northwest slope of EVO, as well as upgradient input from the Elk River and Study Area 6.                                                                                      | 4       | EVO / RG           |
| 8             | Elk River Valley Bottom Downgradient of Balmer, Lindsay and Otto/Cossarini Creeks: Upland groundwater flows into the Elk River valley bottom from potential sources along the western slope of EVO.                                                                                                | 4       | EVO                |
| 9             | <b>Michel Creek Valley Bottom Downgradient of EVO:</b> Upland groundwater flows into the Michel Creek valley bottom from potential sources along the western slope of EVO.                                                                                                                         | 4       | EVO / EVO /<br>RDW |
| 10            | <b>Michel Creek Valley Bottom Downgradient of Erickson Creek</b> : Mining activities on the southwest slope of EVO around Erickson Creek, are a potential source of mining-related constituents to valley-bottom groundwater into the Michel Creek valley bottom.                                  | 4       | EVO                |
| 11            | <b>Michel Creek Valley Bottom Downgradient of CMO:</b> The Michel Creek valley bottom receives input from CMO immediately downgradient of the confluence of Michel and Corbin Creeks. Valley-bottom deposits in this area are the primary off-site migration pathway.                              | 4       | CMO / RDW          |
| 12            | <b>Elk River Valley Bottom at MU4 Boundary:</b> This area is at the boundary of MU4. Coarse sediments in this area have been identified as a potential migration pathway, and previous studies have inferred that surface water recharge from the Elk River occurs in this area.                   | 4       | EVO / RDW          |

#### Table D: Study Areas for Groundwater Monitoring as Defined in SNC-Lavalin (2017a)



# 2.2 Summary of SSGMP 2017 Annual Reports

A summary of site-specific groundwater reports was developed to fulfill requirements listed in Section 10.4 of Permit 107517 which states: "*The Annual Report must include summaries of the site specific groundwater reports.*" The 2017 Annual Reports for each site-specific program were prepared for Teck by the following:

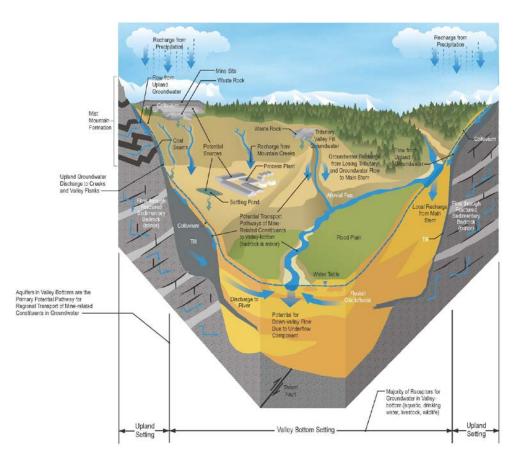
- > FRO: SNC-Lavalin (2018a);
- GHO: SNC-Lavalin (2018b);
- > LCO: Golder (2018);
- > EVO: SNC-Lavalin (2018c); and
- > CMO: Teck (2018).

SNC-Lavalin reviewed site-specific 2017 annual monitoring reports for each operation as part of the 2017 RGMP annual report. A summary of the conclusions and recommendations from each operation is provided in Appendix I along with a site location plan showing wells locations, a table providing monitoring rationale for wells, and plan view maps indicating 2017 results for CI.

### 2.3 Regional CSM

The Regional CSM updated in the RGMP Update (SNC-Lavalin, 2017a) builds on concepts originally presented in SNC-Lavalin (2015a) using information from additional studies and monitoring data from site-specific and regional groundwater monitoring programs.

Drawings showing bedrock and surficial geology and potential down-valley groundwater flow in the valley bottoms are shown in Drawings 635544-302 to 635544-307. The main concepts from the Regional CSM relevant to the RGMP are:


- Regional groundwater flow velocities through bedrock are relatively low (i.e., on the order of 1 m/year). The differences in permeability between bedrock and surficial materials and steep topographic gradients indicates the surficial materials are the most important for understanding pathways of mine-influenced groundwater;
- > Two hydrogeologic settings were identified in surficial materials: the upland setting (i.e., valley flanks) and valley-bottom setting:
  - The groundwater flow regime in the upland setting is generally governed by the surface of low permeability units and all groundwater eventually flows to valley-bottom surficial deposits, either as surface water or groundwater; and
  - The valley bottoms are where the main aquifers exist in fluvial and glaciofluvial deposits. Locally, groundwater flow patterns converge into the valley bottom from bedrock and upland units and discharge to surface water is expected. However, local-scale down-valley flow in the main stem valley bottoms is known to occur, resulting in groundwater recharge from a losing stream.
- The only potential 'regional' flow system is through the sediments in the valley bottoms of the main stem rivers; however, down-valley flow has been shown to be local in scale, and not regional. The valley-bottom setting was delineated for main stem rivers and shown in Drawings 635544-306 and 635544-307, showing hydraulic heads for RGMP wells;

2017 Annual Report Teck Coal Limited



- Mining influences on groundwater in surficial sediments in the main stem valley bottoms can occur through two different pathways:
  - "the groundwater pathway", where localized areas of mine-influenced groundwater can develop due to transport of CI from upland mining areas to the valley-bottom. Concentrations of CI in groundwater in the valley bottom are expected to be higher than adjacent surface water. Since down-valley flow is limited on a regional scale, the areas where groundwater can be affected is localized areas to the vicinity of Operations; and
  - "the surface water pathway", where mine-influenced surface water recharges groundwater. Concentrations of CI in groundwater in the valley bottom are expected to be equal to or less than adjacent surface water due to mixing with fresh water sources. The surface water pathway may affect groundwater distal to Operations and is considered to be the only pathway where mining-related activities can affect groundwater on a regional scale.

These concepts are discussed further with illustrations in Appendix I, which has been extracted from the RGMP Update (SNC-Lavalin, 2017a). Figure A is a graphical representation of the concepts presented in the Regional CSM and potential pathways for mining-influenced groundwater in the valley-bottoms of main stem rivers in the Elk Valley.



#### Figure A: Potential Pathways for Mining-Influenced Groundwater in the Elk Valley



# 3 Regional Groundwater Monitoring Program Description

The approved RGMP outlines monitoring locations; sampling methodology; sampling frequency; analytical parameters; and a QA/QC program which combined define a comprehensive groundwater monitoring program for MUs 1, 2, 3 and 4 as required by Permit 107517. The intent of the RGMP is to dovetail with the SSGMPs to monitor for potential regional effects of mining activities on groundwater. Details of the 2017 monitoring program are provided in the following subsections.

### 3.1 Monitoring Locations and Rationale

A total of 37 existing monitoring, supply and/or domestic wells were included in the RGMP. These wells provide information on the regional groundwater understanding and have been selected for inclusion into the RGMP as they are existing locations that best characterize groundwater conditions and potential groundwater transport of CI to the valley bottom in Study Areas as defined by the Regional CSM. Monitoring locations were selected in the RGMP based on the following:

- > Wells completed in valley-bottom sediments upgradient of, within, or downgradient of a Study Area;
- > Wells in upland or tributary areas upgradient of Study Areas where potential for a groundwater transport pathway was identified by SSGMPs; and
- A background or reference well to provide a suggestion of naturally occurring conditions in the main river valley-bottoms.

The wells selected for the RGMP are an integration of SSGMPs, the RDW and other ongoing sampling programs such as operational water supply sampling programs. Wells consist of dedicated monitoring wells, supply wells and domestic wells; general rationale for selection and limitations are described below:

- Dedicated groundwater monitoring wells are preferred for inclusion in the monitoring network because they provide a discrete, representative sample of groundwater and water level from the targeted formation. Where available, nested wells screened at two or more different depths were chosen to monitor the variation of water constituents with depth. Multi-level wells may also be used to assess the vertical hydraulic gradient and inform groundwater and surface water interactions;
- Supply wells can provide representative average groundwater quality over a much larger region compared to dedicated monitoring wells and can identify potential influences due to pumping. Supply wells are sampled from an access point, such as a tap, due to the limited access to the well head. Water supply wells are not ideal for discrete sampling of groundwater due to longer well screens and mixing effects within the well's capture zone induced by pumping. Also, in most cases static water levels are not available which limits their application for monitoring groundwater levels. However, water supply wells were included in the RGMP in areas where dedicated monitoring wells do not exist;
- Domestic wells selected in the RGMP are distal to operations and provide a representative indication of groundwater quality in areas that would be subject to recharge from surface water such as the Elk and Fording Rivers. Similar to supply wells, the use of domestic wells for monitoring is limited by the effects of long well screens and limited access to wellhead to measure static water level or conduct hydraulic testing. Also, continued monitoring of these wells is at the discretion of the private



well owners; therefore, changes may occur to sampling plan based on desired participation of landowners. However, the current RDW Sampling Program allows quarterly access to domestic wells that are useful for monitoring groundwater quality in Study Areas where dedicated monitoring wells or supply wells are not available.

Table E provides a list of locations associated with each Study Area, as well as information such as well type (monitoring, supply or domestic), associated operation and location UTMs. Table E also includes a description of each well location and a rationale indicating why these wells were included in the monitoring program. Drawings 635544-308 to -311 indicate the location of monitoring locations included in the RGMP in each Study Area in relation permitted mine boundaries.

Additional details on rationale for well selection and information associated with well type (i.e., monitoring supply, or domestic well) are provided in the 2015 RGMP (SNC-Lavalin, 2015a). Borehole logs for the wells sampled as part of the RGMP are included in Appendix II.

#### 2017 Annual Report Teck Coal Limited

| Study Area | Well ID              | Well Type  | Management<br>Unit (MU) | Operation | Easting<br>(m) | Northing<br>(m) | Setting                     | Location Description an                                                                                                                                                                |                                                                                                     |
|------------|----------------------|------------|-------------------------|-----------|----------------|-----------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Background | FR_HMW5              | Monitoring | 1                       | FRO       | 655476         | 5567514         | Tributary<br>valley-bottom  | Background well upgradient of FRO in Henretta Creek Drainage. Selected to                                                                                                              |                                                                                                     |
|            | FR_09-01-A           | Monitoring | 1                       | FRO       | 652601         | 5558300         |                             | Downgradient of South Kilmarnock Phase 1 and 2 Settling Ponds, Swift Cree                                                                                                              |                                                                                                     |
| 1          | FR_09-01-B           | Monitoring | 1                       | FRO       | 652601         | 5558300         | Fording River valley-bottom | Study Area 1. Completed in coarse sediments within the Fording River Valle FRO.                                                                                                        |                                                                                                     |
|            | FR_GHHW <sup>1</sup> | Supply     | 1                       | FRO       | 653150         | 5557337         | valley-bottom               | Wells screened within coarse Fording River valley-bottom sediments at the s<br>Cataract Creeks. Selected to monitor groundwater transport outside of mine-                             |                                                                                                     |
| 2          | LC_PIZDC1308         | Monitoring | 1                       | LCO       | 658111         | 5541267         | Tributary                   | Multi-level overburden sentry well upgradient of Study Area 2 in the LCO Dry                                                                                                           |                                                                                                     |
| 2          | LC_PIZDC1307         | Monitoring | 1                       | LCO       | 658111         | 5541267         | valley-bottom               | of planned upland and tributary valley-bottom development at LCO Phase II.                                                                                                             |                                                                                                     |
|            | GH_POTW09            | Supply     | 1                       | GHO       | 654208         | 5545404         |                             |                                                                                                                                                                                        |                                                                                                     |
| 2          | GH_POTW10            | Supply     | 1                       | GHO       | 653291         | 5545484         | Fording River               | Leasted in the Ferdine Diver Velley, Anvifer, Colocted to reprise mean durate                                                                                                          |                                                                                                     |
| 3          | GH_POTW15            | Supply     | 1                       | GHO       | 653169         | 5545667         | valley-bottom               | Located in the Fording River Valley Aquifer. Selected to monitor groundwate                                                                                                            |                                                                                                     |
|            | GH_POTW17            | Supply     | 1                       | GHO       | 653698         | 5545811         |                             |                                                                                                                                                                                        |                                                                                                     |
|            | GH_MW-ERSC-1         | Monitoring | 3                       | GHO       | 649081         | 5548704         | Elk River<br>valley-bottom  |                                                                                                                                                                                        | Located near the southern boundary of Study Area 4. Selected as a potentia valley-bottom sediments. |
|            | GH_GA-MW-1           | Monitoring | 3                       | GHO       | 648019         | 5554750         |                             | Upgradient area of Study Area 4. Selected to monitor groundwater conditions in the upgradient area of Study Area 4.                                                                    |                                                                                                     |
|            | GH_GA-MW-2           | Monitoring | 3                       | GHO       | 648291         | 5552115         |                             | Located downgradient of Wolfram Creek Settling Ponds. Selected to monitor side of GHO and evolution of groundwater quality in within the Elk River valle                               |                                                                                                     |
| 4          | GH_GA-MW-3           | Monitoring | 3                       | GHO       | 648578         | 5550296         |                             | Located downgradient of Thompson Creek Settling Ponds. Selected to moni-<br>side of GHO and evolution of groundwater quality in within the Elk River valle                             |                                                                                                     |
|            | GH_GA-MW-4           | Monitoring | 3                       | GHO       | 648217         | 5552963         |                             | Located downgradient of Leask Creek Settling Ponds. Selected to monitor up of GHO and evolution of groundwater quality in within the Elk River valley bo                               |                                                                                                     |
|            | RG_DW-01-03          | Supply     | 3                       | RG        | 649089         | 5543336         |                             | Located 5 km downgradient of Study Area 4. Selected as a potential sentry v<br>bottom sediments downgradient of Study Area 4.                                                          |                                                                                                     |
|            | RG_DW-01-07          | Domestic   | 3                       | RDW       | 649737         | 5534118         |                             | Located 15 km downgradient of Study Area 4. A sentry well to monitor groun Study Area 4.                                                                                               |                                                                                                     |
| 5/6        | LC_PIZP1101          | Monitoring | 4                       | LCO       | 653960         | 5528263         | Elk River<br>valley-bottom  | Southwest of the effluent ponds at the LCO Process Plant Site, upgradient of the LCO Process Plant Site on the Elk River valley bottom in Study Area 6.                                |                                                                                                     |
| 7          | EV_GV3gw             | Monitoring | 4                       | EVO       | 656580         | 5522255         | Tributary valley-bottom     | Nearest upgradient well of Study Area 7, within the Grave Creek valley botto input from drainages to the northeast of EVO.                                                             |                                                                                                     |
| 7          | RG_DW-02-20          | Domestic   | 4                       | RDW       | 652327         | 5522263         | Elk River<br>valley-bottom  | Located 4 km downgradient of Study Area 6. Selected to monitor groundwate                                                                                                              |                                                                                                     |
| C          | EV_LSgw Monitoring   | Monitoring | 4                       | EVO       | 653274         | 5514731         | Elk River                   | Located near the discharge of Lindsay Creek to the Elk River. Selected to may valley bottom, and Elk River valley bottom features along the western slope of the sector of the sector. |                                                                                                     |
| 8          | EV_OCgw              | Monitoring | 4                       | EVO       | 652480         | 5512671         | valley-bottom               | Located immediately downgradient of Lagoon D and adjacent to Otto Creek. upland, tributary valley bottom, and Elk River valley bottom features along th                                |                                                                                                     |

#### Table E: Groundwater Monitoring Locations by Study Area, Well Type, Associated Operation and Description

#### nd Rationale

to provide background regional groundwater conditions.

reek and Kilmarnock Creek, upgradient of Cataract Creek and Iley. Selected to monitor groundwater near the Site boundary of

e southern border of FRO, downgradient of Swift, Porter and e-permitted areas in Study Area 1.

Dry Creek valley bottom. Selected to monitor potential influence II.

ater conditions in Study Area 3.

ial sentry well to monitor groundwater quality in Elk River

ons in Elk River valley-bottom groundwater conditions near GHO

tor upland and tributary valley bottom influences from the west alley bottom in Study Area 4.

nitor upland and tributary valley bottom influences from the west Iley bottom in Study Area 4.

upland and tributary valley bottom influences from the west side bottom in Study Area 4.

well to monitor groundwater within coarse Elk River valley

undwater within the Elk River valley bottom downgradient of

of Study Area 6. Selected to monitor potential influence from

tom. Selected to monitor upland and tributary valley-bottom

ater in the Elk River valley bottom in Study Area 7.

monitor potential inputs to Study Area 8 from upland, tributary e of EVO.

ek. Selected to monitor potential inputs to Study Area 8 from the western slope of EVO.

#### 2017 Annual Report Teck Coal Limited

| Study Area | Well ID     | Well Type  | Management<br>Unit (MU) | Operation | Easting<br>(m) | Northing<br>(m) | Setting                       | Location Description and                                                                                                                                    |                                                                                                                                                           |
|------------|-------------|------------|-------------------------|-----------|----------------|-----------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | EV_BCgw     | Monitoring | 4                       | EVO       | 655381         | 5509659         | Michel Creek<br>valley-bottom | Downgradient of the confluence of Bodie Creek and Michel Creek. Selected Creek valley-bottom sediments in relation to potential inputs in Study Area 9.     |                                                                                                                                                           |
|            | EV_MCgwS    | Monitoring | 4                       | EVO       | 653476         | 5511624         |                               | Located 1.8 km upgradient of the confluence of Michel Creek and the Elk Riv                                                                                 |                                                                                                                                                           |
|            | EV_MCgwD    | Monitoring | 4                       | EVO       | 653476         | 5511624         |                               |                                                                                                                                                             | within Michel Creek valley-bottom sediments in relation to potential inputs in                                                                            |
| 9          | EV_BRgw     | Supply     | 4                       | EVO       | 654961         | 5510221         | Michal Crook                  |                                                                                                                                                             |                                                                                                                                                           |
|            | EV_RCgw     | Supply     | 4                       | EVO       | 655902         | 5509299         | Michel Creek<br>valley-bottom | Michel Creek valley bottom upgradient and downgradient of Gate Creek and<br>monitor spatial variation in groundwater quality within Michel Creek valley bo  |                                                                                                                                                           |
|            | EV_WH50gw   | Supply     | 4                       | EVO       | 655705         | 5509196         |                               | monitor spatial variation in groundwater quarky within whoher oreek varies be                                                                               |                                                                                                                                                           |
|            | RG_DW-03-01 | Domestic   | 4                       | RDW       | 653073         | 5511979         |                               |                                                                                                                                                             | Located 1.2 km upgradient of the confluence of Michel Creek and the Elk Riv<br>within coarse Elk River valley bottom sediments downgradient from Study Ar |
| 10         | EV_ECgw     | Monitoring | 4                       | EVO       | 660795         | 5506384         | Tributary<br>valley-bottom    | Nearest upgradient well of Study Area 10, within Erickson Creek valley botto<br>upland and tributary valley-bottom groundwater from the southwest portion o |                                                                                                                                                           |
|            | CM_MW1-OB   | Monitoring | 4                       | СМО       | 667957         | 5487526         |                               |                                                                                                                                                             |                                                                                                                                                           |
|            | CM_MW1-SH   | Monitoring | 4                       | СМО       | 667957         | 5487526         |                               | Multi-level sentry well immediately downgradient of CMO and the confluence groundwater in the Michel Creek valley-bottom in Study Area 11.                  |                                                                                                                                                           |
| 11         | CM_MW1-DP   | Monitoring | 4                       | СМО       | 667957         | 5487526         | Michel Creek<br>valley-bottom |                                                                                                                                                             |                                                                                                                                                           |
|            | RG_DW-07-01 | Domestic   | 4                       | RDW       | 668408         | 5487454         |                               | Immediately downgradient of CMO at the confluence of Michel Creek and Co<br>conditions in the Michel Creek Valley bottom downgradient of CMO in Study       |                                                                                                                                                           |
|            | EV_ER1gwS   | Monitoring | 4                       | EVO       | 651374         | 5510955         |                               | Adjacent to the Elk River, 1 km downgradient of the confluence with Michel C                                                                                |                                                                                                                                                           |
| 12         | EV_ER1gwD   | Monitoring | 4                       | EVO       | 651379         | 5510952         | Elk River                     | River valley-bottom sediments in Study Area 12.                                                                                                             |                                                                                                                                                           |
| 12         | RG_DW-03-04 | Supply     | 4                       | RG        | 651839         | 5510619         | valley-bottom                 | Located near the border of MU4 and MU5 in the Elk River valley bottom. Sel groundwater in the Elk River valley bottom at the southern extent of the Stud    |                                                                                                                                                           |

#### Table E (Cont'd): Groundwater Monitoring Locations by Study Area, Well Type, Associated Operation and Description

<sup>1</sup> Greenhouse water supply includes four wells (FR\_GH\_WELL1, FR\_GH\_WELL2, FR\_GH\_WELL3 and FR\_GH\_WELL4) which are collectively referred to as FR\_GHHW. Easting and Northing are listed for FR\_GH\_WELL4.

#### Ind Rationale

ed to monitor spatial distribution of water quality within Michel 9.

River. Selected to monitor spatial distribution of water quality n Study Area 9.

nd Bodie Creek confluence with Michel Creek. Selected to pottom in relation to Study Area 9.

River. Selected as a potential sentry well to monitor groundwater Area 9.

tom. Selected as a sentry well to monitor potential influence of of EVO to Study Area 10.

ce of Michel Creek and Corbin Creek. Selected to monitor

Corbin Creek. Selected as a sentry well to monitor groundwater by Area 11.

I Creek. Multi-level sentry well to monitor groundwater in Elk

elected as a sentry well to monitor deep overburden udy Area in Study Area 12.



# 3.2 Sampling Methodology

Sampling for the RGMP was completed by Teck or others and carried out in accordance with the 2013 edition of the British Columbia Field Sampling Manual (Clark, 2002), as required in Permit 107517, and Teck's Standard Practices and Procedures (SP&Ps) for well purging and groundwater sampling (TC\_GW-01 and TC\_GW-02) using well-specific methods based on well construction, type, and recharge. Specific sampling methodology varied by program and well type. SNC-Lavalin reviewed site-specific 2017 annual monitoring reports for each operation (Golder, 2018; SNC-Lavalin, 2018a,b,c; Teck, 2018) and groundwater samples were collected in accordance with the 2013 edition of the British Columbia Field Sampling Manual (Clark, 2002). A summary of sampling methodology for each monitoring program is provided in Sections 3.2.1 to 3.2.5 below. Teck provided details relating to the sampling methodology for the 2017 RDW program, which is summarized below in Section 3.2.6.

### 3.2.1 Fording River Operations (FRO)

Groundwater elevation was measured manually with a water level tape. In addition to manual monitoring, continuous level logger data were collected in well FR\_HMW5. Samples collected from FR\_09-01-A, FR\_09-01-B, and FR\_HMW5 were collected using dedicated tubing and a pump. Samples collected from supply well FR\_GHHW (includes FR\_GH\_WELL1, FR\_GH\_WELL2, FR\_GH\_WELL3 and FR\_GH\_WELL4) were collected from a distribution point (i.e., faucet) within the water system for each quarter. Based on recommendations from the Hydrogeological Assessment (SNC-Lavalin, 2017b) that a single well be used for sampling, FR\_GH\_WELL4 was sampled beginning in Q4 (SNC-Lavalin, 2018a).

### 3.2.2 Greenhills Operations (GHO)

Water levels were manually measured from the top of the well casing using a water level tape. Level loggers were also used to measure groundwater elevation at select wells, GH\_GA-MW-1, GH\_GA-MW-2 and GH\_GA-MW-3. Level loggers were set to record hourly pressure and temperature measurements; pressure measurements were corrected using barometric pressure (with a barologger). Prior to sampling, wells were purged using a Geosub submersible pump with dedicated polyethylene tubing. The wells were purged at a rate of less than 1 L/min depending on purging duration and stability of parameters. Field parameters (pH, temperature, electrical conductivity) were measured using a calibrated YSI Pro-DSS (SNC-Lavalin, 2018b). Wells were sampled after field parameters stabilized.

### 3.2.3 Line Creek Operation (LCO)

Manual depth to groundwater was measured with a water level tape. In addition, level loggers were used to measure groundwater elevation in wells LC\_PIZDC1307, LC\_PIZDC1308, and LC\_PIZP1101. Prior to sampling, wells were purged using a low-flow pump until field parameters (pH, temperature, turbidity, dissolved oxygen and electrical conductivity) stabilized. Field parameters were monitored with a calibrated YSI Pro-Plus multi-parameter instrument (Golder, 2018).



### 3.2.4 Elkview Operations (EVO)

Water elevations were measured manually with a water level tape at each location. Additionally, groundwater elevations in wells were measured continuously with level loggers with the exception of EV\_ER1gwD. Data loggers were set to record pressure and temperature measurements every two hours; pressure measurements were corrected using barometric pressure data collected from a barometric logger. Wells were purged and sampled following low-flow sampling techniques. The specific pump type selected for each monitoring well location was determined based on well construction, type, and recharge characteristics (Golder, 2015). Wells were purged until field parameters stabilized (conductivity, dissolved oxygen, pH, oxidation-reduction potential, and temperature) following Teck's purging procedures. Field parameters were recorded once stable and wells were sampled.

### 3.2.5 Coal Mountain Operations (CMO)

Water level measurements were collected manually using a Heron-Dipper T graduated water level tape. Continuous water level loggers (Solinst levelogger) were used in wells CM\_MW5-DP and CM\_MW5-SH. A barologger, attached to the outside of each well, was used for barometric pressure compensation. Wells were purged and sampled with a Geotech portable bladder pump and disposable bladders, with the exception of CM\_MW8. Field parameters (pH, EC, temperature, oxidation-reduction potential [ORP], and dissolved oxygen) were monitored with a YSI 556 multi-parameter meter and Hach 2100Q turbidity meter. Water was purged at a low rate until field parameters stabilized (Teck, 2018). Well CM\_MW8 could not be purged due to a lack of equipment to accommodate its width (2 in) and depth (80 m). Consequently, CM\_MW8 was sampled with the HydraSleeve system.

### 3.2.6 Regional Drinking Water Sampling Program (RDW)

In 2017, Teck sampled the RG\_DW-series wells from the RDW. Teck indicated sampling methodology was as follows:

- > Where possible, the sample port used in the initial drinking water evaluation or previous sampling event was used to collect the sample;
- Prior to collection of samples, the tap or valve at the sample location was opened for a minimum of five minutes to purge water through the distribution system. The objective of purging was to obtain samples representative of the water source and not a sample influenced by the distribution system; and
- Water quality parameters (pH/electrical conductivity/temperature) were monitored until stable readings were obtained. Once the stabilized water quality parameters were recorded, the flow was reduced to minimize splashing and samples were collected in laboratory supplied bottles.

## 3.3 Sample Handling, Shipment and Analysis

Sample bottles and preservatives were provided by a third-party analytical laboratory, ALS Environmental Laboratories (ALS). Sample bottles were certified clean and nitrile gloves were worn by samplers. Samples collected for dissolved parameters were filtered using an in-line filter, with the exception of samples collected for the RDW and select samples at EVO that were filtered with a syringe filter. Samples that required preservation were preserved in the field with the exception of samples analysed for



dissolved ultra-trace mercury collected at FRO that were filtered at the laboratory as instructed by the laboratory. Samples were shipped in ice-chilled coolers following chain-of-custody procedures.

Lab analyses for all groundwater samples were completed by ALS in Burnaby, British Columbia and Calgary, Alberta. ALS is certified by the Canadian Association for Laboratory Accreditation and follows the procedures described in British Columbia Laboratory Methods Manual for the Analyses of Water, Wastewater, Sediment, Biological Materials and Discrete Ambient Air Samples (Horvath, 2005).

### 3.4 Monitoring Specifications in the RGMP

The RGMP (SNC-Lavalin, 2015a) provided details and rationale on sampling frequency and the analyte list as summarized below.

#### 3.4.1 Sampling Frequency

The RGMP specified quarterly sampling, as follows:

- Winter (First Quarter Q1): January, February, March;
- > Spring (Second Quarter Q2): April, May, June;
- Summer (Third Quarter Q3): July, August, September; and
- Fall (Fourth Quarter Q4): October, November, December.

A summary of wells not sampled each quarter of 2017 is provided in Section 3.5.

#### 3.4.2 Analyte List

The 2015 RGMP indicated groundwater will be analyzed for select constituents based on the core list of general water quality analytes provided in Table 2 of the BC MoE's (2016a) Water and Air Baseline Monitoring Document for Mine Proponents and Operators and Permit 107517 Table 26. The minimum detection limits for each parameter will be suitable for comparison to the applicable standards and/or guidelines. Analyses for dissolved rather than total metals was specified in the RGMP to prevent misrepresentation of the mobile concentrations of constituents due to increased turbidity, which may occur as the result of sampling techniques, well construction, and/or geological formation (i.e., clay or silt bearing formations).

## 3.5 Modifications to Regional Groundwater Monitoring Program

A summary and discussion of modifications to the program outlined in the RGMP (SNC-Lavalin, 2015a) is provided below.



### 3.5.1 Site-specific Programs

Groundwater levels were monitored at each location included in the RGMP for each quarter except where data could not be collected from supply or domestic wells and exceptions noted below in Table F. Quarterly samples were collected from each well included in the RGMP with the exception of the locations noted in Table F below.

| Study<br>Area   | Well ID                         | Q                                                           | Data Not Collected                                                                     | Reason                                                                                                                                                                    |
|-----------------|---------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Back-<br>ground | FR_HMW5                         | 1                                                           | Well not sampled                                                                       | Frozen well                                                                                                                                                               |
| Back-<br>ground | FR_HMW5                         | 4                                                           | One and a half months of<br>water level and temperature<br>data could not be retrieved | Frozen well                                                                                                                                                               |
| Back-<br>ground | FR_HMW5                         | Initiation <sup>1</sup><br>Q varied<br>depending<br>on well | Began field-filtering samples<br>for dissolved mercury and<br>dissolved metals         | To comply with BC Field Sampling<br>Manual recommendation for<br>collecting dissolved metals                                                                              |
| 1               | FR_GHHW                         | 4                                                           | Sample collected from single well rather than composite sample                         | Composite sampling location<br>removed and replaced with well<br>FR_GH_WELL4 as per<br>recommendations in SNC-Lavalin<br>(2017b) in response to ENV approval<br>condition |
| 1               | FR_09-01-A/B;<br>FR_GHHW        | Initiation <sup>1</sup><br>Q varied<br>depending<br>on well | Began field-filtering samples for dissolved mercury and dissolved metals.              | To comply with BC Field Sampling<br>Manual recommendation for<br>collecting dissolved metals                                                                              |
| 2               | LC_PIZDC1307;<br>LC_PIZD1308    | 3 and 4                                                     | Total Kjeldahl Nitrogen (TKN)<br>and Total Organic Carbon<br>(TOC)                     | Sample was not collected due to oversight                                                                                                                                 |
| 4               | GH_GA-MW-4<br>(field duplicate) | 2                                                           | Hardness                                                                               | Not reported by laboratory                                                                                                                                                |
| 4               | GH_GA-MW-2                      | 4                                                           | Manual water level<br>measurement                                                      | Water level tape malfunction<br>(battery failure)                                                                                                                         |
| 10              | EV_ECgw 1                       |                                                             | Manual water level measurement and groundwater sample                                  | Frozen well                                                                                                                                                               |

#### Table F: Summary of Program Modifications

Note 1) Once field-filtering was initiated at a well, the practice continued for remaining quarters.

### 3.5.2 Regional Drinking Water Sampling Program (RDW)

RG\_DW-series wells were sampled in each of the four quarters in 2017. The RG\_DW-series wells were sampled for a limited number of parameters in Q1, as outlined in the RDW and RGMP, including:

- > Field parameters including temperature, pH, electrical conductivity;
- > Alkalinity, sulphate, nitrate-N, nitrite-N, chloride, hardness; and





> Total metals including selenium, cadmium, calcium, magnesium, potassium and sodium, as well as dissolved selenium.

The RDW and the RGMP also specify collection of field pH which was not measured in Q1 of 2017 due to a pH probe fault, but was collected in subsequent quarters. It is noted that the Q1 sample from RG\_DW-series wells was submitted for analysis of alkalinity (bicarbonate) instead of total alkalinity listed in the analyte list. Alkalinity (bicarbonate) results from Q1 are included in the appended tables.

### 3.6 QA/QC Program

The RGMP included a QA/QC program for the analysis of groundwater samples to be implemented in accordance with Permit 107517, the British Columbia Field Sampling Manual, and Teck's internal guidance documents. A QA/QC program specific to the RGMP is not yet in place; however, each site conducted a QA/QC program, which is described in site-specific reports and summarized in Section 3.6.1. QA/QC results of RDW Sampling Program are summarized in Section 3.6.2.

#### 3.6.1 Site-specific Programs

Results of each site-specific QA/QC program were summarized in each annual report (Golder, 2018; SNC-Lavalin, 2018a, b, c; Teck, 2018). Each operation identified any shipping and handling issues (if applicable), summarized results of relative percent differences (RPDs) from duplicate samples, and summarized parameters above the detection limit for trip blanks or field blanks. Results from the QA/QC program for wells included in the RGMP from each of the site-specific groundwater monitoring programs is summarized in the following sections.

#### 3.6.1.1 Shipping and Handling Issues

A summary of shipping and handling issues from the EVO SSGMP is provided in Table G below. There were no shipping and handling issues identified for other operations.

| Study<br>Area | Well ID                                                            | Q | Issue                                                                                                                                                                                                                                                                                                           |
|---------------|--------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7             | EV_GV3gw and<br>associated field<br>duplicates and<br>field blanks | 2 | Hold times for true colour, turbidity and orthophosphate were exceeded by one day prior to analysis (laboratory error; samples were received on time). Note the duplicate sample for EV_GV3gw did not exceed the hold time for orthophosphate.                                                                  |
| 7             | EV_GV3gw                                                           | 3 | Hold times for true colour, turbidity and orthophosphate were exceeded by one day prior to analysis (laboratory error; samples were received on time). EV_GV3gw was re-sampled on August 29, 2017 and the hold time for orthophosphate was exceeded by one day prior to analysis (received at the lab on time). |
| 8             | EV_LSgw                                                            | 1 | Hold times for true colour and were exceeded by one day prior to analysis (laboratory error; samples were received on time). Samples were received less than 24 hours prior to expiry.                                                                                                                          |

#### Table G: Summary of Shipping and Handling Issues at EVO



#### Table G (Cont'd): Summary of Shipping and Handling Issues at EVO

| Study<br>Area | Well ID                                                          | Q | Issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8             | EV_OCgw and<br>associated field<br>duplicate and<br>field blank  | 2 | Hold times for true colour, turbidity, orthophosphate, nitrate-nitrogen and nitrite-nitrogen were exceeded by two days due to shipping delays.<br>EV_OCgw and associated field duplicates and field blanks were re-sampled on June 29, 2017. EV_OCgw and associated field duplicate and field blank were re-sampled on June 29, 2017 with no hold time exceedances.                                                                                                            |
| 8             | EV_LSgw                                                          | 2 | Hold times for true colour, turbidity, orthophosphate, nitrate-nitrogen and nitrate-nitrogen were exceeded by one day prior to analysis (laboratory error; samples were received on time).                                                                                                                                                                                                                                                                                     |
| 8             | EV_OCgw and<br>associated field<br>duplicate and<br>field blanks | 3 | Hold times for true colour, turbidity and orthophosphate were exceeded by one day prior to analysis (i.e., laboratory error; samples were received on time). EV_OCgw (and associated field duplicates and field blanks) was re-sampled on August 29, 2017 and the hold time for orthophosphate was exceeded by one day prior to analysis (received at the lab on time). EV_OCgw was re-sampled again on September 21, 2017 and there were no associated hold time exceedances. |
| 9             | EV_MCgwD,<br>EV_MCgwS                                            | 1 | Hold times for nitrate-nitrogen and nitrite-nitrogen were exceeded by two<br>days due to shipping delay. Wells were re-sampled on March 30, 2017 and<br>the hold times for nitrogen parameters were again exceeded by one day prior<br>to analysis (laboratory error; samples were received on time).                                                                                                                                                                          |
| 9             | EV_BCgw                                                          | 1 | Hold times for true colour, turbidity, orthophosphate, nitrate-nitrogen and nitrite-nitrogen were exceeded by one to three days (depending on parameter) due to shipping delays. EV_BCgw was re-sampled on March 30, 2017; the hold time for nitrogen parameters was exceeded once again in the March 30, 2017 re-sample due to laboratory error (the same was received on time).                                                                                              |
| 9             | EV_BCgw                                                          | 2 | Hold times for true colour, turbidity, orthophosphate, nitrate-nitrogen and nitrate-nitrogen were exceeded by one day prior to analysis (laboratory error; samples were received on time).                                                                                                                                                                                                                                                                                     |
| 9             | EV_MCgwS                                                         | 4 | Hold time for alkalinity was exceeded by one day prior to analysis (laboratory error; samples were received on time).                                                                                                                                                                                                                                                                                                                                                          |
| 10            | EV_ECgw                                                          | 4 | Hold time for nitrate-nitrogen and nitrite-nitrogen were exceeded by two days prior to analysis (laboratory error; samples were received on time).<br>EV_ECgw was re-sampled on November 22, 2017 and there were no associated hold time exceedances.                                                                                                                                                                                                                          |
| 12            | EV_ER1gwS,<br>EV_ER1gwD                                          | 1 | Hold time for true colour was exceeded by four days prior to analysis (laboratory error; samples were received on time).                                                                                                                                                                                                                                                                                                                                                       |
| 12            | EV_ER1gwS,<br>EV_ER1gwD                                          | 4 | Hold time for nitrate-nitrogen and nitrite-nitrogen were exceeded by three days prior to analysis (laboratory error; samples were received on time).                                                                                                                                                                                                                                                                                                                           |

The hold time exceedances of true colour, turbidity and orthophosphate and alkalinity are not expected to influence the interpretation of results. Review of data indicated there are three well locations in Q1 (EV\_MCgwS, EV\_MCgwD, EV\_BCgw) and two well locations in Q4 (EV\_ER1gwS, EV\_ER1gwD), as well as one well location in Q2 (EV\_LSgw) where re-sampling for nitrate parameters was not possible. EVO nitrate results are discussed in detail in the EVO SSGMP (SNC-Lavalin, 2018c) and were not found to be an issue for data interpretation.



#### 3.6.1.2 Duplicate Samples

Duplicate samples were collected at a frequency of between 1 per 6 and 1 per 15 samples, during site-specific sampling events to assess the precision of the field sampling methodology and consistency of laboratory analysis. Duplicate samples were evaluated by calculation of the RPD of the concentration between the sample and duplicate.

RPD = (original value - duplicate value)/[(original value +duplicate value)/2] \*100

RPDs were calculated for parameters where at least one of the samples was greater than five times the laboratory DL; a RPD of less than 20% for metals and inorganics is considered as an acceptable level of precision per the BC Environmental Laboratory Manual (BC MoE, 2016b). Consistent with reporting in site-specific reports, where the result was close to the detection limit, the acceptable RPD was modified as follows:

- $\rightarrow$  RPD of < 20% = Pass
- > RPD of > 20% with results < 5 times the detection limit = Pass-1
- > RPD of > 20% and <50% with results > 5 times the detection limit = Pass-2
- > RPD of >50% with results > 5 times the detection limit = Fail

Table H below summarizes the number of sample duplicates for wells included in the RGMP and any RPDs above acceptable levels (RPD > 50% with results > 5 times the detection limit).

| Operation | Number of<br>Duplicates Included<br>in the RGMP | Summary of RPDs above Acceptable Levels                                                                                                                                                                                                                            |
|-----------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRO       | 2                                               | Dissolved selenium had an RPD of 56% in monitoring well FR_HMW5 sampled on September 18, 2017.                                                                                                                                                                     |
| GHO       | 9                                               | RPD values above acceptable level for dissolved manganese (70%), nitrate (as N) (59%), and turbidity (103%) in GH_GA-MW-2.                                                                                                                                         |
| LCO       | 2                                               | All RPDs were considered acceptable.                                                                                                                                                                                                                               |
| EVO       | 9                                               | Total Suspended Solids (TSS) and turbidity RPDs were 75% and 55%, respectively, between EV_OCgw and duplicate sample collected March 29, 2017. Carbonate component of alkalinity RPD was 74% between EV_OCgw and duplicate collected October 18, 2017.             |
| СМО       | 0                                               | Duplicate samples were collected for each sampling survey as part of the 2017 site-specific groundwater monitoring program at CMO; however, duplicate samples were not collected from wells included in the RGMP. Readers are referred to Teck (2018) for details. |

#### Table H: Summary of Duplicate Sample Results above Acceptable Levels

A review of duplicate sample results at GHO indicated that dissolved manganese and nitrate (as N) and turbidity at GH\_GA-MW-2 exhibited RPDs above acceptable levels. Nitrate and manganese concentrations were below the primary screening criteria and do not affect the reliability of the results. The TSS and turbidity RPDs above acceptable levels are not expected to influence the interpretation of results as these are physical parameters, which can differ significantly between the sample and the duplicate.



A review of duplicates at FRO indicated that of the 152 organic, inorganic, and physical parameters analyzed, RPDs were less than 50%. Of the 248 dissolved metals parameters analysed, one RPD result (dissolved selenium in FR\_HMW5) was above the maximum RPD of 50%. These results indicate a good sampling program with low variability in constituent concentrations from sampling and handling. The variability in dissolved selenium concentrations will be considered during data interpretation in Section 5.1.3.

A review of duplicate sample results at EVO indicated TSS and turbidity RPDs above the acceptable levels at EV\_OCgw. The TSS and turbidity RPDs above acceptable levels are not expected to influence the interpretation of results as these are physical parameters, which can differ significantly between the sample and the duplicate. The carbonate component of alkalinity RPD above acceptable levels at EV\_OCgw is not considered to influence the interpretation for this sample because the bicarbonate component, which is the dominant component of alkalinity in this water sample, had a RPD of 5%.

#### 3.6.1.3 Field Blanks

In 2017, field blank samples were collected as part of each site-specific groundwater sampling program. Field blank samples are collected at the sampling site during normal sample collection using de-ionized water, which was filtered and preserved using the same method as groundwater samples. Field blanks provide information on contamination resulting from the handling technique and atmospheric contamination. A summary of field blank sample results is provided in Table I; field blank data is provided in Appendix I.

| Operation | Number of Field Blanks and Summary of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRO       | Four field blanks were collected (one in each quarter); however, field blank collection locations were not indicated. Readers are referred to SNC-Lavalin (2018a) for details related to detected parameters in field blanks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GHO       | <ul> <li>A total of eight field blanks were collected in Q1 through Q4. The results were as follows:</li> <li>GH_POT09 (Q2) <ul> <li>Turbidity value of 0.92 NTU above DL of &lt; 0.10 NTU</li> <li>Total ammonia (as N) value of 9.2 µg/L above DL of &lt; 5.0 µg/L</li> <li>TOC value of 0.52 mg/L above DL of &lt; 0.5 mg/L</li> </ul> </li> <li>GH_GA-MW-1 (Q2) <ul> <li>Nitrate (as N) value of 0.013 mg/L above DL of &lt; 0.005 mg/L</li> <li>Dissolved magnesium value of 0.0057 mg/L above the DL of &lt; 0.005 mg/L</li> <li>Dissolved strontium value of 0.34 µg/L above the DL of &lt;0.2 µg/L</li> </ul> </li> <li>GH_GA-MW-3 (Q3&amp;4) <ul> <li>Total ammonia (as N) value of 11.6 µg/L above the DL of &lt; 5.0 µg/L</li> </ul> </li> </ul> |
| LCO       | Two field blanks were collected in the 2017 site-specific program; however, field blanks were not collected at locations included in the RGMP. One field blank collected in Q2 had concentrations greater than the detection limits. Readers are referred to Golder (2018) for details related to detected parameters in field blanks.                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Table I: Summary of Field Blank Sample Results



#### Table I (Cont'd): Summary of Field Blank Sample Results

| Operation | Number of Field Blanks and Summary of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVO       | <ul> <li>Seventeen field blanks were collected throughout 2017. The results were as follows:</li> <li>EV_GV3gw (Q1-Q3)</li> <li>Total organic carbon (TOC) value of 1.21 mg/L above the DL of &lt; 0.5 mg/L</li> <li>Dissolved mercury value of 0.007 µg/L slightly above the DL of &lt; 0.005 µg/L</li> <li>Alkalinity value of 1 mg/L, equal to the DL of &lt; 1.0 mg/L</li> <li>EV_OCgw (Q1-Q4)</li> <li>Total phosphorus value of 0.003 mg/L above the DL of &lt; 0.05 µg/L</li> <li>Alkalinity value of 1.1 mg/L, slightly above the DL of &lt; 0.05 µg/L</li> <li>Alkalinity value of 1.1 mg/L, slightly above the DL of &lt; 0.05 µg/L</li> <li>Alkalinity value of 1.1 mg/L, slightly above the DL of &lt; 1.0 mg/L</li> <li>Conductivity value of 2.9 µS/cm above the DL of &lt; 2.0 mg/L</li> <li>Turbidity value of 0.1 NTU above the DL of &lt; 0.10 NTU</li> <li>Total ammonia (as N) value of 13.3 µg/L above the DL of &lt; 5.0 µg/L</li> <li>EV_MCgwD (Q1-Q4)</li> <li>Turbidity value of 0.14 NTU above the DL of &lt; 0.10 NTU</li> <li>Total dissolved solids value of 21 mg/L above the DL of &lt; 3.0 mg/L</li> <li>Total ammonia (as N) value of 8.7 µg/L above the DL of &lt; 5.0 µg/L</li> <li>Total ammonia (as N) value of 10.4 µg/L above the DL of &lt; 5.0 µg/L</li> <li>Nitrate (as N) value of 0.095 mg/L above the DL of &lt; 0.005 mg/L</li> </ul> |
| т         | <ul> <li>EV_ECgw (Q1-Q4)</li> <li>Turbidity value of 0.24 NTU above the DL of &lt; 0.10 NTU</li> <li>Turbidity value of 0.20 NTU above the DL of &lt; 0.10 NTU</li> <li>Total ammonia (as N) value of 5.7 µg/L above the DL of &lt; 5.0 µg/L</li> <li>Total ammonia (as N) value of 9.1 µg/L above the DL of &lt; 5.0 µg/L</li> <li>Nitrate (as N) value of 0.0306 mg/L above the DL of &lt; 0.005 mg/L</li> <li>Nitrite (as N) value of 0.0028 mg/L above the DL of &lt; 0.001 mg/L</li> <li>Nitrite (as N) value of 0.0011 mg/L above the DL of &lt; 0.001 mg/L</li> <li>TOC value of 0.71 mg/L above the DL of &lt; 0.50 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| СМО       | Three field blanks were collected in 2017. A field blank collected in Q4 had parameters above detection limits; however, the sample was collected from a location that is not included in the RGMP. Readers are referred to Teck (2018) for additional details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

At GHO, the concentrations of dissolved magnesium and strontium values above the DLs were only slightly greater than the DL. Concentrations of total ammonia-nitrogen were measured to be 1.5 to 2.3 times the detection limit and concentrations of nitrate-nitrogen were 2.6 times the detection limit. It is noted that total ammonia-nitrogen and nitrate-nitrogen concentrations measured in field blanks are two to three orders-of-magnitude lower than the lowest applicable groundwater standard. TOC concentrations were only slightly greater than the DL and turbidity values were 9.2 times the DL. There are no applicable standards or guidelines for TOC or turbidity.

At EVO, for most parameters measured above the DL, the concentrations were only slightly greater than the DL; exceptions to this include TOC, total ammonia-nitrogen, nitrate-nitrogen and nitrite-nitrogen which were measured to be 1.9 to 2.9 times the DL. It is noted that there are no applicable standards for TOC, and nitrogen parameter concentrations measured in field blanks are two to four orders of magnitude lower



than the lowest applicable groundwater standard. Additionally, total dissolved solids (7 times the DL) and turbidity (2 to 2.4 times the DL) were also above the DLs; total dissolved solids and turbidity do not have applicable standards or guidelines.

These detections suggest either the ultra-pure deionized water (DI) provided by the laboratory contains some detectable parameters or there is some low-level introduction of these parameters in the field. Teck and SNC-Lavalin contacted the laboratory to inquire about the ultra-pure DI and the laboratory indicated that they are currently doing low-level detection testing to evaluate whether there are parameters above detection limits in the DI. One report (Q1) provided by the laboratory and reviewed by SNC-Lavalin did not have parameters above the detection limit in DI matching those above detection limit in field blanks. The above mentioned detectable concentrations of parameters are not considered to be a concern for data reliability.

#### 3.6.1.4 Trip Blanks

Trip blanks were collected as part of some of the 2017 site-specific annual monitoring programs. Standard practice for collection of trip blanks consists of ordering bottles with de-ionized water from the lab which are unopened throughout the sampling trip. Trip blanks are meant to detect widespread contamination from the container and preservative during transport and storage. A summary of trip blank sample results is provided in Table J; field blank data is provided in Appendix I.

| Operation | Number of Trip Blanks and Summary of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|           | Four trip blank samples were conducted in 2017 with concentrations above the DL detected in each quarter.                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|           | Q1 – Phosphorus with a concentration of 0.0052 mg/L above the DL of < 0.0010 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|           | Q2 – Nitrate-nitrogen with a concentration of 0.0079 mg/L above the DL of < 0.005 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|           | <ul> <li>Q3 – Ammonia nitrogen with a concentration of 0.0056 mg/L above a DL of &lt; 0.005 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| FRO       | Q4 – Turbidity with a value of 0.19 NTU above the DL of < 0.10 NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|           | For parameters above the detection limits for trip blanks, concentrations were marginally above the detection limits with the exception of phosphorus that was five times the detection limit. For parameters within applicable screening criteria, the concentrations measured were four orders of magnitude below primary screening criteria. As indicated in the previous section, the laboratory is currently evaluating their ultra-pure DI. The parameters above the detection limits are not considered to affect the reliability of the data. |  |  |  |  |  |  |  |  |
| GHO       | Not required in GHO SSGMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |

#### Table J: Summary of Trip Blank Sample Results



| Operation | Number of Trip Blanks and Summary of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|           | Three trip blanks collected in 2017 which had concentrations about the DL in the following quarters:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|           | → Q1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|           | <ul> <li>Nitrate-nitrogen value of 2.8 mg/L above the DL of &lt; 0.005 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | <ul> <li>Sulphate value of 15.6 mg/L above the DL of &lt; 0.30 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|           | - Total barium value of 0.058 $\mu$ g/L above the DL of < 0.05 $\mu$ g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|           | <ul> <li>Total calcium value of 0.064 mg/L above the DL of &lt; 0.05 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|           | - Dissolved chloride value of 0.66 mg/L above the DL of 0.5 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|           | - Total copper value of 1.69 $\mu$ g/L above the DL of < 0.5 $\mu$ g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | - Total lead value of 0.076 $\mu$ g/L above the DL of < 0.05 $\mu$ g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | <ul> <li>Total magnesium value of 0.0069 mg/L above the DL of &lt; 0.005 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|           | - Total manganese value of 0.12 $\mu$ g/L above the DL of < 0.1 $\mu$ g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|           | - Total silver value of 0.015 $\mu$ g/L above the DL of < 0.01 $\mu$ g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| LCO       | <ul> <li>Total tin value of 0.12 μg/L above the DL of &lt; 0.1 μg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|           | > Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|           | <ul> <li>Ammonia-nitrogen value of 0.0201 mg/L above the DL of &lt; 0.005 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|           | <ul> <li>Phosphorus value of 0.0242 mgL above the DL of &lt; 0.004 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|           | <ul> <li>Lab Turbidity value of 0.18 NTU above the DL of &lt; 0.1 NTU</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|           | > Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|           | <ul> <li>Ammonia-nitrogen value of 0.0108 mg/L above the DL of &lt; 0.005 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|           | For parameters above the detection limits for trip blanks, concentrations were marginally above the detection limits with the exception of nitrate-nitrogen in Q1, Q2, and Q3; sulphate and total copper in Q1; and phosphorous in Q2. Phosphorous was double the DL; however, there is no applicable standard for phosphorous. Sulphate was 50 times the DL, but approximately an order of magnitude lower than the lowest applicable screening criteria. Total copper was approximately three times the DL, but below primary screening criteria for dissolved copper. The parameters above the detection |  |  |  |  |  |  |

#### Table J (Cont'd): Summary of Trip Blank Sample Results



| Operation | Number of Trip Blanks and Summary of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Eight trip blank samples were conducted in 2017, seven of which had concentrations above the DL detected in the following quarters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | → Q1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | <ul> <li>Nitrite-nitrogen value of 0.0028 mg/L above the DL of &lt; 0.001 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | <ul> <li>TDS value of 21 mg/L above the DL of &lt; 10 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | - Kjeldahl nitrogen value of 0.056 $\mu$ g/L above the DL of < 0.05 $\mu$ g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | > Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | <ul> <li>TOC value of 0.71 mg/L above the DL of &lt; 0.5 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | > Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | <ul> <li>Lab turbidity value of 0.24 NTU above the DL of &lt; 0.10 NTU</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EVO       | <ul> <li>Nitrate-nitrogen value of 0.0306 mg/L above the DL of &lt; 0.005 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | <ul> <li>Nitrite-nitrogen value of 0.0011 mg/L above the DL of &lt; 0.001 mg/L</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | > Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | <ul> <li>Lab turbidity value of 0.20 NTU above the DL of &lt; 0.10 NTU</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | <ul> <li>Turbidity value of 0.19 NTU above the DL of &lt; 0.10 NTU</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | For most parameters measured above the DL, concentrations were only slightly greater than the DL; exceptions to this include TDS, nitrate-nitrogen and nitrite-nitrogen, which were measured to be 2.1 to 6.1 times the DL. It is noted that there are no applicable standards for TOC, and nitrogen parameter concentrations measured in trip blanks are two to three orders of magnitude lower than the lowest applicable groundwater standard. As indicated in the previous section, the laboratory is currently evaluating their ultra-pure DI. The above-mentioned detectable concentrations of parameters are not considered to be a concern for data reliability. |
| СМО       | Not required in CMO SSGMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Table J (Cont'd): Summary of Trip Blank Sample Results

## 3.6.2 Regional Drinking Water Sampling Program (RDW)

A summary of QA/QC results for the RG\_DW-series wells is provided below.

- Shipping and Handling Issues: Certificates of Analysis (COA) for RG\_DW-series wells were reviewed by SNC-Lavalin. QA/QC issues were not identified by the laboratory with the exception of hold time exceedances identified for the following wells:
  - Low-level TDS (exceeded by one day) and turbidity at RG\_DW-01-07 in Q3 (exceeded by one day);
  - Low-level TDS (exceeded by one day) at RG\_DW-02-20 in Q4; and
  - Nitrate and nitrite (exceeded by one day) at RG\_DW-07-01 in Q3. Nitrate and nitrite concentrations from 2017 at RG\_DW-07-01 were similar to 2016 results; as such, the exceedances of hold times are not considered to be an issue for data quality.
- Duplicate Samples: Four field duplicates were collected in 2017 from RG\_DW-series wells included in the RGMP. The Q1 duplicate was collected in RG\_DW-03-01, Q2 and Q4 duplicates in RG\_DW-02-20, and the Q3 duplicate in RG\_DW-01-07. RPD values greater than (50%) in well RG\_DW-02-20 were turbidity in Q4 (53%) and dissolved chromium (60%), copper (52%), lead (63%),



and zinc (58%) in Q2. There are no screening criteria for turbidity and dissolved metals concentrations were below primary screening criteria; therefore, the RPDs above 50% are not expected to affect the reliability of the data.

Blanks: Four trip blanks and four field blanks were collected and parameters greater than the detection limit are summarised in Table K; blank data for RG\_DW-series wells are provided in appended Tables 3 and 4.

#### Table K: Summary of Field and Trip Blank Sample Results at RG\_DW-series Wells

| Operation             | Field and Trip Blanks Sample Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Four trip and four field blank samples were conducted in 2017 with concentrations above the DL detected in each quarter.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | <ul> <li>Q1 – Total cadmium and selenium submitted for analysis only; both were below the DL.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | > Q2 – total ammonia (as N) in trip blank with a value of 0.0237 mg/L above a DL of <0.0050.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RG_DW-series<br>wells | <ul> <li>Q3 – alkalinity (total and bicarbonate) in field blank with value of 1.9 mg/L above a DL of<br/>&lt;1.0 mg/L.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| wells                 | For parameters above the detection limits for trip and field blanks the concentrations were marginally above the detection limits, with the exception of total ammonia that was four times the detection limit. For parameters within applicable screening criteria, the concentrations measured were one or more orders of magnitude below primary screening criteria. As indicated in the previous section, the laboratory is currently evaluating their ultra-pure DI. The parameters above the detection limits are not considered to affect the reliability of the data. |

#### 3.6.3 Summary of QA/QC Results

Data from site-specific groundwater monitoring programs were considered acceptable. A summary of the QA/QC results is as follows.

- Hold time exceedances are not expected to influence interpretation of results, with the exception of the select locations where re-sampling was not possible for nitrate-nitrogen and nitrite-nitrogen. At these locations hold time exceedances will be considered during data interpretation;
- > RPDs above acceptable levels are not expected to influence the interpretation of results; and
- > Detectable concentrations were measured in field and trip blank samples and will be considered as part of the data interpretation but were not considered to affect the reliability of results.

SNC-Lavalin recommends continuing to investigate the results through low-level analyses of the ultra-pure deionized water provided by the laboratory to see if there is a possibility that the parameters detected in the field and trip blanks were from the DI water provided by the laboratory. Additionally, SNC-Lavalin recommends adding trip blanks to GHO and CMO sampling programs and continuing to use trip and field blanks at FRO, LCO and EVO so that results can be monitored for the possibility of introduction of parameters in the field.



## 4 Assessment Criteria

Groundwater quality data were screened against a number of different criteria based on applicable receptors. A technically-based screening process was developed for the 2015 RGMP and was updated in the 2017 RGMP. The screening process is summarized below.

Primary and secondary screening criteria may be adjusted based on the needs and requirements for other programs under the AMP. For example, Teck's chronic toxicity program has identified that the nickel British Columbia Approved Water Quality Guidelines (BCWQG) may not be protective of all aquatic life. Teck is currently in the process of investigating the results from this program and will determine if adjustments to screening criteria are needed.

## 4.1 Primary Screening Criteria

The primary screening approach was consistent with regulatory guidance, including: Technical Guidance 6 (TG 6): *Water and Air Baseline Monitoring Guidance Document for Mine Proponents and Operators* (BC MoE, 2016a) for EMA Applications; and Technical Guidance 15 (TG 15) *Concentration Limits for the Protection of Aquatic Receiving Environments* (BC ENV, 2017b). The primary screening process considered the following receptors:

- Human Health groundwater used for drinking water for current and future use as a default use, consistent with TG 6. Primary screening of groundwater data for protection of drinking water (DW) was conducted against the applicable *Contaminated Sites Regulation*<sup>3</sup> (CSR) DW.
- Freshwater Aquatic Life groundwater discharging to aquatic environments as a default use, consistent with TG 6. Primary screening of groundwater data for protection of aquatic life was conducted against CSR AW standards. Consistent with TG 15, and as a conservative approach, the application of BC Water Quality Guidelines (BCWQG; BC ENV, 2018) to wells within 10 m of the high water mark was applied.
- Irrigation and Livestock Watering groundwater for livestock or irrigation watering use. This use was not described in TG 6; however, these uses have been applied to be conservative as livestock and irrigation water supplies are sourced from groundwater wells in some locations. Since the EMC have indicated that livestock watering use was used as a surrogate for wildlife watering, livestock watering should be applied as a default use. Primary screening of groundwater data protection of irrigation and livestock watering was conducted against CSR Irrigation (IW) and Livestock (LW) standards.

This screening process allowed for water to be compared to uniform criteria for groundwater protection across the Elk Valley (i.e., CSR standards and Approved and Working BCWQG), as applicable. The default uses, which consist of human health, freshwater aquatic life, and livestock as a surrogate for wildlife were applied across the entire valley.

As of November 1, 2017, the Stage 10 and Stage 11 Amendments to the CSR came into effect. The new standards were used to assess 2017 groundwater data. Table L below summarizes changes to CI and non-order constituents, measured in 2017 or previously measured (i.e., 2015 or 2016) to be above standards:

<sup>&</sup>lt;sup>3</sup> Contaminated Sites Regulation (CSR), B.C. Reg. 375/96, includes amendments up to B.C. Reg. 196/2017, November 1, 2017.



| Constituent         | Unit | From                    | То                          | Pathway        |
|---------------------|------|-------------------------|-----------------------------|----------------|
| Sulphate            | mg/L | 1,000                   | 1,280 to 4,290 <sup>1</sup> | Aquatic life   |
| Nitrate-Nitrogen    | mg/L | 3,200                   | 1,000                       | Drinking Water |
| Dissolved Cadmium   | µg/L | 0.1 to 0.6 <sup>1</sup> | 0.5 to 4 <sup>1</sup>       | Aquatic life   |
| Dissolved Selenium  | µg/L | 10                      | 20                          | Aquatic life   |
| Dissolved Selenium  | µg/L | 50                      | 30                          | Livestock      |
| Dissolved Boron     | µg/L | 50,000                  | 12,000                      | Aquatic life   |
| Dissolved Lithium   | µg/L | 730                     | 8                           | Drinking Water |
| Dissolved Manganese | µg/L | 550                     | 1,500                       | Drinking Water |
| Dissolved Strontium | µg/L | 22,000                  | 2,500                       | Drinking Water |

#### Table L: November 1, 2017 Primary Screening Criteria Changes to the CSR

<sup>1</sup> Hardness dependent range

The two orders of magnitude decrease in the DW standard for dissolved lithium has resulted in numerous values screening above the standard (refer to Section 5) for groundwater sampled from wells in the RGMP. However, it is noted that there is no drinking water guideline for lithium in Health Canada's Guidelines for Canadian Drinking Water Quality (GCDWQ; Health Canada, 2017) which is considered to be more applicable for consumption of drinking water at the tap.

In addition to the above listed constituents, dissolved copper, magnesium and zinc were previously measured in concentrations above standards in wells located in Study Area 9 (SNC-Lavalin, 2017a). The CSR standards for these constituents are listed in Table M.

| Constituent         | Unit | From  | То          | Pathway        |
|---------------------|------|-------|-------------|----------------|
| Dissolved Copper    | µg/L | 1,000 | 1,500       | Drinking Water |
| Dissolved Magnesium | µg/L | 100   | No standard | Drinking Water |
| Dissolved Zinc      | µg/L | 5,000 | 3,000       | Drinking Water |

#### Table M: November 1, 2017 Primary Screening Criteria Changes to the CSR for Study Area 9

Table 1, attached, summarizes the primary screening criteria for the RGMP wells. SNC-Lavalin reviewed the wells located within 10 metres of a high water mark, consistent with TG 15 described above, and found that EV\_OCgw is within 10 metres of a high water mark. Results from EV\_OCgw were therefore compared to BCWQG for AW. Previously, GH\_POTW17, EV\_BCgw and EV\_MCgwS/D were also compared to BCWQG for AW instead of CSR; however, review of these well locations with the updated surface water feature layer provided by Teck in 2017 indicated these wells are greater than 10 metres from the high water mark and results were compared to CSR AW standards.

## 4.2 Secondary Screening

The primary screening step will provide the main indicator for groundwater quality; however, in some MUs, existing concentrations of CI in surface water can be higher than BCWQG and CSR standards. The Regional CSM provided in the 2017 RGMP indicates that elevated concentrations of CI in groundwater





could result from recharge of groundwater from surface water (i.e., the surface water pathway). As such, a secondary screening step is specified to provide a comparison to area-based surface water quality requirements laid out in Permit 107517. The intention of the secondary screening criteria is to provide context in relation to Teck's operational surface water quality requirements, as well as to provide a technically-based framework for regional evaluation of groundwater as it related to the protection of aquatic life in the Elk Valley (i.e., the area-based Site Performance Objective [SPO] and Compliance Point [CP] concentrations specified in Permit 107517).

Selenium is the only constituent where CP and SPO concentration values are greater than primary screening criteria (i.e., BCWQG or CSR standards), and as such is the only constituent where secondary screening will be of value. SNC-Lavalin notes that due to the November 2017 update to the CSR, the CSR AW standard for selenium (20  $\mu$ g/L) is now greater than select SPO and CP (provided in Table L below). Geographically relevant CP and SPO concentration values are specified for the secondary screening process for selenium. CP and SPO criteria in the main stem rivers differ along the flow path, and as such screening of groundwater data against these criteria were applied accordingly (i.e., criteria were applied to groundwater wells inferred to be up-gradient of any give surface water Compliance Point or Order Station).

As a secondary screening step for drinking water use, groundwater concentrations for selenium were screened against the GCDWQ (Health Canada, 2017) to provide context in relation to recent toxicological studies. The GCDWQ for selenium was updated in October 2014 from 10 to 50 µg/L and is similar to the value developed in the Human Health Risk Assessment (HHRA; Ramboll Environ., 2016). Secondary screening for selenium was completed only where sample concentrations exceeded primary screening criteria.

The CP and SPO selenium criteria applied are shown below in Table N.

| CI<br>(Monthly<br>Average<br>Limits) |                   | Con               | npliance Poir       | Site Performance Objectives |                   |                   |                   |                   |                   |
|--------------------------------------|-------------------|-------------------|---------------------|-----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | Elk<br>River      | Fordin            | g River             | Michel Creek                |                   |                   | Fording<br>River  |                   |                   |
|                                      | GH_ERC<br>E300090 | GH_FR1<br>E200378 | FR_FRCP1<br>E300071 | CM_MC2<br>E258937           | EV_MC2<br>E300091 | GH_ER1<br>E206661 | EV_ER4<br>0200027 | EV_ER1<br>0200393 | GH_FR1<br>0200378 |
| Selenium<br><sup>1</sup> (µg/L)      | 15                | 80                | 130                 | 19                          | 28                | 19                | 23                | 19                | 63 <sup>2</sup>   |

#### Table N: Secondary Groundwater Screening Criteria for Aquatic Life

Notes: 1) Criteria to be applied to dissolved metals only as per the approved RGMP. 2) SPO is effective December 31, 2019

Not shown in the table is the updated GCDWQ for selenium of 50 µg/L. This will be applied to all samples above the DW primary screening as a secondary screening criteria for drinking water.



## 5 Results and Discussion

Results are presented by Study Area, as defined in Section 1.3. Drawings with well locations and tables summarizing results above screening criteria are referenced throughout the text below. Graphs showing temporal trends, including select surface water data, are also referenced and provided in Appendix III. Surficial and bedrock geology is presented on Drawings 635544-302 to -305. To fulfill permit requirement (ii) listed in Section 1, cross sections showing well installation, stratigraphy, and groundwater elevations are presented on Drawings 635544-312 to -326. These drawings focus on Study Areas where the distribution of monitoring wells allows for representative cross sections perpendicular and parallel to groundwater flow in the valley bottom. For some cross sections, strict adherence to generations of sections perpendicular and parallel to groundwater flow was not possible given monitoring well distribution and complexities of local-scale groundwater flow regime. The cross section location lines are shown on Drawings 635544-302 to -305.

Drawings 635544-306 and -307 show the spatial distribution of groundwater elevations and conceptual groundwater flow path through valley-bottom aquifers. Groundwater elevations taken prior to sampling for the fourth quarter were selected and included on Drawings 635544-306 and -307 to provide regional context. Drawings 635544-327 to -330 show the spatial distribution of groundwater quality results for nitrate-nitrogen, sulphate, dissolved cadmium and selenium in the Study Areas.

For additional reference and to assist with visualization, the 3D block diagrams developed for the 2017 RGMP have been included in Appendix IV for reference. It is noted that concentrations have not been updated since the 2017 RGMP.

## 5.1 Background (Reference) Conditions

A background well, FR\_HMW5, is monitored to understand reference conditions is well installed in the valley-bottom of Henretta Creek, located upgradient of the mining footprint at FRO Monitoring well FR\_HMW5 is completed in alluvial gravel in the Henretta Creek valley-bottom, a tributary of the upper watershed of the Fording River.

#### 5.1.1 Groundwater Levels

In 2017, both manual (Table 2) and data logger water level measurements from FR\_HMW5 were used to assess seasonal groundwater levels. Groundwater elevations from January 2015 to November 2017 were plotted on a time-series graph and included in Appendix III (Graph B-1). Continuous groundwater level data were available from January 2015 to November 2017 with the exception of three weeks in February and March of 2016. There is generally good agreement between the manual and data logger groundwater elevations. Continuous measurements generally display higher groundwater elevations in FR\_HMW5 during freshet. The 2017 data display rising groundwater elevation in the beginning of May, peak elevations at the end of May, and a steady decline at the end of June. This pattern is similar to 2015 and 2016 data.

The maximum fluctuation of groundwater elevation in 2017 was approximately 0.39 m. Between January 2015 and November 2017, the groundwater elevation ranged from 1,784.34 metres above sea level (masl) to 1,784.73 masl.



## 5.1.2 Groundwater Quality

Field parameters for FR\_HMW5 measured in 2017 were similar to those measured in 2016 (Appendix III, Graphs B-2 and B-3). A summary of CI and non-order constituents above primary screening criteria for FR\_HMW5 is presented in tables below. The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and Table 5 (secondary screening). Monitoring well FR\_HMW5 did not have CI above secondary screening criteria.

#### Table O: Summary of Constituents above Primary Screening Criteria in Background Well

| Parameter <sup>1,2,3</sup> | FR_HMW5         |    |    |    |  |  |  |
|----------------------------|-----------------|----|----|----|--|--|--|
| Parameter                  | Q1              | Q2 | Q3 | Q4 |  |  |  |
| Selenium                   | na <sup>4</sup> | DW | -  | -  |  |  |  |
| Lithium                    | na <sup>4</sup> | DW | DW | DW |  |  |  |

Notes: 1.) Dissolved parameter unless otherwise indicated; 2) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3) '--' denotes result below primary screening criteria for given constituents. 4) na indicates the well was not sampled for specific parameter; well could not be sampled because it was frozen.

Lithium concentrations measured at reference well FR\_HMW5 (218 to 265  $\mu$ g/L) were the highest concentrations measured in 2017 at FRO and one to two orders of magnitude greater than other locations in the Henretta Creek and Fording River valleys. These results indicate that lithium concentrations are naturally high across the Elk Valley. Dissolved lithium concentrations were similar to previous years; however, lithium concentrations have not been previously identified as the DW standard changed from 730  $\mu$ g/L to 8  $\mu$ g/L on November 1, 2017. Selenium concentrations at this well are discussed further below.

#### 5.1.3 Discussion

Groundwater quality results for reference well FR\_HMW5 were below the primary screening criteria for each sample with the exception of dissolved selenium (14.8  $\mu$ g/L) in Q2 (Appendix III, Graph B-2). The Q2 result is five times the 2016 Q3 sample concentration (3.04  $\mu$ g/L); the previous maximum concentration); prior to the 2016 Q3 sample, concentrations were < 0.050  $\mu$ g/L or 0.054  $\mu$ g/L on one occasion. Dissolved selenium concentrations for Q2 are considered to be anomalous. Approximately 20 L of hot water from FR\_POTWELLS (with selenium concentrations of 22.2  $\mu$ g/L) was added to FR\_HMW5 in Q1 in an attempt to defrost the well. If the well was not purged three well volumes prior to sampling, and instead the sampler waited for parameters to stabilize, then this may account for elevated selenium concentrations in FR\_HMW5 (SNC-Lavalin, 2018a). Dissolved selenium concentrations at reference well FR\_HMW5 were typically below the laboratory method detection limit (MDL) of < 0.05  $\mu$ g/L. Notably, dissolved selenium concentrations at adjacent Henretta Creek surface water station FR\_HC3, where a hydraulic connection to FR\_HMW5 has previously been inferred, were low when groundwater samples were collected as shown on Graph B-2 in Appendix III.

Nitrate-nitrogen and dissolved cadmium at FR\_HMW5 were below the MDL in each quarter and sulphate concentrations (Graph B-3) were one to two orders of magnitude less than other sulphate concentrations measured at FRO in 2017.



#### 5.1.3.1 Dissolved Lithium in Groundwater

Dissolved lithium concentrations in reference well FR\_HMW5 ranged from 218 to 265  $\mu$ g/L in 2017 and were generally an order of magnitude higher than wells situated downgradient at FRO, including some RGMP wells. Dissolved lithium concentrations were above the updated CSR DW standard (8  $\mu$ g/L) in 34 of the 37 wells (92%) included in the RGMP in at least one quarter, including RG\_DW-03-04 (Sparwood Municipal Supply Well 3) in Q4 of 2017.

Study Area 4 wells GH\_GA-MW-1 and GH\_GA-MW-3 had slightly lower lithium concentrations than the reference well, ranging from 139 to 156  $\mu$ g/L and 89.7 to 107  $\mu$ g/L, respectively. These wells were installed directly above bedrock. Study Area 11 well CM\_MW1-DP had lithium concentrations ranging from 258 to 710  $\mu$ g/L, the highest lithium concentrations measured in RGMP wells. Monitoring well CM\_MW1-DP was installed at a depth of 37 m in 'black siltstone'. An upward vertical gradient was measured between groundwater in CM\_MW1-DP and shallower well CM\_MW1-SH (see data in Study Area 11; Section 5.11), indicating that lithium concentrations in the deeper well were not influenced from downward movement of shallower groundwater.

Based on the 2017 RGMP data, bedrock appears to be a naturally occurring source of dissolved lithium. Typically, fine-grained (silt and clay) sedimentary rocks deposited in a marine environment, similar to those logged in CM\_MW1-DP and mapped in the area, have relatively high lithium content (Salminen et al., 2005). Lithium occurs mainly in silicate minerals such as feldspars and clays that are prevalent in fine-grained siliciclastic rocks found in the Elk Valley. Coal can also have naturally high lithium concentrations (Qin et al., 2015).

To further substantiate this interpretation, a broader review of dissolved lithium in groundwater was undertaken which included wells completed in bedrock. The approach taken was similar to that of non-order constituents in groundwater in the 2017 RGMP. The review indicated that:

- 77 of the 83 wells (93%) in the Elk Valley had dissolved lithium above the CSR DW standard for at least one quarter between 2015 and 2017;
- The highest dissolved lithium concentrations were measured at CM\_MW4-DP (3,430 µg/L), which was installed in bedrock;
- Reference wells (FR\_HMW5 and 2017 RGMP recommended well CM\_MW3-SH/DP) had dissolved lithium concentrations ranging from 6 to 2,510 µg/L. The second highest lithium concentration measured in the Elk Valley was at background well CM\_MW3-DP;
- The range of dissolved lithium concentrations in groundwater in wells installed in bedrock was 7 to 3,430 µg/L; and
- Groundwater from wells with dissolved selenium concentrations <10 µg/L (i.e., relatively less influence from mining activities) had dissolved lithium concentrations ranging from 1 to 3,430 µg/L whereas wells with dissolved selenium concentrations >10 µg/L had dissolved lithium concentrations ranging from 3 to 232 µg/L.

Based on these observations, dissolved lithium in groundwater appears to be naturally occurring and related to bedrock. Further, the second highest lithium concentrations were measured in a background monitoring well (i.e., CM\_MW3-DP).



## 5.2 Study Area 1: Fording River Valley-bottom Downgradient of Fording River Operations, Cataract and Porter Creeks

This area was identified because it is the focal point for the majority of upland and tributary valley groundwater flow to the Fording River valley-bottom near the FRO and GHO property boundaries and the primary off-site migration pathway from FRO (Drawing 635544-308). Study Area 1 is downgradient of the South Tailings Pond (STP), South Kilmarnock Settling Ponds, Kilmarnock Creek, Swift Creek, Cataract Creek and Porter Creek watersheds. Wells installed in overburden (upland and valley-bottom sediments) and relevant surface water locations for Study Area 1 are shown on Drawing 635544-308.

Glaciofluvial and fluvial deposits consisting of medium to coarse-grained unconsolidated sediments are in the Fording River floodplain south of the STP and in the vicinity of the Kilmarnock Settling Ponds and considered the key aquifer for Study Area 1 (Appendix IV). The aquifer is unconfined with a saturated thickness ranging from ~ 5 m, immediately south of the STP, to > 30 m further downgradient.

Two monitoring well locations are included for Study Area 1: FR\_09-01-A/B (nested) and the greenhouse water supply wells that consist of four wells (FR\_GH\_WELL1, FR\_GH\_WELL2, FR\_GH\_WELL3 and FR\_GH\_WELL4), collectively referred to as FR\_GHHW. FR\_09-01-A/B and FR\_GHHW were selected to monitor valley-bottom groundwater near the southern site boundary of FRO.

## 5.2.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Area 1, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-308.

| Potential Sources                                   | Potential Transport Pathways                                                                                                                                                                                                                                                                                                                                                | Current Monitoring Location <sup>1</sup>                                                                      |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| FRO mining activities upgradient from Study         | Groundwater flow though Fording River valley bottom.                                                                                                                                                                                                                                                                                                                        | FR_09-04-A/B (FRO SSGMP)                                                                                      |  |  |
| Area 1 and STP                                      | Upland groundwater and tributaries discharging into Fording River.                                                                                                                                                                                                                                                                                                          | FR_FR2 (SWMP)                                                                                                 |  |  |
| Fording River                                       | Recharge to groundwater from infiltration of the Fording River along some stretches.                                                                                                                                                                                                                                                                                        | FR_09-01-A/B (FRO SSGMP and<br>RGMP) and FR_09-02-A/B<br>(FRO SSGMP)<br>FR_FR2, FR_FR4 and FR_FRCP1<br>(SWMP) |  |  |
| South Tailings Pond<br>(STP)                        | Recharge to groundwater from infiltration from STP.                                                                                                                                                                                                                                                                                                                         | FR_09-04-A/B (FRO SSGMP)                                                                                      |  |  |
| Waste Spoils in the<br>Kilmarnock Creek<br>drainage | Recharge to groundwater from infiltration of<br>Kilmarnock Creek channel and Kilmarnock<br>Settling Ponds. Previous hydrogeological<br>assessment results suggested the presence of<br>a groundwater preferential flow path on the<br>east side of the Fording River valley from<br>Kilmarnock Creek drainage to the Greenhouse<br>Wells water system (SNC-Lavalin, 2017b). | FR_GHHW (FRO SSGMP and<br>RGMP)<br>FR_KC1 (SWMP)                                                              |  |  |

#### Table P: Potential Sources and Transport Pathways to Study Area 1 (After SNC-Lavalin, 2017a)



#### Table P (Cont'd): Potential Sources and Transport Pathways to Study Area 1

| Potential Sources                                                                                  | Potential Transport Pathways                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Current Monitoring Location <sup>1</sup>             |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Waste Spoils (North and<br>Connector Spoils) in the<br>Cataract Creek and<br>Swift Creek drainages | Previous hydrogeological assessment results<br>indicated that impacts from Swift Creek and<br>Cataract Creek drainages are inferred to be<br>primarily from surface water from Swift Creek<br>and Cataract Creek discharging into the<br>Fording River (SNC-Lavalin, 2017b). Water<br>quality results indicate that mine-affected<br>surface water impacts on groundwater quality<br>is limited to groundwater in the vicinity of the<br>settling ponds and the creeks and are likely<br>due to local exchange between groundwater<br>and surface water. | GH_SC1, GH_SC2, GH_CC1,<br>FR_FR4 and FR_FRCP1(SWMP) |
| Historical Waste Spoils in the Porter Creek drainage                                               | Impacts from Porter Creek drainage is inferred<br>to be primarily from Porter Creek surface<br>water recharging groundwater and discharging<br>into the Fording River.                                                                                                                                                                                                                                                                                                                                                                                   | GH_MW-PC <sup>2</sup> (GHO_SSGMP)<br>GH_PC1 (SWMP)   |

1. SSGMP: Site-Specific Groundwater Monitoring Program; RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program.

2. This monitoring well was drilled in 2016 and is now part of the GHO SSGMP.

A hydrogeological assessment was conducted at FRO to further assess groundwater influence from Kilmarnock Creek, Swift Creek, and Cataract Creek, and the adequacy of existing monitoring wells. The assessment indicated loading of mine-influenced constituents to groundwater in Fording River valley-bottom is inferred to be primarily from infiltration of Fording River and Kilmarnock surface water. The development of a water treatment facility (referred to as Active Water Treatment Facility South) south of the STP is proposed to mitigate impacts on surface water quality at FRO. As a result, improvement to groundwater quality is expected once the Active Water Treatment Facility South is in operation.

The assessment also suggested the presence of groundwater preferential flow path on the east side of the Fording River valley from Kilmarnock Creek drainage to the Greenhouse Wells water system based on comparison of surface water and groundwater quality. Groundwater with concentrations of CI above secondary screening criteria was identified to flow down-valley parallel to the Fording River. As part of the SSGMP, additional monitoring locations were recommended within the Fording River valley-bottom to monitor the impacts of Kilmarnock Creek drainage on groundwater quality, confirm the groundwater preferential flow path from Kilmarnock Creek, confirm the vertical extent of the aquifer and increase the lateral coverage in the southern area of FRO.

In 2016, a new monitoring well, GH\_MW-PC, was drilled and added to GHO SSGMP to monitor groundwater impacts associated with historical waste spoils in the Porter Creek drainage.

#### 5.2.2 Groundwater Levels

Manual water level measurements were provided for FR\_09-01-A/B for each of the four quarters in 2017 (Table 2). Groundwater elevations from May 2015 to November 2017 were plotted on a time-series graph and included in Appendix III (Graph 1-1). Groundwater elevations at both wells followed a seasonal trend with higher groundwater elevations recorded in June. Water levels at FR\_09-01-A/B varied by up to approximately 6.5 m between June and November 2017. Between May 2015 and November 2017 groundwater elevations ranged from 1577.31 masl to 1,583.77 masl (FR\_09-01-A) and 1,576.72 masl to



1,583.26 masl (FR\_09-01-B). Based on groundwater elevations recorded at FR\_09-01-A/B, the vertical groundwater flow is inferred to be downward from the shallow sandy gravel unit towards the deeper gravel unit (Table 2). The calculated vertical hydraulic gradient at FR\_09-01-A/B varied from -0.04 to -0.05 in 2017 (Appendix V). Groundwater elevations for the fourth quarter of 2017 are shown on Drawing 635544-306 to provide regional context.

Consistent with the RGMP, groundwater levels were not recorded at FR\_GHHW.

#### 5.2.3 Groundwater Quality

A summary of results above primary and secondary screening criteria for Study Area 1 are presented in tables below and select CI are presented in Appendix III, Graphs 1-2 and 1-3. The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and Table 5 (secondary screening).

| Parameter | FR_09-01-A           |                      |                      | FR_09-01-B           |                      |                      | FR_GHHW⁴             |                      |                      |                      |                      |                      |
|-----------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 1,2,3     | Q1                   | Q2                   | Q3                   | Q4                   | <b>Q</b> 1           | Q2                   | <b>Q</b> 3           | Q4                   | Q1                   | Q2                   | Q3                   | Q4                   |
| Nitrate   | DW                   |
| Nitrite   | -                    | -                    | -                    | -                    | -                    | -                    | -                    | -                    | -                    | -                    | AW                   | -                    |
| Lithium   | DW                   |
| Selenium  | AW<br>DW<br>LW<br>IW |

Table Q: Summary of Constituents above Primary Screening Criteria for Study Area 1

Notes: 1) Dissolved parameter unless otherwise indicated; 2) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3) '--' denotes result below primary screening criteria for given constituents; 4) FR\_GHHW consists of four wells including FR\_GH\_WELL1, FR\_GH\_WELL2, FR\_GH\_WELL3, and FR\_GH\_WELL4. As a recommendation of the hydrogeological assessment (SNC-Lavalin, 2017b), monitoring of a dedicated well (FR\_GH\_WELL4) began in Q4 2017.

Wells in the Fording River valley contained dissolved lithium concentrations greater than the CSR DW standard. Lithium concentrations were similar to previous years; however, new standards for dissolved lithium implemented in 2017 resulted in lithium screening above primary criteria. The source of dissolved lithium is inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials) as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5. A review of dissolved lithium in groundwater was performed in Section 5.1.3 above.

The only other constituent, other than CI, that was greater than the primary screening criteria was nitrite. Nitrite concentrations of 398  $\mu$ g/L were measured in FR\_GHHW in 2017 Q3. The Q3 result is considered anomalous as it is approximately 800 times more than the previous sample concentration (<0.5  $\mu$ g/L; 2017 Q2) and more than 5 times the highest concentration measured at this location since 2012 (69.2  $\mu$ g/L in 2015 Q4).

Secondary screening was completed where sample concentrations exceeded primary screening criteria for selenium. Table R shows the summary of results above secondary screening criteria. Most samples were above secondary SPO and DW criteria and one sample was also above CP criteria.



| Parameter | FR_09-01-A |            |            |                   | FR_09-01-B |            |    |            | FR_GHHW <sup>a</sup> |            |            |            |
|-----------|------------|------------|------------|-------------------|------------|------------|----|------------|----------------------|------------|------------|------------|
| 1,2       | Q1         | Q2         | Q3         | Q4                | Q1         | Q2         | Q3 | Q4         | Q1                   | Q2         | Q3         | Q4         |
| Selenium  | SPO,<br>DW | SPO,<br>DW | SPO,<br>DW | SPO,<br>CP,<br>DW | SPO,<br>DW | SPO,<br>DW | -  | SPO,<br>DW | SPO,<br>DW           | SPO,<br>DW | SPO,<br>DW | SPO,<br>DW |

#### Table R: Summary of Results above Secondary Screening Criteria in Study Area 1

Notes: 1) '--' denotes result below secondary screening criteria; and 2) Secondary screening criteria are Site Performance Objective (SPO), Compliance Point (CP) and GCDWQ for drinking water (DW). <sup>a</sup> FR\_GHHW consists of four wells including FR\_GH\_WELL1, FR\_GH\_WELL2, FR\_GH\_WELL3, and FR\_GH\_WELL4. As a recommendation of the hydrogeological assessment, monitoring of a dedicated well (FR\_GH\_WELL4) began in Q4 2017.

#### 5.2.4 Discussion

Discussion of trends in groundwater quality in Study Area 1 focuses on dissolved selenium and nitrate-nitrogen, which are the CI above screening criteria. Drawing 635544-327 shows the spatial distribution of the concentrations of dissolved cadmium, dissolved selenium, sulphate, and nitrate-nitrogen for wells in Study Area 1. Time-series plots of dissolved selenium and nitrate-nitrogen from the selected wells located in Study Area 1 are shown in Appendix III (Graphs 1-2 and 1-3). For comparison purposes, surface water concentrations measured in Fording River at surface water station FR\_FR2, FR\_FR4, and in Kilmarnock Creek at surface water station FR\_KC1 were added to Graphs 1-2 and 1-3.

At monitoring wells FR\_09-01-A/B, downgradient of Kilmarnock Creek, dissolved selenium and nitrate-nitrogen were greater than the primary screening criteria in each quarter (Drawing 635544-327). Dissolved selenium concentrations in wells FR\_09-01-A/B were also greater than the SPO and GCDWQ DW secondary screening criteria in most quarters and the CP secondary screening criteria in Q4 in 2017. Dissolved selenium concentrations in 2017 at FR\_09-01-A/B (44.2 to 166 µg/L) were generally within historical ranges except for a historical high in Q4 (Appendix III, Graph 1-2). Nitrate-nitrogen concentrations in FR\_09-01-A/B (12.7 to 54.3 mg/L) were slightly higher than concentrations measured in the last three years, but similar to concentrations measured in 2012 and 2013 (Appendix III Graph 1-3).

Dissolved selenium concentrations were higher in shallow well FR\_09-01-A (68.1  $\mu$ g/L to 166  $\mu$ g/L) than in deeper well FR\_09-01-B (44.2  $\mu$ g/L to 126  $\mu$ g/L). Nitrate-nitrogen concentrations display a similar trend with slightly higher concentrations in the shallower well, with the exception of Q2.

Two previously identified transport pathways for elevated dissolved selenium and nitrate-nitrogen concentrations in monitoring wells FR\_09-01-A/B were recharge of groundwater from the Fording River and Kilmarnock Creek. Dissolved selenium and nitrate-nitrogen concentrations for both the Fording River (upstream surface water location FR\_FR2) and Kilmarnock Creek (surface water location FR\_KC1) are plotted on Graphs 1-2 and 1-3. Surface water at both of these sampling locations exhibits the lowest dissolved selenium and nitrate-nitrogen concentrations in June to August and the highest selenium concentrations in January through April (Appendix III, Graphs 1-2 and 1-3). This reflects the effects of dilution from runoff from the spring freshet and groundwater trends for these CI appear to be similar.

Farthest downgradient in monitoring well FR\_GHHW, dissolved selenium and nitrate-nitrogen concentrations were similar to concentrations measured in upgradient well FR\_09-01-A and generally higher than those measured in upgradient well FR\_09-01-B. Dissolved selenium and nitrate-nitrogen in well FR\_GHHW were above the primary screening criteria in each quarter and dissolved selenium was greater than SPO and GCDWQ DW secondary screening criteria in each quarter (Drawing 635544-327).



Dissolved selenium and nitrate-nitrogen concentrations in well FR\_GHHW (Appendix III, Graphs 1-2 and 1-3) were less than concentrations measured in surface water at upstream location FR\_KC1 (with the exception of one sample from June 2016) in Kilmarnock Creek.

Concentrations in Fording River surface water and the valley-bottom aquifer are increasing downgradient of the STP. Tributary valley-bottom groundwater flow from the Kilmarnock Creek drainage is a major source of mining-related constituents to Fording River valley-bottom groundwater in the area downgradient of the STP and is resulting in the higher concentrations observed at the FR\_GHHW. Groundwater results from the Kilmarnock Creek alluvial fan in previous studies suggest that groundwater with elevated concentrations of CI flowing to the Fording River valley-bottom is probable (SNC-Lavalin, 2017b). In 2016 and 2017, CI concentrations were higher in FR\_09-01-A/B and FR\_GHHW than concentrations measured in the Fording River surface water monitoring station FR\_FR4 (Graphs 1-2 and 1-3) and other wells located closer to Fording River (e.g. FR\_09-02-A/B) monitored as part of the FRO SSGMP (SNC-Lavalin, 2018a). Increasing downgradient CI concentrations in Study Area 1 suggests the presence of a preferential groundwater flow path on the east side of the Fording River valley from Kilmarnock Creek drainage to FR\_GHHW.

## 5.3 Study Area 2: Fording River Valley-bottom Downgradient of LCO Dry Creek

Study Area 2 was selected because the LCO SSGMP identified that it receives drainage from the permitted LCO Phase II mining in the southern portion of the LCO Dry Creek watershed. The LCO Phase II mining includes an estimated 500 ha footprint of waste rock storage (Golder, 2016). The Dry Creek Water Management System (DCWMS) was constructed to divert, convey, and treat mine-influenced surface runoff, which is interacting with waste rock associated with LCO Phase II mining, from the Dry Creek watershed. The DCWMS was fully commissioned in July 2015 and intercepts mine-influenced water and distributes it to two sediment ponds for treatment of TSS. Clarified water is returned to Dry Creek immediately downstream of sediment ponds (Golder, 2016).

The valley-bottom in the LCO Dry Creek watershed consists of a relatively thick till unit with little to no fluvial or glaciofluvial deposits (Appendix IV). The till has a relatively low hydraulic conductivity, on the order of 10<sup>-7</sup> m/s to 10<sup>-9</sup> m/s. Dry Creek is intermittent along some reaches and losses to groundwater are expected. A small lens of gravel of limited extent was identified in the till; however, no continuous aquifers were identified in the drainage. Monitoring wells LC\_PIZDC1308 and LC\_PIZDC1307 are shallow and deep wells installed in a colluvium/till and basal till, respectively, downstream of the DCWMS. These wells are downgradient of any potential mine influence and are expected to identify any mine-related impacts to groundwater; however, as noted in the 2017 RGMP (SNC-Lavalin, 2017a) the primary pathway to groundwater in the Fording River valley-bottom is through surface water in Dry Creek, which is monitored by station LC\_DC3. There are also relevant surface water monitoring locations on the Fording River for Study Area 2 (shown on Drawing 635544-308).

## 5.3.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Area 2, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-308.



| Potential Sources                  | Potential Transport Pathways                                                                                                             | Current Monitoring Location <sup>1</sup>                             |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| LCO Phase II waste<br>rock storage | Surface water flow down Dry Creek valley-bottom<br>and infiltration to groundwater in the vicinity of the<br>Dry Creek Fan/Study Area 2. | LC_DC1, LC_DC3 (SWMP)<br>(surface water)<br>LC_PIZDC1307/1308 (RGMP) |
| Fording River                      | Recharge to groundwater from infiltration of the Fording River along some stretches.                                                     | LC_LC5 (SWMP)                                                        |

#### Table S: Potential Sources and Transport Pathways for Study Area 2 (After SNC-Lavalin, 2017a)

1. SSGMP: Site-Specific Groundwater Monitoring Program; RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program.

#### 5.3.2 Groundwater Levels

Manual and continuous groundwater elevation data available for nested wells LC\_PIZDC1308 (shallow) and LC\_PIZDC1307 (deep) were reviewed and assessed for seasonal variability, vertical flow and long-term trends (manual values are presented in Table 2 and both manual and continuous data are presented in Appendix III, Graph 2-1). The data indicate a seasonal trend is apparent, with annual fluctuations in 2017 of 1.9 m and 5.1 m in LC\_PIZDC1308 and LC\_PIZDC1307, respectively (based on continuous level data). In 2017 the highest groundwater levels were measured in May and the lowest elevations were measured in March. The inferred vertical groundwater flow at the nested well LC\_PIZDC1308/1307 was consistently downwards in 2017 (based on continuous groundwater level data) except for a short period at the end of May where vertical groundwater flow was reversed. The vertical hydraulic gradient calculated using the manual groundwater elevation data ranged in magnitude from - 0.11 m/m to -0.01 m/m (Appendix V). The Q4 groundwater elevation measured at LC\_PIZDC1308 and LC\_PIZDC1307 is shown on Drawing 635544-306 to provide regional context.

## 5.3.3 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and dissolved selenium is presented in Appendix III, Graph 2-2. A summary of results above primary screening criteria for Study Area 2 is presented in Table T below.

| Table T: | Summary           | of Non-ore | ler Consti | tuents abov | Primary | Screening | Criteria | Upgradient | of |
|----------|-------------------|------------|------------|-------------|---------|-----------|----------|------------|----|
|          | <b>Study Area</b> | a 2        |            |             |         |           |          |            |    |

| Parameter <sup>1,2,3</sup> |    | LC_PIZ | DC1307 |    | LC_PIZDC1308 |    |    |    |  |  |
|----------------------------|----|--------|--------|----|--------------|----|----|----|--|--|
| i arameter                 | Q1 | Q2     | Q3     | Q4 | Q1           | Q2 | Q3 | Q4 |  |  |
| Barium                     | DW | DW     | DW     | DW | -            | -  | -  | -  |  |  |
| Lithium                    | DW | DW     | DW     | DW | DW           | -  | DW | DW |  |  |
| Molybdenum                 | IW | IW/LW  | IW     | IW | -            | -  | -  | -  |  |  |

Notes: 1) Dissolved parameter unless otherwise indicated; 2) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3) ' –' denotes result below primary screening criteria for given constituents.

Groundwater quality in LC\_PIZDC1308 and LC\_PIZDC1307 was below the primary screening criteria concentrations for CI; therefore, secondary screening was not completed.



Groundwater concentrations were above primary screening criteria for dissolved barium (DW) and dissolved molybdenum (IW or IW/LW) for each the sampling events in LC\_PIZDC1307. Dissolved barium concentrations ranged from 1,380 to 1,460  $\mu$ g/L and were above the CSR DW standard of 1,000  $\mu$ g/L. The concentrations of dissolved molybdenum ranged from 33.0 to 61.6  $\mu$ g/L, which were above the CSR IW of 10 - 30  $\mu$ g/L and the CSR LW of 50  $\mu$ g/L.

Dissolved lithium concentrations in both wells were greater than the CSR DW standard of 8  $\mu$ g/L in each quarter with the exception of Q2 in LC\_PIZDC1308. Dissolved lithium concentrations were similar to previous years and ranged from 19.0  $\mu$ g/L to 79.5  $\mu$ g/L; however, the standard for dissolved lithium changed from 730  $\mu$ g/L to 8  $\mu$ g/L on November 1, 2017, resulting in lithium screening above primary criteria.

The 2017 RGMP (SNC-Lavalin, 2017a) included a review of non-order constituents in groundwater (including dissolved barium, boron, manganese and molybdenum) with concentrations greater than the primary screening criteria. The majority of these non-order constituents originate from natural sources (e.g., interaction with bedrock or unconsolidated materials). These constituents have a wide spatial distribution across the region and are typically not present with the assemblage of CI in groundwater or surface water that indicate mine-influence (i.e., concentrations of CI above applicable criteria). A similar analysis of dissolved lithium was also performed in Section 5.1.3 above. Based on this information and the receptor information provided in the 2017 RGMP, the following interpretations were made:

- The source of barium and molybdenum is naturally occurring (interaction with bedrock or unconsolidated materials). These constituents above primary criteria are only noted in the deep well LC\_PIZDC1307 installed in basal till which support the conclusion of the review.
- Similar to dissolved barium and molybdenum, the source of dissolved lithium is inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials). This is supported by concentrations above CSR DW throughout the Elk Valley, including in reference location FR\_HMW5. The highest concentrations of dissolved lithium in Study Area 2 were in the deep well LC\_PIZDC1307 installed in basal till which supports this interpretation.

Drinking or irrigation wells are not located in Study Area 2; therefore, there is no exposure pathway for these constituents.

#### 5.3.4 Discussion

Study Area 2 was identified as an area where transport of CI to the Fording River valley-bottom may be occurring due to the LCO Phase II development in the LCO Dry Creek watershed. There are no groundwater wells in the Fording River valley-bottom aquifer in this area; however, a groundwater pathway to the valley-bottom has not been identified due to the lack of a continuous aquifer. Consequently, this data gap is considered to be addressed through monitoring of surface water in the LCO Dry Creek drainage and groundwater at LC\_PIZDC1308 and LC\_PIZDC1307 in the drainage. Drawing 635544-327 shows analytical results for dissolved cadmium, dissolved selenium, sulphate, and nitrate-nitrogen compared to primary and secondary screening criteria for samples collected in Study Area 2. Time series plots displaying dissolved selenium concentrations are in Appendix III (Graph 2-2). Results from 2017 are consistent with historical results showing groundwater quality in LC\_PIZDC1308 and LC\_PIZDC1308 display a seasonal trend with higher concentrations measured in June (Tables 3 and 4).



To assess groundwater and surface water interactions, selenium concentrations measured in groundwater at LC\_PIZDC1308 and LC\_PIZDC1307 were compared to concentrations in surface water in LCO Dry Creek (LC\_DC1 and LC\_DC3; Appendix III, Graph 2-2). Selenium concentrations in groundwater at LC\_PIZP1307 (deep well) and LC\_PIZP1308 (shallow) were below the detection limits or slightly above the detection limit for each sample collected in 2017. Selenium concentrations in groundwater have been relatively low and stable since December 2014 and are lower than concentrations measured in LCO Dry Creek. Selenium concentrations in Dry Creek surface water were higher than groundwater and took a step-wise increase in 2017 (Graph 2-2), whereas no concurrent increase was noted for groundwater. Fording River concentrations at station LC\_LC5 (formerly LC\_FRDSDC), located in Study Area 2, were higher than surface water concentrations in Dry Creek. The current contribution of CI to groundwater from infiltration of Dry Creek over the alluvial fan is interpreted to be minimal, compared to the existing load of CI in the Fording River, which has the potential to infiltrate to groundwater in the Study Area.

## 5.4 Study Area 3: Fording River Valley-bottom Downgradient of GHO Rail Loop and Greenhills Creek

Study Area 3 was selected because the GHO SSGMP identified potential sources (upland groundwater from GHO) as well as surface water and groundwater transport pathways that provided loading to the Fording River valley-bottom. Study Area 3 is situated downgradient from GHO, and Greenhills Creek is the main tributary that flows into the Fording River valley-bottom. Fording River valley-bottom sediments in Study Area 3 are approximately 70 m thick and consist mainly of coarse-grained glaciofluvial deposits (sand and gravel) confined by a clay/silty clay unit as shown on cross sections D-D' and E-E' (Drawings 635544-315 and -316) and the block diagram shown in Appendix IV.

In Study Area 3, four supply wells (GH\_POTW09, GH\_POTW10, GH\_POTW15 and GH\_POTW17) located in the area near the rail loop were included in the RGMP. Since the 2015 RGMP, one monitoring well, GH\_MW-RLP-1D, was installed as part of the GHO SSGMP (Hemmera, 2017a). The well was installed in till to a depth of 82 mbgs in the vicinity of the rail loop. Additional information has been reviewed and monitoring well GH\_MW-RLP-1D in Study Area 3 was included in the 2017 RGMP (SNC-Lavalin, 2017a). This well was not part of the 2015 RGMP but has been added here for discussion purposes. Selected groundwater monitoring locations and relevant surface water locations for Study Area 3 are shown on Drawing 635544-308.

#### 5.4.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Area 3, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-308.



| Potential Sources                                         | Potential Transport Pathways                                               | Current Monitoring Location <sup>1</sup>                    |
|-----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|
| Tailings Pond, Site<br>A-E Rejects, Coal                  | Upland groundwater transport to valley-bottom.                             | GH_MW-TD, GH_MW-GHC-1S/D<br>(SSGMP), GH_POTW17 (RGMP)       |
| Wash Plant,<br>Overland Conveyor.                         | Surface water flow from Greenhills Pond and infiltration to valley-bottom. | GH_GH1 (SWMP)                                               |
| Clean Coal, Dryer<br>Building/Ponds, Rail                 | Upland groundwater transport to valley-bottom.                             | GH_MW-RLP-1D (SSGMP),<br>GH_POTW09 (RGMP)                   |
| Loop/Loadout.                                             | Surface water infiltration.                                                | GH_RLP (SWMP)                                               |
| Upgradient Fording<br>River valley bottom<br>groundwater. | Potential down-valley groundwater flow from upgradient Study Area 2.       | GH_POTW09, GH_POTW10,<br>GH_POTW15 (RGMP)                   |
| Fording River.                                            | Surface Water infiltration.                                                | GH_POTW09, GH_POTW10,<br>GH_POTW15 (RGMP), GH_FR1<br>(SWMP) |

## Table U: Potential Sources and Transport Pathways to Groundwater in Study Area 3<br/>(After SNC-Lavalin, 2017a)

1. SSGMP: Site-Specific Groundwater Monitoring Program; RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program.

#### 5.4.2 Groundwater Levels

Groundwater levels for 2017 supply wells were not available, but continuous recording of water levels is currently being performed. Seasonal variability and long-term trends in groundwater elevations in GH\_MW-RLP-1D were assessed using manual water level measurements as well as continuous groundwater level data (Graph 3-1). Groundwater elevations at GH\_MW-RLP-1D ranged from 1488.23 masl to 1489.74 masl in 2017. Overall, groundwater elevations fluctuated by 1.5 m in 2017, with the highest water level measured in June 2017. This well was installed in 2016 and limited historical data exists; therefore, no further trends are discernible at this time.

## 5.4.3 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and Table 5 (secondary screening) and select CI are presented in Appendix III, Graphs 3-2 and 3-3. CI were below primary screening criteria. Non-order constituents above primary screening criteria are shown in Table V and Table W below.

## Table V: Summary of Non-order Constituents above Primary Screening Criteria for Study Area 3 (1/2)

| Parameter <sup>1,3</sup> | GH_POTW09 |    |    | GH_POTW10 |    |     | GH_POTW15 |    |    | GH_POTW17 <sup>2</sup> |    |    |    |    |    |    |
|--------------------------|-----------|----|----|-----------|----|-----|-----------|----|----|------------------------|----|----|----|----|----|----|
| Farameter                | Q1        | Q2 | Q3 | Q4        | Q1 | Q2  | Q3        | Q4 | Q1 | Q2                     | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 |
| Lithium                  | DW        | DW | DW | DW        | DW | DW  | DW        | DW | DW | DW                     | DW | DW | DW | DW | DW | DW |
| Manganese                | IVV       | -  | -  | -         | -  | IVV | -         | -  | -  | -                      | -  | IW | -  | -  | -  | -  |

Notes: 1) Dissolved parameter unless otherwise indicated; 2) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3) ' -' denotes result below primary screening criteria for given constituents.



## Table W: Summary of Non-order Constituents above Primary Screening Criteria for Study Area 3 (2/2)

| Parameter <sup>1,3</sup> |            | GH_MW-RL   | P-1D       |            |
|--------------------------|------------|------------|------------|------------|
| r arameter /             | Q1         | Q2         | Q3         | Q4         |
| Fluoride                 | IW, DW, LW | IW, DW, LW | IW, DW, LW | IW, DW, LW |

Notes: 1) Dissolved parameter unless otherwise indicated; 2) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3) '-' denotes result below primary screening criteria for given constituents.

Groundwater quality in GH\_POTW09, GH\_POTW10, and GH\_POTW15 was above primary screening criteria for manganese (IW) for one quarter each in 2017 with concentrations between 202 to 211  $\mu$ g/L. Manganese concentrations are inferred to be naturally elevated due to limited interaction with atmosphere based on the review performed in the 2017 RGMP (SNC-Lavalin, 2017a). Lithium concentrations were greater than the CSR DW standard at GH\_POTW09, GH\_POTW10, GH\_POTW15, and GW\_POTW17. Lithium concentrations were similar to previous years and ranged from 11.5  $\mu$ g/L to 17.6  $\mu$ g/L; however, new standards for dissolved lithium implemented in 2017 resulted in lithium screening above primary screening criteria. The source of dissolved lithium is inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials) as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5. A review of dissolved lithium in groundwater was performed in Section 5.1.3 above.

Monitoring well GH\_MW-RLP-1D was installed at a total depth of 82.5 m and is interpreted to be relatively hydraulically isolated from groundwater or surface water systems that would be mine-influenced. Fluoride concentrations at this location are interpreted to be naturally occurring and derived from water interaction with unconsolidated materials (SNC-Lavalin, 2017; 2018).

Drinking or irrigation wells are not located in Study Area 3; therefore, there is no exposure pathway for these constituents.

#### 5.4.4 Discussion

The concentrations of CI in GH\_POTW09, GH\_POTW10, GH\_POTW15, GH\_POT17, and GH\_MW-RLP-1D were below primary screening criteria in 2017. Time series plots of dissolved selenium and sulphate concentrations are shown in Appendix III (Graphs 3-2 and 3-3). To assess groundwater and surface water interactions, selenium and sulphate concentrations in surface water in the Fording River (GH\_FR1) and Greenhills Creek (GH\_GH1) were plotted. Drawing 635544-327 shows the spatial distribution of dissolved cadmium, dissolved selenium, sulphate, and nitrate-nitrogen for samples collected in Study Area 3.

Surface water dissolved selenium concentrations in the Fording River at GH\_FR1 and Greenhills Creek GH\_GH1 were consistently higher than groundwater concentrations at RGMP wells in Study Area 3 (Appendix III, Graph 3-2). In 2017, dissolved selenium concentrations at GH\_FR1 ranged from 20.7 to 75.6  $\mu$ g/L and from 22.1 to 199  $\mu$ g/L in GH\_GH1. Surface water dissolved selenium concentrations at GH\_FR1 and GH-GH1 follow a seasonal trend with higher concentrations measured in the late summer, fall, and winter months and lower concentrations measured during spring freshet as a result of dilution.



Silt and clay units at surface in the Fording River valley-bottom appear to provide a barrier to downward transport of CI to the aquifer with water supply wells. Comparison of groundwater quality in this aquifer to surface water in the Fording River (GH\_FR1) indicates that concentrations of dissolved selenium were approximately one order of magnitude lower; however, sulphate concentrations were relatively similar or higher (GH\_POTW17) compared to surface water in the Fording River (Appendix III, Graph 3-3). The sulphate may be naturally sourced or a result of infiltration from Greenhills Creek over the alluvial fan; if the latter is occurring, then associated dissolved selenium contributions from Greenhills Creek may have preferentially attenuated in the aquifer.

Concentrations of selenium at GH\_MW-RLP-1D ranged from 0.08 to 6.53 µg/L in 2017. Fluctuation in dissolved selenium concentrations appear to be similar to fluctuations measured in nearby surface water samples (GH\_FR1 and GH\_GH1) with the lowest concentration measured during freshet (Appendix III, Graph 3-2). No significant variation or trend in dissolved sulphate concentrations has been observed at GH\_MW-RLP-1D.

The relatively low dissolved selenium and sulphate concentrations measured at GH\_MW-RLP-1D compared to concentrations at GH\_FR1 suggest little influence from Fording River surface water (Appendix III, Graphs 3-2 and 3-3). This is consistent with the interpretation that a relatively continuous aquitard exists in the Fording River valley.

# 5.5 Study Area 4: Elk River Valley-bottom Downgradient of Leask, Wolfram, and Thompson Creeks

Study Area 4 is situated downgradient from the west side of GHO and was selected because the GHO SSGMP identified potential sources of CI from the Mickelson, Leask, Wolfram, and Thompson Creek drainages. The SSGMP also identified surface water and upland groundwater infiltration as transport pathways from these potential sources to the Elk River valley-bottom. Surface water from each of these creeks is diverted to settling ponds near the valley-bottom and groundwater in upland areas is inferred to flow toward the Elk River valley-bottom. The boundaries of Study Area 4 were modified as part of the 2017 RGMP (SNC-Lavalin, 2017a) to reflect information from the GHO SSGMP that indicated groundwater from the tailings pond may flow towards the Elk River.

Valley-bottom deposits are predominantly fluvial and glaciofluvial in this area (Appendix IV) with a number of former Elk River channels identified; however, the stratigraphy in boreholes at monitoring well locations GH\_GA-MW-1 and GH\_GA-MW-2 were lower permeability till and lacustrine/glaciolacustrine (i.e., soft, silty clay) sediment. To the south at wells GH\_GA-MW-3 and GH\_GA-MW-4, coarse-grained sediment, including sub-angular gravel, infers glaciofluvial deposits overlying local bedrock. Monitoring well GH\_MW-ERSC-1, situated approximately 1 km south of the Lower Thompson Creek Settling Pond, is installed in fluvial sand and gravel. The linear distribution of the monitoring wells in the valley-bottom does not allow for triangulation for determining groundwater flow direction; however, groundwater is expected to discharge to the Elk River, with a flow component parallel or sub-parallel to the river. Cross section F-F' depicts this stratigraphy, approximately parallel to the Elk River (Drawing 635544-317).



The RGMP for Study Area 4 includes five monitoring wells (GH\_GA-MW-1, GH\_GA-MW-2, GH\_GA-MW-3, GH\_GA-MW-4, and GH\_MW-ERSC-1), one water supply well (RG\_DW-01-03), and one domestic well (RG\_DW-01-07). RGMP wells and relevant surface water locations for Study Area 4 are shown on Drawing 635544-308.

## 5.5.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Area 4, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-308.

## Table X: Potential Sources and Transport Pathways to Groundwater in Study Area 4(After SNC-Lavalin, 2017a)

| Potential Sources                                                     | Potential Transport Pathways                                     | Current Monitoring Location <sup>1</sup>                                                          |
|-----------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Waste Spoils in<br>Leask, Wolfram,<br>Thomson Creek<br>drainages, and | Upland groundwater transport to valley-bottom.                   | GH_GA-MW-1, GH_GA-MW-2,<br>GH_GA-MW-3, GH_GA-MW-4<br>(SSGMP and RGMP), GH_MW-UTC-<br>1S/D (SSGMP) |
| ponds at the base of each of these drainages.                         | Surface water flow from ponds and infiltration to valley-bottom. | GH_MC1, GH_LC1, GH_TC2<br>(SWMP)                                                                  |
| Tailings Pond.                                                        | Upland groundwater transport to valley bottom                    | GH_MW-TD (SSGMP)                                                                                  |
| Elk River.                                                            | Surface water infiltration.                                      | GH_MW-ERSC-1 (RGMP)                                                                               |

1. SSGMP: Site-Specific Groundwater Monitoring Program; RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program.

Surface water from the Leask, Wolfram, and Thomson Creek drainages flows from rock drains on the Elk River valley flanks to the valley bottom and has the potential to infiltrate through settling ponds.

## 5.5.2 Groundwater Levels

Continuous groundwater level data available from level loggers installed in GH\_GA-MW-1, GH\_GA-MW-2 and GH\_GA-MW-3 were recorded along with manual water level measurements during the monitoring period (Table 2). Groundwater elevations from January 2015 to December 2017 were plotted on a time-series graph and included in Appendix III (Graph 4-1). Groundwater elevations at GH\_GA-MW-2, GH\_GA-MW-3, GH\_GA-MW-4 (manual only, Table 2), and GH\_MW-ERSC-1 exhibited a seasonal trend with generally higher groundwater elevations during the spring freshet from mid-March to June whereas groundwater elevations at GH\_GA-MW-1 were relatively consistent throughout the year and did not appear to vary seasonally.

The fluctuation in groundwater levels in GH\_GA-MW-2 and GH\_GA-MW-3 was relatively high, ranging from 3.3 to 7.3 m, respectively. Groundwater elevations in GH\_GA-MW-1 showed a time lag of approximately 30 days for groundwater levels to return to static levels after a sampling event. This is consistent with the low hydraulic conductivity value (1 x  $10^{-12}$  m/s) reported in previous studies.

Groundwater elevations prior to sampling for the fourth quarter were selected and shown on Drawing 635544-306 to provide regional context.

## 5.5.3 Groundwater Quality

Analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and Table 5 (secondary screening) and dissolved selenium is presented in Appendix III, Graph 4-2. A summary of results above primary and secondary screening criteria for Study Area 4 is presented in Table Y and Table Z below.

#### Table Y: Summary of CI above Primary Groundwater Screening Criteria for Study Area 4 (1/2)

| Parameter <sup>1,2,3</sup> | GH_GA-MW-1 | GH_GA-MW-4 |    | GH_G | A-MW-2 | 2  | GH_GA-MW-3 |    |            |    |
|----------------------------|------------|------------|----|------|--------|----|------------|----|------------|----|
| Parameter                  | Q1 to Q4   | Q1 to Q4   | Q1 | Q2   | Q3     | Q4 | Q1         | Q2 | <b>Q</b> 3 | Q4 |
| Selenium                   | -          | -          | -  | -    | -      | DW | -          | -  | -          | DW |

Notes: 1) Dissolved parameter unless otherwise noted; 2) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3) '--' denotes result below primary screening criteria for given constituents.

#### Table Z: Summary of CI above Primary Groundwater Screening Criteria for Study Area 4 (2/2)

| Parameter <sup>1,2,3</sup> | GH_MW-ERSC-1 |                |    | RG_DW-01-03 |    |    |    | RG_DW-01-07 |    |    |  |
|----------------------------|--------------|----------------|----|-------------|----|----|----|-------------|----|----|--|
| Parameter                  | Q1-Q3        | Q4             | Q1 | Q2          | Q3 | Q4 | Q1 | Q2          | Q3 | Q4 |  |
| Selenium                   | -            | AW, DW, IW, LW | -  | -           | -  | -  | -  | -           | -  | -  |  |

Notes: 1) Dissolved parameter unless otherwise noted; 2) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3) '-' denotes result below primary screening criteria for given constituents.

Of the CI, selenium concentrations were measured above primary screening criteria in Study Area 4 in groundwater at locations GH\_GA-MW-2, GH\_GA-MW-3, and GH\_MW-ERSC-1 in Q4 in 2017 (Appendix III, Graph 4-2). Selenium concentrations ranged from 18.9 to 68.7  $\mu$ g/L. Results for selenium concentrations for GH\_GA-MW-2 and GH\_GA-MW-3 were consistent with historical results; however, concentrations at GH\_GA-MW-2 and GH\_GA-MW-3 were no longer above the CSR AW standard (now only above CSR DW) due to the updated standard on November 1, 2017 (CSR AW now 20  $\mu$ g/L). Selenium concentrations in Q4 (68.7  $\mu$ g/L) at GH\_MW-ERSC-1 are one to two orders of magnitude higher than other concentrations measured in 2016 and 2017; however, they are within range of concentrations measured in 2014 and 2015.

A summary of non-order constituents with concentrations above primary screening criteria for at least one sampling event in 2017 is listed in Table AA.

#### Table AA: Summary of Non-order Constituents above Primary Groundwater Screening Criteria for Study Area 4

| Parameter <sup>1,2,3</sup> | GH_GA-<br>MW-1 | GH_GA-<br>MW-4 | GH_GA-<br>MW-2 | GH_GA-<br>MW-3 | GH_MW-<br>ERSC-1   | RG_DW-01-<br>03 | RG_DW-01-<br>07 |
|----------------------------|----------------|----------------|----------------|----------------|--------------------|-----------------|-----------------|
| Boron                      | IW (Q1-<br>Q4) | -              | -              | -              | -                  | -               | -               |
| Lithium                    | DW(Q1-<br>Q4)  | DW (Q1-<br>Q4) | DW (Q1-<br>Q4) | DW (Q1-<br>Q4) | DW (Q1,<br>Q3, Q4) | -               | -               |



|                            | Unter             |                | Alca +         |                |                  |                 |                 |
|----------------------------|-------------------|----------------|----------------|----------------|------------------|-----------------|-----------------|
| Parameter <sup>1,2,3</sup> | GH_GA-<br>MW-1    | GH_GA-<br>MW-4 | GH_GA-<br>MW-2 | GH_GA-<br>MW-3 | GH_MW-<br>ERSC-1 | RG_DW-01-<br>03 | RG_DW-01-<br>07 |
| Manganese                  | IW (Q3,<br>Q4)    | -              | -              | -              | -                | -               | -               |
| Molybdenum                 | IW, LW<br>(Q3,Q4) | -              | IW (Q1-<br>Q4) | -              | -                | -               | -               |
| Strontium                  | DW (Q1-<br>Q4)    | -              | -              | -              | -                | -               | -               |

#### Table AA (Cont'd): Summary of Non-order Constituents above Primary Groundwater Screening Criteria for Study Area 4

Notes: 1) Dissolved parameter unless otherwise indicated; 2) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); and 3) '-' denotes result below primary screening criteria for given constituents.

Groundwater analytical results from 2017 and concentrations above primary screening criteria were similar to previous years with the following exceptions:

- Dissolved lithium concentrations exceeded the CSR DW standards at each location, with the exception of RG\_DW-01-03 and RG\_DW-01-07, due to the updated standard that was reduced from 730 µg/L to 8 µg/L on November 1, 2017; however, concentrations remained consistent with historical results. The source of dissolved lithium is inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials) as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5. A review of dissolved lithium in groundwater was performed in Section 5.1.3 above;
- Dissolved strontium exceeded the CSR DW standard at GH\_GA-MW-1 for each sampling event in 2017 due to the updated standard that was reduced from 22,000 µg/L to 2,500 µg/L on November 1, 2017; however, concentrations remained consistent with historical results; and
- Molybdenum concentrations increased to a historical high at GH\_GA-MW-1 in September 2017 (85.7 µg/L) and subsequently decreased to 21.4 µg/L and were a similar magnitude as historical results starting in February 2015. Molybdenum concentrations in GH\_GA-MW-2 ranged from 20.0 to 35.4 µg/L with the highest concentration recorded in September 2017. Q3 concentrations were higher than concentrations measured in 2015 and 2016.

The 2017 RGMP (SNC-Lavalin, 2017a) included a review of non-order constituents in groundwater with concentrations greater than primary screening criteria, which included dissolved manganese, boron, and molybdenum. Based on this information and the receptor information provided in the 2017 RGMP, the following interpretations were made:

- Manganese concentrations at GH\_GA-MW-1 are inferred to be naturally elevated due to limited interaction with atmosphere. GH\_GA-MW-1 is screened in clayey sand directly overlying bedrock with a reported low measured hydraulic conductivity of 1 x 10<sup>-12</sup> m/s (Hemmera, 2017b);
- Dissolved boron at GH\_GA-MW-1 is inferred to be naturally occurring and derived from interaction with bedrock. Dissolved boron concentrations were above CSR IW standard of 500 µg/L to 6,000 µg/L based on crop sensitivity. Boron concentrations since 2015 at GH\_GA-MW-1 ranged from 717 to 909 µg/L and would generally only affect the very sensitive to sensitive crops. Irrigation wells are not located in this area; therefore, dissolved boron is not currently considered a concern; and



The source of molybdenum at GH\_GA-MW-1 and GH\_GA-MW-2 is inferred to be naturally occurring and originating primary from bedrock. GH\_GA-MW-1 is installed in fine-grained materials above bedrock and GH\_GA-MW-2 is installed in a permeable sand unit above the bedrock contact.

Dissolved selenium concentrations in GH\_GA-MW-2, GH\_GA-MW-3, and GH\_MW-ERSC-1 were compared with secondary screening criteria. Table BB shows the summary of results above secondary screening criteria in groundwater. Selenium concentrations were above secondary screening criteria at these three locations in Q4 (Appendix III, Graph 4-2).

#### Table BB: Summary of CI above Secondary Screening Criteria for Study Area 4

| Parameter <sup>1,2,3</sup> | GH_GA-MW-2 |    |    | GH_GA-MW-3 |    |    | GH_MW-ERSC-1 |            |    |    |    |                |
|----------------------------|------------|----|----|------------|----|----|--------------|------------|----|----|----|----------------|
| Parameter                  | Q1         | Q2 | Q3 | Q4         | Q1 | Q2 | Q3           | Q4         | Q1 | Q2 | Q3 | Q4             |
| Selenium                   | -          | -  | -  | СР         | -  | -  | -            | CP,<br>SPO | -  | -  | -  | DW,<br>SPO, CP |

Notes: 1) Secondary screening criteria are Site Performance Objective (SPO), Compliance Point (CP) and GCDWQ for drinking water (DW); and 2) '--' denotes result below secondary screening criteria.

#### 5.5.4 Discussion

Discussion of trends in groundwater quality in Study Area 4 focuses on dissolved selenium concentrations, the CI above the primary and secondary screening criteria in select monitoring wells. Sulphate previously exceeded the CSR DW standard of 500 mg/L at GH\_GA-MW-1 and GH\_GA-MW-4; however, the maximum sulphate concentrations at these wells in 2017 were 344 mg/L (September) at GH\_GA-MW-1 and 215 mg/L (January) at GH\_GA-MW-4. Drawing 635544-327 shows the spatial distribution of dissolved selenium, dissolved cadmium, sulphate, and nitrate-nitrogen for samples collected in Study Area 4. A time series plot of dissolved selenium from wells located in Study Area 4 and included in the 2017 RGMP is shown in Appendix III (Graph 4-2). To compare groundwater concentration trends to surface water in Study Area 4, dissolved selenium concentrations measured in nearby surface water in the Elk River (GH\_ERC and GH\_ER2), Thompson Creek (GH\_TC2), Wolfram Creek (GH\_WC1) and Leask Creek (GH\_LC1) were plotted on the graphs.

Dissolved selenium concentrations have historically been greatest at downstream locations from tributary drainages: GH\_GA\_MW-4 (Leask Creek catchment), GH\_GA-MW-2 (Wolfram Creek catchment) and GH\_GA-MW3 (Thompson Creek catchment; Appendix III, Graph 4-2). Historically dissolved selenium concentrations were highest at GH\_GA-MW-3; however, in 2017, dissolved selenium concentrations in GH\_GA-MW-2 were higher. Dissolved selenium at GH\_GA-MW-3 has varied considerably since 2014 with no distinct seasonal or long-term trends. Dissolved selenium concentrations at GH\_GA-MW-2 decreased from 17.9  $\mu$ g/L November 2016 to 7.87  $\mu$ g/L in January 2017, consistent with values measured in 2014 and 2015. In November 2017, concentrations subsequently increased to 18.9  $\mu$ g/L, which was consistent with 2016 ranges. No significant variation in selenium concentrations were noted at GH\_GA-MW-1 and GH\_GA-MW-4. Dissolved selenium concentrations measured farthest downgradient in GH\_MW-ERSC-1 were the highest concentrations (68.7  $\mu$ g/L) measured in Study Area 4 RGMP wells. Results for 2017 from GH\_MW-ERSC-1 are consistent with concentrations measured in 2014 and 2015 and suggest large variability in selenium concentrations.



Surface water selenium concentrations in tributary surface water stations (GH\_LC1, GH\_WC1 and GH\_TC2) have consistently been higher than concentrations in groundwater samples and at least an order of magnitude higher than surface water from Elk River (GH\_ER2 and GH\_ERC). This suggests that surface water from the tributaries is the primary pathway for transport of CI to the Elk River valley-bottom. Seasonal fluctuations in groundwater elevations have historically been greatest at GH\_GA-MW-3, located approximately 380 m from GH\_TC2, suggesting the well is influenced by freshet. Concentrations of dissolved selenium in groundwater also appear to be greatest during times of low flow, suggesting that local-scale interaction with surface water may have occurred at this location. A more muted seasonal trend in groundwater elevations has been observed at GH\_GA-MW-2; however, slight seasonal fluctuations of selenium were measured, suggesting some localized surface water influence in this area.

The relatively high concentrations of CI (i.e., either approaching or above primary criteria) at GH\_MW-ERSC-1 in comparison to surface water concentrations at Elk River surface water station GH\_ERC (located adjacent to GH\_MW-ERSC-1) suggest a groundwater pathway may exist at this location. This well is completed in a sand unit above bedrock (logged as a till) with a hydraulic conductivity of 3 ×10<sup>-6</sup> m/s. Concentrations in Q4 in GH\_MW-ERSC-1 were much higher than upgradient wells GH\_GA-MW-2 and GH\_GA-MW-3, suggesting either a surface water influence or another source between these wells. The SSGMP did not identify any sources in the vicinity and there are no adjacent tributary drainages; however, well GH\_MW-ERSC-1 is situated approximately 45 m from the Elk River side channel which does contain surface flows from tributaries in Thompson Creek and Wolfram Creek. Consequently, it is possible that the intermittent elevated concentrations may be due to infiltration from surface water in the side channel.

Downgradient groundwater quality in the Elk River valley-bottom improves, and delineation (i.e., extent of groundwater impacts) is achieved on a regional scale. Selenium concentrations in the valley-bottom groundwater were below screening criteria at the water supply well RG\_DW-01-03, with concentrations decreasing further downgradient of Elkford at domestic well location RG\_DW-01-07, suggesting dilution is occurring along the valley-bottom groundwater down-valley flow path due to mixing with surface water and additional fresh water inputs.

## 5.6 Study Areas 5 and 6: Fording River Valley-bottom Downgradient of LCO

Study Area 5 was selected because the LCO SSGMP identified possible inputs of CI from Line Creek and the Process Plant to Fording River valley-bottom. After exiting LCO Phase I area, Line Creek flows through incised bedrock towards the Fording River, losing approximately 60 m in elevation (from about 1,300 masl) over an alluvial fan. Study Area 6 was selected as it spans the Elk River valley-bottom and is downgradient of the LCO Process Plant (AMEC, 2010). Additionally, Study Areas 5 and 6 were selected as the RDW Sampling Program identified elevated selenium in groundwater downgradient of the confluence of the Fording and Elk rivers.

Bedrock at the confluence of the Fording and Elk rivers may locally affect river grade and restrict groundwater recharge to the valley-bottom (SNC-Lavalin, 2015a). In this area, surficial geology indicates that the depositional environment in the valley-bottom was glaciofluvial and fluvial (Appendix IV). Bedrock elevations and detailed surficial stratigraphy, well installation details, and groundwater elevations in Study Areas 5 and 6 are presented on cross section G-G' and H-H' (Drawings 635544-318 and -319). Cross section G-G' is perpendicular to groundwater flow and extends from Fording River to the north to



the East Refuse Expansion to the south. Cross section H-H' is parallel to groundwater flow and extends from Line Creek in the northeast to the Elk River in the southwest. For the RGMP, there are no monitoring wells within Study Area 5 and one monitoring well, LC\_PIZP1101, is located in Study Area 6 (Drawing 635544-309). Monitoring well LC\_PIZP1101 is screened in a deeper sand aquifer at approximately 41 mbgs.

## 5.6.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Areas 5 and 6, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-309.

| Potential Sources                                                                 | Potential Transport Pathways                                                | Current Monitoring Location <sup>1</sup>                                                                     |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ERX Coarse Coal Rejects<br>(CCR) Dump South<br>Rejects near the Process<br>Plant. | Upland groundwater flow towards<br>Elk River valley bottom in Study Area 6. | No monitoring well                                                                                           |  |  |  |  |  |  |
| Line Creek.                                                                       | Surface water infiltration to ground.                                       | LC_PIZP1101 (RGMP and LCO SSGMP)<br>LC_PIZP1103, LC_PIZP1104 and<br>LC_PIZP1105 (LCO SSGMP)<br>LC-LC4 (SWMP) |  |  |  |  |  |  |
|                                                                                   | Discharge to Fording River.                                                 | LC_LC4 and LC_LC5 (SWMP)                                                                                     |  |  |  |  |  |  |
| Fording River.                                                                    | Surface water infiltration.                                                 | LC_LC5 (SWMP)                                                                                                |  |  |  |  |  |  |
| Elk River.                                                                        | Surface water infiltration.                                                 | EV_ER4 (SWMP)                                                                                                |  |  |  |  |  |  |

#### Table CC: Potential Sources and Transport Pathways to Groundwater in Study Areas 5/6 (After SNC-Lavalin, 2017a)

1. LCO SSGMP: Line Creek Operations Site-Specific Groundwater Monitoring Program; RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program

Loading of mine-influenced constituents to groundwater valley-bottom in Study Areas 5 and 6 is inferred to be primarily from Line Creek surface water upstream from the Process Plant. Line Creek flows through bedrock canyon upstream from the Process Plant and then is inferred to flow over an alluvial fan and loses water to ground. Borehole logs suggest the presence of a southwest-northeast oriented linear channel of sand and gravel from Line Creek to Elk River that may act as a preferential groundwater flow path to the valley bottom. The sand and gravel channel acting as a potential groundwater flowpath is shown on sections G-G' and H-H' (Drawings 635544-318 and -319). The ultimate receptors for CI are the Elk River surface water and valley bottom groundwater.

In addition, the ERX CCR Dump and South Rejects near the Process Plant were identified as potential sources, with groundwater transport assumed to occur to the valley-bottom.

## 5.6.2 Groundwater Levels

In 2016, a level logger was installed in LC\_PIZP1101 to monitor groundwater levels in Study Areas 5 and 6. Continuous groundwater level data along with manual water level measurements (Table 2) were plotted on Graph 6-1 (Appendix III) and reviewed and assessed for seasonal variability and long-term



trends. The data indicate a seasonal trend is apparent, with annual fluctuations in 2017 of 1.0 m (based on continuous level data). In 2017, the highest groundwater levels were measured in June and the lowest elevations were measured in March. The discrepancies observed in 2016 between manual readings and level logger data (shown on Appendix III, Graph 6-1) appear to have been resolved in 2017. The groundwater elevation measured at LC\_PIZP1101 prior to sampling for the fourth quarter is shown on Drawing 635544-306 to provide regional context.

## 5.6.3 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and dissolved selenium is presented in Appendix III, Graph 6-2. A summary of results above primary screening criteria for Study Area 6 is presented in Table DD below.

| Parameter <sup>1,2,3</sup> | LC_PIZP1101 |            |            |            |  |  |  |  |
|----------------------------|-------------|------------|------------|------------|--|--|--|--|
| Parameter                  | Q1          | Q2         | Q3         | Q4         |  |  |  |  |
| Fluoride                   | IW, LW, DW  | IW, LW, DW | IW, LW, DW | IW, LW, DW |  |  |  |  |
| Lithium                    | DW          | DW         | DW         | DW         |  |  |  |  |
| Manganese                  | IVV         | IW         | IW         | IW         |  |  |  |  |
| Molybdenum                 | IVV         | IW         | IW         | IW         |  |  |  |  |

Table DD: Summary of Non-order Constituents above Primary Screening Criteria for Study Area 6

Notes: 1) Dissolved parameter unless otherwise indicated; and 2) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); and 3) '-' denotes result below primary screening criteria.

CI concentrations in groundwater in LC\_PIZP1101 were below the primary screening criteria; therefore, secondary screening was not performed.

The 2017 results were similar to previous years with groundwater concentrations above primary screening criteria for dissolved molybdenum (IW) and fluoride (DW, IW and LW) for each quarter. In 2017, concentrations of manganese in LC\_PIZP1101 were marginally above the CSR IW standard in each quarter.

The 2017 RGMP (SNC-Lavalin, 2017a) included a review of non-order constituents in groundwater with concentrations greater than primary screening criteria, which included fluoride, dissolved manganese and molybdenum. A similar review of dissolved lithium in groundwater was performed in Section 5.1.3 above. Based on this information and the receptor information provided in the 2017 RGMP, the following interpretations were made:

- Monitoring well LC\_PIZP1101 is installed in a deep sand aquifer with limited interaction with atmosphere and connection to surface water. Dissolved molybdenum and manganese are inferred to originate from natural sources and low DO concentrations (less than 1 mg/L, except in Q4 when concentrations were 1.93 mg/L) reflecting reducing conditions may account for higher manganese concentrations in this deep well (41 mbgs) that would have limited exchange with atmospheric oxygen;
- Dissolved lithium concentrations exceeded the CSR DW standards due to the updated standard that was reduced from 730 µg/L to 8 µg/L on November 1, 2017; however, concentrations remained consistent with historical results. The source of dissolved lithium is inferred to originate from natural



sources (interaction with bedrock and/or unconsolidated materials) as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5; and

LC\_PIZP1101 is installed 41.2 mbgs in sand and has little connection with surface water. Fluoride concentrations at this location are interpreted to be naturally occurring and derived from water interaction with unconsolidated materials.

#### 5.6.4 Discussion

Groundwater from the LCO Process Plant Site flows towards Study Area 6; however, relatively low concentrations of CI were measured in groundwater collected from LC\_PIZP1101 in 2017 (Drawing 63544-328). This is consistent with historical sampling results from several wells situated in the Process Plant Site.

To assess groundwater and surface water interactions, selenium concentrations measured in groundwater at LC\_PIZP1101 were compared to concentrations in surface water in Line Creek (LC\_LC4) and in the Elk River downstream of Study Area 6 (EV\_ER4), respectively (Appendix III; Graph 6-2). Concentrations in groundwater at LC\_PIZP1101 have been relatively low and stable since May 2013 and are substantially lower than concentrations measured in Line Creek and in the Elk River. Consequently, the most significant pathway for mine-affected water in Study Areas 5 and 6 is through surface water from Line Creek.

The 2017 RGMP indicated LC\_PIZP1101 is not the most appropriate well to monitor the potential groundwater pathway in this area and that other wells at LCO (LC\_PIZP1001, LC\_PIZP1002, LC\_PIZP1003, and LC\_PIZP1004) intercept the unconfined sand and gravel aquifer as shown on cross sections G-G' and H-H' (Drawings 635544-318 and -319) and would be more appropriate. The results from 2107 monitoring confirm this interpretation.

## 5.7 Study Area 7: Elk River Valley-bottom Downgradient of Grave Creek

This area was selected because the EVO SSGMP identified potential sources of CI in the Harmer Creek drainage. Tributary surface water (i.e., Harmer Creek that flows to Grave Creek) and valley-bottom groundwater ultimately flows into the Elk River valley-bottom. Additionally, samples from the RDW Sampling Program (i.e., RG\_DW-02-20) historically exceeded the primary screening criteria (AW and DW) for selenium; however, it is noted that historical dissolved selenium concentrations at RG\_DW-02-20 no longer exceed the CSR AW standards due to the adjusted CSR standard which increased from 10  $\mu$ g/L to 20  $\mu$ g/L.

The surficial geology in the Grave Creek is mapped as colluvium; however, borehole logging at monitoring well EV\_GV3gw indicates a relatively large thickness (i.e., up to 25 m) of loose sand and sub-angular gravel and silty gravel deposits. This well is situated near the confluence of Grave and Harmer Creeks, and thicker sediments in this area may be reflective of the Grave Creek alluvial fan. The groundwater level at EV\_GV3gw is relatively deep, approximately 10 mbgs, with a saturated thickness of approximately 15 m. Based on a comparison of groundwater elevation with the elevation of Grave Creek, the creek appears to have a losing reach in this area, and accordingly the creek is interpreted to be losing along the approximate 120 m drop in elevation to the Elk River (Appendix IV). As such, groundwater from the Grave Creek valley-bottom is interpreted to flow into the Elk River valley-bottom.



The monitoring wells included in Study Area 7 are monitoring well EV\_GV3gw, which monitors upland and tributary valley-bottom input from drainage to the northeast of EVO, and the domestic well RG\_DW-02-20 that monitors groundwater in the Elk River valley-bottom. Monitoring wells and relevant surface water locations for Study Area 7 are shown on Drawing 635544-309. Drawing 635544-320, cross section I-I', shows the inferred geology parallel to groundwater flow in the valley bottom in Study Area 7.

## 5.7.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Area 7, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-309.

| (After SNC-Lavalin,                                                           | , 2017a)                                                                                            |                                                |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|
| Potential Sources                                                             | Potential Transport Pathways                                                                        | Current Monitoring Location <sup>1</sup>       |
| EVO Dry Creek Spoils and other waste spoils located in Harmer Creek drainage. | Upland groundwater flow and<br>surface water infiltration associated<br>with Harmer Creek drainage. | EV_GV3gw (RGMP and EVO SSGMP)<br>EV_HC1 (SWMP) |
| Upstream Elk River valley bottom groundwater.                                 | Potential down-valley groundwater flow from upgradient Study Area 6.                                | RG_DW-02-20 (RGMP)                             |
| Elk River.                                                                    | Surface water infiltration.                                                                         | RG_DW-02-20 (RGMP)<br>EV_ER4 (SWMP)            |

#### Table EE: Potential Sources and Transport Pathways to Groundwater in Study Area 7 (After SNC-Lavalin, 2017a)

1. EVO SSGMP: Elkview Operations Site-Specific Groundwater Monitoring Program; RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program.

## 5.7.2 Groundwater Levels

Continuous groundwater level data in Study Area 7, available from a level logger installed in monitoring well EV\_GV3gw along with manual water level measurements (Table 2), were reviewed and assessed for seasonal variability and long-term trends. Groundwater elevations from January 2015 to December 2017 were plotted on a time-series graph and included in Appendix III (Graph 7-1). Groundwater elevations in EV\_GV3gw ranged from 1,296.9 masl to 1,297.7 masl throughout the monitoring period and followed a seasonal trend with higher groundwater elevations recorded in the spring months. The groundwater elevation prior to sampling for the fourth quarter was selected and shown on Drawing 635544-307 to provide regional context.

## 5.7.3 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and dissolved selenium is presented in Appendix III, Graph 7-2. A summary of results above primary screening criteria for Study Area 7 are presented in Table FF below.



| Parameter <sup>1,2,3</sup> EV_GV3gw |    |    |    | RG_DW-02-20 |    |    |    |    |
|-------------------------------------|----|----|----|-------------|----|----|----|----|
| Farameter                           | Q1 | Q2 | Q3 | Q4          | Q1 | Q2 | Q3 | Q4 |
| Selenium                            | -  | -  | -  | -           | DW | DW | -  | -  |

#### Table FF: Summary of Constituents above Primary Screening Criteria for Study Area 7

Notes: 1) Dissolved parameter unless otherwise indicated; 2) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3) '-' denotes result below primary screening criteria.

Groundwater quality in the domestic well RG\_DW-02-20 was above primary screening criteria for selenium (CSR DW) for Q1 and Q2 (Appendix III, Graph 7-2), but below the primary screening criteria for all non-order constituents. Groundwater concentrations in EV\_GV3gw were below the primary screening criteria for all constituents including the four CIs. Secondary screening was performed for dissolved selenium concentrations in well RG\_DW-02-20 and all results were below the secondary screening criteria.

Dissolved lithium was the only constituent measured above CSR standards in samples collected in 2017 from EV\_GV3gw; concentrations ranged from 12.2  $\mu$ g/L to 17.1  $\mu$ g/L, above the DW standard of 8  $\mu$ g/L. Lithium concentrations at EV\_GV3gw were similar to concentrations measured in 2015 and 2016 but this constituent was not previously identified to be above DW standards as the DW standard for lithium prior to the November 1, 2017 update to the CSR was 730  $\mu$ g/L. The source of dissolved lithium is inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials) as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5. A review of dissolved lithium in groundwater was performed in Section 5.1.3 above.

#### 5.7.4 Discussion

Discussion of trends in groundwater quality in Study Area 7 focuses on dissolved selenium which exceeded the primary screening criteria in domestic well RG\_DW-02-20. Drawing 635544-328 shows the spatial distribution of CI for samples collected in Study Area 7. A time series plot of dissolved selenium for EV\_GV3gw and RG\_DW-02-20 is shown in Appendix III (Graph 7-2).

To assess groundwater and surface water interactions, selenium concentrations measured in groundwater at EV\_GV3gw and RG\_DW-02-20 were compared to concentrations in surface water in Harmer Creek (EV\_HC1) and in the Elk River upstream from the confluence with Grave Creek (EV\_ER4), respectively (Appendix III, Graph 7-2). Concentrations in groundwater at EV\_GV3gw have been stable since November 2013 and are substantially lower than concentrations measured in Harmer Creek at EV\_HC1 and also lower than concentrations in Elk River upstream from the confluence with Grave Creek. Concentrations measured at RG\_DW-02-20 appear to follow a seasonal trend with the highest concentrations measured during the spring months and were generally within the range of concentrations measured upstream in the Elk River at EV\_ER4, but considerably lower than surface water concentrations in Harmer Creek. Surface water concentrations fluctuate and are typically lower during freshet which is consistent with the effect of dilution on constituents in a freshet dominated regime. We note that although selenium concentrations at RG\_DW-02-20 are similar in magnitude to the Elk River, they do not follow the same seasonal trend as observed in surface water suggesting some lag in groundwater-surface water interaction.

Loading of mine-influenced constituents to groundwater valley-bottom in Study Area 7 is inferred to be primarily from infiltration of Elk River surface water as CI concentrations measured at RG\_DW-02-20 reflect Elk River surface water quality. Significant groundwater transport of CI from the Harmer Creek



drainage to the Elk River valley bottom is inferred to be minimal based on relatively low groundwater concentrations measured in Harmer Creek drainage at EV\_GV3gw compared to surface water at EV\_HC1. As such, transport of CI from the Harmer Creek drainage to groundwater in the Elk River valley bottom is primarily through surface water.

## 5.8 Study Area 8: Elk River Valley-bottom Downgradient of Balmer, Lindsay and Otto/Cossarini Creeks

This area was selected because the EVO SSGMP identified potential sources of CI on the western slope of EVO and potential transport in the Lindsay, Otto/Cossarini drainages as well as the Goddard Marsh area (Drawing 635544-310); tributary surface water and upland groundwater flow into the Elk River valley-bottom in these areas. Groundwater in Study Area 8 will eventually discharge to the Elk River or flow to the valley bottom of the Elk River in Study Area 12.

The valley-bottom consists mainly of fluvial, glaciofluvial and alluvial fan deposits in this area as the area is near the confluence with Cummings Creek. Underlying the coarse units are finer-grained deposits of lower permeability silt and clay suggesting relatively thick lacustrine/glaciolacustrine deposits exist in the subsurface (see Appendix IV). Groundwater flow in upland areas is inferred to be toward the Elk River valley-bottom. Groundwater flow direction in the valley-bottom is assumed to be parallel or sub-parallel to the Elk River. Inferred geological cross sections J-J' and K-K' (Drawings 635544-321 and 322, respectively) depict stratigraphy parallel and perpendicular to the inferred groundwater flow direction.

The monitoring wells in Study Area 8 included the monitoring wells EV\_LSgw and EV\_OCgw to monitor potential inputs from upland, tributary valley bottom, and Elk River valley bottom features along the western slope of EVO. Monitoring wells and relevant surface water locations for Study Area 8 are shown on Drawing 635544-310.

## 5.8.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Area 8, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-310.

| Potential Sources                                                                                        | Potential Transport Pathways                                                                                                                      | Current Monitoring Location <sup>1</sup>                                                                                               |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Waste Spoils and Stock<br>piles located in Lindsay,<br>Otto/Cossarini and<br>Goddard Creek<br>drainages. | Upland groundwater and surface water<br>infiltration associated with Balmer,<br>Lindsay, Fenelon, Goddard and<br>Otto/Cossarini Creeks drainages. | EV_LSgw, EV_OCgw<br>(RGMP and EVO SSGMP)<br>EV_GCgw, EV_BALgw (EVO SSGMP)<br>EV_BLM2, EV_FC1, EV_GC2,<br>EV_GH1, EV_OC1, EV_ER2 (SWMP) |
| Upstream Elk River valley bottom groundwater.                                                            | Potential down-valley groundwater flow from upgradient Study Area 7.                                                                              | RG_DW-02-20 (RGMP)                                                                                                                     |

#### Table GG: Potential Sources and Transport Pathways to Groundwater in Study Area 8 (After SNC-Lavalin, 2017a)



## Table GG (Cont'd): Potential Sources and Transport Pathways to Groundwater in Study Area 8 (After SNC-Lavalin, 2017a)

| Potential Sources      | Potential Transport Pathways                                                       | Current Monitoring Location <sup>1</sup>                                      |
|------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Lagoon C and Lagoon D. | Recharge to groundwater from infiltration from tailings ponds and other discharge. | EV_GCgw (EVO SSGMP)<br>EV_OCgw (RGMP and EVO SSGMP)<br>EV_OC1 and ER_2 (SWMP) |
| Elk River.             | Surface water infiltration.                                                        | EV_ER2 (SWMP)                                                                 |

1. EVO SSGMP: Elkview Operations Site-Specific Groundwater Monitoring Program; RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program

#### 5.8.2 Groundwater Levels

Continuous groundwater level data, available from water level loggers installed in monitoring wells EV\_LSgw and EV\_OCgw along with manual water level measurements prior to sampling events (Table 2), were reviewed and assessed for seasonal variability and long-term trends. Groundwater elevations from January 2015 to October 2017 at those wells were plotted on a time-series graph and included in Appendix III (Graph 8-1). Groundwater elevations in both wells show a seasonal trend with slightly higher groundwater elevations between March and June. The maximum annual water level fluctuation recorded at EV\_LSgw and EV\_OCgw between January 2015 and October 2017 was approximately 1.1 m and 0.83 m, respectively. It is noted that the manual water level measurement collected at EV\_LSgw in March of 2017 appears to have been collected during sampling as the measurement was approximately 1 more than 0.5 m lower than continuous water level measurements recorded before and after sampling (Graph 8-1). Groundwater elevations prior to sampling for the fourth quarter were selected and shown on Drawing 635544-307 to provide regional context.

## 5.8.3 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and in Appendix III, Graph 8-2 (dissolved selenium only). A summary of results above primary screening criteria for Study Area 8 is presented in Table HH below.

| Parameter <sup>1,2,3</sup> |    | EV | _LSgw |    | EV_OCgw** |        |        |        |
|----------------------------|----|----|-------|----|-----------|--------|--------|--------|
| Parameter                  | Q1 | Q2 | Q3    | Q4 | Q1        | Q2     | Q3     | Q4     |
| Fluoride                   | -  | -  | -     | -  | IW, LW    | IW, LW | IW, LW | IW, LW |
| Lithium                    | DW | DW | DW    | DW | DW        | DW     | DW     | DW     |
| Manganese                  | IW | IW | IW    | IW | -         | -      | -      | -      |
| Molybdenum                 | -  | -  | -     | -  | IW        | IW     | IW     | IVV    |

#### Table HH: Summary of Constituents above Primary Screening Criteria for Study Area 8

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW); Drinking Water (DW), Livestock (LW) and Irrigation (IW) except for wells with a \*\* which indicates the well is located within 10 m of surface water and results are compared to BCWQG for AW; and 3.) '--' denotes result below primary screening criteria for given constituents.



Results from 2017 were similar to previous years with the exception of lithium concentrations above the CSR DW standard due to the updated standard on November 1, 2017. Groundwater quality in EV\_LSgw and EV\_OCgw was below the primary screening criteria concentrations for all the CI, but exceeded the primary screening criteria for other constituents.

The 2017 RGMP (SNC-Lavalin, 2017a) included a review of non-order constituents in groundwater with concentrations greater than primary screening criteria, which included fluoride, dissolved manganese and molybdenum. A similar review of dissolved lithium in groundwater was performed in Section 5.1.3 above. Based on this information and the receptor information provided in the 2017 RGMP, the following interpretations were made:

- Monitoring well EV\_OCgw is installed directly overlying the bedrock surface suggesting the source of fluoride and molybdenum likely originates from water interaction with bedrock;
- The source of dissolved manganese at EV\_LSgw is inferred to originate from natural processes and is likely due to limited interactions with the atmosphere as dissolved oxygen concentrations ranged from 0.4 to 0.7 mg/L is inferred to originate from natural processes and likely originates from aquifers with limited interaction with the atmosphere (low dissolved oxygen [DO], equivalent to approximately less than 1 mg/L); and
- The source of dissolved lithium is inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials) as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5.

#### 5.8.4 Discussion

All CI in groundwater were below primary screening criteria in Study Area 8. Dissolved selenium concentrations in groundwater at EV\_LSgw and EV\_OCgw have been relatively stable since March of 2014 (Appendix III, Graph 8-2).

To assess groundwater and surface water interactions, selenium concentrations measured in groundwater in Study Area 8 were compared to concentrations in surface water in adjacent creeks. Adjacent surface water chemistry data indicated selenium concentrations above BCWQG for AW; therefore, discussion of chemistry trends in Study Area 8 is focused on selenium.

Consistent with findings from the 2017 RGMP (SNC-Lavalin, 2017a), selenium concentrations in surface water are approximately two orders of magnitude higher (15.2 to 119  $\mu$ g/L in EV\_GC2) compared to groundwater concentrations (<0.050 to 0.76  $\mu$ g/L in EV\_LSgw and EV\_OCgw) in Study Area 8 (Appendix III, Graph 8-2). The highest selenium concentrations in surface water were measured at EV\_GC2 (Goddard Creek Sedimentation Pond Decant). Loading of mine-influenced constituents to groundwater valley-bottom in Study Area 8 is therefore inferred to be primarily from infiltration of surface water associated with drainages and mining features along the western slope of EVO and surface water recharge from nearby Elk River.

Groundwater in Study Area 8 does not contain elevated concentrations of CI at the monitoring wells EV\_LSgw and EV\_OCgw which monitor inputs from upland, tributary valley bottom, and Elk River valley bottom features along the western slope of EVO. In addition, groundwater quality reported by UMA (2008) and Waterline (2014) for District of Sparwood Wells 1 and 2 (RG\_DW-02-02 and -03) and the test well TW14-04 located on the west side of the Elk River in Study Area 8 are below primary screening criteria. As such, there does not appear to be confirmed groundwater transport pathway between the sources



identified on the western slope of EVO and Elk River valley-bottom based on the current RGMP monitoring well locations.

## 5.9 Study Area 9: Michel Creek Valley-bottom Downgradient of EVO

This area was selected as the EVO site-specific groundwater monitoring program identified potential sources of CI that may contribute to mine-influenced groundwater in the Michel Creek valley-bottom. Study Area 9 is situated adjacent to EVO and receives tributary surface water and upland groundwater flow from potential sources along the southwestern slope of EVO. The boundaries of Study Area 9 were modified as part of the 2017 RGMP (SNC-Lavalin, 2017a) to reflect information from the EVO monitoring program and now extend from South Gate Creek to the confluence of Michel Creek with the Elk River (Drawing 635544-310).

The Michel Creek valley-bottom consists mainly of fluvial and glaciofluvial deposits, with a glaciolacustrine clay/silt unit to the northwest that increases in thickness along the valley axis (see Appendix IV). The sand and gravel aquifer is unconfined with a saturated thickness over 22 m at EV\_BCgw (shown on Drawing 635544-310). Upland groundwater flow in the tributary drainages either discharges to the creeks or flows as a thin saturated zone to the Michel Creek valley-bottom. Flow direction in the valley-bottom is assumed to be parallel or sub-parallel to Michel Creek. Cross sections L-L' and M-M' (Drawings 635544-323 and -324) are located parallel and perpendicular, respectively, to the inferred groundwater flow direction.

To monitor Michel Creek valley-bottom groundwater in Study Area 9, the following wells were included: three water supply wells (EV\_RCgw, EV\_WH50gw and EV\_BRgw); two monitoring wells (EV\_BCgw and EV\_MCgwS/D [nested]); and one domestic well (RG\_DW-03-01) to monitor valley-bottom groundwater in Michel Creek.

#### 5.9.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Area 9, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-310.

| Potential Sources                                                                  | Potential Transport Pathways                                                                               | Current Monitoring Location <sup>1</sup>                                                    |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Upstream Michel Creek valley bottom groundwater.                                   | Down-valley Michel Creek groundwater flow from areas upgradient of Study Area 9.                           | No current monitoring well.                                                                 |
| EVO mining activities<br>upstream from Bodie<br>Creek and Gate Creek<br>drainages. | Upland groundwater and infiltration of surface water associated with Bodie Creek and Gate Creek drainages. | EV_BC1, EV_GT1 (SWMP)<br>EV_RCgw, EV_WH50gw,<br>EV_BCgw and EV_BRgw (RGMP<br>and EVO SSGMP) |
| Michel Creek.                                                                      | Recharge to groundwater from infiltration of Michel Creek along some stretches.                            | EV_MCgwS/D (RGMP)<br>RG_DW-03-01 (RGMP)<br>EV_MC2 and EV_MC1 (SWMP)                         |

#### Table II: Potential Sources and Transport Pathways to Groundwater in Study Area 9 (After SNC-Lavalin, 2017a)



# Table II (Cont'd): Potential Sources and Transport Pathways to Groundwater in Study Area 9 (After SNC-Lavalin, 2017a)

| Potential Sources                                                  | Potential Transport Pathways                                                                                        | Current Monitoring Location <sup>1</sup>                                                                                                                   |  |  |  |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Historical and current EVO<br>mining activities on Baldy<br>Ridge. | Upland groundwater and surface water<br>infiltration associated with drainages of<br>Aqueduct and Qualtieri creeks. | EV_AQ1, EV_SPR2 (SWMP)<br>No shallow monitoring well at the<br>base of Baldy Ridge<br>EV_MCgwS/D and RG_DW-03-01<br>(RGMP) located further<br>downgradient |  |  |  |  |

1. EVO SSGMP: Elkview Operations Site-Specific Groundwater Monitoring Program; RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program.

#### 5.9.2 Groundwater Levels

Continuous groundwater level data, available from level loggers installed in monitoring wells EV\_BCgw, EV\_MCgwS and EV\_MCgwD, were recorded along with manual water level measurements during the monitoring period (Table 2). Groundwater elevations from January 2015 to October 2017 at those wells was plotted on a time-series graph and included in Appendix III (Graph 9-1). Groundwater elevations in all three wells followed the same pattern and showed a seasonal trend with generally higher groundwater elevations during the spring from mid-March or early April to beginning of June. The lowest elevations during the monitoring period were recorded from August to September in each year. The groundwater levels measured in spring of 2017 were 0.2 m, 0.5 m and 0.3 m higher compared to levels in spring of 2015 and 2016 at EV\_MCgwS, EV\_MCgwD and EV\_BCgw, respectively. It is noted that the manual water level measurements collected in September and October at EV\_MCgwD and EV\_MCgwS appear to have been collected during sampling as they were lower than continuous water level measurements recorded before and after sampling (Appendix III, Graph 9-1).

Surface water level data from EV\_MC2 (located between EV\_MCgwS/D and EV\_BCgw) follow the same pattern and seasonal trend as groundwater at all three monitoring locations suggesting a hydraulic connection between surface water and groundwater at these locations. The vertical groundwater gradient at the nested well EV\_MCgwS/D is downwards with a vertical ranging from -0.05 m/m to -0.04 m/m calculated from data. These gradient calculations excluded the September and October monitoring events, which are considered suspect as described above. The range in 2017 values listed above is within range of previously calculated values from 2015 and 2016, which ranged from -0.08 m/m to -0.04 m/m.

Groundwater elevations prior to sampling for the fourth quarter of 2017 were selected and shown on Drawing 635544-307 to provide regional context. The only exceptions to this were for EV\_MCgwS/D where groundwater elevations from continuous water level measurements (from October 18, 2017, the date of sampling) were selected to shown on drawing 635544-307 due to suspect measurements.

### 5.9.3 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening), Table 5 (secondary screening), and Appendix III, Graphs 9-2(1), 9-2(2), 9-3, and 9-4. A summary of results above primary screening criteria for Study Area 9 is presented in Table JJ (monitoring wells) and Table KK (supply and domestic wells) below. In some cases, more than one sample was collected in a



quarter due to hold time issues; for Tables GG and HH the higher concentration was used to summarize results of primary and secondary screening.

| Parameter <sup>1,2,3</sup> |                | EV_I           | BCgw           |                | EV_MCgw<br>S | EV_MCgwD |    |    |     |  |  |
|----------------------------|----------------|----------------|----------------|----------------|--------------|----------|----|----|-----|--|--|
|                            | Q1             | Q2             | Q3             | Q4             | Q1 to Q4     | Q1       | Q2 | Q3 | Q4  |  |  |
| Nitrate-<br>Nitrogen       | -              | DW             | DW             | -              | -            | -        | -  | -  | -   |  |  |
| Lithium                    | DW             | DW             | DW             | DW             | DW           | DW       | DW | DW | DW  |  |  |
| Manganese                  | -              | -              | -              | -              | -            | IVV      | IW | IW | IVV |  |  |
| Molybdenum                 | -              | -              | -              | -              | -            | IVV      | IW | IW | IVV |  |  |
| Selenium                   | AW IW<br>LW DW | AW IW<br>LW DW | AW IW<br>LW DW | AW IW<br>LW DW | -            | -        | -  | -  | -   |  |  |

 Table JJ: Summary of Constituents above Primary Screening Criteria for Study Area 9 (1/2)

Notes: 1.) Dissolved parameter unless otherwise indicated; Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); and 3.) '--' denotes result below primary screening criteria for given constituents.

| Para-                   |    | EV_E                 | BRgw                 |                      | EV_WH50gw |    |    |    | EV_RCgw              |                      |                      |                      | RG_DW-03-01 |          |  |
|-------------------------|----|----------------------|----------------------|----------------------|-----------|----|----|----|----------------------|----------------------|----------------------|----------------------|-------------|----------|--|
| <b>meter</b><br>1,2,3,4 | Q1 | Q2                   | Q3                   | Q4                   | Q1        | Q2 | Q3 | Q4 | Q1                   | Q2                   | Q3                   | Q4                   | Q1          | Q2 to Q4 |  |
| Nitrate-<br>Nitrogen    | -  | DW                   | DW                   | -                    | -         | -  | -  | -  | DW                   | DW                   | DW                   | DW                   | -           | -        |  |
| Sulphate                | -  | -                    | -                    | -                    | -         | -  | -  | -  | LW<br>DW             | LW<br>DW             | LW<br>DW             | LW<br>DW             | -           |          |  |
| Copper                  | -  | -                    | -                    | -                    | -         | -  | -  | -  | -                    | AW                   | AW                   | AW                   | -           | -        |  |
| Lithium                 | DW | DW                   | DW                   | DW                   | DW        | DW | DW | DW | DW                   | DW                   | DW                   | DW                   | na          | DW       |  |
| Selenium                | DW | AW<br>IW<br>LW<br>DW | AW<br>IW<br>LW<br>DW | AW<br>IW<br>LW<br>DW | DW        | -  | DW | DW | AW<br>IW<br>LW<br>DW | AW<br>IW<br>LW<br>DW | AW<br>IW<br>LW<br>DW | AW<br>IW<br>LW<br>DW | -           | -        |  |

#### Table KK: Summary of Constituents above Primary Screening Criteria for Study Area 9 (2/2)

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for AW, DW, LW and IW; 3.) '-' denotes result below primary screening criteria for given constituents; and 4.) na indicates the well was not sampled for specific parameter.

Results from 2017 were similar to previous years with the following exceptions:

- > Dissolved iron at EV\_MCgwD decreased by at least one order of magnitude starting in Q2 of 2017;
- Dissolved iron at EV\_MCgwS in August 2017 was below the DL (< 10 µg/L) whereas iron concentrations from other time periods ranged from 2,050 µg/L to 2,920 µg/L; and</p>
- > Dissolved lithium concentrations were above the CSR DW standard at all locations due to the updated standard to a lower concentration on November 1, 2017.

Similar to results from 2015 and 2016, groundwater quality at EV\_BCgw, EV\_BRgw and EV\_RCgw were above primary screening criteria concentrations for selenium (AW, DW, IW and/or LW) for most sampling



events in 2017 (Appendix III, Graph 9-2(1) and 9-2(2)). Selenium concentrations at EV\_WH50gw were also above DW standards during Q1, Q2 and Q4 of 2017. The highest concentrations were measured at EV\_RCgw and were an order of magnitude higher than concentrations at EV\_BCgw, EV\_BRgw and EV\_WH50gw.

Groundwater quality in EV\_BCgw, EV\_BRgw and EV\_RCgw was also above primary screening criteria concentrations for nitrate-nitrogen (DW and/or AW) for most monitoring samples in 2017, consistent with results from 2015 and 2016 (Appendix III, Graph 9-3). In addition to selenium and nitrate-nitrogen, groundwater quality in EV\_RCgw was also above primary screening criteria concentrations for sulphate (DW and LW; Appendix III, Graph 9-4).

The 2017 RGMP (SNC-Lavalin, 2017a) included a review of non-order constituents in groundwater with concentrations greater than primary screening criteria, which included dissolved manganese, molybdenum and copper. A similar review of dissolved lithium in groundwater was performed in Section 5.1.3 above. Based on this information and the receptor information provided in the 2017 RGMP, the following interpretations were made:

- Dissolved iron and manganese at EV\_MCgwS/D is inferred to originate from natural processes associated with reducing conditions. Review of DO concentrations indicates relatively low concentrations (< 2 mg/L) at EV\_MCgwS during all sampling events (except the March 30, 2017 event. Groundwater levels in EV\_MCgwS/D increased approximately 0.9 m prior to the March sampling event (Graph 9-1) which may have resulted in slightly higher DO concentrations. At EV\_MCgwD, DO concentrations starting in Q2 were higher than previously recorded (up to 11.63 mg/L) coincident with the order of magnitude decrease in iron concentrations indicating a strong inverse relationship between DO and iron concentrations. Dissolved manganese concentrations also began to decrease after Q2 at EV\_MCgwD; however, the decrease was more subtle (i.e., less than half compared to an order of magnitude);</p>
- Dissolved molybdenum at EV\_MCgwD is inferred to be naturally occurring, primarily water interacting with unconsolidated materials;
- Dissolved lithium at EV\_MCgwS/D, EV\_BCgw, EVBRgw, EV\_RCgw, EV\_WH50gw and RG\_DW-03-01 is inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials) as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5. Location RG\_DW-03-01 is a well that is no longer used for drinking water; and
- The source of dissolved copper at EV\_RCgw is not known and is potentially mining-influenced as concentrations of CI were also consistently measured above standards at this location. Dissolved copper was measured above AW standards in Q4 of 2016 (123 µg/L); in 2017 dissolved copper was measured above AW standards in all quarters except Q1 and concentrations reached as high as 156 µg/L, which is the highest recorded copper concentration from EV\_RCgw. Because dissolved copper above CSR standards was only measured at EV\_RCgw, the extent appears to be localized.

Secondary screening for selenium was completed where sample concentrations were above primary screening criteria. Table LL shows the summary of results above secondary screening criteria for Study Area 9. In some cases, more than one sample was collected in a quarter due to hold time issues; for Table LL the higher concentration was used to summarize results of primary and secondary screening.



| Para-        | EV_BCgw   |                 |                 |           | EV_BRgw |                 |                 |           | EV_WH50  | EV_RCgw |                 |                 |                 |                 |
|--------------|-----------|-----------------|-----------------|-----------|---------|-----------------|-----------------|-----------|----------|---------|-----------------|-----------------|-----------------|-----------------|
| meter<br>1,2 | Q1        | Q2              | Q3              | Q4        | Q1      | Q2              | Q3              | Q4        | Q1 to Q3 | Q4      | Q1              | Q2              | Q3              | Q4              |
| Selenium     | SPO<br>CP | SPO<br>CP<br>DW | SPO<br>CP<br>DW | SPO<br>CP | -       | SPO<br>CP<br>DW | SPO<br>CP<br>DW | SPO<br>CP | -        | -       | SPO<br>CP<br>DW | SPO<br>CP<br>DW | SPO<br>CP<br>DW | SPO<br>CP<br>DW |

#### Table LL: Summary of Results above Secondary Screening Criteria for Study Area 9

Notes: 1) Secondary screening criteria are Site Performance Objective (SPO), Compliance Point (CP) and GCDWQ for drinking water (DW); and 2.) '--' denotes result below secondary screening criteria.

EV\_BCgw, EV\_BRgw, and EV\_RCgw concentrations were above SPO and CP secondary screening criteria for selenium for all the sampling events in 2017, with the exception of EV\_BRgw in Q1. The GCDWQ of 50 mg/L was exceeded for all four sampling events at EV\_RCgw and only marginally during Q1 at EV\_BCgw and EV\_BRgw.

#### 5.9.4 Discussion

Discussion of trends in groundwater quality in Study Area 9 focuses on dissolved selenium, nitrate-nitrogen and sulphate concentrations that approach or were above the primary and secondary screening criteria in select wells. Drawing 635544-329 shows the spatial distribution of dissolved cadmium, dissolved selenium, sulphate and nitrate-nitrogen for samples collected in Study Area 9. Time series plots of dissolved selenium, nitrate-nitrogen and sulphate from the select wells from Study Area 9 are shown in Appendix III (Graphs 9-2(1), 9-2(2), 9-3, 9-4). To compare groundwater concentration trends to surface water in Study Area 9, dissolved selenium, nitrate-nitrogen and sulphate Creek (EV\_BC1), Gate Creek (EV\_GT1) and further downstream at Michel Creek (EV\_MC2) were plotted on these graphs.

Concentrations of selenium, nitrate-nitrogen and sulphate in groundwater have varied temporally but a clear seasonal trend in the concentrations cannot be identified based on data from 2013 to 2017 (Appendix III, Graphs 9-2(1), 9-2(2), 9-3, and 9-4). The highest concentrations in dissolved selenium, nitrate-nitrogen and sulphate have been measured in water supply well EV\_RCgw with levels consistently higher than concentrations measured in surface water stations EV\_BC1 and EV\_GT1 since 2015. This is also the location where localized elevated dissolved copper concentrations were measured. The source and extent of high concentrations of these constituents measured at EV\_RCgw are not well understood. The elevated concentrations of CI and extents of these constituents have been identified as data gaps in the 2017 RGMP and Teck is planning additional studies in Study Area 9 to better understand the sources and groundwater pathways of these constituents.

Consistent with observations made in the 2016 Annual Report (SNC-Lavalin, 2017c) and the 2017 RGMP (SNC-Lavalin, 2017a), attenuation of dissolved selenium, nitrate-nitrogen and sulphate appears to be occurring in the Michel Creek valley-bottom suggesting attenuation along the flowpath. Selenium concentrations above primary and secondary screening criteria and nitrate-nitrogen concentrations above primary screening criteria were still measured in assumed downgradient wells EV\_BCgw and EV\_BRgw but concentrations were lower than measured at EV\_RCgw as shown on Drawing 635544-329. Further downgradient in Study Area 9, concentrations at EV\_MCgwS/D and RG\_DW\_03-01 respectively are below all screening criteria (except lithium) suggesting further attenuation along the flow path. EV\_MCgwS/D is installed in a clayey unit and RG\_DW-03-01 is a domestic well located more than 2 km downgradient from EV\_BRgw. SNC-Lavalin (2016a) noted that wells EV\_MCgwS/D might not be ideal downgradient sentry wells due to their installation; however, groundwater level data suggests there may be a connection to



surface water. Also, monitoring locations do not extend to the deep sand and gravel unit as shown on cross section L-L' (Drawing 635544-323). Uncertainty continues to exist in the groundwater quality delineation (i.e., extent of groundwater impacts) in Study Area 9.

# 5.10 Study Area 10: Michel Creek Valley-bottom Downgradient of Erickson Creek

This area was selected as the EVO SSGMP identified waste rock spoils and other potential sources of CI in the Erickson Creek drainage which flows into the Michel Creek valley-bottom and may contribute to mine-influence groundwater in the valley-bottom. The Erickson Creek valley-bottom consists mainly of colluvium as shown on Drawing 635544-303. The lithology observed at EV\_ECgw is consistent with surficial geology mapping and shows till underlying the colluvium (Appendix IV). Bedrock was not encountered at this location. There is no groundwater well in the Michel Creek valley-bottom aquifer in Study Area 10; however, groundwater monitoring of EV\_ECgw located upgradient in the tributary has been ongoing to assess potential groundwater transport through the Erickson Creek valley bottom to groundwater in Study Area 10. The boundaries of Study Area 10 were modified as part of the 2017 RGMP (SNC-Lavalin, 2017a) to reflect surface water monitoring data and now extend further northwest past the confluence of Milligan Creek with Michel Creek (Drawing 635544-310).

The monitoring well and relevant surface water locations for Study Area 10 are shown on Drawing 635544-310.

### 5.10.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Area 10, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-310.

| <b>V</b>                                                              |                                                                                                              |                                                                      |  |  |  |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
| Potential Sources                                                     | Potential Transport Pathways                                                                                 | Current Monitoring Location <sup>1</sup>                             |  |  |  |  |
| Erickson Waste Rock<br>Spoils and other potential                     | Upland groundwater and tributaries discharging into Erickson Creek.                                          | EV_EC1 (SWMP)                                                        |  |  |  |  |
| sources in Erickson<br>Creek drainage.                                | Groundwater flow through Erickson Creek valley bottom.                                                       | EV_ECgw (RGMP and EVO SSGMP)                                         |  |  |  |  |
| Waste Spoils and South Pit.                                           | Upland groundwater and tributaries<br>(South Pit Creek and Milligan Creek)<br>discharging into Michel Creek. | EV_SP1 and EV_MG1 (SWMP)<br>No monitoring well within Study Area 10. |  |  |  |  |
| Erickson Creek, Milligan<br>Creek and South Pit<br>Creek Decant Pond. | Surface water infiltrating to ground.                                                                        | No monitoring well within Study Area 10.                             |  |  |  |  |

# Table MM:Potential Sources and Transport Pathways to Groundwater in Study Area 10<br/>(After SNC-Lavalin, 2017a)

1. RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program



### 5.10.2 Groundwater Levels

Continuous groundwater level data, available from a level logger installed at monitoring well EV\_ECgw, were recorded along with manual water level measurements during the monitoring period (Table 2). Groundwater elevations from January 2015 to October 2017 were plotted on a time-series graph (Appendix III, Graph 10-1). Groundwater elevation in EV\_ECgw ranged from approximately 1,325.3 masl to 1,327.6 masl, throughout the monitoring period and followed a seasonal trend with fluctuations up to 2.3 m. In 2017, groundwater levels were at their highest in late April-early May and at their lowest in October, similar to previous results. The groundwater levels measured in 2017 were 0.1 m higher than previously recorded (in April) and 0.8 m lower than previously recorded (in October). It is noted that the manual water level measurements collected at EV\_ECgw in 2017 appear to have been collected during sampling as they are lower than continuous water level measurements recorded before and after sampling (Graph 10-1).

A water level elevation obtained from level logger data from EV\_ECgw for the fourth quarter of 2017 and inferred groundwater flow direction are shown on Drawing 635544-307 to provide regional context.

#### 5.10.3 Groundwater Quality

Field measured parameters for EV\_ECgw are presented in Table 3. Field parameters measured in 2017 were similar to values measured in 2015 and 2016.

Analytical results compared to primary screening criteria are presented in Table 4 and Appendix III, Graph 10-2 (dissolved selenium only). There were no CI concentrations above primary screening standards as shown on Drawing 635544-329. A summary of results above primary screening criteria for other constituents is presented in Table NN below.

# Table NN: Summary of Non-order Constituents above Primary Screening Criteria for Study Area 10

| Parameter <sup>1,2,3,4</sup> |    | EV_ECgw <sup>4</sup> |     |     |  |  |  |  |  |  |  |  |
|------------------------------|----|----------------------|-----|-----|--|--|--|--|--|--|--|--|
| Parameter                    | Q1 | Q2                   | Q3  | Q4  |  |  |  |  |  |  |  |  |
| Lithium                      | ns | DW                   | DW  | DW  |  |  |  |  |  |  |  |  |
| Molybdenum                   | ns | IW                   | IVV | IVV |  |  |  |  |  |  |  |  |

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW); Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) ' –' denotes result below primary screening criteria for given constituents; and 4.) 'ns' indicates well was not sampled.

Results from 2017 were similar to previous years with the exception of lithium concentrations above the CSR DW standard due to the standard updated to a lower concentration in November 1, 2017. The 2017 RGMP (SNC-Lavalin, 2017a) included a review of non-order constituents in groundwater with concentrations greater than primary screening criteria, which included dissolved molybdenum. A similar review of dissolved lithium in groundwater was performed in Section 5.1.3 above. Based on this information and the receptor information provided in the 2017 RGMP, the following interpretations were made:

2017 Annual Report Teck Coal Limited



- Dissolved molybdenum at EV\_ECgw is inferred to be naturally occurring based on the low estimated hydraulic conductivity value (1 x 10<sup>-8</sup> m/s) of the screened interval suggesting relatively slow groundwater velocities and no direct connection to surface water; and
- Dissolved lithium at EV\_ECgw is inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials) as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5.

#### 5.10.4 Discussion

Groundwater quality in EV\_ECgw was below all primary screening criteria for the CI in 2017; therefore, groundwater transport of CI in the Erickson drainage appears to be minimal. To assess groundwater and surface water interaction in the Erickson drainage and potential impacts to the Michel Creek valley-bottom sediments, selenium concentrations measured in shallow groundwater at EV\_ECgw were compared to concentrations in surface water at the mouth of Erickson Creek (EV\_EC1) and Michel Creek (EV\_MC3) upstream from Erickson Creek discharge. A time series plot of dissolved selenium from the selected well and surface water stations located in Study Area 10 is shown in Appendix III (Graph 10-2(1)). Dissolved selenium concentrations in groundwater at EV\_ECgw have been stable since March 2014, ranging in concentration from < 0.05  $\mu$ g/L to 0.8  $\mu$ g/L, with no distinct seasonal trend observed. As shown in Appendix, Graph 10-2(2), 2017 selenium concentrations at EV\_ECgw were within range of previous results. Drawing 653344-329 provides a summary of CI concentrations measured in 2017 at EV\_ECgw.

Concentrations in groundwater at EV\_ECgw are more than two orders of magnitude lower than concentrations measured in Erickson Creek at EV\_EC1 and also lower than concentrations in Michel Creek upstream from the confluence with Erickson Creek. Surface water concentrations in Erickson Creek (EV\_EC1) follow a seasonal trend with lower concentrations measured during freshet as a result of dilution.

CI concentrations at EV\_ECgw are low in comparison to Erickson surface water; therefore, Erickson Creek is inferred to the only pathway for CI in the Erickson Creek drainage to the valley-bottom of Michel Creek. Elevated dissolved selenium concentrations at the South Pit Creek Sediment Pond Decant (EV\_SP1), located in the valley-bottom within Study Area 10 and the Milligan Creek Sediment Pond Decant (EV\_MG1), located in the valley-bottom downgradient of Study Area 10 were also high (Graph 10-2) and identified as a potential source of dissolved selenium in valley-bottom groundwater.

In the absence of monitoring well in the Michel valley-bottom aquifer in Study Area 10, groundwater quality is unknown, however, impacts on groundwater, if any, are likely to be the result of infiltration of impacted surface water rather than tributary groundwater transport.



# 5.11 Study Area 11: Michel Creek Valley-bottom Downgradient of CMO

This area was selected as it was identified to be the focal point of groundwater flow at CMO immediately downgradient of the confluence of Michel and Corbin Creeks in the CMO SSGMP. Potential sources of CI exist upgradient of this area, and may contribute to the mine influences observed in groundwater in the Michel Creek valley-bottom. Study Area 11 consists of Michel Creek valley-bottom deposits located downgradient of CMO (Drawing 635544-311).

Mining activities at CMO occur along a north-south trending ridge bordered by steep mountain ranges to the east and west. Michel Creek runs south to north along the west side of the site. Corbin Creek runs south to north along the east side of the mine site, and turns to the west at the north end of the site before it flows into Michel Creek in the northwest corner of the site. CMO is therefore isolated from other mountain ranges. The valley bottoms in Study Area 11 are infilled with till and glacial outwash deposits, as well as modern fluvial sands and gravels associated with Michel and Corbin Creeks (Appendix IV). Valley-bottom deposits in this area were identified as the primary migration pathway outside of mine-permitted areas from CMO (Appendix IV). The monitoring locations in Study Area 11 included a domestic well near Corbin Creek (RG\_DW-07-01) located just west of the Main Settling Ponds and the nested monitoring well (CM\_MW1-OB/SH/DP) installed downgradient of CMO at the confluence of Michel and Corbin creeks. Monitoring wells and relevant surface water locations for Study Area 11 are shown on Drawing 635544-311.

### 5.11.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Area 11, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-311.

| Potential Sources                                          | Potential Transport Pathways                                                                                | Current Monitoring Location <sup>1</sup>                                   |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                            | Upland groundwater and tributaries discharging into Michel Creek, West Ditch, Corbin Creek and North Ditch. | CM_MC1<br>CM_CC1<br>CM_MC2                                                 |
| CMO mining<br>activities upgradient<br>from Study Area 11. | Groundwater flow through Corbin Creek valley bottom.                                                        | CM_MW4_SH/DP CM_MW5_SH/DP<br>(CMO SSGMP)<br>CM_MW6_SH/DP (CMO SSGMP)       |
|                                                            | Groundwater flow through Michel Creek valley bottom.                                                        | CM_MW1_OB/SH/DP (RGMP and<br>CMO SSGMP)<br>CM_MW2_SH<br>RG_DW-07-01 (RGMP) |
| Sowchuck Sump.                                             | Surface water infiltrating to ground.                                                                       | CM_SOW (Sowchuck Sump; SWMP)                                               |

#### Table OO: Potential Sources and Transport Pathways to Groundwater Study Area 11 (After SNC-Lavalin, 2017a)



# Table OO (Cont'd): Potential Sources and Transport Pathways to Groundwater Study Area 11 (After SNC-Lavalin, 2017a)

| Potential Sources                   | Potential Transport Pathways          | Current Monitoring Location <sup>1</sup>                                                       |
|-------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------|
| Main Settling<br>Ponds.             | Surface water infiltrating to ground. | CM_MW4-SH/DP (CMO SSGMP) <sup>2</sup><br>RG_DW-07-01 (RGMP)<br>CM_SPD (Main Pond Decant; SWMP) |
| CMO Loadout and Infiltration Ponds. | Recharge to groundwater system.       | CM_LOIP (surface water)<br>No monitoring well.                                                 |

1. CMO SSGMP: Coal Mountain Operations Site-Specific Groundwater Monitoring Program; RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program.

2. Both monitoring wells installed in bedrock. No monitoring well installed in shallow gravel deposits at this location.

### 5.11.2 Groundwater Levels

Manual groundwater levels measured quarterly at the nested well CM\_MW1 were reviewed and assessed for seasonal variability and vertical groundwater flow. Table 2 shows manual water level measurements recorded at CM\_MW1 in 2017; manual water level measurements are presented in Appendix III (Graph 11-1).

The data show no significant variation in groundwater levels in all three wells; groundwater elevation in CM\_MW1-OB ranged from 1,497.72 masl to 1,498.26 masl throughout the monitoring period with similar fluctuation at the other two monitoring wells. The vertical groundwater flow is inferred to be downwards from the shallow gravel aquifer to the bedrock aquifer. The calculated vertical hydraulic gradients between CM\_MW1-OB and CM\_MW1-SH varied from -0.04 m/m to -0.06 m/m in 2017 (Appendix V). The vertical gradient between CM\_MW1-SH and CM\_MW1-DP indicated an upward groundwater flow from the deeper bedrock unit to the shallower unit in Q4. Vertical gradients were not calculated in Q1, Q2 and Q3 as the depth to water measurements were not collected on the same date.

Groundwater elevations for the fourth quarter are shown on Drawing 635544-307 to provide regional context.

#### 5.11.3 Groundwater Quality

Groundwater quality results for CM\_MW1 and RG\_DW-07-01 were compared to screening criteria in Tables 3 and 4 (primary screening) and in Appendix III, Graphs 11-2 and 11-3. A summary of results above primary screening criteria for Study Area 11 is presented in Table PP below.

|           |    |       |        |    |            |    |    | ,          |    | 9  |    |             |    |    |            |    |
|-----------|----|-------|--------|----|------------|----|----|------------|----|----|----|-------------|----|----|------------|----|
| Parameter | C  | CM_M\ | N-1-OI | В  | CM_MW-1-SH |    |    | CM_MW-1-DP |    |    |    | RG_DW-07-01 |    |    |            |    |
| 1,2,3,4   | Q1 | Q2    | Q3     | Q4 | Q1         | Q2 | Q3 | Q4         | Q1 | Q2 | Q3 | Q4          | Q1 | Q2 | <b>Q</b> 3 | Q4 |
| Selenium  | -  | -     | -      | -  | -          | -  | -  | -          | -  | -  | -  | -           | -  | DW | DW         | -  |
| Sulphate  | -  | -     | -      | -  | -          | -  | -  | -          | -  | -  | -  | -           | DW | -  | DW         | DW |
| Chloride  | -  | -     | -      | -  | IW<br>DW   | IW | IW | IW         | IW | IW | IW | IW          | -  | -  | -          | -  |

Table PP: Summary of Constituents above Primary Screening Criteria for Study Area 11



| Parameter  | CM_MW-1-OB |    |    |    | CM_MW-1-SH |          |          | (  | СМ_М\ | N-1-DI | D  | RG_DW-07-01 |    |    |    |    |
|------------|------------|----|----|----|------------|----------|----------|----|-------|--------|----|-------------|----|----|----|----|
| 1,2,3,4    | Q1         | Q2 | Q3 | Q4 | Q1         | Q2       | Q3       | Q4 | Q1    | Q2     | Q3 | Q4          | Q1 | Q2 | Q3 | Q4 |
| Sodium     | -          | -  | -  | -  | DW         | -        | -        | -  | DW    | -      | -  | DW          | na | -  | -  | -  |
| Barium     | -          | -  | -  | -  | -          | -        | -        | -  | DW    | DW     | DW | DW<br>AW    | na | -  | -  | -  |
| Lithium    | DW         | DW | DW | DW | DW         | DW       | DW       | DW | DW    | DW     | DW | DW          | na | DW | DW | DW |
| Manganese  | -          | -  | -  | -  | -          | -        | -        | -  | IW    | -      | -  | -           | na | -  | -  | -  |
| Molybdenum | -          | -  | -  | -  | IW<br>LW   | IW<br>LW | IW<br>LW | IW | -     | IW     | -  | -           | na | -  | -  | -  |

#### Table PP (Cont'd): Summary of Constituents above Primary Screening Criteria for Study Area 11

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) '--' denotes result below primary screening criteria for given constituents; and 4.) na indicates the well was not sampled for specific parameter.

Selenium and sulphate concentrations were above primary screening criteria in domestic well RG\_DW-07-01 in some samples from 2017; selenium concentrations were above CSR DW standard in 2017 Q2 and Q3 and sulphate concentrations also exceeded CSR DW standard in 2017 Q1, Q3 and Q4 (Appendix III, Graphs 11-2 and 11-3).

The 2017 RGMP (SNC-Lavalin, 2017a) included a review of non-order constituents in groundwater with concentrations greater than primary screening criteria, which included chloride, dissolved barium, manganese and molybdenum. A similar review of dissolved lithium in groundwater was performed in Section 5.1.3 above. Based on this information and the receptor information provided in the 2017 RGMP, the following interpretations were made:

- CM\_MW1-SH and CM\_MW1-DP are installed bedrock and the source of chloride, dissolved sodium, barium, manganese, molybdenum is inferred to be naturally occurring and originate from either water interacting with bedrock, or from limited interactions with the atmosphere; and
- > dissolved lithium at CM\_MW-1-OB/SH/DP and RG\_DW-07-01 are inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials) as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5.

#### 5.11.4 Discussion

Discussion of trends in groundwater quality in Study Area 11 focuses on dissolved selenium and sulphate concentrations, which were above the primary screening criteria at RG\_DW-07-01. Time series plots of dissolved selenium and sulphate from the RGMP monitoring locations in Study Area 11 are shown in Appendix III (Graphs 11-2 and 11-3, respectively). For comparison purposes, dissolved selenium and sulphate concentrations measured in Corbin Creek at surface water location CM\_CC1 and in Michel Creek downstream from the confluence with Corbin Creek at surface water location CM\_MC2 were added to Graphs 11-2 and 11-3.

As shown on Graph 11-2, selenium concentrations at RG\_DW-07-01 have increased compared to previous years and were above CSR DW standard in 2017 Q2 and Q3 (the concentration in Q2 of 15.2  $\mu$ g/L was a historical high for RG\_DW-07-01). An increase in selenium concentrations was also noted at surface water locations CM\_MC2 and CM\_CC1 in 2017. Selenium concentrations measured at



RG\_DW-07-01 have typically been within the range of concentrations measured in Michel Creek at CM\_MC2 and below the primary screening criteria, but 2017 concentrations were above surface water concentrations at CM\_MC2 and primary screening criteria in Q2 and Q3. Selenium concentrations at this location were also higher than Michel Creek in Q2 2016 and Q3 2014 (Graph 11-2). These results suggest that this monitoring locations is at least seasonally influenced by Corbin Creek, which contains higher selenium concentrations.

Consistent with results from previous years, sulphate concentrations at RG\_DW-07-01 also exceeded CSR DW standard in 2017 (Graph 11-3); the highest concentration was measured in 2017 Q4. A seasonal trend in concentrations of sulphate appears to be present at RG\_DW-07-01 based on 2014-2017 data. In general, concentrations of these constituents at this location are lowest in spring, which is consistent with the effect of dilution on constituents in shallow groundwater in a freshet dominated regime. Fluctuations of sulphate concentrations in surface water are more prominent compared to groundwater but follows generally the same seasonal pattern. Sulphate concentrations measured at RG\_DW-07-01 were higher than those measured in Michel Creek but within the range and generally lower than concentrations measured in Corbin Creek at CM\_CC1. These results suggest support the interpretation that groundwater sampled from RG\_DW-07-01 is influenced by surface water recharge from Corbin Creek.

Selenium and sulphate concentrations at the nested well CM\_MW1 were below the primary screening criteria. The data for the nested well show higher concentrations of dissolved selenium and sulphate in the shallow overburden well (CM\_MW1-OB) compared to the two bedrock monitoring wells (CM\_MW1-SH and CM\_MW1-DP). This observation is consistent with the CSM identifying the surficial deposits as the main groundwater transport pathway for CI in the Study Area. Concentrations in the shallow overburden well (CM\_MW1-OB) fluctuate with no obvious trend.

Drawing 635544-330 shows the spatial distribution of CI for samples collected in Study Area 11. Attenuation of sulphate and dissolved selenium appears to be occurring in the Michel Creek valley-bottom further downgradient of the confluence of Corbin Creek and Michel Creek as no constituent concentrations above screening criteria were noted in CM\_MW1-OB, the location installed in valley-bottom deposits furthest downgradient from CMO.

# 5.12 Study Area 12: Elk River Valley-bottom at Study Area Boundary

This area was selected as it is at the boundary of MU4. Study Area 12 is located downgradient from the confluence of Michel Creek and Elk River. The monitoring points in Study Area 12 are EV\_ER1gwS/D and RG\_DW-03-04 (also identified as the Sparwood Municipal Well 3). Monitoring wells and relevant surface water locations for Study Area 12 are shown on Drawing 635544-310.

Coarse-grained fluvial and glaciofluvial deposits in Study Area 12 are the primary groundwater-bearing units for domestic and municipal groundwater supplies (Appendix IV). District of Sparwood Wells 1 and 2 and several domestic wells located north of Study Area 12 extract groundwater from a shallow unconfined sand and gravel unit. A deeper semi-confined to confined sand and gravel aquifer is also present in Study Area 12 (e.g., RG\_DW-03-4). The confining layer identified as clay at RG\_DW-03-04 is not continuous and the deep unit is inferred to interact with the shallow unit and surface water (Michel Creek and/or Elk River). The extent of the deep unit and the confining layer are not well constrained. Groundwater flow



direction is expected to be generally parallel or sub parallel to the Elk River; however, at the confluence of Michel Creek and Elk River, groundwater flow is likely governed by the presence of preferential pathways formed by channels of coarser grained sediments. Cross sections O-O' and N-N' (Drawings 635544-325 and -326) are located approximately parallel and perpendicular to the inferred groundwater flow direction.

### 5.12.1 Potential Sources and Transport Pathways

The 2017 RGMP identified potential sources of CI and potential transport pathways to valley-bottom groundwater in Study Area 12, summarized in the following table. Potential sources are also shown in plan on Drawing 635544-310.

# Table QQ: Potential Sources and Transport Pathways to Groundwater in Study Area 12 (After SNC-Lavalin, 2017a)

| Potential Sources                                | Potential Transport Pathways                                                                        | Current Monitoring Location <sup>1</sup>                  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Upstream Michel Creek valley bottom groundwater. | Down-valley Michel Creek groundwater flow from Study Area 9.                                        | EV_ER1gwS/D (RGMP and EVO<br>SSGMP)<br>RG_DW-03-04 (RGMP) |
| Upstream Elk River valley bottom groundwater.    | Down-valley Elk River groundwater flow from Study Area 8.                                           | EV_ER1gwS/D (RGMP and EVO<br>SSGMP)<br>RG_DW-03-04 (RGMP) |
| Michel Creek and Elk River.                      | Recharge to groundwater from infiltration of<br>Michel Creek and Elk River along some<br>stretches. | EV_MC2 and EV_MC1 (SWMP)<br>EV_ER1 and EV_ER2 (SWMP)      |

1. EVO SSGMP: Elkview Operations Site-Specific Groundwater Monitoring Program; RGMP: Regional Groundwater Monitoring Program and SWMP: Surface Water Monitoring Program.

### 5.12.2 Groundwater Levels

Seasonal variability and long-term trends in groundwater elevations in Study Area 12 were assessed using manual water level measurements at EV\_ER1gwS and EV\_ER1gwD (Table 2) and continuous groundwater level data for EV\_ER1gwS. Groundwater elevations from January 2015 to October 2017 were plotted on a time-series graph (Appendix III, Graph 12-1) along with daily water level data recorded for Elk River (hydrometric station 08NK016). Consistent with observations made by SNC-Lavalin (2017c), fluctuations in EV\_ER1gwS generally follow the surface water fluctuation observed at the Elk River hydrometric station suggesting a strong hydraulic connection between groundwater and surface water at this location. Note that the amplitude of the fluctuation in groundwater and surface water are not directly comparable as the hydrometric station is located approximately 15 m north of Sparwood. In addition, we note that the elevation of water level measurement at the hydrometric station is unknown; therefore, the water level data shown on Graph 12-1 are relative and based on the local datum.

Groundwater elevation in EV\_ER1gwS ranged from 1,110.2 masl to 1,112.5 masl throughout the monitoring period (2015 to 2017) and followed a typical seasonal trend associated with a freshet regime. In 2017, the maximum groundwater level was approximately 0.4 m higher than previously recorded in 2015 and 2016. The vertical groundwater gradient at the nested well EV\_ER1gwS/D is upwards ranging from 0.02 m/m to 0.03 m/m in 2017 (Appendix V). The range in 2017 vertical gradient values listed above is within the range of previously calculated values from 2015 and 2016. Groundwater elevation measured



during the fourth quarter at EV\_ER1gwS/D in Study Area 12 is shown on Drawing 635544-307 to provide regional context with other Study Areas.

The District of Sparwood municipal supply well (RG\_DW-03-04) is located approximately 0.5 km southeast (i.e., further from the Elk River) of EV\_ER1gwS/D. The reported average daily pumping rate of RG\_DW-03-04 between January and mid-November 2017 was 2,850 m<sup>3</sup>/day, approximately 600 m<sup>3</sup>/day greater than the average pumping rate in 2016 (between May and December) which was approximately 2,250 m<sup>3</sup>/day (SNC-Lavalin, 2017c). No pumping occurred from mid-November through December of 2017. Based on pumping data reviewed, the average daily pumping rate in 2017 was relatively consistent, ranging from an average pumping rate of 2,463 m<sup>3</sup>/day in February to 2,962 m<sup>3</sup>/day in July. As shown on Graph 12-1, groundwater levels at EV\_ER1gwS do not appear to be affected by groundwater extraction at RG\_DW-03-04. There are no continuous water level data for EV\_ER1gwD and as such it is unknown if the deep aquifer is affected by groundwater extraction. The nested monitoring well EV\_ER1gwS/D is located more than 600 m away and generally upgradient from the municipal well RG\_DW-03-04. Interference at this distance is expected to be minimal. In addition, it is possible that EV\_ER1gwS/D is outside the capture zone of RG\_DW-03-04 as indicated in the assessment completed by UMA (2008).

#### 5.12.3 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening), Table 5 (secondary screening), and Appendix III, Graphs 12-1 (dissolved selenium only). A summary of results above primary screening criteria for Study Area 12 is presented in Table RR.

| Deremeter <sup>1234</sup>    | EV_ER1gwS |    |    |    |    | EV_EF | R1gwD |    | RG_DW-03-04 |    |    |    |  |
|------------------------------|-----------|----|----|----|----|-------|-------|----|-------------|----|----|----|--|
| Parameter <sup>1,2,3,4</sup> | Q1        | Q2 | Q3 | Q4 | Q1 | Q2    | Q3    | Q4 | Q1          | Q2 | Q3 | Q4 |  |
| Selenium                     | DW        | -  | -  | -  | -  | -     | -     | DW | -           | -  | -  | DW |  |
| Lithium                      | -         | -  | DW | -  | -  | -     | DW    | -  | na          | -  | -  | DW |  |

Table RR: Summary of Constituents above Primary Screening Criteria for Study Area 12

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) '-' denotes result below primary screening criteria for given constituent; and 4.) na indicates the well was not sampled for specific parameter.

Results from 2017 were similar to previous years with the exception of lithium concentrations above the CSR DW standard due to the updated standard on November 1, 2017. Dissolved lithium concentrations were above CSR DW standards during select quarters at EV\_ERgwS/D (Q3) and RG\_DW-03-04 (Q4). The source of dissolved lithium is inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials), as described in Section 5.1.3 above, as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5.

Selenium was the only CI with concentrations above primary screening criteria in Study Area 12 (Appendix III, Graph 2-2). Dissolved selenium concentrations were marginally above the primary screening criteria (DW) in Q1 at EV\_ER1gwS and in Q4 at EV\_ER1gwD and RG\_DW-03-04. Groundwater concentrations for other CI in Study Area 12 were below applicable primary screening criteria. Secondary screening was performed for selenium where concentrations were above primary criteria and all concentrations were below secondary screening criteria.



#### 5.12.4 Discussion

Discussion of chemistry trends in Study Area 12 focused on selenium as this constituent was marginally above primary screening criteria on one occasion in 2017 at each of the monitoring locations EV\_ER1gwS (Q1), EV\_ER1gwD (Q4) and RG\_DW-03-04 (Q4). A time-series plot of dissolved selenium concentrations for groundwater (EV\_ER1gwS, EV\_ER1gwD and RG\_DW-03-04) and surface water stations in the Elk River (EV\_ER1) and Michel Creek (EV\_MC2) are shown on Graph 12-2 in Appendix III. Graph 12-2 also includes the Elk River hydrometric station 08NK016 to assess the effect of freshet on selenium concentrations.

Consistent with observations in previous annual reports, a clear seasonal trend in selenium concentrations is observed in the surface water (Elk River and Michel Creek) and groundwater (EV\_ER1gwS/D and RG\_DW-03-04). Selenium concentrations are lowest in spring and summer and increase through the fall and winter, consistent with the effect of dilution on constituents in shallow groundwater in a freshet dominated regime. Selenium concentrations in groundwater at EV\_ER1gwS/D in 2017 were lower than concentrations in Michel Creek and Elk River surface water (EV\_MC2 and EV\_ER1, respectively) as shown on Graph 12-2. At RG\_DW-03-04, 2017 selenium concentrations were also lower than surface water concentrations except for the sample collected in May 2017 (Q2).

Since 2015, selenium concentrations in Michel Creek have been higher compared to Elk River and groundwater concentrations in EV\_ER1gwS/D (SNC-Lavalin, 2016). The increases in Michel Creek do not appear to be affecting selenium concentrations in EV\_ER1gwS/D (Appendix III, Graph 12-2). Based on comparison of selenium concentration between groundwater at EV\_ER1gwS/D and surface water in the Elk River, surface water infiltration (recharge) from the Elk River appears to be the main source of selenium in EV\_ER1gwS/D.

In 2016 and 2017, groundwater quality in the deeper aquifer at municipal well RG\_DW-03-04 (completed at approximately 35 mbgs) appeared to generally reflect the Elk River surface water quality. However, we note that selenium concentrations measured at RG\_DW-03-04 were above the concentrations measured in Elk River surface water during the fall of 2015 and 2016 also suggesting an influence of Michel Creek surface water.

RG\_DW-03-04 extracts groundwater from a semi-confined to confined sand and gravel aquifer. The confining layer identified as clay at RG\_DW-03-04 is not continuous and the deep unit is inferred to interact with the shallow sand and gravel aquifer and surface water. The extent of the deep unit and the confining layer are not well constrained and neither is the groundwater flow direction at the confluence of Michel Creek and Elk River. Groundwater flow in the area south of Michel Creek and east of Elk River is likely governed by the presence of preferential pathways formed by channels of coarser grained sediments. Detailed lithology and groundwater elevation are not available in this area but the confining silt and clay layer is inferred to pinch out towards the Elk River as shown on cross section N-N' (Drawing 635544-325). The RG\_DW-03-04 capture zone is inferred to extend in a generally north to northeast direction and draw water from Elk River and/or Michel Creek. The extraction of groundwater from the deep aquifer at RG\_DW-03-04 likely induces a downward vertical hydraulic gradient within the capture zone resulting in surface water from Elk River and/or Michel Creek recharging the deeper aquifer.



Drawing 635544-329 shows the spatial distribution of dissolved cadmium, dissolved selenium, sulphate and nitrate-nitrogen for samples collected in 2017 in Study Area 12 and provide regional context Study Areas 8 and 9. Selenium concentrations above primary screening criteria but below secondary screening criteria were measured at the farthest downgradient monitoring location in MU 4 and the Study Area boundary (i.e., EV\_ER1gwS/D). The extent of groundwater quality above primary screening criteria in the Elk River valley-bottom aquifer us unknown; however, because groundwater quality in Study Area 12 appears to reflect the Elk River surface water quality, surface water infiltration (recharge) rather than a valley-bottom groundwater pathway appears to be the cause of concentrations above screening criteria measured at this location. Accordingly, achieving delineation will not be valuable or even possible as groundwater further down the Elk Valley should continue to reflect surface water quality, which is anticipated to improve over time through implementation of the EVWQP. Furthermore, as discussed in the CSM (Section 2) and in Section 5.13 below, the degree of the influence of surface water infiltration on groundwater is on the local scale and highly variable due to heterogeneity in the valley-bottom aquifer system.

## 5.13 Groundwater Surface Water Interactions in Other Management Units

As required in Permit 107517, an assessment of potential surface water to groundwater interaction effects in all management units must be performed. Groundwater-surface water interactions in Study Areas in MUs 1-4 are presented above. Infiltration of the Elk River is interpreted to occur on the local scale downstream of MU 4 based on results from the Drinking Water Sampling Evaluation Program (SNC-Lavalin, 2014). The degree of the influence of surface water infiltration on groundwater in other MUs is variable, dependent on relative levels in the river and groundwater system, river morphology, river gradient, hydraulic properties of the streambed and valley-bottom surficial deposits, distance from river and the degree of pumping from wells. Teck is currently monitoring a number of domestic water supplies in MU 5 and is undertaking further assessment of water supplies in 2018. The results from this assessment will be considered under the AMP and in future annual reports as appropriate.



# 6 Conclusions and Recommendations

In general, groundwater conditions and interpretations in 2017 were consistent with those outlined in past reports, and most recently the 2017 RGMP (SNC-Lavalin, 2017a). Concentrations of CI above primary and secondary screening criteria were generally consistent with previous measurements and are summarized by Study Area below. A change in CSR standards on November 1, 2017 resulted in changes in primary screening for constituents in the RGMP data set (Table SS).

| Constituent         | Unit | From                    | То                          | Pathway        |
|---------------------|------|-------------------------|-----------------------------|----------------|
| Sulphate            | mg/L | 1,000                   | 1,280 to 4,290 <sup>1</sup> | Aquatic life   |
| Nitrate-Nitrogen    | mg/L | 3,200                   | 1,000                       | Drinking Water |
| Dissolved Cadmium   | μg/L | 0.1 to 0.6 <sup>1</sup> | 0.5 to 4 <sup>1</sup>       | Aquatic life   |
| Dissolved Selenium  | µg/L | 10                      | 20                          | Aquatic life   |
| Dissolved Selenium  | μg/L | 50                      | 30                          | Livestock      |
| Dissolved Boron     | µg/L | 50,000                  | 12,000                      | Aquatic life   |
| Dissolved Lithium   | µg/L | 730                     | 8                           | Drinking Water |
| Dissolved Manganese | µg/L | 550                     | 1,500                       | Drinking Water |
| Dissolved Strontium | µg/L | 22,000                  | 2,500                       | Drinking Water |

#### Table SS: November 1, 2017 Primary Screening Criteria Changes to the CSR

<sup>1</sup> Hardness dependent range

The two orders of magnitude decrease in the DW standard for dissolved lithium has resulted in numerous values screening above the standard (refer to Section 5) for groundwater sampled from wells in the RGMP. However, it is noted that there is no drinking water guideline for lithium in Health Canada's Guidelines for Canadian Drinking Water Quality (GCDWQ; Health Canada, 2017) which is considered to be more applicable for consumption of drinking water at the tap.

In addition to the above listed constituents, dissolved copper, magnesium, and zinc were previously measured in concentrations above standards in wells located in Study Area 9 (SNC-Lavalin, 2017a). The CSR standards for these constituents are listed in Table TT.

| Table TT: | November 1, 2017 | Primary Screening | Criteria Changes to | o the CSR for Study Area 9 |
|-----------|------------------|-------------------|---------------------|----------------------------|
|-----------|------------------|-------------------|---------------------|----------------------------|

| Constituent         | Unit | From  | То          | Pathway        |
|---------------------|------|-------|-------------|----------------|
| Dissolved Copper    | µg/L | 1,000 | 1,500       | Drinking Water |
| Dissolved Magnesium | µg/L | 100   | No standard | Drinking Water |
| Dissolved Zinc      | µg/L | 5,000 | 3,000       | Drinking Water |

In general, the changes in standards resulted in fewer results screening above primary screening criteria due to increasing standards; however, the applicable standards for dissolved lithium and strontium did result in an increase in the number of samples above primary screening criteria for those particular parameters. The 2017 RGMP (SNC-Lavalin, 2017) included a review of non-order constituents in groundwater with concentrations greater than primary screening criteria, including chloride, fluoride,



dissolved barium, boron, manganese, molybdenum and sodium, which were interpreted to originate from natural sources (e.g., interaction with bedrock or unconsolidated materials). A similar review was undertaken for dissolved lithium since it was not part of the 2017 RGMP review. Dissolved lithium is also interpreted to be naturally occurring, based on data from the reference well, and other wells in the RGMP and bedrock wells at CMO.

General recommendations for the RGMP are as follows:

- > Increase water level data quality by:
  - collecting concurrent (before and after) manual water level measurements each time a water level logger is deployed or removed from a well and prior to each sampling event;
  - re-deploying level logger at exact same depth in monitoring well after it was removed for downloading; and
  - using a barometer and manual water level measurements to compensate and correct the data.
- Review the QA/QC programs, specifically related to field and trip blanks, and the source of constituents above the detection limit in samples;
- > Review sampling protocols to confirm which parameters should be analyzed for Study Area 6; and
- For samples from RDW wells (RG\_DW-series), continue to analyse for all the parameters listed in the 2017 RGMP in 2018.

The following summarizes conclusions from the 2017 results. The 2017 RGMP considered data gaps and additional studies recommended to fill the data gaps; the text below references these gaps where applicable and provides further recommendations as necessary.

# 6.1 Background (Reference) Conditions

Each CI concentration, with the exception of the anomalous dissolved selenium in Q2 and sulphate, was below or near the MDL. The Q2 selenium result is considered anomalous and a result of inadequate purging of the well after introduction of water to the well. We recommend eliminating the practice of introducing water into this well and also following the standard purging procedure to remove adequate purge volumes from dedicated monitoring wells.

Because this well is upgradient of any mining activities, concentrations of each parameter were below primary screening criteria (except dissolved selenium in Q2 and dissolved lithium in each quarter sampled), monitoring well FR\_HMW5 was considered an appropriate reference monitoring well for the RGMP.

Elevated dissolved lithium concentrations (i.e., two orders of magnitude higher than the standard) at the reference location indicated that it is likely a naturally occurring constituent. Dissolved lithium above primary screening criteria in groundwater at 92% of wells across the RGMP prompted a review of this non-order constituent, similar to what was completed in the 2017 RGMP. Results from the review indicated that it is naturally occurring and sourced from bedrock.



## 6.2 Study Area 1

A down-valley groundwater transport pathway was identified in the Fording River valley-bottom to the east of the Fording River. Dissolved selenium concentrations in Q4 in FR-09-01-A/B were a historical high. The farthest downgradient monitoring points (FR\_GHHW) reported selenium and nitrate-nitrogen above primary screening criteria but within historical ranges. Selenium concentrations at FR\_GHHW were also above secondary screening criteria for some sampling events. Discharge and mixing with Fording River surface water likely occurs between these points and the nearest downgradient monitoring points at GHO; however, these monitoring points are over 15 km downstream and the localized extents of CI in groundwater are not well constrained. The spatial extent of the coarse-grained aquifer intercepted at the Greenhouse Wells, as well as the spatial extent of the down-valley groundwater transport of CI, were identified as data gaps in the 2017 RGMP (SNC-Lavalin, 2017a).

## 6.3 Study Area 2

Groundwater quality in LC\_PIZDC1308 and LC\_PIZDC1307 has historically been consistently below all primary screening criteria for the CI. No groundwater monitoring wells exist in the valley-bottom; however, potential pathways for CI to groundwater in the valley-bottom within Study Area 2 are being monitored by monitoring wells located upgradient in the Dry Creek drainage and in surface water at monitoring stations in Dry Creek and the Fording River. There are no continuous aquifers in the Dry creek drainage; therefore, the only transport pathway identified to groundwater in Study Area 2 is the surface water pathway as groundwater transport through the till is negligible. Although there are no data for the valley-bottom, the information is not considered necessary for monitoring mine-influences to groundwater.

### 6.4 Study Area 3

Based on monitoring results for dissolved selenium and sulphate in Study Area 3 wells, it is uncertain whether a groundwater transport pathway exists from the Greenhills Creek alluvial fan into the Fording River valley-bottom. Comparison of groundwater quality in the Fording River valley-bottom to surface water in the Fording River indicates that groundwater concentrations of dissolved selenium were approximately one order of magnitude lower; however, sulphate concentrations in groundwater were relatively similar or higher compared to surface water in the Fording River. The sulphate may be naturally sourced or a result of infiltration from Greenhills Creek over the alluvial fan; if the latter is occurring, then associated dissolved selenium contributions from Greenhills Creek may have preferentially attenuated in the aquifer.

The 2017 RGMP (SNC-Lavalin, 2017a) did not identify the above described uncertainty as data gaps because complete pathways to receptors were not identified, as there are no current uses of groundwater for drinking. The supply wells have been instrumented with continuous level monitors and continued monitoring of groundwater in Study Area 3 is warranted to further understand the groundwater-surface water interactions in this portion of the Fording River valley-bottom.



## 6.5 Study Area 4

Groundwater selenium concentrations in Study Area 4 have shown considerable variability (i.e., orders-of-magnitude) and the local-scale interaction with surface water and groundwater discharge is not well understood. It is suspected that variable groundwater CI concentrations are due to variability in CI concentrations in surface water. Mining influence on groundwater is interpreted to be on the local scale proximal to the infiltration ponds at the base of the valley flanks adjacent to GHO. Groundwater concentrations of CI were below all screening criteria at the supply well RG\_DW-01-03, with concentrations decreasing further downgradient of Elkford at domestic well location RG\_DW-01-07, indicating a regional down-valley pathway does not exist.

The Q4 results for three of the monitoring wells adjacent to GHO were relatively higher than historical ranges; at GH\_GA-MW-2 and GH\_MW-ERSC-1 they were historical highs. At location GH\_MW-ERSC-1 only two results from 2014 and 2015 were of the same order of magnitude. Concentrations were much higher than upgradient wells, suggesting either a surface water influence or another source between these wells. The GHO SSGMP did not identify any source in the vicinity and there are no immediate upgradient tributary drainages; however, the well is situated in 45 m from the Elk River side channel and infiltration may be influencing the groundwater quality in this well. The Elk River side channel was flowing in 2017 and is currently being studied under a local aquatic effects monitoring program (LAEMP).

The 2017 RGMP indicated that on a regional scale a data gap does not exist (SNC-Lavalin, 2017a). The 2017 monitoring results, particularly Q4, do; however, suggest that a localized gap exists. The LAEMP will be evaluating groundwater-surface water interactions which we expect will inform the GHO SSGMO and RGMP through the AMP.

### 6.6 Study Areas 5 and 6

Previous studies and monitoring results to date indicated that groundwater at the LCO Process Plant does not appear to be affected by activities at the Process Plant or infiltration of Line Creek surface water. The 2017 RGMP indicated that LC\_PIZP1101 does not appear to be the most appropriate location to confirm the presence of a groundwater flow path from Line Creek under the Process Plant to the Elk River valley bottom and recommended adding existing wells that intercept the unconfined sand and gravel aquifer (SNC-Lavalin, 2017a). There are no data for the Elk River valley-bottom aquifer downgradient of identified sources near the Process Plant and the 2017 RGMP identified that as a data gap. However, it is worth noting that groundwater farther down the Elk River valley monitored in Study Area 7, which indicates a down-valley groundwater transport pathway does not exist at the regional scale.

### 6.7 Study Area 7

Significant groundwater transport of CI from the Harmer Creek drainage to the Elk River valley bottom is inferred to be minimal based on relatively low groundwater concentrations measured in Harmer Creek drainage at EV\_GV3gw compared to surface water. Groundwater quality in the Elk River valley-bottom is influenced by Elk River surface water quality and dissolved selenium concentrations were measured above CSR DW in RG\_DW-02-20 in Q1 and Q2. Teck is currently supplying alternate drinking water to the owners of this well. Because the main pathway for CI above criteria in groundwater in the Elk River valley bottom is surface water infiltration (i.e., surface water pathway) and groundwater quality is being monitored by RG\_DW-02-20, no data gap was identified for Study Area 7 in the 2017 RGMP



(SNC-Lavalin, 2017a). Although there are no data for the deeper aquifer in this area, the information is not considered necessary for monitoring mine-influences to groundwater.

## 6.8 Study Area 8

Groundwater in Study Area 8 does not contain elevated concentrations of CI at the monitoring wells EV\_LSgw and EV\_OCgw which monitor potential inputs from upland, tributary valley bottom, and Elk River valley bottom features along the western slope of EVO. As such, there does not appear to be a confirmed groundwater transport pathway between the sources identified on the western slope of EVO and Elk River valley-bottom based on the current RGMP monitoring well locations. Loading of mine-influenced constituents to groundwater valley-bottom in Study Area 8 is therefore inferred to be primarily from infiltration of surface water associated with drainages and mining features along the western slope of EVO and surface water recharge from nearby Elk River. The highest concentrations of CI in Study Area 8 were measured at surface water station Goddard Creek Sedimentation Pond Decant (EV\_GC2). The 2017 RGMP identified a data gap in the absence of monitoring wells screened in the shallow and deep aquifer at this location (SNC-Lavalin, 2017a).

## 6.9 Study Area 9

A down-valley groundwater pathway was identified where concentrations of CI in groundwater in the Michel Creek valley-bottom were above the surface water concentrations and secondary screening criteria. Downgradient monitoring wells EV\_MCgwS/D and domestic well RG\_DW-03-01 are installed in lower permeability units which may limit their utility as downgradient sentry wells; however, groundwater level data suggests there may be a connection of groundwater in EV\_MCgwS/D to surface water. The borehole log at EV\_BCgw mostly indicates continuous gravel from ground surface to 23 m bgs. It is unknown whether this gravel unit is continuous further downgradient within the District of Sparwood and whether a down-valley pathway in the deep aquifer for groundwater transport of elevated CI exists.

The spatial extent of the aquifer where CI concentrations in groundwater are above secondary screening criteria is also not well defined. Borehole logs for some the wells in the Michel Creek valley-bottom where elevated concentrations on CI were measured are not available (e.g., EV\_RCgw, EV\_WH50gw and EV\_BRgw). The 2017 RGMP (SNC-Lavalin, 2017a) identified data gaps that appear to still exist; however, the Sparwood Area Groundwater Supporting Study currently underway will provide additional data and further refine data gaps.

# 6.10 Study Area 10

Groundwater quality in EV\_ECgw was below all primary screening criteria for the CI in 2017; therefore, groundwater transport of CI in the Erickson drainage appears to be negligible. Data do not exist for the Michel Creek valley-bottom aquifer downgradient of Erickson Creek and the South Pit Decant Pond and as such local groundwater conditions are unknown. The nearest monitoring points are approximately 6 km down the valley (Study Area 9) and because they are elevated in CI from assumed local sources they do not provide any indication of groundwater quality down-valley from Study Area 10. The 2017 RGMP identified a data gap in the Michel Creek valley-bottom aquifer immediately downgradient of Erickson Creek and the South Pit Creek Decant Pond (SNC-Lavalin, 2017a).



## 6.11 Study Area 11

Selenium concentrations at RG\_DW-07-01 historically fluctuate around the CSR DW standard but have increased slightly compared to previous years and were above CSR DW standard in 2017 Q2 and Q3. Teck is currently supplying alternate drinking water to the owners of this domestic well seasonally. An increasing trend of selenium concentrations was also noted at surface water locations CM\_MC2 and CM\_CC1 in 2017. Groundwater dissolved concentrations of CI from RG\_DW-07-01 in Q2 and Q3 appears to be influenced seasonally by infiltration of Corbin Creek.

The furthest downgradient groundwater monitoring location in the Michel Creek valley-bottom in Study Area 11 (CM\_MW1-OB/SH/DP) reported concentrations of CI below primary screening criteria with no increase. The data for the nested well show higher concentrations of dissolved selenium and sulphate in the shallow overburden well compared to the two bedrock monitoring wells, consistent with the CSM identifying the surficial deposits as the main groundwater transport pathway for CI in the Study Area. The 2017 RGMP identified a data gap near the CMO Loadout area and Loadout Infiltration Ponds (SNC-Lavalin, 2017a).

### 6.12 Study Area 12

Groundwater quality in Study Area 12 appears to reflect Elk River and/or Michel Creek surface water quality and groundwater concentrations are generally lower than surface water concentrations. Surface water infiltration (recharge) rather than a valley-bottom groundwater pathway appears to be the cause of concentrations above screening criteria measured at this location; however, there is potential for a down-valley groundwater flow pathway from Study Area 9 also affecting groundwater quality in Study Area 12. No data exist for the Elk River and Michel valley-bottom upgradient aquifers of RG\_DW-03-04. There are no continuous water level data for EV\_ER1gwD and; therefore, it is unknown if the deep aquifer is affected by groundwater extraction. Although a surface water connection is apparent, the absence of groundwater flow path and surface water influence was considered a gap in the 2017 RGMP (SNC-Lavalin, 2017a).

Selenium concentrations above primary screening criteria, but below secondary screening criteria were measured at the farthest downgradient monitoring locations in MU 4 (i.e., EV\_ER1gwS/D and RG\_DW-03-04). Groundwater with concentrations above CI is expected outside of MU4 due to the potential infiltration of the Elk River downstream (i.e., the surface water pathway). However, the degree of the influence of surface water infiltration on groundwater is on the local scale and highly variable due to heterogeneity in the valley-bottom aquifer system. Teck is currently monitoring a number of domestic water supplies down-valley from MU 4 and is undertaking further assessment of water supplies in 2018. The results from this assessment will be considered under the AMP and in future annual reports as appropriate.

It is noted that groundwater quality is expected to improve with surface water quality as the EVWQP is implemented. Groundwater quality does improve in the down-valley direction from MU4; as part of the Elk Valley Drinking Water Evaluation and Sampling Program (SNC-Lavalin, 2014), five domestic wells located about 2 km downstream from Study Area 12 in the Elk valley were sampled and selenium concentrations in groundwater were below primary screening criteria.





Dissolved lithium was identified above CSR DW in RG\_DW-03-04. Water from this well is used by the District of Sparwood when results are below the GCDWQ (Health Canada, 2017) and there is no GCDWQ for lithium. The source of dissolved lithium is inferred to originate from natural sources (interaction with bedrock and/or unconsolidated materials), as it is present in concentrations above CSR DW throughout the Elk Valley, including in background location FR\_HMW5 and bedrock wells at relatively high concentrations.



# 7 References

- AMEC. 2010. Soil and Groundwater Assessment. Former Diesel Refueling Area, Gasoline Refueling Area and Steam Bay Ponds - Line Creek Coal Mine. Submitted to Teck Coal Ltd. Reference: BX05973. 01 September 2010.
- BC Ministry of Environment. 2013. *Technical Guidance 15: Concentration Limits for the Protection of Aquatic Receiving Environments*. Version 1.0, April 2013.
- BC Ministry of Environment. 2016a. *Technical Guidance 6: Water and Air Baseline Monitoring Guidance Document for Mine Proponents and Operators*. Technical Guidance for Environmental Management Act Applications, Version 2.0, June 2016.
- BC Ministry of Environment. 2016b. British Columbia Environmental Laboratory Manual. 2015 Edition. Dated February 2016.
- BC Ministry of Environment and Climate Change Strategy. 2017a. *Contaminated Sites Regulation* (CSR), B.C. Reg. 375/96, includes amendments up to B.C. Reg. 196/2017. November 1, 2017.
- BC Ministry of Environment and Climate Change Strategy. 2017b. Technical Guidance 15 on Contaminated Sites. Concentration Limits for the Protection of Aquatic Receiving Environments. Version 2.0 November 1, 2017.
- BC Ministry of Environment and Climate Change Strategy. 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Summary Report. March 2018.
- Clark, M.J.R. (editor). 2002. *British Columbia Field Sampling Manual.* Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Victoria, BC, Canada. 312 pp.
- Golder Associates Ltd. 2015. Site-wide Groundwater Monitoring Plan Teck Coal Ltd. Elkview Operations. Report prepared for Elkview Operations, Teck Coal Ltd. Dated March 2015.
- Golder Associates Ltd. 2016. Groundwater Flow Modelling to Evaluate Potential Seepage Bypass Life of Mine. Teck Coal LCO Phase II: Dry Creek Water Management System. Report prepared for Teck Coal. Dated September 2016.
- Golder Associates Ltd., 2018. 2017 LCO Site Wide Annual Groundwater Monitoring Report. Prepared for Teck Coal Limited. Dated March 2018.
- Health Canada. 2017. *Guidelines for Canadian Drinking Water Quality Summary Table*. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.
- Hemmera Envirochem Inc. 2017a. 2016 Monitoring Well Installation and Groundwater Sampling Program. Prepared for Teck Coal Ltd. – Greenhills Operations. File: 577-016.07. Report dated March 31, 2017.
- Hemmera Envirochem Inc. 2017b. 2016 Annual Groundwater Report for Greenhills Operations. Report prepared for Teck Coal Ltd. Dated March 2017.
- Horvath, S. (editor). 2005. *British Columbia Environmental Laboratory Manual*. Water and Air Monitoring and Reporting; Water, Air and Climate Change Branch; Ministry of Environment; Victoria, BC, Canada.



- Qin, S., Zhao, C., Li, Y., and Y. Zhang. Review of Coal as a Promising Source of Lithium. 2015. International Journal of Oil, Gas, and Coal Technology 9-2, 215-229.
- Ramboll Environ. 2016. Elk Valley Permit 107517: Section 9.9 Human Health Risk Assessment. Prepared for Teck Coal Limited. Dated March 30, 2016.
- Salminen, R & Batista, M & Bidovec, M & Demetriades, Alecos & De Vivo, Benedetto & De Vos, Walter & Ďuriš, Miloslav & Gilucis, A & Gregorauskienė, Virgilija & Halamić, Josip & Heitzmann, P & Lima, Annamaria & Jordan, G & Klaver, G & Klein, P & Lis, J & Locutura, J & Marsina, K & Mazreku, A & Tarvainen, Timo. (2005). FOREGS Geochemical Atlas of Europe Part 1. 2005.
- SNC-Lavalin Inc. 2014. Summary of Elk Valley Drinking Water Evaluation and Sampling Program. Prepared for Teck Coal Ltd. Internal Ref 615366. Dated June 25, 2014.
- SNC-Lavalin Inc. 2015a. *Elk Valley Regional Groundwater Monitoring Program*. Prepared for Teck Coal Limited. Dated July 31, 2015.
- SNC-Lavalin Inc. 2015b. *Elk Valley Regional Groundwater Synthesis Report*. Prepared for Teck Coal Limited. Dated October 2015.
- SNC-Lavalin Inc. 2016. 2015 Annual Report Regional Groundwater Monitoring Program. Prepared for Teck Coal Limited. Dated March 31, 2016.
- SNC-Lavalin Inc. 2017a. *Elk Valley Regional Groundwater Monitoring Program.* Prepared for Teck Coal Limited. Dated September 29, 2017a.
- SNC-Lavalin Inc. 2017b. *Hydrogeological Assessment Fording River Operations*. Prepared for Teck Coal Limited. Dated September 28, 2017.
- SNC-Lavalin Inc. 2017c. 2016 Annual Report Regional Groundwater Monitoring Program. Prepared for Teck Coal Limited. Dated May 16, 2017.
- SNC-Lavalin Inc. 2018a. 2017 Annual Groundwater Monitoring Report Fording River Operations. Prepared for Teck Coal Limited. Dated March 28, 2018.
- SNC-Lavalin Inc. 2018b. 2017 Annual Groundwater Monitoring Report Greenhills Operations. Prepared for Teck Coal Limited. Dated March 29, 2018.
- SNC-Lavalin Inc. 2018c. 2017 Annual Groundwater Monitoring Report Elkview Operations. Prepared for Teck Coal Limited. Dated March 28, 2018.
- Teck Coal Ltd., 2014. *Elk Valley Water Quality Plan*. Submitted to the British Columbia Ministry of Environment for approval on July 22, 2014.
- Teck Coal Ltd., 2016. Adaptive Management Plan for the Elk Valley Water Quality Plan. Submitted to the British Columbia Ministry of Environment for approval on February 29, 2016.
- Teck Coal Ltd., 2018. 2017 Groundwater Monitoring Report Coal Mountain Operations. Dated March 28, 2018.



# 8 Notice to Reader

This report has been prepared and the work referred to in this report have been undertaken by SNC-Lavalin Inc. (SNC-Lavalin) for the exclusive use of Teck Coal Limited (Teck), who has been party to the development of the scope of work and understands its limitations. The methodology, findings, conclusions and recommendations in this report are based solely upon the scope of work and subject to the time and budgetary considerations described in the proposal and/or contract pursuant to which this report was issued. Any use, reliance on, or decision made by a third party based on this report is the sole responsibility of such third party. SNC-Lavalin accepts no liability or responsibility for any damages that may be suffered or incurred by any third party as a result of the use of, reliance on, or any decision made based on this report. Should this report be submitted to the BC Ministry of Environment & Climate Change Strategy (ENV) by Teck, the ENV is authorized to rely on the results in the report, subject to the limitations set out herein, for the sole purpose of determining whether Teck has fulfilled its obligations with respect to meeting the regulatory requirements of the ENV.

The findings, conclusions and recommendations in this report (i) have been developed in a manner consistent with the level of skill normally exercised by professionals currently practicing under similar conditions in the area, and (ii) reflect SNC-Lavalin's best judgment based on information available at the time of preparation of this report. No other warranties, either expressed or implied, are made as to the professional services provided under the terms of our original contract and included in this report. The findings and conclusions contained in this report are valid only as of the date of this report and may be based, in part, upon information provided by others. If any of the information is inaccurate, new information is discovered, site conditions change or standards are amended, modifications to this report may be necessary. The results of this assessment should in no way be construed as a warranty that the subject site is free from any and all environmental impact.

Any soil and rock descriptions in this report and associated logs have been made with the intent of providing general information on the subsurface conditions of the site. This information should not be used as geotechnical data for any purpose unless specifically addressed in the text of this report. Groundwater conditions described in this report refer only to those observed at the location and time of observation noted in the report.

This report must be read as a whole, as sections taken out of context may be misleading. If discrepancies occur between the preliminary (draft) and final version of this report, it is the final version that takes precedence. Nothing in this report is intended to constitute or provide a legal opinion.

The contents of this report are confidential and proprietary. Other than by Teck, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of Teck and SNC-Lavalin.

# Tables

- 1: Summary of Applicable Primary and Secondary Screening Criteria
- 2: Well Installation Details, Monitoring Values and Hydrogeological Information
- 3: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Inorganics in Groundwater
- 4: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Metals in Groundwater
- 5: Summary of Analytical Results compared to Secondary Screening Criteria for Selenium

|            |              |           |    |             | Primary S   | creening    |             | Secondar         | y Screening (Seleniur | n Only)       |
|------------|--------------|-----------|----|-------------|-------------|-------------|-------------|------------------|-----------------------|---------------|
| Study Area | Well ID      | Operation | MU | AW Criteria | DW Criteria | IW Criteria | LW Criteria | Site Performance | Compliance Point      | DW Guidelines |
|            |              |           |    | Applied**   | Applied     | Applied     | Applied     | Objective        | •                     | Applied       |
| Background | FR_HMW5      | FRO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | FR_FRCP1 (E300071)    | CDWQG         |
|            | FR_09-01-A   | FRO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | FR_FRCP1 (E300071)    | CDWQG         |
| 1          | FR_09-01-B   | FRO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | FR_FRCP1 (E300071)    | CDWQG         |
|            | FR_GHHW      | FRO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | FR_FRCP1 (E300071)    | CDWQG         |
| 2          | LC_PIZDC1308 | LCO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | GH_FR1 (200378)       | CDWQG         |
| 2          | LC_PIZDC1307 | LCO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | GH_FR1 (200378)       | CDWQG         |
|            | GH_POTW09    | GHO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | GH_FR1 (200378)       | CDWQG         |
|            | GH_POTW10    | GHO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | GH_FR1 (200378)       | CDWQG         |
| 3          | GH_POTW15    | GHO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | GH_FR1 (200378)       | CDWQG         |
|            | GH_POTW17    | GHO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | GH_FR1 (200378)       | CDWQG         |
|            | GH_MW-RLP-1D | GHO       | 1  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_FR1 (0200378) | GH_FR1 (200378)       | CDWQG         |
|            | GH_MW-ERSC-1 | GHO       | 3  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_ER1 (E206661) | GH_ERC (E300090)      | CDWQG         |
|            | GH_GA-MW-1   | GHO       | 3  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_ER1 (E206661) | GH_ERC (E300090)      | CDWQG         |
|            | GH_GA-MW-2   | GHO       | 3  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_ER1 (E206661) | GH_ERC (E300090)      | CDWQG         |
| 4          | GH_GA-MW-3   | GHO       | 3  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_ER1 (E206661) | GH_ERC (E300090)      | CDWQG         |
|            | GH_GA-MW-4   | GHO       | 3  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_ER1 (E206661) | GH_ERC (E300090)      | CDWQG         |
|            | RG_DW-01-03  | RG        | 3  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_ER1 (E206661) | -                     | CDWQG         |
|            | RG_DW-01-07  | RDW       | 3  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | GH_ER1 (E206661) | -                     | CDWQG         |
| 6          | LC_PIZP1101  | LCO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER4 (0200027) | -                     | CDWQG         |
| 7          | EV_GV3gw     | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | -                     | CDWQG         |
| ,          | RG_DW-02-20  | RDW       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | -                     | CDWQG         |
| 8          | EV_LSgw      | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | -                     | CDWQG         |
| 0          | EV_OCgw      | EVO       | 4  | BC WQG      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | -                     | CDWQG         |
|            | EV_BCgw      | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | EV_MC2 (E300091)      | CDWQG         |
|            | EV_MCgwS     | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | EV_MC2 (E300091)      | CDWQG         |
|            | EV_MCgwD     | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | EV_MC2 (E300091)      | CDWQG         |
| 9          | EV_BRgw      | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | EV_MC2 (E300091)      | CDWQG         |
|            | EV_RCgw      | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | EV_MC2 (E300091)      | CDWQG         |
|            | EV_WH50gw    | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | EV_MC2 (E300091)      | CDWQG         |
|            | RG_DW-03-01  | RDW       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | -                     | CDWQG         |
| 10         | EV_ECgw      | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | EV_MC2 (E300091)      | CDWQG         |
|            | CM_MW1-OB    | CMO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | CM_MC2 (E258937)      | CDWQG         |
| 11         | CM_MW1-SH    | CMO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | CM_MC2 (E258937)      | CDWQG         |
|            | CM_MW1-DP    | CMO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | CM_MC2 (E258937)      | CDWQG         |
|            | RG_DW-07-01  | RDW       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | CM_MC2 (E258937)      | CDWQG         |
|            | EV_ER1gwS    | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | -                     | CDWQG         |
| 12         | EV_ER1gwD    | EVO       | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | -                     | CDWQG         |
|            | RG_DW-03-04  | RG        | 4  | BC CSR      | BC CSR      | BC CSR      | BC CSR      | EV_ER1 (0200393) | -                     | CDWQG         |

#### TABLE 1: Summary of Applicable Primary and Secondary Screening Criteria

\*\* BCWQG applied for wells located within 10 m from a receiving surface water body

| TABLE 2: Well Installation Details, | Monitoring Value | es and Hydrogeolo | gical Information |
|-------------------------------------|------------------|-------------------|-------------------|
|                                     |                  |                   |                   |

| Study Area | Well ID              | Туре       | Operation | MU | LIDAR<br>Ground<br>Elevation<br>(masl) | Ground<br>Elevation<br>(masl) | TOC<br>Elevation<br>(masl) | Drilled Depth<br>(mbgs)                                      | Screened<br>Depth<br>(mbgs)                                                              | Screened<br>Formation                                       | Date of Static<br>Water Level<br>Measurement | Depth to Water<br>(mbtoc) | Potentiometric<br>Elevation<br>(masl) | Depth to<br>Bedrock<br>(mbgs)                     | Hydrostratigraphic Unit                             | Hydraulic<br>Conductivity <sup>2</sup><br>(m/s) |
|------------|----------------------|------------|-----------|----|----------------------------------------|-------------------------------|----------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|---------------------------|---------------------------------------|---------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
|            |                      |            |           |    | (11431)                                |                               |                            |                                                              |                                                                                          |                                                             | -                                            | Frozen                    | -                                     |                                                   |                                                     |                                                 |
| Background | FR HMW5              | Monitoring | FRO       | 1  | 1793.23                                | 1785.2                        | 1786.03                    | 12.6                                                         | 7.3 - 10.4                                                                               | Gravel                                                      | 2017/06/21                                   | 1.491                     | 1784.54                               | 10.7                                              | _                                                   | 3.00E-03                                        |
| Buonground |                      | Montoling  | 1110      |    | 1100.20                                | 1100.2                        | 1100.00                    | 12.0                                                         | 1.0 10.1                                                                                 | Clavor                                                      | 2017/09/18                                   | 1.642                     | 1784.39                               | 10.7                                              |                                                     | 0.002 00                                        |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/11/14                                   | 1.672                     | 1784.36                               |                                                   |                                                     |                                                 |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/03/08<br>2017/06/01                     | 7.357<br>1.156            | 1577.59<br>1583.79                    | -                                                 |                                                     |                                                 |
|            | FR_09-01-A           | Monitoring | FRO       | 1  | 1584.64                                | 1584.10                       | 1584.95                    | 8.4                                                          | 3.83 - 6.88                                                                              | Sandy Gravel                                                | 2017/09/12                                   | 6.405                     | 1578.55                               | -                                                 | Fording River valley bottom sediments               | 1.00E-03                                        |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/11/22                                   | 7.642                     | 1577.31                               |                                                   |                                                     |                                                 |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/03/08                                   | 7.864                     | 1577.00                               |                                                   |                                                     |                                                 |
| 1          | FR 09-01-B           | Monitoring | FRO       | 1  | 1584.64                                | 1584.10                       | 1584.86                    | 29.0                                                         | 17.15 - 18.67                                                                            | Gravel                                                      | 2017/06/01                                   | 1.594                     | 1583.27                               |                                                   | Fording River valley bottom sediments               | 1.50E-04                                        |
|            | _                    | 0          |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/09/12                                   | 6.946                     | 1577.91                               | -                                                 | с ў                                                 |                                                 |
|            |                      |            |           |    |                                        |                               |                            | Well 1: 21.6                                                 | Well 1: 20.4 - 21.6                                                                      | Well 1: Gravel                                              | 2017/11/22                                   | 8.133                     | 1576.73                               |                                                   |                                                     |                                                 |
|            | FR_GHHW <sup>1</sup> | Supply     | FRO       | 1  | 1576.45                                | 1575.80                       | -                          | Well 1: 21.0<br>Well 2: 16.8<br>Well 3: 11.6<br>Well 4: 29.0 | Well 1: 20.4 - 21.0<br>Well 2: 10.7 - 16.8<br>Well 3: 10.4 - 11.6<br>Well 4: 25.9 - 29.0 | Well 2: Gravel<br>Well 3: Gravel<br>Well 4: Sand and Gravel |                                              | -                         | -                                     | -                                                 | Valley-bottom fluvial aquifer                       | -                                               |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/03/16                                   | 3.23                      | 1688.14                               |                                                   |                                                     |                                                 |
|            | LC_PIZDC1308         | Monitoring | LCO       | 1  | 1721.68                                | 1690.42                       | 1691.37                    | 19.81                                                        | 6.10 - 9.14                                                                              | Till and Colluvium                                          | 2017/06/12                                   | 1.68                      | 1689.69                               |                                                   | Colluvium and till                                  | -                                               |
|            |                      | Ŭ          |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/09/19<br>2017/11/01                     | 3.09                      | 1688.28                               | -                                                 |                                                     |                                                 |
| 2          |                      |            |           |    |                                        | +                             |                            |                                                              |                                                                                          |                                                             | 2017/11/01<br>2017/03/16                     | 3.31<br>6.06              | 1688.06<br>1685.15                    | +                                                 |                                                     |                                                 |
|            |                      |            | 1.00      |    | 1704.00                                | 1000 50                       |                            | 05.05                                                        |                                                                                          |                                                             | 2017/06/12                                   | 1.68                      | 1689.53                               |                                                   |                                                     |                                                 |
|            | LC_PIZDC1307         | Monitoring | LCO       | 1  | 1721.68                                | 1690.50                       | 1691.21                    | 35.05                                                        | 32.77 - 34.75                                                                            | Till                                                        | 2017/09/19                                   | 5.17                      | 1686.04                               | -                                                 | Highly consolidated basal till                      | -                                               |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/11/01                                   | 5.22                      | 1685.99                               |                                                   |                                                     |                                                 |
|            | GH_POTW09            | Supply     | GHO       | 1  | 1495.28                                | -                             | -                          | 37                                                           | 26.8 - 36.3                                                                              | Silty Gravel                                                | -                                            | -                         | -                                     | 36.08                                             | Fluvial sediments overlying bedrock                 | -                                               |
|            | GH_POTW10            | Supply     | GHO       | 1  | 1488.94                                | -                             | -                          | 53.6                                                         | -                                                                                        | Gravel                                                      | -                                            | -                         | -                                     | -                                                 | Fluvial/glaciofluvial sediments                     | -                                               |
| 3          | GH_POTW15            | Supply     | GHO       | 1  | 1489.67                                | -                             | -                          | 43.9                                                         | -                                                                                        | Gravel and Cobbles                                          | -                                            | -                         | -                                     | -                                                 | Fluvial/glaciofluvial sediments                     | -                                               |
|            | GH_POTW17            | Supply     | GHO       | 1  | 1505.18                                | 1504.00                       | -                          | 47.2                                                         | 39.3 - 42.4                                                                              | Sand and Gravel                                             |                                              |                           | -                                     | Fluvial sediments underlying lacustrine sediments | -                                                   |                                                 |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/02/02<br>2017/06/22                     | 7.99<br>6.48              | 1488.23<br>1489.74                    | -                                                 |                                                     |                                                 |
|            | GH_MW-RLP-1D         | Monitoring | GHO       | 1  | 1494.78                                | 1495.00                       | -                          | 83.5                                                         | 79.5 - 82.5                                                                              | Sand and Gravel                                             | 2017/09/26                                   | 6.50                      | 1489.74                               | -                                                 | Fluvial/glaciofluvial sediments                     | -                                               |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/11/13                                   | 6.56                      | 1489.66                               | -                                                 |                                                     |                                                 |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/01/31                                   | 6.01                      | 1278.10                               |                                                   |                                                     |                                                 |
|            | GH MW-ERSC-1         | Monitoring | GHO       | 3  | 1286.45                                | 1283.36                       | 1284.11                    | 7.924                                                        | 4.12 - 7.17                                                                              | Till/Bedrock                                                | 2017/06/20                                   | 4.30                      | 1279.81                               | 6.1                                               | Till/ Bedrock interface                             | 3.00E-06                                        |
|            | _                    | 0          |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/09/20                                   | 6.30                      | 1277.81                               | -                                                 |                                                     |                                                 |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/11/30<br>2017/01/30                     | 5.20<br>17.01             | 1278.91<br>1363.25                    |                                                   |                                                     |                                                 |
|            |                      |            |           | -  |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/06/20                                   | 16.71                     | 1363.55                               |                                                   |                                                     |                                                 |
|            | GH_GA-MW-1           | Monitoring | GHO       | 3  | 1378.81                                | 1379.21                       | 1380.26                    | 22.6                                                         | 15.5 - 18.5                                                                              | Clayey Sand                                                 | 2017/09/19                                   | 16.94                     | 1363.32                               | 22.6                                              | Interlayered alluvial and lacustrine sediments      | 1.00E-12                                        |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/10/19                                   | 16.99                     | 1363.27                               |                                                   |                                                     |                                                 |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/01/30                                   | 5.49                      | 1302.19                               | -                                                 |                                                     |                                                 |
|            | GH_GA-MW-2           | Monitoring | GHO       | 3  | 1305.23                                | 1306.66                       | 1307.68                    | 29.6                                                         | 23 - 28                                                                                  | Sand/Silt                                                   | 2017/06/20                                   | 4.03                      | 1303.65                               | 28.5                                              | Fluvial sediments about the bedrock contact         | 1.00E-03                                        |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/09/20 2017/11/27                        | 5.78<br>6.00*             | 1301.90<br>1301.68                    | -                                                 |                                                     |                                                 |
| 4          |                      |            |           |    |                                        | 1                             |                            | 1                                                            |                                                                                          |                                                             | 2017/01/30                                   | 6.49                      | 1294.26                               |                                                   |                                                     |                                                 |
|            | GH_GA-MW-3           | Monitoring | GHO       | 3  | 1299.62                                | 1299.78                       | 1300.75                    | 14.4                                                         | 8 - 14                                                                                   | Sand and Gravel                                             | 2017/06/19                                   | 6.20                      | 1294.55                               | 14.4                                              | Fluvial sediments above the bedrock contact         | 2.00E-06                                        |
|            |                      | womoning   | 010       | 5  | 1233.02                                | 1233.10                       | 1300.73                    | 14.4                                                         | 0 - 14                                                                                   | Sanu anu Glaver                                             | 2017/09/20                                   | 8.99                      | 1291.76                               | 14.4                                              |                                                     | 2.000-00                                        |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/11/30                                   | 7.89                      | 1292.86                               |                                                   |                                                     |                                                 |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/01/30<br>2017/06/30                     | 6.65<br>4.93              | 1306.40<br>1308.12                    | -                                                 |                                                     |                                                 |
|            | GH_GA-MW-4           | Monitoring | GHO       | 3  | 1311.57                                | 1312.15                       | 1313.05                    | 17.2                                                         | 13.7 - 16.7                                                                              | Sand and Gravel                                             | 2017/08/30                                   | 6.50                      | 1308.12                               |                                                   | Alluvial sediments                                  | 1.00E-04                                        |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/11/27                                   | 6.57                      | 1306.48                               | 1                                                 |                                                     |                                                 |
|            | RG_DW-01-03          | Supply     | RDW       | 3  | 1262.49                                | -                             | -                          | 27.96                                                        | -                                                                                        | Sand and Gravel                                             | -                                            | -                         | -                                     | -                                                 | Interlayered Silt Sand and Gravel Fluvial Sediments | -                                               |
|            | RG_DW-01-07          | Domestic   | RDW       | 3  | 1244.76                                | -                             | -                          | 9.8                                                          | -                                                                                        | Sandy Gravel                                                | -                                            | -                         | -                                     | -                                                 | -                                                   | -                                               |
|            |                      |            |           |    |                                        | 1                             |                            |                                                              |                                                                                          |                                                             | 2017/03/15                                   | 31.26                     | 1235.8                                | 1                                                 | 1                                                   |                                                 |
| 6          | LC_PIZP1101          | Monitoring | LCO       | 4  | 1266.65                                | 1266.00                       | 1267.06                    | 41.2                                                         | 37.5 - 40.5                                                                              | Sand and Gravel                                             | 2017/06/13                                   | 30.445                    | 1236.62                               | ] .                                               | Fluvial sediments                                   | 7.40E-04                                        |
| 0          |                      | wormoning  | 200       | 7  | 1200.00                                | 1200.00                       | 1201.00                    | 71.2                                                         | 01.0 - 40.0                                                                              |                                                             | 2017/09/21                                   | 30.86                     | 1236.2                                | -                                                 |                                                     | 7.40∟-04                                        |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/11/03                                   | 31.21                     | 1235.85                               |                                                   |                                                     |                                                 |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/03/29<br>2017/06/27                     | 10.58<br>10.69            | 1297.38<br>1297.27                    | -                                                 |                                                     |                                                 |
| 7          | EV_GV3gw             | Monitoring | EVO       | 4  | 1307.01                                | 1307.05                       | 1307.96                    | 25                                                           | 22.85 - 24.38                                                                            | Silty Gravel                                                | 2017/06/27<br>2017/08/15                     | 10.69                     | 1297.27                               | - I                                               | Alluvial sediments in the Grave Creek valley-bottom | _                                               |
|            | - · _ C · Og · ·     | monitoring | 2.00      | ŕ  | 1007.01                                | 1007.00                       | 1007.00                    | 20                                                           | 22.00 27.00                                                                              | City Graver                                                 |                                              | 10.82                     | 1297.14                               | 1                                                 |                                                     |                                                 |
|            |                      |            |           |    |                                        |                               |                            |                                                              |                                                                                          |                                                             | 2017/08/29                                   | 10.80                     | 1297.10                               |                                                   |                                                     |                                                 |

<sup>1</sup> Greenhouse water supply includes four wells (FR GW WELL1, FR GW WELL2, FR GW WELL3 and FR GW WELL4) which are collectively referred to as FR GHHW. Ground elevation of FR GW WELL4 is included in Table 2. <sup>2</sup> Average hydraulic conductivity.
 \* The depth to water measured at GH\_GA-MW-2 was reported to be approximate due to issues with the water level probe.
 \*\* Reported depth to water was 0.49 m which was considered suspect based on other measurements collected on this day. Value was changed to 2.49 and discrepancy was considered to be a field transcription error.
 \*\*\* Based on continuous water elevation data, depth to water measurements appear to have been collected while sampling.

TOC: Top of casing

- indicates that data for the given field is unavailable

| Study Area    | Well ID     | Туре       | Operation | MU | LIDAR<br>Ground<br>Elevation<br>(masl) | Ground<br>Elevation<br>(masl) | TOC<br>Elevation<br>(masl) | Drilled Depth<br>(mbgs) | Screened<br>Depth<br>(mbgs) | Screened<br>Formation | Date of Static<br>Water Level<br>Measurement                                     | Depth to Water<br>(mbtoc)                      | Potentiometric<br>Elevation<br>(masl)                     | Depth to<br>Bedrock<br>(mbgs) | Hydrostratigraphic Unit                             | Hydraulic<br>Conductivity <sup>2</sup><br>(m/s) |
|---------------|-------------|------------|-----------|----|----------------------------------------|-------------------------------|----------------------------|-------------------------|-----------------------------|-----------------------|----------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|-------------------------------|-----------------------------------------------------|-------------------------------------------------|
| 7<br>(Cont'd) | RG_DW-02-20 | Domestic   | RDW       | 4  | 1169.15                                | -                             | -                          | 18.3                    | -                           | -                     | -                                                                                | -                                              | -                                                         | -                             | -                                                   | -                                               |
| (conta)       | EV_LSgw     | Monitoring | EVO       | 4  | 1133.05                                | 1133.00                       | 1133.93                    | 10.67                   | 5.18 - 6.71                 | Sand and Gravel       | 2017/03/07<br>2017/06/27<br>2017/08/22                                           | 5.43<br>3.77<br>4.09                           | 1128.50<br>1130.16<br>1129.84                             | -                             | Fluvial valley-bottom sediments                     | 1.00E-03                                        |
| 8             |             |            |           |    |                                        |                               |                            |                         |                             |                       | 2017/10/17<br>2017/03/29<br>2017/06/19<br>2017/06/29                             | 4.23<br>3.20<br>3.44<br>3.55                   | 1129.70<br>1123.69<br>1123.45<br>1123.34                  |                               |                                                     |                                                 |
|               | EV_OCgw     | Monitoring | EVO       | 4  | 1125.48                                | 1126.00                       | 1126.89                    | 15.54                   | 11.58 - 14.63               | Sand                  | 2017/08/15<br>2017/08/29<br>2017/09/21                                           | 3.64<br>4.32<br>5.29                           | 1123.25<br>1122.57<br>1121.60                             | 14.48                         | Fluvial valley-bottom sediments                     | 7.00E-07                                        |
|               | EV_BCgw     | Monitoring | EVO       | 4  | 1153.15                                | 1153.00                       | 1153.86                    | 23.16                   | 17.77 - 20.82               | Gravel                | 2017/10/18<br>2017/03/14<br>2017/03/30<br>2017/05/16                             | 3.61<br>3.11<br>2.62<br>2.15                   | 1123.28<br>1150.75<br>1151.24<br>1151.71                  |                               | Fluvial valley-bottom sediments                     | 1.00E-04                                        |
|               |             |            |           |    |                                        |                               |                            |                         |                             |                       | 2017/06/27<br>2017/08/23<br>2017/10/18<br>2017/03/16                             | 2.49**<br>3.01<br>3.14<br>1.67                 | 1151.37<br>1150.85<br>1150.72<br>1130.29                  |                               |                                                     |                                                 |
|               | EV_MCgwS    | Monitoring | EVO       | 4  | 1131.04                                | 1131.00                       | 1131.96                    | 10.67                   | 5.79 - 7.32                 | Clayey Silt           | 2017/06/28<br>2017/08/16<br>2017/09/21<br>2017/10/18                             | 2.24<br>2.90<br>4.80<br>6.38                   | 1129.72<br>1129.06<br>1127.16***<br>1125.58***            | -                             | Shallowest valley-bottom aquifer                    | 7.00E-08                                        |
| 9             | EV_MCgwD    | Monitoring | EVO       | 4  | 1131.04                                | 1131.00                       | 1131.84                    | 47.55                   | 24.50 - 27.55               | Sand and Clay         | 2017/03/16<br>2017/06/28<br>2017/08/16<br>2017/09/19<br>2017/10/18               | 2.61<br>3.07<br>3.65<br>4.03<br>4.21           | 1129.23<br>1128.77<br>1128.19<br>1127.81***<br>1127.63*** | -                             | Deepest valley-bottom aquifer                       | 3.00E-06                                        |
|               | EV_BRgw     | Supply     | EVO       | 4  | 1149.34                                | -                             | -                          | -                       | -                           | -                     | -                                                                                | -                                              | -                                                         | -                             | Fluvial sediments in the Michel Creek valley bottom | -                                               |
|               | EV_RCgw     | Supply     | EVO       | 4  | 1162.02                                | -                             | -                          | -                       | -                           | Sand and Gravel       | -                                                                                | -                                              | -                                                         | -                             | Fluvial sediments in the Michel Creek valley bottom | -                                               |
|               | EV_WH50gw   | Supply     | EVO       | 4  | 1159.14                                | -                             | -                          | -                       | -                           | -                     | -                                                                                | -                                              | -                                                         | -                             | Fluvial sediments in the Michel Creek valley bottom | -                                               |
|               | RG_DW-03-01 | Domestic   | RDW       | 4  | 1127.54                                | -                             | -                          | 15.24                   | 14.0 - 15.2                 | Gravel                | -                                                                                | -                                              | -                                                         | -                             | -                                                   | -                                               |
| 10            | EV_ECgw     | Monitoring | EVO       | 4  | 1327.17                                | 1327.00                       | 1327.74                    | 10.97                   | 2.59 - 4.12                 | Sand/Clay and Sand    | 2017/03/13<br>2017/06/20<br>2017/08/23<br>2017/10/25<br>2017/11/21<br>2017/11/22 | Frozen<br>1.86<br>2.35<br>2.59<br>1.78<br>2.05 | -<br>1325.88<br>1325.39<br>1325.15<br>1325.96<br>1325.69  | -<br>-<br>-<br>-              | Colluvium overlying till                            | 1.00E-08                                        |
|               | CM_MW1-OB   | Monitoring | СМО       | 4  | 1494.47                                | 1500.44                       | 1501.29                    | 37.19                   | 2.87 - 4.39                 | Gravel and Silt       | 2017/03/27<br>2017/06/19<br>2017/08/28<br>2017/12/07                             | 3.03<br>3.38<br>3.57<br>3.33                   | 1498.26<br>1497.91<br>1497.72<br>1497.96                  | -                             | Fluvial sediments in the Michel Creek valley bottom | 1.20E-04                                        |
| 11            | CM_MW1-SH   | Monitoring | СМО       | 4  | 1494.47                                | 1500.44                       | 1501.29                    | 37.19                   | 20.44 - 23.49               | Siltstone             | 2017/03/21<br>2017/06/19<br>2017/08/28<br>2017/12/07                             | 4.07<br>4.18<br>4.5<br>4.25                    | 1497.23<br>1497.12<br>1496.79<br>1497.04                  | -                             | Siltstone                                           | 2.00E-07                                        |
|               | CM_MW1-DP   | Monitoring | СМО       | 4  | 1494.47                                | 1500.44                       | 1501.29                    | 37.19                   | 34.22 - 37.19               | Siltstone             | 2017/03/28<br>2017/06/27<br>2017/09/06<br>2017/12/07                             | 3.47<br>3.16<br>4.25<br>3.99                   | 1497.82<br>1498.13<br>1497.04<br>1497.30                  | 18                            | Siltstone                                           | 6.00E-06                                        |
|               | RG_DW-07-01 | Domestic   | RDW       | 4  | 1506.50                                | -                             | -                          | 13.7                    | -                           | -                     | -                                                                                | -                                              | -                                                         | -                             | -                                                   | -                                               |
|               | EV_ER1gwS   | Monitoring | EVO       | 4  | 1114.41                                | 1115.25                       | 1115.96                    | 17.61                   | 14.56 - 17.61               | Sand and Gravel       | 2017/02/15<br>2017/06/28<br>2017/08/22<br>2017/10/24                             | 5.75<br>4.30<br>5.03<br>5.19                   | 1110.21<br>1111.66<br>1110.93<br>1110.77                  | _                             | Shallowest fluvial aquifer                          | -                                               |
| 12            | EV_ER1gwD   | Monitoring | EVO       | 4  | 1114.35                                | 1115.2                        | 1115.91                    | 30.78                   | 25.82 - 28.87               | Sand/Silty Sand       | 2017/02/15<br>2017/06/28<br>2017/08/22<br>2017/10/24                             | 5.40<br>3.97<br>4.69<br>4.85                   | 1110.51<br>1111.94<br>1111.22<br>1111.06                  | 27.89                         | Deepest fluvial aquifer                             | 9.00E-04                                        |
|               | RG_DW-03-04 | Supply     | RDW       | 4  | 1113.23                                | -                             | -                          | 32.4                    | 24.2 - 32.4                 | Sandy Gravel          | -                                                                                | -                                              | -                                                         | -                             | Fluvial sediments in the Elk River valley bottom    | -                                               |

| TABLE 2 (Cont'd): Well Installation | Details, Monitoring Values and | d Hvdrogeological Information |
|-------------------------------------|--------------------------------|-------------------------------|
|                                     |                                |                               |

<sup>1</sup> Greenhouse water supply includes four wells (FR GW WELL1, FR GW WELL2, FR GW WELL3 and FR GW WELL4) which are collectively referred to as FR GHHW. Ground elevation of FR GW WELL4 is included in Table 2.

<sup>2</sup> Average hydraulic conductivity. \* The depth to water measured at GH\_GA-MW-2 was reported to be approximate due to issues with the water level probe. \*\* Reported depth to water was 0.49 m which was considered suspect based on other measurements collected on this day. Value was changed to 2.49 and discrepancy was considered to be a field transcription error. \*\*\* Based on continuous water elevation data, depth to water measurements appear to have been collected while sampling.

TOC: Top of casing

- indicates that data for the given field is unavailable

|                                    |                                                          |                             |                | Fie          | d Parar               | neters        |                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Physic    | al Par                         | ameters                            | 5                |                               |                      |            |                         |                |               |                          | Dissol                | ved Inorgani             | ics                       |                            |                                  |                          |                                                                                                                             |                                  |
|------------------------------------|----------------------------------------------------------|-----------------------------|----------------|--------------|-----------------------|---------------|---------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|------------------------------------|------------------|-------------------------------|----------------------|------------|-------------------------|----------------|---------------|--------------------------|-----------------------|--------------------------|---------------------------|----------------------------|----------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Sample<br>Location                 | Sample<br>ID                                             | Sample Date<br>(yyyy mm dd) | රී Temperature | 뎦 pH (field) | a<br>bissolved Oxygen | S/S#<br>mo/S# | ர்<br>Specific Conductance<br>ய | Нd Д    | ы<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Правити<br>Прави<br>По<br>Прави<br>По<br>Прави<br>По<br>По<br>Прави<br>По<br>По<br>По<br>По<br>По<br>По<br>По<br>По<br>По<br>По<br>По<br>По<br>По | m<br>S/Sπ | କୁ Total Suspended Solids<br>୮ | 표<br>호 Total Dissolved Solids<br>고 | Z Turbidity, Lab | 로 Total Alkalinity (as CaCO3) | Alkalinity, Bicarboi | (as CaCO3) | P Ammonia, total (as N) | ga<br>T∕a<br>T | Zhloride<br>T | Д Fluoride               | B Nitrate (as N)<br>T | a<br>S<br>Nitrite (as N) | a<br>∭Kjeldahl Nitrogen-N | a<br>bortho-Phosphate<br>□ | ଞ୍ଚି Total Phosphorous as P<br>୮ | Sulphate<br>T            | ස්<br>ප්<br>ත්රියාන්ත ක්රීම | ප් Dissolved Organic Carbon<br>T |
| BC Standard                        |                                                          |                             |                |              | ,                     | ,             | ,                               | 0 - 0 0 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 1                              | ,                                  |                  | ,                             | -                    | 1          | d                       | ,              |               |                          |                       | f                        | ,                         | ,                          | ,                                | ,                        |                                                                                                                             |                                  |
| BCWQG Aquatic Life Shor            |                                                          |                             |                | 6.5-9.0      | n/a                   | n/a           | n/a                             | 6.5-9.0 | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a       | n/a                            | n/a                                | n/a              |                               | _                    |            | 24,500 <sup>ª</sup>     | n/a            | n/a           | 1,454-1,871 <sup>e</sup> | 32.8 (max)            | 0.06-0.6 <sup>t</sup>    | n/a                       | n/a                        | n/a                              | n/a                      | n/a                                                                                                                         | n/a                              |
| BCWQG Aquatic Life Long            | j-term Average (AW) <sup>b</sup>                         |                             | n/a            | n/a          | n/a                   | n/a           | n/a                             | n/a     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a       | n/a                            | n/a                                | n/a              | n/a                           | n                    | n/a 365-   | 1,780 <sup>ª</sup>      | n/a            | n/a           | n/a                      | 3                     | 0.02-0.2 <sup>t</sup>    | n/a                       | n/a                        | n/a                              | 128-429 <sup>e</sup>     | n/a                                                                                                                         | n/a                              |
| CSR Aquatic Life (AW) <sup>c</sup> |                                                          |                             | n/a            | n/a          | n/a                   | n/a           | n/a                             | n/a     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a       | n/a                            | n/a                                | n/a              | n/a                           | n                    | n/a 1,310  | 18,500 <sup>d</sup>     | n/a            | 1,500         | 2,000-3,000 <sup>e</sup> | 400                   | 0.2-2 <sup>f</sup>       | n/a                       | n/a                        | n/a                              | 1,280-4,290 <sup>e</sup> | n/a                                                                                                                         | n/a                              |
| CSR Irrigation Watering (IV        |                                                          |                             | n/a            | n/a          | n/a                   | n/a           | n/a                             | n/a     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a       | n/a                            | n/a                                | n/a              | n/a                           |                      |            | n/a                     | n/a            | 100           | 1,000                    | n/a                   | n/a                      | n/a                       | n/a                        | n/a                              | n/a                      | n/a                                                                                                                         | n/a                              |
| CSR Livestock Watering (L          | _W)                                                      |                             | n/a            | n/a          | n/a                   | n/a           | n/a                             | n/a     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a       | n/a                            | n/a                                | n/a              |                               | _                    |            | n/a                     | n/a            | 600           | 1,000                    | 100                   | 10                       | n/a                       | n/a                        | n/a                              | 1,000                    | n/a                                                                                                                         | n/a                              |
| CSR Drinking Water (DW)            |                                                          |                             | n/a            | n/a          | n/a                   | n/a           | n/a                             | n/a     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a       | n/a                            | n/a                                | n/a              | n/a                           | n                    | n/a i      | n/a                     | n/a            | 250           | 1,500                    | 10                    | 1                        | n/a                       | n/a                        | n/a                              | 500                      | n/a                                                                                                                         | n/a                              |
| Background<br>FR_HMW5              | FR HMW5 QSW 03042017 N                                   | 2017 06 21                  | 3.4            | 8.01         | 0.62                  | 362.9         | -                               | 8.22    | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 265       | < 1.0                          | 231                                | 0.18             | 158                           |                      |            | 65                      | < 0.050        | 1 24          | 655                      | < 0.005               | < 0.001                  | 0.061                     | 0.0246                     | 0.0258                           | 43.2                     | 0.58                                                                                                                        | 1.00                             |
| FR_HWW5                            | FR_HMW5_QTR_2017-09-11_N                                 | 2017 00 21                  | 3.4            | 8.05         | 0.02                  | 348.6         | -                               | 8.40    | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 303       | < 1.0                          | -                                  | 0.18             |                               |                      |            | 1.4                     | < 0.050        |               | 599                      | < 0.005               | < 0.001                  |                           | 0.0240                     |                                  | 43.2                     |                                                                                                                             | < 0.50                           |
|                                    | WG 2017-09-11 003                                        | Duplicate                   | -              | -            | -                     | -             | -                               | 8.33    | 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370       | < 1.0                          |                                    | 0.12             |                               |                      |            | 1.4                     | < 0.050        |               | 593                      | < 0.005               | < 0.001                  |                           | 0.0227                     |                                  | 44.5                     | < 0.50                                                                                                                      |                                  |
|                                    | QA/QC RPD%                                               | Duplicate                   | *              | *            | *                     | *             | -                               | 1       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         | *                              | 6                                  | *                | 100                           | ,                    |            | · 1                     | *              | 5             | 1                        | *                     | *                        | *                         | 6                          | 0.0223                           | < 1                      | *                                                                                                                           | *                                |
|                                    | FR HMW5 QTR 2017-10-02 N                                 | 2017 11 14                  | 3.6            | 8.22         | 0.34                  | 345.4         | -                               | 8.44    | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 383       | < 1.0                          | •                                  | 0.36             | 162                           | ,                    |            | 2.1                     | < 0.050        | _             | 511                      | < 0.005               | < 0.001                  | 0.087                     | 0.0214                     |                                  | 45.4                     | < 0.50                                                                                                                      | < 0.50                           |
|                                    | WG 2017-10-02 005                                        | Duplicate                   | -              | -            | -                     | -             | -                               | -       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -         | -                              | -                                  | -                |                               | -                    | -          | -                       | -              | -             | -                        | -                     | -                        | -                         | -                          | -                                | -                        | -                                                                                                                           | -                                |
|                                    | QA/QC RPD%                                               | Bapiloato                   | *              | *            | *                     | *             | -                               | *       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *         | *                              | *                                  | *                | *                             |                      | -          | *                       | *              | *             | *                        | *                     | *                        | *                         | *                          | *                                | *                        | *                                                                                                                           | *                                |
| Study Area 1                       |                                                          |                             |                |              |                       |               |                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                |                                    |                  | _                             | _                    |            |                         |                |               |                          |                       |                          |                           |                            |                                  |                          |                                                                                                                             |                                  |
| FR_09-01-A                         | FR_09-01-A_QSW_02012017_N                                | 2017 03 08                  | 2.8            | 7.73         | 8.43                  | 1,447         | -                               | 7.51    | 986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,540     | < 1.0                          | 1,240                              | 0.15             | 305                           | 5                    | - <        | 5.0                     | < 0.25         | 3.2           | 120                      | 47.2                  | < 0.005                  | 0.165                     | 0.0034                     | 0.0083                           | 481                      | < 0.50                                                                                                                      | < 0.50                           |
| _                                  | FR_09-01-A_QSW_03042017_N                                | 2017 06 01                  | 5.5            | 7.65         | 10.76                 | 990           | -                               | 8.04    | 557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | < 1.0                          | -                                  | 0.86             |                               |                      | - <        | 5.0                     |                |               | 200                      | 35.1                  | < 0.005                  | 0.486                     | 0.0021                     | 0.0029                           | 208                      | 0.76                                                                                                                        | 0.53                             |
|                                    | FR_09-01-A_QTR_2017-09-11_N                              | 2017 09 12                  | 8.6            | 7.34         | 5.41                  | 1,185         | -                               | 8.08    | 738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,170     | < 1.0                          |                                    | 0.13             |                               | _                    | - <        | 5.0                     | < 0.25         |               | < 100                    | 21.2                  | < 0.005                  |                           | 0.0016                     | 0.0233                           | 347                      | 0.63                                                                                                                        | 0.74                             |
|                                    | FR_09-01-A_QTR_2017-10-02_N                              | 2017 11 22                  | 6.9            | 7.30         | 7.71                  | 1,542         | -                               | 7.79    | 1,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,590     | < 1.0                          |                                    | -                | -                             | 3                    | - <        | 5.0                     |                |               | < 100                    | 54.3                  | 0.0127                   | 0.449                     | 0.0030                     |                                  | 486                      | 1                                                                                                                           | < 0.50                           |
| FR_09-01-B                         | FR_09-01-B_QSW_02012017_N                                | 2017 03 08                  | 4.7            | 7.45         | 5.76                  | 1,231         | -                               | 7.45    | 882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,320     | 36.4                           | 1,040                              | -                |                               | _                    | - <        | 5.0                     | < 0.25         |               | 120                      | 25.9                  | < 0.005                  | 0.613                     | 0.0027                     | 0.0154                           | 409                      | 1                                                                                                                           |                                  |
| _                                  | FR_09-01-B_QSW_03042017_N                                | 2017 06 01                  | 6.1            | 7.32         | 10.34                 | 1,102         | -                               | 8.18    | 636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | < 1.0                          | ,                                  | 0.27             |                               |                      |            | 5.0                     | < 0.25         |               | 170                      | 43.9                  | < 0.005                  | 0.457                     | 0.0014                     | 0.0044                           | 267                      | 1                                                                                                                           | < 0.50                           |
|                                    | FR_09-01-B_QTR_2017-09-11_N                              | 2017 09 12                  | 7.9            | 7.23         | 4.28                  | 1,012         | -                               | 8.19    | 613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 987       | < 1.0                          |                                    | 0.35             |                               |                      | - <        | 5.0                     | < 0.25         |               | 140                      | 12.7                  | < 0.005                  |                           | 0.0010                     | -                                | 296                      | 0.78                                                                                                                        | 0.88                             |
|                                    | FR_09-01-B_QTR_2017-10-02_N                              | 2017 11 22                  | 7.6            | 7.29         | 8.29                  | 1,298         | -                               | 7.85    | 890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,330     |                                | 1,050                              |                  |                               | _                    |            | 5.0                     | < 0.25         |               | 140                      | 29.6                  | < 0.005                  | 0.294                     | 0.0032                     | -                                | 407                      | 1                                                                                                                           | < 0.50                           |
| FR GHHW                            | FR_GHHW_QSW_02012017_N                                   | 2017 02 27                  | 7.9            | 7.57         | 5.84                  | 1,082         | -                               | 7.58    | 689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | < 1.0                          | -                                  | 0.30             |                               |                      |            | 5.0                     | < 0.050        |               | 96                       | 46.6                  | 0.0019                   |                           | 0.0101                     | 0.0155                           | 287                      | 0.87                                                                                                                        | 0.78                             |
|                                    | FR_GHHW_QSW_03042017_N                                   | 2017 06 01                  | 12.2           | 7.34         | 6.40                  | 1,024         | -                               | 8.09    | 597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | < 1.0                          |                                    | 0.88             |                               |                      |            | 7.5                     | < 0.25         | 2.9           | < 100                    | 33.4                  | < 0.005                  |                           |                            | 0 < 0.0020                       | 248                      | 0.76                                                                                                                        | 0.60                             |
|                                    | FR_GHHW_QTR_2017-09-11_N                                 | 2017 09 13                  | 17.7           | 7.33         | 3.32                  | 898           | -                               | 8.26    | 527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 942       | < 1.0                          |                                    | 1.32             |                               |                      |            | 9.2                     | < 0.050        |               | 94                       | 27.3                  | 0.398                    | 0.499                     |                            | 0.0014                           | 195                      | 2.08                                                                                                                        | 1.57                             |
| FR_GH_WELL4                        | FR_GH_WELL4_QTR_2017-10-02_N                             | 2017 11 15                  | 8.7            | 7.48         | 5.39                  | 976           | -                               | 8.35    | 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,050     |                                |                                    | 0.38             |                               |                      |            | 5.0                     | < 0.25         |               | < 100                    | 34.9                  | 0.0191                   |                           |                            | 0 < 0.0020                       | 243                      | 0.93                                                                                                                        | 0.77                             |
| Study Area 2                       |                                                          |                             |                |              |                       | 0.0           |                                 | 0.00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .,        |                                |                                    |                  |                               |                      |            |                         |                |               |                          | ••                    |                          |                           |                            |                                  |                          |                                                                                                                             |                                  |
| LC_PIZDC1307                       | LC_PIZDC1307_WG_2017-03-13_NP                            | 2017 03 16                  | 2.4            | 8.22         | 1.16                  | -             | 307                             | 8.22    | 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 368       | 1.6                            | 206                                | 7.47             | 222                           | 2                    | - 9        | 3.5                     | < 0.050        | < 0.50        | 527                      | < 0.005               | < 0.001                  | 0.187                     | 0.0182                     | 0.0150                           | < 0.30                   | 1.70                                                                                                                        | 1.67                             |
| _                                  | LC_PIZDC1307_WG_2017-06-12_NP                            | 2017 06 12                  | 10.1           | 8.19         | 0.37                  | -             | 356.6                           | 8.28    | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 378       |                                | 192                                | 11.6             |                               | -                    |            | 25                      | < 0.050        |               | 513                      | < 0.005               | < 0.001                  |                           |                            | 0.0225                           | < 0.30                   | 2.14                                                                                                                        |                                  |
|                                    | LC_PIZDC1307_WG_2017-09-11_NP                            | 2017 09 19                  | 4.9            | 8.19         | 0.52                  | -             | 329.6                           | 8.36    | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 369       | 2.2                            | 207                                | 7.80             | 220                           | )                    | - 1        | 13                      | < 0.050        | < 0.50        | 519                      | < 0.005               | < 0.001                  | -                         | < 0.0010                   | 0.0080                           | < 0.30                   | -                                                                                                                           | 1.52                             |
|                                    | LC_PIZDC1307_WG_2017-12-11_NP                            | 2017 11 01                  | 3.2            | 8.16         | 0.68                  | -             | 289.6                           | 8.30    | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 380       | 2.0                            | 235                                | 9.71             | 220                           |                      |            | 05                      | < 0.050        |               | 442                      | 0.0058                | < 0.001                  | -                         |                            | 0.0100                           | < 0.30                   | -                                                                                                                           | 1.71                             |
| LC_PIZDC1308                       | LC_PIZDC1308_WG_2017-03-13_NP                            | 2017 03 13                  | 3              | 7.69         | 0.2                   | -             | 380.1                           | 8.01    | 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 449       | 1.8                            | 261                                | 9.14             |                               | _                    |            | 2.9                     | < 0.050        |               | 272                      | 0.0055                | < 0.001                  |                           |                            | 0.0097                           | 2.50                     | 1.95                                                                                                                        | 1.93                             |
|                                    | LC_PIZDC1308_WG_2017-06-12_NP                            | 2017 06 12                  | 7.2            | 7.21         | 0.71                  | -             | 513                             | 7.84    | 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 569       | 1.7                            | 301                                | 1.79             |                               | _                    |            | 5.0                     | < 0.050        |               | 132                      | 0.159                 | < 0.001                  | 0.096                     | < 0.0010                   |                                  | 4.74                     | 2.78                                                                                                                        | 2.57                             |
|                                    | LC_PIZDC1308_WG_2017-09-11_NP                            | 2017 09 19                  | 5.0            | 7.40         | 0.19                  | -             | 425.9                           | 8.31    | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 441       | < 1.0                          |                                    | 4.47             |                               |                      |            | 4.8                     | < 0.050        |               | 271                      | < 0.005               | < 0.001                  | -                         | < 0.0010                   |                                  | 1.92                     | -                                                                                                                           | 1.77                             |
|                                    | FD_WG_20170911_020                                       | Duplicate                   | -              | -            | -                     | -             | -                               | 8.22    | 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 444       | < 1.0                          | 258                                | 4.60             | 265                           | 5                    | - 4        | 7.7                     | < 0.050        | < 0.50        | 272                      | 0.005                 | < 0.001                  | -                         | < 0.0010                   | 0.0279                           | 2.06                     | -                                                                                                                           | 2.04                             |
|                                    | QA/QC RPD%                                               | 004744.04                   | *              | *            | *                     | -             | *                               | 1       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         | *                              | 3                                  | 3                |                               |                      | -          | 6                       | *              | *             | < 1                      | *                     | *                        | -                         | *                          | *                                | 7                        | -                                                                                                                           | *                                |
|                                    | LC_PIZDC1308_WG_2017-12-11_NP                            |                             | 4              | 7.48         | 0.09                  | -             | 346.3                           | 8.05    | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                | 278                                |                  |                               |                      |            |                         | < 0.050        |               | 230                      | 0.0627                | < 0.001                  |                           |                            | 0.0035                           | 1.84                     | -                                                                                                                           | 1.88                             |
|                                    | FD_WG_20171211_023                                       | Duplicate                   | -              | *            | -                     | -             | -                               | 8.17    | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 2.0                            | 304                                | 10.6             |                               |                      |            |                         | < 0.050<br>*   | < 0.50        | 224                      | 0.0075                | < 0.001                  | -                         | 0.0042                     | 0.0031                           | 2.02                     |                                                                                                                             | 1.99                             |
| Study Area 3                       | QA/QC RPD%                                               |                             |                |              |                       | -             |                                 | 1       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2         |                                | 9                                  |                  | 2                             |                      | -          | 2                       |                |               | 3                        |                       |                          | -                         |                            |                                  | 9                        | -                                                                                                                           |                                  |
| GH POTW09                          | GH POTW09 WG 2017-02-07 NP                               | 2017 02 07                  | 62             | 7 38         | 2.48                  | 618.5         | -                               | 7.72    | 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 726       | 75                             | 474                                | 20.4             | 2/19                          | 2                    | -          | 0.3                     | < 0.050        | 6 38          | 798                      | 0.0111                | 0.0018                   | < 0.050                   | < 0.0010                   | 0.0031                           | 156                      | 0.79                                                                                                                        | 0.80                             |
|                                    | GH_POTW09_WG_2017-02-07_NP<br>GH_POTW09_WG_2017-06-19_NP |                             | 9.2            |              | 9.52                  | 660           | -                               | 8.33    | 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                | 516                                |                  |                               |                      |            |                         | < 0.050        |               | 665                      | 0.0320                | < 0.0018                 |                           |                            | 0.0031                           |                          |                                                                                                                             | 1.05                             |
|                                    | GH_POTW09_WG_2017-06-19_NP<br>GH_POTW09_WG_2017-06-19_FD |                             | 9.2            | 7.01         | 9.52                  |               | -                               | 8.32    | 372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                | 529                                |                  |                               |                      |            |                         | < 0.050        |               | 665                      | 0.0320                | 0.0026                   |                           |                            | 0.0020                           | 158                      |                                                                                                                             | 0.61                             |
|                                    | QA/QC RPD%                                               | Dupilcale                   | *              | *            | *                     | *             | -                               | < 1     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         | *                              |                                    | 1                |                               | ,                    |            | 48                      | *              |               | 005                      | 1                     | *                        | *                         | *                          | *                                | 0                        |                                                                                                                             | *                                |
|                                    | GH_POTW09_WG_2017-07-05_NP                               | 2017 07 05                  | -              | -            | -                     | -             | -                               | 8.19    | 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                | 517                                |                  | -                             |                      |            | -                       | < 0.050        |               | 776                      | 0.0375                | < 0.001                  | < 0.050                   |                            | 0 < 0.0020                       | 159                      | < 0.50                                                                                                                      |                                  |
|                                    | GH_POTW09_WG_2017-07-01_NP                               |                             |                |              | 3.34                  | 637           | -                               | 8.30    | 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                | 501                                |                  |                               | -                    |            | 6.0                     | 0.063          |               | 860                      | 0.0154                | < 0.001                  |                           |                            | 0.0020                           | 160                      |                                                                                                                             | 0.57                             |
|                                    | GH_POTW09_WG_2017-10-01_NP                               |                             |                |              | 4.86                  |               | -                               | 8.38    | 416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 741       |                                |                                    |                  |                               |                      |            |                         | < 0.050        |               | 609                      | 0.0184                |                          |                           |                            | 0.0022                           | 162                      |                                                                                                                             | 0.56                             |
| L                                  |                                                          |                             |                |              |                       |               |                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                |                                    |                  |                               |                      |            |                         |                |               |                          |                       |                          |                           |                            |                                  |                          |                                                                                                                             |                                  |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD\*\* Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline Concentration greater than CSR Aquatic Life (AW) standard <u>BOLD</u>

| SHADOW  | Concentration greater than CSR Irrigation Watering (IW) standard |
|---------|------------------------------------------------------------------|
| INVERSE | Concentration greater than CSR Livestock Watering (LW) standard  |
| SHADED  | Concentration greater than CSR Drinking Water (DW) standard      |

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with pH.

<sup>e</sup> Guideline/standard varies with Hardness.

<sup>f</sup> Guideline/standard varies with Chloride.

|                                                      |                                                              |                          |             | Fie          | ld Parar         | neters         |                      |              |                 | Physic       | al Par                 | ameter                 | s              |                             |                                       |                           |                  |            |                          | Dissol         | ved Inorgani          | ics                 |                 |                        |                          |                      |                          |
|------------------------------------------------------|--------------------------------------------------------------|--------------------------|-------------|--------------|------------------|----------------|----------------------|--------------|-----------------|--------------|------------------------|------------------------|----------------|-----------------------------|---------------------------------------|---------------------------|------------------|------------|--------------------------|----------------|-----------------------|---------------------|-----------------|------------------------|--------------------------|----------------------|--------------------------|
| Sample                                               | Sample                                                       | Sample Date              | Temperature | pH (field)   | Dissolved Oxygen | Conductivity   | Specific Conductance | На           | Hardness        | Conductivity | Total Suspended Solids | Total Dissolved Solids | Turbidity, Lab | Total Alkalinity (as CaCO3) | Alkalinity, Bicarbonate<br>(as CaCO3) | Ammonia, total (as N)     | Bromide          | Chloride   | Fluoride                 | Nitrate (as N) | Nitrite (as N)        | Kjeldahl Nitrogen-N | Ortho-Phosphate | Total Phosphorous as P | Sulphate                 | Total Organic Carbon | Dissolved Organic Carbon |
| Location                                             | ID                                                           | (yyyy mm dd)             | °c          | рН           | mg/L             | µS/cm          | µS/cm                | рН           | mg/L            | μS/cm        |                        | mg/L                   | NTU            |                             | mg/L                                  | μg/L                      | mg/L             | mg/L       | μg/L                     | mg/L           | mg/L                  | mg/L                | mg/L            | mg/L                   | mg/L                     | mg/L                 | mg/L                     |
| BC Standard                                          |                                                              |                          |             |              |                  |                |                      | · · · ·      |                 |              | · · · · ·              |                        |                |                             |                                       |                           | 1                |            |                          |                |                       |                     |                 |                        |                          | 1                    |                          |
| BCWQG Aquatic Life Short                             | t-term Maximum (AW) <sup>a</sup>                             |                          | n/a         | 6.5-9.0      | n/a              | n/a            | n/a                  | 6.5-9.0      | n/a             | n/a          | n/a                    | n/a                    | n/a            | n/a                         | n/a                                   | 5,680-24,500 <sup>d</sup> | n/a              | n/a        | 1,454-1,871 <sup>e</sup> | 32.8 (max)     | 0.06-0.6 <sup>t</sup> | n/a                 | n/a             | n/a                    | n/a                      | n/a                  | n/a                      |
| BCWQG Aquatic Life Long                              | -term Average (AW) <sup>b</sup>                              |                          | n/a         | n/a          | n/a              | n/a            | n/a                  | n/a          | n/a             | n/a          | n/a                    | n/a                    | n/a            | n/a                         | n/a                                   | 365-1,780 <sup>d</sup>    | n/a              | n/a        | n/a                      | 3              | 0.02-0.2 <sup>f</sup> | n/a                 | n/a             | n/a                    | 128-429 <sup>e</sup>     | n/a                  | n/a                      |
| CSR Aquatic Life (AW) <sup>c</sup>                   |                                                              |                          | n/a         | n/a          | n/a              | n/a            | n/a                  | n/a          | n/a             | n/a          | n/a                    | n/a                    | n/a            | n/a                         | n/a                                   | 1,310-18,500 <sup>d</sup> | n/a              | 1,500      | , ,                      | 400            | 0.2-2 <sup>f</sup>    | n/a                 | n/a             | n/a                    | 1,280-4,290 <sup>e</sup> | n/a                  | n/a                      |
| CSR Irrigation Watering (IW                          |                                                              |                          | n/a         | n/a          | n/a              | n/a            | n/a                  | n/a          | n/a             | n/a          | n/a                    | n/a                    | n/a            | n/a                         | n/a                                   | n/a                       | n/a              | 100        | 1,000                    | n/a            | n/a                   | n/a                 | n/a             | n/a                    | n/a                      | n/a                  | n/a                      |
| CSR Livestock Watering (L<br>CSR Drinking Water (DW) | .vv)                                                         |                          | n/a<br>n/a  | n/a<br>n/a   | n/a<br>n/a       | n/a<br>n/a     | n/a<br>n/a           | n/a<br>n/a   | n/a<br>n/a      | n/a<br>n/a   | n/a<br>n/a             | n/a<br>n/a             | n/a<br>n/a     | n/a<br>n/a                  |                                       | n/a<br>n/a                | n/a<br>n/a       | 600<br>250 | 1,000<br>1,500           | 100<br>10      | 10                    | n/a<br>n/a          | n/a<br>n/a      | n/a<br>n/a             | 1,000<br>500             | n/a<br>n/a           | n/a<br>n/a               |
| Study Area 3 (Cont'd)                                |                                                              |                          | n/α         | i va         | 11/Cl            | n/a            | 11/a                 | 1/α          | 1/a             | 11/0         | 11/a                   | 11/a                   | 11/a           | 11/0                        | 11/a                                  | 11/a                      | 11/a             | 200        | 1,500                    | 10             |                       | 11/a                | n/a             | 11/a                   | 550                      | π/α                  | 170                      |
| GH_POTW10                                            | GH_POTW10_WG_2017-02-07_NP                                   | 2017 02 07               | 6.4         | 7.65         | 3.93             | 603.7          | -                    | 7.76         | 365             | 712          | 1.3                    | 465                    | 11.4           | 201                         | -                                     | 63.8                      | < 0.050          | 4.45       | 837                      | 0.675          | 0.0177                | < 0.050             | < 0.0010        | 0.0030                 | 182                      | 0.85                 | 0.82                     |
|                                                      | GH_POTW10_WG_2017-02-07_FD                                   | Duplicate                | -           | -            | -                | -              | -                    | 7.73         | 353             | 705          | 1.7                    | 476                    | 11.6           | 198                         | -                                     | 77.2                      | < 0.050          |            | 861                      | 0.677          | 0.0175                |                     | < 0.0010        | 0.0031                 | 182                      | 0.82                 |                          |
|                                                      | QA/QC RPD%                                                   |                          | *           | *            | *                | *              | -                    | < 1          | 3               | 1            | *                      | 2                      | 2              | 2                           | -                                     | 19                        | *                | 1          | 3                        | < 1            | 1                     | *                   | *               | *                      | 0                        | *                    | *                        |
|                                                      | GH_POTW10_WG_2017-06-19_NP                                   | 2017 06 19               | 9.9         | 7.46         | 7.74             | 851            | -                    | 8.27         | 513             | 1,000        | _                      | 723                    | 12.5           | 244                         | -                                     | 55.5                      | < 0.25           |            | 120                      | < 0.025        | < 0.005               |                     |                 | < 0.0020               | 278                      |                      | 1.39                     |
|                                                      | GH_POTW10_WG_2017-07-01_NP<br>GH_POTW10_WG_2017-10-01_NP     | 2017 09 25               | 7.8         | 7.63         | 5.05             | 609            | -                    | 8.33         | 381             |              | < 1.0                  |                        | 11.2           | 199                         | -                                     | 83.9                      | < 0.050          |            | 839                      | 0.453          | 0.0145                |                     |                 | 0.0048                 | 191                      |                      | < 0.50                   |
| GH_POTW15                                            | GH_POTW10_WG_2017-10-01_NP<br>GH_POTW15_WG_2017-02-07_NP     | 2017 11 16<br>2017 02 07 | 7.1<br>6.9  | 7.62<br>7.49 | 4.55<br>2.69     | 665<br>760     | -                    | 8.39<br>7.64 | 399<br>464      | 728<br>887   | 1.4<br>1.3             | 492<br>621             | 12.1           | 208<br>222                  | -                                     | 71.9<br>34.6              | < 0.050<br>0.096 |            | 652<br>176               | 0.448          | 0.0157                |                     |                 | 0.0022                 | 195<br>234               | < 0.50               | < 0.50<br>1.21           |
| GH_POTWI5                                            | GH_POTW15_WG_2017-02-07_NP<br>GH_POTW15_WG_2017-06-19_NP     | 2017 02 07               | 8.7         | 7.49         | 2.69             | 629            | -                    | 8.34         | 382             | 730          | < 1.0                  |                        | 10.2           | 212                         | -                                     | 62.8                      | < 0.096          |            | 818                      | 0.390          | 0.0051                |                     |                 | < 0.0022               | 190                      | 0.85                 | 1.21                     |
|                                                      | GH POTW15_WG_2017-07-01 NP                                   | 2017 09 25               | 8.4         | 7.39         | 1.17             | 771            | -                    | 8.24         | 475             | 855          | 1.2                    | 651                    | 12.2           | 208                         | -                                     | 46.0                      | 0.159            |            | 170                      | < 0.005        | < 0.001               |                     |                 | 0.0039                 | 250                      | 1.08                 | 1.19                     |
|                                                      | GH_POTW15_WG_2017-10-01_NP                                   | 2017 11 16               | 8.0         | 7.49         | 6.56             | 863            | -                    | 8.26         | 516             | 936          | 6.4                    | 632                    | 12.6           | 226                         | -                                     | 43.3                      | 0.138            |            | 126                      | < 0.005        | < 0.001               |                     |                 | 0.0051                 | 254                      |                      | 1.32                     |
| GH_POTW17                                            | GH_POTW17_WG_2017-01-03_NP                                   | 2017 01 03               | -           | -            | -                | -              | -                    | 7.55         | 739             | 1,140        | 23.9                   | 951                    | 31.3           | 276                         | -                                     | 14.4                      | < 0.25           | 19.5       | 140                      | 0.281          | 0.0124                | 0.080               | < 0.0010        | 0.0112                 | 464                      | 1.83                 | 1.17                     |
|                                                      | GH_POTW17_WG_2017-02-07_NP                                   | 2017 02 07               | 5.9         | 7.67         | 7.81             | 1,086          | -                    | 7.90         | 719             | 1,260        | 209                    | 989                    | 116            | 274                         | -                                     | 13.0                      | < 0.050          | 20.4       | 139                      | 0.302          | 0.0036                | 0.317               | < 0.0010        | 0.215                  | 450                      | 3.34                 | 2.48                     |
|                                                      | GH_POTW17_WG_2017-06-19_NP                                   | 2017 06 19               | 9.2         | 7.69         | 10.36            | 1,118          | -                    | 8.29         | 737             | 1,290        | _                      | 1,050                  | _              | 283                         | -                                     | 11.6                      | < 0.25           |            | 130                      | 0.505          | 0.0094                |                     |                 | < 0.0020               | 475                      | 1.14                 | 1.15                     |
|                                                      | GH_POTW17_WG_2017-07-05_NP                                   | 2017 07 05               | -           | -            | -                | -              | -                    | 8.20         | 729             | 1,290        | _                      | 1,050                  |                | 267                         | -                                     | 11.0                      | < 0.25           |            | 140                      | 0.414          | 0.0106                |                     |                 | < 0.0020               | 448                      | 1.10                 |                          |
|                                                      | GH_POTW17_WG_2017-07-01_NP<br>GH_POTW17_WG_2017-10-01_NP     | 2017 09 25<br>2017 11 21 | 8.5<br>6.9  | 7.4<br>7.45  | 4.09<br>3.68     | 1,033<br>1,145 | -                    | 8.06<br>8.20 | 709<br>780      | 1,110        |                        | 961<br>959             | 4.71           | 245<br>284                  | -                                     | 19.4<br>12.0              | < 0.25<br>< 0.25 |            | 100<br>130               | 0.311<br>0.415 | < 0.005<br>0.0052     |                     |                 | 0.0025                 | 450<br>450               | 1.06                 | 0.92                     |
| GH_MW-RLP-1D                                         | GH_MW-RL-1D_WG_2017-02-02_NP                                 | 2017 02 02               | 1.5         | 7.45         | 0.5              | -              | -                    | 7.73         | 255             | 466          | 1.5                    |                        | 5.01           | 204                         |                                       | < 5.0                     | < 0.25           |            | 1 800                    | 0.0063         | < 0.001               |                     |                 | 0.0029                 | 39.0                     | 1.68                 |                          |
|                                                      | GH_MW-RL-1D_WG_2017-02-02_FD                                 | Duplicate                | 1.5         | -            | 0.5              | -              | _                    | 7.75         | 233             | 400          | 1.5                    |                        | 4.72           | 225                         |                                       | < 5.0                     | < 0.050          |            | 1 700                    | < 0.005        | < 0.001               |                     |                 | 0.0073                 | 38.8                     | 1.63                 | 1.71                     |
|                                                      | QA/QC RPD%                                                   | Duplicate                | *           | *            | *                | -              | -                    | <1           | 7               | 2            | *                      | 230                    | 4.72           | 1                           | -                                     | *                         | *                | *          | 1,730                    | *              | *                     | *                   | *               | *                      | 1                        | *                    | *                        |
|                                                      | GH_MW-RL-1D_WG_2017-06-19_NP                                 | 2017 06 22               | 8.5         | 8.1          | 0.42             | -              | -                    | 8.32         | 235             | 431          | 4.8                    |                        | 30.8           | 187                         | -                                     | 27.7                      | < 0.050          | < 0.50     | 1 900                    | < 0.005        | < 0.001               | < 0.050             | < 0.0010        | < 0.0020               | 29.9                     | 1.50                 | 1.66                     |
|                                                      | GH MW-RLP WG 2017-07-01 NP                                   | 2017 09 26               | 11.2        | 7.98         | 4.28             | 394.4          | -                    | 8.20         | 244             | 412          | 42.8                   |                        | 87.8           | 228                         | -                                     | < 5.0                     |                  | < 0.50     | 1,300                    | 0.0131         | < 0.001               |                     |                 | 0.0448                 | 18.9                     | 4.4                  | 3.8                      |
|                                                      | GH_MW-RLP_WG_2017-10-01_NP                                   | 2017 12 13               | 2.7         | 8.05         | 4.48             | 395.6          | -                    | 8.29         | 220             | 449          | 16.8                   |                        | 76.2           | 232                         | -                                     | 5.3                       |                  | < 0.50     | 1,680                    | < 0.005        | < 0.001               |                     |                 | 0.0212                 | 8.09                     |                      | 1.61                     |
| Study Area 4                                         |                                                              | 2011 12 10               | 2.7         | 0.00         | 1.10             | 000.0          |                      | 0.20         | 220             | 110          | 10.0                   | 212                    | 10.2           | 202                         |                                       | 0.0                       | < 0.000          | < 0.00     | 1,000                    | 0.000          | 0.001                 | 0.17                | 0.0010          | 0.0212                 | 0.00                     | 1.02                 | 1.01                     |
| GH_MW-ERSC-1                                         | GH_MW-ERSC-1_WG_2017-01-31_NP                                | 2017 01 31               | 3.8         | 7.29         | 6.42             | 461.8          | -                    | 7.57         | 311             | 562          | 2.3                    | 331                    | 3.13           | 304                         | -                                     | 62.2                      | < 0.050          | 3.62       | 358                      | 0.0184         | < 0.001               | 0.109               | < 0.0010        | 0.0176                 | 15.8                     | 1.79                 | 1.82                     |
| _                                                    | GH_MW-ERSC-1_WG_2017-01-31_FD                                |                          | -           | -            | -                | -              | -                    | 7.55         | 301             | 562          | 1.5                    |                        | 2.90           | 307                         | -                                     | 56.1                      | < 0.050          |            | 327                      | 0.0202         | < 0.001               |                     |                 | 0.0143                 | 16.1                     | 1.57                 |                          |
|                                                      | QA/QC RPD%                                                   | 1                        | *           | *            | *                | *              | -                    | < 1          | 3               | 0            | *                      | 4                      | 8              | 1                           | -                                     | 10                        | *                | 16         | 9                        | *              | *                     | *                   | *               | 21                     | 2                        | *                    | *                        |
|                                                      | GH_MW-ERSC-1_WG_2017-06-19_NP                                |                          | 9.8         | 7.52         | 5.96             | 300.1          | -                    | 8.12         | -               | 328          | 1.0                    |                        | 1.33           | 158                         | -                                     | < 5.0                     | < 0.050          |            | 116                      | 0.543          | < 0.001               |                     | 0.0012          |                        | 29.7                     | 1.50                 |                          |
|                                                      | GH_ERSC-1_WG_2017-07-01_NP                                   | 2017 09 20               | 8.6         | 7.3          | 7.25             | 506            | -                    | 8.12         | 334<br>641      | 520          | 18.0                   |                        | 10.5           | 236                         | -                                     | 12.1                      | < 0.050          |            | 144                      | 0.608<br>9.04  | < 0.001               | 0.085               | 0.0047          | 0.0489                 | 59.6                     | 2.05                 |                          |
| GH_GA-MW-1                                           | GH_MW-ERSC-1_WG_2017-10-01_NP<br>GH_GA-MW-1_WG_2017-01-30_NP |                          | 5.55        | 7.41         | 9.32<br>4.27     | 1,088          | -                    | 8.10<br>8.03 | 228             |              | 29.2                   |                        | 5.06<br>4.78   | 181                         | -                                     | < 5.0<br>94.6             | < 0.25<br>< 0.25 |            | 120<br>640               | 9.04           | < 0.005<br>< 0.005    | 0.273               |                 |                        | 442<br>204               | 1.97                 | 1.20<br>2.76             |
|                                                      | GH_GA-MW-1_WG_2017-01-30_NP                                  |                          |             |              | 4.27             | -              | -                    | 8.18         | 233             |              |                        |                        | 2.76           |                             |                                       | 9.3                       | 0.208            |            | 590                      | 1.14           | 0.0120                |                     |                 | 0.0308                 | 192                      |                      | 2.04                     |
|                                                      | GH_GA_MW-1_WG_2017-07-01_NP                                  |                          |             | 7.28         | 1.5              | 1,254          | -                    | 8.52         | 363             |              |                        |                        | 5.77           |                             |                                       | 222                       |                  | 21.7       | 390                      | 0.177          | 0.0081                |                     |                 | 0.0497                 | 344                      |                      | 8.83                     |
|                                                      | GH_GA-MW-1_WG_2017-10-01_NP                                  | 2017 10 19               | 6.3         | 7.49         | 3.02             | 1,110          | -                    | 8.55         | 296             | 1,190        | 1.7                    | 825                    | 1.53           | 393                         | -                                     | 229                       | 0.46             |            | 380                      | 0.523          | 0.0054                |                     |                 | 0.0419                 | 295                      |                      | 5.17                     |
| GH_GA-MW-2                                           | GH_GA-MW-2_WG_2017-01-30_NP                                  |                          |             | 7.58         | 0.55             | -              | -                    | 8.08         | 362             |              |                        |                        | 1.91           |                             |                                       |                           | < 0.25           |            | 120                      | 0.837          | 0.0691                |                     |                 | 0.0065                 | 176                      |                      | 0.75                     |
|                                                      | GH_GA-MW-2_WG_2017-06-19_NP                                  |                          |             | 11           | 0.67             | -              | -                    | 8.06         | 366             |              |                        |                        | 0.35           |                             |                                       |                           | < 0.050          |            | 104                      | 1.50           | < 0.001               |                     |                 | < 0.0040               | 171                      |                      | 0.86                     |
|                                                      | GH_GA-MW-2_WG_2017-07-01_NP<br>GH_GA-MW-2_WG_2017-07-01_FD   |                          |             | 7.54         | 4.01             | 648            | -                    | 7.98         | 423             |              |                        |                        | 5.74           |                             |                                       | 12.6                      | 0.067            |            | 102                      | 0.85           | 0.0944                |                     |                 | 0.0092                 | 189                      |                      | 0.61                     |
|                                                      | GH_GA-MW-2_WG_2017-07-01_FD<br>QA/QC RPD%                    | Duplicate                | -           | -            | -                | -              | -                    | 8.02         | <u>385</u><br>9 | 685          | 4.0                    |                        | 1.85           | 170                         |                                       | 13.6                      | 0.068            | 1.27       | 97<br>*                  | 1.56<br>59     | 0.100                 | < 0.050             | *               | 0.0067                 | 192<br>2                 | 0.71                 | 0.67<br>*                |
|                                                      | GH GA-MW-2 WG 2017-10-01 NP                                  | 2017 11 27               | 6.0         | 7.47         | 0.49             | 740            | -                    | 8.20         | 448             |              |                        |                        | 0.72           |                             |                                       | < 5.0                     | < 0.050          |            | 98                       | 5.52           | 0.0384                |                     |                 | 0.0047                 | 214                      |                      | 0.86                     |
| GH_GA-MW-3                                           | GH_GA-MW-3_WG_2017-01-30_NP                                  |                          |             | 7.7          | 0.53             | -              | -                    | 7.75         | 218             |              |                        |                        | 36.9           |                             |                                       |                           | < 0.050          |            | 700                      | < 0.005        | < 0.001               |                     |                 | 0.0190                 | 33.3                     |                      | 0.72                     |
|                                                      | GH_GA-MW-3_WG_2017-06-19_NP                                  |                          |             | 7.65         | 1.06             | -              | -                    | 8.15         | 281             |              |                        |                        | 16.5           |                             |                                       |                           | < 0.050          |            | 593                      | < 0.005        | 0.0018                |                     |                 | 0.0260                 | 84.0                     | -                    | 1.03                     |
|                                                      | GH_GA-MW-3_WG_2017-07-01_NP                                  | 2017 09 20               | 6.1         | 7.6          | 0.48             | 522            | -                    | 8.37         | 256             |              |                        |                        | 84.4           |                             |                                       | 363                       | < 0.050          | 5.73       | 647                      | < 0.005        | < 0.001               | 0.330               | 0.0072          | 0.0250                 | 38.7                     |                      | < 0.50                   |
|                                                      | GH_GA-MW-3_WG_2017-10-01_NP                                  |                          |             | 7.66         | 0.16             | -              | -                    | 8.20         | 274             |              |                        |                        | 75.1           |                             |                                       |                           | < 0.050          |            | 652                      | 0.161          | 0.002                 |                     |                 | 0.0151                 | 41.1                     |                      | 0.56                     |
| GH_GA-MW-4                                           | GH_GA-MW-4_WG_2017-01-30_NP                                  |                          |             | 7.52         | 5.12             | -              | -                    | 8.13         | 377             |              |                        |                        | 0.12           |                             |                                       | 49.8                      | < 0.25           |            | 150                      | 1.92           | < 0.005               |                     |                 | 0.0022                 | 211                      |                      | 0.70                     |
|                                                      | GH_GA-MW-4_WG_2017-01-30_FD                                  | Duplicate                | -           | -            | -                | -              | -                    | 8.04         | 367             |              | _                      |                        | 0.14           |                             | _                                     | < 5.0                     | < 0.25           |            | 150                      | 1.96           | < 0.005               |                     |                 | < 0.0020               | 215                      |                      | 0.69                     |
| ļ                                                    | QA/QC RPD%                                                   |                          | *           | *            | *                | -              | -                    | 1            | 3               | 1            |                        | < 1                    | *              | 1                           | -                                     | <b>^</b>                  | *                | 2          | 0                        | 2              | *                     | *                   | *               | *                      | 2                        |                      | *                        |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline

| BOLD**  | Concentration gre |
|---------|-------------------|
| BOLD    | Concentration gre |
| SHADOW  | Concentration gre |
| INVERSE | Concentration gre |
| SHADED  | Concontration are |

Concentration greater than CSR Aquatic Life (AW) standard

Concentration greater than CSR Irrigation Watering (IW) standard

Concentration greater than CSR Livestock Watering (LW) standard

Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with pH.

<sup>e</sup> Guideline/standard varies with Hardness.

- <sup>f</sup> Guideline/standard varies with Chloride.
- <sup>9</sup> Samples inferred to be mislabelled in field.

|                                        |                                                            |                          |              | Fie          | ld Paran         | neters       |                      |              |            | Physic       | cal Par                | ameters                | S              |                             |                                       |                           |                    |          |                          | Dissol         | ved Inorgani          | ics                 |                 |                          |                          |                      |                          |
|----------------------------------------|------------------------------------------------------------|--------------------------|--------------|--------------|------------------|--------------|----------------------|--------------|------------|--------------|------------------------|------------------------|----------------|-----------------------------|---------------------------------------|---------------------------|--------------------|----------|--------------------------|----------------|-----------------------|---------------------|-----------------|--------------------------|--------------------------|----------------------|--------------------------|
| Sample                                 | Sample                                                     | Sample Date              | Temperature  | pH (field)   | Dissolved Oxygen | Conductivity | Specific Conductance | Н            | Hardness   | Conductivity | Total Suspended Solids | Total Dissolved Solids | Turbidity, Lab | Total Alkalinity (as CaCO3) | Alkalinity, Bicarbonate<br>(as CaCO3) | Ammonia, total (as N)     | Bromide            | Chloride | Fluoride                 | Nitrate (as N) | Nitrite (as N)        | Kjeldahl Nitrogen-N | Ortho-Phosphate | Total Phosphorous as P   | Sulphate                 | Total Organic Carbon | Dissolved Organic Carbon |
| Location                               | ID                                                         | (yyyy mm dd)             | °C           | рН           | mg/L             | µS/cm        | µS/cm                | рН           | mg/L       | µS/cm        | n mg/L                 | . mg/L                 | NTU            | mg/L                        | mg/L                                  | µg/L                      | mg/L               | mg/L     | µg/L                     | mg/L           | mg/L                  | mg/L                | mg/L            | mg/L                     | mg/L                     | mg/L                 | mg/L                     |
| BC Standard<br>BCWQG Aquatic Life Shor | t-term Maximum (A\M/) <sup>a</sup>                         |                          | n/a          | 6.5-9.0      | n/a              | n/a          | n/a                  | 6.5-9.0      | n/a        | n/a          | n/a                    | n/a                    | n/a            | n/a                         | n/a                                   | 5,680-24,500 <sup>d</sup> | n/a                | n/a      | 1,454-1,871 <sup>e</sup> | 32.8 (max)     | 0.06-0.6 <sup>f</sup> | n/a                 | n/a             | n/a                      | n/a                      | n/a                  | n/a                      |
| BCWQG Aquatic Life Long                |                                                            |                          | n/a          | n/a          | n/a              | n/a          | n/a                  | n/a          | n/a        | n/a          | n/a                    | n/a                    | n/a            | n/a                         |                                       | 365-1,780 <sup>d</sup>    | n/a                | n/a      | n/a                      | 3              | 0.02-0.2 <sup>f</sup> | n/a                 | n/a             | n/a                      | 128-429 <sup>e</sup>     | n/a                  | n/a                      |
| CSR Aquatic Life (AW) <sup>c</sup>     |                                                            |                          | n/a          | n/a          | n/a              | n/a          | n/a                  | n/a          | n/a        | n/a          | n/a                    | n/a                    | n/a            | n/a                         | n/a                                   | 1,310-18,500 <sup>d</sup> |                    | 1,500    | 2,000-3,000 <sup>e</sup> | 400            | 0.2-2 <sup>f</sup>    | n/a                 | n/a             | n/a                      | 1,280-4,290 <sup>e</sup> | n/a                  | n/a                      |
| CSR Irrigation Watering (IV            | N)                                                         |                          | n/a          | n/a          | n/a              | n/a          | n/a                  | n/a          | n/a        | n/a          | n/a                    | n/a                    | n/a            | n/a                         | n/a                                   | n/a                       | n/a                | 100      | 1,000                    | n/a            | n/a                   | n/a                 | n/a             | n/a                      | n/a                      | n/a                  | n/a                      |
| CSR Livestock Watering (L              | _W)                                                        |                          | n/a          | n/a          | n/a              | n/a          | n/a                  | n/a          | n/a        | n/a          | n/a                    | n/a                    | n/a            | n/a                         | n/a                                   | n/a                       | n/a                | 600      | 1,000                    | 100            | 10                    | n/a                 | n/a             | n/a                      | 1,000                    | n/a                  | n/a                      |
| CSR Drinking Water (DW)                |                                                            |                          | n/a          | n/a          | n/a              | n/a          | n/a                  | n/a          | n/a        | n/a          | n/a                    | n/a                    | n/a            | n/a                         | n/a                                   | n/a                       | n/a                | 250      | 1,500                    | 10             | 1                     | n/a                 | n/a             | n/a                      | 500                      | n/a                  | n/a                      |
| Study Area 4 (Cont'd)<br>GH_GA-MW-4    | GH GA-MW-4 WG 2017-06-19 NP                                | 2017 06 20               | 9.9          | 10.43        | 5.39             | -            | -                    | 8.12         | 277        | 502          | ~ 1 0                  | 309                    | 0.20           | 213                         | 1                                     | < 5.0                     | < 0.050            | 1 1 1    | 190                      | 3.18           | < 0.001               | 0.275               | 0.0025          | < 0.0040                 | 63.0                     | 2 20                 | 2.45                     |
| (Cont'd)                               | GH_GA-MW-4_WG_2017-06-19_NP                                | Duplicate                | 9.9          | -            | 5.59             | -            | -                    | 8.13         | -          |              | < 1.0                  |                        | 0.29           |                             |                                       | < 5.0                     | < 0.050            |          | 172                      | 3.16           | < 0.001               | 0.275               | 0.0025          |                          | 63.0                     | 2.39                 |                          |
| (conta)                                | QA/QC RPD%                                                 | Duplicato                | *            | *            | *                | -            | -                    | < 1          | *          | 2            | *                      | < 1                    | *              | 1                           | -                                     | *                         | *                  | 1        | 10                       | < 1            | *                     | 2                   | *               | *                        | 0                        | *                    | *                        |
|                                        | GH_GA_MW-4_WG_2017-07-01_NP                                | 2017 09 19               | 9.4          | 7.55         | 4.87             | 421.4        | -                    | 8.44         | 246        | 463          | < 1.0                  | 297                    | 0.32           | 180                         | -                                     | 24.3                      | < 0.050            | 2.46     | 139                      | 0.638          | < 0.001               | 0.494               | < 0.0010        | 0.0014                   | 68.0                     | 0.72                 | 0.74                     |
|                                        | GH_GA_MW-4_WG_2017-07-01_FD                                | Duplicate                | -            | -            | -                | -            | -                    | 8.41         | 248        | 466          | < 1.0                  | 305                    | 0.15           | 180                         | -                                     | < 5.0                     | < 0.050            |          | 142                      | 0.623          | < 0.001               | 0.080               | < 0.0010        | 0.0016                   | 67.7                     |                      | 0.74                     |
|                                        | QA/QC RPD%                                                 |                          | *            | *            | *                | *            | -                    | < 1          | 1          | 1            | *                      | 3                      | *              | 0                           | -                                     | *                         | *                  | 6        | 2                        | 2              | *                     | *                   | *               | *                        | < 1                      | *                    | *                        |
|                                        | GH_GA-MW-4_WG_2017-10-01_NP<br>WG 2017-10-01 009           | 2017 11 27               | 4.9          | 7.62         | 4.86             | 433.3        | -                    | 8.14         | 250<br>251 |              | < 1.0                  |                        |                | 189<br>194                  | -                                     | < 5.0                     | < 0.050            |          | 183<br>174               | 1.73<br>1.74   | < 0.001               |                     |                 | 0.0013                   | 66.4<br>66.7             |                      | 0.85                     |
|                                        | QA/QC RPD%                                                 | Duplicate                | -            | *            | -                | -            | -                    | 8.34         | < 1        | 405          | < 1.0                  | 306                    | 0.17           | 194                         | -                                     | 5.4                       | < 0.050<br>*       | 3.29     | 5                        | 1.74           | < 0.001               | 0.131               | 0.0024<br>*     | 0.0015                   | < 1                      | 2.56                 | 1.23                     |
| RG_DW-01-03                            | RG DW 01-03 WP 2017-03-06 NP                               | 2017 03 06               | 6.62         |              | 9.1              | -            | 377                  | -            | 204        | -            | -                      | -                      | · -            | -                           | 159                                   | -                         |                    | 1.12     | -                        | 0.512          | < 0.001               | -                   | -               | · ·                      | 42.1                     | -                    | -                        |
|                                        | RG DW-01-03 WP 2017-05-31 NP                               | 2017 05 31               | 6.7          | 7.86         | 10.4             | -            | 380.7                | 8.36         | 200        |              | < 1.0                  | 281                    |                |                             | -                                     | < 5.0                     | < 0.050            |          | 153                      | 0.596          | < 0.001               |                     |                 | 0 < 0.0020               | 46.0                     |                      | 9.64                     |
|                                        | RG_DW-01-03_WP_2017-08-22_NP                               | 2017 08 22               | 6.6          | 7.69         | 10.96            | -            | 382.6                | 8.24         | 202        | 385          | < 1.0                  | 254                    | < 0.10         | ) 157                       | -                                     | < 5.0                     | < 0.050            | 1.71     | 146                      | 0.655          | < 0.001               | < 0.050             | 0.0014          | < 0.0020                 | 44.8                     | < 0.50               | 0.62                     |
|                                        | RG_DW-01-03_WP_Q4-2017_NP                                  | 2017 11 21               | 6.0          | 7.77         | 10.58            | -            | 358.3                | 8.26         | 202        | 341          | < 1.0                  | 226                    | < 0.10         | ) 156                       | -                                     | < 5.0                     | < 0.050            |          | 150                      | 0.470          | < 0.001               | 0.067               | < 0.0010        | 0 < 0.0020               | 35.7                     | < 0.50               | 0.59                     |
| RG_DW-01-07                            | RG_DW-01-07_WP_2017-03-01_NP                               | 2017 03 01               | 6.7          | -            | 11               | -            | 1,231                | -            | 460        | -            | -                      | -                      | -              | -                           | 326                                   | -                         | -                  | 47.7     | -                        | 0.634          | < 0.005               | -                   | -               | -                        | 64.5                     | -                    | -                        |
|                                        | RG_DW-01-07_WP_2017-05-29_NP                               | 2017 05 29               | 6.5          | 7.04         | 8.1              | -            | 949                  | 7.75         | 527        | 898          |                        |                        | 0.23           |                             | -                                     | < 5.0                     |                    | 24.1     | < 100                    | 1.06           | < 0.005               | 0.074               |                 | < 0.0020                 | 64.0                     | 1.02                 |                          |
|                                        | RG_DW-01-07_WP_2017-08-21_NP<br>RG_DW-DUP_WQ_2017-08-21_NP | 2017 08 21<br>Duplicate  | 6.5          | 6.98         | 8.23             | -            | 860                  | 7.69<br>7.66 | 459<br>437 | 839          |                        | 544<br>536             | 0.33           | 393<br>410                  | -                                     | < 5.0<br>< 5.0            | < 0.25<br>< 0.25   | 9.45     | < 100<br>< 100           | 0.997<br>0.997 | < 0.005<br>< 0.005    | 0.096               | 0.0012          | < 0.0020                 | 65.1<br>65.0             | 0.77                 |                          |
|                                        | QA/QC RPD%                                                 | Duplicate                | *            | *            | *                | -            | *                    | < 1          | 5          | 1            | *                      | 1                      | 14             | 410                         | -                                     | *                         | *                  | 1        | *                        | 0.997          | *                     | 20                  | 22              | *                        | < 1                      | 12                   | 4                        |
|                                        | RG_DW-01-07_WP_Q4-2017_NP                                  | 2017 11 15               | 7.1          | 7.00         | 6.85             | -            | 816                  | 7.95         | 501        | 709          | 1.2                    | 489                    |                | 383                         | -                                     | < 5.0                     | < 0.25             | 7.97     | < 100                    | 0.863          | < 0.005               |                     |                 | < 0.0020                 | 66.6                     | 0.81                 |                          |
| Study Area 6                           | •                                                          |                          |              |              |                  |              |                      |              |            |              |                        |                        |                |                             |                                       |                           |                    |          |                          |                |                       |                     |                 |                          |                          |                      |                          |
| LC_PIZP1101                            | LC_PIZP1101_WG_2017-03-13_N                                | 2017 03 15               | 4.9          | 8.26         | 0.25             | -            | 1,448                | 8.07         | 126        | 296          | 30.0                   | 171                    | 38.9           | 166                         | -                                     | 21.1                      | < 0.050            | 0.51     | 1,790                    | 0.0074         | < 0.001               | 0.053               | 0.0276          | 0.0369                   | 3.44                     | 1.03                 | 0.66                     |
|                                        | LC_PIZP1101_WG_2017-06-12_N                                | 2017 06 13               | 13           | 8.02         | 0.58             | -            | 285.1                | 8.18         | 118        | 306          | 33.7                   | 157                    | 42.3           | 182                         | -                                     | 15.0                      | < 0.050            | 0.58     | 1,760                    | < 0.005        | < 0.001               | < 0.050             | 0.0040          | 0.0539                   | 2.97                     | 0.87                 | 0.58                     |
|                                        | LC_PIZP1101_WG_2017-09-11_N                                | 2017 09 21               | 8.2          | 8.02         | 0.62             | -            | 259.4                | 8.57         | 123        | 301          | 16.8                   | 179                    | 54.3           | 183                         | -                                     | 19.4                      | < 0.050            | 0.73     | 1,840                    | < 0.005        | < 0.001               | < 0.050             | 0.0073          | 0.0686                   | 2.70                     | 1.27                 | 0.88                     |
|                                        | LC_PIZP1101_WG_2017-12-11_N                                | 2017 11 03               | 6.7          | 8            | 1.93             | -            | 231.1                | 8.26         | 124        | 298          | 429                    | 419                    | 918            | 235                         | -                                     | 140                       | < 0.050            | 0.55     | 1,870                    | < 0.005        | < 0.001               | 1.59                | 0.0092          | 1.19                     | 2.84                     | 13.2                 | < 0.50                   |
| Study Area 7                           |                                                            | 0047.00.00               | 4.50         | 7 5          | 0.57             | 004          |                      | 0.04         | 200        | 000          | 110                    | 404                    | 0.51           | 405                         | 1                                     | .50                       | .0.050             | 4 50     | F47                      | 0.407          | . 0.004               | .0.050              | . 0.0040        | 0.0044                   | 4.40                     | .0.50                | 0.50                     |
| EV_GV3gw                               | EV_GV3GW_WG_2017-03-29_NP<br>EV_GV3GW_WG_2017-06-28_NP     | 2017 03 29<br>2017 06 27 | 4.59<br>10.7 | 7.5<br>7.37  | 3.57<br>2.83     | 624          | -<br>662             | 8.04<br>8.06 | 336<br>343 | 600<br>647   | 1.9<br>1.6             |                        |                | 195<br>204                  | -                                     | < 5.0<br>< 5.0            | < 0.050<br>< 0.050 |          | 517<br>509               | 0.137<br>0.147 | < 0.001<br>< 0.001    |                     |                 | 0.0044                   | 148<br>142               |                      | < 0.50                   |
|                                        | EV EC5GW WG 2017-06-28 NP                                  | Duplicate                | -            | -            | -                | -            | -                    | 8.08         | 338        | 642          |                        |                        | _              | 204                         | -                                     | < 5.0                     | < 0.050            |          | 503                      | 0.143          | < 0.001               | < 0.050             |                 | < 0.0000                 | 142                      | 1.08                 |                          |
|                                        | QA/QC RPD%                                                 | Bupilouto                | *            | *            | *                | -            | *                    | < 1          | 1          | 1            | *                      | < 1                    | *              | < 1                         | -                                     | *                         | *                  | 2        | 1                        | 3              | *                     | *                   | *               | *                        | 0                        | *                    | *                        |
|                                        | EV_GV3GW_WG_2017-08-15_NP                                  | 2017 08 15               | 8.57         | 7.48         | 3.62             | -            | 637                  | 7.92         | 336        | 646          | < 1.0                  | 404                    | < 0.10         | ) 196                       | -                                     | < 5.0                     | < 0.050            | 1.60     | 486                      | 0.136          | < 0.001               | < 0.050             | 0.0020          | < 0.0020                 | 141                      | < 0.50               | < 0.50                   |
|                                        | EV_EC5GW_WG_2017-08-15_NP                                  | Duplicate                |              | -            | -                | -            | -                    | 7.90         | 332        |              |                        | 429                    |                |                             |                                       | < 5.0                     | < 0.050            |          | 486                      | 0.137          |                       |                     |                 | < 0.0020                 | 141                      |                      | < 0.50                   |
|                                        | QA/QC RPD%                                                 | 001700.00                | *            | *            | *                | -            | *                    | < 1          | 1          |              |                        | 6                      |                |                             |                                       | *                         | *                  |          | 0                        | 1              | *                     | *                   | *               | *                        | 0                        |                      | *                        |
|                                        | EV_GV3GW_WG_2017-08-29_NP<br>EV_GV3GW_WG_2017-10-17_NP     |                          |              | 7.4          | 3.2<br>3.82      | -            | 626<br>634           | 8.10<br>8.23 | 285<br>318 |              |                        | 393<br>435             |                |                             |                                       | < 5.0<br>6.5              | < 0.050<br>0.053   |          | 445<br>410               | 0.140          | < 0.001<br>< 0.001    |                     |                 | 0 < 0.0020               | 142<br>140               |                      | 0.64                     |
|                                        | EV_GV3GW_WG_2017-10-17_NP<br>EV_EC5GW_WG_2017-10-17_NP     | 2017 10 17<br>Duplicate  | 0.00         | -            | -                | -            | - 634                | 8.35         | 310        |              |                        | 435                    |                |                             |                                       | 6.9                       | < 0.053            |          | 410                      | 0.132          | < 0.001               |                     |                 | < 0.0028                 | 140                      |                      | < 0.50                   |
|                                        | QA/QC RPD%                                                 | 2 aprilotto              | *            | *            | *                | -            | *                    | 1            | 1          |              | _                      | 3                      |                |                             |                                       | *                         | *                  | 1        | 4                        | 2              | *                     | *                   | *               | *                        | 0                        |                      | *                        |
| RG_DW-02-20                            | RG_DW-02-20_WP_2017-03-01_NP                               | 2017 03 01               | 6.17         | -            | 9.4              | -            | 694                  | -            | 251        | -            | -                      | -                      | -              | -                           | 161                                   | -                         | -                  |          | -                        | 2.75           | < 0.001               | -                   | -               | -                        | 74.6                     | -                    | -                        |
|                                        | RG_DW-02-20_WP_2017-05-29_NP                               |                          | 6.9          | 7.63         | 8.92             | -            | 477.3                | 7.95         | 253        |              |                        | 292                    |                |                             |                                       | < 5.0                     | < 0.050            |          | 196                      | 2.97           | < 0.001               |                     |                 | 0 < 0.0020               | 74.8                     |                      | 0.77                     |
|                                        | RG_DW-DUP_WQ_2017-05-29_NP                                 | Duplicate                | -            | -            | -                | -            | -                    | 8.09         | 251        |              | _                      | 272                    |                |                             |                                       | < 5.0                     | < 0.050            |          | 196                      | 2.97           | < 0.001               |                     |                 | 0 < 0.0020               | 74.9                     |                      | 0.71                     |
|                                        | QA/QC RPD%                                                 | 2017 09 24               | *            | *            | *                | -            | *                    | 1<br>9.10    | 221        |              |                        | 7<br>255               |                |                             |                                       |                           | *                  | 0        | 0                        | 0              | *                     | 3                   |                 | *                        | < 1                      |                      | 8                        |
|                                        | RG_DW-02-20_WP_2017-08-21_NP<br>RG_DW-02-20_WP_Q4-2017_NP  | 2017 08 21<br>2017 11 15 |              | 7.45<br>7.46 | 8.2<br>8.80      | -            | 431.7<br>438.3       | 8.10<br>8.37 | 221<br>255 |              |                        | 255                    |                |                             |                                       | < 5.0<br>< 5.0            | < 0.050<br>< 0.050 |          | 203 206                  | 1.81<br>2.05   | < 0.001<br>< 0.001    |                     |                 | ) < 0.0020<br>) < 0.0020 | 52.8<br>56.5             |                      | 0.74                     |
|                                        | WP_Q4-2017_001                                             | Duplicate                | -            | -            | -                | -            |                      | 8.39         | 253        |              |                        | 260                    |                |                             |                                       | < 5.0                     | < 0.050            |          | 200                      | 2.03           | < 0.001               |                     |                 | 0 < 0.0020               | 56.4                     |                      | 0.58                     |
|                                        | QA/QC RPD%                                                 |                          | *            | *            | *                | -            | *                    | < 1          | 1          |              |                        | 6                      |                |                             |                                       | *                         | *                  |          | 0                        | < 1            | *                     |                     |                 | *                        | < 1                      |                      | *                        |
|                                        |                                                            |                          |              |              |                  |              |                      |              |            |              |                        |                        |                |                             |                                       |                           |                    |          |                          |                |                       |                     |                 |                          |                          |                      |                          |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD\*\* Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline

| LD | Concentration greater than C | SR Aquatic Life (AV | V) standard |
|----|------------------------------|---------------------|-------------|

| BOLD   | Concentration greater than CSF | R Aquatic Life  | (AW) standard        |
|--------|--------------------------------|-----------------|----------------------|
| SHADOW | Concentration greater than CSF | R Irrigation Wa | tering (IW) standard |

Concentration greater than CSR Livestock Watering (LW) standard INVERSE SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with pH.

<sup>e</sup> Guideline/standard varies with Hardness.

<sup>f</sup> Guideline/standard varies with Chloride.

|                                                          | 1                                 |                             |                | Fiel         | ld Paran           | neters                |                                |            |                 | Physical Pa                                                       | ameter                 | rs               |                               |                                           |                           |              |                 |                          | Dissol     | ved Inorgani           | ics                      |                    |                                 |                      |                        |                            |
|----------------------------------------------------------|-----------------------------------|-----------------------------|----------------|--------------|--------------------|-----------------------|--------------------------------|------------|-----------------|-------------------------------------------------------------------|------------------------|------------------|-------------------------------|-------------------------------------------|---------------------------|--------------|-----------------|--------------------------|------------|------------------------|--------------------------|--------------------|---------------------------------|----------------------|------------------------|----------------------------|
|                                                          |                                   |                             |                |              | a i ai ai          |                       |                                |            |                 |                                                                   |                        |                  |                               |                                           |                           |              |                 |                          | 2.5301     | l                      |                          |                    |                                 |                      |                        |                            |
| Sample<br>Location                                       | Sample                            | Sample Date<br>(yyyy mm dd) | රී Temperature | 문 pH (field) | 표 Dissolved Oxygen | πonductivity<br>πoγ§f | t<br>Specific Conductance<br>a | Нd Н       | Hardness<br>T/D | Sr<br>2001<br>2011<br>2011<br>2011<br>2011<br>2011<br>2011<br>201 | Total Dissolved Solids | Z Turbidity, Lab | 로 Total Alkalinity (as CaCO3) | B Alkalinity, Bicarbonate<br>더 (as CaCO3) | An A                      | Bromide      | a<br>T Chloride | ноride                   | mg/L       | ≝<br>So Nitrite (as N) | a<br>Kjeldahl Nitrogen-N | M/ Ortho-Phosphate | ⊟<br>T∕D Total Phosphorous as P | ∭sulphate            | g Total Organic Carbon | a Dissolved Organic Carbon |
| BC Standard                                              |                                   | ()))))                      | v              | <b>P</b>     |                    | <b>Me</b> /eiii       | µ0/0111                        | P          |                 | µ.e, e                                                            |                        |                  |                               |                                           |                           | <u>9</u> ,=  |                 | r5/-                     |            |                        |                          | <u>g</u> /=        |                                 |                      |                        |                            |
| BCWQG Aquatic Life Shor                                  | rt-term Maximum (AW) <sup>a</sup> |                             | n/a            | 6.5-9.0      | n/a                | n/a                   | n/a                            | 6.5-9.0    | n/a             | n/a n/a                                                           | n/a                    | n/a              | n/a                           | n/a                                       | 5,680-24,500 <sup>d</sup> | n/a          | n/a             | 1,454-1,871 <sup>e</sup> | 32.8 (max) | 0.06-0.6 <sup>f</sup>  | n/a                      | n/a                | n/a                             | n/a                  | n/a                    | n/a                        |
|                                                          |                                   |                             | n/a            | n/a          | n/a                | n/a                   | n/a                            | n/a        | n/a             | n/a n/a                                                           | n/a                    | n/a              | n/a                           | n/a                                       | 365-1,780 <sup>d</sup>    | n/a          | n/a             | n/a                      | 3          | 0.02-0.2 <sup>f</sup>  | n/a                      | n/a                | n/a                             | 128-429 <sup>e</sup> | n/a                    | n/a                        |
| BCWQG Aquatic Life Long                                  | g-term Average (AW)               |                             |                |              |                    |                       |                                |            |                 |                                                                   |                        |                  |                               |                                           |                           |              |                 |                          | 400        |                        |                          |                    |                                 |                      |                        |                            |
| CSR Aquatic Life (AW) <sup>c</sup>                       | A/)                               |                             | n/a            | n/a          | n/a                | n/a                   | n/a                            | n/a        | n/a             | n/a n/a                                                           | n/a                    | n/a              | n/a                           | n/a                                       | 1,310-18,500 <sup>°</sup> | n/a          | 1,500           | 1                        |            | 0.2-2 <sup>†</sup>     | n/a                      | n/a                | n/a                             | 1,280-4,290          | n/a                    | n/a                        |
| CSR Irrigation Watering (IN<br>CSR Livestock Watering (I |                                   |                             | n/a<br>n/a     | n/a<br>n/a   | n/a<br>n/a         | n/a<br>n/a            | n/a<br>n/a                     | n/a<br>n/a | n/a<br>n/a      | n/a n/a<br>n/a n/a                                                | n/a<br>n/a             | n/a<br>n/a       | n/a<br>n/a                    | n/a<br>n/a                                | n/a<br>n/a                | n/a<br>n/a   | 100<br>600      | 1,000                    | n/a<br>100 | n/a<br>10              | n/a<br>n/a               | n/a<br>n/a         | n/a<br>n/a                      | n/a<br>1,000         | n/a<br>n/a             | n/a<br>n/a                 |
| CSR Drinking Water (DW)                                  |                                   |                             | n/a            | n/a          | n/a                | n/a                   | n/a                            | n/a        | n/a             | n/a n/a                                                           |                        |                  | n/a                           | n/a                                       | n/a                       | n/a          | 250             | 1,500                    | 100        | 10                     | n/a                      | n/a                | n/a                             | 500                  | n/a                    |                            |
| Study Area 8                                             |                                   |                             | π/α            | 1#a          | 11/a               | 11/a                  | 11/a                           | 11/a       | 11/a            | 11/a 11/a                                                         | n/d                    | 11/d             | n/a                           | i i/d                                     | 11/a                      | i v a        | 200             | 1,000                    | 10         | 1 1                    | 11/a                     | n/a                | 11/a                            | 500                  | 11/a                   | 1.74                       |
| EV_LSgw                                                  | EV LSGW WG 2017-03-07 NP          | 2017 03 07                  | 9.6            | 5.19         | 0.43               | 988                   | -                              | 7.73       | 549             | 981 8.6                                                           | 566                    | 14.4             | 483                           | -                                         | 103                       | < 0.25       | 12.4            | 270                      | < 0.025    | < 0.005                | 0.208                    | 0.0013             | 0.174                           | 80.1                 | 2.44                   | 1.94                       |
| og#                                                      | EV_LSGW_WG_2017-06-28 NP          | 2017 06 27                  | 12.99          | 6.97         | 0.45               | -                     | 1,172                          | 7.94       | 651             | 1,120 30.6                                                        | _                      | 39.1             | 564                           | -                                         | 171                       | < 0.25       |                 | 280                      | < 0.025    | < 0.005                | 0.269                    |                    | 0.0527                          | 81.1                 | 2.89                   |                            |
|                                                          | EV LSGW WG 2017-08-22 NP          | 2017 08 22                  | 15.42          | 7.1          | 0.44               | -                     | 1,150                          | 7.74       | 632             | 1,080 7.6                                                         | 642                    |                  | 608                           | -                                         | 203                       | < 0.25       | 10.2            | 190                      | 0.027      | < 0.005                | 0.198                    |                    | 0.0601                          | 79.5                 | 2.64                   |                            |
|                                                          | EV_LSGW_WG_2017-10-17_NP          | 2017 10 17                  | 13.92          | 7.13         | 0.49               | -                     | 1,094                          | 8.15       | 594             | 816 18.7                                                          | _                      |                  | 450                           | -                                         | 208                       | < 0.25       | 9.5             | 210                      | 0.196      | < 0.005                | 0.73                     | < 0.0010           |                                 | 90.5                 |                        | 2.88                       |
| EV_OCgw**                                                | EV_OCGW_WG_2017-03-29_NP          | 2017 03 29                  | 5.07           | 7.78         | 0.39               | 454                   | -                              | 8.20       | 151             | 440 16.5                                                          |                        |                  | 180                           | -                                         | 69.9                      | < 0.050      |                 | 1,330                    | < 0.005    | < 0.001                | 0.163                    |                    | 0.0175                          | 58.2                 | 1.20                   |                            |
| _ 0                                                      | EV_EC6GW_WG_2017-03-29_NP         | Duplicate                   | -              | -            | -                  | -                     | -                              | 8.22       | 150             | 428 7.5                                                           |                        |                  | 182                           | -                                         | 68.2                      |              | 1.94            | 1.320                    | < 0.005    | < 0.001                | 0.159                    |                    | 0.0208                          | 57.5                 | 1.12                   |                            |
|                                                          | QA/QC RPD%                        | Bupilouto                   | *              | *            | *                  | *                     | -                              | < 1        | 1               | 3 75                                                              | 6                      | 55               | 1                             | -                                         | 2                         | *            | 4               | 1                        | *          | *                      | *                        | *                  | 17                              | 1                    | *                      | *                          |
|                                                          | EV_OCGW_WG_2017-06-21_NP          | 2017 06 19                  | 10.45          | 7.63         | 1.41               | -                     | 472                            | 8.32       | 147             | 437 4.3                                                           | 275                    |                  | 181                           |                                           | 71.8                      | < 0.050      |                 | 1,190                    | < 0.005    | < 0.001                | 0.100                    | 0.0048             | 0.0156                          | 56.3                 | 1.02                   | 0.78                       |
|                                                          | EV MC5GW WG 2017-06-21 NP         | Duplicate                   | 10.40          | 7.00         | -                  | -                     | -                              | 8.32       | 145             | 436 8.1                                                           | 285                    | 2.53             | 179                           |                                           | 75.5                      | < 0.050      |                 | 1,210                    | < 0.005    | < 0.001                | 0.198                    |                    | 0.0224                          | 57.4                 | 0.87                   |                            |
|                                                          | QA/QC RPD%                        | Duplicate                   | *              | *            | *                  | -                     | *                              | 0.32       | 145             | <1 *                                                              | 4                      | 2.55             | 179                           | -                                         | 5                         | < 0.050<br>* | 2.06            | 2                        | < 0.005    | < 0.001                | 0.196                    | 0.0039             | 36                              | 2                    | *                      | 1.13                       |
|                                                          | EV OCGW WG 2017-06-29 NP          | 2017 06 29                  |                |              | 0.26               |                       | 451                            | 8.29       | 145             |                                                                   |                        | 3.12             | 192                           | -                                         | 73.6                      | < 0.050      | -               |                          | < 0.005    | < 0.001                | 0.115                    | 0.0066             | 0.0249                          | ∠<br>55.8            |                        | 1.02                       |
|                                                          |                                   |                             | 9.03           | 7.79         |                    | -                     |                                |            |                 |                                                                   |                        |                  | 182                           | -                                         |                           |              |                 |                          |            |                        | 0.115                    |                    |                                 |                      | 0.94                   |                            |
|                                                          | EV_MC6GW_WG_2017-06-29_NP         | Duplicate                   | - *            | -            | -                  | -                     | -                              | 8.27       | 144             | 458 4.0                                                           | 258                    | 3.82             | 184                           | -                                         | 73.7                      | < 0.050      | 1.91            | 1,210                    | < 0.005    | < 0.001                | 0.110                    |                    | 0.0230                          | 56.7                 | 0.99                   | 0.54                       |
|                                                          | QA/QC RPD%                        |                             |                |              |                    | -                     |                                | < 1        | 1               | < 1 *                                                             | 4                      | 20               | 1                             | -                                         | < 1                       | *            | 2               | 2                        |            | *                      | *                        | 24                 | 8                               | 2                    |                        | *                          |
|                                                          | EV_OCGW_WG_2017-08-15_NP          | 2017 08 15                  | 10.92          | 7.84         | 0.31               | -                     | 455                            | 8.20       | 144             | 468 2.5                                                           |                        | 1.58             | 180                           | -                                         | 72.2                      | < 0.050      |                 | 1,190                    | < 0.005    | 0.0014                 | 0.101                    | 0.0077             | 0.0122                          | 56.1                 |                        | ) < 0.50                   |
|                                                          | EV_MC5GW_WG_2017-08-15_NP         | Duplicate                   | -              | -            | -                  | -                     | -                              | 8.23       | 143             | 461 2.1                                                           | 275                    | 1.31             | 177                           | -                                         | 73.0                      | < 0.050      |                 | ,                        | < 0.005    | < 0.001                | 0.115                    | 0.0078             | 0.0113                          | 55.9                 |                        | 0 < 0.50                   |
|                                                          | QA/QC RPD%                        | r                           | *              | *            | *                  | -                     | *                              | <          | 1               | 2 *                                                               | 1                      | 19               | 2                             | -                                         | 1                         | *            | < 1             | 0                        | *          | *                      | *                        | 1                  | 8                               | < 1                  | *                      | *                          |
|                                                          | EV_OCGW_WG_2017-08-29_NP          | 2017 08 29                  | 8.83           | 7.66         | 0.42               | -                     | 4.39                           | 8.26       | 135             | 440 1.7                                                           | 250                    | 1.98             | 187                           | -                                         | 66.5                      | < 0.050      | 1.86            | 1,170                    | < 0.005    | 0.0012                 | 0.107                    | 0.0047             | 0.0066                          | 52.5                 | 0.79                   | 0.82                       |
|                                                          | EV_MC5GW_WG_2017-08-29_NP         | Duplicate                   | -              | -            | -                  | -                     | -                              | 8.28       | 142             | 444 1.5                                                           | 256                    | 2.03             | 193                           | -                                         | 73.5                      | < 0.050      | 1.90            | 1,180                    | < 0.005    | 0.0011                 | 0.089                    | 0.0051             | 0.0098                          | 52.2                 | 0.67                   | 0.68                       |
|                                                          | QA/QC RPD%                        |                             | *              | *            | *                  | -                     | *                              | < 1        | 5               | 1 *                                                               | 2                      | 2                | 3                             | -                                         | 10                        | *            | 2               | 1                        | *          | *                      | *                        | *                  | 39                              | 1                    | *                      | *                          |
|                                                          | EV_OCGW_WG_2017-09-21_NP          | 2017 09 21                  | 7.86           | 7.69         | 0.47               | -                     | 448                            | 8.53       | 141             | 422 1.2                                                           | 245                    | 2.62             | 191                           | -                                         | 80.9                      | < 0.050      | 2.00            | 1,170                    | 0.0084     | < 0.001                | < 0.050                  | 0.0027             | 0.0129                          | 52.3                 | < 0.50                 | 0 < 0.50                   |
|                                                          | EV_OCGW_WG_2017-10-18_NP          | 2017 10 18                  | 9.09           | 7.87         | 0.41               | -                     | 458                            | 8.34       | 147             | 418 1.7                                                           | 280                    | 2.65             | 177                           | -                                         | 85.1                      | < 0.050      | 1.82            | 1,230                    | < 0.005    | < 0.001                | 0.109                    | 0.0060             | 0.0163                          | 53.7                 | < 0.50                 | 0 < 0.50                   |
|                                                          | EV_MC5GW_WG_2017-10-18_NP         | Duplicate                   | -              | -            | -                  | -                     | -                              | 8.42       | 143             | 438 1.7                                                           | 290                    | 2.82             | 192                           | -                                         | 84.4                      | < 0.050      | 1.85            | 1,230                    | < 0.005    | < 0.001                | 0.141                    | 0.0054             | 0.0156                          | 53.1                 | < 0.50                 | 0 < 0.50                   |
|                                                          | QA/QC RPD%                        |                             | *              | *            | *                  | -                     | *                              | 1          | 3               | 5 *                                                               | 4                      | 6                | 8                             | -                                         | 1                         | *            | 2               | 0                        | *          | *                      | *                        | 11                 | 4                               | 1                    | *                      | *                          |
| Study Area 9                                             |                                   |                             |                |              |                    |                       |                                |            |                 |                                                                   |                        |                  |                               |                                           |                           |              |                 |                          |            |                        |                          |                    |                                 |                      |                        |                            |
| EV_BCgw                                                  | EV_BCGW_WG_2017-03-14_NP          | 2017 03 14                  | 5.36           | 7.44         | 5.02               | 757                   | -                              | 8.00       | 417             | 768 4.1                                                           | 528                    | 1.40             | 184                           | -                                         | < 5.0                     | < 0.25       | 6.04            | 150                      | 5.00       | < 0.005                | 0.082                    | 0.0035             | 0.0073                          | 206                  | 0.68                   | 0.68                       |
|                                                          | EV_BCGW_WG_2017-03-30_NP          | 2017 03 30                  | 7.5            | 7.35         | 3.97               | 987                   | -                              | 7.82       | 522             | 944 13.4                                                          | 709                    | 2.08             | 194                           | -                                         | < 5.0                     | < 0.050      | 10.5            | 124                      | 9.04       | 0.0031                 | 0.47                     | 0.0035             | 0.0069                          | 314                  | 0.80                   | 0.77                       |
|                                                          | EV_BCGW_WG_2017-05-16_NP          | 2017 05 16                  | 6.34           | 7.2          | 2.94               | 1,152                 | -                              | 7.96       | 619             | 1,210 6.6                                                         | 930                    | 2.06             | 215                           | -                                         | < 5.0                     | < 0.25       | 19.3            | 160                      | 14.0       | < 0.005                | 0.115                    | 0.0035             | 0.019                           | 462                  | 0.82                   | 0.72                       |
|                                                          | EV_BCGW_WG_2017-06-28_NP          | 2017 06 27                  | 8.02           | 6.96         | 1.95               | -                     | 702                            | 7.98       | 336             | 692 1.4                                                           | 530                    | 0.32             | 189                           | -                                         | 61.5                      | < 0.050      | 5.09            | 170                      | 3.09       | 0.0393                 | 0.178                    | 0.0020             | 0.0084                          | 163                  | 1.07                   | 1.17                       |
|                                                          | EV_BCGW_WG_2017-08-23_NP          | 2017 08 23                  | 7.84           | 7.18         | 2.09               | -                     | 1,175                          | 7.97       | 660             | 1,080 2.4                                                         |                        |                  |                               |                                           | < 5.0                     | < 0.25       | 13.5            | < 100                    | 10.6       | < 0.005                | 1.01                     | 0.0027             | 0.0046                          | 391                  | 25.4                   | 0.75                       |
|                                                          | EV_BCGW_WG_2017-10-18_NP          | 2017 10 18                  |                |              | 2.16               | -                     | 924                            | 8.02       | 475             | 784 4.3                                                           |                        |                  |                               |                                           |                           | < 0.050      |                 | 118                      | 6.27       |                        |                          | 0.0035             |                                 | 261                  |                        | 0 < 0.50                   |
| EV_MCgwS                                                 | EV_MCGWS_WG_2017-03-08_NP         |                             |                | 11.55        | 1.9                | 853                   | -                              | 7.92       | 371             | 838 24.5                                                          | _                      |                  |                               |                                           |                           | < 0.25       |                 | 310                      | < 0.025    |                        |                          | < 0.0010           |                                 | 105                  |                        | 1.56                       |
|                                                          | EV_MCGWS_WG_2017-03-30_NP         |                             |                | 7.55         | 4.61               | 682                   | -                              | 7.82       | 386             | 822 14.4                                                          |                        |                  |                               |                                           | -                         | 0.233        |                 | 287                      | 0.0069     | 0.0079                 |                          | < 0.0010           |                                 | 124                  |                        | 2.11                       |
|                                                          | EV_MCGWS_WG_2017-05-16_NP         |                             |                |              | 0.8                | 803                   | -                              | 7.86       | 380             | 843 15.0                                                          |                        |                  |                               |                                           |                           | 0.26         |                 |                          | < 0.025    |                        |                          | < 0.0010           |                                 | 104                  |                        | 1.62                       |
|                                                          | EV_MCGWS_WG_2017-06-28_NP         |                             |                | 7.14         | 1.67               | -                     | 871                            | 7.87       | 369             | 724 89.0                                                          |                        |                  |                               |                                           |                           | < 0.25       |                 | 290                      | < 0.025    | < 0.005                |                          | < 0.0010           |                                 | 94.2                 |                        | 1.53                       |
|                                                          | EV_MCGWS_WG_2017-08-16_NP         |                             |                | 7.19         | 1.17               | -                     | 822                            | 8.06       | 412             | 772 9.3                                                           |                        |                  |                               |                                           |                           | 0.218        |                 |                          | < 0.005    | < 0.001                |                          | < 0.0010           |                                 | 88.1                 |                        | 1.37                       |
|                                                          | EV_MCGWS_WG_2017-09-21_NP         | 2017 09 21                  |                |              | 0.54               | -                     | 820                            | 8.06       | 387             | 649 14.8                                                          |                        |                  |                               |                                           |                           | 0.215        |                 | 233                      | < 0.005    | < 0.001                |                          | < 0.0010           |                                 | 94.4                 |                        | 1.06                       |
|                                                          | EV_MCGWS_WG_2017-10-18_NP         | 2017 10 18                  | 7.93           | 7.24         | 1.9                | -                     | 809                            | 8.02       | 424             | 748 179                                                           | 516                    | 48.0             | 262                           | - 1                                       | 131                       | 0.204        | 40.7            | 200                      | < 0.005    | < 0.001                | 0.160                    | < 0.0010           | 0.175                           | 82.3                 | 1.06                   | 1.00                       |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

Denotes analysis not conducted. -

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

| BOLD**  | Concentration gr |
|---------|------------------|
| BOLD    | Concentration gr |
| SHADOW  | Concentration gr |
| INVERSE | Concentration gr |
| SHADED  | Concentration gr |
|         |                  |

greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline greater than CSR Aquatic Life (AW) standard

greater than CSR Irrigation Watering (IW) standard

reater than CSR Livestock Watering (LW) standard

greater than CSR Drinking Water (DW) standard

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with pH.

<sup>e</sup> Guideline/standard varies with Hardness.

<sup>f</sup> Guideline/standard varies with Chloride.

|                                                                  |                                                            |                          |              | Fiel         | d Paran          | neters       |                      |              |            | Physical P                         | aramet      | ers  |                |                   |                                       |                                  | •           |              |                                 | Dissol           | ved Inorgani                                | ics                 |                 |                     |                                                  |                      |                     |
|------------------------------------------------------------------|------------------------------------------------------------|--------------------------|--------------|--------------|------------------|--------------|----------------------|--------------|------------|------------------------------------|-------------|------|----------------|-------------------|---------------------------------------|----------------------------------|-------------|--------------|---------------------------------|------------------|---------------------------------------------|---------------------|-----------------|---------------------|--------------------------------------------------|----------------------|---------------------|
|                                                                  |                                                            |                          |              |              |                  |              | e                    |              |            | Solids                             | s s         |      |                | CaCO3)            | te                                    | ź                                |             |              |                                 |                  |                                             |                     |                 | as P                |                                                  | c                    | Carbon              |
| Sample                                                           | Sample                                                     | Sample Date              | Temperature  | pH (field)   | Dissolved Oxygen | Conductivity | Specific Conductance | На           | Hardness   | Conductivity<br>Total Suspended So | Dissolved S |      | Turbidity, Lab | al Alkalinity (as | Alkalinity, Bicarbonate<br>(as CaCO3) | Ammonia, total (as N             | Bromide     | Chloride     | Fluoride                        | Nitrate (as N)   | Nitrite (as N)                              | Kjeldahl Nitrogen-N | Ortho-Phosphate | Total Phosphorous a | Sulphate                                         | Total Organic Carbon | Dissolved Organic C |
| Location                                                         | ID                                                         | (yyyy mm dd)             | °C           | рН           | mg/L             | µS/cm        | µS/cm                | рН           | mg/L       | µS/cm mg                           | /L mg/      | /L N | UTU            | mg/L r            | mg/L                                  | μg/L                             | mg/L        | mg/L         | μg/L                            | mg/L             | mg/L                                        | mg/L                | mg/L            | mg/L                | mg/L                                             | mg/L                 | mg/L                |
| BC Standard                                                      |                                                            |                          | n/o          | 6.5-9.0      | n/o              | n/o          | 2/2                  | 6.5-9.0      | 2/2        | n/0 n/                             |             |      | n/n            | n/n               | 2/2                                   | 5 000 04 500 <sup>d</sup>        | n/o         | 2/2          | 4 454 4 074 <sup>6</sup>        | 32.8 (max)       | a aa a af                                   | n/o                 | n/o             | 2/2                 | n/n                                              |                      |                     |
| BCWQG Aquatic Life Sho                                           | k                                                          |                          | n/a<br>n/a   | n/a          | n/a<br>n/a       | n/a          | n/a<br>n/a           | n/a          | n/a<br>n/a | n/a n/<br>n/a n/                   |             |      | n/a<br>n/a     |                   | n/a<br>n/a                            | 5,680-24,500 <sup>d</sup>        | n/a<br>n/a  | n/a<br>n/a   | 1,454-1,871 <sup>e</sup><br>n/a | 32.0 (IIIaX)     | 0.06-0.6 <sup>t</sup>                       | n/a<br>n/a          | n/a<br>n/a      | n/a<br>n/a          | n/a                                              | n/a<br>n/a           | n/a<br>n/a          |
| BCWQG Aquatic Life Long                                          | g-term Average (Avv)                                       |                          | n/a          | n/a          | n/a              | n/a<br>n/a   | n/a                  | n/a          | n/a        | n/a n/                             |             |      | n/a            |                   | n/a<br>n/a                            | 365-1,780 <sup>d</sup>           | n/a         | 1,500        |                                 | 400              | 0.02-0.2 <sup>t</sup><br>0.2-2 <sup>f</sup> | n/a                 | n/a             | n/a                 | 128-429 <sup>e</sup><br>1,280-4,290 <sup>e</sup> | n/a                  | n/a                 |
| CSR Aquatic Life (AW) <sup>c</sup><br>CSR Irrigation Watering (I |                                                            |                          | n/a          | n/a          | n/a              | n/a          | n/a                  | n/a          | n/a        | n/a n/                             |             |      | n/a            |                   | n/a                                   | 1,310-18,500 <sup>d</sup><br>n/a | n/a         | 1,500        | 2,000-3,000                     | 400<br>n/a       | 0.2-2<br>n/a                                | n/a                 | n/a             | n/a                 | 1,280-4,290<br>n/a                               | n/a                  | n/a                 |
| CSR Livestock Watering (                                         |                                                            |                          | n/a          | n/a          | n/a              | n/a          | n/a                  | n/a          | n/a        | n/a n/                             |             |      | n/a            |                   | n/a                                   | n/a                              | n/a         | 600          | 1,000                           | 100              | 10                                          | n/a                 | n/a             | n/a                 | 1,000                                            | n/a                  | n/a                 |
| CSR Drinking Water (DW)                                          |                                                            |                          | n/a          | n/a          | n/a              | n/a          | n/a                  | n/a          | n/a        | n/a n/                             |             |      | n/a            |                   | n/a                                   | n/a                              | n/a         | 250          | 1,500                           | 10               | 1                                           | n/a                 | n/a             | n/a                 | 500                                              | n/a                  | n/a                 |
| Study Area 9 (Cont'd)                                            | ·                                                          |                          | · · ·        |              |                  |              |                      | ·            |            | · · · · · · · · ·                  |             |      |                |                   |                                       |                                  | ·           |              | · · ·                           | ·                |                                             | ·                   | ·               | ·                   | ·                                                | ·                    |                     |
| EV_MCgwD                                                         | EV_MCGWD_WG_2017-03-08_NP                                  | 2017 03 08               | 1.66         | 11.12        | 0.52             | 633          | -                    | 8.11         | 248        | 588 21                             |             |      |                | 238               | -                                     | 191                              | < 0.050     |              | 885                             | < 0.005          | < 0.001                                     | 0.389               |                 |                     | 88.3                                             |                      | 2.68                |
|                                                                  | EV_MCGWD_WG_2017-03-30_NP                                  | 2017 03 30               | 5.93         | 7.28         | 0.49             | 855          | -                    | 7.99         | 230        | 660 73                             |             |      |                | 244               | -                                     | 232                              | < 0.050     |              | 995                             | 0.0091           | 0.0087                                      | 0.48                | < 0.0010        |                     | 135                                              |                      | 2.30                |
|                                                                  | EV_MCGWD_WG_2017-05-16_NP                                  | 2017 05 16               | 6.65         | 7.57         | 11.63            | 610          | -                    | 8.09         | 223        | 617 38                             |             |      |                | 282               | -                                     | 191                              | < 0.050     |              | 989                             | < 0.005          | 0.0022                                      | 0.524               |                 |                     | 85.1                                             |                      | 1.56                |
|                                                                  | EV_MCGWD_WG_2017-06-28_NP                                  | 2017 06 28               | 10.56        | 7.17         | 7.75<br>4.2      | -            | 609<br>553           | 8.01         | 230<br>235 | 538 7.<br>512 17                   |             |      | 5.03           | 237               | -                                     | 198<br>121                       | < 0.050     |              | 944<br>848                      | < 0.005<br>0.059 | 0.0040                                      | 0.280               |                 |                     | 69.4                                             | 1.41                 | 1.64                |
|                                                                  | EV_MCGWD_WG_2017-08-16_NP<br>EV_MCGWD_WG_2017-09-19_NP     | 2017 08 16<br>2017 09 19 | 12.6<br>8.73 | 7.36<br>7.28 | 4.2              | -            | 565                  | 8.19<br>7.84 | 235        | 498 4.                             |             |      | 13.5<br>3.17   | 228<br>248        | -                                     | 105                              | 0.059 0.078 | 4.21<br>5.66 | 953                             | 0.059            | < 0.0034                                    | 0.158               |                 | 0.0367              | 51.7<br>60.1                                     | 1.05<br>1.12         |                     |
|                                                                  | EV_MCGWD_WG_2017-09-19_NP                                  | 2017 10 18               | 6.27         | 7.4          | 0.91             | -            | 534                  | 8.45         | 230        | 498 4.                             |             |      | 2.60           | 226               |                                       | 118                              | 0.078       | 4.00         | 912                             | 0.0639           | 0.0013                                      | 0.192               |                 | 0.0180              | 44.5                                             | 0.79                 |                     |
| EV_BRgw                                                          | EV BRGW WG 2017-03-30 NP                                   | 2017 03 30               | -            | 7.24         | 3.84             | 1,122        | -                    | 7.71         | 594        | 1,080 9.                           |             |      |                | 253               | -                                     | < 5.0                            | 0.081       | 19.3         | 101                             | 4.53             | 0.0025                                      | 0.33                | 0.0018          | 0.0066              | 357                                              | 0.60                 |                     |
| _ · _ b g.                                                       | EV BRGW WG 2017-06-21 NP                                   | 2017 06 19               | -            | 7.45         | 25.04            | -            | 1,207                | 8.04         | 610        | 1,090 8.                           |             |      |                | 232               | -                                     | < 5.0                            | < 0.25      |              | 110                             | 10.7             | < 0.005                                     | 0.082               |                 |                     | 348                                              | 0.73                 |                     |
|                                                                  | EV_BRGW_WG_2017-06-28_NP                                   | 2017 06 28               | -            | 7.24         | 4.91             | -            | 1,206                | 7.85         | 602        | 1,050 24                           |             |      |                | 231               | -                                     | < 5.0                            | < 0.25      |              | 120                             | 11.3             | < 0.005                                     | 0.111               |                 |                     | 358                                              | 0.64                 |                     |
|                                                                  | EV_BRGW_WG_2017-08-23_NP                                   | 2017 08 23               | -            | 7.04         | 3.73             | -            | 1,234                | 7.86         | 688        | 1,140 < 2                          | 2.0 86      |      |                | 242               | -                                     | 6.1                              | < 0.25      |              | 110                             | 11.5             | < 0.005                                     | 0.441               | 0.0017          | 0.0026              | 387                                              | 0.71                 | 0.81                |
|                                                                  | EV_WH50GW_WG_2017-10-25_NP9                                | 2017 10 25               | -            | 7.71         | 9.56             | -            | 1,259                | 8.21         | 726        | 1,180 1.                           | .2 97       | 0 0  | 0.50           | 256               | -                                     | < 5.0                            | 0.35        | 21.3         | < 100                           | 9.18             | < 0.005                                     | 0.247               | 0.0025          | 0.0026              | 399                                              | 0.84                 | 3.16                |
|                                                                  | EV_BRGW_WG_2017-11-21_NP                                   | 2017 11 21               | -            | 7.39         | 6.6              | -            | 1,172                | 8.22         | 738        | 1,150 < 1                          | 1.0 91      | 9 (  | 0.19           | 278               | -                                     | < 5.0                            | < 0.25      | 23.0         | < 100                           | 8.31             | 0.0275                                      | < 0.20              | 0.0029          | 0.0033              | 395                                              | 0.69                 | 0.56                |
| EV_RCgw                                                          | EV_RCSGW_WG_2017-03-07_NP                                  | 2017 03 07               | 6.47         | 4.16         | 9.05             | 2,285        | -                    | 7.71         | 1,460      | 2,260 < 1                          | .0 2,06     | 60 0 | 0.17           | 271               | -                                     | < 5.0                            | < 1.0       | 17.0         | < 400                           | 38.4             | < 0.020                                     | 0.054               | 0.0045          | 0.0052              | 1,060                                            | 1.23                 | 1.15                |
|                                                                  | EV_RCSGW_WG_2017-06-30_NP                                  | 2017 06 30               | 16.45        | 7.5          | 6.8              | -            | 2,356                | 7.99         | 1,430      | 2,380 < 1                          | .0 2,08     | 80 0 | 0.28           | 251               | -                                     | 6.2                              | < 0.25      | 8.5          | 120                             | 38.9             | 0.0503                                      | 0.522               | 0.0029          | < 0.010             | 1,100                                            | 0.99                 | 1.84                |
|                                                                  | EV_RCSGW_WG_2017-08-22_NP                                  | 2017 08 22               | 8.27         | 7.34         | 9.36             | -            | 2,500                | 7.77         | 1,600      | 2,300 < 3                          | 3.0 2,28    | 80 0 | 0.60           | 265               | -                                     | 6.1                              | < 0.25      | 6.5          | 100                             | 41.6             | < 0.005                                     | 0.476               | 0.0050          | 0.0074              | 1,190                                            | 1.14                 | 1.18                |
|                                                                  | EV_BRGW_WG_2017-10-25_NP <sup>9</sup>                      | 2017 10 25               | 17.48        | 7.34         | 8.02             | -            | 2,595                | 8.02         | 1,780      | 2,410 < 1                          | .0 2,48     | 80 0 | 0.29           | 268               | -                                     | < 5.0                            | < 0.25      | 8.8          | < 100                           | 42.9             | < 0.005                                     | 0.300               | 0.0030          | 0.0032              | 1,230                                            | 1.04                 | 1.30                |
|                                                                  | EV_RCSGW_WG_2017-11-21_NP                                  | 2017 11 21               | 17.65        | 7.32         | 7.87             | -            | 2,553                | 8.04         | 1,870      | 2,350 < 1                          | .0 2,45     | 50 0 | 0.47           | 264               | -                                     | < 5.0                            | < 0.25      | 10.0         | 120                             | 44.4             | 0.008                                       | 0.48                | 0.0030          | 0.0066              | 1,300                                            | 1.15                 | 1.16                |
| EV_WH50gw                                                        | EV_WH50GW_WG_2017-03-03_NP                                 | 2017 03 03               | 6.19         | 7.05         | 8.9              | 567          | •                    | 8.00         | 279        | 545 6.                             | .2 35       | 2 1  | 12.8           | 157               | -                                     | < 5.0                            | < 0.050     | 3.14         | 122                             | 2.86             | < 0.001                                     | 0.094               | 0.0044          | 0.0215              | 129                                              | 0.80                 | 0.79                |
|                                                                  | EV_WH50GW_WG_2017-06-21_NP                                 | 2017 06 19               | 6.67         | 7.78         | 13.01            | -            | 368                  | 8.26         | 169        | 336 4.                             |             |      | 3.57           | 122               | -                                     | < 5.0                            | < 0.050     |              | 177                             | 1.21             | 0.0011                                      | 0.067               | 0.0025          | 0.0107              | 53.6                                             | 1.10                 |                     |
|                                                                  | EV_WH50GW_WG_2017-06-28_NP                                 | 2017 06 28               | 8.3          | 7.8          | 8.07             | -            | 392                  | 8.18         | 172        | 341 8.                             |             |      | 7.01           | 121               | -                                     | < 5.0                            | < 0.050     |              | 182                             | 1.30             | < 0.001                                     | 0.092               |                 | 0.0202              | 61.0                                             | 1.15                 |                     |
|                                                                  | EV_WH50GW_WG_2017-08-22_NP                                 | 2017 08 22               | 13.09        | 7.61         | 4.08             | -            | 502                  | 8.04         | 256        | 482 6.                             |             |      | 14.5           | 173               | -                                     | 5.5                              | < 0.050     |              | 121                             | 1.49             | < 0.001                                     | < 0.050             |                 | 0.0215              | 94.1                                             | 0.87                 |                     |
|                                                                  | EV_RCSGW_WG_2017-10-25_NP <sup>9</sup>                     | 2017 10 25               | 11.44        | 7.59         | 4.73             | -            | 547                  | 8.24         | 295        | 513 7.                             |             |      | 12.9           | 175               | -                                     | < 5.0                            | 0.057       | 1.88         | 112                             | 1.55             | < 0.001                                     | 0.152               |                 | 0.0136              | 99.4                                             | 0.70                 |                     |
| DC DW 02.04                                                      | EV_WH50GW_WG_2017-11-21_NP<br>RG_DW-03-01_WP_2017-02-20_NP | 2017 11 21               | 10.4         | 7.85         | 4.02             | -            | 522                  | 8.29         | 313        | 513 1.                             |             |      | 5.51           | 176               | -                                     | < 5.0                            | < 0.050     |              | 121                             | 1.89             | < 0.001                                     | < 0.20              | 0.0026          | 0.0105              | 110                                              | 0.63                 |                     |
| RG_DW-03-01                                                      | RG DW-DUP WP 2017-02-20 NP                                 | 2017 02 20<br>Duplicate  | 8.02         | -            | 1.34             | -            | 826                  | -            | 425<br>431 |                                    |             |      | -              | -                 | 350                                   | -                                | -           | 33.3<br>34.0 | -                               | < 0.025<br>0.032 | < 0.005<br>< 0.005                          | -                   | -               | -                   | 61.2<br>60.5                                     | -                    | -                   |
|                                                                  | QA/QC RPD%                                                 | Duplicate                | *            | -            | *                | -            | *                    | -            | 1          |                                    |             |      | -              | -                 | -                                     | -                                | -           | 2            | -                               | 0.032            | *                                           | -                   | -               | -                   | 1                                                | -                    |                     |
|                                                                  | RG DW-03-01 WP 2017-05-29 NP                               | 2017 05 29               | 8.1          | 7.19         | 1.37             | -            | 830                  | 7.92         | 419        | 814 1.                             | 9 49        | 3 1  | 1.87           | 334               | -                                     | < 5.0                            | < 0.25      | 30.9         | 170                             | < 0.025          | < 0.005                                     | 0.051               | < 0.0010        | < 0.0020            | 78.2                                             | 1.05                 | 1.27                |
|                                                                  | RG_DW-03-01_WP_2017-08-22_NP                               | 2017 08 22               | 7.9          | 7.1          | 2.6              | -            | 796                  | 7.94         | 413        | 809 2.                             |             |      | 1.03           | 308               | -                                     | < 5.0                            | < 0.25      | 34.3         | 160                             | 0.082            | < 0.005                                     |                     | 0 < 0.0010      |                     | 48.4                                             | 1.09                 |                     |
|                                                                  | RG_DW-03-01_WP_Q4-2017_NP                                  | 2017 11 15               | 7.9          | 7.04         | 4.10             | -            | 817                  | 8.04         | 466        | 744 1.                             | 5 48        | 7 2  | 2.51           | 333               | -                                     | < 5.0                            | < 0.25      | 37.0         | 190                             | 0.061            | < 0.005                                     | 0.053               | < 0.0010        | < 0.0020            | 57.2                                             | 1.11                 | 1.16                |
| Study Area 10                                                    |                                                            |                          | rr           |              |                  |              |                      | 1            |            |                                    | 1           |      |                |                   |                                       | 1                                |             |              |                                 | 1                | i                                           | i.                  |                 | r                   | -                                                |                      |                     |
| EV_ECgw                                                          | EV_ECGW_WG_2017-06-20_NP                                   | 2017 06 20               |              |              | 4.12             | -            | 433                  | 8.04         | 167        | 403 16                             | 61 28       | 5    | 180            | 229               | -                                     | 144                              | < 0.050     |              | 806                             | 0.0868           | 0.0479                                      | -                   | 0.0120          |                     | 27.1                                             |                      | 1.90                |
|                                                                  | EV_ECGW_WG_2017-08-23_NP                                   | 2017 08 23               |              | 5.86         | 1.72             | -            | 434                  | 8.22         | 174        | 384 49                             |             |      |                |                   |                                       | 174                              | < 0.050     |              |                                 | 0.0285           | 0.0042                                      |                     | 0.0164          |                     | 25.8                                             |                      | 1.75                |
|                                                                  | EV_ECGW_WG_2017-10-25_NP                                   | 2017 10 25               |              | 7.6          | 2.55             | -            | 426                  | 8.19         | 184        | 403 84                             |             |      |                |                   | -                                     | 19.5                             | < 0.050     |              |                                 | 0.215            | 0.0029                                      |                     | 0.0138          |                     | 25.8                                             |                      | 1.50                |
| Study Area 11                                                    | EV_ECGW_WG_2017-11-23_NP                                   | 2017 11 22               | 0.33         | 6.5          | 3.55             | -            | 450                  | 8.32         | 177        | 406 75                             | .8 24       | o I  | /2.1           | 213               | -                                     | 166                              | < 0.050     | 0.70         | 871                             | 0.121            | 0.0068                                      | 0.475               | 0.0015          | 0.115               | 26.1                                             | 2.7                  | 1.85                |
| CM MW1-DP                                                        | CM_MW1-DP_WG_2017Q1_N                                      | 2017 03 28               | 4 32         | 8.27         | 8.4              | -            | 1,316                | 8.25         | 145        | 1,210 47                           | 7 70        | 8    | 33.1           | 326               |                                       | 584                              | 0.881       | 199          | 217                             | 0.0149           | 0.002                                       | 0 780               | < 0.0010        | 0 0203              | 4.97                                             | 2.69                 | 2.79                |
|                                                                  |                                                            | 2017 03 28               |              | 7.68         | 0.4<br>3.82      | -            | 983                  | 8.19         | 145        | 964 2.                             |             |      | 4.02           |                   | -                                     | 234                              | 0.661       |              | 217                             | 0.0149           | < 0.002                                     |                     | < 0.0010        |                     | 4.97<br>25.4                                     |                      | 2.79                |
|                                                                  | CM_MW1-DP_WG_Q2_2017_N                                     | 2017 06 27               |              |              |                  | -            |                      |              | 182        |                                    |             |      | 4.02           |                   | -                                     | 321                              |             | 128          | 308                             |                  |                                             |                     | < 0.0010        |                     | 25.4<br>9.64                                     |                      | -                   |
|                                                                  | CM_MW1-DP_WG_Q3_2017_N<br>CM_MW1-DP_WG_Q4-2017_N           |                          |              | 7.6<br>7.78  | 3.49             | -            | 887                  | 8.11<br>8.40 | 185        | 870 2.<br>1,370 7.                 |             |      |                |                   | -                                     | 321<br>590                       |             | 224          | 308<br>150                      | < 0.005          | 0.0017                                      |                     |                 |                     | 9.64                                             | _                    | 1.93                |
|                                                                  |                                                            | 2017 12 07               | 2.49         | 1.10         | 5.63             | -            | 1,354                | 0.40         | 143        | 1,370 7.                           | 1 / 1       | U    | 13.5           | 554               | -                                     | 290                              | 0.88        | 224          | 100                             | 0.056            | 0.0059                                      | 0.700               | 0.0219          | 0.0190              | 2.1                                              | 1.44                 | 1.17                |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

RPDs are not calculated where one or more concentrations are less than five times RDL. \*

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD\*\* Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline Concentration greater than CSR Aquatic Life (AW) standard BOLD Concentration greater than CSR Irrigation Watering (IW) standard SHADOW INVERSE Concentration greater than CSR Livestock Watering (LW) standard SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with pH.

<sup>e</sup> Guideline/standard varies with Hardness.

<sup>f</sup> Guideline/standard varies with Chloride.

|                                    |                                                          |                             |                | Fie          | ld Paran              | neters          |                                |              |                | Physical | Paramete                 | rs              |                |                                    |                        |         |            |                          | Dissol         | ved Inorgani          | ics                             |                    |                                 |                               |                        |                            |
|------------------------------------|----------------------------------------------------------|-----------------------------|----------------|--------------|-----------------------|-----------------|--------------------------------|--------------|----------------|----------|--------------------------|-----------------|----------------|------------------------------------|------------------------|---------|------------|--------------------------|----------------|-----------------------|---------------------------------|--------------------|---------------------------------|-------------------------------|------------------------|----------------------------|
| Sample<br>Location                 | Sample<br>ID                                             | Sample Date<br>(yyyy mm dd) | රී Temperature | 뎦 pH (field) | a<br>Dissolved Oxygen | ସେମ୍ବର<br>ସୁର୍ବ | 번<br>Specific Conductance<br>필 | Н<br>рН      | gu<br>T/f<br>T | uctivity | C Total Suspended Solids | L Turbidity Lab |                | Alkalinity, Bicarbol<br>(as CaCO3) | A A                    | mg/T    | J/B<br>T/D | Hbhh<br>Fluoride         | Mitrate (as N) | ₩<br>Nitrite (as N)   | a<br>G Kjeldahl Nitrogen-N<br>T | Ga Ortho-Phosphate | Ga Total Phosphorous as P<br>T∕ | Sulphate<br>M <sup>D</sup> /T | a Total Organic Carbon | G Dissolved Organic Carbon |
| BC Standard                        |                                                          |                             |                |              |                       | ,               |                                | 0.5.0.0      | ,              | ,        |                          |                 | , .            |                                    |                        | ,       |            |                          |                | a a a a af            | ,                               | ,                  |                                 | ,                             | <u> </u>               |                            |
| BCWQG Aquatic Life Shore           |                                                          |                             |                | 6.5-9.0      |                       | n/a             | n/a                            | 6.5-9.0      | n/a            |          | /a n/a                   |                 | /a n/          |                                    | -,                     | n/a     | n/a        | 1,454-1,871 <sup>e</sup> | 32.8 (max)     | 0.06-0.6 <sup>f</sup> | n/a                             | n/a                | n/a                             | n/a                           | n/a                    | n/a                        |
| BCWQG Aquatic Life Long            | g-term Average (AW) <sup>b</sup>                         |                             | n/a            | n/a          | n/a                   | n/a             | n/a                            | n/a          | n/a            | n/a r    | /a n/a                   | n/              | /a n/          | a n/a                              | 365-1,780 <sup>d</sup> | n/a     | n/a        | n/a                      | 3              | 0.02-0.2 <sup>f</sup> | n/a                             | n/a                | n/a                             | 128-429 <sup>e</sup>          | n/a                    | n/a                        |
| CSR Aquatic Life (AW) <sup>c</sup> |                                                          |                             | n/a            | n/a          | n/a                   | n/a             | n/a                            | n/a          | n/a            |          | /a n/a                   |                 | /a n/          |                                    | .,,                    | n/a     | 1,500      | /                        | 400            | 0.2-2 <sup>f</sup>    | n/a                             | n/a                | n/a                             | 1,280-4,290 <sup>e</sup>      | n/a                    | n/a                        |
| CSR Irrigation Watering (IV        |                                                          |                             | n/a            | n/a          | n/a                   | n/a             | n/a                            | n/a          | n/a            |          | /a n/a                   |                 | /a n/          |                                    | n/a                    | n/a     | 100        | 1,000                    | n/a            | n/a                   | n/a                             | n/a                | n/a                             | n/a                           | n/a                    | n/a                        |
| CSR Livestock Watering (           | LW)                                                      |                             | n/a            | n/a          | n/a                   | n/a             | n/a                            | n/a          | n/a            |          | /a n/a                   |                 | /a n/          |                                    |                        | n/a     | 600        | 1,000                    | 100            | 10                    | n/a                             | n/a                | n/a                             | 1,000                         | n/a                    | n/a                        |
| CSR Drinking Water (DW)            |                                                          |                             | n/a            | n/a          | n/a                   | n/a             | n/a                            | n/a          | n/a            | n/a r    | /a n/a                   | n/              | /a n/          | a n/a                              | n/a                    | n/a     | 250        | 1,500                    | 10             | 1                     | n/a                             | n/a                | n/a                             | 500                           | n/a                    | n/a                        |
| Study Area 11 (Cont'd)             | CM MW4 OD W/C 201704 N                                   | 2017 02 07                  | 5.04           | 7 50         | 0.45                  |                 | 4 000                          | 7 4 4        | 500            | 4 040 0  | 0 070                    |                 | 44 00          | 0                                  |                        | 0.050   | 27.5       | 00                       | 0.000          | 0.0010                | .0.050                          | 0.0040             | 0.0007                          | 250                           | 4.00                   | 4.24                       |
| CM_MW1-OB                          | CM_MW1-OB_WG_2017Q1_N                                    | 2017 03 27                  | 5.04           | 7.53         | 6.45<br>7.34          | -               | 1,033                          | 7.44         | 529<br>524     | 1,010 2  |                          |                 | 44 26          |                                    | < 5.0<br>12.6          | 0.050   |            | 98<br>< 100              | 0.622          | 0.0016                |                                 | 0.0016             |                                 | 250<br>297                    |                        | 1.34                       |
|                                    | CM_MW1-OB_WG_Q2_2017_N                                   | 2017 06 19                  | 9.83           | 7.43         | 7.34<br>6.9           | -               | 1,095                          | 7.94         | 524<br>416     | / -      | 1.0 773<br>1.0 591       |                 |                |                                    | -                      | < 0.25  | -          |                          | 1.82           |                       | 0.154                           | 0.0015             | 0.0057                          | 297                           | 1.13                   |                            |
|                                    | CM_MW1-OB_WG_Q3_2017_N<br>CM_MW1-OB_WG_Q4-2017_N         | 2017 08 28<br>2017 12 07    | 12.5<br>3.21   | 7.13<br>7.31 | 5.34                  | -               | 916<br>1,133                   | 7.97<br>7.88 | 556            | -        | 1.0 591<br>1.0 789       |                 |                |                                    | < 50<br>< 50           | 0.071   |            | 95<br>66                 | 0.751          | < 0.001<br>< 0.001    | 0.169                           | 0.0033             |                                 | 206                           | 0.61                   | 0.65                       |
| CM MW1-SH                          | CM_MW1-OB_WG_Q4-2017_N<br>CM_MW1-SH_WG_2017Q1_N          | 2017 12 07                  | 4.56           | 8.56         | 5.67                  | -               | 1,133                          | 8.24         | 96.2           |          | 6.4 632                  |                 |                |                                    | 54.2                   | 1.04    | 253        | 984                      | < 0.005        | < 0.001               | 0.169                           | 0.0024             | 0.0042                          | 207                           | 0.01                   | 0.85                       |
|                                    |                                                          |                             |                |              |                       | -               | ,                              |              |                | ,        |                          |                 |                |                                    |                        |         | 160        |                          |                |                       |                                 |                    |                                 |                               |                        | _                          |
|                                    | CM_MW1-SH_WG_Q2_2017_N                                   | 2017 06 19                  | 10.3           | 8.19         | 1.57                  |                 | 1,178                          | 8.27         | 105            |          | .0 512                   |                 |                |                                    | 54.8                   | 0.65    |            | 540                      | 0.040          | < 0.005               |                                 | < 0.0010           |                                 | 19.2                          | 1.24                   | 1.35                       |
|                                    | CM_MW1-SH_WG_Q3_2017_N                                   | 2017 08 28                  | 11.19          | 7.84         | 1.2                   | -               | 978                            | 8.28         | 127            | 7        | 1.0 525                  |                 |                |                                    | 60                     | 0.760   | -          | 847                      | < 0.005        | < 0.001               | 0.103                           | 0.0016             |                                 | 18.5                          | 1.21                   | 1.29                       |
|                                    | CM_MW1-SH_WG_Q4-2017_N                                   | 2017 12 07                  | 1.62           | 7.83         | 3.28                  | -               | 1,001                          | 8.00         | 140            | ,        | .3 505                   |                 |                |                                    | 80                     | 0.642   |            | 689                      | < 0.005        | < 0.001               |                                 | < 0.0010           |                                 | 17.2                          | 0.75                   | 0.83                       |
| RG_DW-07-01                        | RG_DW-07-01_WP_2017-02-20_NP                             | 2017 02 20                  | 3.96           | 7.09         | 8.6                   | -               | 1,466                          | -            | 824            |          |                          | -               |                | 200                                |                        | -       | 10.4       | -                        | 3.72           | < 0.005               | -                               | -                  | -                               | 549                           | -                      | -                          |
|                                    | RG_DW-07-01_WP_2017-06-05_NP                             | 2017 06 05                  | 5              | 7.39         | 6.98                  | -               | 1,156                          | 8.23         | 597            | 1,140 2  |                          |                 | 09 24          |                                    | < 5.0                  |         | 8.68       | 170                      | 4.07           | < 0.005               |                                 | < 0.0010           |                                 | 397                           | 1.41                   | 1.33                       |
|                                    | RG_DW-07-01_WP_2017-08-30_NP                             | 2017 08 30                  | 8.5            | 7.16         | 6.73                  | -               | 1,453                          | 7.49         | 799            | ,        | .8 1,13                  |                 | 74 28          |                                    | 13.1                   |         | 6.60       | 150                      | 3.99           | < 0.005               |                                 | < 0.0010           |                                 | 584                           | 1.47                   | 1.23                       |
|                                    | RG_DW-07-01_WP_Q4-2017_NP                                | 2017 11 21                  | 6.3            | 7.12         | 7.92                  | -               | 1,644                          | 7.70         | 1,010          | 1,570 4  | .2 1,35                  | 0 4.3           | 39 28          | 4 -                                | < 5.0                  | < 0.25  | 22.5       | 150                      | 3.46           | < 0.005               | 0.190                           | < 0.0010           | 0.0058                          | 663                           | 1.41                   | 1.61                       |
| Study Area 12                      |                                                          |                             |                |              |                       |                 | 1                              |              |                |          |                          |                 |                | -                                  |                        |         |            |                          |                |                       |                                 |                    |                                 |                               | 1                      | 1                          |
| EV_ER1gwS                          | EV_ER1GWS_WG_2017-02-15_NP                               | 2017 02 15                  | 1.94           | 9.83         | 10.29                 | 505             | -                              | 8.23         | 269            |          |                          | 0.              | -              | -                                  | < 5.0                  |         | 3.30       | 180                      | 2.69           | < 0.001               |                                 | 0.0029             |                                 | 89.5                          |                        | < 0.50                     |
|                                    | EV_ER1GWS_WG_2017-06-28_NP                               | 2017 06 28                  | 7.17           | 7.36         | 8.63                  | -               | 484                            | 8.07         | 222            |          | .4 311                   | -               |                |                                    | < 5.0                  |         | ) 11.4     | 176                      | 1.19           | < 0.001               | 0.084                           | 0.0028             | < 0.010                         | 42.1                          | 0.70                   |                            |
|                                    | EV_ER1GWS_WG_2017-08-22_NP<br>EV ER1GWS WG 2017-10-24 NP | 2017 08 22<br>2017 10 24    | 12.3<br>8.6    | 7.54<br>7.51 | 6.78<br>8.54          | -               | 438<br>480                     | 8.02<br>8.11 | 223<br>233     |          | 2.0 285<br>5.0 343       |                 | 32 16<br>72 16 |                                    | < 5.0<br>< 5.0         | < 0.050 | 3.40       | 173<br>187               | 1.74           | < 0.001<br>0.0057     | 0.052                           | 0.0039             | 0.0049                          | 60.6<br>65.0                  | < 0.50                 | 0.59                       |
| EV ER1gwD                          | EV_ERIGWS_WG_2017-10-24_NP<br>EV_ERIGWD_WG_2017-02-15_NP | 2017 10 24                  | 1.35           | 7.51         | 8.54<br>9.66          | -<br>489        | 480                            | 8.11         | 233            |          | 75 314                   |                 | 82 21          | -                                  | <u>&lt; 5.0</u><br>6.0 |         | 3.40       | 187                      | 2.10           | < 0.0057              | 0.098                           | 0.0043             | 0.0085                          | 73.8                          |                        | < 0.94                     |
| EV_ERIGWD                          | EV_ER1GWD_WG_2017-02-15_NP<br>EV_ER1GWD_WG_2017-06-28_NP | 2017 02 15                  | 5.9            | 7.15         | 9.66                  | 409             | 384                            | 8.18         | 176            |          | 38 266                   |                 |                |                                    | < 5.0                  | < 0.050 |            | 231                      | 1.26           | < 0.001               | 0.254                           | 0.0041             | 0.0973                          | 40.0                          | 2.08                   |                            |
|                                    | EV_ERIGWD_WG_2017-00-22_N                                | 2017 08 28                  | 11.88          | 7.6          | 6.53                  |                 | 436                            | 8.08         | 223            |          | 263                      |                 | 45 17          |                                    | < 5.0                  |         | 2.58       | 192                      | 1.48           | 0.0351                | < 0.050                         |                    | 0.0373                          | 53.8                          |                        | < 0.50                     |
|                                    | EV_ERIGWD_WG_2017-10-24 NP                               | 2017 10 24                  | 8.69           | 7.61         | 7.43                  | -               | 476                            | 8.12         | 233            |          |                          |                 | 24 17          | -                                  | < 5.0                  |         | 2.48       | 170                      | 1.93           | 0.0048                | 0.132                           | 0.0035             | 0.0073                          | 76.9                          |                        | 2.48                       |
| RG DW-03-04                        | RG_DW-03-04_WP_2017-02-20_NP                             | 2017 10 24                  | 7.93           | -            | 8                     | -               | 556                            | -            | 283            |          |                          |                 |                | 183                                |                        |         | 10.4       | -                        | 1.97           | < 0.0040              | -                               | -                  | -                               | 95.5                          |                        | -                          |
|                                    | RG DW-03-04 WP 2017-05-31 NP                             | 2017 05 31                  | 6.3            | 7.6          | 8.17                  | -               | 518.4                          | 8.24         | 252            | 532 <    | 1.0 322                  |                 | 0.10 17        |                                    | < 5.0                  | < 0.050 | -          | 155                      | 1.18           | < 0.001               | 0.082                           | 0.0022             | 0.0028                          | 70.3                          | 0.96                   |                            |
|                                    | RG DW-03-04 WP 2017-08-22 NP                             | 2017 08 22                  | 5.6            | 7.5          | 7.81                  | -               | 473.8                          | 8.06         | 236            |          | 1.0 317                  |                 |                |                                    | < 5.0                  |         | 8.60       | 147                      | 1.29           | < 0.001               |                                 | 0.0023             |                                 | 73.7                          |                        | 0.74                       |
|                                    | RG DW-03-04 WP Q4-2017 NP                                | 2017 11 21                  | 7.4            | 7.50         | 6.57                  | -               | 548.6                          | 8.05         | 301            |          | 1.0 351                  |                 | 12 17          |                                    | < 5.0                  |         | ) 7.73     | 150                      | 1.78           | < 0.001               | 0.120                           | 0.0021             | 0.0023                          | 101                           | 0.74                   |                            |
| Field Blanks                       |                                                          |                             | 1 1            |              |                       |                 |                                |              |                |          |                          |                 |                | 1                                  |                        |         | -          |                          | -              |                       |                                 |                    |                                 |                               |                        | 1                          |
| RG_DW                              | RG_DW-FB_WQ_2017-05-29_NP                                | 2017 05 29                  | -              | -            | -                     | -               | -                              | 5.31         | < 0.50         | < 2.0 <  | 1.0 < 3.0                | 0 < 0           | ).10 < 1       | - 0.                               | < 5.0                  | < 0.050 | 0 < 0.10   | < 20                     | < 0.005        | < 0.001               | < 0.050                         | < 0.0010           | < 0.0020                        | < 0.30                        | < 0.50                 | < 0.50                     |
|                                    | RG_DW-FB_WQ_2017-08-21_NP                                | 2017 08 21                  | -              | -            | -                     | -               | -                              | 6.62         | < 0.50         | < 2.0 <  | 1.0 < 3.0                | 0 < 0           | ).10 1.        | 9 -                                | < 5.0                  | < 0.050 | 0 < 0.10   | < 20                     | < 0.005        | < 0.001               | < 0.050                         | < 0.0010           | < 0.0020                        | < 0.30                        | < 0.50                 | < 0.50                     |
|                                    | WP_Q4-2017_002                                           | 2017 11 15                  | -              | -            | -                     | -               | -                              | 5.65         | < 0.50         | < 2.0 <  | 1.0 < 3.0                | 0 > 0           | ).10 < 1       | .0 -                               | < 5.0                  | < 0.050 | 0 < 0.10   | < 20                     | < 0.005        | < 0.001               | < 0.050                         | < 0.0010           | < 0.0020                        | < 0.30                        | < 0.50                 | < 0.50                     |
| Trip Blanks                        |                                                          |                             |                |              |                       | -               |                                |              |                | -        |                          |                 |                |                                    |                        |         |            |                          |                |                       |                                 | -                  |                                 |                               |                        |                            |
| RG_DW                              | RG_DW-TB_WQ_2017-05-29_NP                                | 2017 05 29                  | -              | -            | -                     | -               | -                              | 5.4          | < 0.50         | < 2.0 <  |                          |                 |                |                                    | 23.7                   |         | 0 < 0.10   |                          | < 0.005        | < 0.001               |                                 | < 0.0010           |                                 | < 0.30                        | < 0.50                 |                            |
|                                    | RG_DW-TB_WQ_2017-08-21_NP                                | 2017 08 21                  | -              | -            | -                     | -               | -                              | 6.08         | -              | -        | 1.0 < 3.0                |                 | -              | -                                  | < 5.0                  |         | 0 < 0.10   |                          | < 0.005        | < 0.001               |                                 | < 0.0010           |                                 | < 0.30                        | < 0.50                 |                            |
|                                    | WP Q4-2017 003                                           | 2017 11 15                  | -              | -            | -                     | -               | -                              | 5.83         | -              | < 2.0 <  | 1.0 < 3.0                | 0  < 0          | ).10 < 1       | - 0.                               | < 5.0                  | < 0.050 | 0 < 0.10   | < 20                     | < 0.005        | < 0.001               | < 0.050                         | < 0.0010           | < 0.0020                        | < 0.30                        | < 0.50                 | -                          |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

Denotes analysis not conducted. -

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline BOLD\*\*

Concentration greater than CSR Aquatic Life (AW) standard

<u>BOLD</u> SHADOW Concentration greater than CSR Irrigation Watering (IW) standard INVERSE Concentration greater than CSR Livestock Watering (LW) standard

Concentration greater than CSR Drinking Water (DW) standard SHADED

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with pH.

<sup>e</sup> Guideline/standard varies with Hardness.

<sup>f</sup> Guideline/standard varies with Chloride.

#### TABLE 4: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Metals in Groundwater

|                            |                                                                         |                                       |                   |                                           |                 |                            |              |                               |                               |                     |                                                    |                      |                  |                      |                                                |                       |              | Die                                          | solved M         | lotale                                           |                                     |                     |                            |                         |                               |                                             |            |              |                      |                  |        |                              |                    |
|----------------------------|-------------------------------------------------------------------------|---------------------------------------|-------------------|-------------------------------------------|-----------------|----------------------------|--------------|-------------------------------|-------------------------------|---------------------|----------------------------------------------------|----------------------|------------------|----------------------|------------------------------------------------|-----------------------|--------------|----------------------------------------------|------------------|--------------------------------------------------|-------------------------------------|---------------------|----------------------------|-------------------------|-------------------------------|---------------------------------------------|------------|--------------|----------------------|------------------|--------|------------------------------|--------------------|
|                            |                                                                         |                                       |                   |                                           |                 |                            |              |                               |                               |                     |                                                    |                      |                  | 1                    |                                                |                       |              | 013                                          | Solved W         |                                                  |                                     | ۲                   |                            |                         |                               |                                             |            |              |                      |                  |        |                              |                    |
| Sample<br>Location         | Sample<br>ID                                                            | Sample Date<br>(yyyy mm dd)           | a<br>T/đ          | ط<br>Aluminum                             | t<br>P Antimony | ta<br>T Arsenic            | A6t<br>T∕6t  | dd<br>T                       | 년<br>T/Bismuth                | uo<br>Boron<br>Hg/L | T/đ<br>đmium<br>T                                  | Calcium<br>T/bu      | Shromium<br>T∕6  | б <sup>т</sup><br>T/ | raddo<br>β                                     | u<br><u>D</u><br>µg/L | Геаd<br>Л/ВН | Lithium<br>hain                              | w<br>A<br>T/     | ъ<br>Д<br>Мanganese                              | And Mercury<br>Mercury              | a<br>T Molybdenun   | ъ<br>Л<br>Л<br>Л           | a<br>T/Dotassium        | bd<br>Selenium                | hgh<br>Silver                               | mg/L       | Б<br>T/б     | Thallium<br>Thallium | Е<br>Н<br>µg/L   | -      | Тр Uranium<br>7/бт Vanadium  | _<br>Zinc_<br>μg/Γ |
| BC Standard                |                                                                         |                                       |                   | or rock                                   |                 |                            | <i>a</i> /a  |                               |                               |                     | a aga a ad                                         |                      |                  | 110                  | 0.05 75 000                                    | 1 250 (may)           |              | od n/a                                       |                  | = 10 0 100 <sup>d</sup>                          | 0.00                                | 2 000               |                            |                         | - /-                          | o t od                                      |            |              |                      | -                |        |                              | oo ssid            |
|                            | e Short-term Maximum (AW) <sup>a</sup>                                  |                                       | n/a<br>n/a        | 31-100 <sup>k</sup><br>11-50 <sup>k</sup> | n/a<br>9        | 5<br>n/a                   | n/a<br>1,000 | n/a<br>0.13                   | n/a<br>n/a                    | n/a<br>1,200        | 0.038-2.8 <sup>d</sup><br>0.018-0.457 <sup>d</sup> | n/a                  | n/a<br>1 (Cr(+6) | 110<br>4             | 2.05-75.32 <sup>d</sup><br>2-31.2 <sup>d</sup> | n/a                   | 3-1,11       |                                              | n/a<br>n/a       | 546-9,136 <sup>d</sup><br>607-4.037 <sup>d</sup> | 0.02 <sup>g</sup><br>n/a            | 2,000<br>1,000      | n/a<br>25-150 <sup>d</sup> | n/a<br>n/a              | n/a<br>2                      | 0.1-3 <sup>d</sup><br>0.05-1.5 <sup>d</sup> | n/a<br>n/a | n/a<br>n/a   | n/a<br>0.8           | n/a<br>n/a       |        | n/a n/a<br>8.5 n/a           |                    |
| CSR Aquatic Life (A)       |                                                                         |                                       | n/a               | n/a                                       | 90              | 50                         | 10,000       | 1.5                           | n/a                           | 12,000              | 0.5-4 <sup>d</sup>                                 | n/a                  | 10 <sup>e</sup>  | 40                   | 2-31.2<br>20-90 <sup>d</sup>                   | n/a                   | 40-16        |                                              | n/a              | n/a                                              | 0.25                                | 10,000              | 250-1.500 <sup>d</sup>     | n/a                     | 20                            | 0.5-15 <sup>d</sup>                         | n/a        | n/a          | 3                    | n/a              |        | 85 n/a                       |                    |
| CSR Irrigation Water       |                                                                         |                                       | n/a               | 5,000                                     | n/a             | 100                        | n/a          | 100                           | n/a                           | 500                 | 5                                                  | n/a                  | 5 <sup>e</sup>   | 50                   | 20-90                                          | 5,000                 |              | 2,500                                        |                  | 200                                              | 1                                   | 10,000 <sup>h</sup> | 200-1,500                  | n/a                     | 20                            | n/a                                         | n/a        | n/a          | n/a                  | n/a              |        | 10 100                       | - ,                |
| CSR Livestock Wate         |                                                                         |                                       | n/a               | 5,000                                     | n/a             | 25                         | n/a          | 100                           | n/a                           | 5,000               | 80                                                 | 1,000                | _                | 1,000                | 300                                            | n/a                   | 100          |                                              | n/a              | n/a                                              | 2                                   | 50                  | 1,000                      | n/a                     | 30                            | n/a                                         | n/a        | n/a          | n/a                  | n/a              |        | 200 100                      | ,                  |
| CSR Drinking Water         |                                                                         |                                       | n/a               |                                           | 6               | 10                         | 1,000        | 8                             | n/a                           |                     | 5                                                  | n/a                  |                  | 20 <sup>f</sup>      | 1,500                                          | 6,500                 | 10           |                                              | n/a              | 1,500                                            | - 1                                 | 250                 | 80                         | n/a                     | 10                            | 20                                          |            |              |                      | 2,500            |        | 20 20                        |                    |
| Background                 | ()                                                                      |                                       |                   | -,                                        | ÷               |                            | .,           | -                             |                               | -,                  | -                                                  |                      | 00               | 20                   | .,                                             | -,                    |              | -                                            |                  | .,                                               | -                                   |                     |                            |                         |                               |                                             |            |              |                      | _,               |        |                              |                    |
| FR_HMW5                    | FR_HMW5_QSW_03042017_N<br>FR_HMW5_QTR_2017-09-11_N<br>WG_2017-09-11_003 | 2017 06 21<br>2017 09 18<br>Duplicate | 158<br>162<br>166 | 6.3<br>6.1<br>6.3                         | < 0.10          | < 0.10<br>< 0.10<br>< 0.10 |              | < 0.020<br>< 0.020<br>< 0.020 | < 0.050<br>< 0.050<br>< 0.050 | 48                  | < 0.0050<br>< 0.0050<br>< 0.0050                   | 33.1<br>35.1<br>35.9 | < 0.10           | < 0.10               | < 0.50                                         | < 10<br>< 10<br>< 10  | < 0.0        | 50     232       50     218       50     219 | 18.1             | 47.2<br>47.8<br>47.7                             | < 0.00050<br>< 0.00050<br>< 0.00050 | < 0.050             | < 0.50<br>< 0.50<br>< 0.50 | 0.741<br>0.687<br>0.679 | <b>14.8</b><br>0.334<br>0.595 | < 0.010<br>< 0.010<br>< 0.010               | 14.5       | 331 <        | < 0.010              | < 0.10           | < 10 0 | 0.019< 0.500.016< 0.50       | 0 < 3.0            |
|                            | QA/QC RPD%                                                              |                                       | 2                 | 3                                         | *               | *                          | 1            | *                             | *                             | 4                   | *                                                  | 2                    | *                | *                    | *                                              | *                     | *            | < 1                                          | 2                | < 1                                              | *                                   | *                   | *                          | 1                       | 56                            | *                                           | 1          | 1            | *                    | *                | *      | * *                          | *                  |
|                            | FR_HMW5_QTR_2017-10-02_N                                                | 2017 11 14                            | 187               | 5.9                                       | < 0.10          | < 0.10                     | 196          | < 0.020                       | < 0.050                       | 42                  | < 0.0050                                           | 41.5                 | < 0.10           | < 0.10               | < 0.50                                         | < 10                  | < 0.0        | 50 <b>265</b>                                | 20.2             | 48.5                                             | < 0.00050                           | < 0.050             | < 0.50                     | 0.649                   | 1.03                          | < 0.010                                     | 12.9       | 346 <        | < 0.010              | < 0.10           | < 10 0 | 0.014 < 0.50                 | 0 < 3.0            |
|                            | WG_2017-10-02_005                                                       | Duplicate                             | -                 | -                                         | -               | -                          | -            | -                             | -                             | -                   | -                                                  | -                    | -                | -                    | -                                              | -                     | -            | -                                            | -                | -                                                | < 0.00050                           | -                   | -                          | -                       | -                             | -                                           | -          | -            | -                    | -                | -      |                              | <u> </u>           |
| Study Area 1               | QA/QC RPD%                                                              |                                       | *                 | *                                         | *               | *                          | *            | *                             | *                             | *                   | *                                                  | *                    | *                | *                    | *                                              | *                     | *            | *                                            | *                | *                                                | *                                   | *                   | *                          | *                       | *                             | *                                           | *          | *            | *                    | *                | *      | * *                          | *                  |
| Study Area 1<br>FR_09-01-A | FR_09-01-A_QSW_02012017_N                                               | 2017 03 08                            | 986               | < 1.0                                     | 0 10            | < 0.10                     | 139          | < 0.020                       | < 0.050                       | 18                  | 0.0571                                             | 214                  | < 0.10           | 0.31                 | < 0.20                                         | < 10                  | < 0.04       | 50 <b>76.8</b>                               | 110              | < 0.10                                           | < 0.0050                            | 0.658               | 1.40                       | 3.32                    | 120 -                         | < 0.010                                     | 4 10       | 214          | < 0.010              | < 0.10           | < 10   | 6.34 < 0.50                  | 0 < 1.0            |
| TR_00 01 A                 | FR_09-01-A_QSW_03042017_N                                               | 2017 05 08                            | 557               | < 1.0                                     |                 | < 0.10                     |              | < 0.020                       | < 0.050                       |                     | 0.0269                                             | 123                  |                  |                      | < 0.20                                         | < 10                  |              | 50 <b>70.3</b>                               |                  | 0.15                                             | < 0.0050                            | 1.81                | < 0.50                     | 2.57                    | 112                           | < 0.010                                     |            |              |                      | < 0.10           |        | 4.77 < 0.50                  |                    |
|                            | FR_09-01-A_QTR_2017-09-11_N                                             | 2017 00 01                            | 738               | < 3.0                                     |                 | < 0.10                     |              | < 0.020                       | < 0.050                       |                     | 0.0203                                             | 170                  |                  | 0.33                 | < 0.20                                         | < 10                  | _            | 50 <b>65.5</b>                               |                  | < 0.10                                           | < 0.0050                            | 0.804               | 1.37                       | 3.43                    | 68 1                          | < 0.010                                     |            |              |                      | < 0.10           |        | 4.26 < 0.50                  |                    |
|                            | FR_09-01-A_QTR_2017-10-02_N                                             | 2017 11 22                            | 1,050             | < 3.0                                     | _               | < 0.10                     |              | < 0.020                       | < 0.050                       |                     | 0.0470                                             | 234                  |                  | 0.00                 | < 0.50                                         | < 10                  |              | 50 <b>68.0</b>                               |                  | 0.71                                             | < 0.0050                            | 0.603               | 0.74                       | 3.64                    | 166                           | < 0.010                                     |            |              |                      |                  |        | 5.36 < 0.50                  |                    |
| FR_09-01-B                 | FR_09-01-B_QSW_02012017_N                                               | 2017 03 08                            | 882               | < 1.0                                     |                 |                            |              | < 0.020                       | < 0.050                       |                     | 0.0536                                             | 184                  | 0.13             | 0.52                 | < 0.20                                         | < 10                  | _            | 50 <b>69.1</b>                               | 103              | < 0.10                                           | < 0.0050                            | 0.640               | 2.00                       | 3.79                    | 71.8                          | < 0.010                                     |            |              |                      | < 0.10           |        | 4.54 < 0.50                  |                    |
| 111_00 01 2                | FR_09-01-B_QSW_03042017_N                                               | 2017 06 01                            | 636               | < 1.0                                     | 0.10            | < 0.10                     | 126          | < 0.020                       | < 0.050                       |                     | 0.0209                                             | 137                  |                  | < 0.10               | < 0.20                                         | < 10                  |              | 50 <b>54.7</b>                               | 71.2             | < 0.10                                           | < 0.0050                            | 0.565               | < 0.50                     | 3.14                    | 126                           | < 0.010                                     |            |              | < 0.010              |                  |        | 3.21 < 0.50                  |                    |
|                            | FR_09-01-B_QTR_2017-09-11_N                                             | 2017 00 01                            | 613               | < 3.0                                     | _               | < 0.10                     |              | < 0.020                       | < 0.050                       |                     | 0.0350                                             | 140                  |                  | 0.32                 | < 0.20                                         | < 10                  |              | 50 <b>54.3</b>                               |                  | < 0.10                                           | < 0.0050                            | 0.966               | 1.25                       | 3.08                    | 44.2                          | < 0.010                                     |            |              | < 0.010              |                  |        | 4.79 < 0.50                  |                    |
|                            | FR_09-01-B_QTR_2017-10-02_N                                             | 2017 11 22                            | 890               | < 3.0                                     |                 |                            |              | < 0.020                       | < 0.050                       |                     | 0.0402                                             | 202                  |                  | 0.42                 | < 0.50                                         | < 10                  |              | 50 <b>67.7</b>                               |                  | 0.42                                             | < 0.0050                            | 0.835               | 1.32                       | 3.50                    | 91.5                          | < 0.010                                     |            |              |                      | < 0.10           |        | 5.30 < 0.50                  |                    |
| FR GHHW                    | FR_GHHW_QSW_02012017_N                                                  | 2017 02 27                            | 689               |                                           |                 | < 0.10                     | 110          | < 0.020                       | < 0.050                       |                     | 0.0515                                             | 169                  |                  | -                    | 1.98                                           | 91                    | 0.08         |                                              |                  | 1.93                                             | < 0.0050                            | 0.328               | < 0.50                     | 1.46                    | 123                           | < 0.010                                     |            |              |                      | < 0.10           |        | 2.88 < 0.50                  |                    |
|                            | FR_GHHW_QSW_03042017_N                                                  | 2017 06 01                            | 597               |                                           | _               | < 0.10                     |              | < 0.020                       | < 0.050                       |                     | 0.0408                                             | 143                  |                  | < 0.10               | 1.96                                           | 47                    |              | 0 <b>23.7</b>                                |                  | 5.93                                             | < 0.0050                            | 0.343               | < 0.50                     | 1.27                    | 93.5                          | < 0.010                                     |            |              |                      | < 0.10           |        | 2.64 < 0.50                  |                    |
|                            | FR_GHHW_QTR_2017-09-11_N                                                | 2017 09 13                            | 527               |                                           |                 | < 0.10                     |              | < 0.020                       | < 0.050                       |                     | 0.0403                                             | 132                  |                  | < 0.10               | 1.87                                           | 13                    | 0.09         |                                              |                  | 1.03                                             | < 0.0050                            | 0.290               | < 0.50                     | 1.18                    | 82.2                          | < 0.010                                     |            |              |                      | < 0.10           |        | 2.35 < 0.50                  |                    |
| FR_GH_WELL4 Study Area 2   | FR_GH_WELL4_QTR_2017-10-02_N                                            | 2017 11 15                            | 590               | < 3.0                                     | < 0.10          | < 0.10                     | 83.1         | < 0.020                       | < 0.050                       | < 10                | 0.0297                                             | 143                  | < 0.10           | < 0.10               |                                                | 12                    | 0.06         | 0 <b>24.9</b>                                | 56.6             | 1.08                                             | < 0.0050                            | 0.322               | < 0.50                     | 1.19                    | 92.8                          | < 0.010                                     | 2.26       | 185 <        | < 0.010              | < 0.10           | < 10   | 2.50 < 0.50                  | 0 20.5             |
| LC_PIZDC1307               | LC_PIZDC1307_WG_2017-03-13_NP                                           | 2017 03 16                            | 171               |                                           | < 0.10          |                            | ,            |                               | < 0.050                       |                     | 0.0121                                             |                      | < 0.10           |                      | 0.28                                           | 178                   |              | 50 <b>69.3</b>                               |                  | 10.4                                             | < 0.0050                            |                     | 1.93                       |                         |                               | < 0.010                                     |            |              |                      |                  |        | 0.114 < 0.50                 |                    |
|                            | LC_PIZDC1307_WG_2017-06-12_NP                                           | 2017 06 12                            | 164               | 1.3                                       | < 0.10          |                            | 1,380        | < 0.020                       | < 0.050                       |                     | 0.0155                                             | 34.3                 |                  | -                    | < 0.20                                         | 928                   |              | 50 <b>66.9</b>                               |                  | 11.7                                             | < 0.0050                            | 61.6                | 1.68                       | 4.75                    |                               | < 0.010                                     |            |              |                      | < 0.10           |        | 0.034 < 0.50                 |                    |
|                            | LC_PIZDC1307_WG_2017-09-11_NP                                           | 2017 09 19                            | 177               |                                           | < 0.10          |                            | 1,410        | < 0.020                       | < 0.050                       |                     | < 0.015                                            | 38.2                 |                  | < 0.10               | < 0.50                                         | 672                   |              | 50 <b>71.9</b>                               |                  | 9.22                                             | 0.0053                              | 36.5                | 0.90                       | 4.88                    | < 0.050                       | < 0.010                                     |            |              |                      | < 0.10           |        | 0.034 < 0.50                 |                    |
| LC PIZDC1308               | LC_PIZDC1307_WG_2017-12-11_NP<br>LC_PIZDC1308_WG_2017-03-13_NP          | 2017 11 01                            | 182               | < 3.0                                     |                 |                            | 1,430        | < 0.020                       | 0.148                         | 24                  | 0.0337                                             | 38.7                 |                  | < 0.10               | < 0.50                                         | 795<br>906            |              | 8 <b>79.5</b>                                |                  | 10.1                                             | < 0.0050<br>< 0.0050                |                     | 0.75                       | 5.01                    | 0.14                          | < 0.010                                     |            |              |                      | < 0.10           |        | 0.048 < 0.50                 |                    |
| LC_FIZDC1300               | LC_PIZDC1308_WG_2017-03-13_NP                                           | 2017 03 13<br>2017 06 12              | 233<br>315        | < 1.0<br>< 1.0                            | < 0.10          | < 0.10                     | 461<br>271   | < 0.020                       | < 0.050                       |                     | 0.0091                                             | 59.8<br>83.5         |                  | 1.26<br>0.28         | < 0.20<br>0.29                                 | < 10                  |              | 50 <b>26.2</b><br>50 7.2                     | 20.3<br>25.8     | 6.72                                             | < 0.0050                            | 8.72<br>1.47        | 2.55<br>1.31               | 2.61<br>1.94            | < 0.050<br>0.301              | < 0.010<br>< 0.010                          |            |              |                      | < 0.10<br>< 0.10 |        | 0.789 < 0.50<br>1.10 < 0.50  |                    |
|                            | LC PIZDC1308 WG 2017-09-11 NP                                           | 2017 09 19                            | 211               |                                           |                 | 0.22                       | 361          | < 0.020                       | < 0.050                       |                     | 0.0230                                             | 49.9                 |                  | 0.92                 | < 0.50                                         | 525                   |              | 50 <b>19.0</b>                               |                  | 93.6                                             | < 0.0050                            | 8.19                | 1.77                       |                         |                               | < 0.010                                     |            | -            |                      | < 0.10           |        | 0.446 < 0.50                 |                    |
|                            | FD_WG_20170911_020                                                      | Duplicate                             | 233               |                                           |                 | 0.19                       |              | < 0.020                       | < 0.050                       |                     | 0.0253                                             | 59.5                 | < 0.10           |                      | < 0.50                                         | 537                   |              | 50 <b>23.8</b>                               |                  | 92.2                                             | < 0.0050                            | 9.62                | 1.80                       |                         |                               |                                             |            | 98.4         | 0.027                | < 0.10           |        | .537 < 0.50                  |                    |
|                            | QA/QC RPD%                                                              |                                       | 10                | *                                         | *               | 15                         | 3            | *                             | *                             | *                   | *                                                  | 18                   | *                | 0                    | *                                              | 2                     | *            | ~~                                           | 1                | 2                                                | *                                   | 16                  | 2                          | 1                       | *                             | *                                           | 1          | 15           | *                    | *                |        | 19 *                         | *                  |
|                            | LC_PIZDC1308_WG_2017-12-11_NP                                           | 2017 11 01                            | 240               |                                           | < 0.10          |                            | 396          |                               | < 0.050                       |                     | 0.0361                                             | 60.1                 |                  |                      | < 0.50                                         | 840                   | _            | 50 <b>26.3</b>                               |                  | 95.1                                             | < 0.0050                            |                     | 2.28                       |                         |                               | < 0.010                                     |            |              |                      |                  |        | 0.629 < 0.50                 |                    |
|                            | FD_WG_20171211_023                                                      | Duplicate                             | 238               | < 3.0<br>*                                | < 0.10          | 0.35                       | 400          | < 0.020                       | < 0.050                       | 15                  | 0.0259                                             | 59.4                 | < 0.10           | 1.07                 | < 0.50                                         | 828                   | < 0.0        | 50 <b>26.4</b>                               |                  | 93.7                                             | < 0.0050<br>*                       | 9.86                | 2.34                       | 2.64                    | < 0.050<br>*                  | < 0.010                                     |            |              | 0.037<br>*           | < 0.10<br>*      | < 10 0 | 0.660 < 0.50                 |                    |
| Study Area 3               | QA/QC RPD%                                                              |                                       | 1                 | ^                                         | ^               | 6                          | 1            | ^                             | ^                             | , î                 | 33                                                 | 1                    | ^                | 2                    | ^                                              | 1                     | ^            | <1                                           | 0                | 1                                                | Ŷ                                   | 2                   | 3                          | 2                       | ^                             | ^                                           | < 1        | 2            | <u>^</u>             | <b>^</b>         | ^      | 5                            | ^                  |
| GH POTW09                  | GH_POTW09_WG_2017-02-07_NP                                              | 2017 02 07                            | 398               | < 10                                      | < 0.10          | 0 44                       | 32.4         | < 0.020                       | < 0.050                       | 19                  | 0.0191                                             | 91.9                 | < 0.10           | 0.19                 | 6.82                                           | 149                   | 0.24         | 1 <b>11.9</b>                                | 40.9             | 207                                              | < 0.0050                            | 2.68                | 26.8                       | 1 54                    | 0.951                         | < 0.010                                     | 6 15       | 342          | 0.019                | < 0.10           | < 10   | 1.85 < 0.50                  | 0 32.2             |
|                            | GH POTW09 WG 2017-06-19 NP                                              |                                       |                   |                                           |                 | 0.38                       |              | < 0.020                       |                               |                     | 0.0085                                             |                      | < 0.10           |                      | 2.92                                           | 143                   |              | 50 <b>12.2</b>                               |                  | 188                                              | < 0.0050                            |                     | 2.95                       | 1.59                    |                               |                                             |            |              |                      |                  |        | 1.89 < 0.50                  |                    |
|                            | GH_POTW09_WG_2017-06-19_FD                                              | Duplicate                             |                   |                                           |                 | 0.42                       |              | < 0.020                       |                               |                     | 0.0111                                             |                      | < 0.10           |                      |                                                | 149                   |              | 50 <b>12.1</b>                               |                  | 186                                              | < 0.0050                            |                     | 2.54                       |                         |                               |                                             |            |              |                      |                  |        | 1.88 < 0.50                  |                    |
|                            | QA/QC RPD%                                                              |                                       | 0                 | *                                         | *               | 10                         | 1            | *                             | *                             | *                   | *                                                  | < 1                  | *                | *                    | 3                                              | 4                     | *            | 1                                            | < 1              | 1                                                | *                                   | 0                   | 15                         | 1                       | 3                             | *                                           | 1          | < 1          | *                    | *                | *      | 1 *                          | 11                 |
|                            | GH_POTW09_WG_2017-07-05_NP                                              | 2017 07 05                            | 398               |                                           |                 | 0.31                       |              | < 0.020                       |                               |                     | 0.0191                                             |                      | < 0.10           |                      | 0.86                                           | < 10                  |              | 50 <b>11.7</b>                               |                  | 186                                              | < 0.0050                            |                     | 2.45                       |                         |                               |                                             |            |              |                      |                  |        | 2.23 < 0.50                  |                    |
|                            | GH_POTW09_WG_2017-07-01_NP                                              | 2017 09 25                            | 392               |                                           |                 | 0.41                       |              | < 0.020                       |                               |                     | 0.0131                                             |                      | < 0.10           |                      | 5.10                                           | 135                   |              | 3 <b>11.5</b>                                |                  | 178                                              | < 0.0050                            |                     | 11.5                       | 1.49                    | 0.91                          |                                             |            |              |                      |                  |        | 2.00 < 0.50                  |                    |
|                            | GH_POTW09_WG_2017-10-01_NP                                              | 2017 11 16                            |                   |                                           |                 | 0.42                       |              | < 0.020                       |                               |                     | 0.0115                                             |                      | < 0.10           |                      | 3.70                                           | 139                   |              | 50 <b>12.9</b>                               |                  | 197                                              | < 0.0050                            |                     | 3.12                       |                         |                               |                                             |            |              |                      |                  |        | 1.94 < 0.50                  |                    |
| GH_POTW10                  | GH_POTW10_WG_2017-02-07_NP<br>GH_POTW10_WG_2017-02-07_FD                | 2017 02 07<br>Duplicate               |                   |                                           |                 | 1.34<br>1.22               |              | < 0.020<br>< 0.020            |                               |                     | 0.0072                                             |                      | < 0.10           |                      | < 0.20<br>< 0.20                               | 728<br>667            |              | 50 <b>17.0</b><br>50 <b>16.9</b>             |                  | 47.0<br>45.9                                     | < 0.0050<br>< 0.0050                |                     | 0.69<br>0.69               |                         |                               |                                             |            |              |                      |                  |        | 0.691 < 0.50<br>0.686 < 0.50 |                    |
|                            | QA/QC RPD%                                                              | Duplicate                             | 353               |                                           | < 0.10          |                            | 18.4         | *                             | < 0.050<br>*                  | 35                  | *                                                  | 83.2                 |                  | 0.11                 | < 0.20                                         | 9                     |              | 10 16.9                                      | <u>35.3</u><br>4 | 45.9                                             | < 0.0050                            | 2.94                | 0.69                       | 1.72                    | 4.92                          | *                                           |            | <u>505</u> < | *                    | < 0.10           |        | 1 *                          |                    |
|                            | GH_POTW10_WG_2017-06-19_NP                                              | 2017 06 19                            | -                 |                                           |                 | 1.83                       | -            | < 0.020                       |                               | -                   | 0.0184                                             | -                    | < 0.10           |                      | < 0.20                                         | 831                   |              | 8 <b>15.6</b>                                |                  | 211                                              | < 0.0050                            |                     | 1.57                       |                         |                               |                                             |            |              |                      |                  |        | 1.37 < 0.50                  |                    |
|                            | GH_POTW10_WG_2017-07-01_NP                                              | 2017 09 25                            | 381               |                                           |                 | 1.10                       |              | < 0.020                       |                               |                     | 0.0079                                             |                      | < 0.10           |                      | < 0.50                                         | 677                   |              | 50 <b>15.5</b>                               |                  | 50.5                                             | < 0.0050                            |                     | 0.99                       |                         |                               |                                             |            |              |                      |                  |        | 0.672 < 0.50                 |                    |
|                            | GH_POTW10_WG_2017-10-01_NP                                              |                                       |                   |                                           |                 |                            |              | < 0.020                       |                               |                     | 0.0101                                             |                      | < 0.10           |                      |                                                | 881                   |              | 50 <b>17.6</b>                               |                  | 58.2                                             | < 0.0050                            |                     | 2.85                       |                         |                               |                                             |            |              |                      |                  |        | 0.644 < 0.50                 |                    |
|                            |                                                                         |                                       |                   |                                           |                 |                            |              |                               |                               |                     |                                                    | 20.0                 |                  |                      |                                                | 50.                   |              |                                              |                  |                                                  |                                     |                     |                            |                         |                               |                                             |            |              |                      |                  |        |                              |                    |

Data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD\*\* Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline BOLD SHADOW SHADED INVERSE

Concentration greater than CSR Aquatic Life (AW) standard Concentration greater than CSR Irrigation Watering (IW) standard Concentration greater than CSR Drinking Water (DW) standard

Concentration greater than CSR Livestock Watering (LW) standard

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with Hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>f</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>9</sup> Total Mercury guideline is based on the % of MethylMercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg.

<sup>h</sup> Standard ranges between 10 to 30 ug/L and varies with crop, soil drainage and Mo:Cu ratio. Conservative standard of 10 ug/L was applied.

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>j</sup> Samples inferred to be mislabelled in field.

<sup>k</sup> Guideline/standard varies with pH.

<sup>1</sup> Reported metals values for Q1 are total metals.

<sup>m</sup> Reported metals values are total metals.

### TABLE 4 (Cont'd): Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Metals in Groundwater

|                                            |                                                                |                                         |            |                     |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |       |          |              |                                    |                  |                         |              |                   | Di               | issolved M                    | letals                 |                      |                          |                        |            |               |                       |        |              |                        |                      |                            |               |                      |
|--------------------------------------------|----------------------------------------------------------------|-----------------------------------------|------------|---------------------|--------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|----------|--------------|------------------------------------|------------------|-------------------------|--------------|-------------------|------------------|-------------------------------|------------------------|----------------------|--------------------------|------------------------|------------|---------------|-----------------------|--------|--------------|------------------------|----------------------|----------------------------|---------------|----------------------|
|                                            |                                                                |                                         |            |                     |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |       |          |              |                                    |                  |                         |              |                   |                  |                               |                        |                      | ε                        |                        |            |               |                       |        |              |                        |                      |                            |               |                      |
|                                            |                                                                |                                         | ss         | Ę                   | 2            |              |              | ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                         |       | E        | _            | Ē                                  |                  |                         |              |                   |                  | ium                           | ese                    |                      | nuə                      |                        | Ē          | ε             |                       |        | Ξ            | <b>_</b>               | ۶                    | !                          | Ę             |                      |
|                                            |                                                                |                                         | lnes       | ninu                | ō            | nic          | Ę            | lliu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a lat                     |       | min      | iur          | ,<br>mi                            | alt              | per                     |              |                   | E E              | nes                           | gan                    | ſun                  | pq                       | e                      | ssi        | niu           | 7                     | iu n   | ntiu :       | liun                   | iu                   | in in                      |               |                      |
| Sample                                     | Sample                                                         | Sample Date                             | larc       | Alun                | Anti         | Arse         | Barit        | Bery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bisn                      |       | Cadi     | Calc         | Chrc                               | ç                | do                      | on           | eac               | ithi             | Mag                           | lan                    | Vero                 | Moly                     | lick                   | ota        | sele          | Silve                 | pog    | , stro       | hal hal                | ⊑itar                | Urar                       | an;           | linc                 |
| Location                                   | ID                                                             | (vvvv mm dd)                            | mg/L       | μq/L                | μα/L         | μg/L         | μα/L         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | α/L μα                    |       |          | mg/L         | µg/L                               | µq/L             | µg/L                    | μg/L         | μg/L              | µg/L             |                               | ∠<br>μg/L              | ∠<br>µg/L            | ∠<br>µg/L                | μg/L                   | mg/L       | µg/L          | µg/L                  | mg/L j | ug/L μ       | α/L μα                 | - –<br>α/L μα/Ι      | L µg/L µg                  |               | g/L                  |
| BC Standard                                |                                                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            | 10                  |              |              | 10           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 10                      |       | •        |              |                                    |                  |                         |              |                   |                  | Ŭ                             |                        |                      |                          |                        | •          |               |                       | •      | •            |                        |                      |                            |               |                      |
| BCWQG Aquatic Life                         | Short-term Maximum (AW) <sup>a</sup>                           |                                         | n/a        | 31-100 <sup>k</sup> | n/a          | 5            | n/a          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a n                     |       |          | n/a          | n/a                                | 110              | 2.05-75.32 <sup>d</sup> |              |                   | <sup>d</sup> n/a |                               | 546-9,136 <sup>d</sup> | 0.02 <sup>g</sup>    | 2,000                    | n/a                    | n/a        | n/a           | 0.1-3 <sup>d</sup>    | n/a    |              |                        | /a n/a               |                            |               | -551 <sup>d</sup>    |
|                                            | ELONG-Term Average (AW) <sup>b</sup>                           |                                         | n/a        | 11-50 <sup>k</sup>  | 9            | n/a          | 1,000        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a 1,2                   |       |          |              | 1 (Cr(+6))                         | 4                | 2-31.2 <sup>d</sup>     | n/a          | 3-47 <sup>d</sup> | n/a              |                               | 607-4,037 <sup>d</sup> | n/a                  | 1,000                    | 25-150 <sup>d</sup>    | n/a        |               | 0.05-1.5 <sup>d</sup> |        |              |                        | /a n/a               |                            |               | -525 <sup>d</sup>    |
| CSR Aquatic Life (A)                       | ,                                                              |                                         | n/a        | n/a                 | 90           | 50           | 10,000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a 12,                   |       | -        | n/a          | 10 <sup>e</sup>                    | 40               | 20-90 <sup>d</sup>      | n/a          | 40-160            |                  |                               | n/a                    |                      |                          | 250-1,500 <sup>d</sup> | n/a        | 20            | 0.5-15 <sup>ª</sup>   |        |              |                        | /a 1,00              |                            |               | 2,400 <sup>d</sup>   |
| CSR Irrigation Water<br>CSR Livestock Wate |                                                                |                                         | n/a<br>n/a | 5,000               | n/a          | 100<br>25    | n/a          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a 50<br>n/a 5,0         |       |          | n/a<br>1,000 | 5 <sup>e</sup>                     | 50<br>1,000      | 200<br>300              | 5,000<br>n/a | 200<br>100        | 2,500            |                               | 200<br>n/a             | 1 2                  | 10-30 <sup>h</sup><br>50 | 200                    | n/a<br>n/a | 20<br>30      | n/a                   |        |              |                        | /a n/a               |                            | ,             | 0-5,000 <sup>d</sup> |
| CSR Drinking Water                         | 0()                                                            |                                         |            | 5,000<br>9,500      | n/a<br>6     |              | n/a<br>1,000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a 5,0<br>n/a 5,0        |       |          | n/a          | 50 <sup>e</sup><br>50 <sup>e</sup> | 20 <sup>f</sup>  | 1,500                   | 6,500        | 100               | 5,000            |                               | 1,500                  | 1                    | 250                      | 80                     | n/a        | 10            | n/a<br>20             |        |              |                        | /a n/a<br>500 n/a    |                            |               | .000                 |
| Study Area 3 (Cont                         |                                                                |                                         | n/a        | 3,300               | 0            | 10           | 1,000        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/a 0,0                   | 00    | 5        | n/a          | 50                                 | 20               | 1,000                   | 0,000        | 10                | 0                | 11/a                          | 1,500                  | 1                    | 230                      | 00                     | Π/a        | 10            | 20                    | 200 2  | .,500 1      | ∥a 2,€                 | 1/8                  | 20 2                       | 5,0           | 300                  |
| GH_POTW15                                  | GH_POTW15_WG_2017-02-07_NP                                     | 2017 02 07                              | 464        | < 1.0               | < 0.10       | 1.46         | 22.5         | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050 1                   | 9 0.  | 0229     | 121          | < 0.10                             | 0.25             | < 0.20                  | 670          | < 0.050           | 15.8             | 39.4                          | 189                    | < 0.0050             | 2.63                     | 1.14                   | 1.68       | 0.197         | < 0.010               | 9.29   | 377 0.       | 019 < 0                | 0.10 < 10            | 0 1.45 < 0                 | 0.50 1.       | 1.3                  |
|                                            | GH_POTW15_WG_2017-06-19_NP                                     | 2017 06 19                              | 382        | < 1.0               | < 0.10       | 1.26         | 20.1         | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050 3                   | 1 0.  | 0077 8   | 84.7         | < 0.10                             | 0.16             | < 0.20                  | 936          | < 0.050           | 15.9             | 9 41.4                        | 55.4                   | < 0.0050             | 2.90                     | 1.26                   | 1.79       | 3.03          | < 0.010               | 4.99   | 501 < 0      | 0.010 < 0              | 0.10 < 1             | 0 0.635 < 0                | 0.50 1.       | 1.2                  |
|                                            | GH_POTW15_WG_2017-07-01_NP                                     | 2017 09 25                              | 475        | < 3.0               | < 0.10       |              | 21.8         | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          | 118          | < 0.10                             | 0.21             | < 0.50                  | 776          |                   |                  | 43.9                          | 183                    |                      | 2.18                     |                        |            |               |                       |        |              |                        | 0.10 < 1             |                            |               | 3.0                  |
|                                            | GH_POTW15_WG_2017-10-01_NP                                     | 2017 11 16                              | 516        | < 3.0               | < 0.10       |              | 22.0         | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          | 127          | < 0.10                             | 0.23             | < 0.50                  | 1,020        | 0.146             |                  |                               | 202                    | < 0.0050             | 2.41                     |                        |            | 0.050         |                       |        |              |                        | 0.10 < 1             |                            |               | 6.3                  |
| GH_POTW17                                  | GH_POTW17_WG_2017-01-03_NP                                     | 2017 01 03                              | 739        | < 5.0               | -            |              | 27.6         | < 0.10 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |       |          | 176          | < 0.50                             | < 0.50           |                         | < 50<br>174  |                   |                  | <b>1</b> 73.0<br><b>6</b> 7.5 | 97.4<br>81.4           | < 0.0050             | 1.25                     |                        |            | 5.15          | < 0.050               |        |              | 0.050 < 0              |                      |                            |               | 0.7<br>1.7           |
|                                            | GH_POTW17_WG_2017-02-07_NP<br>GH_POTW17_WG_2017-06-19_NP       | 2017 02 07<br>2017 06 19                | 719<br>737 | < 1.0<br>< 1.0      | < 0.10       |              | 33.0<br>32.2 | < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 |                           |       |          | 177<br>172   | < 0.10<br>< 0.10                   | 0.24             | 0.24                    | 174          |                   |                  | <b>6</b> 7.5                  | 81.4<br>60.3           | < 0.0050<br>< 0.0050 | 0.989                    |                        |            | 6.93<br>9.83  | < 0.010<br>< 0.010    |        |              | 013 < 0<br>012 < 0     | ).10 < 1<br>).10 < 1 |                            |               | 1.7<br>1.7           |
|                                            | GH_POTW17_WG_2017-07-05_NP                                     | 2017 00 19                              | 729        | < 1.0               | < 0.10       |              | 30.9         | < 0.020 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       |          | 173          | < 0.10                             | 0.14             | 0.45                    | < 10         |                   |                  | <b>3</b> 72.3                 | 78.5                   | < 0.0050             | 1.07                     |                        |            | 7.71          |                       |        |              |                        | 0.10 < 10            |                            |               | 1.7                  |
|                                            | GH_POTW17_WG_2017-07-01_NP                                     | 2017 09 25                              | 709        | < 3.0               | < 0.10       |              | 26.9         | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050 2                   |       |          | 169          | < 0.10                             | 0.14             | < 0.50                  | 228          | 5.91              |                  | 69.9                          | 66.1                   |                      | 0.962                    |                        | 1.53       | 4.98          |                       |        |              | 014 < 0                |                      |                            |               | 0.1                  |
|                                            | GH_POTW17_WG_2017-10-01_NP                                     | 2017 11 21                              | 780        | < 3.0               | < 0.10       |              |              | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          | 181          | < 0.10                             | 0.15             | < 0.50                  | 145          |                   |                  | <b>3</b> 79.5                 | 68.3                   | < 0.0050             | 1.17                     |                        |            | 7.09          | < 0.010               |        |              |                        | 0.10 < 10            | 0 2.32 < 0                 | 0.50 < 3      | 3.0                  |
| GH_MW-RLP-1D                               | GH_MW-RL-1D_WG_2017-02-02_NP                                   |                                         | 255        | 1.6                 | < 0.10       | 0.33         |              | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          |              | < 0.10                             | 0.10             | < 0.20                  | 152          | < 0.050           |                  |                               | 105                    | < 0.0050             | 3.41                     |                        | 1.25       | 2             |                       |        |              | 0.010 < 0              |                      |                            |               | 1.0                  |
|                                            | GH_MW-RL-1D_WG_2017-02-02_FD<br>QA/QC RPD%                     | Duplicate                               | 274        | 1.6                 | < 0.10       | 0.37<br>*    | 51.7         | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).050 1<br>*              | 6 < 0 | ).0050 t | 57.4         | < 0.10                             | 0.10             | < 0.20                  | 159          | < 0.050           | 0 7.2            | 31.8                          | 112                    | < 0.0050<br>*        | 3.58                     | 0.62                   | 1.33       | 2.45          | < 0.010               | 3.92   | 220 < 0      | 0.010 < 0              | 0.10 < 1             | 0 1.13 < 0                 | 0.50 < 1<br>* | 1.0                  |
|                                            | GH MW-RL-1D WG 2017-06-19 NP                                   | 2017 06 22                              | 235        | 2.9                 | < 0.10       |              | 45.5         | < 0.020 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.050 1                   | 6 < 0 | 0.0050 5 | 52.6         | < 0.10                             | < 0.10           | < 0.20                  | 25           | < 0.050           | U U              | 25.1                          | 85.1                   | < 0.0050             | 1.04                     | < 0.50                 | 1.29       |               | < 0.010               | 3.79   | 7<br>188 < 0 | 0.010 < 0              | 0.10 < 10            | 0 0.730 < 0                | 0.50 21       | 1.9                  |
|                                            | GH_MW-RLP_WG_2017-07-01_NP                                     | 2017 09 26                              | 244        | 6.2                 |              | < 0.10       |              | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          | 50.5         | < 0.10                             | < 0.10           |                         | 93           | < 0.050           | _                |                               | 18.6                   |                      | 0.434                    |                        |            |               |                       |        |              |                        | 0.10 < 1             |                            |               | 3.0                  |
|                                            | GH_MW-RLP_WG_2017-10-01_NP                                     | 2017 12 13                              | 220        | 3.5                 | < 0.10       | 0.13         | 51.7         | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050 1                   | 5 < 0 | 0.0050   | 45.8         | < 0.10                             | < 0.10           | < 0.50                  | < 10         | < 0.050           | 7.0              | 25.6                          | 2.99                   | < 0.0050             | 0.230                    | < 0.50                 | 1.28       | 2.09          | < 0.010               | 4.82   | 185 < 0      | 0.010 < 0              | ).10 < 1             | 0 0.184 < 0                | 0.50 < 3      | 3.0                  |
| Study Area 4                               |                                                                |                                         |            |                     |              | 0.00         |              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |       |          | 05.0         | 0.40                               |                  | 0.07                    | 105          | 4.07              |                  |                               | 07.0                   | 0.0050               | 4.05                     | 1.00                   | 4 07       | 4 00          | 0.040                 | 0.40   |              |                        |                      |                            |               |                      |
| GH_MW-ERSC-1                               | GH_MW-ERSC-1_WG_2017-01-31_NF<br>GH MW-ERSC-1 WG 2017-01-31 FE |                                         | 311<br>301 | < 3.0               | < 0.10       |              |              | < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 |                           |       |          | 85.0<br>82.1 | < 0.10<br>< 0.10                   | < 0.10<br>< 0.10 |                         | 125<br>114   |                   | -                | 23.9<br>23.2                  | 37.2<br>36.1           | < 0.0050<br>< 0.0050 | 4.85<br>4.69             |                        | -          |               |                       |        |              | ).010 < (<br>).010 < ( |                      | 0 0.662 < 0<br>0 0.650 < 0 |               | 6.0<br>3.0           |
|                                            | QA/QC RPD%                                                     | Duplicate                               | 301        | < 3.0               | *            | 3            | 3            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * 2                       | 4 0.  | *        | 3            | *                                  | *                | < 0.50                  | 9            | < 0.050           | 0                |                               | 30.1                   | *                    | 4.69                     | 8                      | 2          | 5             | *                     | -      | 257 < 0<br>5 | *                      | * *                  | 2                          | * *           | *                    |
|                                            | GH_MW-ERSC-1_WG_2017-06-19_NF                                  | P 2017 06 20                            | -          | 1.5                 | < 0.10       | < 0.10       | 64.9         | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050 <                   | 10 0. | 0185 4   | 44.6         | 0.25                               | < 0.10           | < 0.20                  | < 10         | < 0.050           | -                | -                             | 0.20                   | < 0.0050             | 1.89                     | 0.58                   | 0.622      | 2.85          | < 0.010               |        | -            | 0.010 < 0              | 0.10 < 1             | 0 0.692 < 0                | 0.50 30       | 0.0                  |
|                                            | GH_ERSC-1_WG_2017-07-01_NP                                     | 2017 09 20                              | 334        | < 3.0               | 0.10         | 0.23         | 139          | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050 2                   | 3 0.  | 0349 9   | 91.6         | 0.15                               | < 0.10           | < 0.50                  | 19           | < 0.050           | 11.4             | 25.7                          | 9.87                   | < 0.0050             | 5.09                     | 1.31                   | 1.03       | 6.53          | < 0.010               | 5.17   | 282 0.       | 029 < 0                | 0.10 < 1             | 0 0.970 < 0                | 0.50 6.       | 6.2                  |
|                                            | GH_MW-ERSC-1_WG_2017-10-01_NF                                  |                                         | 641        | < 3.0               | < 0.10       | < 0.10       | 226          | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050 <                   | 10 0. | 0777     | 160          | 0.17                               | < 0.10           | 0.60                    | < 10         | < 0.050           |                  |                               | 1.18                   | < 0.0050             | 1.67                     | 1.87                   | 1.06       | 68.7          | < 0.010               |        |              | 029 0.                 | .18 < 1              | 0 1.61 < 0                 | 0.50 8.       | 8.3                  |
| GH_GA-MW-1                                 | GH_GA-MW-1_WG_2017-01-30_NP                                    |                                         | 228        | < 3.0               | 1.96         | 0.52         |              | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          | 50.3         | 0.34                               | 0.33             | 1.86                    | 33           |                   |                  | 24.8                          | 168                    | < 0.0050             | 5.27                     |                        | 3.17       |               | < 0.010               |        | -            |                        |                      | 0 2.02 < 0                 |               | 7.8                  |
|                                            | GH_GA-MW-1_WG_2017-06-19_NP                                    |                                         | 233        | 2.4                 | 3.43         | 0.45         | 43.0         | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          | 47.8         | 0.68                               | < 0.10           |                         | < 10         | < 0.050           |                  |                               | 6.53                   | < 0.0050             | 4.89                     |                        |            | 0.169         | 0.011                 |        |              |                        | .17 < 1              |                            |               | 5.6                  |
|                                            | GH_GA_MW-1_WG_2017-07-01_NP                                    |                                         | 363        | < 3.0               | 0.80         | 0.66         |              | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          | 74.1         | < 0.10                             | 1.27             | 1.32                    | 171          | 0.054             |                  | 43.3                          | 548                    |                      | 85.7                     |                        |            |               | < 0.010               | 174 4  | ·            |                        | 43 < 1               |                            |               | i9.8                 |
| GH_GA-MW-2                                 | GH_GA-MW-1_WG_2017-10-01_NP<br>GH_GA-MW-2_WG_2017-01-30_NP     | 2017 10 19<br>2017 01 30                | 296<br>362 | < 3.0<br>< 3.0      | 1.65<br>1.17 | 0.56<br>0.26 | 46.0<br>84.5 | < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 | 0.050 <b>r</b><br>0.050 2 |       |          | 61.9<br>102  | 0.16<br>< 0.10                     | 0.70             | 62.4<br>< 0.50          | 88<br>< 10   | < 0.050           |                  | 2 26.3                        | <b>327</b><br>61.2     | _                    | 21.4<br>27.2             |                        |            | 0.109<br>7.87 | < 0.010<br>< 0.010    |        | , -          | 032 < 0<br>0.010 < 0   | ).10 < 1<br>).10 < 1 |                            |               | 5.8<br>5.3           |
| 01_07-00-2                                 | GH_GA-MW-2_WG_2017-01-30_NP                                    |                                         | 366        | 1.1                 | 1.17         | 0.20         | 69.3         | < 0.020 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       |          | 94.3         | < 0.10                             | < 0.19           |                         | < 10         |                   |                  | <b>3</b> 31.6                 | 10.5                   | _                    | 30.5                     |                        |            | 7.41          |                       |        |              | ).010 < 0              |                      | 0 3.11 < 0                 |               | 2.1                  |
|                                            | GH_GA-MW-2_WG_2017-07-01_NP                                    |                                         | 423        | < 3.0               | 1.50         | 0.22         |              | < 0.020 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       |          | 115          |                                    | 0.21             | < 0.50                  | < 10         |                   |                  | <b>3</b> 33.2                 | 35.9                   |                      | 35.4                     |                        |            | 9.49          | < 0.010               |        |              | 0.010 < 0              |                      |                            |               | 3.0                  |
|                                            | GH_GA-MW-2_WG_2017-07-01_FD                                    |                                         | 385        | < 3.0               | -            | 0.25         |              | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          |              | < 0.10                             | 0.31             | < 0.50                  | < 10         |                   |                  | 31.3                          | 74.7                   | -                    | 31.4                     |                        |            | 6.6           |                       |        |              | 0.010 < 0              |                      | 0 3.52 < 0                 |               | 6.7                  |
|                                            | QA/QC RPD%                                                     | 1 1 1                                   | 9          | *                   | 12           | 4            | 11           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                         | •     |          | 12           | *                                  | *                | *                       | *            | *                 | 18               |                               | 70                     | *                    | 12                       | 7                      | 7          | 36            | *                     |        | 15           | *                      | * *                  | 2                          | * *           | *                    |
|                                            | GH_GA-MW-2_WG_2017-10-01_NP                                    | 2017 11 27                              | 448        | < 3.0               | 1.13         | 0.24         | 69.5         | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050 1                   | 9 0.  | 0584     | 120          | < 0.10                             | 0.19             | 18.7                    | < 10         | < 0.050           | 17.1             | 35.9                          | 41.1                   | < 0.0050             | 20.0                     | 3.39                   | 1.16       | 18.9          | < 0.010               | 9.27   | 510 0.       | 017 < 0                | 0.10 < 1             | 0 3.39 < 0                 | 0.50 5.       | 5.7                  |
| GH_GA-MW-3                                 | GH_GA-MW-3_WG_2017-01-30_NP                                    |                                         |            |                     | -            |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |       |          |              |                                    |                  | < 0.50                  |              |                   |                  | 8 28.3                        | 10.0                   | < 0.010              |                          |                        |            |               |                       |        |              |                        |                      | 0 0.055 < 0                |               | 3.0                  |
|                                            | GH_GA-MW-3_WG_2017-06-19_NP                                    |                                         |            |                     |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |       |          | 51.5         |                                    |                  | < 0.20                  |              |                   |                  | 37.1                          | 19.3                   | < 0.0050             |                          |                        |            |               |                       |        |              |                        |                      | 0 0.262 < 0                |               | 1.0                  |
|                                            | GH_GA-MW-3_WG_2017-07-01_NP<br>GH_GA-MW-3_WG_2017-10-01_NP     |                                         |            |                     |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |       |          |              |                                    |                  | < 0.50<br>< 0.50        |              |                   |                  | 34.3<br>37.2                  | 10.8<br>8.71           |                      |                          |                        |            |               |                       |        |              |                        |                      | 0 0.079 < 0<br>0 0.064 < 0 |               | 3.0<br>3.0           |
| GH GA-MW-4                                 | GH_GA-MW-4_WG_2017-01-30_NP                                    |                                         |            |                     | -            |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |       |          |              |                                    |                  | < 0.50                  |              |                   |                  | <b>i</b> 37.1                 | < 0.10                 | < 0.0050             |                          |                        |            |               |                       |        |              |                        |                      | 0 2.71 < 0                 |               | 3.0                  |
|                                            | GH_GA-MW-4_WG_2017-01-30_FD                                    |                                         |            |                     |              |              |              | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          |              |                                    |                  | < 0.50                  |              |                   |                  | 35.0                          | < 0.10                 | < 0.0050             |                          |                        |            |               |                       |        |              |                        |                      | 0 2.62 < 0                 |               | 3.0                  |
|                                            | QA/QC RPD%                                                     |                                         |            |                     |              |              | 5            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |       | *        | 1            | *                                  | *                | *                       | *            | *                 | < 1              | 6                             | *                      | *                    | 4                        | *                      | 0          | 4             | *                     | 5      | 2            | *                      | * *                  | 3                          | * *           | *                    |
|                                            | GH_GA-MW-4_WG_2017-06-19_NP                                    |                                         |            |                     |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |       |          |              | 0.19                               |                  |                         |              |                   |                  | 34.1                          | 0.38                   | < 0.0050             |                          |                        |            |               |                       |        |              |                        |                      | 0 2.59 < 0                 |               | 1.0                  |
|                                            | GH_GA-MW-4_WG_2017-06-19_FD                                    | Duplicate                               |            |                     |              |              |              | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          |              |                                    | < 0.10<br>*      |                         |              |                   |                  | 32.9                          | 0.37                   | < 0.0050             |                          | 0.63                   |            |               |                       |        |              |                        |                      | 0 2.60 < 0                 |               | 1.0                  |
|                                            | QA/QC RPD%<br>GH_GA_MW-4_WG_2017-07-01_NP                      | 2017 09 19                              |            | *                   |              | *            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | * 1                       |       |          | 2            | *                                  |                  | < 0.50                  |              |                   |                  | 4<br>3 25.1                   | * 0.23                 | * < 0.0050           | 5                        | 2                      | 3          | 6             |                       |        | -            |                        |                      | < 1<br>0 1.76 < 0          |               | 3.0                  |
|                                            | GH_GA_MW-4_WG_2017-07-01_NP<br>GH_GA_MW-4_WG_2017-07-01_FD     |                                         |            |                     |              |              |              | < 0.020 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       |          |              |                                    |                  | < 0.50                  |              |                   |                  | 25.1                          | 0.23                   | < 0.0050             |                          |                        |            |               |                       |        |              |                        |                      | 0 1.76 < 0                 |               | 3.0                  |
|                                            | QA/QC RPD%                                                     |                                         |            | *                   |              |              | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                         |       |          | 1            | *                                  | *                | *                       |              |                   |                  | 0                             | *                      | *                    | 5                        |                        |            |               |                       |        |              |                        |                      | 3                          |               | *                    |
|                                            | GH_GA-MW-4_WG_2017-10-01_NP                                    |                                         |            |                     |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |       |          |              |                                    |                  | < 0.50                  |              |                   |                  | <b>5</b> 27.0                 | < 0.10                 | < 0.0050             |                          |                        |            |               |                       |        |              |                        |                      | 0 1.98 < 0                 |               | 3.0                  |
|                                            | WG_2017-10-01_009                                              | Duplicate                               |            |                     |              |              |              | < 0.020 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |       |          |              |                                    | < 0.10           |                         |              |                   | _                | 26.8                          | < 0.10                 | < 0.0050             | -                        |                        |            |               |                       |        |              |                        |                      | 0 1.98 < 0                 |               | 3.0                  |
| <u> </u>                                   | QA/QC RPD%                                                     |                                         | < 1        | *                   | *            | *            | 1            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                         |       | ×        | 1            | *                                  | *                | *                       | *            | *                 | 2                | 1                             | *                      | *                    | 6                        | *                      | 2          | 6             | *                     | 1      | 5            | ×                      | * *                  | 0                          | * *           | *                    |

Data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD\*\* Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline

<u>BOLD</u> Concentration greater than CSR Aquatic Life (AW) standard SHADOW

Concentration greater than CSR Irrigation Watering (IW) standard Concentration greater than CSR Drinking Water (DW) standard

SHADED INVERSE Concentration greater than CSR Livestock Watering (LW) standard <sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with Hardness.

 $^{\rm e}\,$  Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard. <sup>f</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>9</sup> Total Mercury guideline is based on the % of MethylMercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg.

<sup>h</sup> Standard ranges between 10 to 30 ug/L and varies with crop, soil drainage and Mo:Cu ratio. Conservative standard of 10 ug/L was applied.

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>j</sup> Samples inferred to be mislabelled in field.

<sup>k</sup> Guideline/standard varies with pH.

<sup>1</sup> Reported metals values for Q1 are total metals.

<sup>m</sup> Reported metals values are total metals

Page 2 of 6

### TABLE 4 (Cont'd): Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Metals in Groundwater

|                                   |                                                                                                                           |                                                      |                          |                     |                                               |                    |                                             |                                                 |                                                                    |                           |                       |                                 |                                     |                           |                                | Disc                 | olved Me                  | otals                           |                                              |                              |                       |                    |                       |                                    |                   |                     |                                    |                       |                                                                   |                                                    |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------|---------------------|-----------------------------------------------|--------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|---------------------------|-----------------------|---------------------------------|-------------------------------------|---------------------------|--------------------------------|----------------------|---------------------------|---------------------------------|----------------------------------------------|------------------------------|-----------------------|--------------------|-----------------------|------------------------------------|-------------------|---------------------|------------------------------------|-----------------------|-------------------------------------------------------------------|----------------------------------------------------|
|                                   |                                                                                                                           |                                                      | -                        |                     |                                               |                    |                                             |                                                 |                                                                    |                           |                       |                                 |                                     |                           |                                | DISSC                |                           | etais                           |                                              | -                            |                       |                    |                       |                                    |                   |                     |                                    |                       | <u> </u>                                                          |                                                    |
| Sample<br>Location<br>BC Standard | Sample<br>ID                                                                                                              | Sample Date<br>(yyyy mm dd)                          | mg/D<br>T/b              | hđ/T<br>Aluminum    | Бт Antimony<br>Бт Arsenic                     | L μg/L             | ДегуIIium<br>Л/бл                           | и<br>р Bismuth<br>hd T/бн                       | Cad min<br>Cad min<br>J/gµ J/g                                     | Calcium<br>T/6w           | hromium<br>T/6t       | -<br>Л/бћ<br>Г                  | Copper<br>L/gμ                      | <u>е</u><br>µg/L          | Lead<br>Т/бћ                   | hā/r<br>Tithium      | a<br>A<br>T<br>T          | л/б<br>Л                        | Aercury<br>hg/Г                              | an Molybdenur<br>T∕ā         | le<br>Nickel<br>hg/L  | a<br>T             | J <sup>6</sup><br>T/δ | hðh<br>Silver                      | mg/L              | Strontium<br>Г 7/бћ | Thallium<br>T                      | е<br>II н<br>g/L µg   |                                                                   | Aanadium<br>Zinc <sup>5</sup><br>Zinc <sup>5</sup> |
|                                   | e Short-term Maximum (AW) <sup>a</sup>                                                                                    |                                                      | n/a                      | 31-100 <sup>k</sup> | n/a 5                                         | n/a                | n/a                                         | n/a r                                           | /a 0.038-2.8 <sup>d</sup>                                          | n/a                       | n/a                   | 110                             | 2 05-75 32                          | <sup>d</sup> 350 (max)    | 3-1 116 <sup>d</sup>           | n/a                  | n/a                       | 546-9,136 <sup>d</sup>          | 0.02 <sup>g</sup>                            | 2,000                        | n/a                   | n/a                | n/a                   | 0.1-3 <sup>d</sup>                 | n/a               | n/a                 | n/a                                | n/a n                 | n/a n/a n                                                         | n/a 33-551 <sup>d</sup>                            |
|                                   | e Long-Term Average (AW) <sup>b</sup>                                                                                     |                                                      | n/a                      | 11-50 <sup>k</sup>  | 9 n/a                                         |                    |                                             |                                                 | 200 0.018-0.457                                                    |                           | 1 (Cr(+6))            |                                 | 2-31.2 <sup>d</sup>                 | n/a                       | 3-47 <sup>d</sup>              | n/a                  |                           | 607-4,037 <sup>d</sup>          | n/a                                          |                              | 25-150 <sup>d</sup>   | n/a                |                       | .05-1.5 <sup>d</sup>               | n/a               |                     |                                    |                       |                                                                   | n/a 7.5-525 <sup>d</sup>                           |
| CSR Aquatic Life (A)              |                                                                                                                           |                                                      | n/a                      | n/a                 | 90 50                                         | 10,000             |                                             |                                                 | 000 0.5-4 <sup>d</sup>                                             | n/a                       | 10 <sup>e</sup>       | 40                              | 20-90 <sup>d</sup>                  | n/a                       | 40-160 <sup>d</sup>            |                      | n/a                       | n/a                             | 0.25                                         |                              | 50-1.500 <sup>d</sup> | n/a                | -                     | 0.5-15 <sup>d</sup>                | n/a               |                     |                                    |                       |                                                                   | n/a 75-2,400 <sup>d</sup>                          |
| CSR Irrigation Water              | /                                                                                                                         |                                                      | n/a                      | 5,000               | n/a 100                                       | 0 n/a              | 100                                         | n/a 5                                           | 00 5                                                               | n/a                       | 5 <sup>e</sup>        | 50                              | 200                                 | 5,000                     |                                | 2,500                | n/a                       | 200                             | 1                                            | 10-30 <sup>h</sup>           | 200                   | n/a                | 20                    | n/a                                | n/a               | n/a                 | n/a                                | n/a n                 | n/a 10 1                                                          | 00 1,000-5,000 <sup>d</sup>                        |
| CSR Livestock Wate                | ring (LW)                                                                                                                 |                                                      | n/a                      | 5,000               | n/a 25                                        | i n/a              | 100                                         | n/a 5,                                          | 00 80                                                              | 1,000                     | 50 <sup>e</sup>       | 1,000                           | 300                                 | n/a                       | 100                            | 5,000                | n/a                       | n/a                             | 2                                            | 50                           | 1,000                 | n/a                | 30                    | n/a                                | n/a               | n/a                 | n/a                                | n/a n                 | n/a 200 1                                                         | 00 2,000                                           |
| CSR Drinking Water                | (DW)                                                                                                                      |                                                      | n/a                      | 9,500               | 6 10                                          | 1,000              | 8                                           | n/a 5,                                          | 5 000                                                              | n/a                       | 50 <sup>e</sup>       | 20 <sup>f</sup>                 | 1,500                               | 6,500                     | 10                             | 8                    | n/a                       | 1,500                           | 1                                            | 250                          | 80                    | n/a                | 10                    | 20                                 | 200               | 2,500               | n/a 2                              | ,500 n                | n/a 20 2                                                          | 20 3,000                                           |
| Study Area 4 (Cont                |                                                                                                                           | 1 1                                                  |                          |                     |                                               |                    | 1 1                                         |                                                 |                                                                    |                           | 1                     | 1                               |                                     |                           |                                |                      |                           | 1 1                             |                                              |                              |                       |                    |                       |                                    |                   |                     |                                    |                       |                                                                   |                                                    |
| RG_DW-01-03'                      | RG_DW_01-03_WP_2017-03-06_NP<br>RG_DW-01-03_WP_2017-05-31_NP<br>RG_DW-01-03_WP_2017-08-22_NP<br>RG_DW-01-03_WP_Q4-2017_NP | 2017 03 06<br>2017 05 31<br>2017 08 22<br>2017 11 21 | 204<br>200<br>202<br>202 | 3.8 <               |                                               | 10 79.7<br>10 81.3 | < 0.020                                     | < 0.050 <                                       | 10 0.0069                                                          | -<br>57.0<br>58.2<br>56.5 | 0.25                  | -<br>< 0.10<br>< 0.10<br>< 0.10 | -<br>0.72<br>1.30<br>1.42           | -<br>< 10<br>< 10<br>< 10 | -<br>< 0.050<br>0.105<br>0.108 | 2.7                  | -<br>14.1<br>13.9<br>14.9 | -<br>< 0.10<br>< 0.10<br>< 0.10 | < 0.0050                                     | -<br>0.922<br>0.881<br>0.922 | < 0.50                | 0.453<br>0.446     | 3.16                  |                                    |                   | 213 <               | -<br>0.010 <<br>0.010 <<br>0.010 < | 0.10 <<br>0.10 <      |                                                                   | 0.50 11.2                                          |
| RG_DW-01-07 <sup>1</sup>          | RG_DW-01-07_WP_2017-03-01_NP<br>RG_DW-01-07_WP_2017-05-29_NP<br>RG_DW-01-07_WP_2017-08-21_NP                              | 2017 03 01<br>2017 05 29<br>2017 08 21               | 460<br>527<br>459        | < 3.0 <             |                                               | 10 131             | -<br>< 0.020<br>< 0.020                     | < 0.050                                         | 8 0.0437                                                           | -<br>133<br>116           | < 0.10                | -<br>< 0.10<br>< 0.10           | -<br>1.40<br>1.64                   | -<br>< 10<br>< 10         | -<br>0.171<br>0.068            | 6.0                  | -<br>47.1<br>41.0         | -<br>0.18<br>0.18               | -<br>< 0.0050<br>< 0.0050                    | -<br>4.06<br>3.39            |                       |                    | 1.6                   | -<br>< 0.010<br>< 0.010            | -<br>5.53<br>6.09 | 298 <               |                                    | 0.10 <                |                                                                   | 0.50 6.5                                           |
|                                   | RG_DW-DUP_WQ_2017-08-21_NP<br>QA/QC RPD%<br>RG_DW-01-07_WP_Q4-2017_NP                                                     | Duplicate<br>2017 11 15                              | 437<br>5<br>501          | *                   | : 0.10     < 0.7                              | 19                 | < 0.020 · · · · · · · · · · · · · · · · · · | *                                               | 9         0.0396           5         10           8         0.0408 | 119<br>3<br>123           |                       | < 0.10<br>*<br>< 0.10           | 1.32<br>22<br>2.97                  | < 10<br>*<br>< 10         | 0.087<br>25<br>0.100           | 2                    | 33.9<br>19<br>47.1        | 0.22<br>20<br>0.18              | < 0.0050<br>*<br>< 0.0050                    | 3.42<br>1<br>3.56            | *                     | 21                 | 11                    | < 0.010<br>*<br>< 0.010            | 18                | 2                   | *                                  | 0.10 <<br>*<br>0.10 < | 10     1.79     < 0                                               | * 30                                               |
| Study Area 6<br>LC_PIZP1101       |                                                                                                                           | 2017 02 45                                           | 100                      | 27                  | 0.10 1.2                                      | 7 445              | - 0.000                                     | .0.050                                          | 20 < 0.0050                                                        | 25.8                      | 10.40                 | 0.26                            | < 0.20                              | 286                       | < 0.050                        | 0 E                  | 15.0                      | 253                             | < 0.0050                                     | 11.6                         | < 0.50                | 0 000              | 0.050                 | 10.010                             | 10.4              | 206                 | 0.010                              | 0.10                  | 10 1 11                                                           | 0.50 1.2                                           |
|                                   | LC_PIZP1101_WG_2017-03-13_N<br>LC_PIZP1101_WG_2017-06-12_N<br>LC_PIZP1101_WG_2017-09-11_N<br>LC_PIZP1101_WG_2017-12-11_N  | 2017 03 15<br>2017 06 13<br>2017 09 21<br>2017 11 03 | 126<br>118<br>123<br>124 | 2.1 <<br>4.4 <      | 0.10 1.2<br>0.10 1.0<br>0.10 1.1<br>0.50 2.0  | 8 448<br>5 461     | < 0.020 < < 0.020 <                         | < 0.050 2<br>< 0.050 2<br>< 0.050 2<br>< 0.25 < | 9 0.0058<br>20 < 0.0050                                            | 24.6<br>26.4              | < 0.10                |                                 | < 0.20<br>< 0.20<br>< 0.50<br>< 1.0 |                           | < 0.050<br>< 0.050             | 9.7                  | 13.8<br>13.9              | 203<br>201<br>211<br>211        | < 0.0050<br>< 0.0050<br>< 0.0050<br>< 0.0050 | 12.5<br>11.3                 | < 0.50<br>< 0.50      | 0.810 <<br>0.801 < | : 0.050<br>: 0.050    | < 0.010<br>< 0.010<br>< 0.010      | 18.3<br>18.1      | 207 <<br>201 <      | 0.010 (<br>0.010 <                 | 0.11 <<br>0.10 <      | 10         1.41         < 0           10         1.47         < 0 | 0.50 1.4<br>0.50 < 3.0                             |
| Study Area 7                      |                                                                                                                           | 2017 11:03                                           | 124                      | 0.7                 | 2.0                                           | 447                | < 0.10                                      | < 0.23                                          | 0.075                                                              | 20.2                      | < 0.50                | < 0.50                          | < 1.0                               | 103                       | < 0.25                         | 3.3                  | 14.1                      | 211                             | < 0.0000                                     | 13.0                         | < 2.5                 | 0.00               | < 0.25                | < 0.050                            | 10.0              | 200 <               | 0.000 <                            | 0.50                  | 10 1.43 <                                                         | 2.5 < 5.0                                          |
| EV_GV3gw                          | EV_GV3GW_WG_2017-03-29_NP<br>EV_GV3GW_WG_2017-06-28_NP                                                                    | 2017 03 29<br>2017 06 27                             | 336<br>343               |                     | 0.10 < 0.1<br>0.10 < 0.0                      |                    | < 0.020 < < 0.020 <                         |                                                 |                                                                    | 83.6<br>82.2              |                       | < 0.10<br>< 0.050               | 0.87<br>< 0.50                      | < 10<br>< 5.0             |                                | 16.5<br>17.1         |                           | 0.59<br>0.13                    | < 0.0050<br>< 0.0050                         | 1.24<br>0.902                | 0.88<br>< 0.10        |                    |                       | < 0.010<br>< 0.010                 |                   |                     |                                    | 0.10 <<br>0.050 <     | 10     1.61     < 0                                               | 0.50 < 1.0<br>0.50 < 3.0                           |
|                                   | EV_EC5GW_WG_2017-06-28_NP<br>QA/QC RPD%                                                                                   | Duplicate                                            | 338<br>1                 | *                   | 0.10 < 0.0<br>* *                             | 1                  | *                                           | *                                               | * *                                                                | 81.3                      | *                     | < 0.050                         | < 0.50                              | < 5.0                     | *                              | <b>16.3</b><br>5     | 2                         | 0.21                            | *                                            | 0.875                        | < 0.10                | 2                  | 2                     | *                                  | 3.46              | 1                   | *                                  |                       | * 0                                                               | * *                                                |
|                                   | EV_GV3GW_WG_2017-08-15_NP<br>EV_EC5GW_WG_2017-08-15_NP<br>QA/QC RPD%                                                      | 2017 08 15<br>Duplicate                              | 336<br>332<br>1          |                     | 0.28 < 0.7<br>0.10 < 0.7<br>* *               |                    | < 0.020 · · · · · · · · · · · · · · · · · · |                                                 | 1 0.0085<br>1 < 0.0050<br>* *                                      | 82.4<br>82.5<br>< 1       | 0.21                  | 0.34<br>< 0.10<br>*             | 0.53<br>< 0.50<br>*                 | < 10<br>< 10<br>*         | < 0.050<br>< 0.050<br>*        |                      | 31.7<br>30.6<br>4         | 0.84<br>< 0.10<br>*             | < 0.0050<br>< 0.0050<br>*                    | 0.895<br>0.891<br>< 1        |                       |                    |                       | < 0.010<br>< 0.010<br>*            |                   | 544 <               | 0.010 <<br>0.010 <<br>*            |                       | 10         1.72         < 0           10         1.74         < 0 |                                                    |
|                                   | EV_GV3GW_WG_2017-08-29_NP<br>EV_GV3GW_WG_2017-10-17_NP<br>EV_EC5GW_WG_2017-10-17_NP<br>QA/QC RPD%                         | 2017 08 29<br>2017 10 17<br>Duplicate                | 285<br>318<br>322<br>1   | < 3.0 <             | 0.10 < 0.7<br>0.10 < 0.7<br>0.10 < 0.7<br>* * | 10 17.3<br>10 16.5 | < 0.020 ·<br>< 0.020 ·<br>< 0.020 ·         | < 0.050                                         | 1 0.0088<br>2 0.0053<br>3 0.0078<br>* *                            | 63.7<br>75.8<br>78.7<br>4 | 0.16<br>0.20          | < 0.10<br>< 0.10<br>< 0.10<br>* | < 0.50<br>< 0.50<br>< 0.50<br>*     | < 10<br>< 10<br>< 10<br>* | < 0.050                        | 12.2<br>15.2<br>15.4 | 31.3                      | < 0.10<br>< 0.10<br>< 0.10<br>* | < 0.0050                                     | 0.729<br>0.865<br>0.892<br>3 | < 0.50                | 0.935              | 3.87                  | < 0.010<br>< 0.010<br>< 0.010<br>* | 3.27              | 543 <               | 0.010 <                            | 0.10 <                | 10     1.49     < 0                                               | 0.50 < 3.0                                         |
| RG_DW-02-20 <sup>1</sup>          | RG_DW-02-20_WP_2017-03-01_NP<br>RG_DW-02-20_WP_2017-05-29_NP                                                              | 2017 03 01<br>2017 05 29                             | 251<br>253               |                     | <br>: 0.10 < 0.1                              | -                  | - < 0.020                                   | - 0.050 <                                       | <br>10 0.0085                                                      | - 66.9                    | -                     | -<br>< 0.10                     | -<br>6.25                           | - < 10                    | -<br>0.129                     | -                    | - 20.9                    | -<br>1.30                       | - < 0.0050                                   | - 1.05                       | -<br>< 0.50           | -                  | 11                    | -<br>< 0.010                       | -                 | -                   | -<br>0.010 <                       | - 0.10 <              |                                                                   | <br>0.50 10.9                                      |
|                                   | RG_DW-DUP_WQ_2017-05-29_NP<br>QA/QC RPD%<br>RG_DW-02-20_WP_2017-08-21_NP                                                  | Duplicate 2017 08 21                                 | 251<br>1<br>221          | *                   | 0.10 < 0.1<br>* *<br>0.10 < 0.1               | 1                  | < 0.020 · · · · · · · · · · · · · · · · · · | *                                               | 10 0.0067<br>* 24<br>10 0.0065                                     | 65.8<br>2<br>59.9         | 60                    | < 0.10<br>*<br>< 0.10           | 3.66<br>52<br>1.90                  | < 10<br>*<br>< 10         | 0.067<br>63<br>0.054           | 0                    | 21.1<br>1<br>17.3         | 1.35<br>4<br>1.39               | < 0.0050<br>*<br>< 0.0050                    | 1.06                         | *                     | 1                  | 2                     | < 0.010                            | 2                 | 222 <<br>1          | *                                  | *                     | 10 1.03 < 0<br>* 2<br>10 0.919 < 0                                | * 58                                               |
|                                   | RG_DW-02-20_WP_Q4-2017_NP<br>WP_Q4-2017_001<br>QA/QC RPD%                                                                 | 2017 11 15<br>Duplicate                              | 255<br>253<br>1          | < 3.0 <             | : 0.10 < 0.7<br>: 0.10 < 0.7                  | 10 78.9<br>10 80.2 |                                             | < 0.050 <<br>< 0.050 <                          |                                                                    | 67.8<br>67.3              | 0.18<br>0.19          | < 0.10<br>< 0.10<br>< 0.10      | 5.11<br>5.13<br>< 1                 | < 10<br>< 10<br>< 10<br>* | 0.123<br>0.113                 | 6.1                  | 20.7<br>20.5              | 1.40<br>1.40<br>0               | < 0.0050<br>< 0.0050<br>*                    | 1.06<br>1.10<br>4            | < 0.50                |                    | 8.64                  | < 0.010<br>< 0.010<br>< 0.010<br>* | 2.27              | 228 <<br>231 <      | 0.010 <<br>0.010 <                 | 0.10 <<br>0.10 <      | 10 0.876 < 0<br>10 0.872 < 0                                      | 0.50 8.2                                           |
| Study Area 8                      |                                                                                                                           |                                                      | · · ·                    |                     |                                               |                    |                                             |                                                 |                                                                    |                           |                       |                                 |                                     |                           |                                |                      |                           |                                 |                                              |                              |                       | · /                | - • ·                 |                                    |                   |                     |                                    |                       |                                                                   |                                                    |
| EV_LSgw                           | EV_LSGW_WG_2017-03-07_NP<br>EV_LSGW_WG_2017-06-28_NP                                                                      | 2017 03 07<br>2017 06 27                             | 549<br>651               |                     | : 0.10 1.3<br>: 0.10 2.4                      |                    |                                             | < 0.050 4<br>< 0.050 4                          |                                                                    | 103<br>119                |                       |                                 | < 0.50<br>< 0.50                    | 1,410<br>3,430            |                                | 62.3<br>68.4         |                           | 826<br>1,050                    |                                              | 2.67<br>2.60                 |                       |                    |                       | < 0.010<br>< 0.010                 |                   |                     |                                    |                       | 10     2.40     < 0                                               |                                                    |
|                                   | EV_LSGW_WG_2017-08-22_NP<br>EV_LSGW_WG_2017-10-17_NP                                                                      | 2017 08 22<br>2017 10 17                             | 632<br>594               |                     | : 0.10 2.7<br>: 0.10 2.6                      |                    | < 0.020 · · · · · · · · · · · · · · · · · · |                                                 |                                                                    |                           | < 0.10<br>< 0.10      |                                 | < 0.50<br>< 0.50                    | 3,470<br>2,640            |                                | 66.2<br>62.2         |                           | 1,020<br>1,080                  | < 0.0050<br>< 0.0050                         | 2.86<br>3.22                 |                       |                    |                       |                                    |                   |                     |                                    |                       | 10     1.63     < 0                                               |                                                    |
| EV_OCgw**                         | EV_OCGW_WG_2017-03-29_NP<br>EV_EC6GW_WG_2017-03-29_NP<br>QA/QC RPD%                                                       | 2017 03 29<br>Duplicate                              | 151<br>150<br>1          | 2.4 <               | 0.10 1.4<br>0.10 1.4<br>* 1                   | 7 57.3             | < 0.020 · · · · · · · · · · · · · · · · · · | < 0.050 1                                       |                                                                    |                           | < 0.10<br>< 0.10<br>* |                                 | < 0.20<br>< 0.20<br>*               | 256<br>276                |                                | 26.6<br>26.4         |                           | 98.0<br>96.5<br>2               | < 0.00050<br>< 0.0050<br>*                   | 14.3<br>14.2                 |                       |                    |                       |                                    |                   | 391 <               | 0.010 <                            | 0.10 <                | 10 1.10 < 0<br>10 1.10 < 0<br>* 0                                 |                                                    |
|                                   | EV_OCGW_WG_2017-06-21_NP<br>EV_MC5GW_WG_2017-06-21_NP                                                                     | 2017 06 19<br>Duplicate                              | 147<br>145               | 22.2 <<br>21.0 <    | : 0.10 1.20<br>: 0.10 1.20                    | 6 47.3<br>0 47.3   | < 0.020 · · · · · · · · · · · · · · · · · · | < 0.050 1                                       | 23 0.0056                                                          | 28.3<br>27.3              | < 0.10<br>< 0.10      | < 0.10                          | < 0.50<br>< 0.50                    | 266                       | < 0.050<br>< 0.050             | 25.6<br>25.7         | 18.6<br>18.5              | 89.0<br>88.7                    |                                              | 14.0<br>13.7                 | < 0.50                |                    | 0.149                 | < 0.010                            | 42.6<br>41.7      | 373 <<br>375 <      | 0.010 <                            | 0.10 <                | 10 1.11 < (<br>10 1.08 < (                                        | 0.50 < 3.0                                         |
|                                   | QA/QC RPD%<br>EV_OCGW_WG_2017-06-29_NP<br>EV_MC6GW_WG_2017-06-29_NP                                                       | 2017 06 29<br>Duplicate                              | 1<br>145<br>144          | 7.6 <               | * 5<br>: 0.50 1.2<br>: 0.50 1.3               | 4 52.5<br>3 52.4   | < 0.10                                      |                                                 | 15 < 0.025                                                         | 4<br>28.2<br>27.8         |                       | < 0.50                          | *<br>< 1.0<br>< 1.0                 | 1<br>291<br>284           | < 0.25<br>< 0.25               |                      | 1<br>18.1<br>18.0         | 85.9                            |                                              | 2<br>13.6<br>13.2            | < 2.5                 |                    | 0.64                  | < 0.050                            | 40.7              | 372 <               | 0.050 <                            | 0.50 <                | * 3<br>10 0.956 <<br>10 0.935 <                                   | 2.5 < 5.0                                          |
|                                   | QA/QC RPD%                                                                                                                |                                                      | 1                        | 29                  | * 7                                           | < 1                | *                                           | *                                               | 5 *                                                                | 1                         | *                     | *                               | *                                   | 2                         | *                              | 2                    | 1                         | < 1                             | *                                            | 3                            | *                     | 1                  | 17                    | *                                  | 1                 | 2                   | *                                  | *                     | * 2                                                               | * *                                                |

Data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline BOLD\*\*

BOLD Concentration greater than CSR Aquatic Life (AW) standard

SHADOW Concentration greater than CSR Irrigation Watering (IW) standard SHADED Concentration greater than CSR Drinking Water (DW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with Hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>f</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>9</sup> Total Mercury guideline is based on the % of MethylMercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg.

<sup>h</sup> Standard ranges between 10 to 30 ug/L and varies with crop, soil drainage and Mo:Cu ratio. Conservative standard of 10 ug/L was applied.

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>j</sup> Samples inferred to be mislabelled in field.

<sup>k</sup> Guideline/standard varies with pH.

<sup>1</sup> Reported metals values for Q1 are total metals.

<sup>m</sup> Reported metals values are total metals

|                                          |                                                         |                          |             |                     |                |              |              |                     |                 |                 |                  |                  |                 |                         |                |                   | Dis                          | solved M   | letals                 |                        |                    |                        |              |              |                       |             |       |              |             |                        |                              |
|------------------------------------------|---------------------------------------------------------|--------------------------|-------------|---------------------|----------------|--------------|--------------|---------------------|-----------------|-----------------|------------------|------------------|-----------------|-------------------------|----------------|-------------------|------------------------------|------------|------------------------|------------------------|--------------------|------------------------|--------------|--------------|-----------------------|-------------|-------|--------------|-------------|------------------------|------------------------------|
|                                          |                                                         |                          |             |                     |                |              |              |                     |                 |                 |                  |                  |                 |                         |                |                   |                              |            |                        |                        | ۶                  |                        |              |              |                       |             |       |              |             |                        |                              |
|                                          |                                                         |                          | s           | E                   | 2              |              |              | E                   | -               | ε               | _                | Ę                |                 |                         |                |                   |                              | ium        | ese                    |                        | Inue               |                        | Ę            | ۶            |                       |             | ε     | ~            |             |                        | Ξ                            |
|                                          |                                                         |                          | nes         | Jinu                | nor            | nic          | Ę            | Ilia                | a lat           | niu             | Calcium          | , mir            | at              | ber                     |                | _                 | E E                          | seu        | gan                    | iury                   | pde                | <del>a</del>           | ssil         | niu          | -                     | E           | utin  | liun         |             | Uranium                | nipe                         |
| Sample                                   | Sample                                                  | Sample Date              | Hard        | Inn                 | Antiı          | Arse         | Bariı        | Bery                | Bisn<br>Bord    | adr             | alc              | Chro             | Cobi            | Ido                     | u.             | eac               | Lithiu                       | Mag        | Jan                    | lerc                   | Moly               | Nick                   | ota          | Sele         | ilve                  | ipog        | tro   | hal          | , <b>e</b>  | Iran                   | Zinc                         |
| Location                                 | ID                                                      | (vvvv mm dd)             |             | ⊲<br>µg/L           | ⊲<br>µq/L      | ⊲<br>µq/L    | ш<br>µq/L    |                     | μg/L μg/        | L µa/L          | mg/L             | ua/L             | uq/L            | uq/L                    | ⊥=<br>µg/L     | µg/L              | μα/L                         | _≥<br>mg/L | ≥<br>µq/L              | ≥<br>µq/L              | ≥<br>µq/L          | ∠<br>ua/L              | ma/L         | ω<br>μα/L    | ω<br>μα/L             | ഗ<br>mg/L   | ua/L  | ⊢<br>ua/L    | ua/L u      |                        | > Ν<br>Iq/L μq/L             |
| BC Standard                              |                                                         | ())))                    | <b>g</b> .= | r-3                 | r <i>3</i> -   | F <b>3</b> - | F-37 -       | F-5                 | -33-            |                 |                  | F-3              | r-3/-           | F3/-                    | F-3            | F-5-              | F <b>3</b> -                 | <b>g</b> = | r <b>y</b> -           | r-3-                   | r <b>ə</b> -       | r <b>y</b> -           |              | r <b>ə</b> - | F <b>3</b> -          | <b>g</b> .= | r-3-  | -3-          | r <b>y</b>  | <u>9- r9- r</u>        | <u>y- ry-</u>                |
| BCWQG Aquatic Life                       | e Short-term Maximum (AW) <sup>a</sup>                  |                          | n/a         | 31-100 <sup>k</sup> | n/a            | 5            | n/a          | n/a                 | n/a n/a         | 0.038-2.8       | <sup>d</sup> n/a | n/a              | 110             | 2.05-75.32 <sup>d</sup> | 350 (max)      | ) 3-1,116         | 6 <sup>d</sup> n/a           | n/a        | 546-9,136 <sup>d</sup> | 0.02 <sup>g</sup>      | 2,000              | n/a                    | n/a          | n/a          | 0.1-3 <sup>d</sup>    | n/a         | n/a   | n/a          | n/a r       | n/a n/a                | n/a 33-551 <sup>d</sup>      |
| BCWQG Aquatic Life                       | e Long-Term Average (AW) <sup>b</sup>                   |                          | n/a         | 11-50 <sup>k</sup>  | 9              | n/a          | 1,000        |                     | n/a 1,2         |                 |                  | 1 (Cr(+6))       |                 | 2-31.2 <sup>d</sup>     | n/a            | 3-47 <sup>d</sup> |                              | n/a        | 607-4,037 <sup>d</sup> | n/a                    | 1,000              | 25-150 <sup>d</sup>    | n/a          |              | 0.05-1.5 <sup>d</sup> | n/a         | n/a   | 0.8          |             |                        | n/a 7.5-525 <sup>d</sup>     |
| CSR Aquatic Life (A)                     |                                                         |                          | n/a         | n/a                 | 90             | 50           | 10,000       | 1.5                 | n/a 12,0        |                 | n/a              | 10 <sup>e</sup>  | 40              | 20-90 <sup>d</sup>      | n/a            | 40-160            |                              | n/a        | n/a                    | 0.25                   |                    | 250-1,500 <sup>d</sup> |              |              | 0.5-15 <sup>d</sup>   | n/a         | n/a   | 3            | ,           |                        | n/a 75-2,400 <sup>d</sup>    |
| CSR Irrigation Water                     |                                                         |                          | n/a         | 5,000               | n/a            | 100          | n/a          |                     | n/a 50          |                 | n/a              | 5 <sup>e</sup>   | 50              | 200                     | 5,000          | 200               |                              |            | 200                    | 1                      | 10-30 <sup>h</sup> | 200                    | n/a          | 20           | n/a                   | n/a         | n/a   | n/a          |             |                        | 100 1,000-5,000 <sup>c</sup> |
| CSR Livestock Wate                       |                                                         |                          | n/a         | 5,000               | n/a            | 25           | n/a          |                     | n/a 5,0         |                 | 1,000            |                  | 1,000           | 300                     | n/a            | 100               |                              |            | n/a                    | 2                      | 50                 | 1,000                  | n/a          | 30           | n/a                   | n/a         | n/a   | n/a          |             |                        | 2,000                        |
| CSR Drinking Water<br>Study Area 8 (Cont |                                                         |                          | n/a         | 9,500               | 6              | 10           | 1,000        | 8                   | n/a 5,0         | 0 5             | n/a              | 50 <sup>e</sup>  | 20 <sup>f</sup> | 1,500                   | 6,500          | 10                | 8                            | n/a        | 1,500                  | 1                      | 250                | 80                     | n/a          | 10           | 20                    | 200         | 2,500 | n/a          | 2,500 r     | n/a 20                 | 20 3,000                     |
| EV_OCgw**                                | EV_OCGW_WG_2017-08-15_NP                                | 2017 08 15               | 144         | < 3.0               | < 0.10         | 1 23         | 52.0         | < 0.020 <           | 0.050 11        | < 0.0050        | 27.2             | < 0.10           | < 0.10          | < 0.50                  | 230            | < 0.05            | 0 <b>26.3</b>                | 18.4       | 79.1                   | < 0.00050              | 13.9               | < 0.50                 | 1.54         | < 0.050      | < 0.010               | 42 1        | 383 < | 0 010        | < 0.10 <    | 10 1.09 <              | 0.50 < 3.0                   |
| (Cont'd)                                 | EV MC5GW WG 2017-08-15 NP                               | Duplicate                | 143         | < 3.0               | < 0.10         |              | 51.1         | < 0.020 <           |                 |                 |                  |                  | < 0.10          |                         | 222            |                   | 0 26.0                       |            | 76.3                   | < 0.00050              | 13.8               | < 0.50                 | 1.54         |              | < 0.010               | 41.7        |       |              |             |                        | 0.50 < 3.0                   |
| · · · ·                                  | QA/QC RPD%                                              |                          | 1           | *                   | *              | 2            | 2            | *                   | * 2             | *               | 1                | *                | *               | *                       | 4              | *                 | 1                            | 2          | 4                      | *                      | 1                  | *                      | 0            | *            | *                     | 1           | 1     | *            | *           | * 0                    | * *                          |
|                                          | EV_OCGW_WG_2017-08-29_NP                                | 2017 08 29               | 135         | < 3.0               | 0.13           | 1.21         | 51.5         | < 0.020 <           | 0.050 10        | 6 < 0.0050      | 24.3             | < 0.10           | 0.22            | < 0.50                  | 240            | < 0.05            | 0 22.4                       | 18.0       | 78.2                   | < 0.00050              | 12.3               | < 0.50                 | 1.48         | < 0.050      | < 0.010               | 39.1        | 335 < | < 0.010      | < 0.10 <    | 10 1.09 <              | 0.50 < 3.0                   |
|                                          | EV_MC5GW_WG_2017-08-29_NP                               | Duplicate                | 142         | < 3.0               | < 0.10         |              | 53.1         | < 0.020 <           |                 |                 |                  |                  | < 0.10          | < 0.50                  | 248            |                   | 0 <b>24.3</b>                | 17.8       | 78.0                   | < 0.00050              | 13.3               | < 0.50                 | 1.48         | 0.129        | < 0.010               |             |       |              | < 0.10 <    | 10 1.13 <              |                              |
|                                          | QA/QC RPD%                                              | 0017 55 5                | 5           | *                   | *              | 0            | 3            | *                   | * 12            |                 | 12               |                  | *               | *                       | 3              | *                 | 8                            | 1          | < 1                    | *                      | 8                  | *                      | 0            | *            | *                     | 2           | 10    | *            | *           | 4                      | * *                          |
|                                          | EV_OCGW_WG_2017-09-21_NP                                | 2017 09 21               | 141         | < 3.0               | < 0.10         |              | 55.5         | < 0.020 <           |                 |                 |                  |                  | 0.13            | < 0.50                  | 245            |                   | 0 25.6                       |            | 82.6                   | < 0.00050              | 12.7               | < 0.50                 |              |              | < 0.010               |             |       | < 0.010      |             | 10 1.10 <              |                              |
|                                          | EV_OCGW_WG_2017-10-18_NP                                | 2017 10 18               | 147         | < 3.0               | < 0.10         |              | 53.9         | < 0.020 <           |                 |                 |                  |                  | 0.17            | < 0.50                  | 276            |                   | 0 28.2                       |            | 93.6                   | < 0.00050              | 14.0               | < 0.50                 |              |              | < 0.010               |             |       |              |             | 10 1.11 <              |                              |
|                                          | EV_MC5GW_WG_2017-10-18_NP<br>QA/QC RPD%                 | Duplicate                | 143         | < 3.0               | < 0.10         | 1.44         | 56.4         | < 0.020 <           | 0.050 10<br>* 7 | 6 < 0.0050<br>* | 26.6             | < 0.10           | 0.18            | 0.50                    | 313<br>13      | < 0.05            | 0 <b>26.5</b>                | 18.7       | 95.1                   | < 0.00050<br>*         | 13.3               | < 0.50<br>*            | 1.68         | < 0.050      | < 0.010<br>*          | 45.1        | 370 < | < 0.010<br>* | 0.15 <<br>* | 10 1.07 <              | 0.50 < 3.0                   |
| Study Area 9                             |                                                         |                          | 5           |                     |                | 0            | 5            |                     |                 |                 | 0                |                  |                 |                         | 15             |                   | 0                            | 5          | 2                      |                        | 5                  |                        | 2            |              |                       | 2           | 0     |              |             | 4                      |                              |
| EV_BCgw                                  | EV_BCGW_WG_2017-03-14_NP                                | 2017 03 14               | 417         | < 3.0               | 0.16           | 0.11         | 37.5         | < 0.020 <           | 0.050 15        | 0.0335          | 103              | 0.12             | < 0.10          | < 0.50                  | < 10           | < 0.05            | 0 22.8                       | 39.1       | < 0.10                 | < 0.0050               | 0.922              | 0.52                   | 1.18         | 20.3         | < 0.010               | 4.08        | 174   | 0.013        | < 0.10 <    | 10 1.22 <              | 0.50 < 3.0                   |
|                                          | EV_BCGW_WG_2017-03-30_NP                                | 2017 03 30               | 522         | < 1.0               | 0.18           | 0.13         | 51.3         | < 0.020 <           | 0.050 17        | 0.0551          | 126              | < 0.10           | < 0.10          | 0.86                    | < 10           | < 0.05            | 0 <b>30.5</b>                | 50.4       | 0.38                   | < 0.0050               | 0.817              | 1.66                   | 1.35         | <u>37.7</u>  | < 0.010               | 5.36        | 234   | 0.015        | < 0.10 <    | 10 1.58 <              | 0.50 2.1                     |
|                                          | EV_BCGW_WG_2017-05-16_NP                                | 2017 05 16               | 619         | < 3.0               | 0.20           | 0.15         | 57.6         | < 0.020 <           | 0.050 15        | 0.0609          | 146              | 0.13             | < 0.10          | 0.65                    | < 10           | < 0.05            | 0 <b>34.2</b>                | 61.7       | 0.11                   | < 0.0050               | 0.717              | 1.47                   | 1.46         | <u>59</u>    | < 0.010               | 6.30        | 262   | 0.018        | < 0.10 <    | 10 1.87 <              | 0.50 < 3.0                   |
|                                          | EV_BCGW_WG_2017-06-28_NP                                | 2017 06 27               | 336         | < 3.0               | 0.24           | 0.150        | 46.5         | < 0.020 <           |                 | 5 0.0549        | 77.8             | 0.16             | 0.055           | 1.01                    | < 5.0          |                   | 0 <b>17.0</b>                |            | 1.02                   | < 0.0050               | 1.22               | 4.31                   |              | 17.9         | < 0.010               | 4.80        | 140 < | < 0.010      | 0.076 <     | 10 0.916 <             | 0.50 5.6                     |
|                                          | EV_BCGW_WG_2017-08-23_NP                                | 2017 08 23               | 660         | < 3.0               |                | < 0.10       | 52.2         | < 0.020 <           |                 | 0.0603          | 159              |                  | < 0.10          |                         | < 10           |                   | 0 <b>36.5</b>                |            | < 0.10                 | < 0.0050               | 0.677              | 0.56                   | 1.53         | <u>56.8</u>  | < 0.010               | 7.09        |       |              |             | 10 1.79 <              |                              |
| 514 140 0                                | EV_BCGW_WG_2017-10-18_NP                                | 2017 10 18               | 475         | < 3.0               | -              | < 0.10       | 43.6         | < 0.020 <           |                 | 0.0426          | 109              |                  | < 0.10          |                         | < 10           |                   | 0 26.7                       |            | < 0.10                 | < 0.0050               | 0.799              | 0.60                   | 1.32         | 34.5         | < 0.010               | 5.97        |       |              |             |                        | 0.50 < 3.0                   |
| EV_MCgwS                                 | EV_MCGWS_WG_2017-03-08_NP<br>EV_MCGWS_WG_2017-03-30_NP  | 2017 03 08<br>2017 03 30 | 371<br>386  | < 3.0<br>19.2       | 0.11<br>< 0.10 |              | 20.1<br>24.9 | < 0.020 < < 0.020 < |                 |                 | 93.1             |                  | 0.10            | < 0.50<br>0.36          | 2,920<br>2,050 |                   | 0 21.7<br>28.2               |            | 118<br>113             | < 0.00050<br>< 0.00050 | 4.40<br>5.12       | 1.42<br>8.79           |              |              | < 0.010<br>< 0.010    |             |       | < 0.010 ·    | < 0.10 <    |                        |                              |
|                                          | EV_MCGWS_WG_2017-03-30_NP                               | 2017 03 30               | 380         | < 3.0               | < 0.10         |              | 24.9         | < 0.020 <           |                 |                 |                  |                  | < 0.10          |                         | 2,050          |                   | 0 <b>26.2</b>                |            | 107                    | < 0.00050              | 2.40               | 0.88                   |              |              | < 0.010               |             |       | < 0.010      |             | 10 2.04 <<br>10 1.47 < |                              |
|                                          | EV_MCGWS_WG_2017-06-28_NP                               | 2017 06 28               | 369         | < 3.0               | < 0.10         |              | 22.3         | < 0.020 <           |                 |                 |                  |                  | < 0.10          |                         | 2,490          |                   | 0 25.5                       |            | 101                    | < 0.00050              | 2.71               | 0.55                   |              |              | < 0.010               |             |       |              |             | 10 1.73 <              |                              |
|                                          | EV_MCGWS_WG_2017-08-16_NP                               | 2017 08 16               | 412         | < 3.0               | < 0.10         |              | 23.2         | < 0.020 <           |                 |                 |                  |                  | < 0.10          |                         | < 10           |                   | 0 26.8                       |            | 108                    | -                      | 3.00               | 0.80                   |              |              | < 0.010               |             |       | < 0.010      |             |                        | 0.50 < 3.0                   |
|                                          | EV_MCGWS_WG_2017-09-21_NP                               | 2017 09 21               | 387         | < 3.0               | < 0.10         | 1.33         | 29.7         | < 0.020 <           | 0.050 28        | < 0.0050        | 96.7             | < 0.10           | < 0.10          | < 0.50                  | 2,250          | < 0.05            | 0 27.3                       | 35.2       | 110                    | < 0.00050              | 2.19               | 1.16                   |              |              | < 0.010               |             |       | < 0.010      | < 0.10 <    | 10 1.51 <              | 0.50 < 3.0                   |
|                                          | EV_MCGWS_WG_2017-10-18_NP                               | 2017 10 18               | 424         | < 3.0               | < 0.10         |              | 43.4         | < 0.020 <           |                 |                 |                  |                  | < 0.10          |                         | 2,280          |                   | 0 27.4                       |            | 134                    | < 0.00050              | 2.09               | 0.62                   |              |              | < 0.010               |             |       | < 0.010      |             | 10 1.40 <              |                              |
| EV_MCgwD                                 | EV_MCGWD_WG_2017-03-08_NP                               | 2017 03 08               | 248         | 3.4                 | < 0.10         |              | 92.2         | < 0.020 <           |                 |                 |                  |                  | 0.41            | < 0.50                  | 1,120          |                   | 0 7.6                        | 25.5       | 515                    | < 0.00050              | 8.83               | 1.33                   | 1.39         |              | < 0.010               |             |       |              |             |                        | 0.50 < 3.0                   |
|                                          | EV_MCGWD_WG_2017-03-30_NP                               | 2017 03 30               | 230         | 1.7                 | < 0.10         |              | 69.1         | < 0.020 <           |                 |                 | 50.4             |                  | 0.44            | < 0.20                  | 414            |                   | 0 11.2                       |            | 573                    | < 0.00050              | 13.6               | 3.67                   |              |              | < 0.010               |             |       |              |             |                        | 0.50 1.5                     |
|                                          | EV_MCGWD_WG_2017-05-16_NP                               | 2017 05 16<br>2017 06 28 | 223         | 19.3                | 0.21           | 0.73         | 82.5<br>86.0 | < 0.020 <           |                 |                 | 49.0<br>51.0     |                  | 0.69            | < 0.50<br>0.63          | 10<br>29       | < 0.05            | 0 9.3<br>0 9.3               | 24.5       | 512<br>389             | < 0.00050              | 12.8<br>13.1       | 14.4<br>15.0           | 1.46<br>1.47 |              | < 0.010<br>< 0.010    |             |       |              | < 0.10 <    |                        | 0.50 < 3.0<br>0.50 6.3       |
|                                          | EV_MCGWD_WG_2017-06-28_NP<br>EV_MCGWD_WG_2017-08-16_NP  | 2017 08 28               | 230<br>235  | < 3.0<br>< 3.0      | 0.16           | 0.81         | 86.8         | < 0.020 < < 0.020 < |                 |                 | 52.5             |                  | 0.75            | 1.05                    | 12             |                   | 0 9.3<br>0 8.5               | 24.0       | 369                    | < 0.00050              | 11.6               | 15.0                   |              |              | < 0.010               |             |       |              |             |                        | 0.50 6.3<br>0.50 13.4        |
|                                          | EV_MCGWD_WG_2017-09-19_NP                               | 2017 00 10               | 230         | 7.2                 |                | 0.59         | 85.8         | < 0.020 <           |                 |                 | 53.4             |                  | 0.34            | 1.03                    | 64             |                   | 0 9.6                        | 23.5       | 313                    | < 0.00050              |                    | 15.3                   | 1.48         | 0.133        | 0.058                 | 24.0        |       |              |             |                        | 0.50 20.0                    |
|                                          | EV_MCGWD_WG_2017-10-18_NP                               | 2017 10 18               | 200         | < 3.0               | 0.11           | 0.81         | 86.6         |                     | 0.050 7         |                 | 48.2             |                  | 0.43            | 1.18                    | 94             |                   | 0 <b>9.1</b>                 | 25.8       | 359                    | < 0.00050              | 10.9               | 13.2                   | 1.53         |              | < 0.010               | 23.5        |       |              |             |                        | 0.50 17.6                    |
| EV_BRgw                                  | EV BRGW WG 2017-03-30 NP                                | 2017 03 30               | 594         |                     |                | < 0.10       |              | < 0.020 <           |                 |                 | 156              |                  | < 0.10          |                         | 26             |                   | 0 <b>46.8</b>                |            | 2.32                   |                        | 0.610              | 3.69                   | 2.02         |              |                       |             |       |              | < 0.10 <    |                        | 0.50 5.1                     |
| _ •                                      | EV_BRGW_WG_2017-06-21_NP                                | 2017 06 19               | 610         | < 3.0               | 0.11           | < 0.10       | 62.4         |                     |                 | 0.0483          | 157              | 0.13             | < 0.10          | < 0.50                  | 18             | < 0.05            | 0 38.5                       | 53.2       | 0.88                   | < 0.0050               | 0.715              | 3.00                   | 1.77         |              |                       |             |       |              |             | 10 1.54 <              | 0.50 < 3.0                   |
|                                          | EV_BRGW_WG_2017-06-28_NP                                | 2017 06 28               |             |                     |                |              |              |                     |                 |                 | 158              | 0.11             | < 0.10          | < 0.50                  | 19             |                   | 0 <b>40.7</b>                |            | 1.08                   | < 0.0050               | 0.621              | 2.91                   | 1.83         | <u>52.4</u>  | < 0.010               | 7.87        | 316 < | < 0.010      | < 0.10 <    | 10 1.73 <              | 0.50 < 3.0                   |
|                                          | EV_BRGW_WG_2017-08-23_NP                                | 2017 08 23               | 688         | < 3.0               | 0.31           | < 0.10       | 75.3         | < 0.020 <           | 0.050 35        | 0.0555          | 182              | 0.13             | 0.28            | 0.66                    | 14             | < 0.05            | 0 <b>57.7</b>                | 58.4       | 0.99                   | < 0.0050               | 0.555              | 2.33                   | 2.18         | <u>56.2</u>  | < 0.010               | 9.28        | 370   | 0.010        | < 0.10 <    | 10 1.51 <              | 0.50 < 3.0                   |
|                                          | EV_WH50GW_WG_2017-10-25_NP <sup>j</sup>                 | 2017 10 25               | 726         | < 3.0               | < 0.10         | < 0.10       | 79.9         | < 0.020 <           | 0.050 38        | 0.0671          | 180              | 0.26             | < 0.10          | 0.90                    | < 10           | < 0.05            | 0 <b>58.9</b>                | 67.3       | 2.02                   | < 0.0050               |                    | 2.28                   | 2.36         | <u>41.1</u>  | < 0.010               | 10.3        | 360 < | < 0.010      | < 0.10 <    | 10 1.66 <              | 0.50 5.1                     |
|                                          | EV_BRGW_WG_2017-11-21_NP                                |                          |             | < 3.0               |                |              |              |                     | 0.050 39        |                 | 193              |                  | < 0.10          |                         | < 10           |                   | 0 <b>66.3</b>                |            | 1.23                   | < 0.0050               |                    | 2.17                   | 2.40         |              |                       |             |       |              |             | 10 1.63 <              |                              |
| EV_RCgw                                  | EV_RCSGW_WG_2017-03-07_NP                               | 2017 03 07               |             |                     | -              |              |              |                     |                 |                 | 328              |                  | < 0.20          |                         | < 20           |                   | 70.9                         |            | 1.28                   | < 0.0050               |                    | 2.0                    | 3.55         |              |                       |             |       |              |             | 10 7.92 <              |                              |
|                                          | EV_RCSGW_WG_2017-06-30_NP                               | 2017 06 30               |             |                     |                |              |              |                     |                 |                 |                  | < 0.50           |                 |                         | < 50           |                   | 49.7                         |            | 1.44                   | < 0.0050               |                    | 4.7                    | 3.89         |              |                       |             |       |              |             | 10 6.41 <              |                              |
|                                          | EV_RCSGW_WG_2017-08-22_NP                               | 2017 08 22               |             |                     |                |              |              |                     |                 |                 | 356              |                  |                 |                         | < 20           |                   | 53.2                         |            | 1.40                   | < 0.0050               |                    | 2.2                    | 3.54         |              |                       |             |       |              |             | 10 6.32 <              |                              |
|                                          | EV_BRGW_WG_2017-10-25_NP <sup>1</sup>                   | 2017 10 25               |             |                     |                |              |              |                     | 0.050 16        |                 | 370              |                  | < 0.10          |                         | < 10           |                   | 59.9                         |            | 1.28                   |                        |                    | 3.02                   | 3.70         |              |                       |             |       |              |             | 10 6.67 <              |                              |
| EV_WH50gw                                | EV_RCSGW_WG_2017-11-21_NP<br>EV WH50GW WG 2017-03-03 NP | 2017 11 21<br>2017 03 03 |             |                     |                |              |              |                     | 0.10 < 2        |                 |                  | < 0.20<br>< 0.10 |                 |                         | < 20<br>15     |                   | <b>62.0</b><br>0 <b>10.4</b> |            | 3.19<br>4.41           | < 0.0050<br>< 0.0050   |                    | 3.1<br>< 0.50          | 3.67         |              |                       |             |       |              |             | 10 7.03 <<br>10 1.30 < |                              |
| L v_vvi 150gv/                           | EV_WH50GW_WG_2017-05-05_NP                              |                          |             |                     |                |              |              |                     | 0.050 16        |                 |                  | < 0.10           |                 |                         | 15             |                   | 2 <b>10.4</b>                |            | 8.03                   | < 0.0050               |                    |                        |              | -            |                       |             |       |              |             | 10 1.30 <              |                              |
|                                          | EV_WH50GW_WG_2017-06-28_NP                              | 2017 06 28               |             |                     |                |              |              |                     |                 |                 |                  |                  |                 | < 0.50                  | -              |                   | 0 9.2                        |            | 7.02                   | < 0.0050               |                    |                        |              |              |                       |             |       |              |             | 10 0.841 <             |                              |
|                                          |                                                         |                          |             |                     |                | -            | -            |                     |                 |                 | 1                |                  |                 |                         | -              | 1                 |                              |            | 1 -                    |                        |                    |                        |              | -            |                       | . <u> </u>  |       |              |             |                        |                              |

Data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline BOLD\*\* BOLD Concentration greater than CSR Aquatic Life (AW) standard SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

| SHADED  | Concentration greater than CSR Drinking Water (DW) standard     |
|---------|-----------------------------------------------------------------|
| INVERSE | Concentration greater than CSR Livestock Watering (LW) standard |

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only. <sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with Hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>f</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>9</sup> Total Mercury guideline is based on the % of MethylMercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg.

<sup>h</sup> Standard ranges between 10 to 30 ug/L and varies with crop, soil drainage and Mo:Cu ratio. Conservative standard of 10 ug/L was applied.

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>1</sup> Samples inferred to be mislabelled in field.

<sup>k</sup> Guideline/standard varies with pH.

<sup>1</sup> Reported metals values for Q1 are total metals.

<sup>m</sup> Reported metals values are total metals.

| r                          |                                                          | 1            |          |                     |            |                   |                   |         |        |                          |         |                 |                 |                         |           |                   | Die              |           | 4-1-1-                 |                   |                    |                        |           |          |                       |        |           |           |        |                     |                        |                          |
|----------------------------|----------------------------------------------------------|--------------|----------|---------------------|------------|-------------------|-------------------|---------|--------|--------------------------|---------|-----------------|-----------------|-------------------------|-----------|-------------------|------------------|-----------|------------------------|-------------------|--------------------|------------------------|-----------|----------|-----------------------|--------|-----------|-----------|--------|---------------------|------------------------|--------------------------|
|                            |                                                          |              |          |                     |            |                   |                   |         |        |                          | 1       |                 |                 |                         | 1         |                   | DIS              | solved N  | letais                 |                   | _                  |                        |           |          |                       |        |           |           | -      |                     |                        |                          |
| Sample                     | Sample                                                   | Sample Date  | Hardness | Aluminum            | Antimony   | Arsenic<br>Barium | Beryllium         | Bismuth | Boron  | Cadmium                  | Calcium | Chromium        | Cobalt          | Copper                  | lron      | Lead              | Lithium          | Magnesium | Manganese              | Mercury           | Molybdenum         | Nickel                 | Potassium | Selenium | Silver                | Sodium | Strontium | Thallium  | Ē      | Titanium<br>Uranium | Vanadium               | Zinc                     |
| Location                   | ID                                                       | (yyyy mm dd) | mg/L     | μg/L                | μg/L μο    | g/L µg/           | ′L μg/L           | µg/L    | µg/L   | µg/L                     | mg/L    | µg/L            | μg/L            | µg/L                    | μg/L      | μg/L              | µg/L             | mg/L      | μg/L                   | µg/L              | µg/L               | µg/L                   | mg/L      | µg/L     | µg/L                  | mg/L   | µg/L      | μg/L μ    | g/L    | μg/L μg/            | /L µg/L                | µg/L                     |
| BC Standard                |                                                          |              | 1        |                     | <u>т г</u> |                   |                   | -       | r      |                          | r       | -               |                 |                         |           | 1                 | <u>a</u> 1       |           |                        |                   |                    |                        |           |          |                       |        |           |           |        |                     |                        |                          |
| BCWQG Aquatic Life         | Short-term Maximum (AW) <sup>a</sup>                     |              | n/a      | 31-100 <sup>k</sup> |            | 5 n/a             |                   | n/a     | n/a    | 0.038-2.8 <sup>d</sup>   | n/a     | n/a             |                 | 2.05-75.32 <sup>d</sup> | 350 (max) |                   |                  | n/a       | 546-9,136 <sup>d</sup> | 0.02 <sup>g</sup> | 2,000              | n/a                    | n/a       | n/a      | 0.1-3 <sup>d</sup>    | n/a    | n/a       |           |        | n/a n/              |                        | 33-551°                  |
| BCWQG Aquatic Life         | Long-Term Average (AW) <sup>b</sup>                      |              | n/a      | 11-50 <sup>ĸ</sup>  |            | /a 1,00           |                   | n/a     |        | 0.018-0.457 <sup>d</sup> | n/a     | 1 (Cr(+6))      | 4               | 2-31.2 <sup>d</sup>     | n/a       | 3-47 <sup>d</sup> | n/a              | n/a       | 607-4,037 <sup>d</sup> | n/a               | 1,000              | 25-150 <sup>d</sup>    | n/a       |          | 0.05-1.5 <sup>d</sup> | n/a    | n/a       | 0.8 r     | n/a    | n/a 8.              | 5 n/a                  | 7.5-525 <sup>d</sup>     |
| CSR Aquatic Life (A)       | V) <sup>c</sup>                                          |              | n/a      | n/a                 | 90 5       | 50 10,0           | 00 1.5            | n/a     | 12,000 | 0.5-4 <sup>d</sup>       | n/a     | 10 <sup>e</sup> | 40              | 20-90 <sup>d</sup>      | n/a       | 40-160            | <sup>d</sup> n/a | n/a       | n/a                    | 0.25              | 10,000             | 250-1,500 <sup>d</sup> | n/a       | 20       | 0.5-15 <sup>d</sup>   | n/a    | n/a       | 3 r       | n/a 1  | ,000 85             | 5 n/a                  | 75-2,400 <sup>d</sup>    |
| CSR Irrigation Water       | ing (IW)                                                 |              | n/a      | 5,000               | n/a 1      | 00 n/a            | a 100             | n/a     | 500    | 5                        | n/a     | 5 <sup>e</sup>  | 50              | 200                     | 5,000     | 200               | 2,500            | n/a       | 200                    | 1                 | 10-30 <sup>h</sup> | 200                    | n/a       | 20       | n/a                   | n/a    | n/a       | n/a r     | n/a    | n/a 10              | 0 100                  | 1,000-5,000 <sup>d</sup> |
| CSR Livestock Wate         | ring (LW)                                                |              | n/a      | 5,000               | n/a 2      | 25 n/a            | a 100             | n/a     | 5,000  | 80                       | 1,000   | 50 <sup>e</sup> | 1,000           | 300                     | n/a       | 100               | 5,000            | n/a       | n/a                    | 2                 | 50                 | 1,000                  | n/a       | 30       | n/a                   | n/a    | n/a       | n/a r     | n/a    | n/a 20              | 0 100                  | 2,000                    |
| CSR Drinking Water         | (DW)                                                     |              | n/a      | 9,500               | 6 1        | 0 1,0             | 8 00              | n/a     | 5,000  | 5                        | n/a     | 50 <sup>e</sup> | 20 <sup>f</sup> | 1,500                   | 6,500     | 10                | 8                | n/a       | 1,500                  | 1                 | 250                | 80                     | n/a       | 10       | 20                    | 200    | 2,500     | n/a 2,    | 500    | n/a 20              | 20                     | 3,000                    |
| Study Area 9 (Cont         | d)                                                       | -            |          |                     |            |                   |                   |         |        |                          |         |                 |                 |                         |           |                   |                  |           |                        |                   |                    |                        |           |          |                       |        |           |           |        |                     |                        |                          |
| EV_WH50gw                  | EV_WH50GW_WG_2017-08-22_NP                               | 2017 08 22   | 256      | < 3.0               | 0.21 < 0   | 0.10 11           | 4 < 0.020         | < 0.050 | 15     | 0.0160                   | 66.1    | < 0.10          | < 0.10          | < 0.50                  | 29        | < 0.050           | 0 <b>11.6</b>    | 22.1      | 8.35                   | < 0.0050          | 1.06               | < 0.50                 | 1.18      | 10.8     | < 0.010               | 3.12   | 151 <     | < 0.010 < | 0.10   | < 10 1.0            | 03 < 0.50              | < 3.0                    |
| (Cont'd)                   | EV_RCSGW_WG_2017-10-25_NP <sup>j</sup>                   | 2017 10 25   | 295      | < 3.0               | 0.18 0.    | 14 12             | 2 < 0.020         | < 0.050 | 15     | 0.0206                   | 71.2    | 0.28            | < 0.10          | 0.70                    | 25        | < 0.050           | 0 <b>14.2</b>    | 28.6      | 6.53                   | < 0.0050          | 0.963              | < 0.50                 | 1.22      | 10.4     | < 0.010               | 3.48   | 164 <     | 0.010 0   | .12    | < 10 1.1            | 3 < 0.50               | 3.2                      |
|                            | EV_WH50GW_WG_2017-11-21_NP                               | 2017 11 21   | 313      | < 3.0               | 0.20 < 0   | 0.10 11           | 4 < 0.020         | < 0.050 | 13     | 0.0100                   | 78.7    | < 0.10          | < 0.10          | < 0.50                  | 13        | < 0.050           | 0 <b>15.3</b>    | 28.2      | 6.18                   | < 0.0050          | 1.29               | < 0.50                 | 1.22      | 14.2     | < 0.010               | 3.48   | 177 <     | : 0.010 < | 0.10   | < 10 1.1            | 1 < 0.50               | < 3.0                    |
| RG_DW-03-011               | RG_DW-03-01_WP_2017-02-20_NP                             | 2017 02 20   | 425      | -                   | -          |                   | -                 | -       | -      | -                        | -       | -               | -               | -                       | -         | -                 | -                | -         | -                      | -                 | -                  | -                      | -         | 0.098    | -                     | -      | -         | -         | -      |                     | -                      | -                        |
|                            | RG_DW-DUP_WP_2017-02-20_NP                               | Duplicate    | 431      | -                   | -          |                   | -                 | -       | -      | -                        | -       | -               | -               | -                       | -         | -                 | -                | -         | -                      | -                 | -                  | -                      | -         | 0.102    | -                     | -      | -         | -         | -      |                     | -                      | -                        |
|                            | QA/QC RPD%                                               | 1            | 1        | -                   | -          |                   | -                 | -       | -      | -                        | -       | -               | -               | -                       | -         | -                 | -                | -         | -                      | -                 | -                  | -                      | -         | 4        | -                     | -      | -         | -         | -      |                     | -                      | -                        |
|                            | RG_DW-03-01_WP_2017-05-29_NP                             | 2017 05 29   | 419      |                     | < 0.10 < 0 |                   |                   | < 0.050 |        | 0.0753                   | 111     |                 | < 0.10          | < 0.50                  | 41        |                   | <b>21.8</b>      |           | 107                    | < 0.0050          | 3.32               | 2.49                   | 2.03      | 0.088    | < 0.010               |        |           |           |        |                     | 06 < 0.50              | < 3.0                    |
|                            | RG_DW-03-01_WP_2017-08-22_NP                             | 2017 08 22   | 413      | < 3.0               | < 0.10 < 0 |                   |                   |         |        | 0.0749                   | 112     | < 0.10          | < 0.10          | < 0.50                  | 43        |                   | 20.6             |           | 121                    | < 0.0050          | 2.98               | 2.13                   | 2.02      | 0.16     | < 0.010               |        |           |           |        |                     | 98 < 0.50              | < 3.0                    |
|                            | RG_DW-03-01_WP_Q4-2017_NP                                | 2017 11 15   | 466      | < 3.0               | < 0.10 < 0 | 0.10 12           | 6 < 0.020         | < 0.050 | 35     | 0.0788                   | 123     | 0.14            | 0.11            | < 0.50                  | 84        | < 0.050           | <b>20.6</b>      | 38.7      | 152                    | < 0.0050          | 3.30               | 2.29                   | 1.78      | 0.176    | < 0.010               | 14.0   | 418       | 0.085 <   | 0.10   | < 10 0.8            | 80 < 0.50              | < 3.0                    |
| Study Area 10              |                                                          |              |          |                     |            |                   |                   |         |        |                          |         |                 |                 |                         |           |                   |                  |           | 1-1-1                  |                   |                    |                        |           |          |                       |        |           |           |        |                     |                        |                          |
| EV_ECgw                    | EV_ECGW_WG_2017-06-20_NP                                 | 2017 06 20   | 167      | 43.0                | 0.18 0.    |                   |                   | < 0.050 |        | 0.0234                   | 37.6    |                 | 0.42            | < 0.50                  | 30        |                   | 0 <b>10.8</b>    |           | 178                    | < 0.0050          | 13.1               | 1.68                   |           |          |                       |        |           |           |        |                     | 32 < 0.50              | < 3.0                    |
|                            | EV_ECGW_WG_2017-08-23_NP                                 | 2017 08 23   | 174      | < 3.0               | < 0.10 0.  |                   |                   | < 0.050 |        | 0.0134                   | 41.7    | < 0.10          | 0.31            | < 0.50                  | < 10      | -                 | 0 <b>10.3</b>    |           | 178                    | < 0.0050          | 12.8               | 0.89                   | 1.06      | 0.06     | < 0.010               |        |           |           |        |                     | 25 < 0.50              | < 3.0                    |
|                            | EV_ECGW_WG_2017-10-25_NP                                 | 2017 10 25   | 184      |                     | < 0.10 0.  |                   |                   | < 0.050 |        | 0.0404                   | 39.5    | 0.13            | 0.23            | 0.87                    | < 10      |                   | <b>12.2</b>      |           | 178                    | < 0.0050          | 13.2               | 3.65                   | 1.16      | 0.056    | < 0.010               |        |           |           |        |                     | 84 < 0.50              | 10.8                     |
|                            | EV_ECGW_WG_2017-11-23_NP                                 | 2017 11 22   | 177      | < 3.0               | < 0.10 0.  | 41 53.            | .8 < 0.020        | < 0.050 | 119    | 0.0429                   | 40.2    | < 0.10          | 0.30            | 2.31                    | < 10      | < 0.050           | 0 <b>11.2</b>    | 18.7      | 170                    | < 0.0050          | 15.2               | 3.67                   | 1.33      | 0.212    | < 0.010               | 29.8   | 447       | 0.031 0   | .12    | < 10 1.2            | < 0.50                 | 6.0                      |
| Study Area 11              |                                                          |              |          |                     | тт.:       |                   |                   |         | T      |                          |         |                 |                 |                         |           | 1                 |                  |           |                        |                   |                    |                        |           | 1        |                       |        | 1         |           | 1      |                     |                        |                          |
| CM_MW1-DP                  | CM_MW1-DP_WG_2017Q1_N                                    | 2017 03 28   | 145      |                     |            |                   | <b>30</b> < 0.020 |         |        | 0.0092                   | 31.4    |                 | 1.29            | 0.67                    | < 10      | -                 | <b>697</b>       | 16.3      | 225                    | < 0.0050          |                    | 1.46                   | 5.65      |          |                       |        |           |           |        |                     | 27 < 0.50              | 21.8                     |
|                            | CM_MW1-DP_WG_Q2_2017_N                                   | 2017 06 27   | 182      | 5.5                 |            | 23 1,4            | -                 | < 0.25  |        | < 0.025                  | 47.6    | < 0.50          | < 0.50          | < 1.0                   | 150       |                   | 258              | 15.4      | 178                    | < 0.0050          | 13.0               | < 2.5                  | 3.07      | < 0.25   | < 0.050               |        |           |           |        |                     | 4 < 2.5                | < 5.0                    |
|                            | CM_MW1-DP_WG_Q3_2017_N                                   | 2017 09 06   | 185      | 2.1                 |            | 26 <b>4,2</b>     |                   | < 0.050 |        | 0.0057                   | 47.7    |                 | 0.49            | < 0.20                  | < 10      |                   | 2 <b>98</b>      | 16.0      | 172                    | 0.0066            | 7.74               | < 0.50                 | 3.07      | < 0.050  | < 0.010               |        | -         | < 0.010 < |        |                     |                        | 5.7                      |
| 014 1414 00                | CM_MW1-DP_WG_Q4-2017_N                                   | 2017 12 07   | 143      | 3.3                 |            | 36 <u>11,0</u>    |                   |         |        | < 0.0050                 | 29.6    |                 | 0.68            | < 0.20                  | 753       |                   | 0 <b>710</b>     |           | 161                    | < 0.0050          | 4.12               | < 0.50                 | 5.49      | 0.093    | < 0.010               |        |           | < 0.010 < |        |                     |                        | 6.2                      |
| CM_MW1-OB                  | CM_MW1-OB_WG_2017Q1_N                                    | 2017 03 27   | 529      | 2.3                 |            | 11 79.            |                   |         |        | 0.122                    | 143     | 0.21            | 0.33            | 1.39                    | < 10      | -                 | 0 17.0           |           | 17.6                   | < 0.0050          | 1.48               | 3.80                   | 1.24      | 1.82     | < 0.010               |        |           |           | 0.10 < |                     |                        | 27.3                     |
|                            | CM_MW1-OB_WG_Q2_2017_N                                   | 2017 06 19   | 524      | 1.1                 |            | 12 10             |                   |         |        | 0.0653                   | 138     | 0.35            | < 0.10          | 0.51                    | < 10      |                   | 0 <b>16.8</b>    |           | 3.40                   | < 0.0050          | 1.08               | 2.19                   | 1.62      | 5.24     | 0.036                 |        |           |           | 0.10 < |                     |                        | 4.3                      |
|                            | CM_MW1-OB_WG_Q3_2017_N                                   | 2017 08 28   | 416      | 1.7                 |            | 17 98             |                   | < 0.050 |        | 0.0474                   | 103     | 0.32            | < 0.10          | 0.35                    | < 10      |                   | 0 <b>15.5</b>    |           | 1.48                   | < 0.0050          | 0.457              | 6.63                   | 1.64      | 3.07     | < 0.010               |        |           |           |        |                     | 77 < 0.50              | 1.9                      |
|                            | CM_MW1-OB_WG_Q4-2017_N                                   | 2017 12 07   | 556      | 1.9                 |            | 10 85.            |                   | < 0.050 |        | 0.0799                   | 149     | 0.23            | < 0.10          | 0.37                    | < 10      |                   | 0 <b>19.3</b>    |           | 0.85                   | < 0.0050          | 0.633              | 3.66                   | 1.62      | 4.07     | < 0.010               |        |           |           | 0.10 < |                     |                        | 8.1                      |
| CM_MW1-SH                  | CM_MW1-SH_WG_2017Q1_N                                    | 2017 03 21   | 96.2     | 4.3                 |            | 65 32             |                   | < 0.050 |        | 0.0251                   | 23.2    | < 0.10          | 0.22            | 0.27                    | 310       |                   | 24.2             |           | 144                    |                   | 93.3               | 0.67                   | 1.40      | 0.159    | < 0.010               |        |           | 0.010 <   |        |                     |                        | < 1.0                    |
|                            | CM_MW1-SH_WG_Q2_2017_N                                   | 2017 06 19   | 105      | 4.1                 |            | 93 27             |                   |         |        | 0.0218                   | 24.8    | < 0.10          | 0.24            | < 0.20                  | 221       |                   | <b>21.4</b>      |           | 147                    |                   | 77.4               | 1.07                   | 1.27      | 0.138    | < 0.010               |        |           |           |        | 0.30 1.0            |                        | < 1.0                    |
|                            | CM_MW1-SH_WG_Q3_2017_N                                   | 2017 08 28   | 127      | 4.6                 |            | 80 26             |                   | < 0.050 |        | < 0.020                  | 31.7    | < 0.10          | 0.24            | 0.53                    | 312       |                   | 19.0             |           | 146                    |                   | 60.0               | 1.63                   | 1.15      | 0.404    | < 0.010               |        |           |           |        |                     | 24 < 0.50              | 7.3                      |
| 1                          | CM_MW1-SH_WG_Q4-2017_N                                   | 2017 12 07   | 140      | 2.6                 | < 0.10 1.  | 79 28             |                   | < 0.050 | 58     | < 0.020                  | 35.2    | 0.11            | 0.27            | < 0.20                  | 485       | -                 | 0 <b>17.2</b>    |           | 185                    | < 0.0050          | 48.4               | 1.00                   | 1.31      | < 0.050  | < 0.010               | 158    | 332 <     | 0.010 0   | .10 <  | 0.30 1.1            |                        | < 1.0                    |
| RG_DW-07-01                | RG_DW-07-01_WP_2017-02-20_NP                             | 2017 02 20   | 824      | -                   | -          |                   | -                 | -       | -      | -                        | -       | -               | -               | -                       | -         | -                 | -                | -         | -                      | -                 | -                  | -                      | -         | 6.85     | -                     | -      | -         | -         | -      |                     | -                      | -                        |
|                            | RG_DW-07-01_WP_2017-06-05_NP                             | 2017 06 05   | 597      | < 3.0               |            | 16 83.            |                   |         |        | 0.0274                   | 147     | 0.13            | < 0.10          | 1.56                    | 95        | -                 | 0 <b>19.5</b>    |           | 17.3                   | < 0.0050          | 1.02               | 0.56                   | 2.03      | 15.4     | < 0.010               |        |           |           |        | < 10 2.4            |                        | 29.6                     |
|                            | RG_DW-07-01_WP_2017-08-30_NP                             | 2017 08 30   | 799      | < 3.0               |            | 18 12             |                   |         |        | 0.0516                   | 196     | 0.14            | < 0.10          | < 0.50                  | 177       | -                 | 21.7             |           | 14.9                   | < 0.0050          | 0.841              | 0.71                   | 2.26      | 11.6     | < 0.010               |        |           |           |        | < 10 3.0            |                        | 71.4                     |
| Churchy Area 40            | RG_DW-07-01_WP_Q4-2017_NP                                | 2017 11 21   | 1,010    | < 3.0               | 0.25 0.    | 18 12             | 2 < 0.020         | < 0.050 | 53     | 0.0545                   | 236     | 0.20            | < 0.10          | < 0.50                  | 255       | < 0.050           | <b>22.9</b>      | 101       | 24.0                   | < 0.0050          | 0.897              | 0.71                   | 2.35      | 9.35     | < 0.010               | 34.6   | 663       | 0.014 <   | 0.10   | < 10 3.4            | 42 < 0.50              | 19.0                     |
| Study Area 12<br>EV ER1gwS | EV ER1GWS WG 2017-02-15 NP                               | 2017 02 15   | 260      | .20                 | < 0.10 0.  | 11 02             | .2 < 0.020        | + 0.050 | - 10   | 0.0090                   | 69.4    | 0.25            | < 0.10          | < 0.50                  | < 10      | 10.050            | 0 7.1            | 23.2      | < 0.10                 | < 0.0050          | 1.15               | < 0.50                 | 0.568     | 10.3     | - 0.010               | 2.02   | 212       | 0.010     | 0.10   | . 10 1 2            | 28 < 0.50              | < 3.0                    |
| EV_ERIGWS                  | EV_ER1GWS_WG_2017-02-15_NP<br>EV_ER1GWS_WG_2017-06-28_NP |              |          |                     |            |                   |                   |         |        | 0.0090                   | 58.3    |                 | < 0.10          |                         | -         |                   | ) 7.1<br>) 7.7   |           | < 0.10                 | < 0.0050          |                    |                        |           |          |                       |        |           |           |        |                     | 28 < 0.50<br>03 < 0.50 |                          |
|                            | EV_ER1GWS_WG_2017-08-22_NP                               | 2017 08 22   |          |                     |            |                   | 4 < 0.020         |         |        | 0.0113                   | 65.7    |                 | < 0.10          |                         |           |                   | 0 <b>8.2</b>     |           | < 0.10                 | < 0.0050          |                    |                        |           |          |                       |        |           |           |        |                     | 07 < 0.50              |                          |
|                            | EV_ERIGWS_WG_2017-08-22_NF<br>EV_ERIGWS_WG_2017-10-24_NP |              |          |                     |            |                   |                   |         |        | < 0.0050                 |         |                 |                 | < 0.50                  |           |                   | 0 6.9            |           | 1.52                   | < 0.0050          |                    |                        |           |          |                       |        |           |           |        |                     | 36 < 0.50              |                          |
| EV ER1gwD                  | EV_ER1GWD_WG_2017-02-15_NP                               | 2017 10 24   |          |                     |            |                   |                   |         |        | < 0.0050                 |         | 0.32            | 0.10            | 0.52                    |           |                   | 0.5              |           | 34.0                   | < 0.0050          |                    |                        |           |          |                       |        |           |           |        |                     | 30 < 0.50              |                          |
|                            | EV_ER1GWD_WG_2017-06-28_NP                               | 2017 06 28   |          |                     |            |                   | .1 < 0.020        |         |        | < 0.0050                 | 45.4    |                 | < 0.10          |                         |           |                   | 0.6              |           | 4.06                   | < 0.0050          |                    |                        |           |          |                       |        |           |           |        |                     | 3 < 0.50               |                          |
|                            | EV_ER1GWD_WG_2017-08-22_NP                               | 2017 08 22   |          |                     |            |                   | 2 < 0.020         |         |        | < 0.0050                 | 60.8    |                 | < 0.10          | < 0.50                  |           |                   | 0 <b>8.3</b>     |           | 0.51                   | < 0.0050          |                    |                        |           |          |                       |        |           |           |        |                     | 26 < 0.50              |                          |
|                            | EV_ER1GWD_WG_2017-10-24_NP                               | 2017 10 24   |          |                     |            |                   | .0 < 0.020        |         |        | 0.0103                   | 61.7    |                 | < 0.10          |                         | < 10      |                   | 0 6.8            |           | < 0.10                 | < 0.0050          |                    |                        |           |          |                       |        |           |           |        |                     | 21 < 0.50              |                          |
| RG DW-03-04                | RG_DW-03-04_WP_2017-02-20_NP                             | 2017 02 20   |          |                     |            |                   | -                 | -       | -      | 0.0131                   | 75,900  |                 | -               | -                       | -         | -                 |                  | 22,700    | -                      | -                 | -                  | -                      | 973       | 9.2      | -                     |        | -         | -         |        |                     | -                      | -                        |
|                            | RG_DW-03-04_WP_2017-05-31_NP                             |              |          |                     | < 0.10 0.  | 10 14             | 9 < 0.020         | < 0.050 | < 10   | 0.0118                   | 65.8    |                 | < 0.10          | 0.73                    | < 10      | < 0.050           | 0 7.5            |           | < 0.10                 | < 0.0050          | 0.967              | < 0.50                 |           |          |                       |        | 150 <     | : 0.010 < | 0.10   | < 10 0.8            | 27 < 0.50              | < 3.0                    |
|                            | RG_DW-03-04_WP_2017-08-22_NP                             | 2017 08 22   |          |                     |            |                   |                   |         |        | 0.0129                   | 62.9    |                 | < 0.10          | 1.00                    |           |                   | 0 7.9            |           | < 0.10                 | < 0.0050          | 0.986              | < 0.50                 | 0.864     | 7.9      | < 0.010               | 7.75   | 136 <     | : 0.010 < | 0.10   | < 10 0.8            | 13 < 0.50              | 4.7                      |
|                            | RG_DW-03-04_WP_Q4-2017_NP                                | 2017 11 21   | 301      | < 3.0               | 0.10 0.    | 11 17             | 5 < 0.020         | < 0.050 | 12     | 0.0146                   | 77.3    | 0.23            | < 0.10          | 0.85                    | < 10      | < 0.050           | <b>8.8</b>       | 26.2      | < 0.10                 | < 0.0050          | 0.980              | < 0.50                 | 0.923     | 11.5     | < 0.010               | 7.33   | 168 <     | < 0.010 < | 0.10   | < 10 0.9            | 10 < 0.50              | 6.2                      |
| •                          |                                                          |              |          |                     |            |                   |                   |         |        |                          |         |                 |                 |                         |           |                   |                  |           |                        |                   |                    |                        |           |          |                       |        |           |           |        |                     |                        |                          |

Data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD\*\* BOLD SHADOW SHADED

Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline Concentration greater than CSR Aquatic Life (AW) standard

Concentration greater than CSR Irrigation Watering (IW) standard

Concentration greater than CSR Drinking Water (DW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with Hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>f</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>9</sup> Total Mercury guideline is based on the % of MethylMercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg. <sup>h</sup> Standard ranges between 10 to 30 ug/L and varies with crop, soil drainage and Mo:Cu ratio. Conservative standard of 10 ug/L was applied.

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>j</sup> Samples inferred to be mislabelled in field.

<sup>k</sup> Guideline/standard varies with pH.

- <sup>1</sup> Reported metals values for Q1 are total metals.
- <sup>m</sup> Reported metals values are total metals.

### TABLE 4 (Cont'd): Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Metals in Groundwater

|                       |                                      |                                         |          |                     |          |              |          |                |                    |         |                          |              |                  |                 |                         |            |                        | Dise            | solved M | letals                 |                   |                    |                        |                  |                |                       |         |                    |                    |            |         |                  |            |                          |
|-----------------------|--------------------------------------|-----------------------------------------|----------|---------------------|----------|--------------|----------|----------------|--------------------|---------|--------------------------|--------------|------------------|-----------------|-------------------------|------------|------------------------|-----------------|----------|------------------------|-------------------|--------------------|------------------------|------------------|----------------|-----------------------|---------|--------------------|--------------------|------------|---------|------------------|------------|--------------------------|
| Sample<br>Location    | Sample<br>ID                         | Sample Date<br>(yyyy mm dd)             | ⊐/b<br>T | Aluminum            | antimony | E<br>Arsenic | T/Barium | beryllium<br>⊤ | ר)<br>מאמר שו<br>ר | hd<br>T | T/bπ<br>T/bπ             | T/bw<br>T/bw | 7/bf<br>Chromium | ⊐<br>T          | Copper<br>Copper        | uo<br>µq/L | ⊤<br>Lead              | Trithium<br>Mal | mg/L     | Manganese<br>Manganese | Mercury           | Z Molybdenum       | 5<br>Nickel            | a<br>T/Potassium | T/bit<br>T/bit | 7/Silver              | mg/L    | ד)<br>T) Strontium | 5<br>⊐<br>Thallium | iL<br>Ha/L | ⊤/anium | T/bft<br>Tranium | T/D<br>T/D | Zinc.<br>Zinc            |
| BC Standard           |                                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |                     |          |              |          |                |                    |         |                          |              |                  |                 |                         |            |                        |                 |          |                        |                   |                    |                        |                  |                |                       |         |                    |                    |            |         |                  |            |                          |
| BCWQG Aquatic Life    | Short-term Maximum (AW) <sup>a</sup> |                                         | n/a      | 31-100 <sup>k</sup> | n/a      | 5            | n/a      | n/a            | n/a                | n/a     | 0.038-2.8 <sup>d</sup>   | n/a          | n/a              | 110             | 2.05-75.32 <sup>d</sup> | 350 (max   | ) 3-1,116 <sup>d</sup> | n/a             | n/a      | 546-9,136 <sup>d</sup> | 0.02 <sup>g</sup> | 2,000              | n/a                    | n/a              | n/a            | 0.1-3 <sup>d</sup>    | n/a     | n/a                | n/a                | n/a        | n/a     | n/a              | n/a        | 33-551 <sup>d</sup>      |
| BCWQG Aquatic Life    | Long-Term Average (AW) <sup>b</sup>  |                                         | n/a      | 11-50 <sup>k</sup>  | 9        | n/a          | 1,000    | 0.13           | n/a                | 1,200   | 0.018-0.457 <sup>d</sup> | n/a          | 1 (Cr(+6))       | 4               | 2-31.2 <sup>d</sup>     | n/a        | 3-47 <sup>d</sup>      | n/a             | n/a      | 607-4,037 <sup>d</sup> | n/a               | 1,000              | 25-150 <sup>d</sup>    | n/a              | 2              | 0.05-1.5 <sup>d</sup> | n/a     | n/a                | 0.8                | n/a        | n/a     | 8.5              | n/a        | 7.5-525 <sup>d</sup>     |
| CSR Aquatic Life (AV  |                                      |                                         | n/a      | n/a                 | 90       | 50           | 10,000   | 1.5            | n/a                | 12,000  | 0.5-4 <sup>d</sup>       | n/a          | 10 <sup>e</sup>  | 40              | 20-90 <sup>d</sup>      | n/a        | 40-160 <sup>d</sup>    | n/a             | n/a      | n/a                    | 0.25              | 10,000             | 250-1.500 <sup>d</sup> | n/a              | 20             | 0.5-15 <sup>d</sup>   | n/a     | n/a                | 3                  | n/a        | 1,000   | 85               | n/a        | 75-2,400 <sup>d</sup>    |
| CSR Irrigation Wateri |                                      |                                         | n/a      | 5,000               | n/a      | 100          | n/a      | 100            | n/a                | 500     | 5                        | n/a          | 5 <sup>e</sup>   | 50              | 200                     | 5,000      | 200                    | 2,500           | n/a      | 200                    | 1                 | 10-30 <sup>h</sup> | 200                    | n/a              | 20             | n/a                   | n/a     | n/a                | n/a                | n/a        | n/a     | 10               | 100        | 1,000-5,000 <sup>d</sup> |
| CSR Livestock Water   | ing (LW)                             |                                         | n/a      | 5,000               | n/a      | 25           | n/a      | 100            | n/a                | 5,000   | 80                       | 1,000        | 50 <sup>e</sup>  | 1,000           | 300                     | n/a        | 100                    | 5,000           | n/a      | n/a                    | 2                 | 50                 | 1,000                  | n/a              | 30             | n/a                   | n/a     | n/a                | n/a                | n/a        | n/a     | 200              | 100        | 2,000                    |
| CSR Drinking Water    |                                      |                                         | n/a      | 9,500               | 6        | 10           | 1,000    | 8              | n/a                | 5,000   | 5                        | n/a          | 50 <sup>e</sup>  | 20 <sup>f</sup> | 1,500                   | 6,500      | 10                     | 8               | n/a      | 1,500                  | 1                 | 250                | 80                     | n/a              | 10             | 20                    | 200     | 2,500              | n/a                | 2,500      | n/a     |                  | 20         | 3,000                    |
| Field Blanks          |                                      |                                         |          | - /                 | -        |              | ,        | -              |                    | - /     | -                        |              | 00               | 20              | ,                       | - /        |                        |                 |          | ,                      |                   |                    |                        |                  | -              | -                     |         | ,                  |                    | ,          |         | -                | -          | -,                       |
| RG_DW-03-01           | RG_DW-FB_WP_2017-02-20_NP            | 2017 02 20                              | -        | -                   | -        | -            | -        | -              | -                  | -       | < 0.0050                 | -            | -                | -               | -                       | -          | -                      | -               | -        | -                      | -                 | -                  | -                      |                  | < 0.050        | -                     | -       | -                  | -                  | -          | -       | -                | -          | -                        |
| RG DW <sup>m</sup>    | RG_DW-FB_WQ_2017-05-29_NP            | 2017 05 29                              | < 0.50   | < 3.0               | < 0.10   | < 0.10       | < 0.050  | < 0.020        | < 0.050            | < 10    | < 0.0050                 | < 0.050      | < 0.10           | < 0.10          | < 0.50                  | < 10       | < 0.050                | < 1.0           | < 0.10   | < 0.10                 | < 0.00050         | < 0.050            | < 0.50                 | < 0.050          | < 0.050        | < 0.010               | < 0.050 | < 0.20             | < 0.010            | < 0.10     | < 10    | < 0.010          | < 0.50     | < 3.0                    |
|                       | RG_DW-FB_WQ_2017-08-21_NP            | 2017 08 21                              | < 0.50   | < 3.0               | < 0.10   | < 0.10       | < 0.050  | < 0.020        | < 0.050            | < 10    | < 0.0050                 | 0.051        | < 0.10           | < 0.10          | < 0.50                  | < 10       | < 0.050                | < 1.0           | < 0.10   | < 0.10                 | < 0.00050         | < 0.050            |                        |                  |                | < 0.010               |         |                    |                    |            |         |                  |            | < 3.0                    |
|                       | WP_Q4-2017_002                       | 2017 11 15                              | < 0.50   | < 3.0               | < 0.10   | < 0.10       | < 0.050  | < 0.020        | < 0.050            | < 10    | < 0.0050                 | < 0.050      | < 0.10           | < 0.10          | < 0.50                  | < 10       | < 0.050                | < 1.0           | < 0.10   | < 0.10                 | < 0.00050         | < 0.050            | < 0.50                 | < 0.050          | < 0.050        | < 0.010               | < 0.050 | < 0.20             | < 0.010            | < 0.10     | < 10    | < 0.010          | < 0.50     | < 3.0                    |
| Trip Blanks           |                                      |                                         |          |                     |          |              |          |                |                    |         |                          |              |                  |                 |                         |            |                        |                 |          |                        |                   |                    |                        |                  |                |                       |         |                    |                    |            |         |                  |            |                          |
| RG_DW-03-01           | RG_DW-TB_WP_2017-02-20_NP            | 2017 02 20                              | -        | -                   | -        | -            | -        | -              | -                  | -       | < 0.0050                 | -            | -                | -               | -                       | -          | -                      | -               | -        | -                      | -                 | -                  | -                      |                  | < 0.050        | -                     | -       | -                  | -                  | -          | -       | -                | -          | -                        |
| RG_DW <sup>m</sup>    | RG_DW-TB_WQ_2017-05-29_NP            | 2017 05 29                              | < 0.50   | < 3.0               | < 0.10   | < 0.10       | < 0.050  | < 0.020        | < 0.050            | < 10    | < 0.0050                 | < 0.050      | < 0.10           | < 0.10          | < 0.50                  | < 10       | < 0.050                | < 1.0           | < 0.10   | < 0.10                 | < 0.00050         | < 0.050            | < 0.50                 | < 0.050          | < 0.050        | < 0.010               | < 0.050 | < 0.20             | < 0.010            | < 0.10     | < 10    | < 0.010          | < 0.50     | < 3.0                    |
|                       | RG_DW-TB_WQ_2017-08-21_NP            | 2017 08 21                              | < 0.50   | < 3.0               | < 0.10   | < 0.10       | < 0.050  | < 0.020        | < 0.050            | < 10    | < 0.0050                 | < 0.050      | < 0.10           | < 0.10          | < 0.50                  | < 10       | < 0.050                | < 1.0           | < 0.10   | < 0.10                 | < 0.00050         | < 0.050            |                        |                  |                | < 0.010               |         |                    |                    |            |         |                  |            | < 3.0                    |
|                       | WP_Q4-2017_003                       | 2017 11 15                              | < 0.50   | < 3.0               | < 0.10   | < 0.10       | < 0.050  | < 0.020        | < 0.050            | < 10    | < 0.0050                 | < 0.050      | < 0.10           | < 0.10          | < 0.50                  | < 10       | < 0.050                | < 1.0           | < 0.10   | < 0.10                 | < 0.00050         | < 0.050            | < 0.50                 | < 0.050          | < 0.050        | < 0.010               | < 0.050 | < 0.20             | < 0.010            | < 0.10     | < 10    | < 0.010          | < 0.50     | < 3.0                    |

Data provided by Teck Coal Ltd.

BOLD SHADOW

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

\*\* Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD\*\* Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline

Concentration greater than CSR Aquatic Life (AW) standard

Concentration greater than CSR Irrigation Watering (IW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

<sup>a</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>b</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic"). Guideline for surface water and Total Metals, shown here for comparison purposes only.

<sup>c</sup> Standard to protect freshwater aquatic life.

<sup>d</sup> Guideline/standard varies with Hardness.

<sup>e</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>f</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>9</sup> Total Mercury guideline is based on the % of MethylMercury present. WQG = 0.0001 / (MeHg/total Hg), where MeHg is mass (or concentration) of methyl mercury and THg. Guideline shown assumes MeHg<0.5% of Total Hg. <sup>h</sup> Standard ranges between 10 to 30 ug/L and varies with crop, soil drainage and Mo:Cu ratio. Conservative standard of 10 ug/L was applied.

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<sup>j</sup> Samples inferred to be mislabelled in field.

<sup>k</sup> Guideline/standard varies with pH.

<sup>1</sup> Reported metals values for Q1 are total metals.

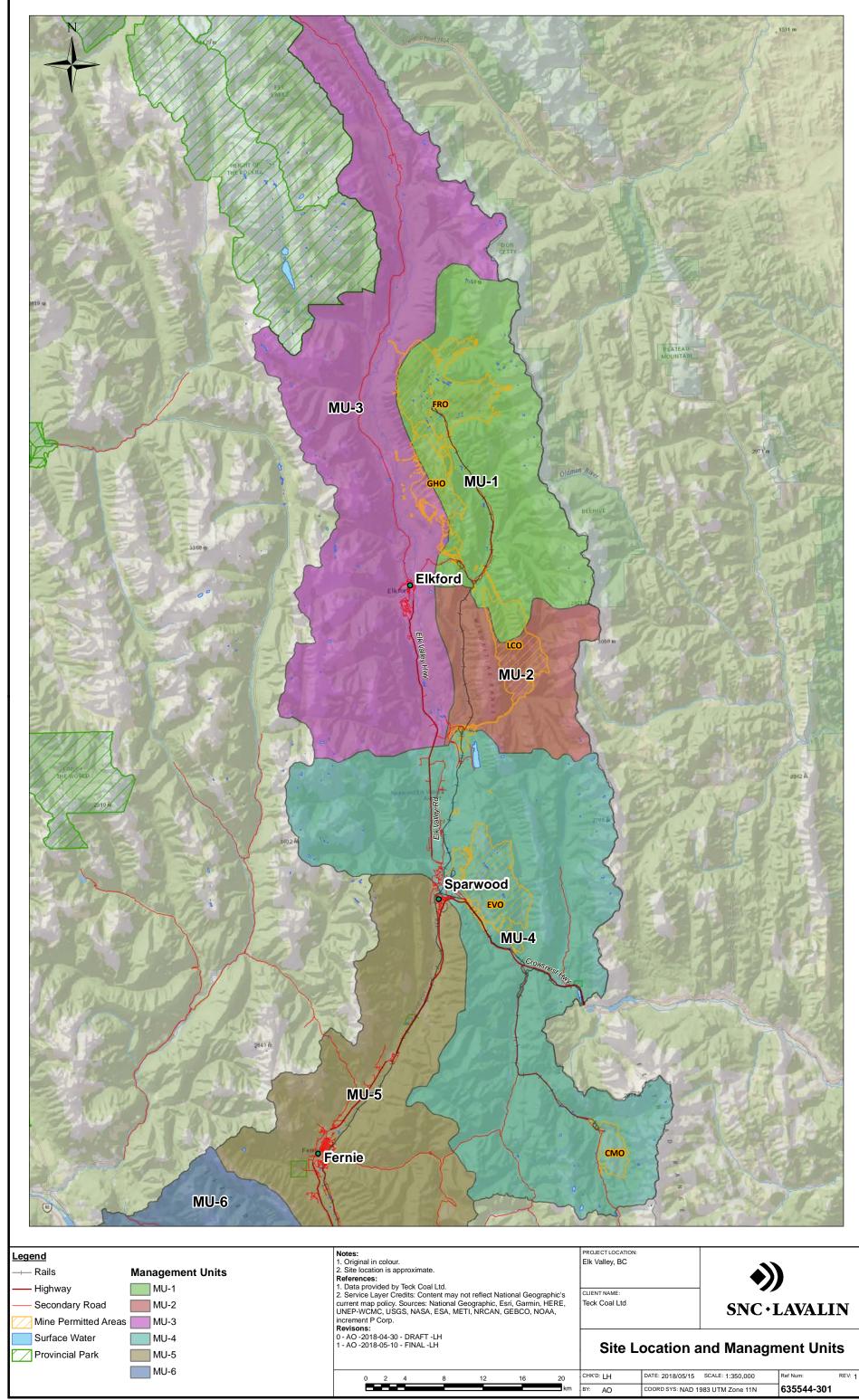
<sup>m</sup> Reported metals values are total metals

## TABLE 5: Summary of Analytical Results compared to Secondary Screening Criteria for Selenium

| Sample<br>Location    | Sample<br>ID                            | Sample Date<br>(yyyy mm dd)                                                  | SPO Point                           | Selenium<br>µg/L |
|-----------------------|-----------------------------------------|------------------------------------------------------------------------------|-------------------------------------|------------------|
| Groundwater Quality B | enchmarks                               |                                                                              |                                     | 1.2              |
|                       | Drinking Water Quality (DW)             |                                                                              |                                     | 50               |
| SPO                   |                                         | Elk River [GH_ER1 (E206661)/EV_ER1 (0200<br>Fording River [GH_FR1 (0200378)] | 0393)]/[CM_MC2 (E258937)]           | 19<br>63         |
| Compliance Point      |                                         | Fording River [FR_FRCP1 (E300071)]                                           |                                     | 130              |
|                       |                                         | Fording River [GH_FR1 (0200378)]                                             |                                     | 80               |
|                       |                                         | Elk River [GH_ERC (E300090)]                                                 |                                     | 15               |
| De el en e un el      |                                         | Michel Creek [EV_MC2 (E300091)]                                              |                                     | 28               |
| Background<br>FR_HMW5 | FR_HMW5_QSW_03042017_N                  | 2017 06 21                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  | 14.8             |
| Study Area 1          | FK_HMW3_Q3W_03042017_N                  | 2017 00 21                                                                   | GH_FKT (0200378) FK_FKCFT (E300071) | 14.0             |
| FR_09-01-A            | FR_09-01-A_QSW_02012017_N               | 2017 02 00                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  | 120              |
| TR_05-01-A            | FR_09-01-A_QSW_02012017_N               | 2017 03 08<br>2017 06 01                                                     | GH_FR1 (0200378) FR_FRCP1 (E300071  |                  |
|                       |                                         | 2017 08 01                                                                   |                                     |                  |
|                       | FR_09-01-A_QTR_2017-09-11_N             |                                                                              | GH_FR1 (0200378) FR_FRCP1 (E300071  |                  |
| FR 09-01-B            | FR_09-01-A_QTR_2017-10-02_N             | 2017 11 22                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  |                  |
| TR_09-01-D            | FR_09-01-B_QSW_02012017_N               | 2017 03 08                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  |                  |
|                       | FR_09-01-B_QSW_03042017_N               | 2017 06 01                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  |                  |
|                       | FR_09-01-B_QTR_2017-09-11_N             | 2017 09 12                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  |                  |
| FR_GHHW               | FR_09-01-B_QTR_2017-10-02_N             | 2017 11 22                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  |                  |
|                       | FR_GHHW_QSW_02012017_N                  | 2017 02 27                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  |                  |
|                       | FR_GHHW_QSW_03042017_N                  | 2017 06 01                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  |                  |
|                       | FR_GHHW_QTR_2017-09-11_N                | 2017 09 13                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  |                  |
| FR_GH_WELL4           | FR_GH_WELL4_QTR_2017-10-02_N            | 2017 11 15                                                                   | GH_FR1 (0200378) FR_FRCP1 (E300071  | <u>92.8</u>      |
| Study Area 4          |                                         |                                                                              |                                     |                  |
| GH_MW-ERSC-1          | GH_MW-ERSC-1_WG_2017-10-01_NP           | 2017 12 18                                                                   | GH_ER1 (E206661) GH_ERC (E3000090)  | <u>68.7</u>      |
| GH_GA-MW-2            | GH_GA-MW-2_WG_2017-10-01_NP             | 2017 11 27                                                                   | GH_ER1 (E206661) GH_ERC (E3000090)  | 18.9             |
| GH_GA-MW-3            | GH_GA-MW-3_WG_2017-10-01_NP             | 2017 11 30                                                                   | GH_ER1 (E206661) GH_ERC (E3000090)  | 19.4             |
| Study Area 7          |                                         |                                                                              |                                     |                  |
| RG_DW-02-20           | RG_DW-02-20_WP_2017-03-01_NP            | 2017 03 01                                                                   | EV_ER1 (0200393) n/a                | 11               |
|                       | RG_DW-02-20_WP_2017-05-29_NP            | 2017 05 29                                                                   | EV_ER1 (0200393) n/a                | 10.3             |
| Study Area 9          |                                         |                                                                              |                                     |                  |
| EV_BCgw               | EV_BCGW_WG_2017-03-14_NP                | 2017 03 14                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 20.3             |
|                       | EV_BCGW_WG_2017-03-30_NP                | 2017 03 30                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 37.7             |
|                       | EV_BCGW_WG_2017-05-16_NP                | 2017 05 16                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | <u>59</u>        |
|                       | EV_BCGW_WG_2017-06-28_NP                | 2017 06 27                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 17.9             |
|                       | EV_BCGW_WG_2017-08-23_NP                | 2017 08 23                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | <u>56.8</u>      |
|                       | EV_BCGW_WG_2017-10-18_NP                | 2017 10 18                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 34.5             |
| EV_BRgw               | EV_BRGW_WG_2017-03-30_NP                | 2017 03 30                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 17.2             |
|                       | EV_BRGW_WG_2017-06-21_NP                | 2017 06 19                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 45.9             |
|                       | EV_BRGW_WG_2017-06-28_NP                | 2017 06 28                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | <u>52.4</u>      |
|                       | EV_BRGW_WG_2017-08-23_NP                | 2017 08 23                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | <u>56.2</u>      |
|                       | EV_WH50GW_WG_2017-10-25_NP <sup>a</sup> | 2017 10 25                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 41.1             |
|                       | EV_BRGW_WG_2017-11-21_NP                | 2017 11 21                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 44.5             |
| EV_RCgw               | EV_RCSGW_WG_2017-03-07_NP               | 2017 03 07                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | <u>195</u>       |
|                       | EV_RCSGW_WG_2017-06-30_NP               | 2017 06 30                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | <u>214</u>       |
|                       | EV_RCSGW_WG_2017-08-22_NP               | 2017 08 22                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | <u>221</u>       |
|                       | EV_BRGW_WG_2017-10-25_NP <sup>a</sup>   | 2017 10 25                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | <u>235</u>       |
|                       | EV_RCSGW_WG_2017-11-21_NP               | 2017 11 21                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | <u>266</u>       |
| EV_WH50gw             | EV_WH50GW_WG_2017-03-03_NP              | 2017 03 03                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 14.3             |
|                       | EV_WH50GW_WG_2017-08-22_NP              | 2017 08 22                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 10.8             |
|                       | EV_RCSGW_WG_2017-10-25_NP <sup>a</sup>  | 2017 10 25                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 10.4             |
|                       | EV_WH50GW_WG_2017-11-21_NP              | 2017 11 21                                                                   | EV_ER1 (0200393) EV_MC2 (E3000091)  | 14.2             |
| Study Area 11         | · · · · ·                               |                                                                              | · · · · ·                           |                  |
| RG_DW-07-01           | RG_DW-07-01_WP_2017-06-05_NP            | 2017 06 05                                                                   | EV_ER1 (0200393) CM_MC2 (E258937)   | 15.4             |
|                       | RG_DW-07-01_WP_2017-08-30_NP            | 2017 08 30                                                                   | EV_ER1 (0200393) CM_MC2 (E258937)   | 11.6             |
| Study Area 12         |                                         |                                                                              |                                     | 1                |
| EV_ER1gwS             | EV_ER1GWS_WG_2017-02-15_NP              | 2017 02 15                                                                   | EV_ER1 (0200393) n/a                | 10.3             |
|                       |                                         |                                                                              |                                     |                  |
| EV_ER1gwD             | EV_ER1GWD_WG_2017-10-24_NP              | 2017 10 24                                                                   | EV_ER1 (0200393) n/a                | 10.5             |

Data provided by Teck Coal Ltd.

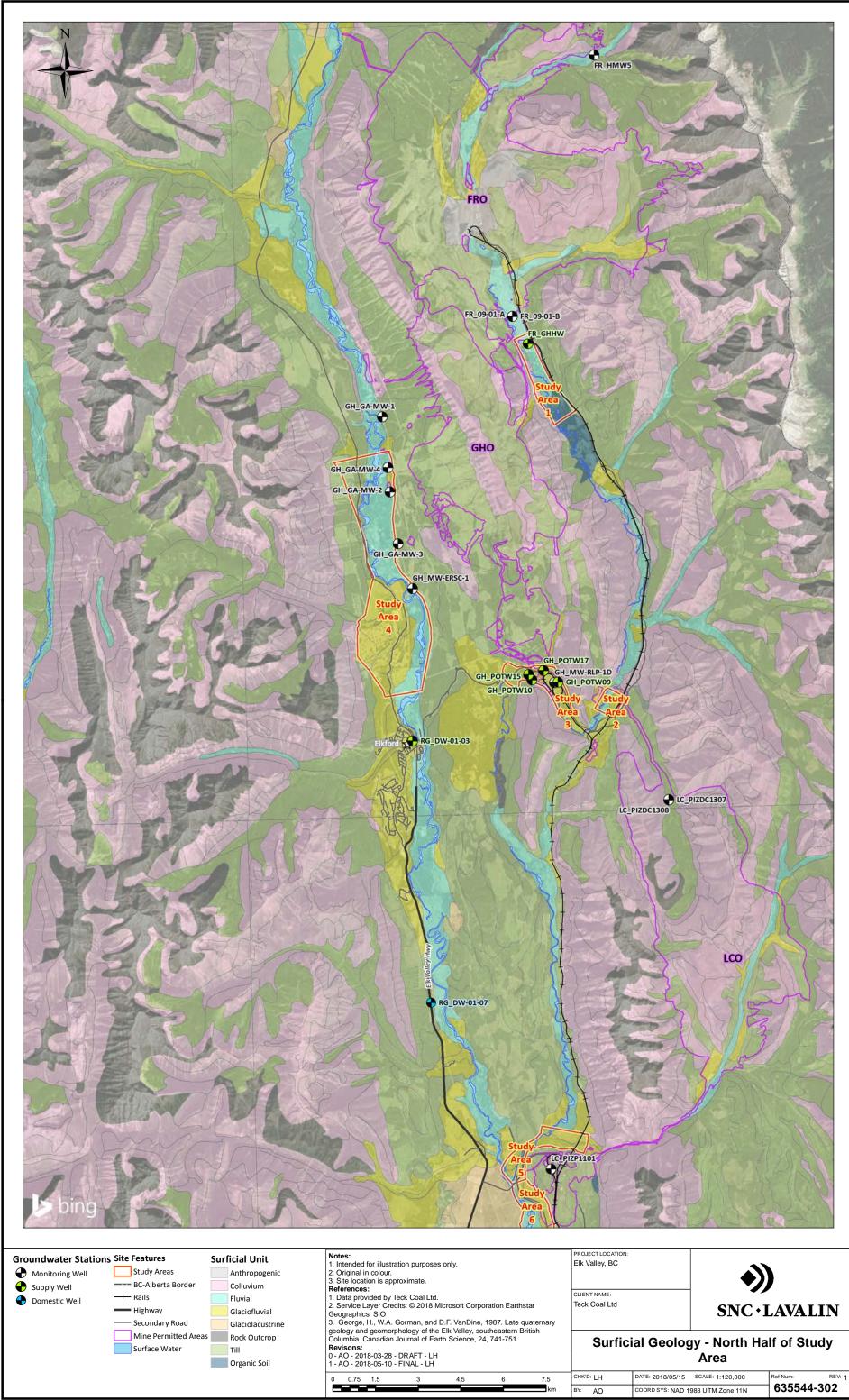
All terms defined within the body of SNC-Lavalin's report.


n/a Denotes no applicable standard/guideline.

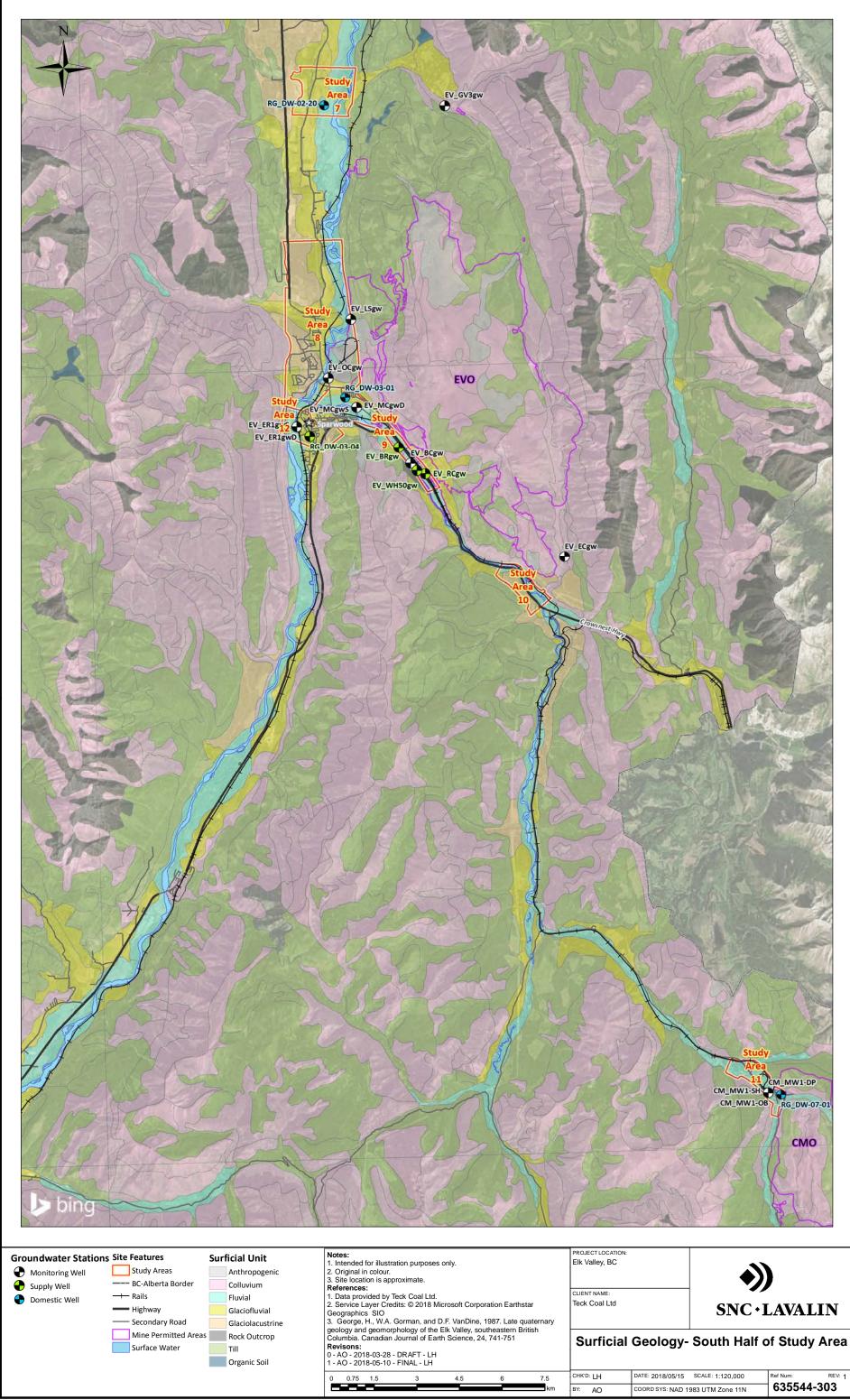
<u>BOLD</u> SHADOW Concentration greater than or equal to Canadian Drinking Water Quality Drinking Water (DW) guideline.

SHADED Concentration greater than Compliance Point by Area.

# Drawings


- > 635544-301: Site Location and Management Units
- > 635544-302: Surficial Geology North Half of Study Area
- > 635544-303: Surficial Geology South Half of Study Area
- > 635544-304: Bedrock Geology North Half of Study Area
- > 635544-305: Bedrock Geology South Half of Study Area
- 635544-306: Groundwater Elevations from Q4 and Conceptual Regional Groundwater Flow North Half of Study Area
- 635544-307: Groundwater Elevations from Q4 and Conceptual Regional Groundwater Flow South Half of Study Area
- > 635544-308: Study Areas 1 to 4 and Sample Location Plan
- > 635544-309: Study Areas 5 7 and Sample Location Plan
- 635544-310: Study Areas 8 10 and 12 and Sample Location Plan
- > 635544-311: Study Area 11 and Sample Location Plan
- > 635544-312: Study Area 1 Inferred Geological Cross Section A-A'
- 635544-313: Study Area 1 Inferred Geological Cross Section B-B'
- > 635544-314: Study Area 1 Inferred Geological Cross Section C-C'
- > 635544-315: Study Area 3 Inferred Geological Cross Section D-D'
- > 635544-316: Study Area 3 Inferred Geological Cross Section E-E'
- > 635544-317: Study Area 4 Inferred Geological Cross Section F-F'
- > 635544-318: Study Area 5/6 Inferred Geological Cross Section G-G'
- 635544-319: Study Area 5/6 Inferred Geological Cross Section H-H'
- > 635544-320: Study Area 7 Inferred Geological Cross Section I-I'
- > 635544-321: Study Area 8 Inferred Geological Cross Section J-J'
- 635544-322: Study Area 8 Inferred Geological Cross Section K-K'
- 635544-323: Study Area 9 Inferred Geological Cross Section L-L'
- 635544-324: Study Area 9 Inferred Geological Cross Section M-M'
- > 635544-325: Study Area 12 Inferred Geological Cross Section N-N'
- 635544-326: Study Area 12 Inferred Geological Cross Section O-O'
- > 635544-327: Spatial Distribution of Selected Groundwater Analytical Data Study Areas 1 to 4
- 635544-328: Spatial Distribution of Selected Groundwater Analytical Data Study Areas 5 7
- 635544-329: Spatial Distribution of Selected Groundwater Analytical Data Study Areas 8 10 and
   12
- > 635544-330: Spatial Distribution of Selected Groundwater Analytical Data Study Area 11

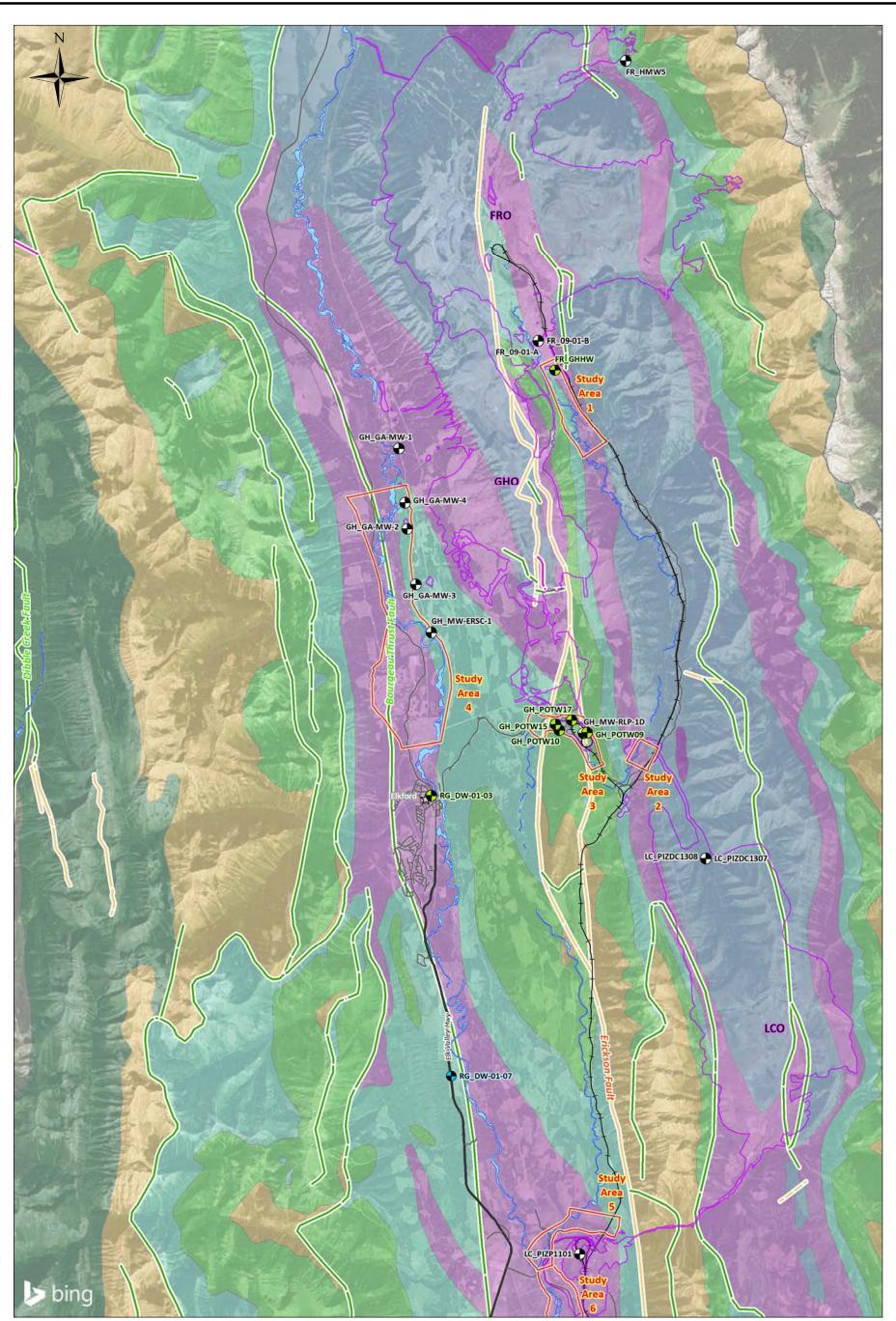



MXD Path: P:\Current Projects\Teck Coal Ltd\GIS\Map Series\RGMPAnnualReport\_2017\635544-301\_StieLoca

ndMUs.mxd

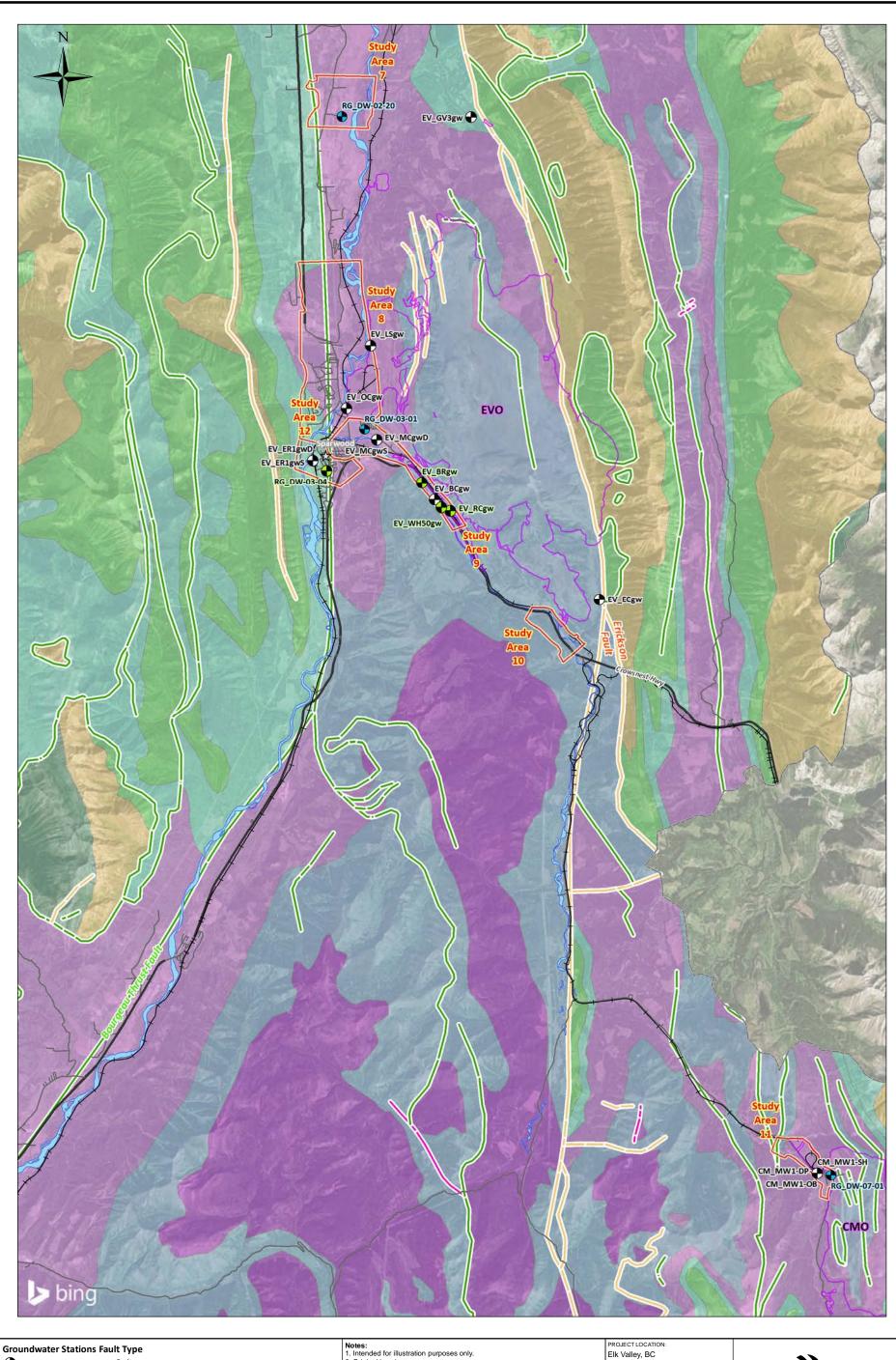
Project Path: \\sli2606\PROJECTS\Current Projects\Teck Coal Ltd\GIS\Exports\RGMP\_AnnualReport\_2017



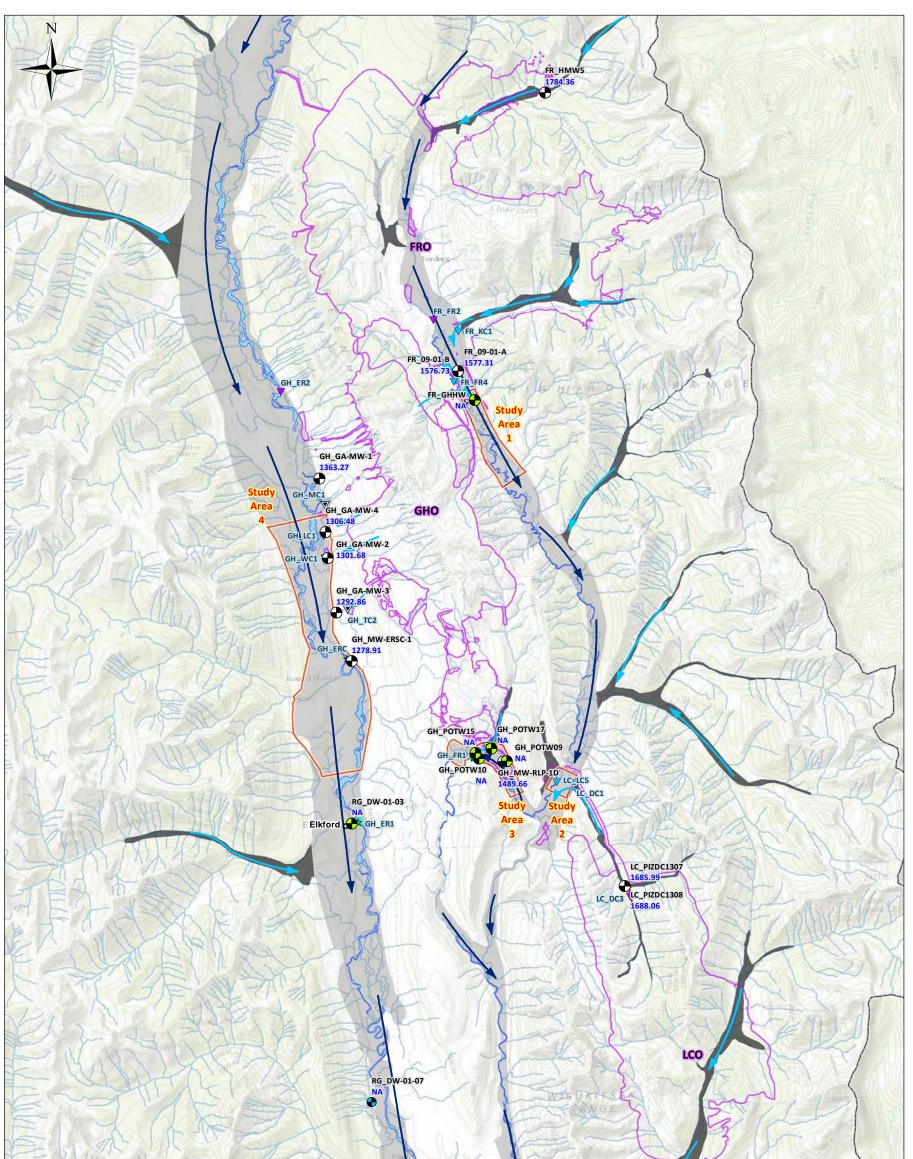





Teck Coal Ltd\GIS\Map Series\RGMPAnnualReport\_2017\635544-302-303\_Su


P:\Current Projects

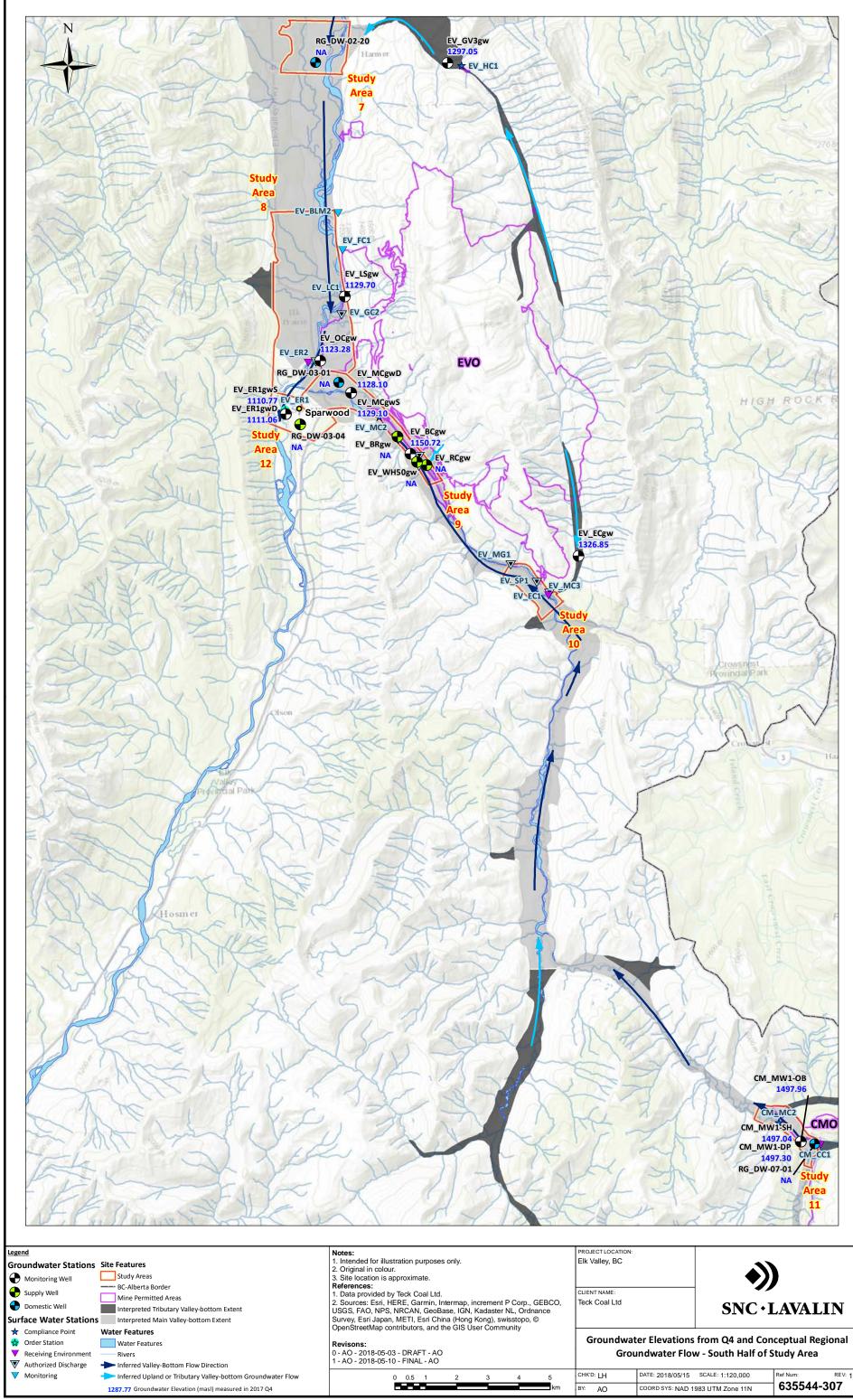
MXD Path





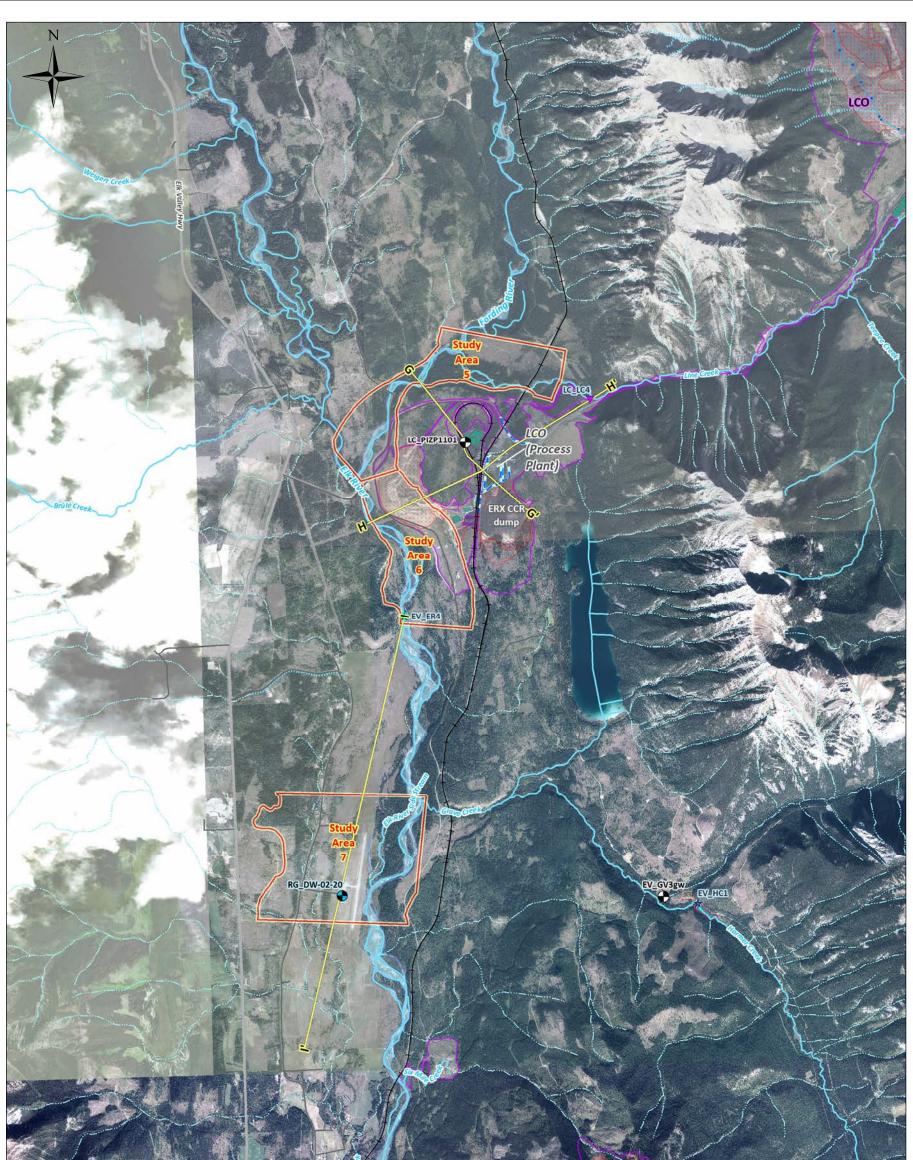

| Mine Permitted Areas     Kootenay Group     Resources, Geoscienc       Highway     Revisors:     0 - AO - 2018-03-29 - 1 - AO - 2018-05-10 - 1 - 1 - AO - 2018-05-10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |            |     |               |              |        |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|---------------|--------------|--------|--------|
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRAFT - LH | 4 5 | CHK'D: LH DAT | eology- Nort | COFFAA | REV: 1 |




| Groundwater Station Contemporation C | Fault<br>Normal fault<br>Thrust fault<br>Bedrock Geology<br>Blairmore Group                                  | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>References:<br>1. Data provided by Teck Coal Ltd.<br>2. Service Layer Credits: © 2018 Microsoft Corporation Earthstar Geographics<br>SIO<br>3. Massey, N.W.D., MacIntyre, D.G., Desjardins, P.J., and Cooney, R.T. (2005):<br>Geology of British Columbia, BC Ministry of Energy, Mines and Petroleum | Elk Valley, BC |                                                                                      | )<br>LAVALIN                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|------------------------------------------------|
| Mine Permitted Areas<br>Rails<br>Highway<br>Secondary Road<br>Surface Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kootenay Group<br>Fernie Formation<br>Spray River Group<br>Rocky Mountain Formation<br>Rundle Group<br>Other | Resources, Geoscience Map 2005-3, (3 sheets), scale 1:1 000 000.<br>Revisons:<br>0 - AO - 2018-03-29 - DRAFT - LH<br>1 - AO - 2018-05-10 - FINAL - AO<br>0 0.5 1 2 3 4 5<br>6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                          | снк'д: ГН      | DATE: 2018/05/15         SCALE: 1:120,000           COORD SYS: NAD 1983 UTM Zone 11N | of Study Area<br>Ref Num: REV: 1<br>635544-305 |

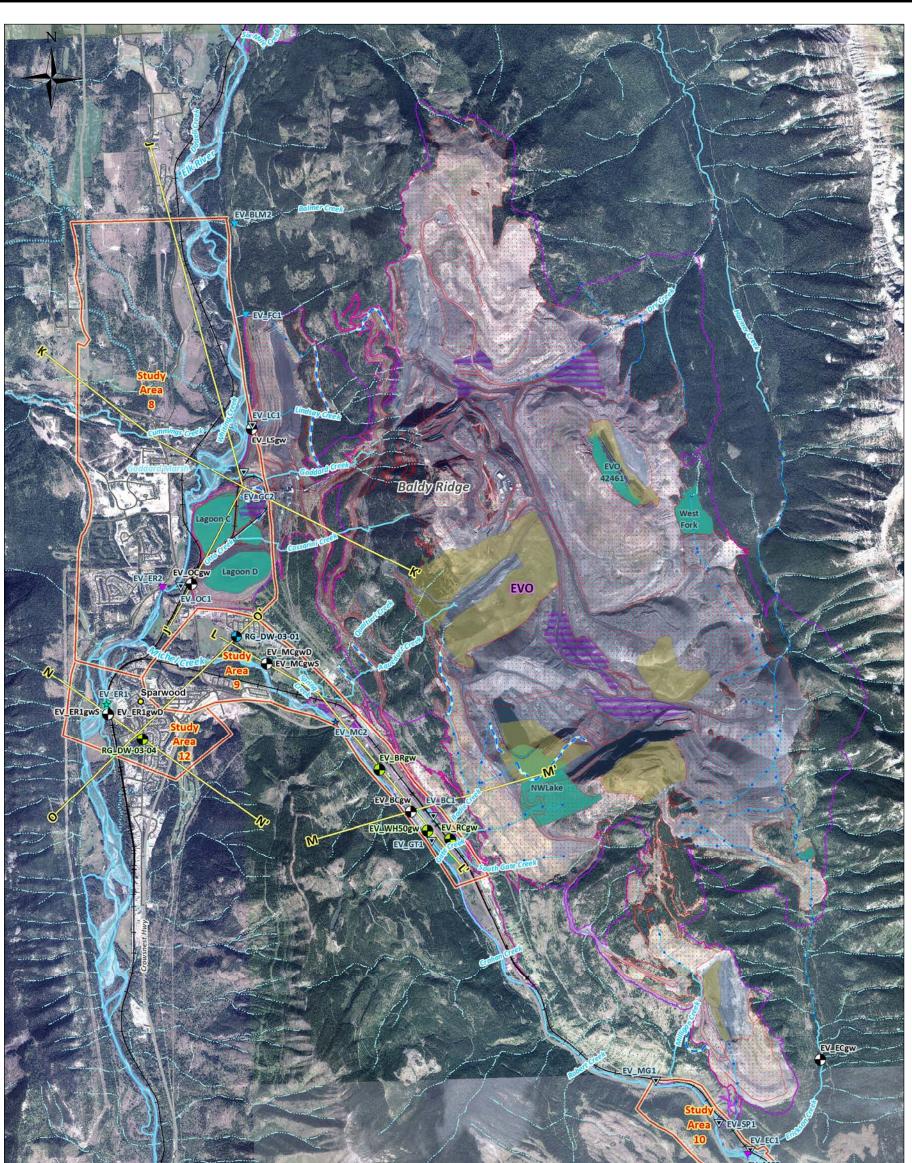


dwaterEle


| Ground                    |
|---------------------------|
| 2017\635544-306-307_Gr    |
| Series\RGMPAnnualReport_; |
| Ltd\GIS\Map \$            |
| eck Coal Ltd\G            |
| Projects/Teck             |
| : P:\Current              |
| MXD Path                  |

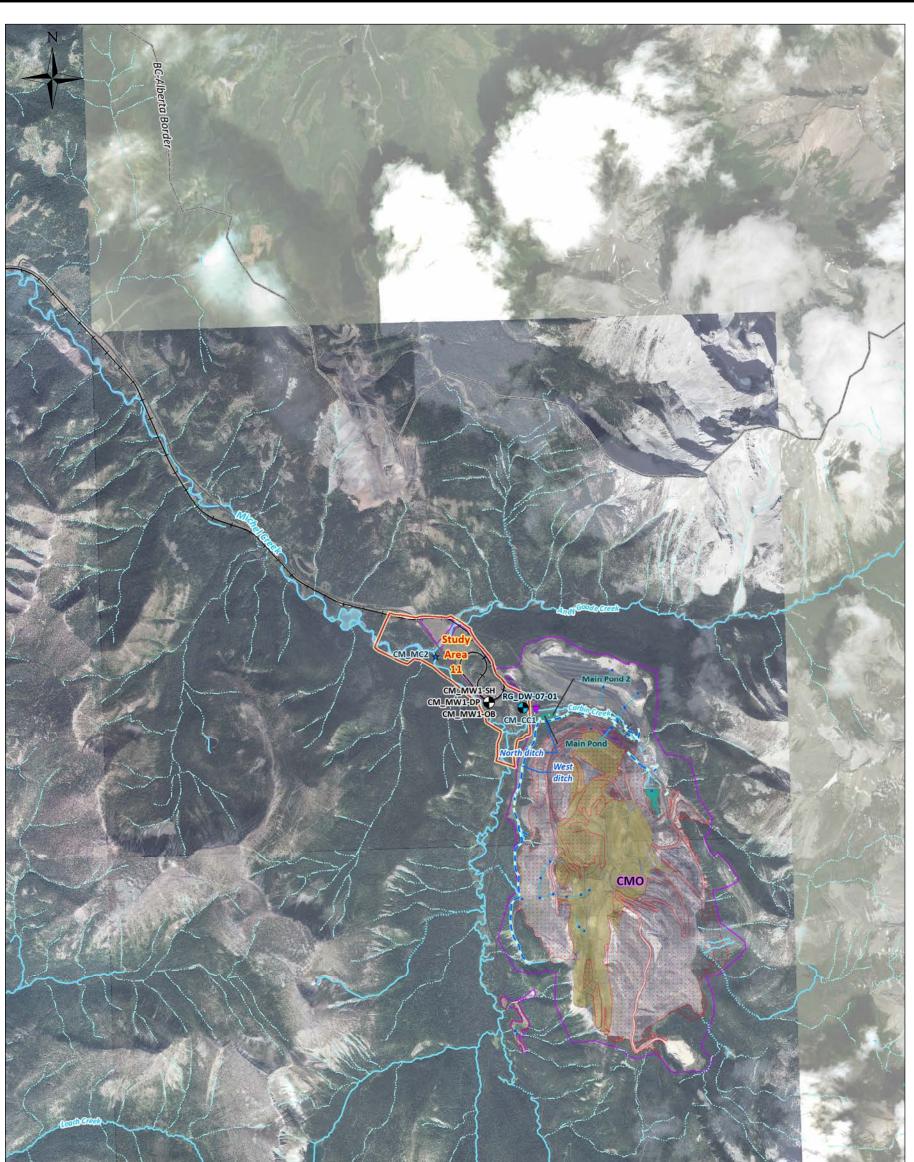
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                | Study<br>Area<br>5<br>Study<br>LC_PIZP1101<br>LC_LC4<br>1235:85<br>LC_LC4<br>1235:85<br>LC_LC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                            |                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------|
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       |                                            | A TRA                           |
| egend                                                                                                                                                                                                                                           |                                                                                                                                                                                                                | Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROJECT LOCATION:                                                                                     |                                            |                                 |
| egend<br>Groundwater Stations                                                                                                                                                                                                                   | Site Features                                                                                                                                                                                                  | Notes: 1. Intended for illustration purposes only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROJECT LOCATION:<br>Elk Valley, BC                                                                   |                                            |                                 |
| Groundwater Stations                                                                                                                                                                                                                            | Study Areas                                                                                                                                                                                                    | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                            |                                 |
| Groundwater Stations Monitoring Well                                                                                                                                                                                                            | Study Areas<br>BC-Alberta Border                                                                                                                                                                               | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>References:                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       | _                                          |                                 |
| -                                                                                                                                                                                                                                               | Study Areas<br>BC-Alberta Border<br>Mine Permitted Areas                                                                                                                                                       | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>References:<br>1. Data provided by Teck Coal Ltd.<br>2. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO,                                                                                                                                                                                                                                                                                                                    | Elk Valley, BC                                                                                        |                                            |                                 |
| Groundwater Stations Monitoring Well Supply Well Domestic Well                                                                                                                                                                                  | Study Areas<br>BC-Alberta Border<br>Mine Permitted Areas<br>Interpreted Tributary Valley-bottom Extent                                                                                                         | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>References:<br>1. Data provided by Teck Coal Ltd.<br>2. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO,<br>USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance                                                                                                                                                                                                                                                      | Elk Valley, BC                                                                                        | SNC ·                                      | )<br>LAVALIN                    |
| Groundwater Stations Monitoring Well Supply Well Domestic Well Gurface Water Stations                                                                                                                                                           | Study Areas<br>BC-Alberta Border<br>Mine Permitted Areas                                                                                                                                                       | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>References:<br>1. Data provided by Teck Coal Ltd.<br>2. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO,                                                                                                                                                                                                                                                                                                                    | Elk Valley, BC                                                                                        | SNC ·                                      | )<br>LAVALIN                    |
| Groundwater Stations<br>Monitoring Well<br>Supply Well<br>Domestic Well<br>Surface Water Stations<br>Compliance Point                                                                                                                           | Study Areas<br>                                                                                                                                                                                                | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>References:<br>1. Data provided by Teck Coal Ltd.<br>2. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO,<br>USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance<br>Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, ©<br>OpenStreetMap contributors, and the GIS User Community                                                                                                                          | Elk Valley, BC<br>CLIENT NAME:<br>Teck Coal Ltd                                                       |                                            |                                 |
| Groundwater Stations<br>Monitoring Well<br>Supply Well<br>Domestic Well<br>Surface Water Stations<br>★ Compliance Point<br>☆ Order Station                                                                                                      | Study Areas<br>                                                                                                                                                                                                | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>References:<br>1. Data provided by Teck Coal Ltd.<br>2. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO,<br>USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance<br>Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, ©<br>OpenStreetMap contributors, and the GIS User Community<br>Revisons:                                                                                                             | Elk Valley, BC<br>CLIENT NAME:<br>Teck Coal Ltd<br>Groundwater Elevatio                               | ons from Q4 and Co                         | nceptual Regional               |
| Groundwater Stations         Monitoring Well         Supply Well         Domestic Well         Surface Water Stations         ★ Compliance Point         ☆ Order Station                                                                        | Study Areas<br>                                                                                                                                                                                                | Notes:         1. Intended for illustration purposes only.         2. Original in colour.         3. Site location is approximate.         References:         1. Data provided by Teck Coal Ltd.         2. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, © OpenStreetMap contributors, and the GIS User Community                                                                                                     | Elk Valley, BC<br>CLIENT NAME:<br>Teck Coal Ltd<br>Groundwater Elevatio                               |                                            | nceptual Regional               |
| Groundwater Stations<br>← Monitoring Well<br>← Supply Well<br>← Domestic Well<br>Surface Water Stations<br>★ Compliance Point<br>← Order Station<br>★ Order Station and Compliance Poin                                                         | Study Areas<br>BC-Alberta Border<br>Mine Permitted Areas<br>Interpreted Tributary Valley-bottom Extent<br>Interpreted Main Valley-bottom Extent<br>Water Features<br>Water Features<br>Rivers                  | Notes:         1. Intended for illustration purposes only.         2. Original in colour.         3. Site location is approximate.         References:         1. Data provided by Teck Coal Ltd.         2. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, © OpenStreetMap contributors, and the GIS User Community         Revisons:         0 - AO - 2018-05-03 - DRAFT - AO         1 - AO - 2018-05-10 - FINAL - AO | Elk Valley, BC<br>CLIENT NAME:<br>Teck Coal Ltd<br>Groundwater Elevatic<br>Groundwater F              | ons from Q4 and Co<br>Flow - North Half of | nceptual Regional<br>Study Area |
| Groundwater Stations<br>Monitoring Well<br>Supply Well<br>Domestic Well<br>Surface Water Stations<br>☆ Compliance Point<br>☆ Order Station and Compliance Point<br>☆ Order Station and Compliance Point<br>☆ Authorized Discharge<br>Monitoring | Study Areas BC-Alberta Border Mine Permitted Areas Interpreted Tributary Valley-bottom Extent Interpreted Main Valley-bottom Extent Water Features Water Features Inters Inferred Valley-Bottom Flow Direction | Notes:         1. Intended for illustration purposes only.         2. Original in colour.         3. Site location is approximate.         References:         1. Data provided by Teck Coal Ltd.         2. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, © OpenStreetMap contributors, and the GIS User Community         Revisons:         0 - AO - 2018-05-03 - DRAFT - AO                                          | Elk Valley, BC CLIENT NAME: Teck Coal Ltd Groundwater Elevatic Groundwater F CHK'D: LH DATE: 2018/05/ | ons from Q4 and Co                         | nceptual Regional               |




MXD Path: P:\Current Projects\Teck Coal Ltd\GIS\Map Series\RGMPAnnualReport\_2017\635544-306-307\_Grour

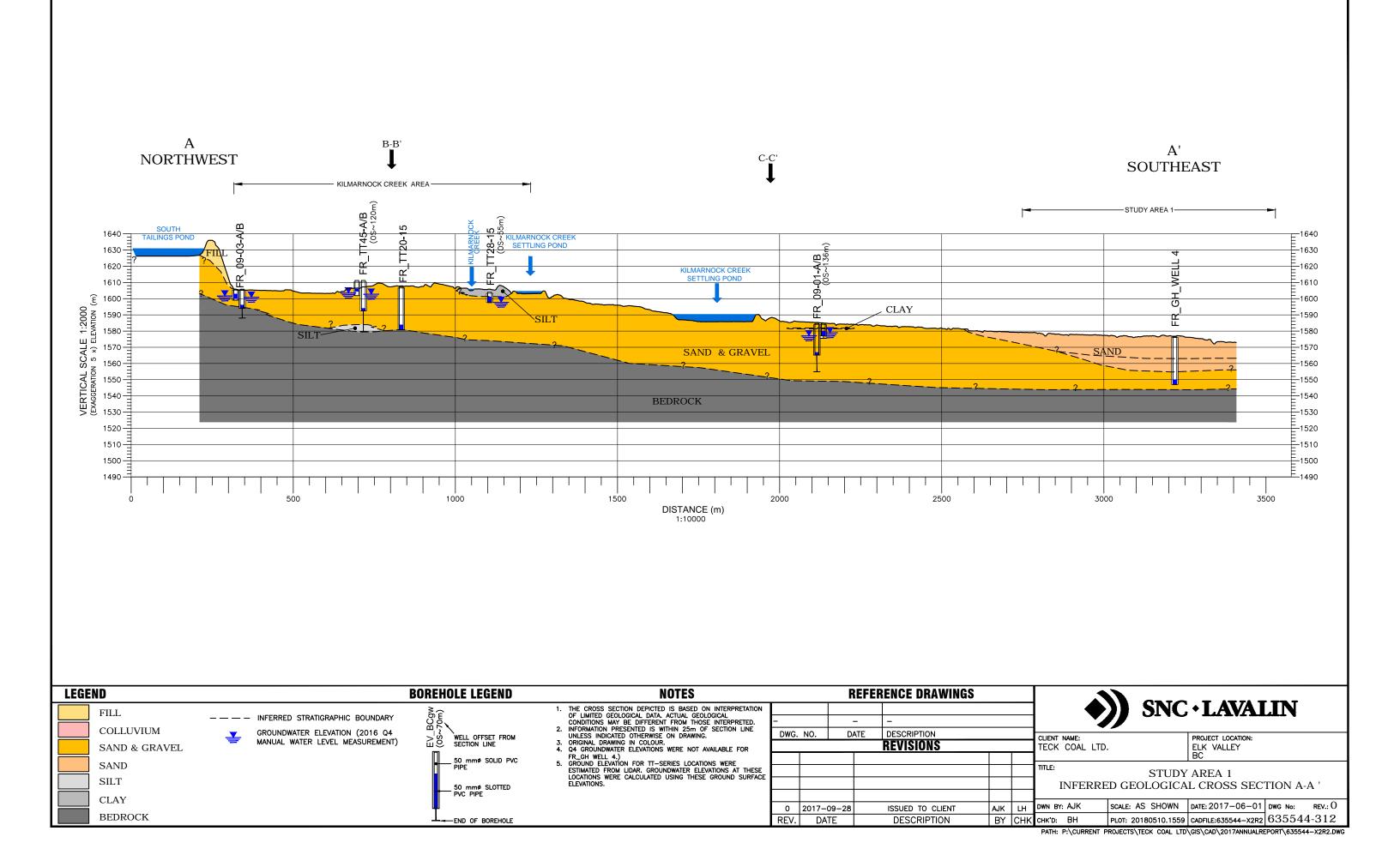


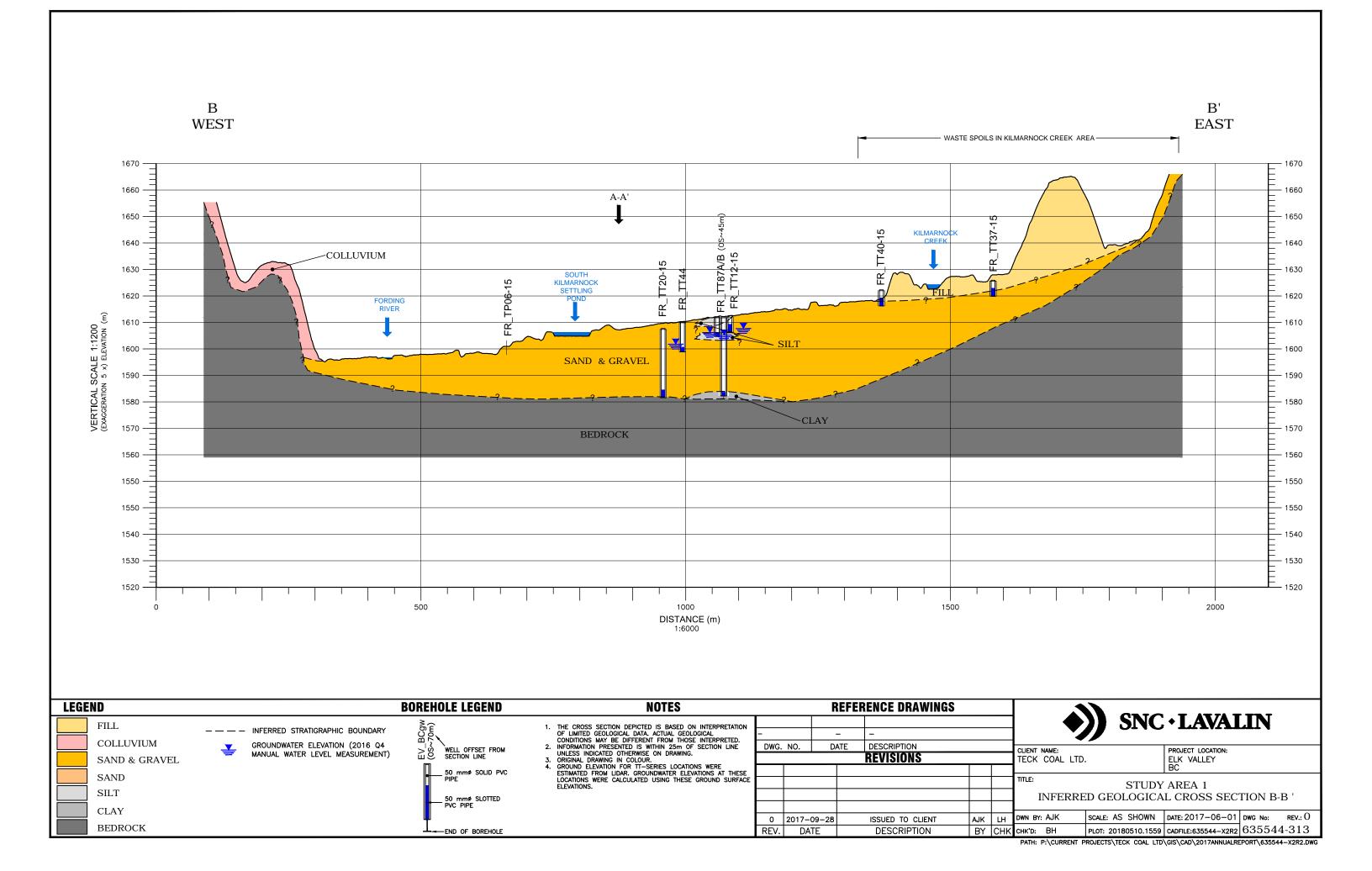


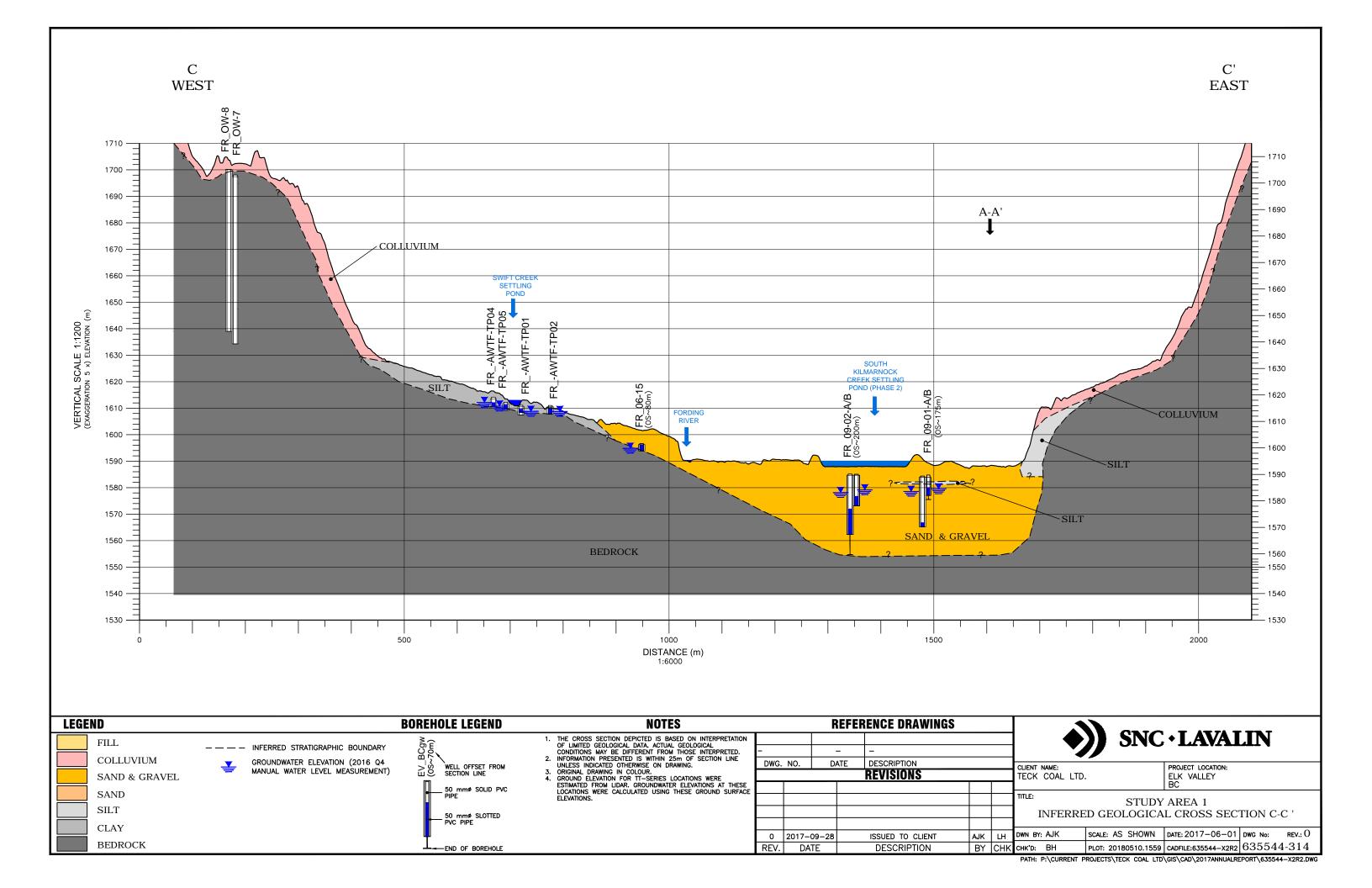

|                                                                                                                                          |                                                                                                                        | Study<br>Area<br>8                                                         | EV. ELM2<br>EV. ELM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EVO                                                 |                          |                        |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------|------------------------|
|                                                                                                                                          |                                                                                                                        |                                                                            | A LOUGHER THE COLUMN TO DEVELOP THE REPORT AND A COLUMN TO THE COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                          |                        |
| Surface Water Stations Site F                                                                                                            | eatures                                                                                                                | Water Features                                                             | Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROJECT LOCATION:                                   | n n. 1999                |                        |
| Compliance Point                                                                                                                         | tudy Areas<br>Seological Cross Section                                                                                 | <ul> <li>Intermittent Stream</li> <li>Stream Ditch</li> </ul>              | <ol> <li>Intended for illustration purposes only.</li> <li>Original in colour.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                         | PROJECT LOCATION:<br>Elk Valley, BC                 |                          |                        |
| ★ Compliance Point     ★     Order Station     Receiving Environment     Magination                                                      | tudy Areas<br>seological Cross Section<br>lighway<br>secondary Road                                                    | Intermittent Stream     Stream Ditch     Indefinite Stream     Stream      | <ol> <li>Intended for illustration purposes only.</li> <li>Original in colour.</li> <li>Site location is approximate.</li> <li>Readers are referred to the RGMP dated September 29, 2017 for the</li> </ol>                                                                                                                                                                                                                                                                                                                       | Elk Valley, BC                                      |                          | •))                    |
| ★ Compliance Point     ★ Order Station     ♥ Receiving Environment     ₩ Monitoring     Groundwater Stations     ₩ Monitoring Well     ♥ | itudy Areas<br>eological Cross Section<br>lighway<br>econdary Road<br>tails<br>fine Permitted Areas<br>it<br>tockpiles | Intermittent Stream     Stream Ditch     Indefinite Stream                 | <ol> <li>Intended for illustration purposes only.</li> <li>Original in colour.</li> <li>Site location is approximate.</li> <li>Readers are referred to the RGMP dated September 29, 2017 for the locations of all wells included in cross sections         <b>References:</b> <ul> <li>Data provided by Teck Coal Ltd.</li> <li>© 2018 Microsoft Corporation © 2018 DigitalGlobe ©CNES (2018)</li> </ul> </li> </ol>                                                                                                              |                                                     | SN                       | •))<br>C·LAVALIN       |
| ★ Compliance Point     ★ Order Station     ♥ Receiving Environment     ₩ Monitoring     Groundwater Stations     ♠ Monitoring Well     ♥ | itudy Areas<br>seological Cross Section<br>lighway<br>secondary Road<br>tails<br>fine Permitted Areas<br>it            | Intermittent Stream Stream Ditch Indefinite Stream Stream Stream River Bed | <ol> <li>Intended for illustration purposes only.</li> <li>Original in colour.</li> <li>Site location is approximate.</li> <li>Readers are referred to the RGMP dated September 29, 2017 for the<br/>locations of all wells included in cross sections<br/><b>References:</b></li> <li>Data provided by Teck Coal Ltd.</li> </ol>                                                                                                                                                                                                 | Elk Valley, BC<br>CLIENT NAME:<br>Teck Coal Ltd     | sno<br>sas 5 – 7 and Sam | <b>◆)</b><br>C•LAVALIN |
| ★ Compliance Point     ★ Order Station     ♥ Receiving Environment     ₩ Monitoring     Groundwater Stations     ₩ Monitoring Well     ♥ | itudy Areas<br>eological Cross Section<br>lighway<br>econdary Road<br>tails<br>fine Permitted Areas<br>it<br>tockpiles | Intermittent Stream Stream Ditch Indefinite Stream Stream Stream River Bed | <ol> <li>Intended for illustration purposes only.</li> <li>Original in colour.</li> <li>Site location is approximate.</li> <li>Readers are referred to the RGMP dated September 29, 2017 for the locations of all wells included in cross sections         <b>References:</b> <ul> <li>Data provided by Teck Coal Ltd.</li> <li>© 2018 Microsoft Corporation © 2018 DigitalGlobe ©CNES (2018)             Distribution Airbus DS         </li> <li><b>Revisons:</b></li> <li>A 20 - 2018-03-28 -DRAFT - LH</li> </ul> </li> </ol> | Elk Valley, BC CLIENT NAME: Teck Coal Ltd Study Are |                          | <b>◆)</b><br>C•LAVALIN |

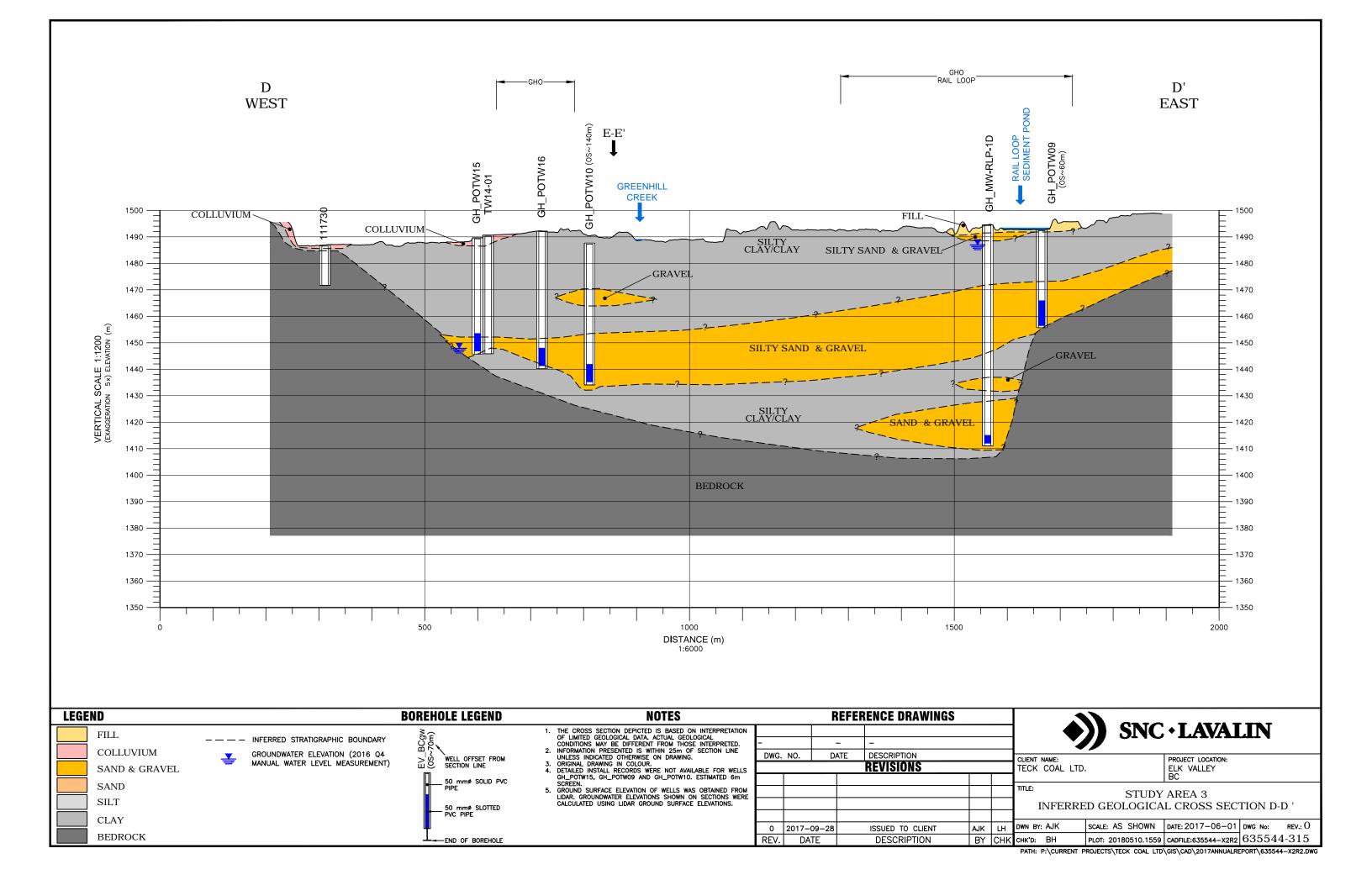
as.r

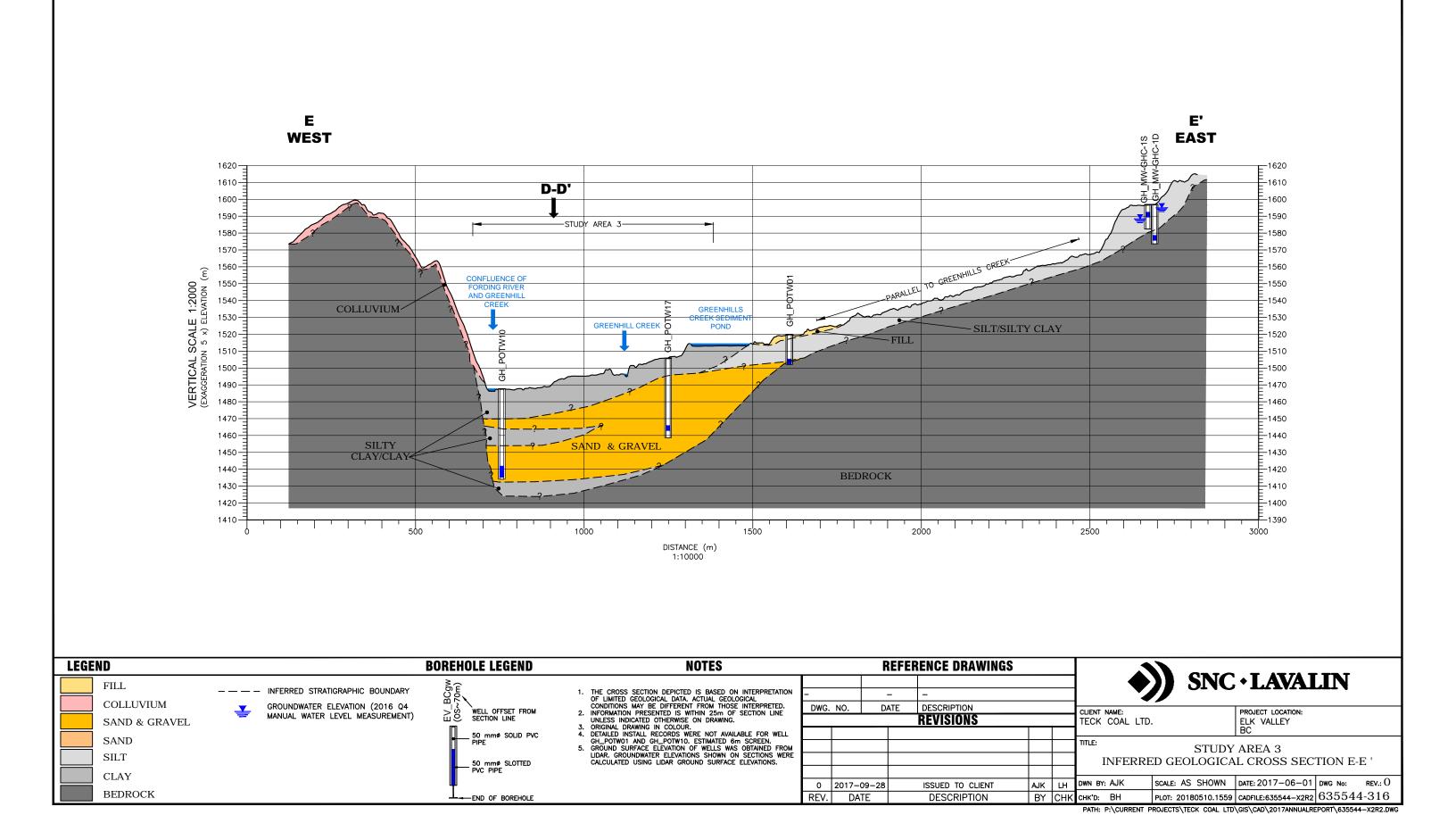


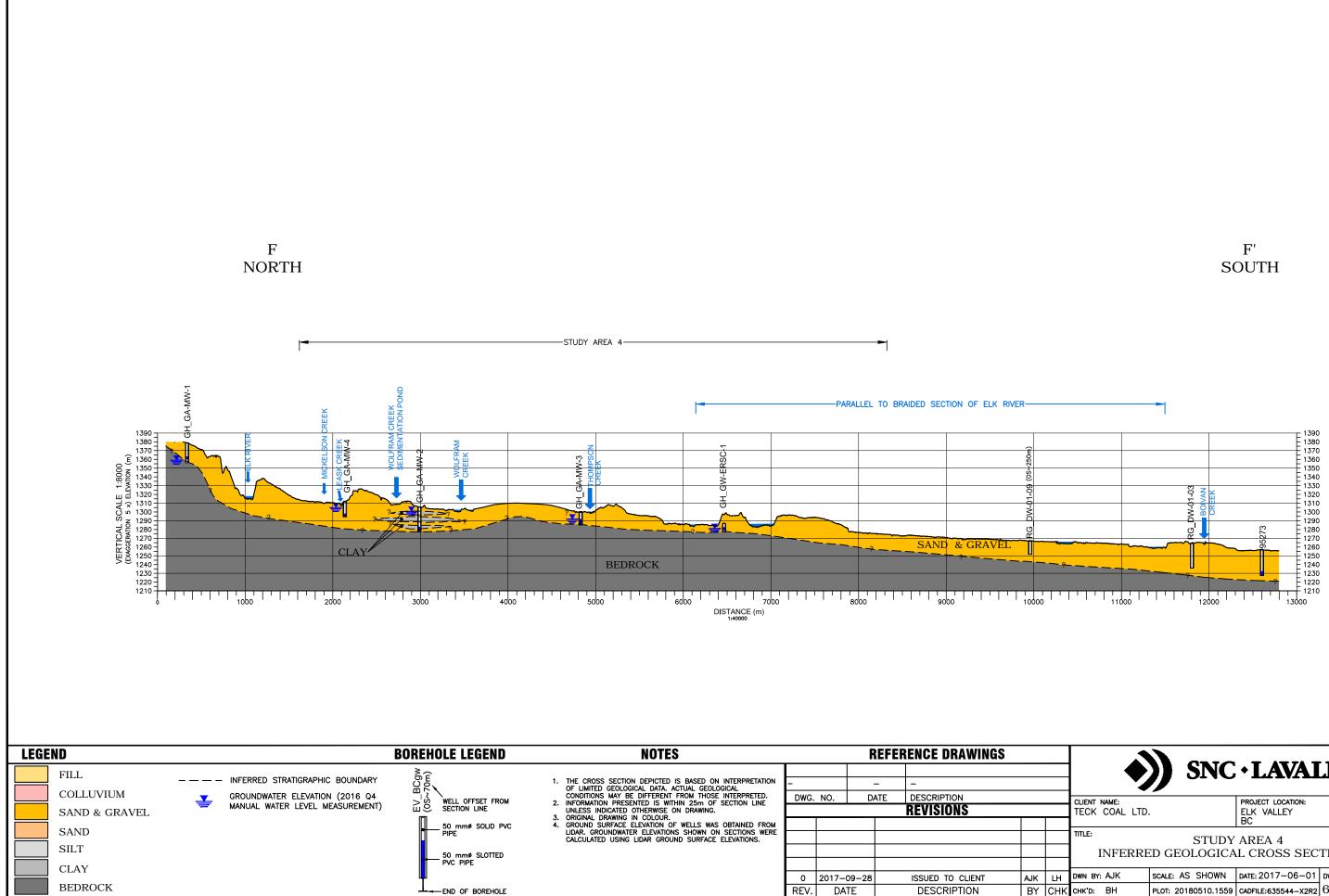

| Monitoring Well Stockpiles<br>Supply Well<br>Domestic Well                                                                                                           |                                                                                           | 1 - AO - 2018-05-10 - FINAL - AO                                                                                                                                                                                                                                                                                                                                                                                               |                               | Plan              | Ref Num: REV: 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|-----------------|
| Monitoring Well                                                                                                                                                      | spons)                                                                                    | <b>Revisons:</b><br>0 - AO - 2018-03-28 -DRAFT - LH                                                                                                                                                                                                                                                                                                                                                                            | Study Areas 8 –               | 10 and 12 and Sar | mple Location   |
| Surface Water Stations<br>★ Compliance Point<br>★ Order Station<br>▼ Receiving Environment<br>▼ Authorized Discharge<br>▼ Monitoring<br>♥ Monitoring<br>♥ Monitoring | Indefinite Stream<br>Stream<br>Subsurface<br>Areas<br>River Bed<br>Settling/Tailings Pond | Notes:         1. Intended for illustration purposes only.         2. Original in colour.         3. Site location is approximate.         4. Readers are referred to the RGMP dated September 29, 2017 f<br>locations of all wells included in cross sections         References:         1. Data provided by Teck Coal Ltd.         2. © 2018 Microsoft Corporation © 2018 DigitalGlobe ©CNES (20)<br>Distribution Airbus DS | CLIENT NAME:<br>Teck Coal Ltd | SNC · I           | LAVALIN         |
| bing                                                                                                                                                                 | LANK.                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                   | A               |


reas.mxd





| b bing                                                                                                                  |                                                                            |                                                                                                                                                                                                                                                                                   |                                     |                                                                      |                               |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------|-------------------------------|
| Surface Water Stations Site Features Compliance Point Receiving Environment Study Areas BC-Alberta Border Scondary Road | Water Features<br>Intermittent Stream<br>Stream Ditch<br>Indefinite Stream | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.                                                                                                                                                               | PROJECT LOCATION:<br>Elk Valley, BC |                                                                      | <i></i>                       |
| Groundwater Stations                                                                                                    | River Bed Settling/Tailings Pond                                           | 4. Readers are referred to the RGMP dated September 29, 2017 for the<br>locations of all wells included in cross sections<br><b>References:</b> 1. Data provided by Teck Coal Ltd.     2. © 2018 Microsoft Corporation © 2018 DigitalGlobe ©CNES (2018)<br>Distribution Airbus DS | CLIENT NAME:<br>Teck Coal Ltd       | SNC                                                                  | •LAVALIN                      |
|                                                                                                                         |                                                                            | Revisons:<br>0 - AO - 2018-03-28 -DRAFT - LH<br>1 - AO - 2018-05-10 - FINAL - AO                                                                                                                                                                                                  |                                     | Area 11 and Sample I                                                 |                               |
|                                                                                                                         |                                                                            | 0 0.25 0.5 1 1.5 2 2.5                                                                                                                                                                                                                                                            | снк'd: LH<br>вү: AO                 | DATE: 2018/05/15 SCALE: 1: 50000<br>COORD SYS: NAD 1983 UTM Zone 11N | Ref Num: REV: 1<br>635544-311 |

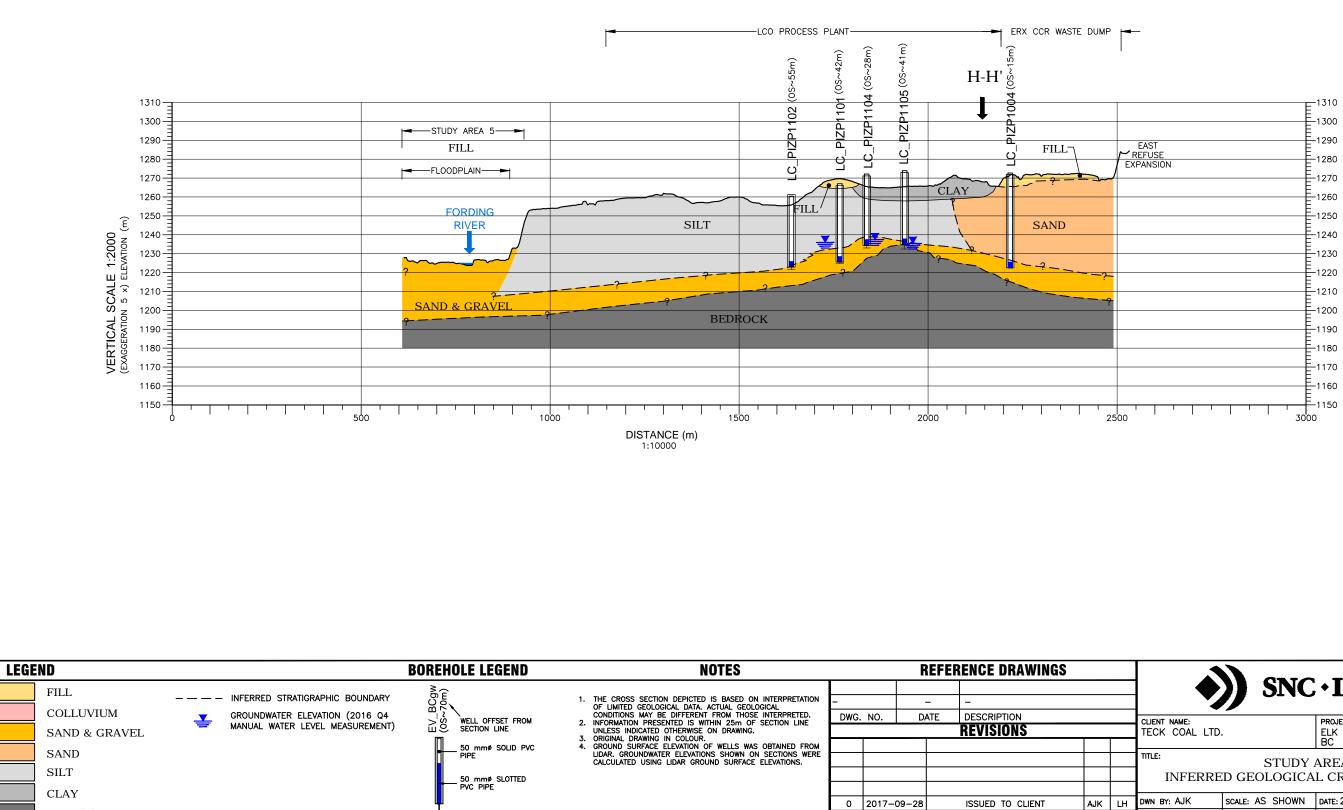

eas.mxc











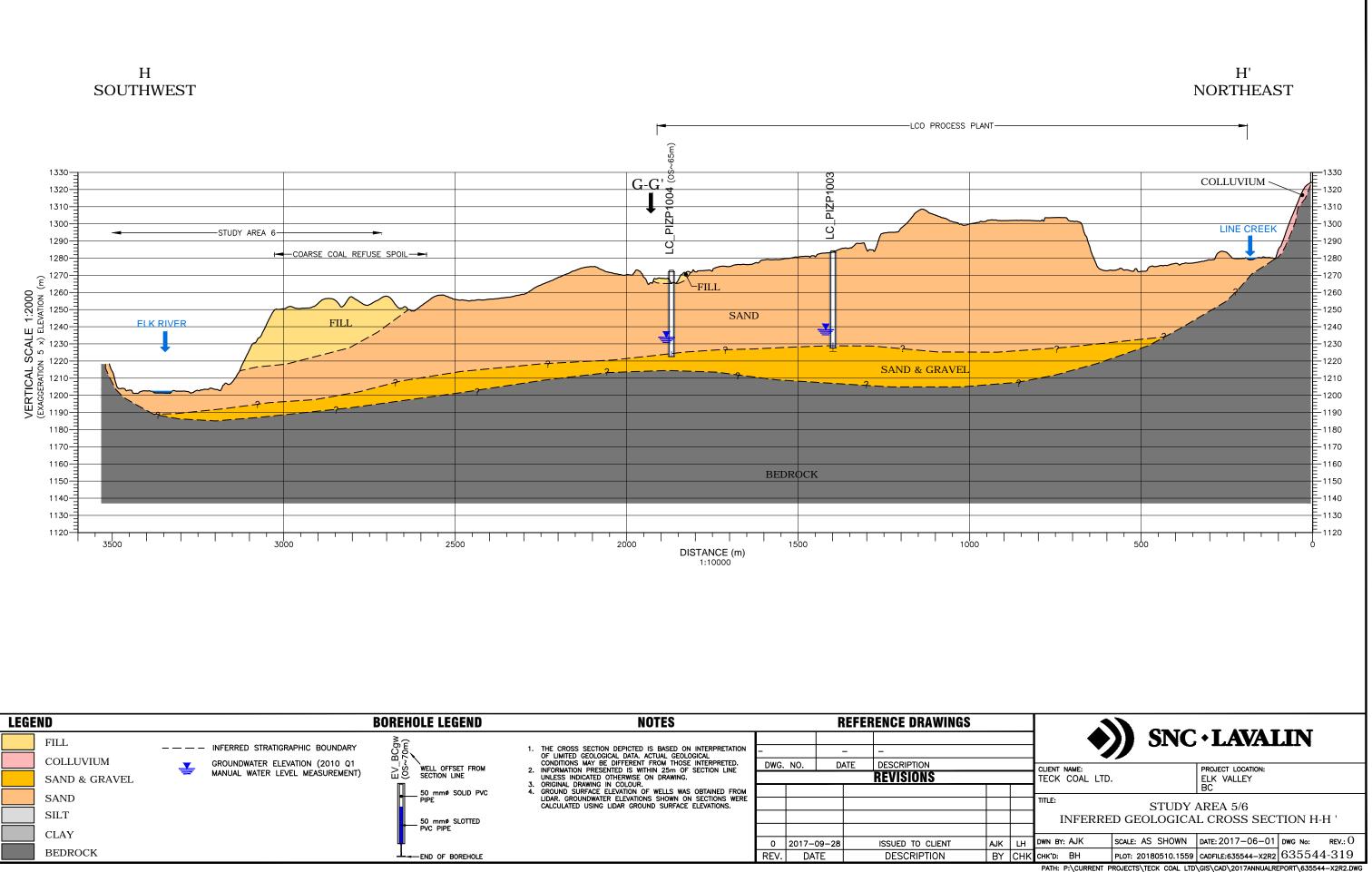

|   |                               | ) SNC                 | • LAVAI                               | IN                    |
|---|-------------------------------|-----------------------|---------------------------------------|-----------------------|
|   | CLIENT NAME:<br>TECK COAL LTD |                       | PROJECT LOCATION:<br>ELK VALLEY<br>BC |                       |
|   | TITLE:<br>INFERRE             | STUDY<br>ED GEOLOGICA | AREA 4<br>L CROSS SEC                 | TION F-F '            |
|   | DWN BY: AJK                   | SCALE: AS SHOWN       | DATE: 2017-06-01                      | DWG No: REV.: O       |
| ĸ | снк'о: ВН                     | PLOT: 20180510.1559   | CADFILE:635544-X2R2                   | 635544-317            |
|   | PATH: P:\CURRENT P            | ROJECTS\TECK COAL LTD | \GIS\CAD\2017ANNUALRE                 | EPORT\635544-X2R2.DWG |

G NORTHWEST

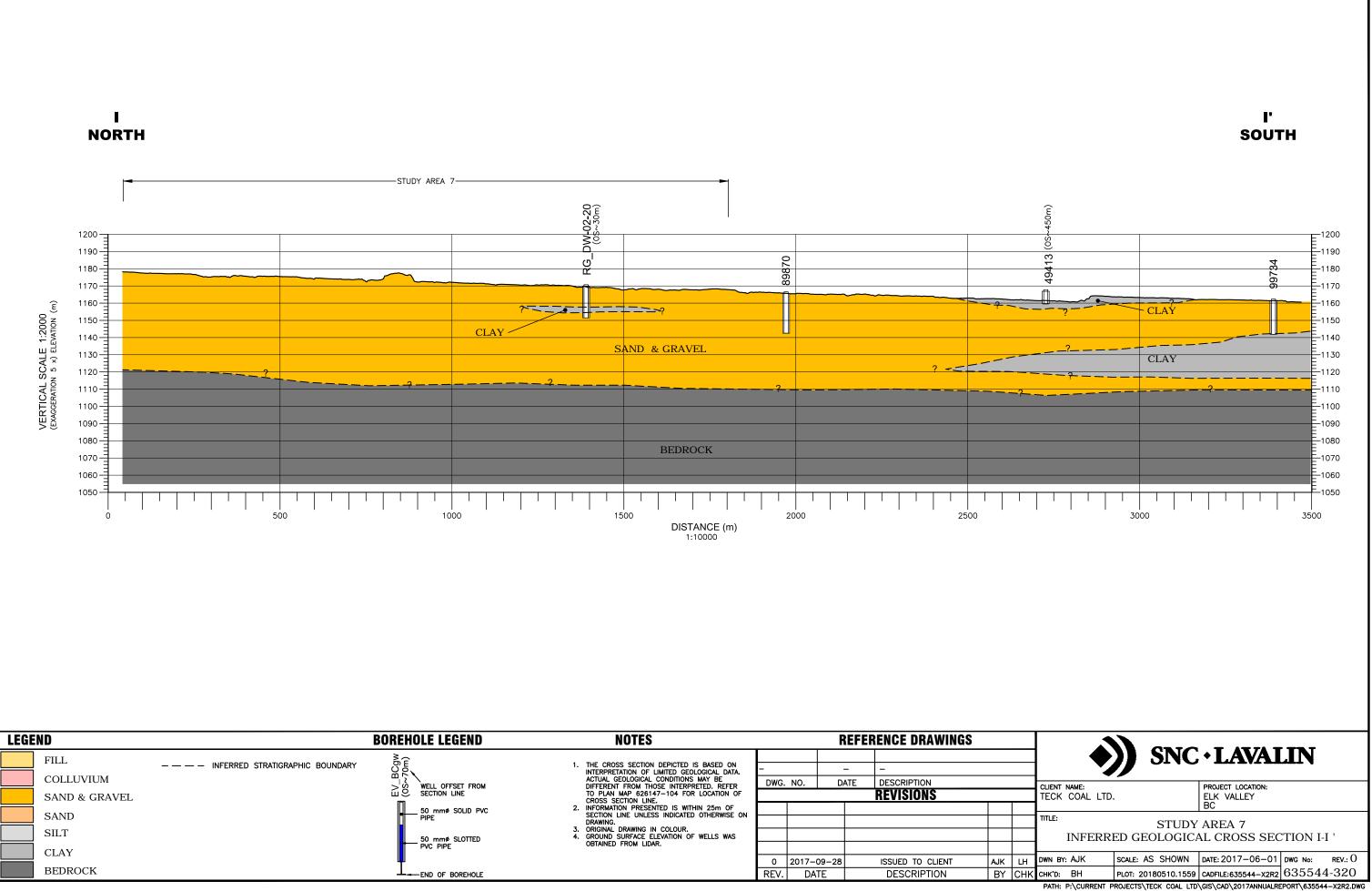
BEDROCK

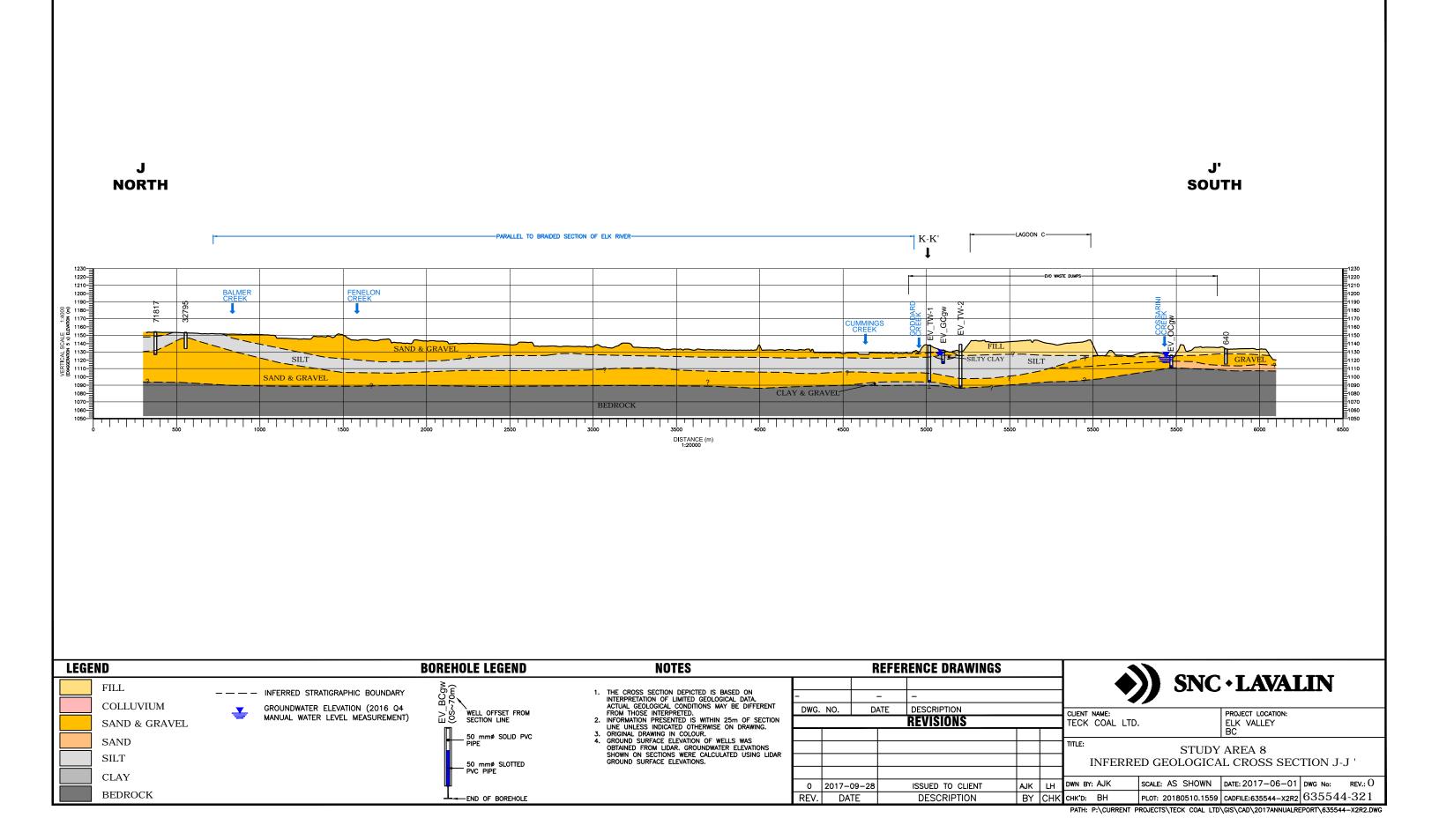


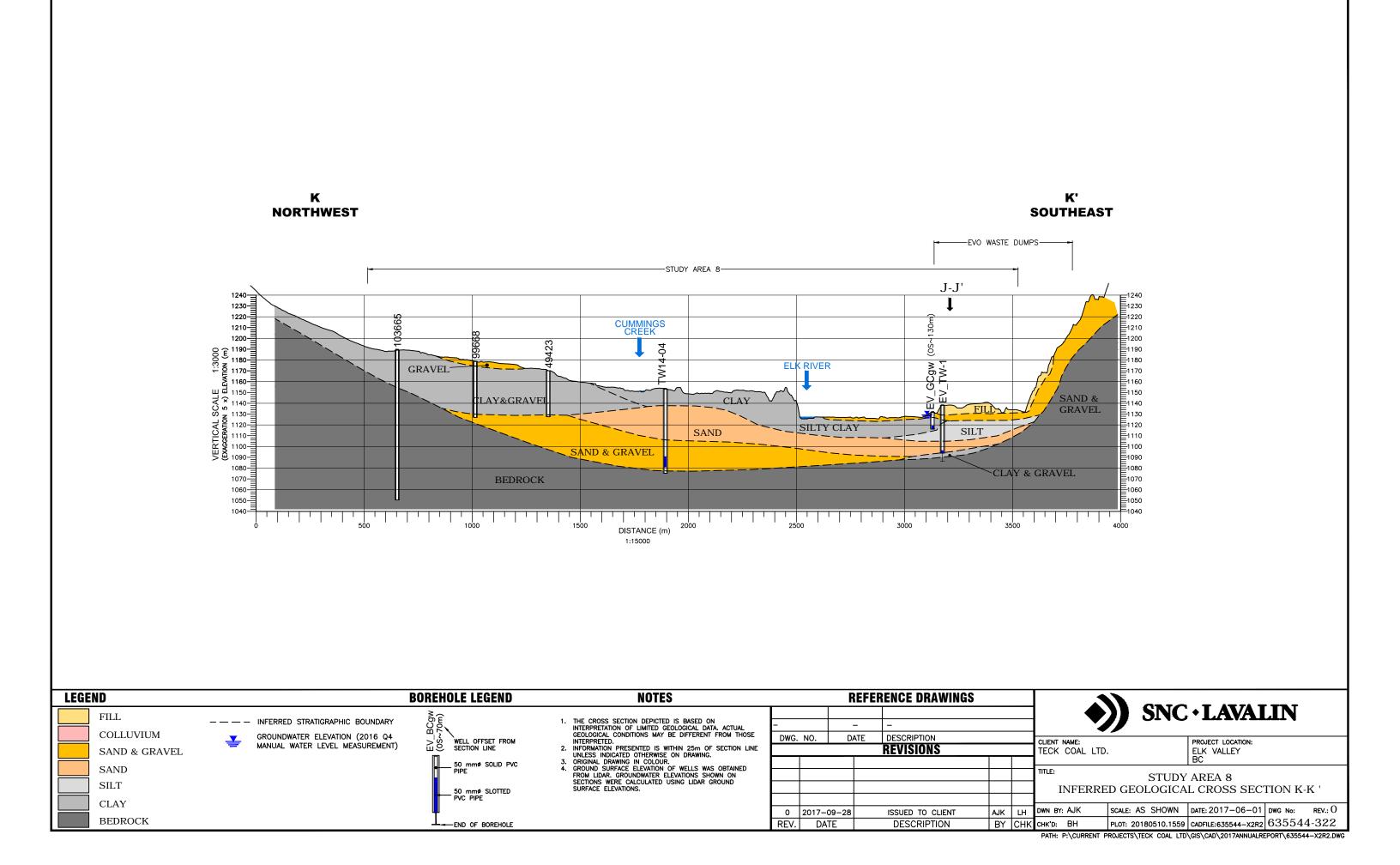
-END OF BOREHOLE

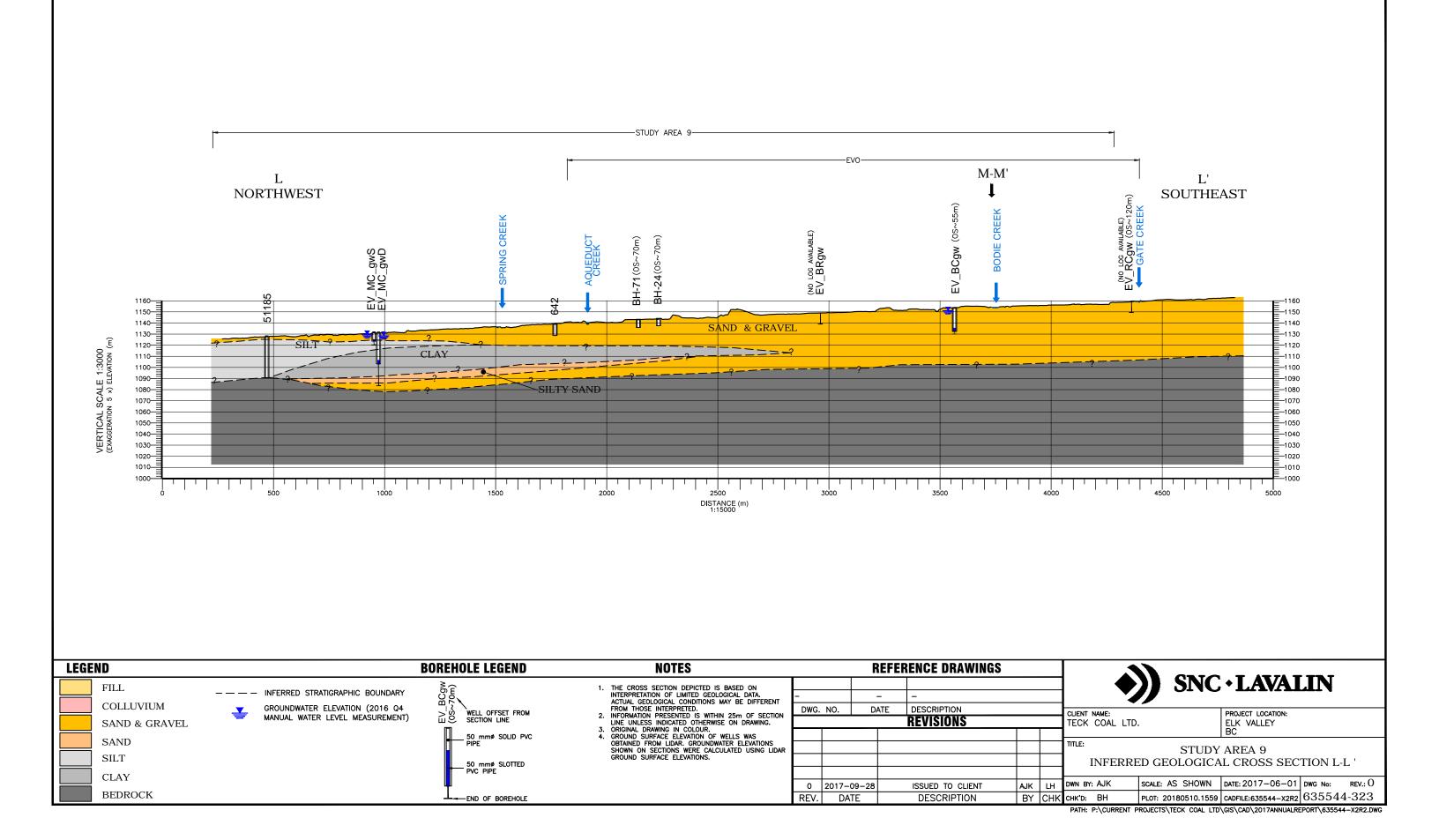

REV.

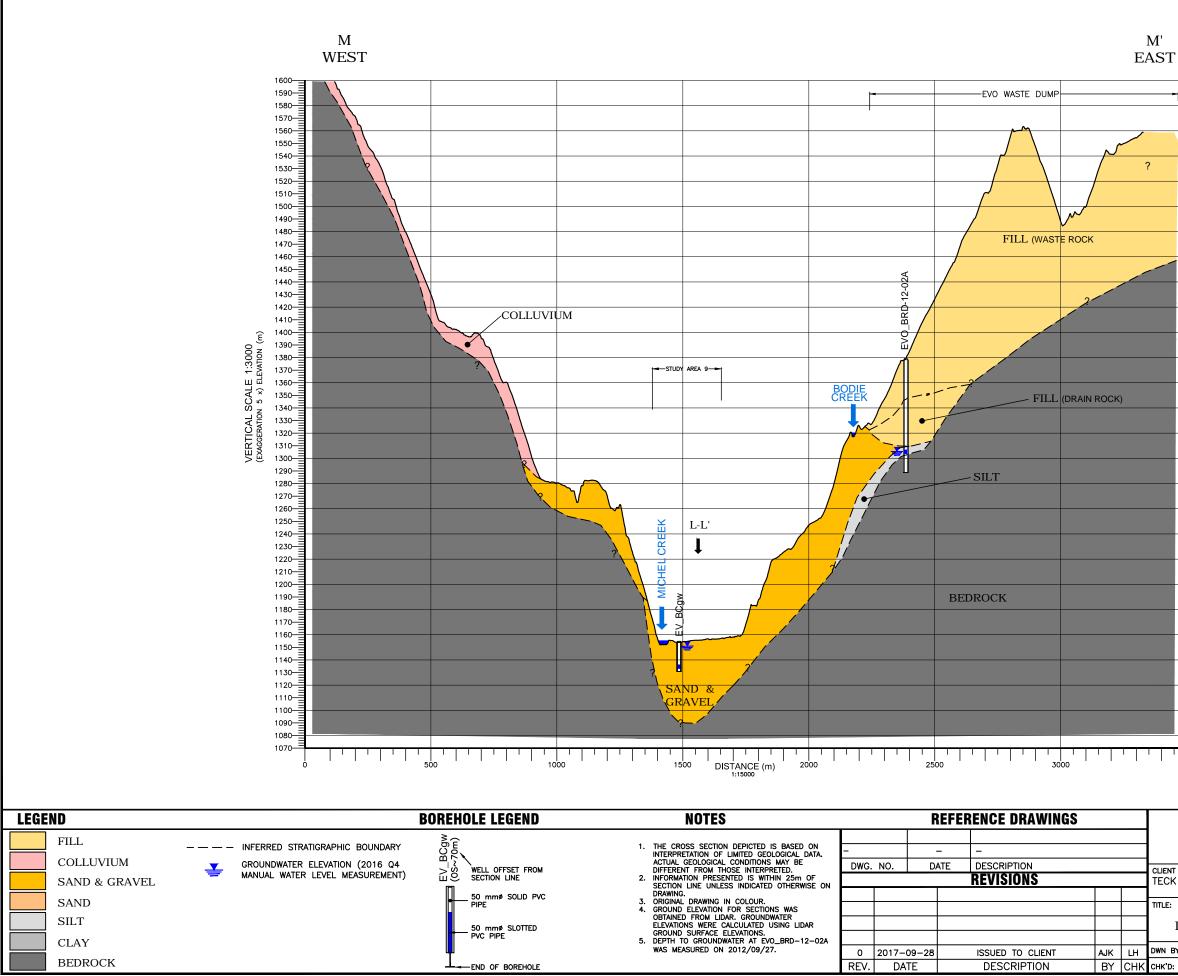
DATE


DESCRIPTION


|     |     |                                | ) SNC                 | + LAVAI                               | IN                   |
|-----|-----|--------------------------------|-----------------------|---------------------------------------|----------------------|
|     |     | CLIENT NAME:<br>TECK COAL LTD. |                       | PROJECT LOCATION:<br>ELK VALLEY<br>BC |                      |
|     |     | TITLE:<br>INFERRE              | STUDY A               | AREA 5/6<br>L CROSS SEC <sup>-</sup>  | FION G-G '           |
| AJK | ιн  | DWN BY: AJK                    | SCALE: AS SHOWN       | DATE: 2017-06-01                      | DWG No: REV.: O      |
| BY  | СНК | снк'о: ВН                      | PLOT: 20180510.1559   | CADFILE:635544-X2R2                   | 635544-318           |
|     |     | PATH: P:\CURRENT P             | ROJECTS\TECK COAL LTD | GIS\CAD\2017ANNUALRE                  | PORT\635544-X2R2.DWG |














|    |          | -1500        |                |      |                    |          |         |
|----|----------|--------------|----------------|------|--------------------|----------|---------|
|    |          | 1490         |                |      |                    |          |         |
|    |          | 1480         |                |      |                    |          |         |
|    |          | 1470         |                |      |                    |          |         |
|    |          | 1460         |                |      |                    |          |         |
| 1  |          | 1450         |                |      |                    |          |         |
|    |          | 1440         |                |      |                    |          |         |
|    |          | 1430         |                |      |                    |          |         |
|    |          |              |                |      |                    |          |         |
|    |          | 1410         |                |      |                    |          |         |
|    |          | 1400<br>1390 |                |      |                    |          |         |
|    |          | 1390         |                |      |                    |          |         |
|    |          | 1370         |                |      |                    |          |         |
|    |          | 1360         |                |      |                    |          |         |
|    |          | 1 350        |                |      |                    |          |         |
|    |          | 1340         |                |      |                    |          |         |
|    |          | 1330         |                |      |                    |          |         |
|    |          | 1320         |                |      |                    |          |         |
|    |          | 1310         |                |      |                    |          |         |
|    |          | 1300         |                |      |                    |          |         |
|    |          | 1290         |                |      |                    |          |         |
|    |          | 1280         |                |      |                    |          |         |
|    |          | 1270         |                |      |                    |          |         |
|    |          | 1260<br>1250 |                |      |                    |          |         |
|    |          | 1250         |                |      |                    |          |         |
|    |          | 1240         |                |      |                    |          |         |
|    |          | 1220         |                |      |                    |          |         |
|    |          | 1210         |                |      |                    |          |         |
|    |          | 1200         |                |      |                    |          |         |
|    |          | 1190         |                |      |                    |          |         |
|    |          | 1180         |                |      |                    |          |         |
|    |          | 1170         |                |      |                    |          |         |
|    |          | 1160         |                |      |                    |          |         |
|    |          | 1150         |                |      |                    |          |         |
|    |          |              |                |      |                    |          |         |
|    |          | 1130         |                |      |                    |          |         |
|    |          | 1120<br>1110 |                |      |                    |          |         |
|    |          | 1100         |                |      |                    |          |         |
|    |          | 1090         |                |      |                    |          |         |
|    |          | 1080         |                |      |                    |          |         |
| 1  |          | 1070         |                |      |                    |          |         |
| I  |          | <br>500      |                |      |                    |          |         |
|    | 0.       |              |                |      |                    |          |         |
|    |          |              |                |      |                    |          |         |
|    |          |              |                |      |                    |          |         |
|    |          | •            |                |      |                    |          |         |
|    |          |              | CNI            |      | AT AT7A            | TTN      |         |
|    |          |              | JJ JIN         | ľ    | • LAVA             |          |         |
|    | L        |              |                |      |                    |          |         |
|    | CLIENT N |              |                |      | PROJECT LOCATION:  |          |         |
|    | TECK     | COAL LTD     | •              |      | ELK VALLEY         |          |         |
|    | דודי -   |              |                |      | BC                 |          |         |
|    | TITLE:   |              |                |      | AREA 9             |          |         |
|    | IN       | IFERRE       | D GEOLOGI      | ICAI | L CROSS SEC        | CTION M- | ·M '    |
| Ч  | DWN BY:  |              | SCALE: AS SHOW |      | DATE: 2017-06-0    |          | REV.: 0 |
| нκ | CHK'D:   | BH           |                |      | CADFILE:635544-X2F |          |         |
|    | PATH: P  | CURRENT F    |                |      | GIS\CAD\2017ANNUAL |          |         |
|    |          |              |                |      |                    |          |         |
|    |          |              |                |      |                    |          |         |
|    |          |              |                |      |                    |          |         |

M'

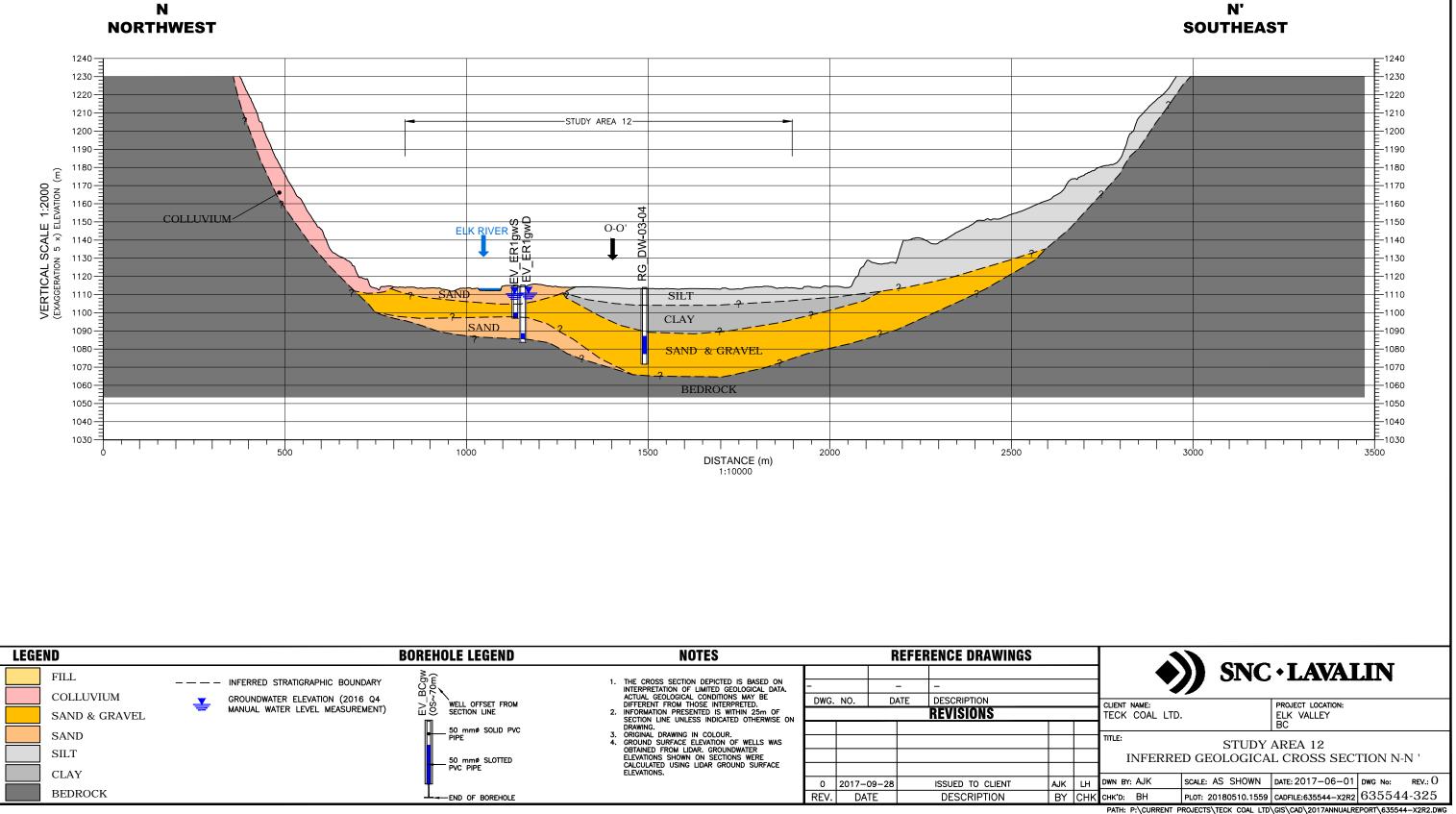
?

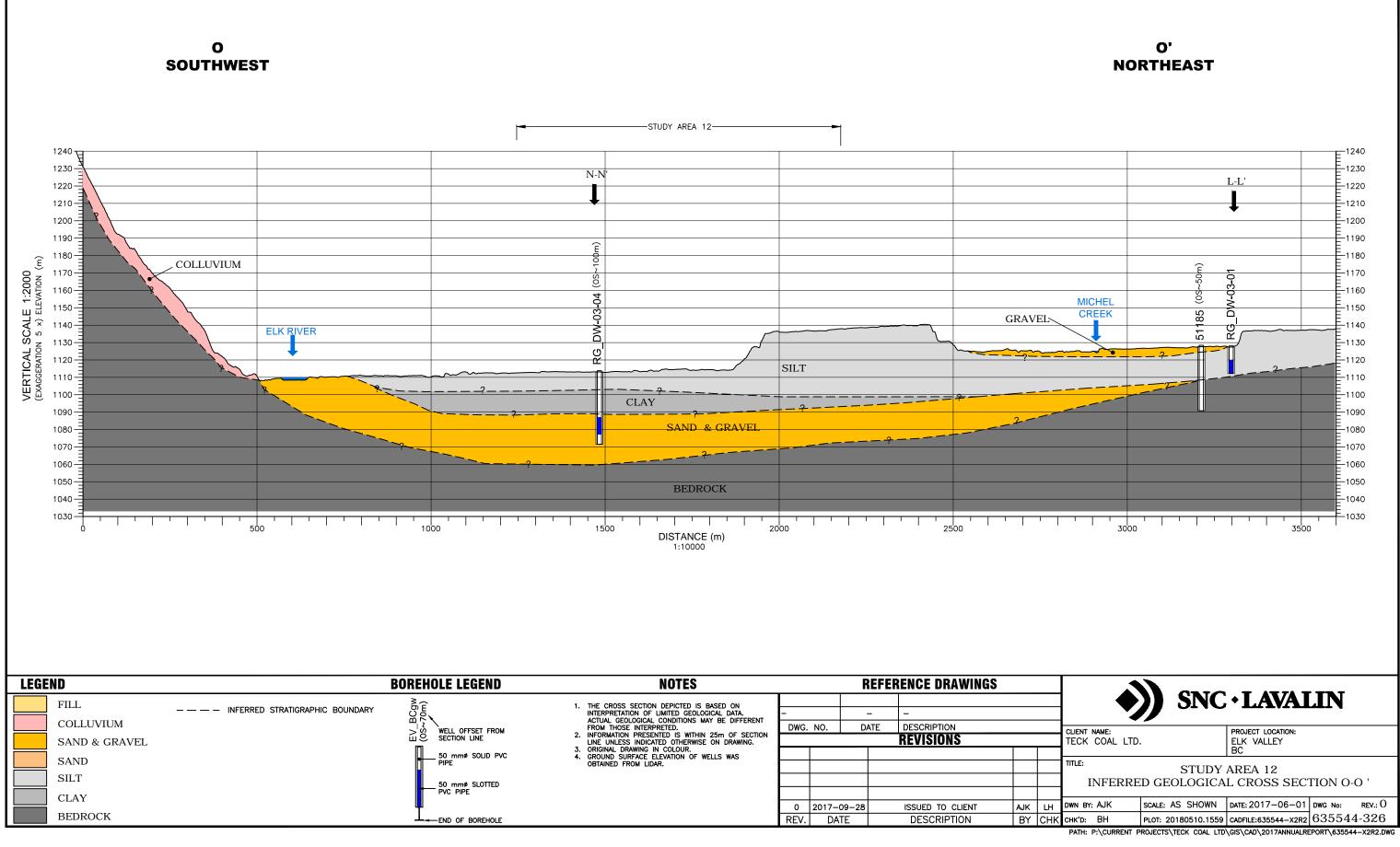
-1600

-1590

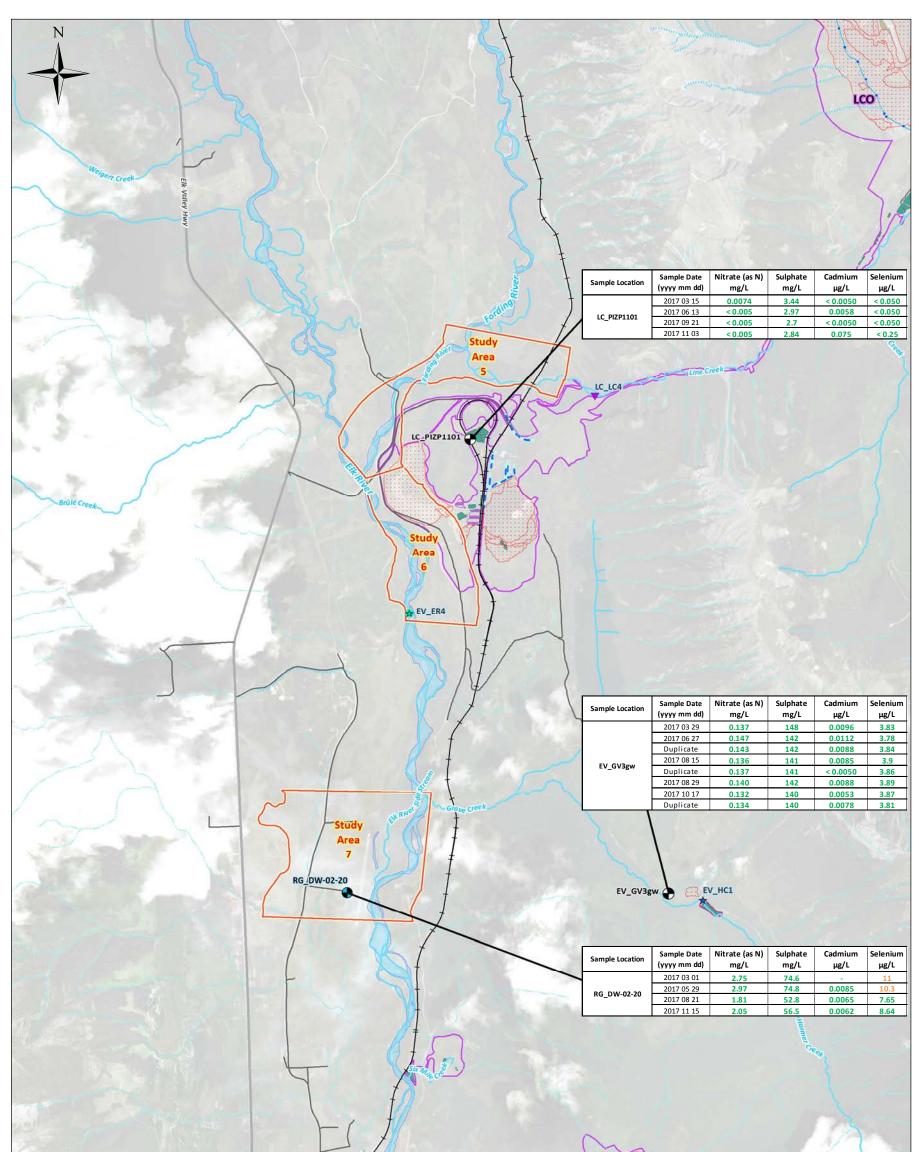
1580

-1570

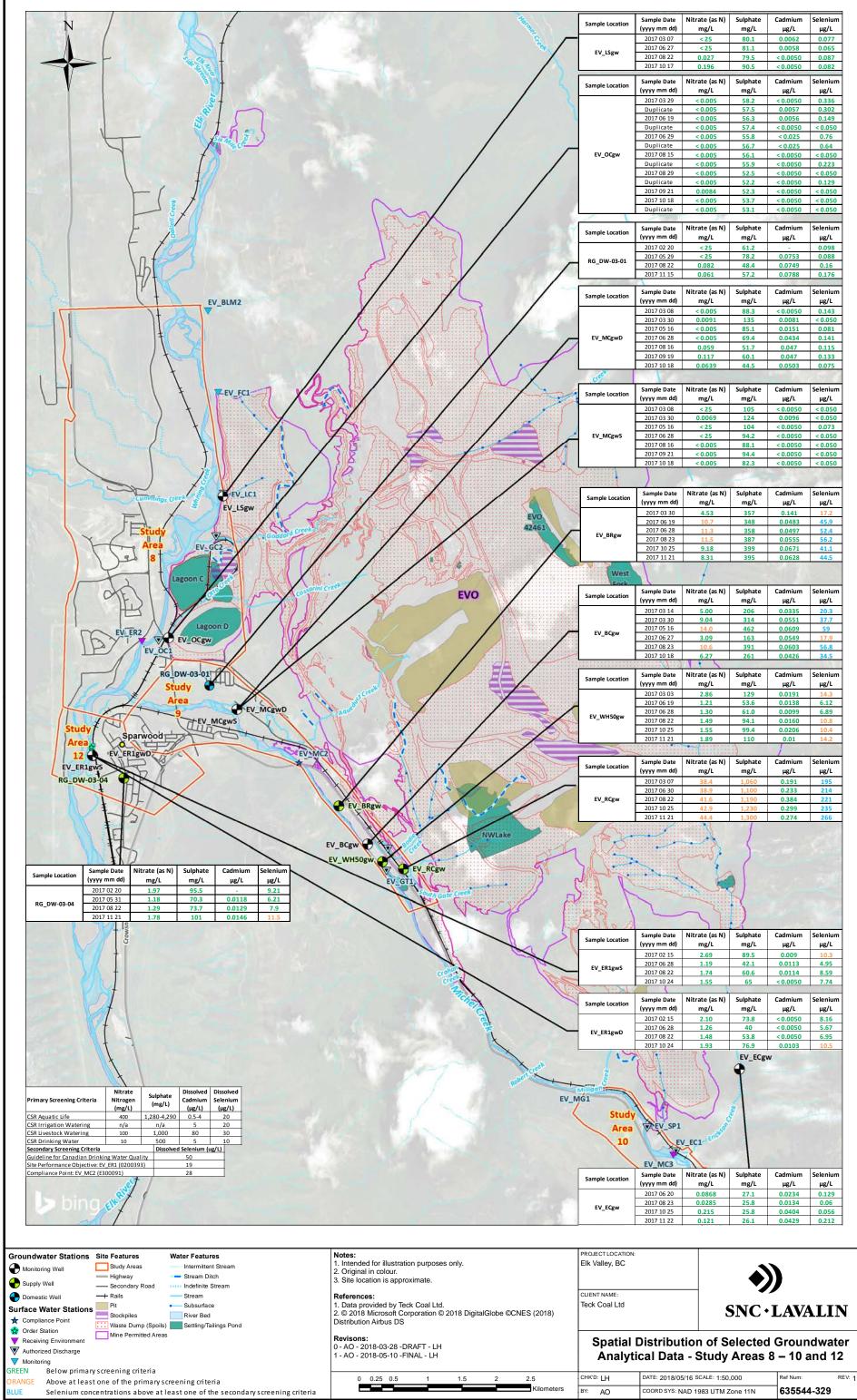

1560 -1550


-1540

-1530


-1520

-1510 -1500



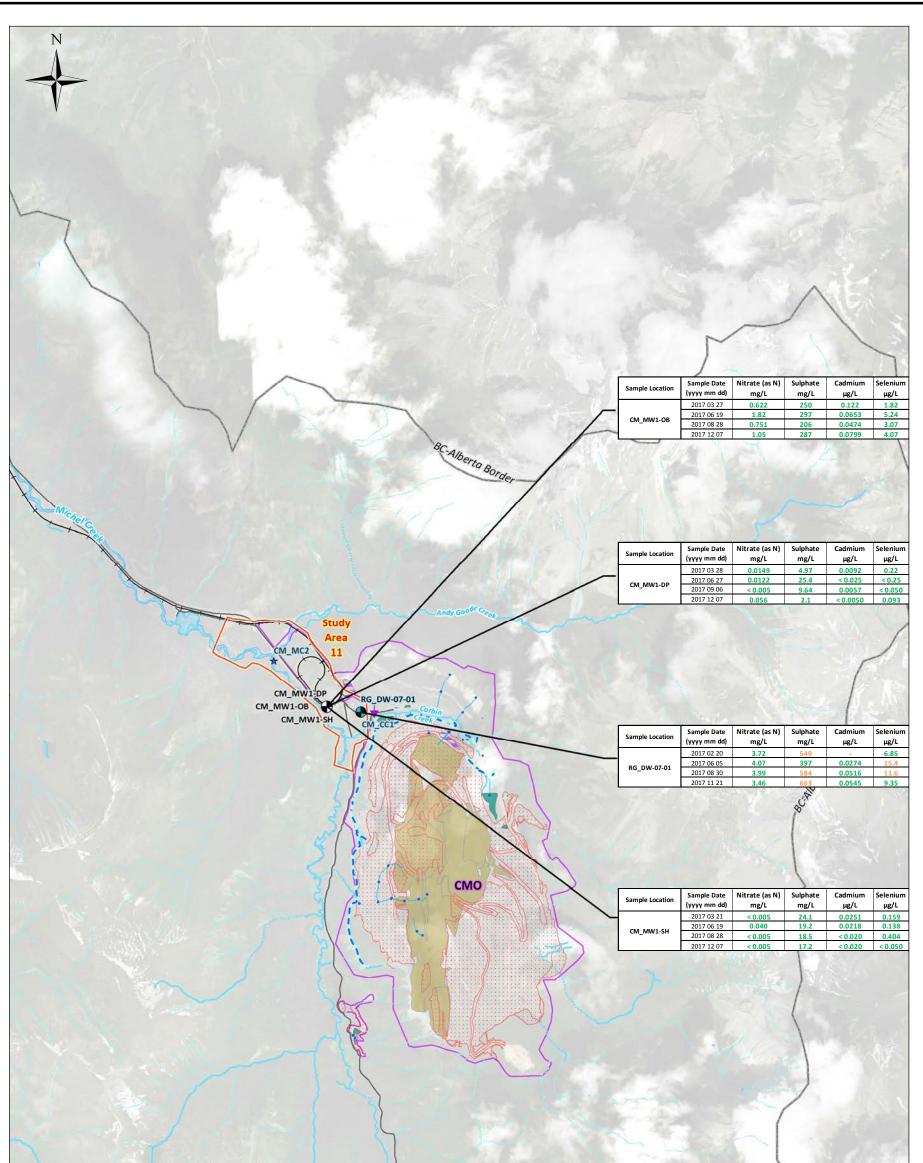



| N Britt Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plas Citins                                                                                                    | Sample Location Sample Date<br>(yyyy mm dd)<br>2017 06 21<br>2017 09 18                  | mg/L<br>< 0.005<br>< 0.005       | Sulphate<br>mg/L         Cadmium<br>µg/L           43.2         < 0.0050           44.3         < 0.0050       | Selenium<br>µg/L<br>14.8<br>0.334    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Para Andreame Greek                                                                                            | FR_HMW5 Duplicate<br>2017 11 14<br>Duplicate                                             | < 0.005                          | 44.5         < 0.0050                                                                                          | 0.595                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Sample Location Sample Date<br>(yyyy mm dd)<br>2017 03 08<br>2017 06 01                  |                                  | Sulphate         Cadmium           mg/L         μg/L           481         0.0571           208         0.0269 | Selenium<br>µg/L<br>120<br>112       |
| 2) Josef ( marked )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | FR_09-01-A 2017 09 12<br>2017 11 22                                                      | 35.1<br>21.2<br>54.3             | 208         0.0269           347         0.0478           486         0.0471                                   | 112<br>68.1<br>166                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E Proposition                                                                                                  | Sample Location Sample Date<br>(yyyy mm dd)<br>2017 03 08                                |                                  | Sulphate Cadmium<br>mg/L µg/L<br>409 0.0536                                                                    | Selenium<br>µg/L<br>71.8             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Bro         FR_09-01-В         2017 06 01           2017 09 12         2017 11 22        | 43.9<br>12.7<br>29.6             | 267         0.0209           296         0.035           407         0.0402                                    | 126<br>44.2<br>91.5                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Sample Location Sample Date<br>(yyyy mm dd)                                              | mg/L                             | Sulphate Cadmium<br>mg/L μg/L                                                                                  | Selenium<br>µg/L                     |
| SS 56 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nes FRO                                                                                                        | FR_GHHW 2017 02 27<br>2017 06 01<br>2017 09 13<br>FR_GH_WELL4 2017 11 15                 | 46.6<br>33.4<br>27.3<br>34.9     | 287         0.0515           248         0.0408           195         0.0403           243         0.0297      | 123<br>93.5<br>82.2<br>92.8          |
| MR Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | buth<br>igs Pond                                                                                               | Sample Location Sample Date (yyyy mm dd)                                                 | Nitrate (as N) Si<br>mg/L        | Sulphate Cadmium<br>mg/L μg/L                                                                                  | Selenium<br>µg/L                     |
| Lowe Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FR2 FR_KC1                                                                                                     | GH_GA-MW-1<br>2017 01 30<br>2017 06 20<br>2017 09 19<br>2017 10 19                       | 1.27<br>1.14<br>0.177<br>0.523   | 204         0.0272           192         0.0307           344         < 0.035                                  | 0.205<br>0.169<br>0.137<br>0.109     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Sample Location Sample Date<br>(yyyy mm dd)                                              | Nitrate (as N) S                 | 295 0.0303<br>Sulphate Cadmium<br>mg/L µg/L                                                                    | Selenium<br>µg/L                     |
| GH_ER2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FR_09-01-A<br>FR_FR4                                                                                           | 2017 01 30<br>Duplicate<br>2017 06 20                                                    | 1.92<br>1.96<br>3.18             | 211         0.0128           215         0.0131           63         0.0104                                    | 3.16<br>3.03<br>4.31                 |
| Concerne Concerne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FR_GHHW.                                                                                                       | GH_GA-MW-4 Duplicate<br>2017 09 19<br>Duplicate                                          |                                  | 63         0.0106           68         0.0053           67.7         0.0074                                    | 4.05<br>1.83<br>1.77                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Istudy                                                                                                         | 2017 11 27<br>Duplicate                                                                  | 1.74                             | 66.4         0.0092           66.7         0.0078                                                              | 4.93<br>5.23                         |
| Willow Creek South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GHO Area                                                                                                       | Sample Location Sample Date (yyyy mm dd) 2017 01 30 2017 06 20                           |                                  | Sulphate         Cadmium           mg/L         μg/L           176         0.0401           171         0.0189 | Selenium<br>μg/L<br>7.87<br>7.41     |
| GH_GA-MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | GH_GA-MW-2<br>2017 09 20<br>Duplicate<br>2017 11 27                                      | 0.85<br>1.56                     | 171         0.0189           189         < 0.0050                                                              | 9.49<br>6.6<br>18.9                  |
| Study<br>Area GH_MC1 White Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a fort /                                                                                                       | Sample Location (yyyy mm dd)                                                             | Nitrate (as N) Si                | Sulphate Cadmium mg/L µg/L                                                                                     | Selenium<br>µg/L                     |
| 4 GH=GA-MW-4<br>GH_LC1 CH Loop Walter Walter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                | GH_GA-MW-3<br>2017 01 30<br>2017 06 19<br>2017 09 20                                     | < 0.005<br>< 0.005<br>< 0.005    | 33.3         < 0.0050           84         < 0.0050                                                            | 0.231<br>0.354<br>1.29               |
| GH_GA-MW-2 Wolfford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | As bas t                                                                                                       | 2017 11 30 Sample Location Sample Date                                                   | Nitrate (as N) Si                | 41.1 < 0.0050<br>Sulphate Cadmium                                                                              | 19.4<br>Selenium                     |
| GH_WC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                | 2017 01 31<br>Duplicate                                                                  | 0.018<br>0.020                   | mg/L μg/L<br>15.8 0.0096<br>16.1 0.0103                                                                        | μg/L<br>1.03<br>1.08                 |
| GH_GA-MW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | GH_MW-ERSC-1 2017 06 20<br>2017 09 20<br>2017 12 18                                      |                                  | 29.7         0.0185           59.6         0.0349           442         0.0777                                 | 2.85<br>6.53<br>68.7                 |
| GH_TC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                | Sample Location Sample Date<br>(yyyy mm dd)                                              | mg/L                             | Sulphate Cadmium<br>mg/L μg/L                                                                                  | Selenium<br>µg/L                     |
| GH_ERC<br>GH_MW-ERSC-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAY /                                                                                                          | GH_POTW17<br>2017 01 03<br>2017 02 07<br>2017 06 19<br>2017 07 05                        | 0.281<br>0.302<br>0.505<br>0.414 | 464         0.075           450         0.0665           475         0.063           448         0.0671        | 5.15<br>6.93<br>9.83<br>7.71         |
| Great GH_MW-ERSC-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tailings Pond                                                                                                  | 2017 07 03<br>2017 09 25<br>2017 11 21                                                   | 0.414 0.311 0.415                | 448         0.0671           450         0.0539           450         0.0429                                   | 4.98<br>7.09                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Sample Location Sample Date<br>(yyyy mm dd)<br>2017 02 07                                |                                  | Sulphate Cadmium<br>mg/L μg/L<br>234 0.0229                                                                    | Selenium<br>µg/L<br>0.197            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GH_POTW15 GH_POTW17                                                                                            | GH_POTW15 2017 06 19<br>2017 09 25<br>2017 11 16                                         | 0.390<br>< 0.005<br>< 0.005      | 190         0.0077           250         0.0212           254         0.0078                                   | 3.03<br>0.103<br>< 0.050             |
| N/ 29/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GH_FR1 GH_MW-RLP-1D Study<br>GH_POTW10 GH_POTW09 Area                                                          | Sample Location Sample Date<br>(yyyy mm dd)                                              | mg/L                             | Sulphate Cadmium<br>mg/L μg/L                                                                                  | Selenium<br>µg/L                     |
| To la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Study<br>Area                                                                                                  | GH_POTW09<br>2017 02 07<br>2017 06 22<br>Duplicate<br>2017 07 05                         |                                  | 156         0.0191           158         0.0085           158         0.0111           150         0.0101      | 0.951<br>1.48<br>1.43                |
| RG_DW-01-03 GH_ER1<br>Elkford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                              | 2017 07 03<br>2017 09 25<br>2017 11 16                                                   |                                  | 159         0.0191           160         0.0131           162         0.0115                                   | 6.49<br>0.91<br>1.37                 |
| Boivin Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 por                                                                                                          | Sample Location Sample Date (yyyy mm dd)<br>2017 02 07                                   | 1 1                              | Sulphate Cadmium<br>mg/L μg/L<br>182 0.0072                                                                    | Selenium<br>µg/L<br>4.99             |
| AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | Duplicate           GH_POTW10         2017 06 19           2017 09 25         2017 09 25 | 0.677<br>< 25<br>0.453           | 182         0.0073           278         0.0184           191         0.0079                                   | 4.92<br>0.173<br>3.17                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LC_PIZDC1308<br>LC_PIZDC1307                                                                                   | Sample Location Sample Date                                                              | 1 1                              | 195 0.0101<br>Sulphate Cadmium                                                                                 | 3.71<br>Selenium                     |
| Et raile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Grace Creek                                                                                                    | 2017 03 13<br>2017 06 12<br>2017 06 12                                                   | 0.0055<br>0.159                  | mg/L         μg/L           2.5         0.0091           4.74         0.133           1.02         0.033       | μg/L<br>< 0.050<br>0.301             |
| A Car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | LC_PIZDC1308 2017 09 19<br>Duplicate<br>2017 11 01<br>Duplicate                          | 0.005 0.0627                     | 1.92         0.023           2.06         0.0253           1.84         0.0361           2.02         0.0259   | <0.050<br><0.050<br><0.050<br><0.050 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Sample Location (yyyy mm dd)                                                             | Nitrate (as N) S                 | Sulphate Cadmium mg/L µg/L                                                                                     | Selenium<br>µg/L                     |
| Primary Screening Criteria Nitrate (mg/L) Dissolved Dissolved Cadmium Selenium (mg/L) (µg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                | LC_PIZDC1307 2017 03 16<br>2017 06 12<br>2017 09 19                                      | <0.005<br><0.005<br><0.005       | <0.30 0.0121<br><0.30 0.0155<br><0.30 <0.015                                                                   | < 0.050<br>< 0.050<br>< 0.050        |
| CSR Aquatic Life         400         1,280-4,290         0.5-4         20           CSR Irrigation Watering         n/a         n/a         5         20           CSR Livestock Watering         100         1,000         80         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | 2017 11 01 Sample Location Sample Market (yyyy mm dd)                                    | Nitrate (as N) S                 | <0.30 0.0337<br>Sulphate Cadmium<br>mg/L µg/L                                                                  | 0.14<br>Selenium<br>µg/L             |
| CSR Drinking Water         10         500         5         10           Secondary Screening Criteria         Dissolved Selenium (ug/L)         Guideline for Canadian Drinking Water Quality         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$                                                                                                             | RG_DW-01-03                                                                              | 0.512<br>0.596                   | Hight         Hght           42.1         -           46         0.0055           44.8         0.0069          | 2.58<br>2.8<br>3.16                  |
| Site Performance Objective: GH_FR1 (0200378)         80           Compliance Point: FR_FRCP1 (E300071)         130           Study Area 2 and 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 2017 11 21 Sample Location Sample Date                                                   | 0.470<br>Nitrate (as N) Si       | 35.7 0.0134<br>Sulphate Cadmium                                                                                | 2.53                                 |
| Site Performance Objective: GH_FR1 (0200378)         80         RG_DW-01-0           Compliance Point: GH_FR1 (0200378)         80         80           Site Performance Objective: GH_FR1 (620664)         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | Sample Location         (yyyy mm dd)           2017 03 01         2017 05 29             | mg/L<br>0.634<br>1.06            | mg/L μg/L<br>64.5 -<br>64 0.0547                                                                               | μg/L<br>1.84<br>1.68                 |
| Site Performance Objective: GH_ER1 (E206661)         19           Compliance Point: GH_ERC (E3000090)         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A minimum                                                                                                      | RG_DW-01-07 2017 08 21<br>2017 11 15                                                     | 0.997<br>0.863                   | 65.1         0.0437           66.6         0.0408                                                              | 1.6<br>1.92                          |
| ndwater Stations Site Features Water Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Notes:<br>1. Intended for illustration purposes only.                                                          | PROJECT LOCATION:<br>Elk Valley, BC                                                      |                                  |                                                                                                                |                                      |
| EU-Alberta Border     Stream Ditch     Flighway     Stream Stream     Stream     Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ol> <li>Original in colour.</li> <li>Site location is approximate.</li> </ol>                                 | CLIENT NAME:                                                                             |                                  | <b>•))</b>                                                                                                     |                                      |
| ce Water Stations<br>propliance Point<br>Stockpiles<br>Stockpiles<br>River Bed<br>Setting/Tailings Pond<br>River Ped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | References:<br>1. Data provided by Teck Coal Ltd.<br>2. © 2018 Microsoft Corporation Earthstar Geographics SIO | Teck Coal Ltd                                                                            | SI                               | NC·LAV                                                                                                         | ALIN                                 |
| rder Station Information Informatio Information Information Information Information Inform | Revisons:<br>0 - AO - 2018-03-28 -DRAFT - LH<br>1 - AO - 2018-05-10 - FINAL - AO                               | Spatial Distribu                                                                         |                                  | lected Grour<br>dy Areas 1 to                                                                                  |                                      |
| utorized Discharge •• Water Pipeline onitoring Below primary screening criteria •• Above at least one of the originary screening criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0.5 1 2 3 4 5                                                                                                | CHK'D: LH DATE: 2018/0                                                                   | Data - Stuc                      | 000 Ref Num:                                                                                                   | REV:                                 |
| E Above at least one of the primary screening criteria<br>Selenium concentrations above at least one of the secondary screening criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kilomete                                                                                                       | rs BY: AO COORD SYS:<br>ts\Teck Coal Ltd\SPO\635544\4.0 Exe                              | NAD 1983 UTM Zone                |                                                                                                                |                                      |

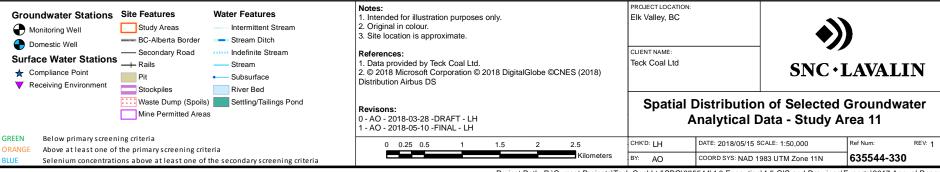


|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                     | 1523                                                                 |                               | - mil                        | and the second s | 1                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| ta ta                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     | Primary Screening Criteria                                           | Nitrate<br>Nitrogen<br>(mg/L) | Sulphate<br>(mg/L)           | Dissolved<br>Cadmium<br>(µg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dissolved<br>Selenium<br>(µg/L) |
| ΨΩ                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                     | CSR Aquatic Life                                                     | 400                           | 1,280-4,290                  | 0.5-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                              |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                     | CSR Irrigation Watering                                              | n/a                           | n/a                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                              |
|                                                                                                                                                                                                                                                                                                                                                   | EV BLM2                                                                                                                                                                                                                                                                                                             | CSR Livestock Watering                                               | 100                           | 1,000                        | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                              |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                     | CSR Drinking Water                                                   | 10                            | 500                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                              |
|                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                   | Secondary Screen                                                     |                               |                              | Dissolved Sele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | enium (ug/L)                    |
| Minimum and Minimum and Minimum                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                   |                                                                      | nadian Drinking Wa            |                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| Study                                                                                                                                                                                                                                                                                                                                             | IT W                                                                                                                                                                                                                                                                                                                | Site Performance                                                     | Objective: EV_ER1             | (0200393)                    | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | €                               |
| bing                                                                                                                                                                                                                                                                                                                                              | EV_FC1                                                                                                                                                                                                                                                                                                              |                                                                      | XX                            |                              | Dry Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| b bing 8                                                                                                                                                                                                                                                                                                                                          | Notes: 1. Intended for illustration purposes only.                                                                                                                                                                                                                                                                  | PROJECT LOCATION:<br>Elk Valley, BC                                  |                               |                              | Dry Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| Site Features       Water Features         Monitoring Well       Study Areas         Domestic Well       Study Areas         Secondary Road       Stream Ditch         Stream Ditch       Stream Ditch                                                                                                                                            | Notes:                                                                                                                                                                                                                                                                                                              | PROJECT LOCATION:<br>Elk Valley, BC                                  |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| Bits       Study Areas         Monitoring Well       Study Areas         Domestic Well       Highway         Secondary Road       Stream Ditch         urface Water Stations       Rails         Compliance Point       Pit         Order Station       Stockpiles                                                                                | Notes: 1. Intended for illustration purposes only. 2. Original in colour.                                                                                                                                                                                                                                           | PROJECT LOCATION:<br>Elk Valley, BC<br>CLIENT NAME:<br>Teck Coal Ltd |                               | •                            | C·LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VALIN                           |
| Stee       Study Areas         Monitoring Well       Study Areas         Domestic Well       Secondary Road         Compliance Point       Pit         Order Station       Stockpiles         Receiving Environment       Waite Dump (Spoils)         Monitoring       Mine Permitted Areas                                                       | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>References:<br>1. Data provided by Teck Coal Ltd.<br>2. © 2018 Microsoft Corporation © 2018 DigitalGlobe ©CNES (2013)                                                                        | CLIENT NAME:<br>Teck Coal Ltd                                        | Vistribution                  | SN<br>of Select              | ted Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | undwate                         |
| Site Features       Water Features         Monitoring Well       Study Areas         Domestic Well       Study Areas         Secondary Road       Intermittent Stream         rface Water Stations       Rails         Compliance Point       Prit         Order Station       Stockpiles         Receiving Environment       Waste Dump (Spoils) | Notes:<br>1. Intended for illustration purposes only.<br>2. Original in colour.<br>3. Site location is approximate.<br>References:<br>1. Data provided by Teck Coal Ltd.<br>2. © 2018 Microsoft Corporation © 2018 DigitalGlobe ©CNES (20<br>Distribution Airbus DS<br>Revisons:<br>0 - AO - 2018-03-28 -DRAFT - LH | CLIENT NAME:<br>Teck Coal Ltd                                        | istribution                   | SN<br>of Select<br>a - Study | ted Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | undwate<br>5 – 7                |




Data.mxd

Coal Ltd\GIS\Map Series\RGMPAnnualReport\_2017\635544-329\_Analyt


P:\Current

Path

DXIN



| Primary Screening Criteria   | Nitrate<br>Nitrogen<br>(mg/L) | Sulph:<br>(mg/ |       | Dissolved<br>Cadmium<br>(µg/L) | Dissolved<br>Selenium<br>(µg/L) |
|------------------------------|-------------------------------|----------------|-------|--------------------------------|---------------------------------|
| CSR Aquatic Life             | 400                           | 1,280-4        | ,290  | 0.5-4                          | 20                              |
| CSR Irrigation Watering      | n/a                           | n/a            |       | 5                              | 20                              |
| CSR Livestock Watering       | 100                           | 1,00           | 0     | 80                             | 30                              |
| CSR Drinking Water           | 10                            | 500            | )     | 5                              | 10                              |
| Secondary Screening Criteria | 3                             |                | Disso | olved Seleni                   | ium (ug/L)                      |
| Guideline for Canadian Drin  | king Water C                  | Quality        |       | 50                             |                                 |
| Site Performance Objective:  | EV_ER1 (020                   | 0393)          |       | 19                             |                                 |
| Compliance Point: CM MC2     | (E258937)                     |                |       | 19                             |                                 |



MXD Path: P:\Current Projects\Teck Coal Ltd\GISMap Series\RGMPAnnualReport\_2017\635544-330\_Analytical

Project Path: P:\Current Projects\Teck Coal Ltd\SPO\635544\4.0 Execution\4.5 GIS and Drawings\Exports\2017 Annual Report

# Appendix I

# Summary of SSGMP 2017 Annual Reports and Regional Conceptual Site Model

Appendix I-1: FRO 2017 Annual Groundwater Monitoring Summary and Recommendations Appendix I-2: GHO 2017 Annual Groundwater Monitoring Summary and Recommendations Appendix I-3: LCO 2017 Annual Groundwater Monitoring Summary and Recommendations Appendix I-4: EVO 2017 Annual Groundwater Monitoring Summary and Recommendations Appendix I-5: CMO 2017 Annual Groundwater Monitoring Summary and Recommendations Appendix I-5: CMO 2017 Annual Groundwater Monitoring Summary and Recommendations Appendix I-6: Regional Conceptual Site Model



Appendix I-1: FRO 2017 Annual Groundwater Monitoring Summary and Recommendations



## Appendix I-1: Fording River Operations 2017 Annual Groundwater Monitoring

## Summary

SNC-Lavalin Inc. (SNC-Lavalin, 2018a) completed the 2017 Annual Report for the Fording River Operations (FRO) Site Specific Groundwater Monitoring Program (SSGMP). FRO is located in southeastern British Columbia (BC), in the Fording River Valley and is one of Teck's five active coal mines in the Elk Valley. The following information was taken from the 2017 FRO Annual Report, which was completed to fulfill the reporting requirements outlined in Section 10.4 of Permit 107517 (October 13, 2017). The updated SSGMP was approved in April 2017 by the Ministry of Environment (MoE), now referred to as the Ministry of Environment & Climate Change Strategy (ENV).

The groundwater conceptual site model (CSM) for FRO identified surficial materials as the predominant pathway for groundwater flow and transport of constituents of interest (CI) and indicated that bedrock with lower permeability was a secondary pathway. The two main hydrogeological settings of surficial materials and associated groundwater recharge and flow are the upland areas and valley bottoms. Hydrogeology in the CSM was described with respect to the Fording River valley bottom setting with valley bottom tributaries including Henretta and Kilmarnock creeks and mountain tributaries including Clode, Lake Mountain, Cataract, and Swift creeks.

The FRO SSGMP includes fourteen monitoring wells that are monitored and sampled quarterly for a specific list of analytes. The wells monitored and sampled as part of the 2017 annual program are listed in Table A along with the associated rationale. Monitoring well locations are shown on Drawing 653244-002 attached (extracted from the 2017 FRO Annual Report). In 2017, quarterly monitoring and sampling were completed at each of the fourteen wells with two exceptions: the Q1 sample from FR\_HMW5 could not be collected because the well was frozen; and in Q4 one and a half months of continuous water level and temperature data could not be retrieved from FR\_HMW5 because the well was frozen. Samples from site-specific programs were submitted for all parameters on the analyte list.

The field QA/QC program and laboratory QA/QC results for groundwater samples indicated the data collected is acceptable for use in this report. With the exception of one RPD value greater than 50% for one parameter, the remaining RPD values for approximately 400 parameters sampled were less than 50%. The laboratory quality control results were considered reliable. Detectable concentrations of select parameters in trip and field blanks were, for the most part, marginally above the detection limit and well below applicable primary screening criteria and did not affect the reliability of the data. Field and trip blank data are provided in the attached Table 4 (extracted from the 2017 FRO Annual Report).

Groundwater quality at each monitoring location was compared to applicable primary and, for dissolved selenium only, secondary screening criteria. Presentation of results, data interpretation, and discussion of water level and chemistry trends for select CI, including nitrate, sulphate, and dissolved selenium, were completed in the Henretta Creek and Fording River valley-bottom drainages. To assess groundwater and surface water interactions, groundwater chemistry was compared to chemistry at nearby surface water stations.



Groundwater quality data for CI are shown in plan view in Drawing 653244-007 attached (extracted from the 2017 FRO Annual Report). In general, groundwater concentrations of CIs above primary and secondary screening criteria were consistent with 2015 and 2016 results. A brief summary of results and interpretation is found below in terms of main valley-bottoms and major tributaries:

- Reference groundwater quality results from the Henretta Valley were below the primary screening criteria for each CI with the exception of dissolved selenium in Q2, which may have resulted from cross-contamination. Approximately 20 L of hot water from FR\_POTWELLS (with selenium concentrations of 22.2 µg/L) was added to FR\_HMW5 in Q1 in an attempt to defrost the well. If the wells were not purged three well volumes prior to sampling, and instead the sampler waited for parameters to stabilize, then this may account for elevated selenium concentrations in FR\_HMW5. The remaining concentrations of CI in groundwater (i.e., with the exception of selenium) were similar to those measured in reference surface water.
- Groundwater samples from the Henretta valley had CI concentrations above primary screening criteria and dissolved selenium above select secondary screening criteria. One well installed in spoils had the highest CI concentrations measured in the Henretta valley and displayed an increasing trend for dissolved selenium and sulphate. CI concentrations in surface water at downstream and upstream surface water stations were lower than CI concentrations measured in groundwater, suggesting limited loading to Henretta Creek from groundwater in the area of the backfilled pits and spoils.
- Groundwater from the Fording River valley north of the STP had dissolved selenium concentrations greater than the primary screening criteria in three quarters. Dissolved selenium concentrations in groundwater follow the same seasonal variation as concentrations measured in upgradient surface water. This suggests a strong interaction between Fording River surface water and recharge of valley-bottom groundwater from surface water in this area. Downgradient of Clode and Lake Mountain creek confluences with the Fording River, nitrate and dissolved selenium were above the primary screening criteria and selenium was above select secondary screening criteria in one quarter. CI concentrations above screening criteria were higher than those in upstream surface water and upgradient groundwater suggesting that there may be CI loading from Clode Creek drainage to the Fording River Valley groundwater in the area.
- In the Fording River valley downgradient of the STP, groundwater wells had dissolved selenium and nitrate concentrations greater than primary and secondary screening criteria in most quarters. However, in wells directly downgradient of the STP, CI concentrations were below primary screening criteria in 2017 and were probably low due to selenium attenuation in the STP. Concentrations in the Fording River surface water and in the valley bottom aquifer are increasing farther downgradient of the STP. Upland groundwater flow from Kilmarnock Creek drainage is a major source of mining-related constituents to Fording River valley-bottom groundwater in the area downgradient of the STP and possibly contributing to elevated CIs in monitoring wells farther downgradient from the STP.

Constituents other than CI that were measured above primary screening criteria were nitrite, dissolved manganese, lithium, and uranium. Lithium was not previously identified above the CSR DW standard; however, Stage 10 and Stage 11 Amendments to the CSR on November 1, 2017 resulted in a lower lithium standard changing from 730  $\mu$ g/L to 8  $\mu$ g/L. Dissolved manganese concentrations above the primary screening criteria were associated with low DO concentrations in deep wells as a result of limited exposure to atmospheric oxygen. Dissolved uranium was not identified as a CI related to mining activities as it probably originates from localized natural sources and a receptor was not identified for drinking water. Elevated nitrite concentrations were considered anomalous.



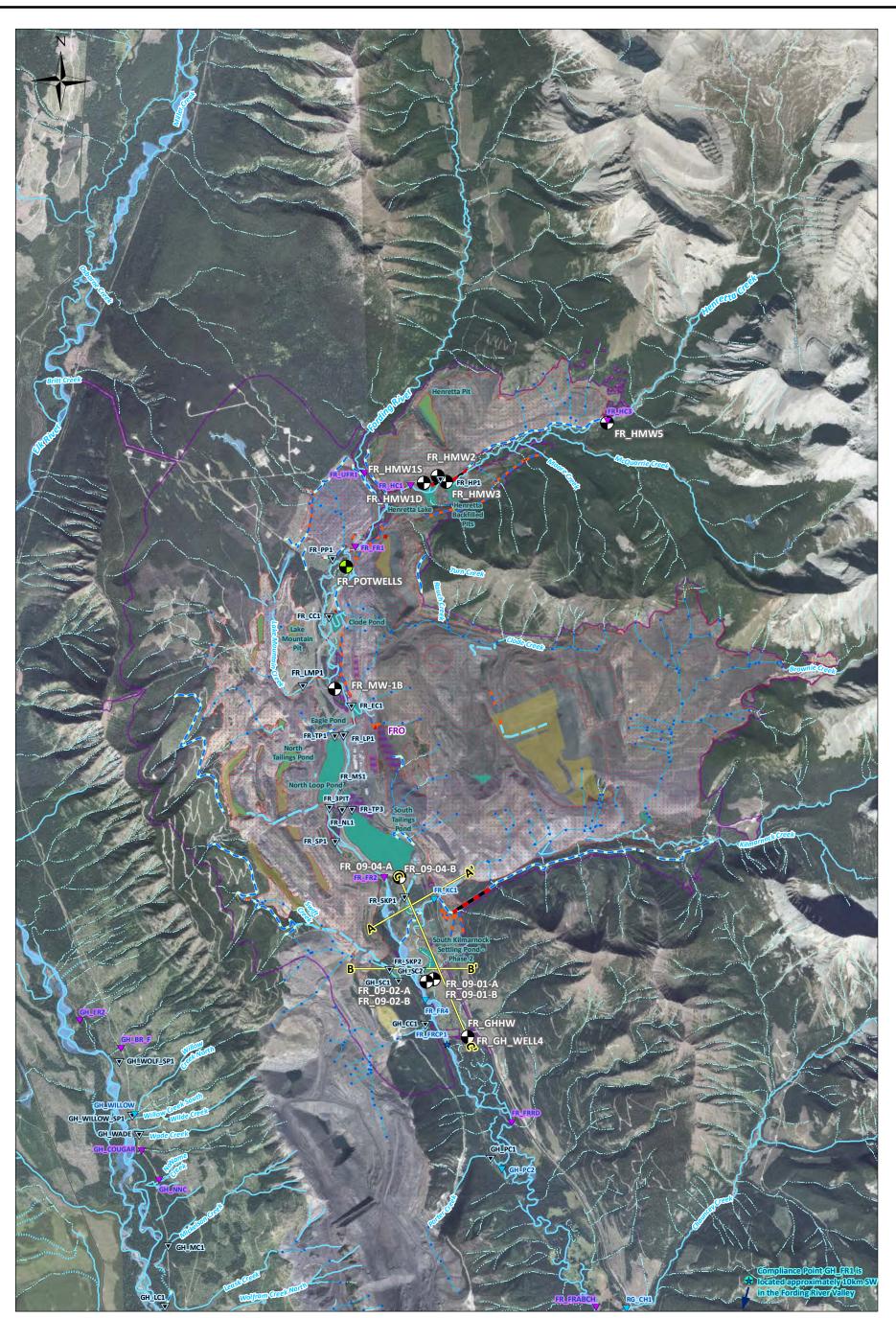
An update of the SSGMP is due in 2018 and the 2017 and historical groundwater monitoring results will be used in the development of an updated plan.

## Recommendations

SNC-Lavalin had the following recommendations for future groundwater monitoring and sampling:

- Field-filter dissolved metals and dissolved organic carbon samples. It was noted that this was done for all samples after Q1 with the exception of one location in Q2 2017; therefore, we assume that the practice of field-filtering is established for 2018;
- > Record the location where field blanks are collected;
- > Collect manual and level logger measurements at approximately the same time of day to avoid possible discrepancies in data due to daily fluctuation of water table;
- Collect duplicate samples from wells with higher CI concentrations instead of the reference well (FR\_HMW5);
- Refrain from adding hot water from FR\_POTWELLS to defrost frozen wells (specifically FR\_HMW5); and
- > Establish a common logging frequency between barometric and elevation level data loggers.

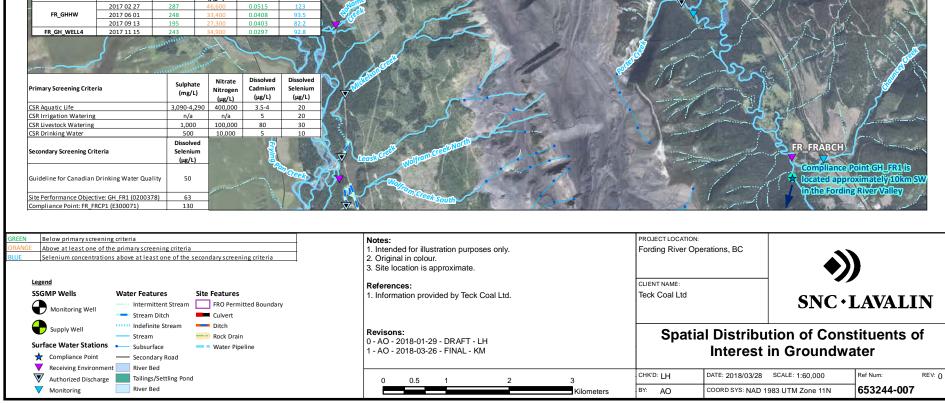
Regional Groundwater Monitoring Program Teck Coal Ltd.




| Area            | Well ID                  | Rationale                                                                                                                                                                                                                                                                                                                                |
|-----------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | FR_HMW1S<br>FR_HMW1D     | Monitor groundwater in backfilled pits between the Henretta reclaimed<br>channel and the spoils to the north, downgradient of the discharge area<br>for the Henretta Pit sump water. Monitor deep groundwater system high<br>in CI in backfilled pits and continue to evaluate connectivity to surface<br>water and shallow groundwater. |
| Henretta Valley | FR_HMW2                  | Monitor upland groundwater high in CI north of the Henretta reclaimed channel near the base of the spoil.                                                                                                                                                                                                                                |
|                 | FR_HMW3                  | Monitor groundwater in backfilled pits in the eastern portion of the former<br>South Henretta Pit. This well provides local-scale triangulation to assess<br>groundwater flow direction in the vicinity of the pits.                                                                                                                     |
|                 | FR_HMW5                  | Upgradient of mining impacts in Henretta valley bottom to monitor<br>reference groundwater conditions.                                                                                                                                                                                                                                   |
|                 | FR_POTWELLS <sup>a</sup> | Monitor seepage and attenuation downgradient of Henretta Ridge and the Turnbull spoil.                                                                                                                                                                                                                                                   |
|                 | FR_MW-1B                 | Monitor seepage from upgradient spoils, Turnbull Pit, and Clode Creek and Lake Mountain Pit Lake.                                                                                                                                                                                                                                        |
| Fording River   | FR_09-04-A<br>FR_09-04-B | Monitor selenium attenuation in shallow valley bottom sediments<br>downgradient of the South Tailings Pond. Monitor seepage from the<br>South Tailings Pond to overburden material immediately downgradient<br>within the Fording River valley bottom.                                                                                   |
| Valley          | FR_09-02-A<br>FR_09-02-B | Monitor selenium attenuation in shallow valley bottom sediments<br>downgradient of the South Tailings Pond and Kilmarnock Settling Ponds.<br>Assess influence of losing Fording River to valley bottom sediments.                                                                                                                        |
|                 | FR_09-01-A<br>FR_09-01-B | Monitor selenium attenuation in shallow valley bottom sediments<br>downgradient of the South Tailings Pond and Kilmarnock Settling Ponds.<br>Monitor mine impact at the southern extent of the mine-permitted area.<br>Monitor additional inputs to Fording River valley bottom sediments<br>downgradient of the South Tailings Pond.    |
|                 | FR_GHHW <sup>♭</sup>     | Monitor mine-impact downgradient of the FRO mining operations.                                                                                                                                                                                                                                                                           |

## Table A: Summary of Groundwater Monitoring Locations and Rationale

<sup>a</sup> FR\_POTWELLS consists of six wells: FR\_PW91, FR\_PW92, FR\_PW93, FR\_PW94, FR\_PW95, and FR\_PW96.


<sup>b</sup> FR\_GHHW consists of four wells including FR\_GH\_WELL1, FR\_GH\_WELL2, FR\_GH\_WELL3, and FR\_GH\_WELL4. As a recommendation of the hydrogeological assessment, monitoring of a dedicated well (FR\_GH\_WELL4) began in Q4 2017.



| Legend<br>SSGMP Wells<br>Monitoring Well<br>Supply Well<br>Surface Water Stations           | Water Features Intermittent Stream Stream Ditch Indefinite Stream Stream Subsurface | Site Features<br>Geological Cross Sections<br>Secondary Road<br>Pit<br>Stockpiles<br>Waste Dump (Spoils) | Notes:         1. Intended for illustration purposes only.         2. Original in colour.         3. Site location is approximate.         References:         1. Information provided by Teck Coal Ltd.         2. Mapped Aquifers are from Water Resources Atlas (BC ENV) | PROJECT LOCATION:<br>Fording River Opp<br>CLIENT NAME:<br>Teck Coal Ltd |                                  | )<br>C·LAVALIN |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|----------------|
| <ul> <li>Receiving Environment</li> <li>Authorized Discharge</li> <li>Monitoring</li> </ul> | River Bed<br>Tailings/Settling Pone<br>River Bed<br>Mapped Aquifers                 | FRO Permitted Boundary<br>Culvert<br>Ditch<br>Rock Drain<br>Water Pipeline                               | Revisons:<br>0 - AO - 2018-01-29 - DRAFT - LH<br>1 - AO - 2018-03-26 - FINAL - KM                                                                                                                                                                                           | Site Fe                                                                 | atures and Sample                | Location Plan  |
|                                                                                             |                                                                                     |                                                                                                          | Kilometers                                                                                                                                                                                                                                                                  | BY: AO                                                                  | COORD SYS: NAD 1983 UTM Zone 11N | 653244-002     |

Project Path: P:\Current Projects\Teck Coal Ltd\GIS\Exports\ANNUAL REPORT

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1.1                                  |                         | S /                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|-------------------------------|---------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                         |                               |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                    |                         |                               |                                       | 18                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t, t                                   |                         | 26                            | 1                                     | 55                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                      |                         |                               | 18                                    | الحر)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 12A                     |                               | 1 p                                   | \$ _J                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                         | A                             | M                                     | 31                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                         |                               | े हे                                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>n 7</u>                             | The                     |                               |                                       | 7/                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>(yyyy mm dd)                   | Sulphate<br>(mg/L)      | Nitrate<br>Nitrogen<br>(µg/L) | Dissolved<br>Cadmium<br>(µg/L)        | Dissolved<br>Selenium<br>(µg/L) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FR_HMW5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2017 06 21<br>2017 09 18               | 43.2<br>44.3            | < 5.0<br>< 5.0                | < 0.0050<br>< 0.0050                  | 14.8<br>0.334                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2017 11 14                             | 45.4                    | < 5.0<br>Nitrate              | < 0.0050<br>Dissolved                 | 1.03<br>Dissolved               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>(yyyy mm dd)                   | Sulphate<br>(mg/L)      | Nitrogen<br>(µg/L)            | Cadmium<br>(μg/L)                     | Selenium<br>(µg/L)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FR_HMW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2017 02 27<br>2017 06 21<br>2017 09 19 | 1,670<br>1,730<br>1,880 | 116,000<br>100,000<br>103,000 | 0.265<br>0.339<br>0.205               | 547<br>574<br>674               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2017 11 14                             | 1,860                   | 109,000                       | 0.252                                 | 657                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>(yyyy mm dd)                   | Sulphate<br>(mg/L)      | Nitrate<br>Nitrogen<br>(µg/L) | Dissolved<br>Cadmium<br>(µg/L)        | Dissolved<br>Selenium<br>(µg/L) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FR_HMW1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2017 02 27<br>2017 06 22               | 1,530<br>1,690          | 174,000<br>163,000            | 0.109<br>0.120                        | 236<br>239                      | FR_HMW5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2017 09 18<br>2017 11 14               | 1,750<br>1,760          | 158,000<br>156,000            | 0.109<br>0.119                        | 262<br>236                      | A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>(yyyy mm dd)                   | Sulphate<br>(mg/L)      | Nitrate<br>Nitrogen           | Dissolved<br>Cadmium                  | Dissolved<br>Selenium           | FR_HMW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2017 02 27<br>2017 06 22               | 1,630<br>1,730          | (μg/L)<br>157,000<br>155,000  | (μg/L)<br>0.0769<br>0.079             | (μg/L)<br>61.5<br>34.3          | FR_HMW3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FR_HMW1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2017 00 12<br>2017 09 18<br>2017 11 14 | 1,800<br>1,840          | 155,000<br>155,000<br>151,000 | 0.071 0.081                           | 70.1<br>94.3                    | FR_HMW1S<br>FR_HMW1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                   | Sulphate                | Nitrate<br>Nitrogen           | Dissolved<br>Cadmium                  | Dissolved<br>Selenium           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (yyyy mm dd)<br>2017 02 27             | (mg/L)<br>402           | (μg/L)<br>19,600              | (μg/L)<br>0.0918                      | (μg/L)<br>44.4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FR_HMW3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2017 06 22<br>2017 09 19<br>2017 11 14 | 193<br>208<br>236       | 9,170<br>7,600<br>8,700       | <0.025<br>0.0353<br>0.0377            | 44.6<br>56.3<br>66.1            | FR_POTWELLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 - 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date                                   | Sulphate                | Nitrate                       | Dissolved                             | Dissolved                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (yyyy mm dd)<br>2017 03 02             | (mg/L)                  | Nitrogen<br>(µg/L)<br>4,550   | Cadmium<br>(μg/L)<br>0.0102           | Selenium<br>(µg/L)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FR_POTWELLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2017 05 02<br>2017 06 27<br>2017 09 19 | 55.3<br>121             | 1,650<br>3,820                | 0.0102                                | 9.4<br>20.5                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 2 2 1 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2017 11 21                             | 137                     | 4,150<br>Nitrate              | 0.0087<br>Dissolved                   | 25.4<br>Dissolved               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>(yyyy mm dd)                   | Sulphate<br>(mg/L)      | Nitrogen<br>(µg/L)            | Cadmium<br>(µg/L)                     | Selenium<br>(µg/L)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FR_MW-1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2017 02 23<br>2017 06 22<br>2017 09 19 | 191<br>64.2<br>180      | 20,800<br>4,870<br>14,700     | 0.0157<br><0.025<br>0.0175            | 50.2<br>13<br>47.1              | FR. MW-1B<br>FRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2017 11 21                             | 168                     | 11,800                        | 0.0142                                | 42                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>(yyyy mm dd)                   | Sulphate<br>(mg/L)      | Nitrate<br>Nitrogen<br>(µg/L) | Dissolved<br>Cadmium<br>(µg/L)        | Dissolved<br>Selenium<br>(µg/L) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FR_09-04-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2017 02 23<br>2017 06 12               | 345<br>370              | 106<br>70                     | 1.05<br>1.13                          | 0.175                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2017 09 12<br>2017 11 21               | 344<br>323              | 49<br>< 5.0                   | 1.01<br>0.982                         | 0.107 0.112                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>(yyyy mm dd)                   | Sulphate<br>(mg/L)      | Nitrate<br>Nitrogen           | Dissolved<br>Cadmium                  | Dissolved<br>Selenium           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2017 02 23<br>2017 06 12               | 353<br>377              | (μg/L)<br>109<br>30           | (μg/L)<br>1.02<br>1.12                | (μg/L)<br>0.201<br>0.135        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FR_09-04-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2017 00 12<br>2017 09 12<br>2017 11 21 | 343<br>328              | 33<br>< 5.0                   | 1.01<br>0.977                         | 0.133                           | attramed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                   | Sulphate                | /<br>Nitrate<br>Nitrogen      | Dissolved<br>Cadmium                  | Dissolved<br>Selenium           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (yyyy mm dd)<br>2017 03 08             | (mg/L)                  | (μg/L)<br>47,200              | (μg/L)<br>0.0571                      | (μg/L)<br>120                   | FR_09-04-A<br>FR_09-04-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FR_09-01-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2017 06 01<br>2017 09 12<br>2017 11 22 | 208<br>347<br>486       | 35,100<br>21,200<br>54.300    | 0.0269<br>0.0478<br>0.0471            | 112<br>68.1<br>166              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aller -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date                                   | Sulphate                | Nitrate                       | Dissolved                             | Dissolved                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (yyyy mm dd)<br>2017 03 08             | (mg/L)                  | Nitrogen<br>(µg/L)<br>25,900  | Cadmium<br>(μg/L)<br>0.0536           | Selenium<br>(µg/L)<br>71.8      | FR_09-02-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FR_09-01-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2017 06 01<br>2017 09 12               | 267<br>296              | 43,900<br>12,700              | 0.0209 0.0350                         | 126<br>44.2                     | FR_09-02-В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| and the second s | 2017 11 22                             | 407                     | 29,600<br>Nitrate             | 0.0402<br>Dissolved                   | 91.5<br>Dissolved               | FR_09-01-A<br>FR_09-01-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>(yyyy mm dd)                   | Sulphate<br>(mg/L)      | Nitrogen<br>(µg/L)            | Cadmium<br>(µg/L)                     | Selenium<br>(µg/L)              | THE SKINGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FR_09-02-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2017 03 20<br>2017 06 01<br>2017 09 13 | 264<br>236<br>200       | 19,800<br>39,400<br>11,300    | 0.0431<br>0.0268<br>0.0337            | 50.8<br>117<br>38.2             | FR_GH_WELL4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| and the second s | 2017 09 13<br>2017 11 22               | 200                     | 12,100                        | 0.0434                                | 47.9                            | FR_GHH₩.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>(yyyy mm dd)                   | Sulphate<br>(mg/L)      | Nitrate<br>Nitrogen           | Dissolved<br>Cadmium<br>(µg/L)        | Dissolved<br>Selenium<br>(µg/L) | Kay I and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FR_09-02-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2017 03 20<br>2017 06 01               | 267<br>253              | (µg/L)<br>18,900<br>40,500    | 0.0335                                | 43.8<br>117                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2017 09 13<br>2017 11 22               | 186<br>254              | 9,900<br>11,500               | 0.0230                                | 34.4<br>43.1                    | Willow and a Greats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in in                                  |                         | Nitrate                       | Dissolved                             | Dissolved                       | Wedgened Contraction of the Cont |
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>(yyyy mm dd)                   | Sulphate<br>(mg/L)      | Nitrate<br>Nitrogen<br>(µg/L) | Cadmium<br>(µg/L)                     | Selenium<br>(µg/L)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2017 02 27                             | 287                     | 46,600                        | 0.0515                                | 123                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



MXD Path: P:\Current Projects\Teck Coal Ltd\GIS\Map Series\2017 Annual Reports\653244-007\_SpatialDistofCor

Project Path: P:\Current Projects\Teck Coal Ltd\GIS\Exports\ANNUAL REPORT

| Area                 | Well ID                  | Monitoring<br>Program | Well Type  |         | linates<br>IAD 83) | LIDAR<br>Ground<br>Elevation | Ground<br>Elevation | TOC<br>Elevation | Stick Up<br>Height | Drilled<br>Depth | Well<br>Diameter | Top of<br>Screen<br>Depth | Bottom of<br>Screen<br>Depth | Screened<br>Formation   | Depth to<br>Bedrock | Hydraulic<br>Conductivity |
|----------------------|--------------------------|-----------------------|------------|---------|--------------------|------------------------------|---------------------|------------------|--------------------|------------------|------------------|---------------------------|------------------------------|-------------------------|---------------------|---------------------------|
|                      |                          |                       |            | Easting | Northing           | masl                         | masl                | masl             | m                  | mbgs             | mm               | mbgs                      | mbgs                         |                         | mbgs                | m/s                       |
|                      | FR_HMW1S                 | SSGMP                 | Monitoring | 652441  | 5566518            | 1735.42                      | 1732.30             | 1733.02          | 0.72               | 33.5             | 51               | 29.9                      | 32.5                         | Gravel                  | 33.5                | -                         |
|                      | FR_HMW1D                 | SSGMP                 | Monitoring | 652437  | 5566516            | 1734.87                      | 1732.20             | 1732.97          | 0.77               | 54.3             | 51               | 51.2                      | 54.3                         | Gravel / Coal / Bedrock | 53.9                | 1.0E-04                   |
| Henretta Valley      | FR_HMW2                  | SSGMP                 | Monitoring | 652666  | 5566634            | 1769.18                      | 1767.30             | 1768.04          | 0.74               | 48.8             | 51               | 43.3                      | 46.3                         | -                       | 47.7                | 3.0E-03                   |
|                      | FR_HMW3                  | SSGMP                 | Monitoring | 652810  | 5566540            | 1781.95                      | 1728.20             | 1729.01          | 0.81               | 22.6             | 51               | 16.7                      | 19.7                         | Silty Gravel            | 22.6                | 7.0E-04                   |
|                      |                          |                       |            |         |                    |                              |                     |                  |                    |                  |                  |                           |                              |                         |                     | 8.0E-03                   |
|                      | FR_HMW5                  | SSGMP, RGMP           | Monitoring | 655476  | 5567514            | 1793.23                      | 1785.20             | 1786.03          | 0.83               | 12.6             | 51               | 7.30                      | 10.40                        | Gravel                  | 10.7                | 9.0E-05                   |
|                      | FR_POTWELLS <sup>a</sup> | SSGMP                 | Supply     | 651152  | 5565133            | 1686.77                      | -                   | -                | -                  | -                | -                | -                         | -                            | -                       | -                   | -                         |
|                      | FR_MW-1B                 | SSGMP                 | Monitoring | 650966  | 5563112            | 1670.16                      | 1652.00             | 1652.67          | 0.67               | 8.2              | 51               | 5.2                       | 8.2                          | Clay / Bedrock          | 7.3                 | 4.0E-04                   |
|                      | FR_09-04-A               | SSGMP                 | Monitoring | 652033  | 5560000            | 1605.52                      | 1604.98             | 1605.89          | 0.91               | 5.0              | 51               | 1.14                      | 4.66                         | Sandy Gravel            | -                   | 3.0E-03                   |
|                      | FR_09-04-B               | SSGMP                 | Monitoring | 652033  | 5560000            | 1605.52                      | 1605.03             | 1605.57          | 0.54               | 7.0              | 51               | 5.10                      | 6.62                         | Gravel                  | 6.5                 | 9.6E-05                   |
| Fording River Valley | FR_09-02-A               | SSGMP                 | Monitoring | 652482  | 5558261            | 1584.95                      | 1584.69             | 1585.51          | 0.82               | 11.5             | 51               | 8.30                      | 11.35                        | Sandy Gravel            | -                   | 1.0E-03                   |
|                      | FR_09-02-B               | SSGMP                 | Monitoring | 652842  | 5558261            | 1584.95                      | 1584.73             | 1585.40          | 0.67               | 30.0             | 51               | 20.81                     | 22.33                        | Gravel                  | -                   | 9.9E-05                   |
|                      | FR_09-01-A               | SSGMP, RGMP           | Monitoring | 652601  | 5558300            | 1584.64                      | 1584.10             | 1584.95          | 0.85               | 8.4              | 51               | 3.83                      | 6.88                         | Sandy Gravel            | -                   | 1.0E-03                   |
|                      | FR_09-01-B               | SSGMP, RGMP           | Monitoring | 652601  | 5558300            | 1584.64                      | 1584.10             | 1584.86          | 0.76               | 29.0             | 51               | 17.15                     | 18.67                        | Gravel                  | -                   | 1.5E-04                   |
|                      | FR_GHHW <sup>♭</sup>     | SSGMP, RGMP           | Supply     | 653150  | 5557337            | 1576.45                      | 1575.80             | -                | -                  | 29.0             | -                | 25.90                     | 28.95                        | Sand and Gravel         | -                   | -                         |

Notes: a) FR\_POTWELLS consists of six wells (FR\_PW91, FR\_PW92, FR\_PW93, FR\_PW94, FR\_PW95, FR\_PW96). Details for for FR\_PW91 are provided above; b) FR\_GHHW consists of four wells including FR\_GH\_WELL1, FR\_GH\_WELL2, FR\_GH\_WELL3, and FR\_GH\_WELL4. As a recommendation of the hydrogeological assessment, monitoring of a dedicated well (FR\_GH\_WELL4) began in Q4 2017. Details for FR\_GH\_WELL4 are provided above.

masl = metres above sea level mbgs = metres below ground surface

### TABLE 2: Summary of Groundwater Elevations and Calculated Vertical Gradients

| Area                 | Well ID                  | Ground<br>Elevation | TOC<br>Elevation | Stick Up<br>Height | Date of Static<br>Water Level<br>Measurement | Depth to<br>Water | Water Level<br>Elevation | Well Pairs  | Date of Static<br>Water Level<br>Measurement | Calculated<br>Vertical<br>Gradient |
|----------------------|--------------------------|---------------------|------------------|--------------------|----------------------------------------------|-------------------|--------------------------|-------------|----------------------------------------------|------------------------------------|
|                      |                          | masl                | masi             | m                  | yyyy/mm/dd                                   | mtoc              | masl                     |             | yyyy/mm/dd                                   | <u>m/m</u>                         |
|                      | FR_HMW1S                 | 1732.30             | 1733.02          | 0.72               | 2017/02/27<br>2017/06/22                     | 15.885            | 1717.135                 | FR_HMW1S    | 2017/02/27<br>2017/06/22                     | 0.009                              |
|                      |                          |                     |                  |                    | 2017/08/22 2017/09/18                        | 15.516<br>15.838  | 1717.504<br>1717.182     | and         | 2017/09/18                                   | 0.006                              |
|                      |                          |                     |                  |                    | 2017/03/18                                   | 15.408            | 1717.612                 | FR_HMW1D    | 2017/11/14                                   | 0.009                              |
|                      | FR_HMW1D                 | 1732.20             | 1732.97          | 0.77               | 2017/02/27                                   | 15.645            | 1717.325                 |             | 2017/11/14                                   | 0.000                              |
|                      |                          | 1102.20             | 1102.01          | 0.11               | 2017/06/22                                   | 15.331            | 1717.639                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/09/18                                   | 15.603            | 1717.367                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/11/14                                   | 15.189            | 1717.781                 |             |                                              |                                    |
|                      | FR_HMW2                  | 1767.30             | 1768.04          | 0.74               | 2017/02/27                                   | 45.264            | 1722.776                 |             |                                              |                                    |
| Henretta Valley      |                          |                     |                  |                    | 2017/06/21                                   | 45.049            | 1722.991                 |             |                                              |                                    |
| -                    |                          |                     |                  |                    | 2017/09/19                                   | 43.763            | 1724.277                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/11/14                                   | 45.106            | 1722.934                 |             |                                              |                                    |
|                      | FR_HMW3                  | 1728.20             | 1729.01          | 0.81               | 2017/02/27                                   | 7.879             | 1721.131                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/06/22                                   | 7.353             | 1721.657                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/09/19                                   | 7.786             | 1721.224                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/11/14                                   | 7.836             | 1721.174                 |             |                                              |                                    |
|                      | FR_HMW5                  | 1785.20             | 1786.03          | 0.83               | 2017/06/21                                   | 1.491             | 1784.539                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/09/18                                   | 1.642             | 1784.388                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/11/14                                   | 1.672             | 1784.358                 |             |                                              |                                    |
|                      | FR POTWELLS <sup>a</sup> | -                   | -                | -                  | -                                            | -                 | -                        |             |                                              |                                    |
|                      | FR_MW-1B                 | 1652.00             | 1652.67          | 0.67               | 2017/02/23                                   | 2.242             | 1650.428                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/06/22                                   | 1.920             | 1650.750                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/09/19                                   | 2.224             | 1650.446                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/11/21                                   | 2.206             | 1650.464                 |             |                                              |                                    |
|                      | FR_09-04-A               | 1604.98             | 1605.89          | 0.91               | 2017/02/23                                   | 2.017             | 1603.873                 | FR_09-04-A  | 2017/02/23                                   | -0.169                             |
|                      |                          |                     |                  |                    | 2017/06/12                                   | 1.908             | 1603.982                 | and         | 2017/06/12                                   | -0.173                             |
|                      |                          |                     |                  |                    | 2017/09/12                                   | 2.126             | 1603.764                 | FR_09-04-B  | 2017/09/12                                   | -0.160                             |
|                      |                          |                     |                  |                    | 2017/11/21                                   | 2.197             | 1603.693                 | 111_00 01 0 | 2017/11/21                                   | -0.151                             |
|                      | FR_09-04-B               | 1605.03             | 1605.57          | 0.54               | 2017/02/23                                   | 2.188             | 1603.382                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/06/12                                   | 2.091             | 1603.479                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/09/12                                   | 2.272             | 1603.298                 |             |                                              |                                    |
|                      |                          | 4504.00             | 1505.54          | 0.00               | 2017/11/21                                   | 2.316             | 1603.254                 |             | 0047/00/00                                   | 0.070                              |
|                      | FR_09-02-A               | 1584.69             | 1585.51          | 0.82               | 2017/03/20                                   | 7.085             | 1578.425                 | FR_09-02-A  | 2017/03/20                                   | -0.073                             |
| Fording River Valley |                          |                     |                  |                    | 2017/06/01                                   | 1.734             | 1583.776                 | and         | 2017/06/01                                   | -0.095                             |
|                      |                          |                     |                  |                    | 2017/09/13<br>2017/11/22                     | 7.228<br>8.438    | 1578.282                 | FR_09-02-B  | 2017/09/13                                   | -0.071<br>-0.060                   |
|                      | FR_09-02-B               | 1584.73             | 1585.40          | 0.67               | 2017/03/20                                   | 7.829             | 1577.072<br>1577.571     |             | 2017/11/22                                   | -0.060                             |
|                      | FR_09-02-D               | 1564.75             | 1565.40          | 0.67               | 2017/03/20                                   | 2.738             | 1582.662                 |             |                                              |                                    |
|                      |                          |                     |                  |                    |                                              |                   |                          |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/09/13<br>2017/11/22                     | 7.953<br>9.035    | 1577.447<br>1576.365     |             |                                              |                                    |
|                      | FR_09-01-A               | 1584.10             | 1584.95          | 0.85               | 2017/03/08                                   | 7.357             | 1577.593                 |             | 2017/03/08                                   | -0.048                             |
|                      |                          | 1304.10             | 1304.33          | 0.00               | 2017/06/01                                   | 1.156             | 1583.794                 | FR_09-01-A  | 2017/06/01                                   | -0.048                             |
|                      |                          |                     |                  |                    | 2017/09/12                                   | 6.405             | 1578.545                 | and         | 2017/09/12                                   | -0.050                             |
|                      |                          |                     |                  |                    | 2017/11/22                                   | 7.642             | 1577.308                 | FR_09-01-B  | 2017/11/22                                   | -0.046                             |
|                      | FR_09-01-B               | 1584.10             | 1584.86          | 0.76               | 2017/03/08                                   | 7.864             | 1576.996                 |             | 2011/11/22                                   | 0.040                              |
|                      |                          | 100-110             | 100-1.00         | 0.70               | 2017/06/01                                   | 1.594             | 1583.266                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/09/12                                   | 6.946             | 1577.914                 |             |                                              |                                    |
|                      |                          |                     |                  |                    | 2017/11/22                                   | 8.133             | 1576.727                 |             |                                              |                                    |
|                      | FR GHHW <sup>b</sup>     | 1575.80             | -                | _                  | -                                            | -                 | -                        |             |                                              |                                    |

Notes: a) FR\_POTWELLS consists of six wells (FR\_PW91, FR\_PW92, FR\_PW93, FR\_PW94, FR\_PW95, FR\_PW96). Details for for FR\_PW91 are provided above; b) FR\_GHHW consists of four wells including FR\_GH\_WELL1, FR\_GH\_WELL2, FR\_GH\_WELL3, and FR\_GH\_WELL4. As a recommendation of the hydrogeological assessment, monitoring of a dedicated well (FR\_GH\_WELL4) began in Q4 2017. Details for FR\_GH\_WELL4 are provided above.

masl = metres above sea level

mbgs = metres below ground surface

#### **TABLE 3: Field Measured Parameters**

|                      |              |             |      | Field Par |           | <b>E</b> istd |
|----------------------|--------------|-------------|------|-----------|-----------|---------------|
| 0                    |              | -           |      |           | Dissolved | Field         |
| Sample               | Sample Date  | Temperature | pН   | ORP       | Oxygen    | Conductivity  |
| Location             | (yyyy mm dd) | °C          | рН   | mV        | mg/L      | μS/cm         |
| Internetta Valley    |              |             |      | 1 1       |           |               |
| FR_HMW1D             | 2017 02 27   | 4.4         | 7.06 | 48.5      | 1.97      | 3,367         |
|                      | 2017 06 22   | 3.9         | 7.18 | 139.6     | 1.89      | 3,638         |
|                      | 2017 09 18   | 3.8         | 7.03 | 173.9     | 0.05      | 3,542         |
|                      | 2017 11 14   | 3.6         | 6.77 | 204.6     | 0.31      | 3,627         |
| FR_HMW1S             | 2017 02 27   | 4.3         | 7.08 | 57.8      | 1.32      | 3,347         |
|                      | 2017 06 22   | 3.7         | 7.04 | 144.1     | 1.52      | 3,612         |
|                      | 2017 09 18   | 3.6         | 7.03 | 181.7     | 0.19      | 3,482         |
|                      | 2017 11 14   | 3.6         | 6.88 | 78.8      | 0.54      | 3,425         |
| FR_HMW2              | 2017 02 27   | 2.8         | 7.03 | 55.2      | 2.81      | 3,149         |
|                      | 2017 06 21   | 6.0         | 6.97 | 65.3      | 2.24      | 3,440         |
|                      | 2017 09 19   | 1.7         | 7.18 | 182.1     | 8.04      | 3,352         |
|                      | 2017 11 14   | 2.0         | 6.59 | 210.7     | 0.67      | 3,435         |
| FR_HMW3              | 2017 02 27   | 4.3         | 7.36 | 47.8      | 0.91      | 1,105         |
|                      | 2017 06 22   | 3.5         | 7.53 | 174.2     | 2.84      | 687.3         |
|                      | 2017 09 19   | 5.5         | 7.73 | 74.9      | 1.24      | 703.6         |
|                      | 2017 11 14   | 5.3         | 7.35 | -14.4     | 2.01      | 755.4         |
| FR_HMW5              | 2017 06 21   | 3.4         | 8.01 | -219.9    | 0.62      | 362.9         |
| _                    | 2017 09 18   | 3.6         | 8.05 | -174.7    | 0.34      | 348.6         |
|                      | 2017 11 14   | 3.6         | 8.22 | -155.2    | 0.34      | 345.4         |
| Fording River Va     | alley        | 1           |      |           |           |               |
| FR POTWELLS          | 2017 03 02   | 1.8         | 8.12 | 55.5      | 10.56     | 497.2         |
| -                    | 2017 06 27   | 6.2         | 8.26 | 129.0     | 9.62      | 320.2         |
|                      | 2017 09 19   | 8.9         | 7.86 | 135.5     | 8.84      | 458.2         |
|                      | 2017 11 21   | 4.1         | 7.93 | 234.7     | 10.73     | 500.2         |
| FR MW-1B             | 2017 02 23   | 3.1         | 7.89 | 47.7      | 8.31      | 707.3         |
| -                    | 2017 06 22   | 4.0         | 7.95 | 130.6     | 6.64      | 388.1         |
|                      | 2017 09 19   | 7.5         | 7.95 | 180.5     | 6.34      | 665.1         |
|                      | 2017 11 21   | 6.0         | 7.71 | 232.1     | 7.45      | 648.8         |
| FR 09-04-A           | 2017 02 23   | 8.3         | 7.34 | 48.7      | 0.17      | 1,015         |
|                      | 2017 02 20   | 9.8         | 7.25 | 143.4     | 0.05      | 1,010         |
|                      | 2017 00 12   | 10.0        | 7.18 | 236.8     | 0.06      | 1,093         |
|                      | 2017 11 21   | 8.3         | 7.17 | 243.1     | 0.09      | 1,050         |
| FR 09-04-B           | 2017 02 23   | 8.6         | 7.37 | 53.7      | 0.09      | 1,016         |
| 11(_00 04 B          | 2017 02 23   | 9.8         | 7.14 | 182.0     | 0.09      | 1,113         |
|                      | 2017 00 12   | 9.6         | 7.14 | 229.4     | 0.09      | 1,113         |
|                      | 2017 09 12   | 9.6<br>8.6  | 7.16 | 229.4     | 0.07      | 1,058         |
|                      | _            |             |      |           |           |               |
| FR_09-02-A           | 2017 03 20   | 3.4         | 7.75 | 77.5      | 10.72     | 582.0         |
|                      | 2017 06 01   | 5.4         | 7.56 | 179.3     | 10.23     | 1,016         |
|                      | 2017 09 13   | 10.5        | 7.53 | 204.7     | 6.56      | 715.0         |
|                      | 2017 11 22   | 10.0        | 7.55 | 254.0     | 7.59      | 829.0         |
| FR_09-02-B           | 2017 03 20   | 4.3         | 7.58 | 82.6      | 8.60      | 844.0         |
|                      | 2017 06 01   | 4.0         | 7.52 | 192.7     | 10.52     | 1,067         |
|                      | 2017 09 13   | 7.3         | 7.53 | 176.4     | 5.85      | 714.6         |
| <b>FD</b> 00 51 1    | 2017 11 22   | 9.3         | 7.44 | 249.6     | 6.49      | 846.0         |
| FR_09-01-A           | 2017 03 08   | 2.8         | 7.73 | 63.4      | 8.43      | 1,447         |
|                      | 2017 06 01   | 5.5         | 7.65 | 181.7     | 10.76     | 990.0         |
|                      | 2017 09 12   | 8.6         | 7.34 | 226.2     | 5.41      | 1,185         |
|                      | 2017 11 22   | 6.9         | 7.30 | 252.5     | 7.71      | 1,542         |
| FR_09-01-B           | 2017 03 08   | 4.7         | 7.45 | 77.9      | 5.76      | 1,231         |
|                      | 2017 06 01   | 6.1         | 7.32 | 181.4     | 10.34     | 1,102         |
|                      | 2017 09 12   | 7.9         | 7.23 | 230.5     | 4.28      | 1,012         |
|                      | 2017 11 22   | 7.6         | 7.29 | 250.1     | 8.29      | 1,298         |
| FR_GHHW <sup>a</sup> | 2017 02 27   | 7.9         | 7.57 | 50.1      | 5.84      | 1,082         |
| —                    | 2017 06 01   | 12.2        | 7.34 | 86.5      | 6.40      | 1,024         |
|                      | 2017 09 13   | 17.7        | 7.33 | 111.4     | 3.32      | 898.0         |
|                      | 2017 11 15   | 8.7         | 7.48 | 95.9      | 5.39      | 976.0         |

All terms defined within the body of SNC-Lavalin's report.

<sup>a</sup> In the fourth quarter of 2017, FR\_GHHW was replaced with singular monitoring well FR\_GH\_WELL4 based on recommendations from the Hydrogeological Assessment (SNC-Lavalin, 2017b). Monitoring well FR\_GH\_WELL4 will be used in place of FR\_GHHW in future sampling events.

|                   |                          |               |          | Physi                   | ical Paran             | neters                 |           |                             |                           |              |          | -        | Disso          | lved Inorgan         | ics                 | -               |                        |                          | Orga                 | anics                    |
|-------------------|--------------------------|---------------|----------|-------------------------|------------------------|------------------------|-----------|-----------------------------|---------------------------|--------------|----------|----------|----------------|----------------------|---------------------|-----------------|------------------------|--------------------------|----------------------|--------------------------|
| Sample            | Sample Date              | Laboratory pH | Hardness | Laboratory Conductivity | Total Suspended Solids | Total Dissolved Solids | Turbidity | Total Alkalinity (as CaCO3) | Ammonia, total (as N)     | Bromide      | Chloride | Fluoride | Nitrate (as N) | Nitrite (as N)       | Kjeldahl Nitrogen-N | Ortho-Phosphate | Total Phosphorous as P | Sulphate                 | Total Organic Carbon | Dissolved Organic Carbon |
| Location          | (yyyy mm dd)             | рН            | mg/L     | µS/cm                   | mg/L                   | mg/L                   | NTU       | mg/L                        | μg/L                      | mg/L         | mg/L     | μg/L     | μg/L           | μg/L                 | mg/L                | mg/L            | mg/L                   | mg/L                     | mg/L                 | mg/L                     |
| BC Standard       |                          |               |          |                         |                        |                        |           |                             |                           |              |          |          |                |                      |                     |                 |                        | 4                        |                      |                          |
| CSR Aquatic Life  |                          | n/a           | n/a      | n/a                     | n/a                    | n/a                    | n/a       | n/a                         | 3,700-18,500 <sup>b</sup> | n/a          | 1,500    | 3,000    | 400,000        | 200-800 <sup>c</sup> | n/a                 | n/a             | n/a                    | 3,090-4,290 <sup>d</sup> | n/a                  | n/a                      |
| CSR Irrigation Wa |                          | n/a           | n/a      | n/a                     | n/a                    | n/a                    | n/a       | n/a                         | n/a                       | n/a          | 100      | 1,000    | n/a            | n/a                  | n/a                 | n/a             | n/a                    | n/a                      | n/a                  | n/a                      |
| CSR Livestock W   |                          | n/a           | n/a      | n/a                     | n/a                    | n/a                    | n/a       | n/a                         | n/a                       | n/a          | 600      | 1,000    | 100,000        | 10,000               | n/a                 | n/a             | n/a                    | 1,000                    | n/a                  | n/a                      |
| CSR Drinking Wa   | ater (DW)                | n/a           | n/a      | n/a                     | n/a                    | n/a                    | n/a       | n/a                         | n/a                       | n/a          | 250      | 1,500    | 10,000         | 1,000                | n/a                 | n/a             | n/a                    | 500                      | n/a                  | n/a                      |
| Henretta Valley   |                          |               | o (=o    |                         |                        | 0.710                  |           |                             | o. ( =                    |              | ~ -      | 100      |                |                      | o                   | 0.0400          |                        | 4 000                    |                      |                          |
| FR_HMW1D          | 2017 02 27               | 7.07          | 2,470    | 3,760                   | 2.5                    | 3,710                  | 0.45      | 427                         | 317                       | < 0.25       | 2.5      | 190      | 157,000        | 17.0                 | 0.474               | 0.0139          | 0.025                  | 1,630                    | 1.47                 | 1.39                     |
|                   | 2017 06 22               | 7.65          | 2,340    | 3,780                   | 1.4                    | 3,550                  | 0.69      | 400                         | 228                       | < 0.50       | < 5.0    | < 200    | 155,000        | 11                   | < 0.25              | 0.0025          | 0.0022                 | 1,730                    | 1.63                 | 1.82                     |
|                   | 2017 09 18               | 7.80          | 2,660    | 3,660                   | < 1.0                  | 3,650                  | 0.48      | 374                         | 173                       | < 0.25       | < 2.5    | 140      | 155,000        | 12.3                 | < 0.050             | 0.0034          | 0.0053                 | 1,800                    | 1.03                 | 0.91                     |
|                   | 2017 11 14               | 7.85          | 2,760    | 3,640                   | 1.8                    | 3,340                  | 0.51      | 348                         | 207                       | < 0.50       | < 5.0    | < 200    | 151,000        | 18                   | < 0.050             | 0.0029          | 0.0048                 | 1,840                    | 1.29                 | 1.16                     |
|                   | Duplicate                | 7.88          | 2,920    | 3,680                   | 1.0                    | 3,990                  | 0.56      | 341                         | 208                       | < 0.50       | < 5.0    | < 200    | 153,000        | 20                   | < 0.050             | 0.0034          | 0.0049                 | 1,860                    | 1.27                 | 1.05                     |
|                   | QA/QC RPD%               | < 1           | 6        | 1                       | *                      | 18                     | 9         | 2                           | < 1                       | *            |          | *        | 1              | 11                   | *                   | *               | *                      | 1                        | *                    | *                        |
| FR_HMW1S          | 2017 02 27               | 7.05          | 2,450    | 3,730                   | < 1.0                  | 3,850                  | 0.19      | 414                         | 1,180                     | < 0.25       | < 2.5    | 210      | 174,000        | 8.8                  | 1.27                | 0.0101          | 0.0109                 | 1,530                    | 1.22                 | 1.26                     |
|                   | 2017 06 22               | 7.84          | 2,360    | 3,680                   | < 1.0                  | 3,760                  | 0.30      | 248                         | 1,000                     | < 0.50       | < 5.0    | < 200    | 163,000        | < 10                 | 0.844               | < 0.0010        | < 0.0020               | 1,690                    | 1.61                 | 2.25                     |
|                   | Duplicate                | 7.83          | 2,330    | 3,760                   | 1.0                    | 4,130                  | 0.22      | 363                         | 1,020                     | < 0.50       | < 5.0    | < 200    | 157,000        | 10                   | 1.05                | < 0.0010        | < 0.0020               | 1,630                    | 1.91                 | 2.32                     |
|                   | QA/QC RPD%               | < 1           | 1        | 2                       |                        | 9                      | *         | 38                          | 2                         | *            |          |          | 4              |                      | 22                  | *               | *                      | 4                        | *                    |                          |
|                   | 2017 09 18               | 7.86          | 2,550    | 3,580                   | < 1.0                  | 3,740                  | 0.28      | 350                         | 942                       | 0.31         | < 2.5    | 160      | 158,000        | < 5.0                | 0.422               | < 0.0010        | 0.0022                 | 1,750                    | 0.93                 | 0.97                     |
|                   | 2017 11 14               | 7.93          | 2,870    | 3,630                   | < 1.0                  | 3,510                  | 0.29      | 342                         | 947                       | < 0.50       | < 5.0    | < 200    | 156,000        | < 10                 | < 0.050             | < 0.0010        | 0.0014                 | 1,760                    | 0.99                 | 0.99                     |
| FR_HMW2           | 2017 02 27               | 7.06          | 2,410    | 3,570                   | 663                    | 3,480                  | 696       | 432                         | 12.0                      | < 0.25       | < 2.5    | 130      | 116,000        | 10.7                 | 0.109               | 0.0209          | 1.00                   | 1,670                    | 37.1                 | 0.90                     |
|                   | 2017 06 21               | 7.68          | 2,530    | 3,370                   | 10.1                   | 3,800                  | 7.31      | 416                         | < 5.0                     | < 0.25       | < 2.5    | 100      | 100,000        | 6.7                  | 1.37                | 0.0069          | 0.0124                 | 1,730                    | 1.20                 | 1.06                     |
|                   | 2017 09 19               | 7.83          | 2,570    | 3,520                   | 10.4                   | 3,380                  | 13.6      | 287                         | 12.1                      | < 0.25       | < 2.5    | 120      | 103,000        | 6.4                  | < 0.050             | 0.0065          | 0.0224                 | 1,880                    | 1.33                 | 0.62                     |
| 55.14444          | 2017 11 14               | 7.80          | 2,770    | 3,510                   | 5.2                    | 3,590                  | 4.57      | 332                         | 7.2                       | < 0.25       | < 2.5    | 110      | 109,000        | 10.0                 | < 0.050             | 0.0082          | 0.0137                 | 1,860                    | 1.16                 | 0.65                     |
| FR_HMW3           | 2017 02 27               | 7.31          | 736      | 1,250                   | 2.9                    | 979                    | 1.71      | 282                         | 52.1                      | < 0.050      | 1.00     | 248      | 19,600         | 42.5                 | < 0.050             | 0.0108          | 0.0197                 | 402                      | 1.65                 | 1.26                     |
|                   | 2017 06 22               | 8.24          | 355      | 718                     | 1.0                    | 546                    | 0.82      | 157                         | 18.8                      | < 0.050      | < 0.50   | 210      | 9,170          | 3.0                  | 0.281               | 0.0047          | 0.0050                 | 193                      | 0.93                 | 1.54                     |
|                   | 2017 09 19               | 8.25          | 414      | 756                     | 5.2                    | 559                    | 2.12      | 180                         | 71.6                      | < 0.050      | < 0.50   | 259      | 7,600          | 12.0                 | < 0.050             | 0.0015          | 0.0108                 | 208                      | 0.85                 | 0.58                     |
|                   | 2017 11 14               | 8.40          | 489      | 827                     | 1.0                    | 584                    | 1.04      | 201                         | 70.5                      | < 0.050      | 0.57     | 240      | 8,700          | 5.9                  | 0.303               | 0.0022          | 0.0059                 | 236                      | 0.72                 | 0.50                     |
| FR_HMW5           | 2017 06 21               | 8.22          | 158      | 365                     | < 1.0                  | 231                    | 0.18      | 158                         | 65                        | < 0.050      | 1.34     | 655      | < 5.0          | < 1.0                | 0.061               | 0.0246          | 0.0258                 | 43.2                     | 0.58                 | 1.28                     |
|                   | 2017 09 18               | 8.40          | 162      | 373                     | < 1.0                  | 247                    | 0.12      | 161                         | 61.4                      | < 0.050      | 1.02     | 599      | < 5.0          | < 1.0                | < 0.050             | 0.0227          | 0.0229                 | 44.3                     | < 0.50               | < 0.50                   |
|                   | Duplicate                | 8.33          | 166      | 370<br>1                | < 1.0                  | 232<br>6               | 0.29<br>* | 163<br>1                    | 61.1                      | < 0.050<br>* | 1.07     | 593<br>1 | < 5.0<br>*     | < 1.0                | < 0.050             | 0.0214          | 0.0229                 | 44.5                     | < 0.50               | < 0.50                   |
|                   | QA/QC RPD%               | •             | 2        | •                       | < 1.0                  | •                      |           |                             | < 1                       |              |          |          |                | < 1.0                | 0.097               | <u> </u>        | 0                      | < 1                      | < 0.50               | < 0.50                   |
|                   | 2017 11 14<br>2017 11 14 | 8.44          | 187      | 383                     | < 1.0                  | 196                    | 0.36      | 162                         | 62.1                      | < 0.050      | 0.96     | 511      | < 5.0          | < 1.0                | 0.087               | 0.0214          | 0.0201                 | 45.4                     | < 0.50               | < 0.50                   |
|                   | QA/QC RPD%               | *             | *        | *                       | *                      | *                      | *         | *                           | *                         | *            | *        | *        | *              | *                    | *                   | *               | *                      | *                        | *                    | *                        |
| Fording River Va  |                          |               |          |                         |                        |                        |           |                             |                           |              |          |          |                |                      |                     |                 |                        |                          |                      | , <b></b>                |
| FR_POTWELLS       |                          | 7.81          | 294      | 529                     | < 1.0                  | 340                    | 0.16      | 141                         | 11.5                      | < 0.050      | < 0.50   | 172      | 4,550          | 2.2                  | 0.457               | 0.0021          | 0.0079                 | 138                      | 0.62                 | 0.57                     |
|                   | 2017 06 27               | 8.14          | 174      | 344                     | < 1.0                  | 220                    | 0.14      | 128                         | < 5.0                     | < 0.050      | < 0.50   | 181      | 1,650          | < 1.0                | 0.063               | 0.0021          | < 0.0020               | 55.3                     | 1.38                 | 1.39                     |
|                   | 2017 09 19               | 8.46          | 268      | 513                     | < 1.0                  | 352                    | 0.13      | 142                         | 6.4                       | < 0.050      | < 0.50   | 173      | 3,820          | < 1.0                | 0.152               | < 0.0010        | 0.0032                 | 121                      | < 0.50               | < 0.50                   |
|                   | 2017 11 21               | 8.26          | 314      | 560                     | < 1.0                  | 386                    | 0.14      | 143                         | 5.3                       | < 0.050      | < 0.50   | 171      | 4,150          | < 1.0                | 0.115               | 0.0024          | 0.0028                 | 137                      | < 0.50               | < 0.50                   |
| FR_MW-1B          | 2017 02 23               | 7.84          | 420      | 795                     | 2.3                    | 534                    | 4.02      | 177                         | < 5.0                     | < 0.050      | 0.55     | 142      | 20,800         | < 1.0                | < 0.050             | 0.0016          | 0.0085                 | 191                      | 0.99                 | 0.75                     |
|                   | 2017 06 22               | 8.44          | 188      | 417                     | 1.0                    | 275                    | 3.58      | 122                         | < 5.0                     | < 0.050      | < 0.50   | 138      | 4,870          | < 1.0                | 0.277               | 0.0016          | 0.0053                 | 64.2                     | 1.37                 | 1.96                     |
|                   | 2017 09 19               | 8.19          | 381      | 705                     | < 1.0                  | 531                    | 0.75      | 147                         | 10.6                      | < 0.050      | < 0.50   | 139      | 14,700         | < 1.0                | < 0.050             | < 0.0010        | 0.0027                 | 180                      | 1.15                 | 0.52                     |
|                   | 2017 11 21               | 8.27          | 411      | 712                     | 2.0                    | 499                    | 2.58      | 185                         | 7.1                       | < 0.050      | < 0.50   | 145      | 11,800         | < 1.0                | 0.111               | 0.0031          | 0.0054                 | 168                      | 0.57                 | 0.62                     |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.



Concentration greater than CSR Aquatic Life (AW) standard

Concentration greater than CSR Irrigation Watering (IW) standard Concentration greater than CSR Livestock Watering (LW) standard SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with Chloride.

<sup>d</sup> Standard varies with Hardness.

<sup>e</sup> Standard varies with crop.

<sup>f</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>9</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>h</sup> Ultra trace mercury was sampled at FR\_HMW5.

<sup>i</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison. <sup>j</sup> In the fourth quarter of 2017, FR\_GHHW was replaced with singular monitoring well FR\_GH\_WELL4 based on recommendations from the Hydrogeological Assessment (SNC-Lavalin, 2017b). Monitoring well FR\_GH\_WELL4 will be used in place of FR\_GHHW in future sampling events.

|                                    |                          |        |          |          |        |                    |         |                        |                      |              |                 |                 |                    |       |                     |            | Dissolv  | ed Meta | ls                     |          |                          |                |             |                    |                   |            |                    |        |         |                            | <b>_</b>               |
|------------------------------------|--------------------------|--------|----------|----------|--------|--------------------|---------|------------------------|----------------------|--------------|-----------------|-----------------|--------------------|-------|---------------------|------------|----------|---------|------------------------|----------|--------------------------|----------------|-------------|--------------------|-------------------|------------|--------------------|--------|---------|----------------------------|------------------------|
|                                    |                          |        |          |          |        |                    |         |                        |                      |              |                 |                 |                    |       |                     |            |          |         |                        |          |                          |                |             |                    |                   |            |                    |        |         |                            |                        |
|                                    |                          |        |          |          |        |                    |         |                        |                      |              |                 |                 |                    |       |                     |            |          |         |                        |          |                          |                |             |                    |                   |            |                    |        |         |                            |                        |
|                                    |                          |        |          |          |        |                    |         |                        |                      |              |                 |                 |                    |       |                     |            |          |         |                        |          |                          |                |             |                    |                   |            |                    |        |         |                            |                        |
|                                    |                          |        |          |          |        |                    |         |                        |                      |              |                 |                 |                    |       |                     |            |          |         |                        |          |                          |                |             |                    |                   |            |                    |        |         |                            |                        |
|                                    |                          |        |          |          |        |                    |         |                        |                      |              |                 |                 |                    |       |                     |            |          |         |                        |          |                          |                |             |                    |                   |            |                    |        |         |                            |                        |
|                                    |                          |        |          |          |        |                    |         |                        |                      |              |                 |                 |                    |       |                     |            | -        |         |                        | ε        |                          |                |             |                    |                   |            |                    |        |         |                            |                        |
|                                    |                          | E      | ≥        |          |        | ε                  | -       |                        | ε                    | _            | Ę               |                 |                    |       |                     |            | ium      | ese     | £                      | nue      |                          | Ę              | ٦           |                    |                   | Е          | -                  |        | ۔       | _ E                        |                        |
|                                    |                          | int    | nor      | nic      | E      | lliu               | ut      | <b>_</b>               | niu                  | m            | ,<br>mi         | Ħ               | er                 |       |                     | Ę          | set      | Jan     | r,                     | pde      | 0                        | ssii           | inic        | L                  | E                 | ntiu       | iun                |        | iun     | diu liun                   |                        |
|                                    |                          | μ      | Antimony | rse      | Barium | Berylliu           | Bismuth | oro                    | Cadmium              | Calciu       | Chromiu         | Cobalt          | Coppe              | Iron  | ead                 | Lithium    | Magnesiu | anç     | erc                    | Molybden | Nickel                   | ota            | Selenium    | ke                 | ipo               | ror        | Thalliu            | ۲      | Titaniu | Uranium<br>Vanadium        | Zinc                   |
| Sample                             | Sample Date              | ۲<br>۲ | -        | Ā        |        |                    | _       | ă,                     | -                    |              |                 |                 |                    |       | Ľ                   |            |          | Ма      | Σ                      |          |                          | Ъ              |             | ទ                  | ٥<br>٣            | S          |                    | ۲,     |         |                            |                        |
| Location                           | (yyyy mm dd)             | µg/L   | µg/L     | µg/L     | µg/L   | µg/L               | µg/L    | µg/L                   | μg/L                 | mg/L         | µg/L            | µg/L            | µg/L               | µg/L  | µg/L                | µg/L       | mg/L     | µg/L    | µg/L                   | μg/L     | µg/L                     | mg/L           | µg/L        | µg/L               | mg/L              | µg/L       | µg/L               | µg/L   | µg/L    | μg/L μg/                   | Έ μg/L                 |
| BC Standard                        | (4)4/)8                  | n/o    | 00       | 50       | 10.000 | 1 5                | n/o     | 12,000                 | 0 5 4 <sup>d</sup>   | n/o          | 1 of            | 40              |                    | n/o   | 00.400 <sup>d</sup> | n/o        | n/o      | n/n     | 0.25                   | 10.000   | 4 400 4 500              | n/n            | 20          | 15                 | n/o               | n/o        | 2                  | n/n    | 1 000   | 9E p/c                     | 000 0 400 <sup>d</sup> |
| CSR Aquatic Life                   |                          | n/a    | 90       | 50       | 10,000 |                    | n/a     |                        | 3.5-4 <sup>d</sup>   | n/a          | 10 <sup>f</sup> | 40              | 70-90 <sup>d</sup> |       | 60-160 <sup>d</sup> | n/a        | n/a      | n/a     | 0.25                   | 10,000   | 1,100-1,500 <sup>d</sup> |                | 20          | 15                 | n/a               | n/a        | 3                  |        | 1,000   | 85 n/a                     |                        |
| CSR Irrigation Wa                  | <b>e</b> · · <i>i</i>    | 5,000  | n/a      | 100      | n/a    | 100                | n/a     | 500-6,000 <sup>e</sup> | 5                    | n/a          | 5 <sup>r</sup>  | 50              | 200                | 5,000 |                     | 2,500      |          | 200     | 1                      | 10       | 200                      | n/a            | 20          | n/a                | n/a               | n/a        | n/a                | n/a    | n/a     | 10 100                     |                        |
| CSR Livestock W                    |                          | 5,000  | n/a      | 25       | n/a    | 100                | n/a     | 5,000                  | 80                   | 1,000        | 50 <sup>t</sup> | 1,000           | 300                | n/a   | 100                 | 5,000      |          | n/a     | 2                      | 50       | 1,000                    | n/a            | 30          | n/a                | n/a               | n/a        | n/a                | n/a    | n/a     | 200 100                    |                        |
| CSR Drinking Wa<br>Henretta Valley |                          | 9,500  | 6        | 10       | 1,000  | 8                  | n/a     | 5,000                  | 5                    | n/a          | 50 <sup>r</sup> | 20 <sup>g</sup> | 1,500              | 6,500 | 10                  | 8          | n/a      | 1,500   | 1                      | 250      | 80                       | n/a            | 10          | 20                 | 200               | 2,500      | n/a                | 2,500  | n/a     | 20 20                      | 3,000                  |
| FR_HMW1D                           | 2017 02 27               | < 1.0  | 0 41     | 0.13     | 13.4   | < 0.020            | < 0.050 | 48                     | 0.0769               | 506          | < 0.10          | 4 60            | 0.23               | < 10  | < 0.050             | 87 1       | 294      | 588     | < 0.0050               | 0.753    | 30.7                     | 7.27           | 61.5        | < 0.010            | 2.62              | 345        | 0.019              | < 0.10 | < 10    | <b>10.5</b> < 0.5          | 50 8.9                 |
|                                    | 2017 06 22               |        |          | < 0.50   |        | < 0.020            | < 0.000 | < 50                   | 0.079                | 522          | < 0.50          | 4.62            | < 1.0              | < 50  |                     |            |          | 580     | < 0.0050               | 0.733    | 31.8                     | 6.92           | 34.3        | < 0.050            |                   |            | < 0.050            |        |         | 9.94 < 2.                  |                        |
|                                    | 2017 09 18               | < 3.0  | 0.42     | < 0.20   |        | < 0.040            |         | 48                     | 0.071                | 569          | < 0.20          |                 | < 0.50             |       | < 0.10              |            |          | 623     | < 0.0050               | 0.71     | 32.6                     | 6.98           | 70.1        | < 0.020            |                   |            | < 0.020            |        |         | <b>12.8</b> < 1.           |                        |
|                                    | 2017 11 14               | < 3.0  |          | < 0.20   |        | < 0.040            |         | 56                     | 0.081                | 585          | < 0.20          | 4.69            | < 0.50             |       |                     |            |          | 601     | < 0.0050               | 0.87     | 32.5                     | 7.45           | 94.3        | < 0.020            |                   |            | < 0.020            |        |         | <b>11.2</b> < 1.           |                        |
|                                    | Duplicate                |        |          | < 0.20   |        |                    |         | 45                     | 0.075                | 632          | < 0.20          |                 | < 0.50             |       |                     | 96.2       |          | 695     | < 0.0050               | 0.76     | 33.3                     | 7.57           | 95.6        | < 0.020            |                   |            | < 0.020            |        |         | <b>11.4</b> < 1.           |                        |
|                                    | QA/QC RPD%               | *      | *        | *        | 3      | *                  | *       | *                      | 8                    | 8            | *               | 4               | *                  | *     | *                   | 10         | 4        | 15      | *                      | 13       | 2                        | 2              | 1           | *                  | 8                 | 2          | *                  | *      | *       | 2 *                        |                        |
| FR_HMW1S                           | 2017 02 27               | < 1.0  | 0.33     | 0.10     | 12.4   | < 0.020            | < 0.050 | 46                     | 0.109                | 526          | < 0.10          | 4.08            | < 0.20             | < 10  | < 0.050             | 101        | 276      | 379     | < 0.0050               | 0.909    | 38.7                     | 8.52           | <u>236</u>  | < 0.010            | 2.37              | 370        | 0.032              | < 0.10 | < 10    | <b>10.3</b> < 0.5          | 50 7.8                 |
|                                    | 2017 06 22               | < 5.0  | < 0.50   | < 0.50   | 12.0   | < 0.10             | < 0.25  | < 50                   | 0.120                | 518          | < 0.50          | 4.65            | < 1.0              | < 50  | < 0.25              | 97.5       | 258      | 368     | < 0.0050               | 0.95     | 41.0                     | 8.43           | <u>239</u>  | < 0.050            | 2.17              | 333        | < 0.050            | < 0.50 | < 10    | 9.59 < 2.                  | .5 5.9                 |
|                                    | Duplicate                | < 5.0  | < 0.50   | < 0.50   | 11.8   | < 0.10             | < 0.25  | < 50                   | 0.121                | 510          | < 0.50          | 4.72            | < 1.0              | < 50  | < 0.25              | 96.1       | 256      | 368     | < 0.0050               | 0.89     | 40.8                     | 8.38           | <u>231</u>  | < 0.050            | 2.16              | 328        | < 0.050            | < 0.50 | < 10    | 9.79 < 2.                  | .5 5.3                 |
|                                    | QA/QC RPD%               | *      | *        | *        | 2      | *                  | *       | *                      | 1                    | 2            | *               | 1               | *                  | *     | *                   | 1          | 1        | 0       | *                      | 7        | < 1                      | 1              | 3           | *                  | < 1               | 2          | *                  | *      | *       | 2 *                        | 11                     |
|                                    | 2017 09 18               | < 3.0  | 0.35     | < 0.20   | 10.8   | < 0.040            | < 0.10  | 42                     | 0.109                | 533          | < 0.20          | 4.38            | < 0.50             |       | < 0.10              | 86.8       |          | 360     | < 0.0050               | 0.93     | 39.1                     | 8.25           | <u>262</u>  | < 0.020            |                   | 323        | 0.035              | < 0.20 |         | <b>11.9</b> < 1.           |                        |
|                                    | 2017 11 14               | < 3.0  | 0.34     | < 0.20   |        | < 0.040            |         | 45                     | 0.119                | 621          | < 0.20          | 4.63            | < 0.50             |       | < 0.10              | 106        |          | 374     | < 0.0050               | 0.88     | 40.7                     | 8.87           | <u>236</u>  | < 0.020            |                   | 348        | 0.033              | < 0.20 |         | <b>10.9</b> < 1.           |                        |
| FR_HMW2                            | 2017 02 27               | 1.5    | 0.10     | 0.18     | 16.5   | < 0.020            |         |                        | 0.265                | 492          | < 0.10          |                 | 0.21               |       | < 0.050             | 134        | 287      | 211     | < 0.0050               | 0.529    | 16.4                     | 7.27           | <u>547</u>  | < 0.010            |                   | 317        | 0.046              | < 0.10 | < 10    | <b>10.2</b> < 0.5          |                        |
|                                    | 2017 06 21               |        |          | 0.15     |        | < 0.020            |         |                        | 0.339                | 516          | < 0.10          |                 | < 0.20             |       | < 0.050             | 130        |          | 305     | 0.0064                 | 0.407    | 19.0                     | 7.40           | <u>574</u>  | < 0.010            |                   | 291        | 0.052              | < 0.10 |         | <b>10.2</b> < 0.5          |                        |
|                                    | 2017 09 19               |        | < 0.20   |          | 12.6   | < 0.040            |         |                        | 0.205                |              | < 0.20          |                 | < 0.50             |       | < 0.10              | 128        |          | 35.0    | < 0.0050               | 0.48     | 17.4                     | 7.79           | <u>674</u>  | < 0.020            |                   | 292        | 0.064              | < 0.20 |         | <b>10.9</b> < 1.           |                        |
| <b>FD</b> 100000                   | 2017 11 14               |        |          | < 0.20   |        | < 0.040            |         | 48                     | 0.252                | 586          | < 0.20          |                 | < 0.50             |       | < 0.10              | 150        |          | 63.8    | < 0.0050               | 0.40     | 17.6                     | 8.12           | <u>657</u>  | < 0.020            |                   | 302        | 0.057              | < 0.20 |         | <b>10.9</b> < 1.           |                        |
| FR_HMW3                            | 2017 02 27               | 1.4    |          | < 0.10   |        | < 0.020            |         |                        | 0.0918               | 177          | < 0.10          | 0.26            | < 0.20             |       | < 0.050             |            | 71.3     | 247     | < 0.0050               | 0.901    | 3.32                     | 3.16           | 44.4        | < 0.010            |                   | 178        | 0.015              | < 0.10 |         | 3.47 < 0.8                 |                        |
|                                    | 2017 06 22               |        |          | < 0.50   |        | < 0.10             | < 0.25  | < 50                   | < 0.025              | 84.9         | < 0.50          | < 0.50          | < 1.0              | < 50  | < 0.25              | 24.5       |          | 50.1    | < 0.0050               | 1.08     | < 2.5                    | 1.83           | 44.6        | < 0.050            |                   | 86.3       | < 0.050            |        | < 10    | 1.56 < 2.                  |                        |
|                                    | 2017 09 19               | < 3.0  | 0.22     | 0.11     | 28.2   | < 0.020            |         |                        | 0.0353               | 98.2         | < 0.10          |                 | < 0.50             |       | < 0.050             |            |          | 106     | < 0.0050               | 1.02     | 1.33                     | 1.99           | <u>56.3</u> | < 0.010            |                   | 105        | 0.012              | < 0.10 |         | 2.03 < 0.5                 |                        |
|                                    | 2017 11 14               |        | 0.19     | 0.12     | 29.9   | < 0.020            |         |                        | 0.0377               | 119          | 0.10            | 0.17            | < 0.50             |       | < 0.050             |            |          | 96.5    | < 0.0050               | 1.01     | 1.43                     | 1.78           | <u>00.1</u> | < 0.010            |                   | 122        | 0.012              | < 0.10 |         | 1.86 < 0.5                 |                        |
| FR_HMW5                            | 2017 06 21<br>2017 09 18 |        |          | < 0.10   |        | < 0.020<br>< 0.020 |         |                        | < 0.0050<br>< 0.0050 | 33.1<br>35.1 | < 0.10          |                 | < 0.20<br>< 0.50   |       | < 0.050<br>< 0.050  | 232<br>218 |          |         | < 0.00050<br>< 0.00050 |          | < 0.50<br>< 0.50         | 0.741 0.687    | -           | < 0.010<br>< 0.010 |                   | 295<br>331 | < 0.010<br>< 0.010 |        |         | 0.019 < 0.5                |                        |
|                                    | Duplicate                |        |          | < 0.10   |        |                    | < 0.050 |                        | < 0.0050             | 35.9         |                 | < 0.10          |                    |       | < 0.050             |            |          |         | < 0.00050              |          | < 0.50                   | 0.679          |             | < 0.010            |                   |            | < 0.010            |        |         | 0.016 < 0.5                |                        |
|                                    | QA/QC RPD%               | 3      | *        | *        | 100    | *                  | *       | *                      | *                    | 2            | *               | *               | *                  | *     | *                   | < 1        | 2        | < 1     | *                      | *        | *                        | 1              | 56          | *                  | 1                 | 1          | *                  | *      | *       | * *                        | *                      |
|                                    | 2017 11 14               | 5.9    | < 0.10   | < 0.10   | 196    | < 0.020            | < 0.050 | 42                     | < 0.0050             | 41.5         | < 0.10          | < 0.10          | < 0.50             | < 10  | < 0.050             | 265        | 20.2     | 48.5    | < 0.00050              | < 0.050  | < 0.50                   | 0.649          | 1.03        | < 0.010            | 12.9              | 346        | < 0.010            | < 0.10 | < 10    | 0.014 < 0.5                | 50 < 3.0               |
|                                    | 2017 11 14               | -      | -        | -        | -      | -                  | -       | -                      | -                    | -            | -               | -               | -                  | -     | -                   | -          | -        | -       | < 0.00050              |          | -                        | -              | -           | -                  | -                 | -          | -                  | -      | -       |                            | -                      |
|                                    | QA/QC RPD%               | *      | *        | *        | *      | *                  | *       | *                      | *                    | *            | *               | *               | *                  | *     | *                   | *          | *        | *       | *                      | *        | *                        | *              | *           | *                  | *                 | *          | *                  | *      | *       | * *                        | *                      |
| Fording River Va                   |                          |        | 0.15     | <u> </u> | 70.0   | 0.00-              | 0.05-   |                        | 0.0100               | 76.0         | 0.15            | 0.15            | 0 =0               | 1.0   | 0.007               |            | 05.0     | 0.00    | 0.00                   | 0.011    | 0 =0                     | 0.004          | 00.0        | 0.016              | 0 700             | 4.45       | 0.01-              | 0.10   |         | 0.040                      |                        |
| FR_POTWELLS                        |                          |        |          |          |        | < 0.020            |         |                        | 0.0102               |              |                 |                 |                    |       | 0.665               |            |          |         | < 0.0050               |          | < 0.50                   |                |             |                    |                   |            |                    |        |         | 0.913 < 0.5                |                        |
|                                    | 2017 06 27<br>2017 09 19 |        |          |          |        | < 0.020<br>< 0.020 |         |                        | 0.0124               |              |                 |                 |                    |       | 0.090<br>< 0.050    |            |          |         | < 0.0050<br>< 0.0050   |          | < 0.50<br>< 0.50         | 0.598<br>0.748 |             |                    |                   |            |                    |        |         | 0.549 < 0.5<br>0.958 < 0.5 |                        |
|                                    | 2017 09 19               |        |          |          |        | < 0.020            |         |                        | 0.0087               |              |                 |                 |                    |       | < 0.050             |            |          |         | < 0.0050               |          | < 0.50                   |                |             |                    |                   |            |                    |        |         | 0.958 < 0.8                |                        |
| FR_MW-1B                           | 2017 11 21               |        |          |          |        | < 0.020            |         |                        | 0.0087               | 106          |                 |                 |                    |       |                     |            |          |         | < 0.0050               |          | < 0.50                   |                |             |                    |                   |            |                    |        |         | 2.25 < 0.5                 |                        |
| · · · _ · · · · · · · · · · · ·    | 2017 02 23               |        |          |          |        | < 0.020            |         |                        |                      |              |                 |                 |                    |       |                     |            |          |         | < 0.0050               |          | < 0.50                   | 0.91           |             |                    |                   |            |                    |        |         | 0.860 < 2.                 |                        |
|                                    | 2017 00 22               | 5.0    |          |          |        | < 0.020            |         |                        | 0.025                |              |                 |                 |                    |       |                     |            |          |         | < 0.0050               |          | < 0.50                   | 1.32           |             |                    |                   |            |                    |        |         | 1.90 < 0.5                 |                        |
|                                    | 2017 09 19               |        |          |          | 126    | < 0.020            |         |                        |                      |              |                 |                 |                    |       |                     |            |          |         | < 0.0050               |          | < 0.50                   | 1.12           |             | < 0.010            |                   |            |                    |        |         |                            |                        |
| L                                  | 2011 1121                | < 0.0  | 0.12     | < 0.10   | 120    | ~ 0.020            | ~ 0.000 |                        | 0.0142               | 50.7         | 0.12            | ~ 0.10          | 2.02               | ~ 10  | 0.120               | 22.3       | 00.0     | < 0.10  | ~ 0.0000               | 0.034    | ~ 0.00                   | 1.14           | -14         | \$ 0.010           | ч. <del>т</del> Ј | 1/1        | ~ 0.010            | < 0.10 | ~ 10    | 1.10 < 0.3                 | /0.0                   |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Concentration greater than CSR Aquatic Life (AW) standard BOLD

Concentration greater than CSR Irrigation Watering (IW) standard SHADOW

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with Chloride.

<sup>d</sup> Standard varies with Hardness.

<sup>e</sup> Standard varies with crop.

<sup>f</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>9</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>h</sup> Ultra trace mercury was sampled at FR\_HMW5.

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison. <sup>1</sup> In the fourth quarter of 2017, FR\_GHHW was replaced with singular monitoring well FR\_GH\_WELL4 based on recommendations from the Hydrogeological Assessment (SNC-Lavalin, 2017b). Monitoring well FR\_GH\_WELL4 will be used in place of FR\_GHHW in future sampling events.

| Sample Net         Fa         No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |            |        | Physi      | ical Paran      | neters          |      |                      |                           |         |        |       | Disso       | lved Inorgan         | ics      |        |                   |                          | Orga          | anics               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|------------|--------|------------|-----------------|-----------------|------|----------------------|---------------------------|---------|--------|-------|-------------|----------------------|----------|--------|-------------------|--------------------------|---------------|---------------------|
| sample         sample<                                                                                                                                                                                                                                                                                                                                                        |            |                   |            |        | vity       | spi             | S               |      | aCO3)                | -                         |         |        |       |             |                      |          |        |                   |                          |               | arbon               |
| BC Standard         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th="">         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         <thc< th="">         C         <thc< th=""> <thc< <="" th=""><th>-</th><th>•</th><th>Laboratory</th><th></th><th>Laboratory</th><th>Total Suspended</th><th>Total Dissolved</th><th></th><th>Total Alkalinity (as</th><th>Ammonia, total (as</th><th></th><th></th><th></th><th>Nitrate (as</th><th>Nitrite (as</th><th>Kjeldahl</th><th>-</th><th>Total Phosphorous</th><th></th><th>Total Organic</th><th>Dissolved Organic C</th></thc<></thc<></thc<></thc<>                                                                                                                        | -          | •                 | Laboratory |        | Laboratory | Total Suspended | Total Dissolved |      | Total Alkalinity (as | Ammonia, total (as        |         |        |       | Nitrate (as | Nitrite (as          | Kjeldahl | -      | Total Phosphorous |                          | Total Organic | Dissolved Organic C |
| CSR August Life (XW)*         na         na </th <th></th> <th>(yyyy min dd)</th> <th>рп</th> <th>liig/∟</th> <th>μο/cm</th> <th>ilig/∟</th> <th>llig/∟</th> <th>NIU</th> <th>ilig/L</th> <th>μg/L</th> <th>liig/∟</th> <th>liig/∟</th> <th>µg/∟</th> <th>µy/∟</th> <th>µу/∟</th> <th>liig/∟</th> <th>liig/∟</th> <th>ilig/∟</th> <th>iiig/∟</th> <th>iiig/L</th> <th>ilig/∟</th>                                                                                                                                                                    |            | (yyyy min dd)     | рп         | liig/∟ | μο/cm      | ilig/∟          | llig/∟          | NIU  | ilig/L               | μg/L                      | liig/∟  | liig/∟ | µg/∟  | µy/∟        | µу/∟                 | liig/∟   | liig/∟ | ilig/∟            | iiig/∟                   | iiig/L        | ilig/∟              |
| CSR Instantor Matering LW)         na         na <th< td=""><td></td><td>(AW)<sup>a</sup></td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>3.700-18.500<sup>b</sup></td><td>n/a</td><td>1,500</td><td>3,000</td><td>400,000</td><td>200-800<sup>c</sup></td><td>n/a</td><td>n/a</td><td>n/a</td><td>3.090-4.290<sup>d</sup></td><td>n/a</td><td>n/a</td></th<>                                                                                                                                                       |            | (AW) <sup>a</sup> | n/a        | n/a    | n/a        | n/a             | n/a             | n/a  | n/a                  | 3.700-18.500 <sup>b</sup> | n/a     | 1,500  | 3,000 | 400,000     | 200-800 <sup>c</sup> | n/a      | n/a    | n/a               | 3.090-4.290 <sup>d</sup> | n/a           | n/a                 |
| CSR Drinking Water (DW)         rin         rin <thrin< th="">         rin         <thrin< th=""></thrin<></thrin<>                                                                                                                                                                                                                                                                                                                                                                                                                                |            | . ,               | n/a        | n/a    | n/a        | n/a             | n/a             | n/a  | n/a                  | n/a                       | n/a     | 100    | 1,000 | n/a         | n/a                  | n/a      | n/a    | n/a               |                          | n/a           | n/a                 |
| CSR Drinking Water (DW)         rin         rin <thrin< th="">         rin         <thrin< th=""></thrin<></thrin<>                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                   | n/a        | n/a    | n/a        | n/a             | n/a             | n/a  | n/a                  | n/a                       | n/a     | 600    |       | 100,000     | 10,000               | n/a      | n/a    | n/a               | 1,000                    | n/a           | n/a                 |
| Freeding River Valoy Convert)         FR_0904A         2017 02.2         7.42         66.3         1160         38.3         1160         38.3         < 5.0         < 0.25         6.3         280         108         < 5.0         < 0.0028         0.0417         34.5         110         0.80           Duplicate         7.39         672         1.160         8.38         811         5.1         1         -         -         3         7         2         -         -         -         3         1         -         -         3         1         -         -         3         1         -         -         -         -         3         1         -         -         -         -         3         1         -         -         -         -         -         3         1         -         -         -         -         -         -         -         -         3         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td></td><td></td><td></td><td>n/a</td><td></td><td></td><td></td><td></td><td>n/a</td><td>n/a</td><td>n/a</td><td></td><td></td><td></td><td></td><td>n/a</td><td>n/a</td><td></td><td></td><td>n/a</td><td>n/a</td></td<>                                                                                                                                                                                                                                                                                 |            |                   |            | n/a    |            |                 |                 |      | n/a                  | n/a                       | n/a     |        |       |             |                      | n/a      | n/a    |                   |                          | n/a           | n/a                 |
| PR_0P-0H         7.39         672         1.150         4.7         823         0.450         5803         < 6.00         2.025         6.3         2.00         108         < 6.0         0.0050         0.0029         0.0399         347         0.98         0.0           2017 0612         8.06         673         1.170         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                   |            |        | 1          |                 |                 |      |                      | 1                         |         |        | 1 .   |             | 1 -                  |          |        |                   |                          |               |                     |
| PAGE RPD%         ct         1         ·         1         ·         1         ·         3         7         2         ·         ·         30         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         1         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·<         ·<         ·<         ·<         ·<         ·<         ·<         ·<         ·<         ·<         ·<         ·<         ·<         ·<         ·< <t></t> ·         ·<         ·<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FR_09-04-A | 2017 02 23        | 7.42       | 663    | 1,160      | 383             | 811             | 51.9 | 355                  | < 5.0                     | < 0.25  | 6.1    | 260   | 106         | 5.5                  | < 0.050  | 0.0028 | 0.0417            | 345                      | 1.10          | 0.99                |
| PR_0P-048         Control         Contro         Control <thcontrol< th=""> <t< td=""><td></td><td>Duplicate</td><td>7.39</td><td>672</td><td>1,150</td><td>4.7</td><td>823</td><td>0.45</td><td>353</td><td>&lt; 5.0</td><td>&lt; 0.25</td><td>6.3</td><td>280</td><td>108</td><td>&lt; 5.0</td><td>&lt; 0.050</td><td>0.0029</td><td>0.0309</td><td>347</td><td>0.98</td><td>0.93</td></t<></thcontrol<> |            | Duplicate         | 7.39       | 672    | 1,150      | 4.7             | 823             | 0.45 | 353                  | < 5.0                     | < 0.25  | 6.3    | 280   | 108         | < 5.0                | < 0.050  | 0.0029 | 0.0309            | 347                      | 0.98          | 0.93                |
| PR_0P-04-8         0.2         666         1.70         3.9         942         0.42         311         6.1         <0.25         5.1         220         4.9         <0.05         0.005         0.0140         344         1.04         1.1          12017 121         815         707         1.30         <1.0         76         0.26         65.5         2.0         6.0         0.005         0.0040         0.0042         333         0.66         0.7           QUACK RPD/s         1         3         1         4         4         -         1         0.8         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                   |            | -      | -          | *               | 1               |      | 1                    | *                         |         | -      | -     |             |                      | *        | *      |                   | •                        | *             | *                   |
| PR_09-04-B         2017 11 21         815         707         1.130         <1.0         706         0.26         387         0.27         370         8.5         <0.05         5.50         <0.050         0.0040         0.0046         323         0.06         0.07           Duplicate         8.21         668         1.120         <1.0         827         0.27         370         8.5         <0.050         2.80         <2.5         5.0         <0.050         0.0041         0.0062         337         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.7                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                   |            |        |            |                 |                 |      | 346                  | < 5.0                     | < 0.25  |        |       |             |                      |          |        | < 0.0020          | 370                      | 0.83          | 0.68                |
| Duplicate         8.21         6.88         1.120         -1.0         8.27         0.77         0.72         0.05         0.050         0.0014         0.0052         3.37         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | 1.09                |
| BAUGE RPD%         1         3         1         *         4         *         4         *         10         8         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         * <th< td=""><td></td><td>2017 11 21</td><td></td><td></td><td></td><td>&lt; 1.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0040</td><td>0.0046</td><td></td><td></td><td>0.71</td></th<>                                                                                                                                                                                                                                                                                                                     |            | 2017 11 21        |            |        |            | < 1.0           |                 |      |                      |                           |         |        |       |             |                      |          | 0.0040 | 0.0046            |                          |               | 0.71                |
| FR_00-04-B         2017 02 23         7.40         666         1.170         32.1         842         13.0         349         <5.0         <0.25         6.4         280         109         5.0         <0.035         0.116         353         1.37         0.0           Duplicate         7.95         672         1.20         1.2         902         0.50         370         6.5         <0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                   | 8.21       |        | 1,120      | < 1.0           |                 | 0.27 |                      | 8.5                       | < 0.25  |        |       | < 25        | 5.0                  | < 0.050  | 0.0041 | 0.0052            |                          | 0.72          | 0.73                |
| 2017 06 12         7.85         672         1,200         1.2         902         0.50         370         6.5         < 0.25         6.8         270         30         < 5.0         < 0.023         < 0.0023         < 0.0023         < 0.0023         < 0.0023         < 0.0023         < 0.0021         377         0.83         0.002           Duplicate         7.95         678         1,10          1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         <         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                   |            |        |            | *               | -               | *    | •                    | *                         | *       |        | -     | *           | *                    | *        | *      | *                 |                          | *             | *                   |
| Puplicate         7.95         678         1.10         1         1         7.10         7.12         < 5.0         < 2.26         7.5         2.70         40         < 5.0         0.025         0.0024         3.78         0.79         0.70           QAQC RPD%         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th< td=""><td>FR_09-04-B</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.77</td></th<>                                                                                                                                                                                                                                                                                                                      | FR_09-04-B |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | 0.77                |
| OA/OC RPD%         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>0.82</td></th1<>                                                                                                                                                                                                                                                                                                                                                 |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   | -                        |               | 0.82                |
| PR_09-02-A         2017 09 12         7.56         671         1.070         <1.0         830         0.36         323         <5.0         <0.25         5.2         210         33         <5.0         <0.050         0.0043         343         0.96         1.1          FR_09-04-A         2017 1320         7.94         488         907         122         688         22.6         197         <<0.050         1.070         <0.039         0.0044         328         0.68         0.06           2017 06 11         8.11         583         1.070         <1.0         850         0.91         226         <5.0         <0.05         1.44         161         19,800         <5.0         0.502         0.0025         0.0044         226         0.68         0.02           2017 109 13         8.12         420         750         11.2         509         518         176         <5.0         <0.050         1.64         162         11,000         <1.0         0.033         0.0192         0.008         0.88         0.0           2017 03 20         7.79         498         940         3.2         681         2.90         <0.050         1.83         160         18,900         1.2 <t< td=""><td></td><td>· · ·</td><td></td><td></td><td></td><td>&lt; 1.0</td><td>913</td><td>0.27</td><td>372</td><td>&lt; 5.0</td><td>&lt; 0.25</td><td></td><td></td><td></td><td>&lt; 5.0</td><td>0.230</td><td>0.0025</td><td>0.0041</td><td></td><td>0.79</td><td>0.79</td></t<>                                                                                                                                                                |            | · · ·             |            |        |            | < 1.0           | 913             | 0.27 | 372                  | < 5.0                     | < 0.25  |        |       |             | < 5.0                | 0.230    | 0.0025 | 0.0041            |                          | 0.79          | 0.79                |
| 2017 11 21         8.13         730         1,120         <1.0         840         0.25         341         7.2         <0.050         5.72         266         <5.0         <1.0         <0.050         0.0039         0.0044         328         0.68         0.0           FR_09-02-A         2017 03 20         7.94         488         907         12.2         688         2.26         197         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                   |            |        |            | - 1.0           | 1               | 0.26 | 1                    | - 5 0                     | 10.25   |        | -     |             | 15.0                 | 10.050   | 0.0017 | 0.0042            |                          | 0.06          | 1.04                |
| FR_09-02-A         2017 03 20         7.94         488         907         12.2         688         2.26         197         < 5.0         < 0.050         1.44         161         19,800         < 1.05         0.0029         0.0214         264         0.85         0.05           2017 06 01         8.11         583         1.070         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               |                     |
| 2017 06 01         8.11         583         1.070         <1.0         850         0.91         226         <5.0         <0.25         <2.5         170         39,400         <5.0         0.0025         0.0044         236         0.76         0.025           2017 09 13         8.12         420         750         11.2         509         5.18         176         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EP 00-02-0 |                   |            |        | -          |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               |                     |
| 2017 09 13         8.12         420         750         11.2         509         5.18         176         < 5.0         < 0.050         1.09         185         11,300         < 1.0         0.353         0.0019         0.0192         2000         0.85         0.03           2017 11 22         7.97         532         867         3.3         639         5.94         195         < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TR_03-02-A |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               |                     |
| 2017 11 22         7.97         532         867         3.3         639         5.94         195         < 5.0         < 0.050         1.64         162         12,100         1.1         0.213         0.0034         0.0138         259         0.83         0.03           FR_09-02-B         2017 03 20         7.79         488         940         3.2         681         2.90         2.10         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | 0.55                |
| FR_09-02-B         2017 03 20         7.79         498         940         3.2         681         2.90         210         < 5.0         < 0.050         1.80         148         18,900         1.2         1.29         0.0029         0.0251         267         < 0.050         < 0.050           Duplicate         7.77         504         927         3.0         696         2.05         209         < 5.0         < 0.050         1.83         160         18,900         2.4         0.777         0.0025         0.0086         267         < 0.50         < 0         <         < 0         <         < 0         < 0         < 0         < 0          < 0         < 0         < 0         < 0.0025         0.0025         0.0086         267         <0.50         <0.0          <0         <         <0         < 0         <         <0          <0          <0          <0          <0         <0         <0.0050         <0.0050         0.0010         0.0044         253         0.070         <0           Duplicate         8.24         420         757         2.6         526         0.38         204         <5         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               |                     |
| Duplicate         7.77         504         927         3.0         696         2.05         209         < 5.0         < 0.050         1.83         160         18,900         2.4         0.777         0.0025         0.0086         267         < 0.00         <              <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         < <td>FR 09-02-B</td> <td></td> <td>&lt; 0.50</td>                                                                                                                                                                                                                                                                                                                                         | FR 09-02-B |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | < 0.50              |
| QA/QC RPD%         <1         1         1         2         34         <1         *         *         8         0         *         50         *         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TR_00 02 B |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   | -                        |               | < 0.50              |
| 2017 06 01         8.08         601         1,090         4.7         853         3.39         241         < 5.0         < 0.25         < 2.5         150         40,500         < < 5.0         < 0.050         0.0010         0.0044         253         0.70         0.1           2017 09 13         8.03         424         759         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | · · ·             |            |        |            | *               |                 |      |                      | *                         | *       | *      |       |             | *                    |          | *      | *                 |                          | *             | *                   |
| 2017 09 13         8.03         424         759         <1.0         492         0.39         201         9.2         <0.050         1.22         160         9.900         <1.0         0.337         0.0019         0.0043         186         0.79         <0           Duplicate         8.24         420         757         2.6         526         0.36         204         <5         <0.05         1.24         159         10,000         <1         0.337         0.0019         0.0043         186         0.62         <0.05           QA/QC RPD%         3         1         <1         *         *         *         *         1         1         *         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         0         *         1         *         1         *         1         *         1         *         1         *         1         *         1         *         1         *         1         *         0         3 <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.7</td> <td>-</td> <td>-</td> <td></td> <td>&lt; 5.0</td> <td>&lt; 0.25</td> <td>&lt; 2.5</td> <td>-</td> <td>÷</td> <td>&lt; 5.0</td> <td></td> <td>0.0010</td> <td>0.0044</td> <td>-</td> <td>0.70</td> <td>0.51</td>                                                                                                                                                                                                                                   |            |                   |            |        |            | 4.7             | -               | -    |                      | < 5.0                     | < 0.25  | < 2.5  | -     | ÷           | < 5.0                |          | 0.0010 | 0.0044            | -                        | 0.70          | 0.51                |
| Duplicate         8.24         420         757         2.6         526         0.36         204         <5         < 0.05         1.24         159         10,000         <1         0.3         0.0015         0.0034         186         0.62         < 0.0015           QA/QC RPD%         3         1         <1         *         7         *         1         *         *         1         1         *         12         *         *         0.033         0.0015         0.0034         186         0.62         < 0.0015           QA/QC RPD%         3         1         <1         *         1         *         *         1         1         *         12         *         0.0015         0.0034         186         0.62         < 0.0015           2017 11 22         7.93         546         884         <1.0         666         0.11         214         <5.0         <0.05         1.94         154         11,500         <1.0         0.232         0.0030         0.0034         481         <0.50         <0.05         <0.05         1.94         47,200         <5.0         0.165         0.0034         0.0033         481         <0.50         <0.05         <0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | < 0.50              |
| QA/QC RPD%         3         1         <1         *         1         *         1         1         *         12         *         *         0         *         *         1         1         *         12         *         *         0         *         *         1         1         *         12         *         *         0         *         *         *         1         1         *         12         *         *         0         *         *         *         *         *         1         1         *         12         *         *         0         *         *         *         1         1         *         12         *         *         1         1         *         1         1         *         12         *         *         1         1         *         1         1         *         1         1         *         1         1         *         1         1         *         1         1         *         1         1         *         1         1         *         1         1         *         1         1         *         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       | ,           |                      |          |        |                   |                          |               | < 0.5               |
| 2017 11 22         7.93         546         884         <1.0         666         0.11         214         <5.0         <0.050         1.94         154         11,500         <1.0         0.232         0.030         0.0059         254         0.65         <0.050           FR_09-01-A         2017 03 08         7.51         986         1,540         <1.0         1,240         0.15         305         <5.0         <0.25         3.2         120         47,200         <5.0         0.165         0.0034         0.0033         481         <0.50         <0.65           2017 09 12         8.04         557         1,030         <1.0         789         0.86         231         <5.0         <0.25         <2.5         200         35,100         <5.0         0.486         0.0021         0.0023         347         0.63         0.76         0.55           2017 012         8.08         738         1,170         <1.0         927         0.13         298         <5.0         <0.25         <2.5         200         35,100         <5.0         <0.083         0.0023         347         0.63         0.76         0.58         <0.23           2017 012         8.08         7.45         882<                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                   |            |        |            |                 |                 |      | 1                    | *                         |         |        |       | ,           |                      |          |        |                   |                          | *             | *                   |
| FR_09-01-A         2017 03 08         7.51         986         1,540         <1.0         1,240         0.15         305         <5.0         <0.25         3.2         120         47,200         <5.0         0.165         0.0034         0.0083         481         <0.50         <0.0034           2017 06 01         8.04         557         1,030         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |            |        |            | < 1.0           | 666             | 0.11 | 214                  | < 5.0                     | < 0.050 | 1.94   | 154   | -           | < 1.0                |          | 0.0030 | 0.0059            |                          | 0.65          | < 0.50              |
| 2017 06 01         8.04         557         1,030         <1.0         789         0.86         231         <5.0         <0.25         <2.5         200         35,100         <5.0         0.486         0.0021         0.0029         208         0.76         0.92           2017 09 12         8.08         738         1,170         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FR_09-01-A |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | < 0.50              |
| 2017 09 12         8.08         738         1,170         < 1.0         927         0.13         298         < 5.0         < 0.25         3.0         < 100         21,200         < 5.0         < 0.050         0.0016         0.0233         347         0.63         0.73           2017 11 22         7.79         1,050         1,590         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | 0.53                |
| 2017 11 22         7.79         1,050         1,590         <1.0         1,350         0.29         328         <5.0         <0.25         <100         54,300         12.7         0.449         0.0030         0.0039         486         0.58         <0           FR_09-01-B         2017 03 08         7.45         882         1,320         36.4         1,040         11.2         307         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | 0.74                |
| FR_09-01-B         2017 03 08         7.45         882         1,320         36.4         1,040         11.2         307         < 5.0         < 0.25         4.1         120         25,900         < 5.0         0.613         0.0027         0.0154         409         < 0.50         < 0.50           2017 06 01         8.18         636         1,160         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | < 0.50              |
| 2017 06 01         8.18         636         1,160         <1.0         907         0.27         236         5.0         <0.25         <2.5         170         43,900         <5.0         0.457         0.0014         0.0044         267         0.54         <0.54           2017 09 12         8.19         613         987         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FR_09-01-B |                   |            | -      |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | < 0.50              |
| 2017 09 12       8.19       613       987       <1.0       738       0.35       258       < 5.0       < 0.25       3.0       140       12,700       < 5.0       < 0.050       0.0010       0.0028       296       0.78       0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | < 0.50              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                   |            |        |            |                 |                 |      |                      |                           |         |        |       |             |                      |          |        |                   |                          |               | 0.88                |
| 2017 11 22 7.85 890 1,330 2.3 1,050 1.26 336 < 5.0 < 0.25 3.1 140 <b>29,600</b> < 5.0 0.294 0.0032 0.0055 407 0.70 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                   |            | 890    |            | 2.3             |                 |      |                      |                           |         |        |       |             |                      |          | 0.0032 |                   |                          | 0.70          | < 0.50              |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

<u>BOLD</u> SHADOW

Concentration greater than CSR Aquatic Life (AW) standard

Concentration greater than CSR Irrigation Watering (IW) standard INVERSE Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with Chloride.
- <sup>d</sup> Standard varies with Hardness.

<sup>e</sup> Standard varies with crop.

<sup>f</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>9</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>h</sup> Ultra trace mercury was sampled at FR\_HMW5.

<sup>i</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison. <sup>1</sup> In the fourth quarter of 2017, FR\_GHHW was replaced with singular monitoring well FR\_GH\_WELL4 based on recommendations from the Hydrogeological Assessment

(SNC-Lavalin, 2017b). Monitoring well FR\_GH\_WELL4 will be used in place of FR\_GHHW in future sampling events.

|                   |                                         |              |          |         |        |                   |                   |                        |                    |            |                 |                 |        |                   |      |                     |         | Dissolv   | ed Meta    | ls                   |            |                          |              |                      |                   |        |            |                   |        |          |           |                 |                        |
|-------------------|-----------------------------------------|--------------|----------|---------|--------|-------------------|-------------------|------------------------|--------------------|------------|-----------------|-----------------|--------|-------------------|------|---------------------|---------|-----------|------------|----------------------|------------|--------------------------|--------------|----------------------|-------------------|--------|------------|-------------------|--------|----------|-----------|-----------------|------------------------|
|                   |                                         |              |          |         |        |                   |                   |                        |                    |            |                 |                 |        |                   |      |                     |         |           |            |                      |            |                          |              |                      |                   |        |            |                   |        |          |           |                 |                        |
|                   |                                         | ε            | ۲.       |         |        | ε                 |                   |                        | ٤                  |            | Ē               |                 |        |                   |      |                     |         | m         | ese        | 4                    | unue       |                          | Ę            | ٤                    |                   |        | E          | E                 |        | E        |           | ε               |                        |
| Sample            | Sample Date                             | Aluminu      | Antimony | Arsenic | Barium | Beryllium         | Bismuth           | Boron                  | Cadmium            | Calcium    | Chromium        | Cobalt          | Copper | Lon :             |      | -ead                | Lithium | Magnesium | Manganese  | Mercury <sup>h</sup> | Molybdenum | Nickel                   | otassium     | Seleniur             | Silver            | Sodium | Strontiu   | Thallium          | Ŀ      | Titanium | Uranium   | Vanadium        | Zinc                   |
| Location          | (yyyy mm dd)                            | μg/L         | μg/L     | μg/L    | µg/L   | μg/L              | μg/L              | μg/L                   | μg/L               | mg/L       | μg/L            | μg/L            |        |                   |      | μg/L                | μg/L    | mg/L      | μg/L       | μg/L                 | μg/L       | μg/L                     | mg/L         | μg/L                 | μg/L              | mg/L   | μg/L       | μg/L              | μg/L   | µq/L     | μg/L      | µg/L            | µg/L                   |
| BC Standard       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |          |         |        |                   |                   |                        |                    |            |                 |                 |        |                   |      |                     |         |           |            |                      |            |                          |              |                      |                   |        |            |                   |        |          |           |                 |                        |
| CSR Aquatic Life  | (AW) <sup>a</sup>                       | n/a          | 90       | 50      | 10,000 | 1.5               | n/a               | 12,000                 | 3.5-4 <sup>d</sup> | n/a        | 10 <sup>f</sup> | 40              | 70-9   | 0 <sup>d</sup> n/ | 'a 6 | 50-160 <sup>d</sup> | n/a     | n/a       | n/a        | 0.25                 | 10,000     | 1,100-1,500 <sup>d</sup> | n/a          | 20                   | 15                | n/a    | n/a        | 3                 | n/a    | 1,000    | 85        | n/a             | 900-2,400 <sup>d</sup> |
| CSR Irrigation Wa | atering (IW)                            | 5,000        | n/a      | 100     | n/a    | 100               | n/a               | 500-6,000 <sup>e</sup> | 5                  | n/a        | 5 <sup>f</sup>  | 50              | 20     | 0 5,0             | 00   | 200                 | 2,500   | n/a       | 200        | 1                    | 10         | 200                      | n/a          | 20                   | n/a               | n/a    | n/a        | n/a               | n/a    | n/a      | 10        | 100             | n/a                    |
| CSR Livestock W   | 0 ( )                                   | 5,000        | n/a      | 25      | n/a    | 100               | n/a               | 5,000                  | 80                 | 1,000      | 50 <sup>f</sup> | 1,000           | 30     | 0 n/              | a    | 100                 | 5,000   | n/a       | n/a        | 2                    | 50         | 1,000                    | n/a          | 30                   | n/a               | n/a    | n/a        | n/a               | n/a    | n/a      | 200       | 100             | 2,000                  |
| CSR Drinking Wa   |                                         | 9,500        | 6        | 10      | 1,000  | 8                 | n/a               | 5,000                  | 5                  | n/a        | 50 <sup>f</sup> | 20 <sup>g</sup> | 1,50   | 00 6,5            | 00   | 10                  | 8       | n/a       | 1,500      | 1                    | 250        | 80                       | n/a          | 10                   | 20                | 200    | 2,500      | n/a               | 2,500  | n/a      | 20        | 20              | 3,000                  |
| Fording River Va  |                                         |              |          |         |        |                   |                   |                        |                    |            |                 |                 |        |                   |      |                     |         |           |            |                      |            |                          |              |                      |                   |        |            |                   |        |          |           |                 |                        |
| FR_09-04-A        | 2017 02 23                              |              | 0.11     |         | 106    |                   | < 0.050           | 31                     | 1.05               | 141        | < 0.10          |                 |        |                   |      |                     |         |           |            | < 0.0050             | 1.84       | 8.30                     | 6.00         |                      | < 0.010           |        | 216        |                   | < 0.10 |          | 6.19      |                 | 3.8                    |
|                   | Duplicate                               | < 1.0        | 0.11     | 0.10    | 107    | < 0.020           | < 0.050           | 32                     | 1.04               | 145        | < 0.10          | 1.10            | 0.2    | 2 < 1             | 10 < | < 0.050             |         |           | 1,180      | < 0.0050             | 1.88       | 8.10                     | 6.07         | 0.197                | < 0.010           |        | 223        | 0.060             | < 0.10 | < 10     | 6.38      | < 0.50          | 3.6                    |
|                   | QA/QC RPD%                              | - 10         | 0.12     | < 0.10  | 1 108  | < 0.020           | < 0.050           | 34                     | 1 12               | 3<br>140   | < 0.10          | 1.23            | 0.2    | 5 4               | 10   | < 0.050             | 2       | < 1       | 2          | < 0.0050             | 2<br>4.35  | 2                        | 1<br>5.88    | 0.107                | < 0.010           | < 1    | 3<br>221   | 0.062             | < 0.10 | - 10     | 3<br>5.73 | < 0.50          | 9.0                    |
|                   | 2017 06 12<br>2017 09 12                | < 3.0        |          | < 0.10  |        | < 0.020           | < 0.050           | 29                     | 1.13<br>1.01       | 140        | < 0.10          |                 |        |                   |      | < 0.050             |         |           |            |                      | 4.35       | 8.24<br>7.08             | 5.86         |                      | < 0.010           |        | 221        | 0.062             | < 0.10 | -        |           | < 0.50          | 9.0<br>3.6             |
|                   | 2017 09 12                              |              |          | < 0.10  |        | < 0.020           | < 0.050           | 29                     | 0.982              | 142        | < 0.10          |                 |        |                   |      | < 0.050             |         |           | , -        |                      | 1.80       | 7.08                     | 5.78         |                      | < 0.010           |        | 200        |                   | < 0.10 |          |           | < 0.50          | 3.9                    |
|                   | Duplicate                               |              |          | < 0.10  |        | < 0.020           |                   | 25                     | 0.985              |            |                 |                 |        |                   |      |                     |         |           | i.         | < 0.0050             | 1.60       | 7.23                     | 5.85         |                      | < 0.010           |        | 198        |                   | < 0.10 |          |           | < 0.50          | 3.9                    |
|                   | QA/QC RPD%                              | *            | *        | *       | < 1    | *                 | *                 | *                      | < 1                | 6          | *               | 1.04            | *      | 30 < I            |      | *                   | 10      | 1         | 1,370      | *                    | 1.00       | < 1                      | 1            | *                    | *                 | 1.25   | 11         | 0.000             | *      | *        | 9         | *               | *                      |
| FR_09-04-B        | 2017 02 23                              | < 1.0        | 0.12     | < 0.10  |        | < 0.020           | < 0.050           | 32                     | 1.02               | -          | < 0.10          | 1.18            | 0.5    | 2 <1              | 10 < | < 0.050             | -       | 75.2      | 1.270      | < 0.0050             | 1.85       | 8.74                     | 5.89         | 0.201                | < 0.010           | 7.18   | 218        | 0.060             | < 0.10 | < 10     | 5.99      | < 0.50          | 3.8                    |
|                   | 2017 06 12                              | < 1.0        |          | < 0.10  |        |                   | < 0.050           | 33                     | 1.12               | 141        | < 0.10          |                 |        |                   |      | < 0.050             |         |           | 1,220      |                      | 3.41       | 8.34                     | 5.70         |                      | < 0.010           |        | 221        |                   | < 0.10 |          |           | < 0.50          | 8.5                    |
|                   | Duplicate                               |              |          | < 0.10  |        |                   | < 0.050           | 34                     | 1.13               | 141        | < 0.10          |                 |        |                   |      | < 0.050             |         |           | ,          |                      | 5.29       | 8.52                     | 5.65         | 0.147                | 0.038             | 6.98   | 223        |                   | < 0.10 |          |           | < 0.50          | 9.7                    |
|                   | QA/QC RPD%                              | *            | *        | *       | 3      | *                 | *                 | *                      | 1                  | 0          | *               | 2               | *      | *                 |      | *                   | 7       | 2         | 2          | *                    | 43         | 2                        | 1            | *                    | *                 | 1      | 1          | 3                 | *      | *        | 1         | *               | 13                     |
|                   | 2017 09 12                              | < 3.0        | 0.12     | < 0.10  | 94.2   | < 0.020           | < 0.050           | 29                     | 1.01               | 145        | < 0.10          | 1.17            | < 0.   | 50 < 1            | 10 < | < 0.050             | 90.6    | 75.2      | 1,230      | < 0.0050             | 1.63       | 7.44                     | 5.76         | 0.141                | < 0.010           | 7.11   | 204        | 0.059             | < 0.10 | < 10     | 5.45      | < 0.50          | 3.4                    |
|                   | 2017 11 21                              | < 3.0        | < 0.10   | < 0.10  | 94.2   | < 0.020           | < 0.050           | 27                     | 0.977              | 150        | < 0.10          | 1.06            | < 0.   | 50 < 1            | 10 < | < 0.050             | 86.9    | 86.4      | 1,360      | < 0.0050             | 1.65       | 7.41                     | 5.87         | 0.134                | < 0.010           | 7.41   | 219        | 0.059             | < 0.10 | < 10     | 5.13      | < 0.50          | 3.8                    |
| FR_09-02-A        | 2017 03 20                              | < 1.0        | 0.14     | < 0.10  | 136    | < 0.020           | < 0.050           | < 10                   | 0.0431             | 116        | 0.19            | < 0.1           | 0 0.3  | 3 < 1             | 10 < | < 0.050             | 37.3    | 47.9      | < 0.10     | < 0.0050             | 0.959      | < 0.50                   | 1.74         | <u>50.8</u>          | < 0.010           | 2.33   | 177        | < 0.010           | < 0.10 | < 10     | 2.60      | < 0.50          | 5.8                    |
|                   | 2017 06 01                              | < 1.0        | 0.17     | < 0.10  | 151    | < 0.020           | < 0.050           | < 10                   | 0.0268             | 132        | < 0.10          | < 0.1           | 0 0.3  | 1 <1              | 10 < | < 0.050             | 50.0    | 61.2      | 0.13       | < 0.0050             | 1.23       | < 0.50                   | 2.00         | <u>117</u>           | < 0.010           | 2.70   | 193        | < 0.010           | < 0.10 | < 10     | 3.39      | < 0.50          | < 1.0                  |
|                   | 2017 09 13                              | < 3.0        | 0.25     | < 0.10  |        |                   | < 0.050           | 17                     | 0.0337             | 107        | < 0.10          |                 |        |                   |      |                     |         | 37.1      |            | < 0.0050             | 1.18       | < 0.50                   | 2.29         | <u>38.2</u>          | < 0.010           |        | 126        | < 0.010           |        |          |           | < 0.50          | 3.0                    |
|                   | 2017 11 22                              | < 3.0        | 0.20     | < 0.10  |        |                   | < 0.050           | 14                     | 0.0434             | 128        | < 0.10          | < 0.1           | 0 < 0. | 50 < 1            | 10 < | < 0.050             | 39.5    | 51.5      | < 0.10     | < 0.0050             | 1.17       | < 0.50                   | 2.26         | <u>47.9</u>          | < 0.010           | 2.44   |            | < 0.010           |        |          |           | < 0.50          | < 3.0                  |
| FR_09-02-B        | 2017 03 20                              |              |          | < 0.10  |        |                   | < 0.050           | 11                     | 0.0335             | 119        | < 0.10          |                 |        |                   |      | < 0.050             |         |           |            | < 0.0050             | 0.670      | 0.58                     | 1.98         | 43.8                 | < 0.010           |        |            | < 0.010           |        |          |           | < 0.50          | 4.3                    |
|                   | Duplicate                               | < 1.0        | 0.13     | < 0.10  | 174    | < 0.020           | < 0.050           | 11                     | 0.0313             |            | < 0.10          | 0.15            | < 0.   | 20 < 1            | 10 < | < 0.050             | 42.0    | 50.0      | < 0.10     | < 0.0050             | 0.658      | 0.55                     | 2.06         | 43.5                 | < 0.010           | 2.50   | 183        | < 0.010           | < 0.10 | < 10     | 2.45      | < 0.50          | 4.1                    |
|                   | QA/QC RPD%                              | *            | *        | *       | 1      | *                 | *                 | *                      | 7                  | 0          | *               | *               | *      | *                 | 10   | *                   | 1       | 2         | *          | *                    | 2          | *                        | 4            | 1                    | *                 | 2      | 1          | *                 | *      | *        | < 1       | *               | *                      |
|                   | 2017 06 01                              |              |          | < 0.10  |        |                   | < 0.050           | < 10                   | 0.0205             | 137        | < 0.10          |                 |        |                   |      |                     | 47.2    |           |            | < 0.0050             | 0.625      | < 0.50                   | 2.06         | <u>- 11/</u><br>24.4 | < 0.010           |        |            | < 0.010           |        |          |           | < 0.50          | 2.0                    |
|                   | 2017 09 13<br>Duplicate                 | < 3.0<br>< 3 | 0.10     | < 0.10  |        | < 0.020<br>< 0.02 | < 0.050<br>< 0.05 | 12                     | 0.0230             | 102<br>101 | 0.10            | 0.13            |        |                   |      | < 0.050<br>< 0.05   |         |           |            | < 0.0050<br>< 0.005  | 0.801      | < 0.50<br>< 0.5          | 1.96<br>1.95 | <u>34.4</u>          | < 0.010<br>< 0.01 |        | 144<br>143 | < 0.010<br>< 0.01 |        |          |           | < 0.50<br>< 0.5 | < 3.0                  |
|                   | QA/QC RPD%                              | _            | 0.1<br>* | < 0.1   | 137    | < 0.02            | < 0.05            | 12                     | 0.0259             | 101        | < 0.1           | 0.12            | < 0.   |                   |      | < 0.05              | 42.4    | 40.8<br>1 | < 0.1<br>* | < 0.005              | 0.746      | < 0.0                    | 1.95         | <u>33.1</u><br>4     | < 0.01<br>*       | < 1    | 143        | < 0.01<br>*       | < 0.1  | < 10     | < 1       | < 0.5           | < 3<br>*               |
|                   | 2017 11 22                              |              |          |         | 172    | < 0.020           |                   | 15                     | 0.0326             | 128        | < 0.10          | 0.17            |        |                   |      |                     | 45.7    | 55.2      | < 0.10     | < 0.0050             | 0.795      | 0.61                     | 2.25         | 43.1                 | < 0.010           |        |            | < 0.010           |        |          |           | < 0.50          | < 3.0                  |
| FR_09-01-A        | 2017 03 08                              |              |          |         |        | < 0.020           |                   | 18                     | 0.0571             |            |                 |                 |        |                   |      |                     |         |           |            | < 0.0050             | 0.658      | 1.40                     | 3.32         | 120                  | < 0.010           |        |            |                   |        |          |           |                 | < 1.0                  |
|                   | 2017 06 01                              |              |          | 1       |        | < 0.020           |                   | 13                     | 0.0269             |            | 1               |                 |        |                   |      |                     |         |           |            | < 0.0050             | 1.81       | < 0.50                   | 2.57         |                      | < 0.010           |        |            |                   |        |          |           |                 | 2.5                    |
|                   | 2017 09 12                              |              |          |         |        | < 0.020           |                   | 27                     | 0.0478             |            |                 |                 |        |                   |      |                     |         |           |            | < 0.0050             | 0.804      | 1.37                     | 3.43         |                      | < 0.010           |        |            |                   |        |          |           |                 | < 3.0                  |
|                   | 2017 11 22                              |              |          | 1       |        | < 0.020           |                   | 23                     | 0.0471             |            |                 |                 |        |                   |      |                     |         |           |            | < 0.0050             | 0.603      | 0.74                     | 3.64         |                      | < 0.010           |        |            |                   |        |          |           |                 | < 3.0                  |
| FR_09-01-B        | 2017 03 08                              |              |          | 1       |        | < 0.020           |                   | 21                     | 0.0536             | 184        |                 |                 |        |                   |      |                     |         |           |            | < 0.0050             | 0.640      | 2.00                     | 3.79         | 71.8                 | < 0.010           |        |            |                   |        |          |           |                 | 1.2                    |
|                   | 2017 06 01                              |              |          | 1       |        | < 0.020           |                   | 17                     | 0.0209             |            |                 |                 |        |                   |      |                     |         |           |            | < 0.0050             | 0.565      | < 0.50                   | 3.14         | 126                  | < 0.010           |        |            |                   |        |          |           |                 | < 1.0                  |
|                   | 2017 09 12                              |              |          | 1       |        | < 0.020           |                   | 16                     | 0.0350             | 140        |                 |                 |        |                   |      |                     |         |           |            | < 0.0050             |            | 1.25                     | 3.08         | 44.2                 | < 0.010           |        |            |                   |        |          |           |                 | < 3.0                  |
|                   | 2017 11 22                              |              |          |         |        | < 0.020           |                   | 23                     | 0.0402             | 202        |                 |                 |        |                   |      |                     |         |           |            | < 0.0050             | 0.835      | 1.32                     | 3.50         |                      | < 0.010           |        |            |                   |        |          |           |                 | < 3.0                  |
|                   |                                         |              |          |         |        |                   |                   |                        |                    |            |                 |                 |        |                   |      |                     |         |           |            |                      |            |                          |              |                      |                   |        |            |                   |        |          |           | ,t_,            |                        |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Concentration greater than CSR Aquatic Life (AW) standard <u>BOLD</u>

SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with Chloride.

<sup>d</sup> Standard varies with Hardness.

<sup>e</sup> Standard varies with crop.

<sup>f</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>9</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>h</sup> Ultra trace mercury was sampled at FR\_HMW5.

<sup>i</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison. <sup>1</sup> In the fourth quarter of 2017, FR\_GHHW was replaced with singular monitoring well FR\_GH\_WELL4 based on recommendations from the Hydrogeological Assessment

(SNC-Lavalin, 2017b). Monitoring well FR\_GH\_WELL4 will be used in place of FR\_GHHW in future sampling events.

|                      |                             |                 |          | Physi                                                                                              | ical Paran                      | neters                      |             |             |                              |                     |               |                | Disso                 | lved Inorgan          | ics                      |                      | -                           |                          | Orga                      | nics                          |
|----------------------|-----------------------------|-----------------|----------|----------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-------------|-------------|------------------------------|---------------------|---------------|----------------|-----------------------|-----------------------|--------------------------|----------------------|-----------------------------|--------------------------|---------------------------|-------------------------------|
| Sample               | Sample Date<br>(yyyy mm dd) | 토 Laboratory pH | Hardness | ත්<br>රෝ<br>ප්<br>ප්<br>රෝ<br>රෝ<br>රෝ<br>රෝ<br>රෝ<br>රෝ<br>රෝ<br>රෝ<br>රෝ<br>රෝ<br>රෝ<br>රෝ<br>රෝ | a<br>T∕T Total Suspended Solids | a<br>Total Dissolved Solids | Z Turbidity | 표<br>전<br>전 | 년<br>거 Ammonia, total (as N) | a<br>A Bromide<br>T | m<br>Chloride | Бћ<br>Fluoride | Б<br>П Nitrate (as N) | Д<br>Т Nitrite (as N) | m<br>Kjeldahl Nitrogen-N | M<br>Ortho-Phosphate | ₩<br>Total Phosphorous as P | Sulphate<br>T/b          | ₩<br>Total Organic Carbon | a<br>Dissolved Organic Carbon |
| BC Standard          | ())))                       |                 | Ū        | •                                                                                                  | 0                               |                             |             |             | 10                           |                     |               | 10             | 10                    |                       | U                        | Ū                    |                             | <u> </u>                 |                           |                               |
| CSR Aquatic Life     | e (AW) <sup>a</sup>         | n/a             | n/a      | n/a                                                                                                | n/a                             | n/a                         | n/a         | n/a         | 3,700-18,500 <sup>b</sup>    | n/a                 | 1,500         | 3,000          | 400,000               | 200-800 <sup>c</sup>  | n/a                      | n/a                  | n/a                         | 3,090-4,290 <sup>d</sup> | n/a                       | n/a                           |
| CSR Irrigation W     | /atering (IW)               | n/a             | n/a      | n/a                                                                                                | n/a                             | n/a                         | n/a         | n/a         | n/a                          | n/a                 | 100           | 1,000          | n/a                   | n/a                   | n/a                      | n/a                  | n/a                         | n/a                      | n/a                       | n/a                           |
| CSR Livestock V      | Vatering (LW)               | n/a             | n/a      | n/a                                                                                                | n/a                             | n/a                         | n/a         | n/a         | n/a                          | n/a                 | 600           | 1,000          | 100,000               | 10,000                | n/a                      | n/a                  | n/a                         | 1,000                    | n/a                       | n/a                           |
| CSR Drinking W       | ater (DW)                   | n/a             | n/a      | n/a                                                                                                | n/a                             | n/a                         | n/a         | n/a         | n/a                          | n/a                 | 250           | 1,500          | 10,000                | 1,000                 | n/a                      | n/a                  | n/a                         | 500                      | n/a                       | n/a                           |
| Fording River V      | /alley (Cont'd)             |                 |          |                                                                                                    |                                 |                             |             |             |                              |                     |               |                |                       |                       |                          |                      |                             |                          |                           |                               |
| FR_GHHW <sup>i</sup> | 2017 02 27                  | 7.58            | 689      | 1,230                                                                                              | < 1.0                           | 957                         | 0.30        | 263         | < 5.0                        | < 0.050             | 1.52          | 96             | 46,600                | 1.9                   | < 0.050                  | 0.0101               | 0.0155                      | 287                      | 0.87                      | 0.78                          |
|                      | 2017 06 01                  | 8.09            | 597      | 1,090                                                                                              | < 1.0                           | 844                         | 0.88        | 271         | 7.5                          | < 0.25              | 2.9           | < 100          | 33,400                | < 5.0                 | < 0.050                  | < 0.0010             | < 0.0020                    | 248                      | 0.76                      | 0.60                          |
|                      | 2017 09 13                  | 8.26            | 527      | 942                                                                                                | < 1.0                           | 637                         | 1.32        | 242         | 9.2                          | < 0.050             | 1.67          | 94             | 27,300                | <u>398</u>            | 0.499                    | < 0.0010             | 0.0014                      | 195                      | 2.08                      | 1.57                          |
|                      | 2017 11 15                  | 8.35            | 590      | 1,050                                                                                              | < 1.0                           | 772                         | 0.38        | 248         | < 5.0                        | < 0.25              | < 2.5         | < 100          | 34,900                | 19.1                  | 0.240                    | < 0.0010             | < 0.0020                    | 243                      | 0.93                      | 0.77                          |
| Field Banks          | ·                           |                 | •        |                                                                                                    |                                 |                             |             |             |                              |                     |               |                |                       |                       |                          |                      |                             |                          |                           |                               |
|                      | 2017 02 23                  | 5.45            | <0.50    | <2.0                                                                                               | <1.0                            | <10                         | <0.10       | <1.0        | < 5.0                        | <0.050              | <0.50         | < 20           | < 5                   | < 1.0                 | <0.050                   | <0.0010              | 0.0041                      | <0.30                    | <0.50                     | <0.50                         |
|                      | 2017 06 22                  | 5.72            | < 0.50   | < 2.0                                                                                              | < 1.0                           | < 10                        | < 0.10      | < 1.0       | < 5.0                        | < 0.050             | < 0.50        | < 20           | < 5                   | < 1.0                 | < 0.050                  | < 0.0010             | < 0.0020                    | < 0.30                   | < 0.50                    | 0.59                          |
|                      | 2017 09 18                  | 5.59            | < 0.50   | < 2.0                                                                                              | < 1.0                           | < 10                        | < 0.10      | < 1.0       | < 5.0                        | < 0.050             | < 0.50        | < 20           | < 5                   | < 1.0                 | < 0.050                  | < 0.0010             | < 0.0010                    | < 0.30                   | 0.73                      | 0.60                          |
|                      | 2017 11 15                  | 5.90            | < 0.50   | < 2.0                                                                                              | < 1.0                           | < 10                        | 0.14        | < 1.0       | 8.3                          | < 0.050             | < 0.50        | < 20           | < 5                   | < 1.0                 | < 0.050                  | < 0.0010             | < 0.0020                    | < 0.30                   | < 0.50                    | < 0.50                        |
| Trip Blanks          |                             | 1               |          |                                                                                                    |                                 |                             | 1 1         |             |                              |                     |               |                | _                     |                       |                          |                      |                             |                          |                           |                               |
|                      | 2017 02 27                  | 5.69            | < 0.50   | < 2.0                                                                                              | < 1.0                           | < 10                        | < 0.10      | < 1.0       | < 5.0                        | < 0.050             | < 0.50        | < 20           | < 5                   | < 1.0                 | < 0.050                  | < 0.0010             | 0.0052                      | < 0.30                   | < 0.50                    | -                             |
|                      | 2017 06 21                  | 5.54            | < 0.50   | < 2.0                                                                                              | < 1.0                           | < 10                        | < 0.10      | < 1.0       | < 5.0                        | < 0.050             | < 0.50        | < 20           | 7.9                   | < 1.0                 | < 0.050                  | < 0.0010             | < 0.0020                    | < 0.30                   | < 0.50                    | -                             |
|                      | 2017 09 18                  | 5.86            | < 0.50   | < 2.0                                                                                              | < 1.0                           | < 10                        | < 0.10      | < 1.0       | 5.6                          | < 0.050             | < 0.50        | < 20           | < 5                   | < 1.0                 | < 0.050                  | < 0.0010             | < 0.0010                    | < 0.30                   | < 0.50                    | -                             |
|                      | 2017 11 14                  | 5.12            | < 0.50   | < 2.0                                                                                              | < 1.0                           | < 10                        | 0.19        | < 1.0       | < 5.0                        | < 0.050             | < 0.50        | < 20           | < 5                   | < 1.0                 | < 0.050                  | < 0.0010             | < 0.0010                    | < 0.30                   | < 0.50                    | -                             |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.



Concentration greater than CSR Aquatic Life (AW) standard SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

Concentration greater than CSR Livestock Watering (LW) standard SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with Chloride.

- <sup>d</sup> Standard varies with Hardness.
- <sup>e</sup> Standard varies with crop.
- <sup>f</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>g</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).
- <sup>h</sup> Ultra trace mercury was sampled at FR\_HMW5.
- <sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>1</sup> In the fourth quarter of 2017, FR\_GHHW was replaced with singular monitoring well FR\_GH\_WELL4 based on recommendations from the Hydrogeological Assessment
- (SNC-Lavalin, 2017b). Monitoring well FR\_GH\_WELL4 will be used in place of FR\_GHHW in future sampling events.

|                |                           |       |          |          |         |         |           |                        |                    |        |                 |                 |                    |       |                     |        | Dissolv | ed Meta | ls         |           |                          |      |             |           |      |        |          |        |       |             |          |                        |
|----------------|---------------------------|-------|----------|----------|---------|---------|-----------|------------------------|--------------------|--------|-----------------|-----------------|--------------------|-------|---------------------|--------|---------|---------|------------|-----------|--------------------------|------|-------------|-----------|------|--------|----------|--------|-------|-------------|----------|------------------------|
|                |                           |       |          |          |         |         |           |                        |                    |        |                 |                 |                    |       |                     |        |         |         |            |           |                          |      |             |           |      |        |          |        |       |             |          |                        |
|                |                           |       |          |          |         |         |           |                        |                    |        |                 |                 |                    |       |                     |        |         |         |            |           |                          |      |             |           |      |        |          |        |       |             |          |                        |
|                |                           |       |          |          |         |         |           |                        |                    |        |                 |                 |                    |       |                     |        |         |         |            |           |                          |      |             |           |      |        |          |        |       |             |          |                        |
|                |                           |       |          |          |         |         |           |                        |                    |        |                 |                 |                    |       |                     |        |         |         |            |           |                          |      |             |           |      |        |          |        |       |             |          |                        |
|                |                           |       |          |          |         |         |           |                        |                    |        |                 |                 |                    |       |                     |        |         |         |            |           |                          |      |             |           |      |        |          |        |       |             |          |                        |
|                |                           |       |          |          |         |         |           |                        |                    |        |                 |                 |                    |       |                     |        |         |         |            | ء         |                          |      |             |           |      |        |          |        |       |             |          |                        |
|                |                           | ٦     | -        |          |         | ~       |           |                        | -                  |        | ε               |                 |                    |       |                     |        | Ę       | se      |            | <u> </u>  |                          | ε    | _           |           |      | c      |          |        |       |             |          |                        |
|                |                           | In L  | lio      | <u>.</u> | ٦       | iun     | Ith       |                        | L L                | E      | ji              |                 | 5                  |       |                     | ε      | sit     | ane     | <u>_</u>   | dei       | _                        | siu  | μn          |           | ε    | iun    | Ę        |        | Ę     | Ę           | iur      |                        |
|                |                           | ä     | Antimony | sen      | iur     | ylliur  | Bismuth   | lon                    | E E                | alcium | Chromium        | bal             | dd                 | _     | ad                  | i      | agne    | ng      | no.        | Molybden  | kel                      | as   | eniu        | /er       | dium | ontiu  | lli      |        | ine   | Uranium     | Jad      | o                      |
| Sample         | Sample Date               | Alu   | Ani      | Ars      | Bai     | Bel     | Bis       | Bo                     | Ca                 | Cal    | ਤ               | Cobalt          | Copper             | Iron  | Lea                 | Lithiu | Ma      | Mangane | Me         | ъ         | Nickel                   | Pot  | Sel         | Silv      | So   | Str    | Thallium | Tin    | Tit   | -<br>L<br>L | Vanadium | Zinc                   |
| Location       | (yyyy mm dd)              | μg/L  | µg/L     | µg/L     | µg/L    | µg/L    | µg/L      | μg/L                   | µg/L               | mg/L   | µg/L            |                 | µg/L               | µg/L  | µg/L                | µg/L   | mg/L    | µg/L    | µg/L       | µg/L      | µg/L                     | mg/L | µg/L        | µg/L      | mg/L | µg/L   | μg/L     | µg/L   | µg/L  | µg/L        | µg/L     | µg/L                   |
| BC Standard    |                           |       |          |          |         |         |           |                        |                    |        |                 |                 |                    |       |                     |        |         |         |            |           |                          |      |             |           |      |        |          |        |       |             |          |                        |
| CSR Aquatic    | Life (AW) <sup>a</sup>    | n/a   | 90       | 50       | 10,000  | 1.5     | n/a       | 12,000                 | 3.5-4 <sup>d</sup> | n/a    | 10 <sup>f</sup> | 40              | 70-90 <sup>d</sup> | n/a   | 60-160 <sup>d</sup> | n/a    | n/a     | n/a     | 0.25       | 10,000    | 1,100-1,500 <sup>d</sup> | n/a  | 20          | 15        | n/a  | n/a    | 3        | n/a    | 1,000 | 85          | n/a      | 900-2,400 <sup>d</sup> |
| CSR Irrigation | watering (IW)             | 5,000 | n/a      | 100      | n/a     | 100     | n/a       | 500-6,000 <sup>e</sup> | 5                  | n/a    | 5 <sup>f</sup>  | 50              | 200                | 5,000 | 200                 | 2,500  | n/a     | 200     | 1          | 10        | 200                      | n/a  | 20          | n/a       | n/a  | n/a    | n/a      | n/a    | n/a   | 10          | 100      | n/a                    |
| CSR Livestoc   | k Watering (LW)           | 5,000 | n/a      | 25       | n/a     | 100     | n/a       | 5,000                  | 80                 | 1,000  | 50 <sup>f</sup> | 1,000           | 300                | n/a   | 100                 | 5,000  | n/a     | n/a     | 2          | 50        | 1,000                    | n/a  | 30          | n/a       | n/a  | n/a    | n/a      | n/a    | n/a   | 200         | 100      | 2,000                  |
| CSR Drinking   |                           | 9,500 | 6        | 10       | 1,000   | 8       | n/a       | 5,000                  | 5                  | n/a    | 50 <sup>f</sup> | 20 <sup>g</sup> | 1,500              | 6,500 | 10                  | 8      | n/a     | 1,500   | 1          | 250       | 80                       | n/a  | 10          | 20        | 200  | 2,500  | n/a      | 2,500  | n/a   | 20          | 20       | 3,000                  |
| Fording Rive   | r Valley (Cont'd)         |       |          |          |         |         |           |                        |                    |        | L.              |                 |                    |       |                     |        |         |         |            |           |                          |      |             |           |      |        |          |        |       |             |          |                        |
| FR_GHHW        | / <sup>j</sup> 2017 02 27 | < 1.0 | < 0.10   | < 0.10   | 110     | < 0.020 | < 0.050   | 11                     | 0.0515             | 169    | < 0.10          | 0 < 0.10        | 1.98               | 91    | 0.080               | 24.8   | 64.7    | 1.93    | < 0.0050   | 0.328     | < 0.50                   | 1.46 | <u>123</u>  | < 0.010   | 2.61 | 238    | < 0.010  | < 0.10 | < 10  | 2.88        | < 0.50   | 67.4                   |
|                | 2017 06 01                | < 1.0 | < 0.10   | < 0.10   | 90.6    | < 0.020 | < 0.050   | 11                     | 0.0408             | 143    | < 0.10          | 0 < 0.10        | 1.96               | 47    | 0.070               | 23.7   | 58.2    | 5.93    | < 0.0050   | 0.343     | < 0.50                   | 1.27 | <u>93.5</u> | < 0.010   | 2.41 | 194    | < 0.010  | < 0.10 | < 10  | 2.64        | < 0.50   | 48.8                   |
|                | 2017 09 13                | < 3.0 | < 0.10   | < 0.10   | 82.3    | < 0.020 | < 0.050   | < 10                   | 0.0403             | 132    | < 0.10          | 0 < 0.10        | 1.87               | 13    |                     | 21.9   |         |         | < 0.0050   | 0.290     | < 0.50                   | 1.18 | 82.2        | < 0.010   | 2.15 | 169    | < 0.010  | < 0.10 | < 10  | 2.35        | < 0.50   | 90.3                   |
|                | 2017 11 15                | < 3.0 | < 0.10   | < 0.10   | 83.1    | < 0.020 | < 0.050   | < 10                   | 0.0297             | 143    | < 0.10          | ) < 0.10        | 1.36               | 12    | 0.060               | 24.9   | 56.6    | 1.08    | < 0.0050   | 0.322     | < 0.50                   | 1.19 | 92.8        | < 0.010   | 2.26 | 185    | < 0.010  | < 0.10 | < 10  | 2.50        | < 0.50   | 20.5                   |
| Field Banks    |                           |       |          |          |         |         |           |                        |                    | 1      |                 |                 |                    | 1     |                     |        | 1       |         |            |           |                          |      |             |           |      |        |          |        |       | 1           |          |                        |
|                | 2017 02 23                | < 1.0 | < 0.10   | < 0.10   | < 0.050 | < 0.020 | < 0.050   | < 10                   | < 0.0050           | < 50   | < 0.10          | 0 < 0.10        | < 0.20             | < 10  | < 0.050             | < 1.0  | < 5     | < 0.10  | < 0.00050  | < 0.050   | < 0.50                   | < 50 | < 0.050     | < 0.010   | < 50 | < 0.20 | < 0.010  | < 0.10 | < 10  | < 0.010     | < 0.50   | < 1.0                  |
|                | 2017 06 22                | < 1.0 | < 0.10   | < 0.10   | < 0.050 | < 0.020 | < 0.050   | < 10                   | < 0.0050           | < 50   | < 0.10          | 0 < 0.10        | < 0.20             | < 10  | < 0.050             | < 1.0  | < 5     | < 0.10  | < 0.0050   | < 0.050   | < 0.50                   | < 50 | < 0.050     | < 0.010   | < 50 | < 0.20 | < 0.010  | < 0.10 | < 10  | < 0.010     | < 0.50   | 9.20                   |
|                | 2017 09 18                |       |          |          |         |         | < 0.050   | < 10                   |                    |        |                 |                 |                    |       |                     |        |         |         | < 0.0050   |           | < 0.50                   |      |             | < 0.010   |      |        |          |        |       |             |          | < 3.0                  |
|                | 2017 11 15                | < 3.0 | < 0.10   | < 0.10   | < 0.050 | < 0.020 | < 0.050   | < 10                   | < 0.0050           | < 50   | < 0.10          | ) < 0.10        | < 0.50             | < 10  | < 0.050             | < 1.0  | < 100   | < 0.10  | < 0.0050   | < 0.050   | < 0.50                   | < 50 | < 0.050     | < 0.010   | < 50 | < 0.20 | < 0.010  | < 0.10 | < 10  | < 0.010     | < 0.50   | < 3.0                  |
| Trip Blanks    | 0017.00.07                |       | 1        | 1        |         |         | 1         | 1                      | 1                  |        | 1               | -1              | 1                  |       | 1                   | 1      |         |         |            | -         |                          | = 0  |             |           | = -  | ,      |          | ,      |       | 1           | ,        |                        |
|                | 2017 02 27                | -     | -        | -        | -       | -       | -         | -                      | -                  | < 50   | -               | -               | -                  | -     | -                   | -      | < 5     | -       | -          | -         | -                        | < 50 | -           | -         | < 50 |        | -        | -      | -     | -           | -        | -                      |
|                | 2017 06 21<br>2017 09 18  | -     | -        | -        | -       | -       | -         | -                      | -                  | < 50   | -               | -               | -                  | -     | -                   | -      | < 5     | -       | -          | -         | -                        | < 50 | -           | -         | < 50 | -      | -        | -      | -     | -           | -        | -                      |
|                | 2017 09 18                | - 30  | - 0.10   | -        | -       | -       | - 0.050   | -<br>< 10              | - < 0.0050         | < 50   | - 0.10          | -               | -                  | - 10  | -                   | - 10   | < 5     | -       | - < 0.0050 | - < 0.050 | - < 0.50                 | < 50 | -           | - < 0.010 | < 50 | -      | -        | -      | - 10  | -           | -        | - < 3.0                |
|                | 2017 11 14                | < ა.0 | < 0.10   | < 0.10   | < 0.050 | < 0.020 | VCU.U > 1 | < 10                   | < 0.0000           | < 50   | < 0.10          | J < 0.10        | < 0.30             | < 10  | < 0.050             | < 1.0  | < 100   | < 0.10  | < 0.0050   | < 0.050   | < 0.50                   | < 50 | < 0.050     | < 0.010   | < 00 | < 0.20 | < 0.010  | < 0.10 | < 10  | < 0.010     | < 0.50   | < 3.0                  |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

BOLD

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Concentration greater than CSR Aquatic Life (AW) standard

SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

Concentration greater than CSR Livestock Watering (LW) standard INVERSE

SHADED Concentration greater than CSR Drinking Water (DW) standard

- <sup>a</sup> Standard to protect freshwater aquatic life.
- <sup>b</sup> Standard varies with pH.
- <sup>c</sup> Standard varies with Chloride.
- <sup>d</sup> Standard varies with Hardness.
- <sup>e</sup> Standard varies with crop.
- <sup>f</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>g</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).
- <sup>h</sup> Ultra trace mercury was sampled at FR\_HMW5.
- <sup>i</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.
- <sup>1</sup> In the fourth quarter of 2017, FR\_GHHW was replaced with singular monitoring well FR\_GH\_WELL4 based on recommendations from the Hydrogeological Assessment
- (SNC-Lavalin, 2017b). Monitoring well FR\_GH\_WELL4 will be used in place of FR\_GHHW in future sampling events.

### TABLE 5: Groundwater Analytical Results compared to Secondary Screening Criteria

| Sample                                   | Sample Date  | Selenium    |
|------------------------------------------|--------------|-------------|
| Location<br>Groundwater Quality Criteria | (yyyy mm dd) | µg/L        |
| Guideline for Canadian Drinking          |              | 50          |
| Site Performance Objective: Gl           |              | 63          |
| Compliance Point: FR_FRCP1               |              | 130         |
| Henretta Valley                          | (2000/1)     | 150         |
| FR_HMW1D                                 | 2017 02 27   | <u>61.5</u> |
|                                          | 2017 06 22   | 34.3        |
|                                          | 2017 09 18   | <u>70.1</u> |
|                                          | 2017 11 14   | 94.3        |
|                                          | Duplicate    | <u>95.6</u> |
|                                          | QA/QC RPD%   | 1           |
| FR_HMW1S                                 | 2017 02 27   | <u>236</u>  |
|                                          | 2017 06 22   | 239         |
|                                          | Duplicate    | 231         |
|                                          | QA/QC RPD%   | 3           |
|                                          | 2017 09 18   | <u>262</u>  |
|                                          | 2017 11 14   | 236         |
| FR_HMW2                                  | 2017 02 27   | 547         |
|                                          | 2017 06 21   | 574         |
|                                          | 2017 09 19   | 674         |
|                                          | 2017 11 14   | 657         |
| FR_HMW3                                  | 2017 02 27   | 44.4        |
|                                          | 2017 06 22   | 44.6        |
|                                          | 2017 09 19   | 56.3        |
|                                          | 2017 11 14   | 66.1        |
| FR_HMW5                                  | 2017 06 21   | 14.8        |
| Fording River Valley                     | 2011/00/21   | 11.0        |
| FR POTWELLS                              | 2017 03 02   | 22.2        |
| I K_I O I WELLO                          | 2017 09 19   | 20.5        |
|                                          | 2017 09 19   | 25.4        |
| FR MW-1B                                 | 2017 02 23   | <b>50.2</b> |
|                                          |              |             |
|                                          | 2017 06 22   | 13          |
|                                          | 2017 09 19   | 47.1        |
| FR_09-02-A                               | 2017 11 21   | 42          |
| FR_09-02-A                               | 2017 03 20   | 50.8        |
|                                          | 2017 06 01   | <u>117</u>  |
|                                          | 2017 09 13   | 38.2        |
|                                          | 2017 11 22   | 47.9        |
| FR_09-02-B                               | 2017 03 20   | 43.8        |
|                                          | Duplicate    | 43.5        |
|                                          | QA/QC RPD%   | 1           |
|                                          | 2017 06 01   | <u>117</u>  |
|                                          | 2017 09 13   | 34.4        |
|                                          | Duplicate    | 33.1        |
|                                          | QA/QC RPD%   | 4           |
|                                          | 2017 11 22   | 43.1        |
| FR_09-01-A                               | 2017 03 08   | <u>120</u>  |
|                                          | 2017 06 01   | <u>112</u>  |
|                                          | 2017 09 12   | <u>68.1</u> |
|                                          | 2017 11 22   | <u>166</u>  |
| FR_09-01-B                               | 2017 03 08   | <u>71.8</u> |
|                                          | 2017 06 01   | <u>126</u>  |
|                                          | 2017 09 12   | 44.2        |
|                                          | 2017 11 22   | 91.5        |
| FR_GHHW <sup>a</sup>                     | 2017 02 27   | 123         |
| 0                                        | 2017 06 01   | 93.5        |
|                                          |              | 00.0        |
|                                          | 2017 09 13   | 82.2        |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

| BOLD   | Concentration greater than Canadian Drinking Water Quality guideline |
|--------|----------------------------------------------------------------------|
| SHADOW | Concentration greater than applicable Site Performance Objective     |
| SHADED | Concentration greater than applicable Compliance Point               |

<sup>a</sup> In the fourth quarter of 2017, FR\_GHHW was replaced with singular monitoring well FR\_GH\_WELL4 based on recommendations from the Hydrogeological Assessment (SNC-Lavalin, 2017b). Monitoring well FR\_GH\_WELL4 will be used in place of FR\_GHHW in future sampling events.



Appendix I-2: GHO 2017 Annual Groundwater Monitoring Summary and Recommendations



## Appendix I-2: Greenhills Operations 2017 Annual Groundwater Monitoring

## Summary

SNC-Lavalin Inc. (SNC-Lavalin, 2018b) completed the 2017 Annual Report for the Greenhills Operations (GHO) Site Specific Groundwater Monitoring Program (SSGMP). GHO is located in southeastern British Columbia (BC), in the Elk Valley and is one of Teck's five active coal mines in the Elk Valley. The following information was taken from the 2017 GHO Annual Report, which was completed to fulfill the reporting requirements outlined in Section 10.4 of Permit 107517 (October 13, 2017). The SSGMP was developed in May 2014 and was approved by the Ministry of Environment (MoE) now referred to as the Ministry of Environment & Climate Change Strategy (ENV) in June 2016. This report summarizes the results from the 2017 quarterly groundwater monitoring and sampling activities conducted at GHO.

The groundwater conceptual site model (CSM) for GHO identified two main drainages: Elk River to the west and the Fording River to the east and south. Several creeks flow from the uplands towards these rivers which are the final receiving environments for surface water and much of the groundwater at GHO. Groundwater flow in the study area occurs predominantly through surficial materials compared to groundwater flow through bedrock. The two main hydrogeological settings in surficial materials are in the upland areas and the Elk River and Fording River valley bottoms.

As part of the 2017 SSGMP, a total of 11 monitoring well locations at GHO were monitored and sampled for select analytes during quarterly field events. The wells monitored and sampled as part of the 2017 annual program are listed in **Error! Reference source not found.** along with the associated rationale (extracted from the GHO 2017 Annual Report). Monitoring well locations are shown on Drawing 653246-002 (extracted from the GHO 2017 Annual Report). At the time of reporting, the Q4 water level at GH\_GW-RLP-1D was not available for review. Groundwater samples were submitted for analysis of select constituents of interest (CIs) and non-CI parameters as outlined in the 2014 SSGMP. To assess groundwater and surface water interactions, groundwater chemistry was compared to chemistry at nearby surface water stations.

Groundwater quality screening followed the most recent procedures that have been discussed with ENV and summarized in the Regional Groundwater Monitoring Program (2017 RGMP; SNC-Lavalin, 2017b). Groundwater quality at all monitoring locations were compared to applicable primary screening criteria and secondary screening criteria if selenium concentrations were above primary screening. Presentation of results, data interpretation, and discussion of water level and chemistry trends for select constituents of interest (CI), including dissolved selenium and sulphate, were summarized by main transport pathways (i.e., main stem valley-bottoms and associated major tributary drainages) as defined by the CSM.

Groundwater quality data for CI are shown in plan view in Drawing 653246-007 (extracted from the GHO 2017 Annual Report). Groundwater quality data and field blank data are provided in the attached Table 4 (extracted from the 2017 GHO Annual Report).

In general, groundwater concentrations of CIs above primary and secondary screening criteria were consistent with 2015 and 2016 results. Results and interpretation are presented throughout the report based on valley-bottom drainages. A brief summary of results and interpretation is as follows:



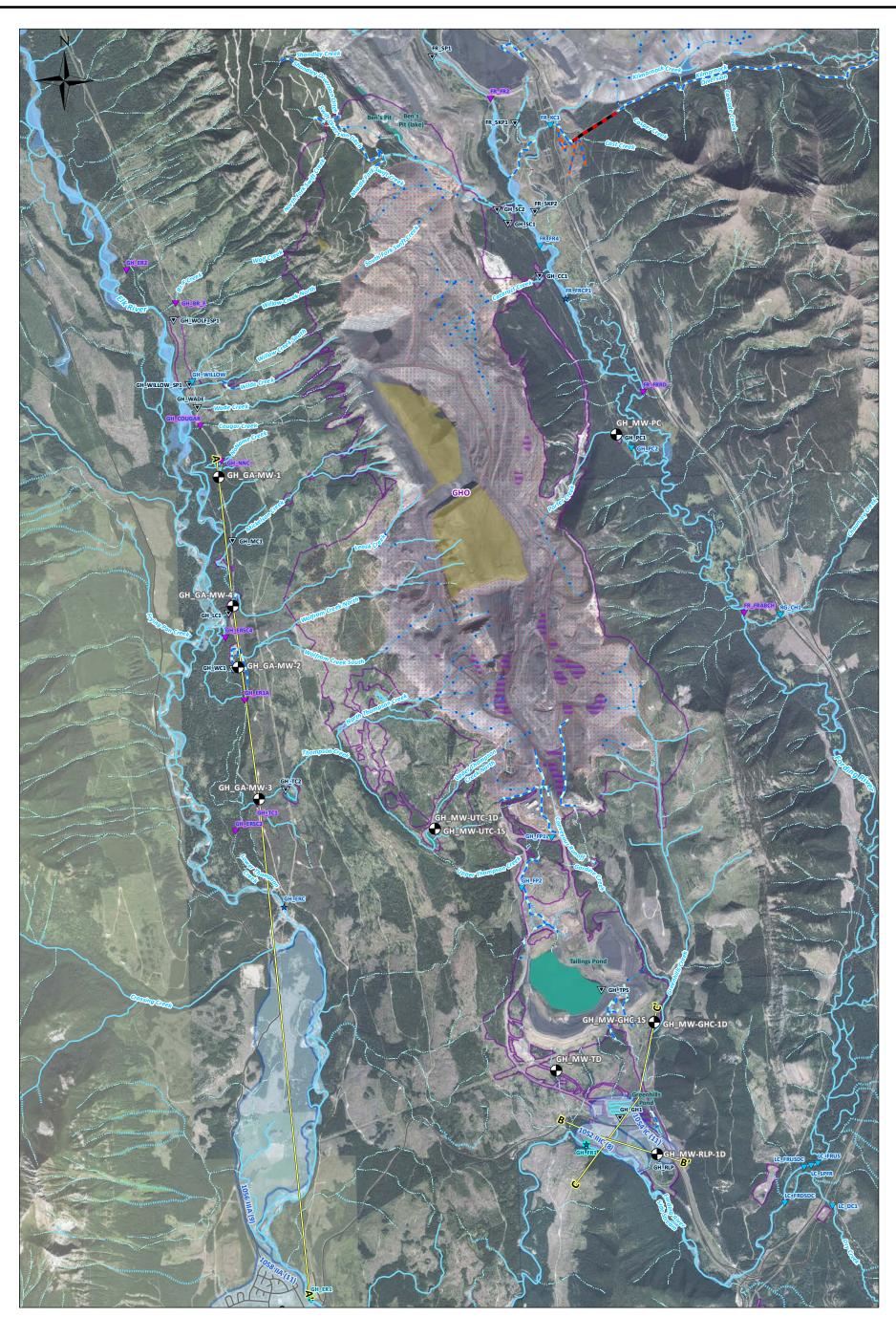
- Elk River Valley: Groundwater samples from 2017 were above primary and secondary screening criteria for dissolved selenium in the Wolfram and Thompson Creek drainages. Selenium concentrations in groundwater were typically lower compared to concentrations in nearby tributary surface water from Thompson Creek, indicating surface water is the primary pathway for transport of CI to the Elk River valley-bottom.
- > Fording River Valley:
  - Porter Creek: Concentrations of dissolved selenium in groundwater near Porter Creek were above the primary and secondary screening criteria in 2017. Similar concentrations and variations in selenium and sulphate were measured in surface water collected from Porter Creek. It is expected that surface water is the main transport pathway for loading of mine-influenced constituents to influence groundwater quality in this area.
  - Greenhills Creek: Groundwater samples from the Greenhills Creek drainage in 2017 were below the primary screening criteria for all CI. Dissolved selenium concentrations in surface water from Greenhills Creek have consistently been higher than in groundwater, indicating there is a potential for loading of mine-influenced constituents from tributary surface water to groundwater via infiltration. Consistent with previous years, a clear seasonal trend in sulphate concentrations in surface water and groundwater has been observed (low concentrations during freshet and high concentrations during times of lower flow); however, dissolved selenium does not follow this trend. It is interpreted that year-round low concentrations of selenium in groundwater in this area may be attributed to being preferentially attenuated in the aquifer due to reducing conditions in groundwater.
  - A clear seasonal trend in dissolved selenium and sulphate concentrations was observed in Fording River surface water and groundwater, consistent with the effect of dilution in a freshet dominated regime. Concentrations of surface water are one order-of-magnitude higher than groundwater indicating that the main transport pathway is via surface water infiltration in this area rather than tributary groundwater transport.
  - Groundwater selenium concentrations in overburden beneath the tailings dam are low, likely as a result of reducing conditions present in this well.
  - It is interpreted that a relatively continuous aquitard exists in the Fording River valley in the Greenhills Creek Monitoring Area, which isolates groundwater in the area from surface water infiltration.

Constituents other than CI that were measured above primary screening criteria included: sodium, fluoride, boron, copper, lithium, manganese, molybdenum, strontium, and zinc. Dissolved lithium and strontium did not previously exceed criteria; however, the drinking water *Contaminated Sites Regulation*<sup>1</sup> (CSR) standards recently reduced from 730 µg/L to 8 µg/L and 22,000 µg/L to 2,500 µg/L, respectively, on November 1, 2017. The remaining constituents above primary screening criteria were assessed in the 2017 RGMP and appeared to originate from natural sources (e.g., interaction with bedrock or unconsolidated materials), with the exception of zinc at GH\_MW-UTC-1D (Elk River) and copper at GH\_MW-PC (Porter Creek). These constituents appear to be locally sourced or anomalous in the case of copper and are not interpreted to be considered a concern.

An update of the SSGMP is due in 2018 and the 2017 and historical groundwater monitoring results will be used in the development of an updated plan.

<sup>&</sup>lt;sup>1</sup> Contaminated Sites Regulation (CSR), B.C. Reg. 375/96, includes amendments up to B.C. Reg. 196/2017, November 1, 2017.




## Recommendations

SNC-Lavalin had the following general recommendations:

- > Analyze for all the parameters listed in the 2014 SSGMP;
- > Increase the quarterly sampling periods from two months as indicated in the SSGMP to three months;
- Measure water level measurements manually prior to sampling, and before deploying or uploading data from level loggers;
- Re-confirm calibration of field probes if field measurement is identified out of expected range from historical data and re-measure field parameters prior to sampling;
- > Complete hydraulic conductivity testing at monitoring wells which do not have these data; and
- > Where data loggers are installed, record measurements for all four quarters in order to assess seasonal trends.

| Drainage                        | Well ID      | Rationale                                                                                                                                                     |
|---------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | GH_GA-MW-1   | Monitor groundwater quality in the valley bottom.                                                                                                             |
|                                 | GH_GA-MW-4   | Located downgradient of Leask Creek settling ponds. Selected to monitor groundwater quality associated with upland and tributary valley bottom influences.    |
| Elk River                       | GH_GA-MW-2   | Located downgradient of Wolfram Creek settling ponds. Selected to monitor groundwater quality associated with upland and tributary valley bottom influences.  |
|                                 | GH_GA-MW-3   | Located downgradient of Thompson Creek settling ponds. Selected to monitor groundwater quality associated with upland and tributary valley bottom influences. |
|                                 | GH_MW-UTC-IS | Monitor groundwater quality related to the Upper Thompson Creek                                                                                               |
|                                 | GH_MW-UTC-ID | pond.                                                                                                                                                         |
| Fording River<br>(Porter Creek) | GH_MW-PC     | Monitor groundwater quality near Porter Creek sedimentation pond.                                                                                             |
|                                 | GH_MW-GHC-1S | Monitor groundwater guality downgradiant of Site A CCP                                                                                                        |
| Fording River                   | GH_MW-GHC-1D | Monitor groundwater quality downgradient of Site A CCR.                                                                                                       |
| (Greenhills Creek)              | GH_MW-TD     | Monitor groundwater quality downgradient of the Tailings Dam.                                                                                                 |
|                                 | GH_MW-RLP-1D | Monitor groundwater quality in rail loop area.                                                                                                                |

### Table A: Summary of Groundwater Monitoring Locations and Rationale



| Legend<br>SSGMP Wells<br>→ Monitoring Well<br>Surface Water Stations<br>★ Compliance Point<br>★ Order Station                           | Site Features<br>Geological Cross Section<br>Secondary Road<br>Pit<br>Stockpiles<br>Waste Dump (Spoils) | Water Features<br>s Intermittent Stream<br>Stream Ditch<br>Indefinite Stream<br>Stream<br>Ubsurface | Notes:<br>1. Intended for illustration purpose<br>2. Original in colour.<br>3. Site location is approximate.<br>References:<br>1. Information provided by Teck C<br>2. Mapped Aquifers are from Wate | Coal Ltd. | is (BC ENV)         | PROJECT LOCATION:<br>Greenhills Operati<br>CLIENT NAME:<br>Teck Coal Ltd | ons, BC | SNC · I  | )<br>LAVALII | N      |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|--------------------------------------------------------------------------|---------|----------|--------------|--------|
| <ul> <li>Order Station and Compliance Point</li> <li>Receiving Environment</li> <li>Authorized Discharge</li> <li>Monitoring</li> </ul> |                                                                                                         | Y Culvert<br>Ditch<br>Water Pipeline<br>River Bed<br>Mapped Aquifers                                | Revisons:<br>0 - AO - 2018-01-29 - DRAFT - LH<br>1 - AO - 2018-03-27 - FINAL - LH<br>0 0.25 0.5 1                                                                                                    |           | 2 2.5<br>Kilometers | снк'д: ГН                                                                |         | 1110,000 | 1            | REV: 0 |

Project Path: P:\Current Projects\Teck Coal Ltd\GIS\Exports\ANNUAL REPORT

|                                                                        | and the second s |                                         | $\langle \rangle$             | 12-                                                              |                                                          |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------|------------------------------------------------------------------|----------------------------------------------------------|
|                                                                        | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate                                | Nitrate                       | Dissolved                                                        | Dissolved                                                |
| Sample Location                                                        | (yyyy mm dd)<br>2017 02 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mg/L)<br>385                           | Nitrogen<br>(µg/L)<br>2,660   | Cadmium<br>(μg/L)<br>0.0292                                      | Selenium<br>(µg/L)<br>88.1                               |
| GH_MW-PC                                                               | 2017 06 22<br>2017 09 25<br>2017 12 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 442<br>456<br>424                       | 2,610<br>2,030<br>2,270       | 0.0397<br>0.0503<br>0.0431                                       | 83.7<br>69.3<br>68.1                                     |
| munut.                                                                 | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and a starter                           | Nitrato                       | Dissolved                                                        | Dissolved                                                |
| Sample Location                                                        | Date<br>(yyyy mm dd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate<br>(mg/L)                      | Nitrate<br>Nitrogen<br>(μg/L) | Cadmium<br>(µg/L)                                                | Selenium<br>(µg/L)                                       |
| GH_GA-MW-1                                                             | 2017 01 30<br>2017 06 20<br>2017 09 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 204<br>192<br>344                       | 1,270<br>1,140<br>177         | 0.0272<br>0.0307<br><0.035                                       | 0.205<br>0.169<br>0.137                                  |
|                                                                        | 2017 10 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 295                                     | 523                           | 0.0303                                                           | 0.109                                                    |
| Sample Location                                                        | Date<br>(yyyy mm dd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate<br>(mg/L)                      | Nitrate<br>Nitrogen           | Dissolved<br>Cadmium                                             | Dissolved<br>Selenium                                    |
|                                                                        | 2017 01 30<br>2017 06 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 211<br>63.0                             | (µg/L)<br>1,920<br>3,180      | (μg/L)<br>0.0128<br>0.0104                                       | (μg/L)<br>3.16<br>4.31                                   |
| GH_GA-MW-4                                                             | 2017 00 20<br>2017 09 19<br>2017 11 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68.0<br>66.4                            | 638<br>1,730                  | 0.0053<br>0.0092                                                 | 1.83<br>4.93                                             |
|                                                                        | anney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | and the second                |                                                                  |                                                          |
| Sample Location                                                        | Date<br>(yyyy mm dd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate<br>(mg/L)                      | Nitrate<br>Nitrogen<br>(µg/L) | Dissolved<br>Cadmium<br>(µg/L)                                   | Dissolved<br>Selenium<br>(µg/L)                          |
| GH_GA-MW-2                                                             | 2017 01 30<br>2017 06 20<br>2017 09 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176<br>171<br>189                       | 837<br>1,500                  | 0.0401<br>0.0189                                                 | 7.87<br>7.41                                             |
|                                                                        | 2017 09 20<br>2017 11 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 189<br>214                              | 850<br>5,520                  | < 0.0050<br>0.0584                                               | 9.49<br>18.9                                             |
|                                                                        | 1 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 11                                   | Nitrate                       | Dissolved                                                        | Dissolved                                                |
| Sample Location                                                        | Date<br>(yyyy mm dd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate<br>(mg/L)                      | Nitrate<br>Nitrogen<br>(µg/L) | Dissolved<br>Cadmium<br>(µg/L)                                   | Selenium<br>(µg/L)                                       |
| GH_MW-UTC-1S                                                           | 2017 01 31<br>2017 06 21<br>2017 09 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.8<br>31.5<br>32.4                    | 45.0<br>103<br>71.0           | 0.0153<br>0.0212<br>0.0056                                       | 1.3<br>1.16<br>1.76                                      |
| A North                                                                | 2017 10 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.4                                    | 62.6                          | 0.0056                                                           | 2.02                                                     |
| Sample Location                                                        | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate                                | Nitrate<br>Nitrogen           | Dissolved<br>Cadmium                                             | Dissolved<br>Selenium                                    |
|                                                                        | (yyyy mm dd)<br>2017 01 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mg/L)<br>16.1                          | (μg/L)<br>< 50                | (μg/L)<br>< 0.010                                                | (μg/L)<br>2.54                                           |
| GH_MW-UTC-1D                                                           | 2017 06 21<br>2017 09 26<br>2017 10 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.4<br>17.4<br>19.8                    | < 25<br>< 25<br>< 25          | 0.0173<br>0.0353<br>0.0420                                       | 0.615<br>1.29<br>0.933                                   |
| 11                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.8                                    |                               |                                                                  | LE                                                       |
| Sample Location                                                        | Date<br>(yyyy mm dd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate<br>(mg/L)                      | Nitrate<br>Nitrogen<br>(µg/L) | Dissolved<br>Cadmium<br>(µg/L)                                   | Dissolved<br>Selenium<br>(µg/L)                          |
| GH_GA-MW-3                                                             | 2017 01 30<br>2017 06 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.3<br>84.0                            | < 5.0<br>< 5.0                | <ul><li>(μg/L)</li><li>&lt; 0.0050</li><li>&lt; 0.0050</li></ul> | 0.231<br>0.354                                           |
| Gn_GA-IVIW-3                                                           | 2017 09 20<br>2017 11 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.7<br>41.1                            | < 5.0<br>161                  | < 0.0050<br>< 0.0050                                             | 1.29<br>19.4                                             |
| /                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $/ \gamma$                              |                               | $\uparrow \Lambda$                                               | T                                                        |
| Sample Location                                                        | Date<br>(yyyy mm dd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate<br>(mg/L)                      | Nitrate<br>Nitrogen<br>(µg/L) | Dissolved<br>Cadmium<br>(µg/L)                                   | Dissolved<br>Selenium<br>(µg/L)                          |
| GH_MW-GHC-1D                                                           | 2017 02 02<br>2017 06 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307<br>326                              | 98.0<br>76                    | 0.0232<br>0.0129                                                 | 5.15<br>3.55                                             |
|                                                                        | 2017 09 21<br>2017 11 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 317<br>280                              | 151<br>112                    | 0.0229<br>0.0213                                                 | 4.27<br>4.43                                             |
| Sample Location                                                        | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate                                | Nitrate<br>Nitrogen           | Dissolved<br>Cadmium                                             | Dissolved<br>Selenium                                    |
|                                                                        | (yyyy mm dd)<br>2017 02 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mg/L)                                  | (μg/L)<br>51                  | (µg/L)<br>< 0.0050                                               | (μg/L)<br>0.126                                          |
| GH_MW-GHC-1S                                                           | 2017 06 21<br>2017 09 21<br>2017 11 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 615<br>619<br>601                       | 43<br>< 25<br>< 25            | < 0.0050<br>< 0.0050<br>< 0.0050                                 | < 0.050<br>< 0.050<br>< 0.050                            |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                               |                                                                  | Standing .                                               |
| Sample Location                                                        | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate                                | Nitrate                       | Dissolved<br>Cadmium                                             | Dissolved<br>Selenium                                    |
| Sample Location                                                        | (yyyy mm dd)<br>2017 02 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mg/L)<br>86.3                          | Nitrogen<br>(µg/L)<br>12.6    | (µg/L)<br>0.176                                                  | (μg/L)<br>0.225                                          |
| GH_MW-TD                                                               | 2017 06 19<br>2017 09 27<br>2017 11 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86.6<br>87.3<br>83.4                    | < 5.0<br>< 5.0<br>< 5.0       | 0.281<br>0.144<br>0.230                                          | <0.050<br><0.050<br><0.050                               |
|                                                                        | NAPAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | - to Barrow                   |                                                                  |                                                          |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAR I                                   | Nitrate                       | Dissolved                                                        | Dissolved                                                |
| Sample Location                                                        | Date<br>(yyyy mm dd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sulphate<br>(mg/L)                      | Nitrogen<br>(µg/L)            | Cadmium<br>(µg/L)                                                | Selenium<br>(µg/L)                                       |
| GH_MW-RL-1D                                                            | 2017 02 02<br>2017 06 22<br>2017 00 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.0<br>29.9                            | 6.3<br>< 5.0                  | < 0.0050<br>< 0.0050                                             | 2 0.08                                                   |
|                                                                        | 2017 09 26<br>2017 12 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.9<br>8.09                            | 13.1<br>< 5.0                 | < 0.0050<br>< 0.0050                                             | 6.53<br>2.09                                             |
| - 1                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                       |                               |                                                                  |                                                          |
| 1.                                                                     | Fin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | min                           | m                                                                | -45                                                      |
| Below primary screening cri<br>Above at least one of the pr            | imary screening criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                               |                                                                  | Notes:<br>1. Intended for                                |
| elenium concentrations ab                                              | ove at least one of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | secondary screenii                      | ng criteria                   |                                                                  | <ol> <li>Original in c</li> <li>Site location</li> </ol> |
| wells                                                                  | Water Features<br>Intermittent Str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Site Features<br>eam GHO Per<br>Seconda | mitted Boundary               |                                                                  | References:<br>1. Information<br>Revisons:               |
| Water Stations                                                         | Stream Ditch<br>Indefinite Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | ry Road<br>Settling Pond      |                                                                  | 0 - AO - 2018-<br>1 - AO - 2018-                         |
| rder Station<br>rder Station and Compliance Po<br>eceiving Environment | • Subsurface<br>bint ==== Culvert<br>=== Ditch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                               |                                                                  |                                                          |
| horized Discharge<br>nitoring                                          | Water Pipeline<br>River Bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                               |                                                                  | 0 0.25 0.5                                               |

O
 MXD Path: P:\Current Projects\Teck Coal Ltd\GIS\Map Series\2017 Annual Reports\653246-007\_SpatialDistofC

onstinGW\_GHO1.mxd

### TABLE 1: Summary of Groundater Monitoring Program Locations

| Area          | Well ID      | Monitoring<br>Program    |                     | linates<br>NAD 83)   | LIDAR<br>Ground<br>Elevation | Ground<br>Elevation | TOC<br>Elevation | Stick Up<br>Height | Drilled<br>Depth | Well<br>Diameter | Top of<br>Screen<br>Depth | Bottom of<br>Screen<br>Depth | Screened<br>Interval | Depth to<br>Bedrock | Hydraulic<br>Conductivity |
|---------------|--------------|--------------------------|---------------------|----------------------|------------------------------|---------------------|------------------|--------------------|------------------|------------------|---------------------------|------------------------------|----------------------|---------------------|---------------------------|
|               |              |                          | Easting             | Northing             | masl                         | masl                | masl             | m                  | mbgs             | mm               | mbgs                      | mbgs                         |                      | mbgs                | m/s                       |
|               | GH_GA-MW-1   | SSGMP, RGMP              | 648019              | 5554750              | 1378.81                      | 1379.21             | 1380.26          | 1.05               | 22.6             | -                | 15.50                     | 18.50                        | Clayey Sand          | 22.6                | 1.0E-12                   |
|               | GH_GA-MW-4   | SSGMP, RGMP              | 648217              | 5552963              | 1311.57                      | 1312.15             | 1313.05          | 0.90               | 17.2             | -                | 13.70                     | 16.70                        | Sand and Gravel      | -                   | 1.0E-04                   |
| Elk River     | GH_GA-MW-2   | SSGMP, RGMP              | 648291              | 5552115              | 1305.23                      | 1306.66             | 1307.68          | 1.02               | 29.6             | -                | 23.00                     | 29.00                        | Sand/Silt            | 28.5                | 1.0E-03                   |
|               | GH_GA-MW-3   | SSGMP, RGMP              | 648578              | 5550296              | 1299.62                      | 1299.78             | 1300.75          | 0.97               | 14.4             | -                | 8.00                      | 14.00                        | Sand and Gravel      | 14.4                | 2.0E-06                   |
|               | GH_MW-UTC-1S | SSGMP                    | 651011              | 5549879              | 1601.63                      | 1602.00             | 1603.22          | 1.22 <sup>b</sup>  | 7.6              | 51               | 4.50                      | 7.50                         | Clay/Bedrock         | 5.5                 | 1.0E-06                   |
|               | GH_MW-UTC-1D | SSGMP                    | 651011              | 5549879              | 1601.63                      | 1602.00             | 1603.22          | 1.22 <sup>b</sup>  | 50.0             | 51               | 40.00                     | 43.00                        | Bedrock              | 7.0                 | 2.4E-08                   |
|               | GH_MW-PC     | SSGMP, RGMP <sup>a</sup> | 653526              | 5555339              | 1573.37                      | 1583.50             | 1582.28          | 1.22               | 45.0             | 51               | 3.50                      | 6.50                         | Gravel and Cobbles   | 5.5                 | 6.3E-07                   |
|               | GH_MW-GHC-1S | SSGMP                    | 654050 <sup>c</sup> | 5547205°             | 1597.60                      | 1610.00             | 1610.80          | 0.80               | 14.6             | 51               | 4.58                      | 7.63                         | Silty Gravel         | 14.6                | 3.0E-07                   |
| Fording River | GH_MW-GHC-1D | SSGMP                    | 654052 <sup>°</sup> | 5547207 <sup>°</sup> | 1597.04                      | 1610.00             | 1610.80          | 0.80               | 23.2             | 51               | 18.30                     | 21.40                        | Bedrock              | 14.6                | 5.0E-05                   |
|               | GH_MW-TD     | SSGMP                    | 652694              | 5546536              | 1590.84                      | 1600.00             | 1600.75          | 0.75               | 38.1             | 51               | 31.39                     | 34.44                        | Sand and Silt        | 35.1                | -                         |
|               | GH_MW-RLP-1D | SSGMP, RGMP <sup>a</sup> | 654088              | 5545381              | 1494.78                      | 1495.00             | -                | -                  | 83.5             | 51               | 79.50                     | 82.50                        | Sand and Gravel      | -                   | -                         |

Notes: a) Proposed in the 2017 RGMP; b) Stick up not surveyed but reported estimate was 1.2 m; c) UTM coordinates obtained from LIDAR.

masl = metres above sea level mbgs = metres below ground surface

### TABLE 2: Summary of Groundwater Elevations and Calculated Vertical Gradients

| Area                                  | Well ID      | LIDAR<br>Ground<br>Elevation | Ground<br>Elevation | TOC<br>Elevation | Stick Up<br>Height | Date of Static<br>Water Level<br>Measurement | Depth to<br>Water | Water Level<br>Elevation | Well Pair     | Date of Static Water<br>Level Measurement | Calculated<br>Vertical<br>Gradient |
|---------------------------------------|--------------|------------------------------|---------------------|------------------|--------------------|----------------------------------------------|-------------------|--------------------------|---------------|-------------------------------------------|------------------------------------|
|                                       |              | masl                         | masl                | masl             | m                  | yyyy/mm/dd                                   | mtoc              | masl                     |               | yyyy/mm/dd                                | m/m                                |
|                                       | GH_GA-MW-1   | 1378.81                      | 1379.21             | 1380.26          | 1.05               | 2017/01/30                                   | 17.01             | 1363.25                  | -             |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/06/20                                   | 16.71             | 1363.55                  | -             |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/09/19                                   | 16.94             | 1363.32                  |               |                                           |                                    |
|                                       | GH_GA-MW-4   | 1311.57                      | 1312.15             | 1313.05          | 0.90               | 2017/10/19<br>2017/01/30                     | 16.99<br>6.65     | 1363.27<br>1306.40       | -             |                                           |                                    |
|                                       | GH_GA-WW-4   | 1311.57                      | 1312.15             | 1313.05          | 0.90               | 2017/06/30                                   | 4.93              | 1308.12                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/09/19                                   | 6.50              | 1306.55                  | -             |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/11/27                                   | 6.57              | 1306.48                  | -             |                                           |                                    |
|                                       | GH_GA-MW-2   | 1305.23                      | 1306.66             | 1307.68          | 1.02               | 2017/01/30                                   | 5.49              | 1302.19                  | -             |                                           |                                    |
|                                       | •···_•····   |                              |                     | 1001100          |                    | 2017/06/20                                   | 4.03              | 1303.65                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/09/20                                   | 5.78              | 1301.90                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/11/27                                   | 6.00 <sup>b</sup> | 1301.68                  |               |                                           |                                    |
| Elk River                             | GH_GA-MW-3   | 1299.62                      | 1299.78             | 1300.75          | 0.97               | 2017/01/30                                   | 6.49              | 1294.26                  |               |                                           |                                    |
|                                       | _            |                              |                     |                  |                    | 2017/06/19                                   | 6.20              | 1294.55                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/09/20                                   | 8.99              | 1291.76                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/11/30                                   | 7.89              | 1292.86                  |               |                                           |                                    |
|                                       | GH_MW-UTC-1S | 1601.63                      | 1602.00             | 1603.22          | 1.22 <sup>a</sup>  | 2017/01/31                                   | 2.44              | 1600.78                  | GH_MW-UTC-1S  | 2017/01/31                                | -0.027                             |
|                                       |              |                              |                     |                  |                    | 2017/06/21                                   | 2.07              | 1601.15                  | and           | 2017/06/21                                | -0.033                             |
|                                       |              |                              |                     |                  |                    | 2017/09/26                                   | 2.59              | 1600.63                  | GH_MW-UTC-1D  | 2017/09/26                                | -0.030                             |
|                                       |              |                              |                     |                  |                    | 2017/10/18                                   | 2.55              | 1600.67                  | GIT_WW-OIC-ID | 2017/10/18                                | -0.031                             |
|                                       | GH_MW-UTC-1D | 1601.63                      | 1602.00             | 1603.22          | 1.22 <sup>a</sup>  | 2017/01/31                                   | 3.40              | 1599.82                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/06/21                                   | 3.24              | 1599.98                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/09/26                                   | 3.65              | 1599.57                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/10/18                                   | 3.66              | 1599.56                  |               |                                           |                                    |
|                                       | GH_MW-PC     | 1573.37                      | 1583.50             | 1582.28          | 1.22               | 2017/02/02                                   | 3.91              | 1578.37                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/06/22                                   | 3.90              | 1578.38                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/09/25                                   | 4.26              | 1578.02                  | -             |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/12/11                                   | 4.20              | 1578.08                  |               |                                           |                                    |
|                                       | GH_MW-GHC-1S | 1597.60                      | 1610.00             | 1610.80          | 0.80               | 2017/02/02                                   | 2.40              | 1608.40                  | GH_MW_GHC-1S  | 2017/02/02                                | -0.506                             |
|                                       |              |                              |                     |                  |                    | 2017/06/22                                   | 1.63              | 1609.17                  | and           | 2017/06/22                                | -0.456                             |
|                                       |              |                              |                     |                  |                    | 2017/09/21                                   | 3.10              | 1607.70                  | GH_MW_GHC_1D  | 2017/09/21                                | -0.407                             |
|                                       |              | 4507.04                      | 1010.00             | 1010.00          | 0.00               | 2017/11/22                                   | 3.40              | 1607.40                  |               | 2017/11/22                                | -0.405                             |
|                                       | GH_MW-GHC-1D | 1597.04                      | 1610.00             | 1610.80          | 0.80               | 2017/02/02<br>2017/06/22                     | 9.35<br>7.90      | 1601.45<br>1602.90       | -             |                                           |                                    |
| Fording River                         |              |                              |                     |                  |                    | 2017/08/22                                   | 8.70              | 1602.90                  | -             |                                           |                                    |
| · · · · · · · · · · · · · · · · · · · |              |                              |                     |                  |                    | 2017/09/21                                   | 8.96              | 1601.84                  | -             |                                           |                                    |
|                                       | GH_MW-TD     | 1590.84                      | 1600.00             | 1600.75          | 0.75               | 2017/02/16 <sup>c</sup>                      | Artesian          | > 1600.75                | -             |                                           |                                    |
|                                       |              | 1330.04                      | 1000.00             | 1000.75          | 0.75               |                                              |                   | > 1600.75                |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | <u>2017/06/19<sup>c</sup></u>                | Artesian          |                          | -             |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/09/27 <sup>c</sup>                      | Artesian          | > 1600.75                |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/11/21 <sup>c</sup>                      | Artesian          | > 1600.75                | -             |                                           |                                    |
|                                       | GH_MW-RLP-1D | 1494.78                      | 1495.00             | 1496.22          | 1.22 <sup>a</sup>  | 2017/02/02                                   | 7.99              | 1488.23                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/06/22                                   | 6.48              | 1489.74                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/09/26                                   | 6.50              | 1489.72                  |               |                                           |                                    |
|                                       |              |                              |                     |                  |                    | 2017/11/13                                   | 6.56              | 1489.66                  |               |                                           |                                    |

Notes: a) Stick up not surveyed but reported estimate was 4 ft; b) The depth to water measured at GH\_GA-MW-2 was reported to be approximate due to issues with the water level probe; c) Assumed the date of static water level measurement was the same as the sample date

masl = metres above sea level mbgs = metres below ground surface

#### **TABLE 3: Field Measured Parameters**

|               |              |       |             | Field Para   | neters |                     |           |
|---------------|--------------|-------|-------------|--------------|--------|---------------------|-----------|
| Sample        | Sample Date  | pН    | Temperature | Conductivity | ORP    | Dissolved<br>Oxygen | Turbidity |
| Location      | (yyyy mm dd) | pН    | °C          | µS/cm        | mV     | mg/L                | NTU       |
| Elk River     |              |       |             | •            | 1      | •                   | 1         |
| GH GA-MW-1    | 2017 01 30   | 7.46  | 1.3         | 825.0        | 85.7   | 4.27                | 3.10      |
|               | 2017 06 20   | 8.96  | 11.9        | 903.0        | 72.1   | 4.50                | 2.71      |
|               | 2017 09 19   | 7.28  | 9.0         | 1,254        | 10.0   | 1.50                | 3.65      |
|               | 2017 10 19   | 7.49  | 6.3         | 1,110        | 95.4   | 3.02                | 0.9       |
| GH_GA-MW-4    | 2017 01 30   | 7.52  | 4.6         | 615.3        | 219.1  | 5.12                | 0.23      |
| -             | 2017 06 20   | 10.43 | 9.9         | 458.0        | 27.2   | 5.39                | 2.19      |
|               | 2017 09 19   | 7.55  | 9.4         | 421.4        | 182.8  | 4.87                | 0.15      |
|               | 2017 11 27   | 7.62  | 4.9         | 433.3        | 204.6  | 4.86                | 1.59      |
| GH GA-MW-2    | 2017 01 30   | 7.58  | 4.4         | 579.2        | 103.6  | 0.55                | 3.15      |
|               | 2017 06 20   | 11    | 9.2         | 626.6        | -18.1  | 0.67                | 0.80      |
|               | 2017 09 20   | 7.54  | 7.5         | 648.0        | 42.5   | 4.01                | 1.31      |
|               | 2017 11 27   | 7.47  | 6.0         | 740.0        | 169.3  | 0.49                | 2.40      |
| GH_GA-MW-3    | 2017 01 30   | 7.7   | 4.4         | 483.6        | -264.5 | 0.53                | 4.99      |
|               | 2017 06 19   | 7.65  | 7.4         | 567.2        | -204.6 | 1.06                | 2.44      |
|               | 2017 09 20   | 7.6   | 6.1         | 522.0        | -320.0 | 0.48                | 1.17      |
|               | 2017 11 30   | 7.66  | 4.8         | 545.0        | -317.6 | 0.16                | 4.49      |
| GH MW-UTC-1S  | 2017 01 31   | 7.55  | 4.7         | 410.9        | 76.1   | 2.01                | 129.2     |
| -             | 2017 06 21   | 7.7   | 7.3         | 411.4        | 16.8   | 4.45                | 68.69     |
|               | 2017 09 26   | 7.5   | 8.5         | 391.0        | 30.9   | 3.80                | 5.03      |
|               | 2017 10 18   | 7.57  | 7.0         | 423.4        | 57.0   | 3.88                | 5.77      |
| GH MW-UTC-1D  | 2017 01 31   | 8.58  | 3.4         | 1,279        | 57.6   | 0.55                | 51.58     |
| -             | 2017 06 21   | 8.48  | 8.1         | 1,392        | 70.7   | 0.52                | 37.22     |
|               | 2017 09 26   | 8.56  | 8.0         | 1,320        | -98.9  | 0.62                | 31.80     |
|               | 2017 10 18   | 8.58  | 7.0         | 1,418        | -21.9  | 0.49                | 29.60     |
| Fording River |              |       |             | ,            |        |                     |           |
| GH MW-PC      | 2017 02 02   | 7.66  | 1.0         | 870.0        | 104.7  | 8.35                | 4.17      |
| _             | 2017 06 22   | 7.65  | 6.5         | 971.0        | 107.2  | 6.40                | 11.02     |
|               | 2017 09 25   | 7.53  | 8.9         | 931.0        | 166.9  | 4.65                | 6.43      |
|               | 2017 12 11   | 7.25  | 2.5         | 988.0        | 228.4  | 6.61                | 46.00     |
| GH_MW-GHC-1S  | 2017 02 02   | 7.17  | 4.2         | 1,230        | -27.5  | 0.44                | 615.1     |
| _             | 2017 06 21   | 7.16  | 7.0         | 1,205        | -33.1  | 0.48                | 5.99      |
|               | 2017 09 21   | 7.08  | 6.9         | 1,223        | -34.3  | 1.12                | 6.54      |
|               | 2017 11 22   | 7.17  | 6.6         | 1,275        | -31.4  | 0.15                | 16.9      |
| GH MW-GHC-1D  | 2017 02 02   | 7.16  | 4.4         | 853.0        | 90.6   | 0.74                | 18.50     |
| -             | 2017 06 22   | 7.16  | 8.1         | 882.0        | 14.5   | 1.02                | 67.3      |
|               | 2017 09 21   | 7.1   | 5.5         | 885.0        | 107.8  | 1.41                | 19.70     |
|               | 2017 11 22   | 7.18  | 5.9         | 912.0        | 122.2  | 1.26                | 16.00     |
| GH_MW-TD      | 2017 02 16   | 7.2   | 4.9         | 623.2        | -9.9   | 2.07                | 2.27      |
| _             | 2017 06 19   | 7.17  | 7.5         | 636.0        | -6.0   | 11.18               | 2.97      |
|               | 2017 09 27   | 7.27  | 9.0         | 69.3         | -60.3  | 4.21                | 0.16      |
|               | 2017 11 21   | 7.39  | 4.4         | 681.0        | -13.7  | 5.42                | 1.09      |
| GH_MW-RLP-1D  | 2017 02 02   | 7.7   | 1.5         | 399.7        | -121.7 | 0.50                | 3.73      |
|               | 2017 06 22   | 8.1   | 8.5         | 412.1        | -190.7 | 0.42                | 22.20     |
|               | 2017 09 26   | 7.98  | 11.2        | 394.4        | -213.4 | 4.28                | 18.10     |
|               | 2017 12 13   | 8.05  | 2.7         | 395.6        | 191.7  | 4.48                | 11.10     |

Page 1 of 1

All terms defined within the body of SNC-Lavalin's report.

|                     |              | Ph                       | ysical P               | Paramet    | ers                    |                             |                           |             |              |                    |                   |                |                     | G                   | eochemic            | al Indica        | ators                    |                        |                        |                 |                          |                      |                        |
|---------------------|--------------|--------------------------|------------------------|------------|------------------------|-----------------------------|---------------------------|-------------|--------------|--------------------|-------------------|----------------|---------------------|---------------------|---------------------|------------------|--------------------------|------------------------|------------------------|-----------------|--------------------------|----------------------|------------------------|
|                     |              |                          |                        |            |                        |                             |                           |             |              |                    |                   |                |                     |                     |                     |                  |                          |                        |                        |                 |                          |                      |                        |
| Sample<br>Location  | Sample Date  | Dissolved Organic Carbon | Total Dissolved Solids | J Hardness | Total Suspended Solids | Total Alkalinity (as CaCO3) | 년<br>고                    | Bromide     | Chloride     | Dissolved Aluminum | Dissolved Calcium | Dissolved Iron | Dissolved Magnesium | Dissolved Manganese | Dissolved Potassium | Dissolved Sodium | Eluoride                 | E<br>P∫ Nitrate (as N) | Nitrite (as N)         | ortho-Phosphate | Suphate                  | Total Organic Carbon | Total Phosphorous as P |
| BC Standard         | (yyyy mm dd) | mg/L                     | mg/L                   | liig/∟     | mg/L                   | mg/L                        | µg/∟                      | mg/L        | mg/L         | µg/L               | mg/L              | µg/L           | mg/L                | µg/L                | mg/L                | mg/L             | μg/L                     | µg/∟                   | μg/L                   | mg/L            | mg/L                     | mg/L                 | mg/L                   |
| CSR Aquatic Life (A | W/) a        | n/a                      | n/a                    | n/a        | n/a                    | n/a                         | 1,310-18,500 <sup>b</sup> | n/a         | 1,500        | n/a                | n/a               | n/a            | n/a                 | n/a                 | n/a                 | n/a              | 2,000-3,000 <sup>c</sup> | 400,000                | 200-2,000 <sup>d</sup> | n/a             | 1,280-4,290 <sup>c</sup> | n/a                  | n/a                    |
| CSR Irrigation Wate |              | n/a                      | n/a                    | n/a        | n/a                    | n/a                         | n/a                       | n/a         | 100          | 5,000              | n/a               | 5,000          | n/a                 | 200                 | n/a                 | n/a              | 1,000                    | n/a                    | 200-2,000<br>n/a       | n/a             | n/a                      | n/a                  | n/a                    |
| CSR Livestock Wate  |              | n/a                      | n/a                    | n/a        | n/a                    | n/a                         | n/a                       | n/a         | 600          | 5,000              | 1,000             | n/a            | n/a                 | 200<br>n/a          | n/a                 | n/a              | 1,000                    | 100,000                | 10,000                 | n/a             | 1,000                    | n/a                  | n/a                    |
| CSR Drinking Wate   |              | n/a                      | n/a                    | n/a        | n/a                    | n/a                         | n/a                       | n/a         | 250          | 9,500              | n/a               | 6,500          | n/a                 | 1,500               | n/a                 | 200              | 1,500                    | 10,000                 | 1,000                  | n/a             | 500                      | n/a                  | n/a                    |
| Elk River           |              | ∏/a                      | 11/a                   | 11/a       | ∏/a                    | n/a                         | 11/a                      | 11/d        | 250          | 9,500              | II/a              | 0,500          | 11/a                | 1,500               | n/a                 | 200              | 1,500                    | 10,000                 | 1,000                  | II/d            | 500                      | ∏/a                  | 11/a                   |
| GH_GA-MW-1          | 2017 01 30   | 2.76                     | 641                    | 228        | 7.6                    | 337                         | 94.6                      | < 0.25      | 10.1         | < 3.0              | 50.3              | 33             | 24.8                | 168                 | 3.17                | 145              | 640                      | 1,270                  | < 5.0                  | 0.0321          | 204                      | 3.04                 | 0.0508                 |
|                     | 2017 06 20   | 2.04                     | 639                    | 233        | 4.2                    | 351                         | 9.3                       | 0.208       | 8.07         | 2.4                | 47.8              | < 10           | 27.7                | 6.53                | 3.23                | 156              | 590                      | 1,140                  | 12.0                   | 0.0407          | 192                      | 1.91                 | 0.0433                 |
| -                   | 2017 00 20   | 8.83                     | 822                    | 363        | 9.6                    | 358                         | 222                       | 0.200       | 21.7         | < 3.0              |                   | 171            | 43.3                | 548                 | 3.70                | 174              | 390                      | 1,140                  | 8.1                    | 0.0407          | 344                      | 4.40                 | 0.0433                 |
| -                   |              |                          |                        | 296        |                        |                             |                           | 0.42        |              |                    |                   |                | 34.3                | 327                 |                     |                  |                          |                        |                        |                 |                          |                      |                        |
|                     | 2017 10 19   | 5.17                     | 825                    | 296<br>377 | 1.7                    | 393                         | 229                       | < 0.25      | 23.8<br>4.66 | < 3.0              | 61.9              | 88             |                     |                     | 3.62                | 163<br>6.79      | 380                      | 523                    | 5.4                    | 0.0265          | 295                      | 4.82                 | 0.0419                 |
| GH_GA-MW-4          | 2017 01 30   | 0.70                     | 506                    |            | < 1.0                  | 203                         | 49.8                      |             |              | < 3.0              | 89.9              | < 10           | 37.1                | < 0.10              | 1.36                |                  | 150<br>150               | 1,920                  | < 5.0                  | 0.0016          | 211                      | 0.81                 | 0.0022                 |
|                     | Duplicate    | 0.69                     | 505<br>< 1             | 367        | 1.3                    | 206                         | < 5.0                     | < 0.25<br>* | 4.74<br>2    | < 3.0              | 89.2              | < 10           | 35.0<br>6           | < 0.10              | 1.36<br>0           | 6.44<br>5        | 0                        | 1,960<br>2             | < 5.0<br>*             | 0.0015          | 215<br>2                 | 0.82                 | < 0.0020               |
| -                   | 2017 06 20   | 2.45                     | 309                    | 277        | < 1.0                  | 213                         | < 5.0                     | < 0.050     | 1.11         | < 1.0              | 54.5              | < 10           | 34.1                | 0.38                | 1.82                | 4.98             | 190                      | 3,180                  | < 1.0                  | 0.0025          | 63.0                     | 2.39                 | < 0.0040               |
| -                   | Duplicate    | 2.40                     | 308                    | -          | < 1.0                  | 210                         | < 5.0                     | < 0.050     | 1.10         | 1.1                | 53.5              | < 10           | 32.9                | 0.37                | 1.76                | 4.77             | 172                      | 3,170                  | < 1.0                  | 0.0020          | 63.0                     | 2.32                 | < 0.0040               |
|                     | Bupilouto    | *                        | < 1                    | *          | *                      | 1                           | *                         | *           | 1.10         | *                  | 2                 | *              | 4                   | *                   | 3                   | 4                | 10                       | < 1                    | *                      | *               | 0                        | *                    | *                      |
|                     | 2017 09 19   | 0.74                     | 297                    | 246        | < 1.0                  | 180                         | 24.3                      | < 0.050     | 2.46         | < 3.0              | 57.2              | < 10           | 25.1                | 0.23                | 0.992               | 4.82             | 139                      | 638                    | < 1.0                  | < 0.0010        | 68.0                     | 0.72                 | 0.0014                 |
| -                   | Duplicate    | 0.74                     | 305                    | 248        | < 1.0                  | 180                         | < 5.0                     | < 0.050     | 2.31         | < 3.0              |                   | < 10           | 25.1                | 0.16                | 0.990               | 4.90             | 142                      | 623                    | < 1.0                  | < 0.0010        | 67.7                     | 0.76                 | 0.0016                 |
|                     |              | *                        | 3                      | 1          | *                      | 0                           | *                         | *           | 6            | *                  | 1                 | *              | 0                   | *                   | 0                   | 2                | 2                        | 2                      | *                      | *               | < 1                      | *                    | *                      |
|                     | 2017 11 27   | 0.85                     | 303                    | 250        | < 1.0                  | 189                         | < 5.0                     | < 0.050     | 3.27         | < 3.0              | 55.5              | < 10           | 27.0                | < 0.10              | 1.24                | 5.78             | 183                      | 1,730                  | < 1.0                  | 0.0023          | 66.4                     | 0.88                 | 0.0013                 |
| -                   | Duplicate    | 1.23                     | 306                    | 251        | < 1.0                  | 194                         | 5.4                       | < 0.050     | 3.29         | < 3.0              |                   | < 10           | 26.8                | < 0.10              | 1.27                | 5.82             | 174                      | 1,740                  | < 1.0                  | 0.0024          | 66.7                     | 2.56                 | 0.0015                 |
|                     | ·            | *                        | 1                      | < 1        | *                      | 3                           | *                         | *           | 1            | *                  | 1                 | *              | 1                   | *                   | 2                   | 1                | 5                        | 1                      | *                      | *               | < 1                      | *                    | *                      |
| GH_GA-MW-2          | 2017 01 30   | 0.75                     | 488                    | 362        | 4.5                    | 215                         | < 5.0                     | < 0.25      | 8.01         | < 3.0              | 102               | < 10           | 26.3                | 61.2                | 1.10                | 8.17             | 120                      | 837                    | 69.1                   | 0.0015          | 176                      | 0.79                 | 0.0065                 |
| -                   | 2017 06 20   | 0.86                     | 489                    | 366        | 1.4                    | 214                         | < 5.0                     | < 0.050     | 7.12         | 1.1                | 94.3              | < 10           | 31.6                | 10.5                | 1.18                | 8.35             | 104                      | 1,500                  | < 1.0                  | < 0.0010        | 171                      | 0.90                 | < 0.0040               |
| -                   | 2017 09 20   | 0.61                     | 538                    | 423        | 10.3                   | 177                         | 12.6                      | 0.067       | 7.23         | < 3.0              | 115               | < 10           | 33.2                | 35.9                | 1.20                | 9.07             | 102                      | 850                    | 94.4                   | < 0.0010        | 189                      | 0.77                 | 0.0092                 |
|                     | Duplicate    | 0.67                     | 532                    | 385        | 4.0                    | 170                         | 13.6                      | 0.068       | 7.27         | < 3.0              | 102               | < 10           | 31.3                | 74.7                | 1.12                | 8.67             | 97                       | 1,560                  | 100                    | 0.0010          | 192                      | 0.71                 | 0.0067                 |
|                     | ·            | *                        | 1                      | 9          | *                      | 4                           | *                         | *           | 1            | *                  | 12                | *              | 6                   | 70                  | 7                   | 5                | *                        | 59                     | 6                      | *               | 2                        | *                    | 31                     |
|                     | 2017 11 27   | 0.86                     | 619                    | 448        | 1.6                    | 221                         | < 5.0                     | < 0.050     | 7.44         | < 3.0              | 120               | < 10           | 35.9                | 41.1                | 1.16                | 9.27             | 98                       | 5,520                  | 38.4                   | 0.0030          | 214                      | 0.81                 | 0.0047                 |
| GH_GA-MW-3          | 2017 01 30   | 0.72                     | 356                    | 218        | 16.7                   | 259                         | 372                       | < 0.050     |              | < 3.0              |                   | < 10           | 28.3                | 10.0                | 2.54                | 38.0             | 700                      | < 5.0                  | < 1.0                  | < 0.0010        | 33.3                     | 0.89                 | 0.0190                 |
|                     | 2017 06 19   | 1.03                     | 407                    | 281        | 4.9                    | 258                         | 334                       | < 0.050     | 6.93         | 2.9                | 51.5              | 43             | 37.1                | 19.3                | 2.55                | 35.8             | 593                      | < 5.0                  | 1.8                    | < 0.0010        | 84.0                     | 0.93                 | 0.0260                 |
|                     | 2017 09 20   | < 0.50                   | 331                    | 256        | 7.3                    | 258                         | 363                       | < 0.050     |              | < 3.0              | 45.9              | < 10           | 34.3                | 10.8                | 2.60                | 39.3             | 647                      | < 5.0                  | < 1.0                  | 0.0072          | 38.7                     | < 0.50               | 0.0250                 |
|                     | 2017 11 30   | 0.56                     | 324                    | 274        | 4.7                    | 292                         | 362                       | < 0.050     | 5.84         | < 3.0              | 48.3              | < 10           | 37.2                | 8.71                | 2.25                | 36.9             | 652                      | 161                    | 2.0                    | 0.0092          | 41.1                     | 0.56                 | 0.0151                 |
| GH_MW-UTC-1S        | 2017 01 31   | 1.23                     | 316                    | 236        | 158                    | 229                         | < 5.0                     | < 0.050     | 8.30         | < 3.0              | 64.4              | < 10           | 18.2                | 19.0                | 1.30                | 15.6             | 141                      | 45.0                   | < 1.0                  | 0.0039          | 37.8                     | 5.19                 | 0.120                  |
|                     | 2017 06 21   | 1.35                     | 304                    | 201        | 81.2                   | 199                         | 41.8                      | < 0.050     | 5.62         | 3.3                | 54.6              | < 10           | 15.7                | 20.1                | 1.18                | 14.7             | 112                      | 103                    | < 1.0                  | 0.0013          | 31.5                     | 3.43                 | 0.0850                 |
|                     | 2017 09 26   | 1.62                     | 282                    | 227        | 7.6                    | 224                         | 11.0                      | < 0.050     | 6.04         | < 3.0              |                   | 18             | 18.5                | 15.7                | 1.14                | 14.4             | 141                      | 71.0                   | < 1.0                  | 0.0016          | 32.4                     | 1.91                 | 0.0054                 |
|                     | 2017 10 18   | 1.28                     | 300                    | 215        | 8.3                    | 196                         | 15.5                      | < 0.050     | 6.27         | < 3.0              |                   | < 10           | 17.7                | 8.98                | 1.16                | 14.2             | 116                      | 62.6                   | < 1.0                  | 0.0021          | 31.8                     | 0.94                 | 0.0101                 |
| GH_MW-UTC-1D        | 2017 01 31   | 5.07                     | 1,050                  | 15.2       | 5.2                    | 748                         | 281                       | < 0.50      | 77.1         | 11.2               | 3.92              | 35             | 1.31                | 18.7                | 1.34                | 403              | <u>6,080</u>             | < 50                   | < 10                   | 0.187           | 16.1                     | 7.16                 | 0.269                  |
|                     | 2017 06 21   | 5.74                     | 1,050                  | 13.9       | 6.2                    | 646                         | 303                       | 0.48        | 74.8         | 3.1                | 3.72              | 23             | 1.13                | 18.0                | 1.24                | 391              | <u>6,340</u>             | < 25                   | < 5.0                  | 0.164           | 22.4                     | 7.69                 | 0.24                   |
|                     | 2017 09 26   | 6.64                     | 1,020                  | 13.0       | 10.0                   | 791                         | 297                       | 0.45        | 77.7         | 4.3                | 3.36              | 77             | 1.11                | 22.4                | 1.07                | 403              | 6,280                    | < 25                   | < 5.0                  | 0.190           | 17.4                     | 8.87                 | 0.269                  |
|                     | 2017 10 18   | 5.88                     | 1,050                  | 12.6       | 7.8                    | 748                         | 293                       | 0.46        | 75.4         | 5.3                | 3.28              | 102            | 1.07                | 23.0                | 1.04                | 407              | 5,920                    | < 25                   | < 5.0                  | 0.190           | 19.8                     | 8.50                 | 0.282                  |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Concentration greater than CSR Aquatic Life (AW) standard BOLD SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with Hardness.

<sup>d</sup> Standard varies with Chloride.

<sup>e</sup> Standard varies with crop.

<sup>f</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>g</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>h</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

|                                 |                          |                  |         |             |                    |                    |                        |                    |                 |                 |        |                     | D           | issolved M           | etals            |                        |                     |         |                     |       |         |              |          |           |                  |                       |
|---------------------------------|--------------------------|------------------|---------|-------------|--------------------|--------------------|------------------------|--------------------|-----------------|-----------------|--------|---------------------|-------------|----------------------|------------------|------------------------|---------------------|---------|---------------------|-------|---------|--------------|----------|-----------|------------------|-----------------------|
|                                 |                          |                  |         |             |                    |                    |                        |                    |                 |                 |        |                     |             |                      |                  |                        |                     |         |                     |       |         |              |          |           |                  |                       |
|                                 |                          |                  |         |             |                    |                    |                        |                    |                 |                 |        |                     |             |                      |                  |                        |                     |         |                     |       |         |              |          |           |                  |                       |
|                                 |                          |                  |         |             |                    |                    |                        |                    |                 |                 |        |                     |             |                      |                  |                        |                     |         |                     |       |         |              |          |           |                  |                       |
|                                 |                          |                  |         |             |                    |                    |                        |                    |                 |                 |        |                     |             |                      |                  |                        |                     |         |                     |       |         |              |          |           |                  |                       |
|                                 |                          |                  |         |             |                    |                    |                        |                    |                 |                 |        |                     |             |                      |                  |                        |                     |         |                     |       |         |              |          |           |                  |                       |
|                                 |                          |                  |         |             |                    |                    |                        |                    |                 |                 |        |                     |             |                      |                  |                        |                     |         |                     |       |         |              |          |           |                  |                       |
|                                 |                          |                  |         |             |                    |                    |                        |                    |                 |                 |        |                     |             |                      |                  |                        |                     |         |                     |       |         |              |          |           |                  |                       |
|                                 |                          |                  |         |             |                    |                    |                        |                    |                 |                 |        |                     |             |                      | ε                |                        |                     |         |                     |       |         |              |          |           |                  |                       |
|                                 |                          | >                |         |             | F                  |                    |                        | ۶                  | E               |                 |        |                     |             |                      | nu               |                        | E                   |         |                     | ε     | -       |              | -        | _         | ε                |                       |
|                                 |                          | nor              | ji      | ε           | eryllium           | muth               | c                      | Idmium             | niu             | It              | er     |                     | E           | ury                  | ode              | li                     | lenium              | Ę       | ۲.                  | tiu   | ium     |              | ium      | un        | diu              |                       |
|                                 |                          | Antimony         | senic   | arium       | اړ<br>۲            | s                  | Boron                  | upa                | Chromium        | Cobalt          | Copp   | Lead                | Lithium     | Mercury              | Molybdenum       | Nickel                 | eler                | Silicon | Silver              | ron   | Thalliu | c            | Titanium | Uranium   | Vanadium         | Zinc <sup>h</sup>     |
| Sample                          | Sample Date              |                  | Ar<br>A | ä           | Be                 | ä                  |                        | Ca                 |                 |                 |        |                     |             |                      |                  |                        | Se                  |         |                     | Š     |         | Tin          |          |           |                  |                       |
| Location                        | (yyyy mm dd)             | µg/L             | µg/L    | µg/L        | µg/L               | µg/L               | μg/L                   | µg/L               | μg/L            | µg/L            | µg/L   | µg/L                | µg/L        | μg/L                 | µg/L             | µg/L                   | µg/L                | µg/L    | µg/L                | µg/L  | µg/L    | µg/L         | µg/L     | µg/L      | µg/L             | µg/L                  |
| BC Standard                     |                          | 00               | 50      | 10.000      | 4.5                | n/n                | 10.000                 | 0 = 40             | tof             | 40              | 00.000 | 10 1000             | m / m       | 0.05                 | 10.000           | 050 4 500              | 20                  | n/n     | 0 = 4 = 0           |       | 0       | n/n          | 1 000    | 05        | n/n              | 77.0.4000             |
| CSR Aquatic Life (A)            |                          | 90               | 50      | 10,000      | 1.5                | n/a                | 12,000                 | 0.5-4 <sup>c</sup> | 10 <sup>t</sup> | 40              |        | 40-160 <sup>c</sup> | n/a         | 0.25                 |                  | 250-1,500 <sup>c</sup> | 20                  |         | 0.5-15 <sup>c</sup> | n/a   | 3       | n/a          | 1,000    | 85        | n/a              | 75-2,400 <sup>c</sup> |
| CSR Irrigation Water            |                          | n/a              | 100     | n/a         | 100                | n/a                | 500-6,000 <sup>e</sup> | 5                  | 5 <sup>f</sup>  | 50              | 200    | 200                 | 2,500       | 1                    | 10               | 200                    | 20                  | n/a     | n/a                 | n/a   | n/a     | n/a          | n/a      | 10        | 100              | n/a                   |
| CSR Livestock Wate              |                          | n/a<br>6         | 25      | n/a         | 100<br>8           | n/a                | 5,000                  | 80<br>5            | 50 <sup>r</sup> | 1,000           | 300    | 100<br>10           | 5,000<br>8  | 2                    | 50<br>250        | 1,000                  | 30                  | n/a     | n/a<br>20           | n/a   | n/a     | n/a<br>2,500 | n/a      | 200<br>20 | 100<br>20        | 2,000                 |
| CSR Drinking Water<br>Elk River |                          | 0                | 10      | 1,000       | 0                  | n/a                | 5,000                  | 5                  | 50 <sup>†</sup> | 20 <sup>g</sup> | 1,500  | 10                  | 0           | I                    | 230              | 80                     | 10                  | n/a     | 20                  | 2,500 | n/a     | 2,500        | n/a      | 20        | 20               | 3,000                 |
| GH_GA-MW-1                      | 2017 01 30               | 1.96             | 0.52    | 43.7        | < 0.020            | < 0.050            | 825                    | 0.0272             | 0.34            | 0.33            | 1.86   | < 0.050             | 142         | < 0.0050             | 5.27             | 2.98                   | 0 205               | 4 010   | < 0.010             | 3 320 | 0.021   | < 0.10       | < 10     | 2.02      | < 0.50           | 7.8                   |
|                                 | 2017 06 20               | 3.43             | 0.45    | 43.0        |                    | < 0.050            | 770                    | 0.0307             |                 | < 0.10          |        | < 0.050             | 156         | < 0.0050             | 4.89             | 9.51                   | 0.169               |         |                     | 3,190 |         | 0.17         | < 10     | 2.48      | < 0.50           | 5.6                   |
| -                               | 2017 00 20               | 0.80             | 0.66    | 51.9        |                    | < 0.050            | 726                    | < 0.035            | < 0.10          |                 | 1.32   | 0.054               | 144         | < 0.0050             | 85.7             | 5.40                   | 0.137               |         | < 0.010             |       |         | 0.43         | < 10     | 2.65      | 1.57             | 59.8                  |
| -                               | 2017 10 19               | 1.65             | 0.56    | 46.0        |                    | < 0.050            | 717                    | 0.0303             | 0.16            | 0.70            | 62.4   | < 0.050             | 139         | < 0.0050             | 21.4             | 4.15                   | 0.109               |         | < 0.010             |       |         | < 0.10       |          | 2.32      | < 0.50           | 55.8                  |
| GH_GA-MW-4                      | 2017 01 30               | 0.16             | 0.10    | 59.4        |                    | < 0.050            | 17                     | 0.0128             | 0.17            | < 0.10          |        |                     | 41.4        | < 0.0050             | 1.90             | < 0.50                 |                     |         | < 0.010             |       | < 0.010 |              |          | 2.71      | < 0.50           | < 3.0                 |
|                                 | Duplicate                | 0.16             | < 0.10  | 62.3        | < 0.020            | < 0.050            | 15                     | 0.0131             | 0.17            | < 0.10          |        |                     | 41.6        |                      | 1.83             | < 0.50                 | 3.03                |         | < 0.010             |       | < 0.010 |              |          | 2.62      | < 0.50           | < 3.0                 |
|                                 | •                        | *                | *       | 5           | *                  | *                  | *                      | *                  | *               | *               | *      | *                   | < 1         | *                    | 4                | *                      | 4                   | 7       | *                   | 2     | *       | *            | *        | 3         | *                | *                     |
| _                               | 2017 06 20               | 0.33             | 0.11    | 80.4        |                    | < 0.050            | 14                     | 0.0104             | 0.19            | < 0.10          |        | < 0.050             |             | < 0.0050             | 3.22             | 0.64                   | 4.31                |         | < 0.010             |       | < 0.010 |              |          | 2.59      | < 0.50           | < 1.0                 |
|                                 | Duplicate                | 0.32             | 0.11    | 77.1        | < 0.020            | < 0.050            | 12                     | 0.0106             | 0.26            | < 0.10          | 0.32   | < 0.050             | 26.6        | < 0.0050             | 3.07             | 0.63                   | 4.05                |         | < 0.010             |       | < 0.010 | < 0.10       | < 10     | 2.60      | < 0.50           | < 1.0                 |
| -                               | 0017.00.10               | *                | *       | 4           | *                  | *                  | *                      | *                  | *               | *               | *      | *                   | 1           | *                    | 5                | *                      | 6                   | 2       | *                   | 3     | *       | *            | *        | 0         | *                | *                     |
| -                               | 2017 09 19               | 0.13             | < 0.10  | 56.5        | < 0.020            | < 0.050<br>< 0.050 | 16                     | 0.0053             | 0.16            |                 | < 0.50 | < 0.050<br>< 0.050  |             | < 0.0050<br>< 0.0050 | 1.95<br>2.05     | < 0.50                 | 1.83                |         | < 0.010<br>< 0.010  |       | < 0.010 |              |          | 1.76      | < 0.50<br>< 0.50 | < 3.0                 |
|                                 | Duplicate                | 0.12<br>*        | < 0.10  | 56.0        | < 0.020            | < 0.050            | 23                     | 0.0074             | 0.13            | < 0.10          | < 0.50 | < 0.050             | <b>20.4</b> | < 0.0050             | 2.05             | < 0.50<br>*            | 1.77<br>3           | 2,400   | *                   | 189   | < 0.010 | < 0.10       | < 10     | 1.82      | < 0.50           | < 3.0<br>*            |
| -                               | 2017 11 27               | 0.19             | < 0.10  | 63.9        |                    | < 0.050            | 15                     | 0.0092             | 0.16            | < 0.10          | < 0.50 | < 0.050             |             | < 0.0050             | 2.55             | < 0.50                 | 4.93                | •       | < 0.010             | 191   | < 0.010 | < 0.10       | < 10     | 1.98      | < 0.50           | < 3.0                 |
| -                               | Duplicate                | 0.20             | 0.11    | 63.3        | < 0.020            | < 0.050            | 16                     | 0.0078             |                 | < 0.10          |        | < 0.050             |             | < 0.0050             | 2.70             | < 0.50                 | 5.23                |         | < 0.010             |       | < 0.010 |              |          | 1.98      | < 0.50           | < 3.0                 |
|                                 | •                        | *                | *       | 1           | *                  | *                  | *                      | *                  | *               | *               | *      | *                   | 2           | *                    | 6                | *                      | 6                   | 1       | *                   | 5     | *       | *            | *        | 0         | *                | *                     |
| GH_GA-MW-2                      | 2017 01 30               | 1.17             | 0.26    | 84.5        | < 0.020            | < 0.050            | 23                     | 0.0401             | < 0.10          | 0.19            | < 0.50 | < 0.050             | 15.2        | < 0.0050             | 27.2             | 3.56                   | 7.87                | 3,650   | < 0.010             | 441   | < 0.010 | < 0.10       | < 10     | 3.30      | < 0.50           | 5.3                   |
|                                 | 2017 06 20               | 1.55             | 0.22    | 69.3        | < 0.020            | < 0.050            | 27                     | 0.0189             | < 0.10          | < 0.10          | < 0.20 | < 0.050             | 17.8        | < 0.0050             | 30.5             | 2.36                   | 7.41                | 3,540   | < 0.010             | 442   | < 0.010 | < 0.10       | < 10     | 3.11      | < 0.50           | 2.1                   |
| _                               | 2017 09 20               | 1.50             | 0.24    | 73.5        | < 0.020            | < 0.050            | 20                     | < 0.0050           | < 0.10          | 0.21            | < 0.50 | < 0.050             | 17.6        | < 0.0050             | 35.4             | 4.12                   | 9.49                | 3,580   | < 0.010             | 522   | < 0.010 | < 0.10       | < 10     | 3.58      | < 0.50           | < 3.0                 |
|                                 | Duplicate                | 1.33             | 0.25    | 66.0        | < 0.020            | < 0.050            | 17                     | < 0.035            | < 0.10          | 0.31            | < 0.50 | < 0.050             | 14.7        | < 0.0050             | 31.4             | 4.43                   | 6.6                 | 3,440   | < 0.010             |       | < 0.010 | < 0.10       | < 10     | 3.52      | < 0.50           | 6.7                   |
|                                 |                          | 12               | *       | 11          | *                  | *                  | *                      | *                  | *               | *               | *      | *                   | 18          | *                    | 12               | 7                      | 36                  | 4       | *                   | 15    | *       | *            | *        | 2         | *                | *                     |
|                                 | 2017 11 27               | 1.13             | 0.24    | 69.5        | < 0.020            | < 0.050            | 19                     | 0.0584             | < 0.10          |                 | 18.7   | < 0.050             | 17.1        | < 0.0050             | 20.0             | 3.39                   | 18.9                | 3,730   | < 0.010             |       | 0.017   | < 0.10       | < 10     | 3.39      | < 0.50           | 5.7                   |
| GH_GA-MW-3                      | 2017 01 30               | < 0.10           |         | 106         | < 0.020            |                    | 288                    | < 0.0050           |                 |                 |        | < 0.050             |             |                      | 0.096            | < 0.50                 |                     |         | < 0.010             |       |         |              |          |           |                  | < 3.0                 |
| -                               | 2017 06 19               | < 0.10           |         | 58.8        | < 0.020            |                    | 212                    |                    |                 |                 |        |                     |             | < 0.0050             | 0.101            | 0.64                   |                     |         | < 0.010<br>< 0.010  |       |         |              |          |           |                  | < 1.0                 |
|                                 | 2017 09 20<br>2017 11 30 | < 0.10<br>< 0.10 |         | 110<br>97.1 | < 0.020<br>< 0.020 |                    | 258<br>285             | < 0.0050           |                 |                 |        |                     |             | < 0.10<br>< 0.0050   | 0.708<br>< 0.050 | < 0.50<br>< 0.50       | 1.29<br><b>19.4</b> |         | < 0.010             |       |         |              |          |           |                  | < 3.0<br>< 3.0        |
| GH_MW-UTC-1S                    | 2017 01 31               | < 0.10           | 0.22    | 75.0        | < 0.020            |                    | 83                     | 0.0153             |                 |                 |        |                     |             | < 0.0050             | 1.41             | 0.76                   | 1.3                 |         | < 0.010             |       |         | < 0.10       |          |           |                  | 219                   |
|                                 | 2017 06 21               | < 0.10           | 0.16    | 71.2        | < 0.020            |                    | 75                     |                    |                 |                 |        |                     |             | < 0.0050             | 1.46             | 0.78                   |                     |         | < 0.010             |       |         | < 0.10       |          |           |                  | 252                   |
|                                 | 2017 09 26               | < 0.10           | 0.17    | 69.9        | < 0.020            |                    | 87                     |                    | < 0.10          |                 |        | < 0.050             |             | < 0.0050             | 3.58             | 0.60                   |                     |         | < 0.010             |       |         | < 0.10       |          |           |                  | 37.5                  |
|                                 | 2017 10 18               | < 0.10           | 0.14    | 74.5        | < 0.020            |                    | 84                     | 0.0086             | < 0.10          | 0.10            |        | < 0.050             |             | < 0.0050             | 1.66             | 0.56                   | 2.02                | 4,490   | < 0.010             |       | < 0.010 | < 0.10       | < 10     | 0.315     | < 0.50           | 20.4                  |
| GH_MW-UTC-1D                    | 2017 01 31               | 1.47             | 5.05    | 54.6        | < 0.040            | < 0.10             | 875                    | < 0.010            | 0.22            | 0.69            | 1.28   | 0.17                | 1,020       | < 0.0050             | 13.2             | 6.4                    | 2.54                | 2,970   | < 0.020             |       | < 0.020 |              |          | 7.19      | 2.0              | <u>422</u>            |
|                                 | 2017 06 21               | 1.06             | 3.80    | 49.6        | < 0.020            | < 0.050            | 760                    | 0.0173             | 0.16            | 0.44            | 0.98   | 0.269               | 1,390       | < 0.0050             | 13.8             | 4.27                   | 0.615               | 2,940   | < 0.010             | 122   | < 0.010 | < 0.10       | < 10     | 5.56      | 1.45             | <u>695</u>            |
|                                 | 2017 09 26               | 0.93             | 3.85    | 45.5        | < 0.020            | < 0.050            | 780                    | 0.0353             | 0.16            | 0.36            | 2.09   | 0.430               | 1,010       | < 0.0050             | 14.8             | 4.19                   | 1.29                | 2,780   | 0.012               | 121   | < 0.010 | 0.11         | < 10     | 6.61      | 1.38             | <u>386</u>            |
|                                 | 2017 10 18               | 0.83             | 3.61    | 48.3        | < 0.020            | . 0.050            | 798                    | 0.0420             | 0.17            | 0.39            | 2.10   | 0.464               | 1 040       | < 0.0050             | 18.3             | 5.15                   | 0 000               | 2,920   | 0.040               | 104   | < 0.010 | 0.16         | . 10     | C 05      | 1.46             | 309                   |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Concentration greater than CSR Aquatic Life (AW) standard BOLD SHADOW Concentration greater than CSR Irrigation Watering (IW) standard INVERSE Concentration greater than CSR Livestock Watering (LW) standard SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with Hardness.

<sup>d</sup> Standard varies with Chloride.

<sup>e</sup> Standard varies with crop.

<sup>f</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>g</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

 $^{h}$  There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

|                                     |                             | Ph                                   | vsical P                           | Paramete         | ers                                |                                            |                                  |                 |                 |                                                                                                                                                                                                                                                                                                                                             |                        |                   |                            | G                           | eochemic                      | al Indica        | ators                    |                |                        |                      |                          |                                  |                                 |
|-------------------------------------|-----------------------------|--------------------------------------|------------------------------------|------------------|------------------------------------|--------------------------------------------|----------------------------------|-----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|----------------------------|-----------------------------|-------------------------------|------------------|--------------------------|----------------|------------------------|----------------------|--------------------------|----------------------------------|---------------------------------|
|                                     |                             |                                      |                                    |                  | -                                  |                                            |                                  |                 |                 |                                                                                                                                                                                                                                                                                                                                             |                        |                   |                            |                             |                               |                  | -                        |                |                        |                      |                          |                                  |                                 |
| Sample<br>Location                  | Sample Date<br>(yyyy mm dd) | a<br>G Dissolved Organic Carbon<br>⊤ | a<br>G Total Dissolved Solids<br>⊤ | mg/bm<br>T/      | a<br>G Total Suspended Solids<br>⊤ | ë<br>G<br>Total Alkalinity (as CaCO3)<br>T | ର୍ଘ<br>ଅନୁ Ammonia, total (as N) | mg\n<br>Tromide | Chloride<br>T/D | も<br>の<br>す<br>の<br>い<br>の<br>の<br>し<br>の<br>し<br>い<br>の<br>し<br>い<br>の<br>し<br>い<br>の<br>し<br>い<br>の<br>し<br>い<br>の<br>し<br>い<br>の<br>し<br>い<br>の<br>し<br>い<br>の<br>し<br>い<br>の<br>し<br>い<br>の<br>い<br>し<br>い<br>の<br>い<br>し<br>い<br>し<br>い<br>い<br>し<br>い<br>い<br>い<br>し<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い | a<br>bissolved Calcium | dd Dissolved Iron | a<br>G Dissolved Magnesium | ط<br>ه) Dissolved Manganese | ය<br>Dissolved Potassium<br>ල | bissolved Sodium | hâ/r<br>Juoride          | 년<br>다<br>고    | бћ<br>Nitrite (as N)   | a<br>Ortho-Phosphate | wB/Dhate                 | a<br>G Total Organic Carbon<br>⊤ | Ga Total Phosphorous as P<br>T∕ |
| BC Standard                         |                             |                                      | 1                                  | 1                |                                    | 1                                          | h                                | 1               | 4 500           | ,                                                                                                                                                                                                                                                                                                                                           | 1                      | 1                 | 1                          |                             | 1                             | 1                |                          | 400.000        |                        | 1                    |                          | 1                                | ,                               |
| CSR Aquatic Life (A                 |                             | n/a                                  | n/a                                | n/a              | n/a                                | n/a                                        | 1,310-18,500 <sup>b</sup>        | n/a             | 1,500           | n/a                                                                                                                                                                                                                                                                                                                                         | n/a                    | n/a               | n/a                        | n/a                         | n/a                           | n/a              | 2,000-3,000 <sup>c</sup> | 400,000        | 200-2,000 <sup>d</sup> | n/a                  | 1,280-4,290 <sup>c</sup> | n/a                              | n/a                             |
| CSR Irrigation Wate                 | <b>•</b> • • •              | n/a                                  | n/a                                | n/a              | n/a                                | n/a                                        | n/a                              | n/a             | 100             | 5,000                                                                                                                                                                                                                                                                                                                                       | n/a                    | 5,000             | n/a                        | 200                         | n/a                           | n/a              | 1,000                    | n/a            | n/a                    | n/a                  | n/a                      | n/a                              | n/a                             |
| CSR Livestock Wate                  |                             | n/a                                  | n/a                                | n/a              | n/a                                | n/a<br>n/a                                 | n/a<br>n/a                       | n/a<br>n/a      | 600<br>250      | 5,000<br>9,500                                                                                                                                                                                                                                                                                                                              | 1,000<br>n/a           | n/a<br>6,500      | n/a<br>n/a                 | n/a                         | n/a<br>n/a                    | n/a<br>200       | 1,000                    | 100,000        | 10,000                 | n/a<br>n/a           | 1,000<br>500             | n/a<br>n/a                       | n/a<br>n/a                      |
| CSR Drinking Water<br>Fording River |                             | n/a                                  | n/a                                | n/a              | n/a                                | n/a                                        | 11/a                             | n/a             | 250             | 9,500                                                                                                                                                                                                                                                                                                                                       | n/a                    | 0,500             | n/a                        | 1,500                       | II/a                          | 200              | 1,500                    | 10,000         | 1,000                  | n/a                  | 500                      | n/a                              | n/a                             |
| GH_MW-PC                            | 2017 02 02                  | 1.24                                 | 779                                | 615              | 6.3                                | 189                                        | 11.3                             | < 0.050         | 1.13            | 1.3                                                                                                                                                                                                                                                                                                                                         | 107                    | < 10              | 84.6                       | 1.97                        | 0.929                         | 0.998            | 308                      | 2,660          | 10.5                   | 0.0063               | 385                      | 1.19                             | 0.0095                          |
|                                     | 2017 02 02                  | 1.70                                 | 876                                | 620              | 9.8                                | 216                                        | 37.0                             | < 0.000         | < 2.5           | 1.9                                                                                                                                                                                                                                                                                                                                         | 125                    | < 10              | 75.0                       | 1.79                        | 1.22                          | 1.01             | 290                      | 2,610          | < 5.0                  | 0.0058               | 442                      | 1.90                             | 0.0200                          |
| -                                   | 2017 00 22                  | 1.32                                 | 858                                | 643              | 91.0                               | 215                                        | 14.2                             | < 0.25          | < 2.5           | < 3.0                                                                                                                                                                                                                                                                                                                                       | 120                    | < 10              | 83.7                       | 5.68                        | 1.15                          | 0.976            | 230                      | 2,010          | < 5.0                  | 0.0038               | 442                      | 1.86                             | 0.0200                          |
| -                                   | 2017 03 23                  | 1.14                                 | 866                                | 610              | 403                                | 212                                        | < 5.0                            | < 0.25          | 1.23            | < 3.0                                                                                                                                                                                                                                                                                                                                       | 117                    | < 10              | 77.5                       | 0.68                        | 0.983                         | 0.938            | 360                      | 2,030          | < 5.0                  | 0.0076               | 424                      | 5.01                             | 0.0958                          |
| -                                   | Duplicate                   | 1.14                                 | 865                                | 618              | 277                                | 212                                        | < 5.0                            | < 0.25          | 1.25            | < 3.0                                                                                                                                                                                                                                                                                                                                       | 121                    | < 10              | 77.0                       | 0.00                        | 1.01                          | 0.965            | 370                      | 2,270          | < 5.0                  | 0.0070               | 440                      | 4.80                             | 0.249                           |
|                                     | Duplicate                   | *                                    | < 1                                | 1                | 37                                 | 0                                          | *                                | *               | 2               | *                                                                                                                                                                                                                                                                                                                                           | 3                      | *                 | 1                          | 8                           | 3                             | 3                | 3                        | 4              | *                      | 5                    | 4                        | 4.00                             | 89                              |
| GH_MW-GHC-1S                        | 2017 02 02                  | 2.94                                 | 1,190                              | 982              | 281                                | 255                                        | 28.9                             | < 0.25          | 4.7             | < 1.0                                                                                                                                                                                                                                                                                                                                       | 268                    | 1,460             | 76.3                       | 276                         | 2.29                          | 5.25             | 150                      | 51             | 5.7                    | 0.0014               | 655                      | 5.88                             | 0.299                           |
| _                                   | 2017 06 21                  | 2.50                                 | 1,140                              | 777              | 7.4                                | 179                                        | 56.4                             | < 0.25          | 6.0             | 1.0                                                                                                                                                                                                                                                                                                                                         | 223                    | 1,650             | 53.5                       | 420                         | 1.84                          | 4.31             | 120                      | 43             | < 5.0                  | < 0.0010             | 615                      | 2.35                             | 0.0109                          |
| -                                   | 2017 09 21                  | 2.13                                 | 1,130                              | 808              | 13.6                               | 274                                        | 41.8                             | < 0.25          | 5.4             | < 3.0                                                                                                                                                                                                                                                                                                                                       | 228                    | 1,510             | 57.6                       | 394                         | 2.02                          | 4.63             | 180                      | < 25           | < 5.0                  | < 0.0010             | 619                      | 2.25                             | 0.0124                          |
| -                                   | 2017 11 22                  | 2.14                                 | 1,110                              | 910              | 18.5                               | 275                                        | 46.6                             | < 0.25          | 5.3             | < 3.0                                                                                                                                                                                                                                                                                                                                       | 258                    | 1,470             | 64.4                       | 386                         | 1.86                          | 4.79             | 150                      | < 25           | < 5.0                  | < 0.0010             | 601                      | 2.32                             | 0.0143                          |
| GH_MW-GHC-1D                        | 2017 02 02                  | 2.72                                 | 724                                | 626              | 4.5                                | 294                                        | < 5.0                            | < 0.050         | 1.42            | < 1.0                                                                                                                                                                                                                                                                                                                                       | 153                    | < 10              | 59.0                       | 1.02                        | 1.49                          | 5.01             | 527                      | 98.0           | 1.2                    | 0.0020               | 307                      | 1.54                             | 0.0059                          |
|                                     | 2017 06 22                  | 1.43                                 | 755                                | 538              | 7.0                                | 195                                        | 18.5                             | < 0.25          | < 2.5           | < 1.0                                                                                                                                                                                                                                                                                                                                       | 139                    | 107               | 46.2                       | 17.9                        | 1.41                          | 4.46             | 360                      | 76             | < 5.0                  | < 0.0010             | 326                      | 1.40                             | 0.0037                          |
|                                     | 2017 09 21                  | 1.22                                 | 729                                | 610              | 7.6                                | 303                                        | 6.6                              | < 0.25          | < 2.5           | < 3.0                                                                                                                                                                                                                                                                                                                                       | 155                    | 10                | 54.1                       | 1.95                        | 1.41                          | 4.84             | 470                      | 151            | < 5.0                  | < 0.0010             | 317                      | 1.20                             | 0.0104                          |
|                                     | 2017 11 22                  | 1.25                                 | 714                                | 614              | 4.1                                | 302                                        | 21.0                             | < 0.050         | 1.18            | < 3.0                                                                                                                                                                                                                                                                                                                                       | 153                    | < 10              | 56.2                       | 1.04                        | 1.28                          | 4.74             | 479                      | 112            | < 1.0                  | 0.0033               | 280                      | 1.18                             | 0.0070                          |
| GH_MW-TD                            | 2017 02 16                  | 0.86                                 | 421                                | 359              | < 1.0                              | 337                                        | 105                              | < 0.050         | < 0.50          | < 1.0                                                                                                                                                                                                                                                                                                                                       | 84.7                   | 390               | 35.8                       | 565                         | 2.69                          | 28.3             | 278                      | 12.6           | < 1.0                  | < 0.0010             | 86.3                     | 0.85                             | 0.0077                          |
|                                     | 2017 06 19                  | 0.69                                 | 482                                | 349              | 2.1                                | 352                                        | 97.6                             | < 0.050         | < 0.50          | < 1.0                                                                                                                                                                                                                                                                                                                                       | 81.0                   | 694               | 35.6                       | 611                         | 2.71                          | 28.3             | 263                      | < 5.0          | < 1.0                  | < 0.0010             | 86.6                     | 1.17                             | < 0.0020                        |
|                                     | 2017 09 27                  | 0.69                                 | 479                                | 363              | 1.6                                | 280                                        | 101                              | < 0.050         | < 0.50          | < 3.0                                                                                                                                                                                                                                                                                                                                       | 90.4                   | 927               | 33.3                       | 609                         | 2.57                          | 27.7             | 254                      | < 5.0          | < 1.0                  | < 0.0010             | 87.3                     | 0.62                             | < 0.0040                        |
|                                     | 2017 11 21                  | 0.54                                 | 444                                | 387              | 2.3                                | 367                                        | 95.7                             | < 0.050         | < 0.50          | < 3.0                                                                                                                                                                                                                                                                                                                                       | 90.7                   | 467               | 39.1                       | 696                         | 2.69                          | 28.7             | 245                      | < 5.0          | < 1.0                  | < 0.0010             | 83.4                     | 0.56                             | 0.0063                          |
| GH_MW-RLP-1D                        | 2017 02 02                  | 1.91                                 | 263                                | 255              | 1.5                                | 222                                        | < 5.0                            | < 0.050         | < 0.50          | 1.6                                                                                                                                                                                                                                                                                                                                         | 53.4                   | 152               | 29.5                       | 105                         | 1.25                          | 3.70             | 1,800                    | 6.3            | < 1.0                  | 0.0012               | 39.0                     | 1.68                             | 0.0079                          |
|                                     | Duplicate                   | 1.71                                 | 258                                | 274              | 1.5                                | 225                                        | < 5.0                            | < 0.050         | < 0.50          | 1.6                                                                                                                                                                                                                                                                                                                                         | 57.4                   | 159               | 31.8                       | 112                         | 1.33                          | 3.92             | 1,790                    | < 5.0          | < 1.0                  | < 0.0010             | 38.8                     | 1.63                             | 0.0067                          |
|                                     |                             | *                                    | 2                                  | 7                | *                                  | 1                                          | *                                | *               | *               | *                                                                                                                                                                                                                                                                                                                                           | 7                      | 5                 | 8                          | 6                           | 6                             | 6                | 1                        | *              | *                      | *                    | 1                        | *                                | 16                              |
|                                     | 2017 06 22                  | 1.66                                 | 259                                | 235              | 4.8                                | 187                                        | 27.7                             | < 0.050         |                 |                                                                                                                                                                                                                                                                                                                                             | 52.6                   | 25                | 25.1                       | 85.1                        | 1.29                          | 3.79             | 1,900                    | < 5.0          | < 1.0                  | < 0.0010             | 29.9                     | 1.50                             | < 0.0020                        |
|                                     | 2017 09 26                  | 3.8                                  | 274                                | 244              | 42.8                               | 228                                        | < 5.0                            | < 0.050         |                 |                                                                                                                                                                                                                                                                                                                                             | 50.5                   | 93                | 28.6                       | 18.6                        | 1.21                          | 4.55             | 1,890                    | 13.1           | < 1.0                  | < 0.0010             | 18.9                     | 4.4                              | 0.0448                          |
|                                     | 2017 12 13                  | 1.61                                 | 242                                | 220              | 16.8                               | 232                                        | 5.3                              | < 0.050         | < 0.50          | 3.5                                                                                                                                                                                                                                                                                                                                         | 45.8                   | < 10              | 25.6                       | 2.99                        | 1.28                          | 4.82             | 1,680                    | < 5.0          | < 1.0                  | < 0.0010             | 8.09                     | 1.52                             | 0.0212                          |
| Field Blanks                        |                             | 0 - 1                                |                                    | 0                |                                    |                                            |                                  | 0.5-5           |                 |                                                                                                                                                                                                                                                                                                                                             |                        | 1                 |                            |                             | 0.0                           |                  |                          |                |                        |                      |                          | <b>a</b> = -                     |                                 |
| GH_GA-MW-1                          | 2017 06 20                  |                                      |                                    | < 0.50           |                                    |                                            | < 5.0                            |                 |                 |                                                                                                                                                                                                                                                                                                                                             |                        |                   |                            |                             | < 0.050                       |                  | < 20                     | 13.0           | < 1.0                  | < 0.0010             | < 0.30                   |                                  | < 0.0020                        |
| GH_GA-MW-2<br>GH_GA-MW-3            | 2017 09 20<br>2017 01 30    |                                      |                                    | < 0.50<br>< 0.50 |                                    |                                            | < 5.0<br>< 5.0                   |                 |                 |                                                                                                                                                                                                                                                                                                                                             |                        |                   |                            |                             | < 0.050<br>< 0.050            |                  | < 20<br>< 20             | < 5.0<br>< 5.0 | < 1.0                  | < 0.0010<br>< 0.0010 | < 0.30<br>< 0.30         |                                  | < 0.0010<br>< 0.0020            |
| GH_GA-WW-3                          | 2017 01 30                  |                                      |                                    | < 0.50           |                                    |                                            | < 5.0<br>11.6                    |                 |                 |                                                                                                                                                                                                                                                                                                                                             |                        |                   |                            |                             | < 0.050                       |                  | < 20                     | < 5.0<br>< 5.0 | < 1.0<br>< 1.0         | < 0.0010             | < 0.30                   |                                  | < 0.0020                        |
|                                     | 2017 09 20                  |                                      |                                    | < 0.50           |                                    |                                            | 7.7                              |                 |                 |                                                                                                                                                                                                                                                                                                                                             |                        |                   |                            |                             | < 0.050                       |                  | < 20                     | < 5.0          | < 1.0                  | < 0.0010             | < 0.30                   |                                  | < 0.0010                        |
| GH_MW-GHC-1S                        | 2017 11 22                  |                                      |                                    | < 0.50           |                                    |                                            | -                                |                 |                 |                                                                                                                                                                                                                                                                                                                                             |                        |                   |                            |                             | < 0.050                       |                  | < 20                     | < 5.0          | < 1.0                  | < 0.0010             | < 0.30                   | < 0.50                           |                                 |
|                                     |                             |                                      |                                    |                  |                                    |                                            |                                  |                 |                 |                                                                                                                                                                                                                                                                                                                                             |                        | -                 | -                          |                             |                               |                  |                          |                | -                      |                      |                          |                                  |                                 |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

| BOLD    | С |
|---------|---|
| SHADOW  | С |
| INVERSE | С |
| SHADED  | С |

Concentration greater than CSR Aquatic Life (AW) standard Concentration greater than CSR Irrigation Watering (IW) standard Concentration greater than CSR Livestock Watering (LW) standard Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with Hardness.

<sup>d</sup> Standard varies with Chloride.

<sup>e</sup> Standard varies with crop.

<sup>f</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>g</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>h</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

|                     |                          | Dissolved Metals |           |           |                    |                    |                        |                    |                 |                 |                    |                     |           |                      |            |                        |             |            |                     |           |           |           |           |              |           |                       |
|---------------------|--------------------------|------------------|-----------|-----------|--------------------|--------------------|------------------------|--------------------|-----------------|-----------------|--------------------|---------------------|-----------|----------------------|------------|------------------------|-------------|------------|---------------------|-----------|-----------|-----------|-----------|--------------|-----------|-----------------------|
|                     |                          |                  |           |           |                    |                    |                        |                    |                 |                 |                    |                     |           |                      |            |                        |             |            |                     |           |           |           |           |              |           |                       |
|                     |                          |                  |           |           |                    |                    |                        |                    |                 |                 |                    |                     |           |                      |            |                        |             |            |                     |           |           |           |           |              |           |                       |
|                     |                          |                  |           |           |                    |                    |                        |                    |                 |                 |                    |                     |           |                      |            |                        |             |            |                     |           |           |           |           |              |           |                       |
|                     |                          |                  |           |           |                    |                    |                        |                    |                 |                 |                    |                     |           |                      |            |                        |             |            |                     |           |           |           |           |              |           |                       |
|                     |                          |                  |           |           |                    |                    |                        |                    |                 |                 |                    |                     |           |                      |            |                        |             |            |                     |           |           |           |           |              |           |                       |
|                     |                          |                  |           |           |                    |                    |                        |                    |                 |                 |                    |                     |           |                      |            |                        |             |            |                     |           |           |           |           |              |           |                       |
|                     |                          |                  |           |           |                    |                    |                        |                    |                 |                 |                    |                     |           |                      |            |                        |             |            |                     |           |           |           |           |              |           |                       |
|                     |                          |                  |           |           |                    |                    |                        |                    |                 |                 |                    |                     |           |                      | E          |                        |             |            |                     |           |           |           |           |              |           |                       |
|                     |                          | ک<br>ک           |           |           | E                  | Ē                  |                        | Ē                  | E E             |                 |                    |                     |           | ~                    | ent        |                        | ε           |            |                     | Ę         | ۶         |           | ۶         | ۶            | Ę         |                       |
|                     |                          | Antimony         | Arsenic   | un        | ryllium            | Bismuth            | r.                     | Cadmium            | Chromium        | alt             | per                | -                   | Lithium   | Mercury              | Molybdenum | e                      | Selenium    | ou         | 5                   | Strontium | Thalliur  |           | Titanium  | Uranium      | Vanadium  | ء                     |
| Sample              | Sample Date              | nti              | rse       | ari       | Bery               | lisn               | Boron                  | adı                | hre             | Cobalt          | Copp               | Lead                | ithi      | lero                 | lol        | Nicke                  | ele         | Silicon    | Silver              | tro       | hal       | ц         | itaı      | Irar         | ani       | Zinc <sup>h</sup>     |
| Location            | (yyyy mm dd)             | ⊈µg/L            | ⊈µg/L     | ш<br>µg/L | μg/L               | μg/L               | ш<br>µg/L              | μg/L               | µg/L            | μg/L            | µg/L               | ت<br>µg/L           | ت<br>µg/L | ≥<br>µg/L            | ≥<br>µg/L  | ∠<br>µg/L              | μg/L        | თ<br>µg/L  | ω<br>μg/L           | თ<br>µg/L | ⊢<br>µg/L | ⊢<br>µg/L | ⊢<br>µg/L | μg/L         | ><br>µg/L | N<br>µg/L             |
| BC Standard         | (yyyy min dd)            | µg/⊏             | µg/⊏      | µ9/⊏      | µg/⊏               | м <del>9</del> / – | µ9/⊏                   | P9/E               | µg/⊏            | µg/⊏            | μą, Ε              | µg/⊏                | µg/⊏      | P9/-                 | µg/⊏       | µ9/⊏                   | µg/⊏        | µg/⊏       | µg/⊏                | µg/⊏      | µg/⊏      | µg/⊏      | µg/⊏      | <u>рд, г</u> | µg/⊏      | µg/=                  |
| CSR Aquatic Life (A | W) <sup>a</sup>          | 90               | 50        | 10,000    | 1.5                | n/a                | 12,000                 | 0.5-4 <sup>c</sup> | 10 <sup>f</sup> | 40              | 20-90 <sup>c</sup> | 40-160 <sup>c</sup> | n/a       | 0.25                 | 10,000     | 250-1,500 <sup>c</sup> | 20          | n/a        | 0.5-15 <sup>c</sup> | n/a       | 3         | n/a       | 1,000     | 85           | n/a       | 75-2,400 <sup>°</sup> |
| CSR Irrigation Wate |                          | n/a              | 100       | n/a       | 100                | n/a                | 500-6,000 <sup>e</sup> | 5                  | 5 <sup>f</sup>  | 50              | 200                | 200                 | 2,500     | 1                    | 10         | 200                    | 20          | n/a        | n/a                 | n/a       | n/a       | n/a       | n/a       | 10           | 100       | n/a                   |
| CSR Livestock Wate  |                          | n/a              | 25        | n/a       | 100                | n/a                | 5,000                  | 80                 | 50 <sup>f</sup> | 1,000           | 300                | 100                 | 5,000     | 2                    | 50         | 1,000                  | 30          | n/a        | n/a                 | n/a       | n/a       | n/a       | n/a       | 200          | 100       | 2,000                 |
| CSR Drinking Water  | r (DW)                   | 6                | 10        | 1,000     | 8                  | n/a                | 5,000                  | 5                  | 50 <sup>f</sup> | 20 <sup>g</sup> | 1,500              | 10                  | 8         | 1                    | 250        | 80                     | 10          | n/a        | 20                  | 2,500     | n/a       | 2,500     | n/a       | 20           | 20        | 3,000                 |
| Fording River       |                          |                  |           |           |                    |                    |                        |                    |                 |                 |                    | -                   |           |                      | -          |                        |             |            | -                   | •         | -         |           |           |              |           |                       |
| GH_MW-PC            | 2017 02 02               | < 0.10           | 0.19      | 102       | < 0.020            |                    | < 10                   | 0.0292             | 0.26            | < 0.10          | < 0.20             | < 0.050             |           | < 0.0050             | 2.68       | 0.67                   | <u>88.1</u> | 2,330      | < 0.010             | 150       | < 0.010   | < 0.10    | < 10      | 4.35         | < 0.50    | 648                   |
| _                   | 2017 06 22               | < 0.10           | 0.18      | 128       | < 0.020            |                    | 13                     | 0.0397             |                 |                 | < 0.20             | < 0.050             | 8.5       | < 0.0050             | 2.90       | 3.47                   | <u>83.7</u> | 2,720      | < 0.010             |           | < 0.010   |           | < 10      | 4.99         | < 0.50    | 88.8                  |
| _                   | 2017 09 25               | < 0.10           | 0.19      | 114       | < 0.020            |                    | < 10                   | 0.0503             | 0.20            | < 0.10          |                    | < 0.050             | 8.1       | < 0.0050             | 19.2       | 0.84                   | <u>69.3</u> | 2,640      | < 0.010             |           | < 0.010   |           | < 10      | 5.47         | < 0.50    | 18.1                  |
| _                   | 2017 12 11               | < 0.10           | 0.19      | 97.8      |                    | < 0.050            | < 10                   | 0.0431             |                 | < 0.10          |                    | < 0.050             | 7.0       | < 0.0050             | 2.37       | 0.75                   | <u>68.1</u> | 2,480      | < 0.010             |           | < 0.010   |           |           | 4.28         | < 0.50    | 5.0                   |
| -                   | Duplicate                | < 0.10           | 0.18      | 99.2      | < 0.020            | < 0.050            | < 10<br>*              | 0.0481             | 0.20            | < 0.10          |                    | < 0.050             | 6.9       | < 0.0050             | 2.33       | 0.83                   | <u>66.9</u> | 2,420      | < 0.010             | 143       | < 0.010   | < 0.10    | < 10      | 4.35         | < 0.50    | 5.8                   |
| GH_MW-GHC-1S        | 2017 02 02               | < 0.10           | 2.07      | 1<br>36.6 | < 0.020            | ^<br>< 0.050       | 42                     | 11<br>< 0.0050     | < 0.10          | 0.52            | 12<br>< 0.20       | < 0.050             | 1<br>24.7 | < 0.0050             | 2<br>1.25  | 1.41                   | 2<br>0.126  | 2<br>5,930 | < 0.010             | 1<br>873  | < 0.010   | < 0.10    | < 10      | 2            | < 0.50    | 15<br>3.5             |
|                     | 2017 02 02               | < 0.10           | 1.52      | 25.2      |                    | < 0.050            | 35                     | < 0.0050           | < 0.10          |                 | < 0.20             |                     | 24.7      | < 0.0050             | 1.23       | 1.41                   | < 0.050     |            | < 0.010             |           | < 0.010   |           |           | 1.79         | < 0.50    | 3.2                   |
| _                   | 2017 09 21               | < 0.10           | 1.65      | 26.6      | < 0.020            |                    | 43                     | < 0.0050           | < 0.10          |                 | < 0.50             |                     | 23.3      | < 0.0050             | 17.7       | 1.21                   | < 0.050     |            | < 0.010             |           | < 0.010   |           | < 10      | 2.13         | < 0.50    | 3.0                   |
|                     | 2017 11 22               | < 0.10           | 1.55      | 26.8      | < 0.020            |                    | 46                     | < 0.0050           | < 0.10          |                 | < 0.50             | < 0.050             | 22.2      | < 0.0050             | 1.10       | 1.66                   |             |            | < 0.010             |           | < 0.010   |           | < 10      | 2.05         | < 0.50    | < 3.0                 |
| GH_MW-GHC-1D        | 2017 02 02               |                  | < 0.10    | 98.8      | < 0.020            |                    | 37                     | 0.0232             |                 |                 |                    | < 0.050             |           | < 0.0050             | 0.795      | 0.89                   | 5.15        | 4,740      | < 0.010             |           | 0.024     | < 0.10    |           | 2.88         | < 0.50    | 3.1                   |
|                     | 2017 06 22               | < 0.10           | < 0.10    | 82.1      | < 0.020            | < 0.050            | 31                     | 0.0129             | < 0.10          | < 0.10          | < 0.20             | < 0.050             | 17.7      | < 0.0050             | 0.625      | 1.31                   | 3.55        | 4,330      | < 0.010             | 463       | 0.013     | < 0.10    | < 10      | 2.21         | < 0.50    | 8.7                   |
|                     | 2017 09 21               | < 0.10           | < 0.10    | 85.3      | < 0.020            | < 0.050            | 35                     | 0.0229             | < 0.10          | < 0.10          | 1.23               | < 0.050             |           | < 0.0050             | 8.79       | 0.90                   | 4.27        | 4,460      | < 0.010             | 463       | 0.020     | < 0.10    | < 10      | 2.97         | < 0.50    | 4.3                   |
|                     | 2017 11 22               |                  | < 0.10    | 83.1      | < 0.020            |                    | 33                     | 0.0213             |                 |                 |                    | < 0.050             | 16.1      | < 0.0050             | 0.912      | 0.99                   | 4.43        | 4,540      | < 0.010             |           | 0.022     | < 0.10    |           | 2.74         | < 0.50    | < 3.0                 |
| GH_MW-TD            | 2017 02 16               | < 0.10           | 0.13      | 23.0      | < 0.020            |                    | 384                    | 0.176              | < 0.10          |                 |                    | < 0.050             | 43.8      |                      | 2.69       | 0.67                   | 0.225       | 6,810      | < 0.010             |           | 0.113     | < 0.10    |           | 0.710        | < 0.50    | < 1.0                 |
| -                   | 2017 06 19               | < 0.10           | 0.12      | 23.8      | < 0.020            |                    | 304                    | 0.281              | < 0.10          |                 | < 0.20             | < 0.050             | 41.7      | < 0.0050             | 2.60       | 0.75                   | < 0.050     | ,          | < 0.010             |           | 0.108     |           | < 10      | 0.743        | < 0.50    | 1.4                   |
| -                   | 2017 09 27               | < 0.10           | 0.11      | 24.3      | < 0.020            |                    | 346                    | 0.144              | < 0.10          |                 | < 0.50             |                     | 47.0      | < 0.0050             | 2.20       | 0.90                   | < 0.050     | ,          | < 0.010             |           | 0.127     | < 0.10    | < 10      | 0.824        | < 0.50    | < 3.0                 |
| GH MW-RLP-1D        | 2017 11 21               | < 0.10           | 0.13      | 23.2      | < 0.020            |                    | 332                    | 0.230              | < 0.10          |                 | < 0.50             | < 0.050             | 42.8      | < 0.0050             | 2.82       | 0.78                   | < 0.050     |            | < 0.010             |           | 0.134     | < 0.10    | < 10      | 0.881        | < 0.50    | < 3.0                 |
| GI_INIVI-REF-TD     | 2017 02 02               | < 0.10           | 0.33      | 48.3      | < 0.020            |                    | 16                     | < 0.0050           | < 0.10          |                 | < 0.20             | < 0.050             | 6.8       | < 0.0050             | 3.41       | 0.73                   | 2           | 4,540      | < 0.010             |           | < 0.010   |           | < 10      | 1.05         | < 0.50    | < 1.0                 |
| -                   | Duplicate                | < 0.10           | 0.37<br>* | 51.7<br>7 | < 0.020            | < 0.050            | 16<br>*                | < 0.0050<br>*      | < 0.10          | 0.10<br>*       | < 0.20<br>*        | < 0.050             | 7.2<br>6  | < 0.0050<br>*        | 3.58<br>5  | 0.62                   | 2.45<br>20  | 4,710      | < 0.010             | 220       | < 0.010   | < 0.10    | < 10<br>* | 1.13         | < 0.50    | < 1.0<br>*            |
| -                   | 2017 06 22               | < 0.10           |           | •         | < 0.020            | < 0.050            | 16                     | < 0.0050           |                 |                 |                    | < 0.050             | U U       | < 0.0050             | -          | < 0.50                 | 0.08        | •          | < 0.010             | 188       | < 0.010   | < 0.10    | < 10      | 0.730        |           | 21.9                  |
| -                   | 2017 09 26               |                  | < 0.10    |           | < 0.020            |                    | 14                     |                    |                 |                 |                    |                     |           | < 0.0050             |            | < 0.50                 | 6.53        |            | < 0.010             |           |           |           |           |              |           | < 3.0                 |
|                     | 2017 12 13               | < 0.10           |           |           | < 0.020            |                    |                        |                    |                 |                 |                    |                     |           | < 0.0050             |            | < 0.50                 | 2.09        |            | < 0.010             |           |           |           |           |              |           |                       |
| Field Blanks        |                          | 1                |           |           | 1                  |                    |                        |                    | 1               |                 |                    |                     | 1         |                      |            | 1                      | 1           | ι          |                     | 1         |           |           |           |              | ı I       |                       |
| GH_GA-MW-1          | 2017 06 20               |                  |           |           | < 0.020            |                    |                        |                    |                 |                 |                    |                     |           | < 0.0050             |            |                        |             |            | < 0.010             |           |           |           |           |              |           | 3.7                   |
| GH_GA-MW-2          | 2017 09 20               |                  |           |           | < 0.020            |                    |                        |                    |                 |                 |                    |                     |           | < 0.0050             |            |                        | < 0.050     | < 50       | < 0.010             | < 0.20    | < 0.010   | < 0.10    | < 10      | < 0.010      | < 0.50    |                       |
| GH_GA-MW-3          | 2017 01 30               |                  |           |           | < 0.020<br>< 0.020 |                    |                        |                    |                 |                 |                    |                     |           | < 0.0050             |            |                        |             |            | < 0.010             |           |           |           |           |              |           | < 3.0                 |
|                     | 2017 09 20<br>2017 11 30 |                  |           |           | < 0.020            |                    |                        |                    |                 |                 |                    |                     |           | < 0.0050<br>< 0.0050 |            |                        |             |            | < 0.010<br>< 0.010  |           |           |           |           |              |           | < 3.0<br>< 3.0        |
| GH_MW-GHC-1S        | 2017 11 22               |                  |           |           | < 0.020            |                    |                        |                    |                 |                 |                    |                     |           | < 0.0050             |            |                        |             |            | < 0.010             |           |           |           |           |              |           |                       |
|                     |                          | ,                |           |           |                    |                    |                        |                    |                 |                 |                    |                     |           |                      |            |                        |             |            |                     |           |           |           | -         |              |           |                       |

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.



Concentration greater than CSR Aquatic Life (AW) standard Concentration greater than CSR Irrigation Watering (IW) standard Concentration greater than CSR Livestock Watering (LW) standard SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Standard varies with pH.

<sup>c</sup> Standard varies with Hardness.

<sup>d</sup> Standard varies with Chloride.

<sup>e</sup> Standard varies with crop.

<sup>f</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>g</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>h</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

#### TABLE 5: Groundwater Analytical Results compared to Secondary Screening Criteria

| Sample                                                | Sample Date  | Selenium    |  |  |  |  |
|-------------------------------------------------------|--------------|-------------|--|--|--|--|
| Location                                              | (yyyy mm dd) | µg/L        |  |  |  |  |
| Groundwater Quality Cri                               | teria        |             |  |  |  |  |
| Guideline for Canadian Drinking Water Quality (DW) 50 |              |             |  |  |  |  |
| Site Performance Objective: GH_FR1 (0200378)* 63      |              |             |  |  |  |  |
| Compliance Point: FR_FRCP1 (E300071)* 130             |              |             |  |  |  |  |
| Site Performance Objective: GH_ER1 (E206661)** 19     |              |             |  |  |  |  |
| Compliance Point: GH_ERC (E300090)** 15               |              |             |  |  |  |  |
| Elk River                                             |              |             |  |  |  |  |
| GH_GA-MW-2                                            | 2017 11 27   | 18.9        |  |  |  |  |
| GH_GA-MW-3                                            | 2017 11 30   | 19.4        |  |  |  |  |
| Fording River                                         |              |             |  |  |  |  |
| GH_MW-PC                                              | 2017 02 02   | <u>88.1</u> |  |  |  |  |
|                                                       | 2017 06 22   | <u>83.7</u> |  |  |  |  |
|                                                       | 2017 09 25   | <u>69.3</u> |  |  |  |  |
|                                                       | 2017 12 11   | <u>68.1</u> |  |  |  |  |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

| BOLD   |
|--------|
| SHADOW |
| SHADED |

Concentration greater than Canadian Drinking Water Quality guideline Concentration greater than applicable Site Performance Objective Concentration greater than applicable Compliance Point

\* Applicable to GH\_MW-PC

\*\* Applicable to GH\_GA-MW-2, GH\_GA-MW-3



Appendix I-3: LCO 2017 Annual Groundwater Monitoring Summary and Recommendations



## Appendix I-3: Line Creek Operations 2017 Annual Groundwater Monitoring Summary

Golder Associates (Golder, 2018) completed the 2017 Annual Report for the Line Creek Operations (LCO) Site Specific Groundwater Monitoring Program (SSGMP). LCO is located in southeastern British Columbia (BC), approximately 20 km north of Sparwood, BC and is one of Teck's five active coal mines in the Elk Valley. The following information was taken from the 2017 LCO Annual Report, which was completed to fulfill the reporting requirements outlined in Section 10.4 of Permit 107517 (October 13, 2017). The SSGMP was developed in 2013 with monitoring commencing the same year. The SSGMP was updated in 2015 and the program was approved in November 2017 by the Ministry of Environment & Climate Change Strategy (ENV).

The groundwater conceptual site model (CSM) for LCO described by Golder (2018) identified groundwater flow through surficial materials is a more important pathway compared to groundwater flow through bedrock. Groundwater flow is topographically driven and is recharged on ridges and flanks (uplands) and the majority of groundwater discharges to valley-bottoms. Groundwater mounds below waste rock piles with the majority discharging to surface water at the toe of waste-rock spoils in combination with shallow groundwater before being directed to the nearest surface water body.

The 2017 Annual Report for the LCO SSGMP presented results for three general areas:

- Process Plant Area: located adjacent to the confluences of Line Creek, the Fording River and the Elk River, in the valley-bottom of the Elk River. Groundwater in this area is proximal to process plant ponds and Coarse Coal Rejects (CCR), which are possible sources of contact water, and groundwater near the Fording River and Elk River can potentially receive contact water via surface water from upstream mines. Additionally, groundwater from the active mining area is up-gradient of the Process Plant Area;
- Dry Creek Area: includes permitted areas for the Phase II mining of LCO, which includes waste rock storage at the southern portion of the Dry Creek watershed adjacent to and north of Phase I. Inputs of contact water from recently placed waste rock to groundwater in this area are expected to be potentially detectable; and
- Outside LCO (Off-site Wells): includes downgradient wells located downgradient of Dry Creek and downgradient of the Process Plant Area, which are part of the regional program but considered in this report for context).

The wells monitored and sampled as part of the 2017 annual program are listed in Table 1 (attached; extracted from the 2017 LCO Annual Report) along with the associated rationale. Monitoring well locations and spatial distribution of selected groundwater analytical data are shown on Figures 3, 6 and 7 attached (extracted from the 2017 LCO Annual Report). Field blank data are found in Appendix A (attached; extracted from the 2017 LCO Annual Report) and trip blank data are provided in attached table titled Appendix I-3.



A summary of results from the 2017 Annual Report for the LCO SSGMP from Golder (2018) is as follows:

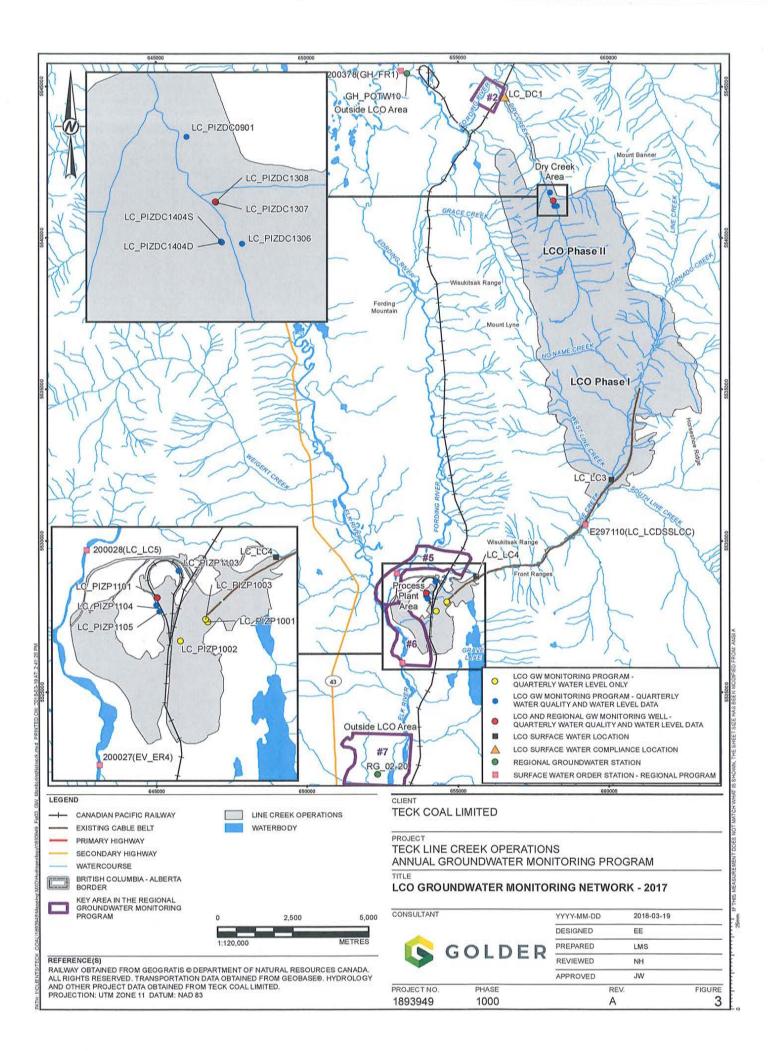
- > The LCO SSGMP is considered thorough and robust;
- > No material quality assurance or quality control concerns were identified, with one exception addressed with re-sampling;
- > The Regional and LCO site-specific groundwater monitoring programs support the presented conceptual groundwater model;
- > In the Process Plant Area:
  - concentrations of CI were below CSR standards in all wells;
  - there were localized concentrations of dissolved manganese, molybdenum, fluoride, boron, mercury and chloride above CSR standards. The sources of these parameters were found to potentially be related to dissolution of naturally-occurring sedimentary minerals, including processes such as reductive dissolution, and cation exchange related to calcite saturation;
  - all wells contained dissolved lithium consistently above CSR DW standards.
- In Dry Creek wells:
  - concentrations of CI were below CSR standards in all wells;
  - there were localized exceedances of dissolved barium and molybdenum consistently encountered in two wells (LC\_PIZDC1307 and LC\_PIZDC1404D) but not in the four remaining wells. These two wells are drilled significantly deeper than the remaining wells (> 31.8 m versus < 16.5 m) and may be more influenced by upward flow from the underlying bedrock aquifer system given the upward hydraulic gradient;
  - LC\_PIZDC1306, LC\_PIZC1307 and LC\_PIZDC1404D contained dissolved lithium above the CSR DW standard.
- Statistical analysis on CI in groundwater from select wells (LC\_PIZP1104 from the Process Plant Area, LC\_PIZDC0901 from the Dry Creek Area and off-site RG\_DW-02-20) where apparent trends in groundwater concentrations were observed in time-series graphs, showed no statistical trends with the following exceptions:
  - nitrate concentrations at LC\_PIZP1104 had a statistically significant upward trend over the period of 2014 to 2017, but concentrations remain well below the CSR standards. This trend is driven mainly by samples collected in 2017;
  - nitrate and total selenium at RG\_DW-02-20 showed a decreasing trend over the period of 2014 to 2017.

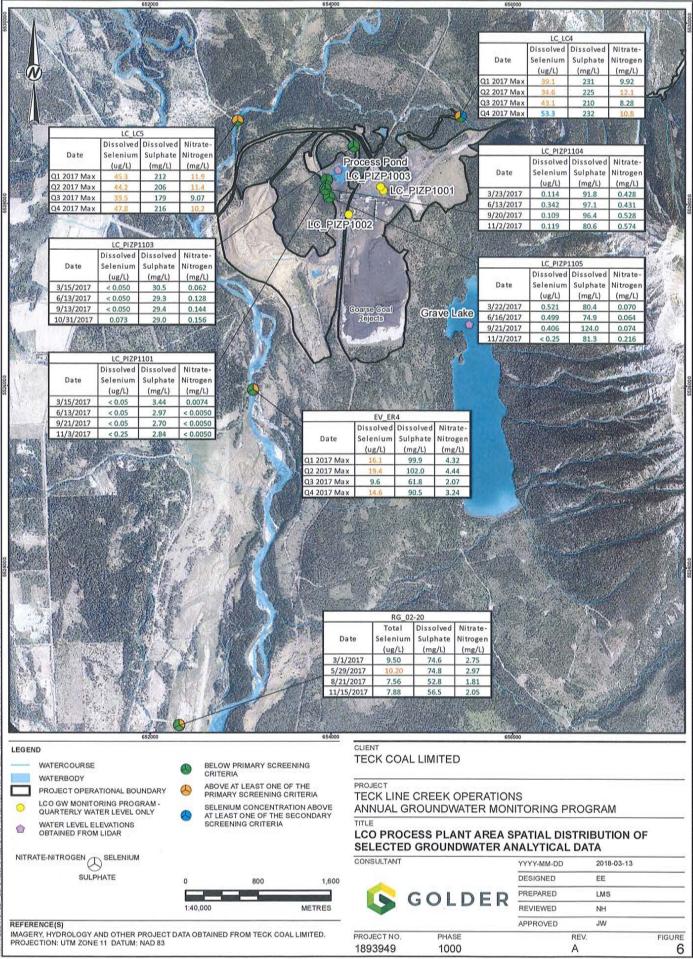
An update of the SSGMP is due in 2018 and the 2017 and historical groundwater monitoring results will be used in the development of an updated plan.

## Recommendations

Recommendations for the LCO SSGMP provided by Golder (2018) are as follows:

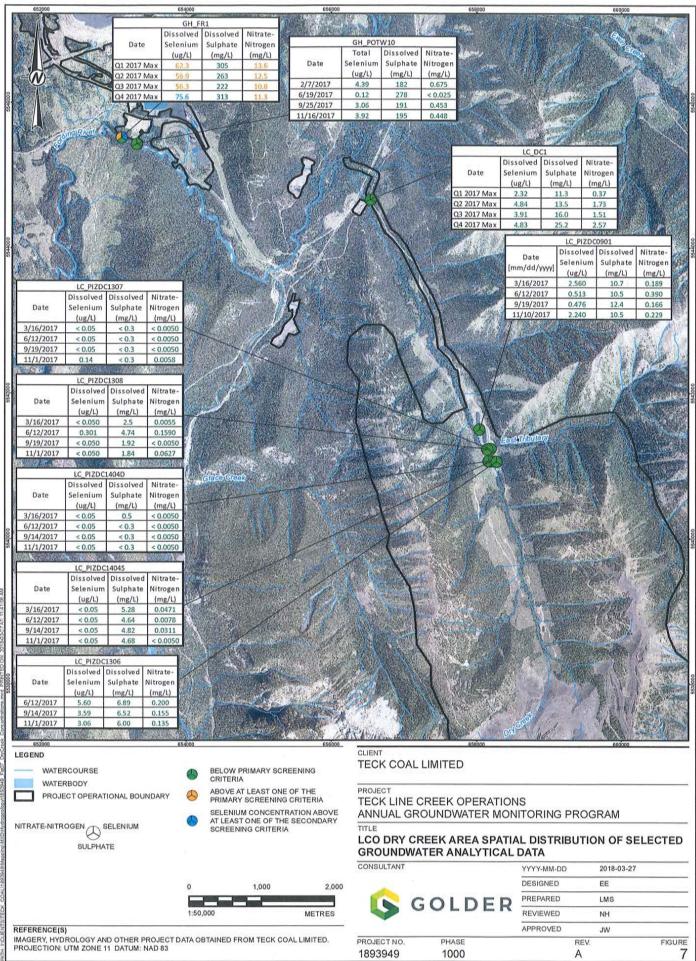
> To obtain continuous records of groundwater levels at LC\_PIZP1001 and LC-PIZP1105, it is recommended to install pressure transducers as deep as possible to maximize transducer submergence below the water level while remaining within the head range of the transducer;





- > To improve the continuous record of groundwater levels at LC\_PIZP1101, consider replacing the pressure transducer;
- The current groundwater monitoring program should continue, along with continued coordination with the regional program and water treatment plant program, and the need for new wells will be evaluated every three years in alignment with Permit 107517 requirements to submit an updated SSGMP (next updated plan due October 31, 2018);
- In order to be better aligned with other Teck sampling programs, it is suggested that LCO uses the same analyte list as for the regional program (plus bicarbonate). The 2017 list of analytes was identical to the regional program except for extractable petroleum hydrocarbon (only completed at LC\_PIZP1101 and LC\_PIZP1105) and sulphur. Bismuth is included in the LCO list of analytes and is not included in the regional program; and
- The 2018 Annual Groundwater Monitoring Report should consider reducing sampling frequency starting in 2019 if there continue to be no trends of concern as seasonal variability is well established. For this case, sampling is recommended during the two hydrological extremes, during freshet when dilution is highest and during winter months when surface flow and groundwater levels are the lowest. This will be discussed in the updated site wide groundwater monitoring program (next updated iteration due October 31, 2018).

#### Table 1: Summary of Groundwater Sampling Locations

| Area              |                               | Well Name     | Alternate Well<br>Name | MOE EMS1 | Easting<br>(m UTM) | Northing (m<br>UTM) | Monitoring<br>Program | Screened<br>Lithology        | Hydraulic<br>Conductivity<br>(m/s) | Depth<br>(mbg) | Rationale                                                                                                                            | Sample<br>Frequency      | Parameters Reviewed                       |
|-------------------|-------------------------------|---------------|------------------------|----------|--------------------|---------------------|-----------------------|------------------------------|------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
|                   |                               | LC_PIZP1101   | LC_MW11<br>(P)-01      | E302410  | 653956             | 5528265             | LCO, Regional         | Coarse-grained sand          | 7.E-04                             | 41.2           |                                                                                                                                      | Quarterly                | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
|                   |                               | LC_PIZP1103   | LC_MW11<br>(P)-03      | none     | 654250             | 5528634             | LCO                   | Clayey silt above<br>bedrock | 6.E-08                             | 41.2           |                                                                                                                                      | Quarterly                | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
| Process P         | lant                          | LC_PIZP1104   | LC_MW11<br>(P)-04      | none     | 653940             | 5528165             | LCO                   | Coarse-grained<br>sand       | 3.E-04                             | 38.1           | Monitor water quality to detect<br>seepage from Process Plant ponds                                                                  | Quarterly                | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
|                   |                               | LC_PIZP1105   | -                      | E302411  | 653984             | 5528075             | LCO                   |                              | -                                  | 40.5           |                                                                                                                                      | Quarterly                | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
|                   |                               | LC_PIZDC1306  | ×                      | none     | 658278             | 5541059             | LCO                   |                              | 3.E-05                             | 16.5           |                                                                                                                                      | Last 3 Quarters of 2017  | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
|                   |                               | LC_PIZDC1307  | LC_MW13-1D             | none     | 658169             | 5541230             | LCO, Regional         |                              | 1.E-07                             | 34.6           |                                                                                                                                      | Quarterly                | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
|                   |                               | LC_PIZDC1308  | LC_MW13-1S             | none     | 658168             | 5541232             | LCO, Regional         |                              | 7.E-07                             | 9              |                                                                                                                                      | Quarterly                | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
| Dry Creek         | 41                            | LC_PIZDC1404S | -                      | none     | 658192             | 5541069             | LCO                   | Valley-bottom<br>sediments   | 5.E-08                             | 12.8           | Monitor water quality to detect for<br>seepage near diversion structure for                                                          | Quarterly                | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
|                   |                               | LC_PIZDC1404D | ~                      | none     | 658192             | 5541069             | LCO                   | (Quaternary)                 | -                                  | 31.8           | <ul> <li>proposed water treatment plant</li> </ul>                                                                                   | Quarterly                | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
|                   |                               | LC_PIZDC0901  | 53-55                  | none     | 658048             | 5541500             | LCO                   |                              | 9.E-09                             | 9.4            |                                                                                                                                      | First 3 Quarters of 2017 | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
| Regional<br>Wells | Downgradient of<br>Dry Creek  | GH_POTW10     | Alte in                | none     | 653321             | 5545426             | Regional              | 20 <b>-</b> 10               | -                                  | -              | Monitor water quality to detect<br>seepage downgradient of Dry Creek,<br>Greenhills Operations, and Fording<br>River Operations      | Quarterly                | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |
|                   | Downgradient of<br>Plant Site | RG_02-20      | 3 <b>-</b> 0           | none     | Private            | Private             | Regional              | 2-0                          | - *                                |                | Monitor water quality to detect<br>seepage downgradient of LCO Plant<br>Site, Greenhills Operations, and<br>Fording River Operations | Quarterly                | Se, Cd, NO <sub>3</sub> , SO <sub>4</sub> |


Notes m UTM = metres on Universal Transverse Mercator projection, zone 11; m/s = metres per second; mbg = metres below ground; Se = selenium, Cd = cadmium, NO3 = nitrate, SO4 = sulphate; - = unknown or not applicable.





TETTER AND A THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED F

100



-0

| Analyte                                                                                                         |                    | RDL      | Unit             |
|-----------------------------------------------------------------------------------------------------------------|--------------------|----------|------------------|
| ACIDITY TO pH 8.3 (As CaCO3)                                                                                    | N                  | 1        | mg/l             |
| ALKALINITY, BICARBONATE (As CaCO3), lab measured.<br>ALKALINITY, CARBONATE (As CaCO3), lab measured.            | N                  | 1        | mg/l             |
| ALKALINITY, CARBONATE (As CaCO3), lab measured.                                                                 | N                  | 1        | mg/l<br>mg/l     |
| ALKALINITY, TOTAL (As CaCO3), lab measured.                                                                     | N                  | 1        | mg/l             |
| ALUMINUM                                                                                                        | Dissolved          | 0.001    | mg/l             |
| ALUMINUM                                                                                                        | Dissolved          | 0.003    | mg/l             |
| ALUMINUM                                                                                                        | Total              | 0.003    | mg/l             |
| ANTIMONY                                                                                                        | Dissolved          | 0.0001   | mg/l             |
| ANTIMONY                                                                                                        | Total              | 0.0001   | mg/l             |
| ARSENIC                                                                                                         | Dissolved          | 0.0001   | mg/l             |
| ARSENIC                                                                                                         | Total              | 0.0001   | mg/l             |
| BARIUM                                                                                                          | Dissolved          | 0.00005  | mg/l             |
| BARIUM                                                                                                          | Total              | 0.00005  | mg/l             |
| BERYLLIUM                                                                                                       | Dissolved<br>Total | 0.00002  | mg/l<br>mg/l     |
| BIOCHEMICAL OXYGEN DEMAND, FIVE DAY                                                                             | N                  | 2        | mg/l             |
| BISMUTH                                                                                                         | Dissolved          | 0.00005  | mg/l             |
| BISMUTH                                                                                                         | Total              | 0.00005  | mg/l             |
| BORON                                                                                                           | Dissolved          | 0.01     | mg/l             |
| BORON                                                                                                           | Total              | 0.01     | mg/l             |
| BROMIDE                                                                                                         | Dissolved          | 0.05     | mg/l             |
| CADMIUM                                                                                                         | Dissolved          | 0.000005 | mg/l             |
| CADMIUM                                                                                                         | Total              | 0.000005 | mg/l             |
| CALCIUM                                                                                                         | Dissolved          | 0.05     | mg/l             |
| CALCIUM                                                                                                         | Total              | 0.05     | mg/l             |
| CARBON, DISSOLVED ORGANIC                                                                                       | Dissolved          | 0.5      | mg/l             |
| Cation - Anion Balance                                                                                          | N                  | 0        | %                |
| CHLORIDE                                                                                                        | Dissolved          | 0.5      | mg/l             |
| CHLORIDE                                                                                                        | Dissolved          | 0.1      | mg/l             |
| CHROMIUM                                                                                                        | Dissolved          | 0.0001   | mg/l             |
| CHROMIUM                                                                                                        | Total              | 0.0001   | mg/l             |
| COBALT                                                                                                          | Dissolved          | 0.0001   | mg/l             |
| COBALT                                                                                                          | Total              | 0.0001   | mg/l             |
|                                                                                                                 | N                  | 5        | CU               |
| CONDUCTIVITY, LAB                                                                                               | N<br>Dissolved     | 2 0.0005 | us/cm<br>mg/l    |
| COPPER                                                                                                          | Total              | 0.0005   | mg/l             |
| FLUORIDE                                                                                                        | Dissolved          | 0.02     | mg/l             |
| Hardness, Total or Dissolved CaCO3                                                                              | N                  | 0.5      | mg/l             |
| HYDROGEN SULFIDE                                                                                                | N                  | 0.001    | mg/l             |
| ION BALANCE                                                                                                     | N                  |          | %                |
| IRON                                                                                                            | Dissolved          | 0.01     | mg/l             |
| RON                                                                                                             | Total              | 0.01     | mg/l             |
| LEAD                                                                                                            | Dissolved          | 0.00005  | mg/l             |
| LEAD                                                                                                            | Total              | 0.00005  | mg/l             |
| LITHIUM                                                                                                         | Dissolved          | 0.001    | mg/l             |
| LITHIUM                                                                                                         | Total              | 0.001    | mg/l             |
| MAGNESIUM                                                                                                       | Dissolved          | 0.005    | mg/l             |
| MAGNESIUM                                                                                                       | Dissolved          | 0.1      | mg/l             |
| MAGNESIUM                                                                                                       | Total<br>Total     | 0.005    | mg/l<br>mg/l     |
| MAGNESIUM<br>MAJOR ANION SUM                                                                                    | N                  | 0.1      | meg/l            |
| MAJOR ANION SUM<br>MAJOR CATION SUM                                                                             | N                  | 0        | meg/l            |
| MAJOR CATION SOM                                                                                                | Dissolved          | 0.0001   | mg/l             |
| MANGANESE                                                                                                       | Total              | 0.0001   | mg/l             |
| MERCURY                                                                                                         | Dissolved          | 0.000005 | mg/l             |
| MERCURY                                                                                                         | Total              | 0.0005   | mg/l             |
| MERCURY                                                                                                         | Total              | 0.000005 | mg/l             |
| MERCURY                                                                                                         | Total              | 0.00001  | mg/l             |
| METHYL MERCURY                                                                                                  | Total              | 0.00005  | ug/l             |
| MOLYBDENUM                                                                                                      | Dissolved          | 0.00005  | mg/l             |
| MOLYBDENUM                                                                                                      | Total              | 0.00005  | mg/l             |
| NICKEL                                                                                                          | Dissolved          | 0.0005   | mg/l             |
|                                                                                                                 | Total              | 0.0005   | mg/l             |
| NITRATE NITROGEN (NO3), AS N                                                                                    | N                  | 0.005    | mg/l             |
|                                                                                                                 | N                  | 0.001    | mg/l             |
| NITROGEN, AMMONIA (AS N)                                                                                        | N                  | 0.005    | mg/l             |
| ORTHO-PHOSPHATE<br>OXIDATION-REDUCTION POTENTIAL, LAB                                                           | N N                | 0.001    | mg/l             |
|                                                                                                                 | N                  | 0.1      | mv<br>ph units   |
| pH, LAB<br>PHOSPHORUS                                                                                           | N N                | 0.002    | pn units<br>mg/l |
| PHOSPHORUS                                                                                                      | Dissolved          | 0.002    | mg/l             |
| POTASSIUM                                                                                                       | Total              | 0.05     | mg/l             |
| SELENIUM                                                                                                        | Dissolved          | 0.05     | ug/l             |
| SELENIUM                                                                                                        | Total              | 0.05     | ug/l             |
| SILICON                                                                                                         | Dissolved          | 0.05     | mg/l             |
| SILICON                                                                                                         | Total              | 0.03     | mg/l             |
| SILICON                                                                                                         | Total              | 0.05     | mg/l             |
| SILVER                                                                                                          | Dissolved          | 0.00001  | mg/l             |
| AND A CONTROL OF A C | Total              | 0.00001  | mg/l             |
| SILVER                                                                                                          | Total              | 0.00001  | mun              |

#### Appendix A - Table 3 Field Blanks Collected As Part of LCO 2017 Groundwater Monitoring

| LC_PI               | ZP1104      |
|---------------------|-------------|
| 23/03/2017<br>11.90 | 20/09/2017  |
| < 1.0               | < 1.0       |
| < 1.0               | < 1.0       |
| < 1.0               | < 1.0       |
| < 1.0               | < 1.0       |
| < 0.0010            |             |
|                     | < 0.0030    |
| < 0.0030            |             |
| < 0.00010           | < 0.00010   |
| < 0.00010           |             |
| < 0.00010           | < 0.00010   |
| < 0.00010           |             |
| < 0.000050          | < 0.000050  |
| < 0.000050          |             |
| < 0.000020          | < 0.000020  |
| < 0.000020          |             |
| < 0.000050          | < 0.000050  |
| < 0.000050          | < 0.000050  |
| < 0.000050          | < 0.010     |
| < 0.010             | ~ 0.010     |
| < 0.050             | < 0.050     |
| < 0.000050          | < 0.0000050 |
| < 0.0000050         | ~ 0.0000030 |
| < 0.000050          | < 0.050     |
| 0.05                | - 0.000     |
| < 0.50              | < 0.50      |
| . 0.00              | 0.00        |
| < 0.50              | < 0.50      |
|                     |             |
| < 0.00010           | < 0.00010   |
| < 0.00010           |             |
| < 0.00010           | < 0.00010   |
| < 0.00010           | 5           |
|                     | -           |
| < 2.0               | < 2.0       |
| < 0.00020           | < 0.00050   |
| 0.00098             |             |
| < 0.020             | < 0.020     |
| < 0.50              | < 0.50      |
| 93.70               |             |
| < 0.010             | < 0.010     |
| < 0.010             | < 0.010     |
| < 0.000050          | < 0.000050  |
| < 0.000050          |             |
| < 0.0010            | < 0.0010    |
| < 0.0010            | 17          |
| < 0.0050            |             |
|                     | < 0.10      |
| < 0.0050            |             |
|                     |             |
| < 0                 | < 0         |
| < 0                 | < 0         |
| < 0.00010           | < 0.00010   |
| < 0.00010           |             |
| < 0.0000050         | < 0.0000050 |
| 10.00000000         |             |
| < 0.0000050         |             |
|                     |             |
| < 0.000050          | < 0.000050  |
| < 0.000050          | ~ 0.000050  |
| < 0.00050           | < 0.00050   |
| < 0.00050           | ~ 0.00000   |
| < 0.0050            | < 0.0050    |
| 0.00                | < 0.0010    |
| < 0.0050            | < 0.0050    |
| < 0.0010            | < 0.0010    |
| 403.00              | 426.00      |
| 5.66                | 5.36        |
| < 0.0020            | < 0.0010    |
| < 0.050             | < 0.050     |
| < 0.050             |             |
| < 0.050             | < 0.050     |
| < 0.050             | G.          |
| < 0.050             | < 0.050     |
|                     |             |
| < 0.050             |             |
| < 0.000010          | < 0.000010  |
| < 0.000010          |             |

| SILICON                                      | Total     | 0.00    | nigh | 40.000     |            |
|----------------------------------------------|-----------|---------|------|------------|------------|
| SILVER                                       | Dissolved | 0.00001 | mg/l | < 0.000010 | < 0.000010 |
| SILVER                                       | Total     | 0.00001 | mg/l | < 0.000010 |            |
| SODIUM                                       | Dissolved | 0.05    | mg/l | < 0.050    | < 0.050    |
| SODIUM                                       | Total     | 0.05    | mg/l | < 0.050    |            |
| STRONTIUM                                    | Dissolved | 0.0002  | mg/l | < 0.00020  | < 0.00020  |
| STRONTIUM                                    | Total     | 0.0002  | mg/l | < 0.00020  |            |
| SULFATE (AS SO4)                             | Dissolved | 0.3     | mg/l | < 0.30     | < 0.30     |
| SULFIDE (as S)                               | Total     | 0.001   | mg/l |            |            |
| THALLIUM                                     | Dissolved | 0.00001 | mg/l | < 0.000010 | < 0.000010 |
| THALLIUM                                     | Total     | 0.00001 | mg/l | < 0.000010 |            |
| TIN                                          | Dissolved | 0.0001  | mg/l | < 0.00010  | < 0.00010  |
| TIN                                          | Total     | 0.0001  | mg/l | < 0.00010  |            |
| TITANIUM                                     | Dissolved | 0.01    | mg/l | < 0.010    | < 0.010    |
| TITANIUM                                     | Total     | 0.01    | mg/l | < 0.010    |            |
| TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE) | N         | 10      | mg/l | < 10       | < 10       |
| TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE) | N         | 3       | mg/l |            |            |
| TOTAL KJELDAHL NITROGEN                      | N         | 0.05    | mg/l | < 0.050    |            |
| TOTAL ORGANIC CARBON                         | Total     | 0.5     | mg/l | < 0.50     |            |
| TOTAL SUSPENDED SOLIDS, LAB                  | N         | 1       | mg/l | < 1.0      | < 1.0      |
| TURBIDITY, LAB                               | N         | 0.1     | ntu  | < 0.10     | < 0.10     |
| URANIUM                                      | Dissolved | 0.00001 | mg/l | < 0.000010 | < 0.000010 |
| URANIUM                                      | Total     | 0.00001 | mg/l | < 0.000010 |            |
| VANADIUM                                     | Dissolved | 0.0005  | mg/l | < 0.00050  | < 0.00050  |
| VANADIUM                                     | Total     | 0.0005  | mg/l | < 0.00050  |            |
| ZINC                                         | Dissolved | 0.001   | mg/l | < 0.0010   |            |
| ZINC                                         | Dissolved | 0.003   | mg/l |            |            |
| ZINC                                         | Total     | 0.003   | mg/l | < 0.0030   | < 0.0030   |

| Month        | March | September |
|--------------|-------|-----------|
| Count        | 89    | 55        |
| Hits         | 4     | 1         |
| % non-detect | 95.5  | 98.2      |

### APPENDIX I-3: LCO Trip Blank Data

|                    |                    |                             |      | Ph                                               | ysical F                        | Parame                | ters                     |                  |                                  |                           |            |            |         | Dissol        | ved Inorg             | anics                       |                      |               |                         |                        |            | Dissolve        | d Metals  |             |
|--------------------|--------------------|-----------------------------|------|--------------------------------------------------|---------------------------------|-----------------------|--------------------------|------------------|----------------------------------|---------------------------|------------|------------|---------|---------------|-----------------------|-----------------------------|----------------------|---------------|-------------------------|------------------------|------------|-----------------|-----------|-------------|
| Sample<br>Location | Sample<br>ID       | Sample Date<br>(yyyy mm dd) |      | ਕੋ<br>ਕਿ Hardness, Total or Dissolved CaCO3<br>P | s<br>a)s<br>a)conductivity, LAB | TOTAL SUSPENDED SOLIC | 료 TOTAL DISSOLVED SOLIDS | Z TURBIDITY, LAB | ਕੁੱ ALKALINITY, TOTAL (as CaCO3) | ਤੂੱ AMMONIA, TOTAL (AS N) | ga Bromide | S CHLORIDE | mg/L    | MITRATE, AS N | Д<br>Лу NITRITE, AS N | ਤੋਂ TOTAL KJELDAHL NITROGEN | а<br>Октно-рноѕрнате | SUROHASOHA ma | ₫ SULFATE (AS SO4)<br>ア | 를 TOTAL ORGANIC CARBON | Ja calcium | magnesium<br>T/ | Botassium | WNIGOS mg/L |
| LC_TBLANK          | TB_WG_20170313_015 | 2017/03/23                  | 5.60 | -                                                | < 2.0                           | < 1.0 <               | < 10                     | < 0.10           | < 1.0                            | < 0.0050                  | < 0.050    | 0.66       | < 0.020 | 2.80          | < 0.0010              | < 0.050                     | < 0.0010             | < 0.0020      | 15.6                    | < 0.50                 | -          | -               | -         | -           |
|                    | TB_WG_20170612_018 | 2017/06/13                  | 5.58 | -                                                | < 2.0                           | < 1.0 <               | < 10                     | 0.18             | < 1.0                            | 0.0201                    | < 0.050    | < 0.50     | < 0.020 | < 0.0050      | < 0.0010              | < 0.050                     | < 0.0010             | 0.0242        | < 0.30                  | < 0.50                 | < 0.050    | < 0.0050        | < 0.050   | < 0.050     |
|                    | TB_WG_20170911_021 | 2017/09/21                  | 6.05 | < 0.50                                           | < 2.0                           | < 1.0 <               | < 10                     | < 0.10           | 1.2                              | 0.0108                    | < 0.050    | < 0.50     | < 0.020 | < 0.0050      | < 0.0010              | < 0.050                     | < 0.0010             | < 0.0010      | < 0.30                  | < 0.50                 | -          | -               | -         | -           |

### APPENDIX I-3 (Cont'd): LCO Trip Blank Data

|                    |                    |                             |            |                  |           |             |                          |                 |               |                 |                   |                    |               |                   |             |            | Tota            | I Metals  |              |           |            |                |                |            |            |                |                      |                   |                |                 |                 |                      |              |
|--------------------|--------------------|-----------------------------|------------|------------------|-----------|-------------|--------------------------|-----------------|---------------|-----------------|-------------------|--------------------|---------------|-------------------|-------------|------------|-----------------|-----------|--------------|-----------|------------|----------------|----------------|------------|------------|----------------|----------------------|-------------------|----------------|-----------------|-----------------|----------------------|--------------|
| Sample<br>Location | Sample<br>ID       | Sample Date<br>(yyyy mm dd) | B ALUMINUM | ANTIMONY<br>Mg/L | M ARSENIC | WUINA BARIU | BERYLLIUM                | HLNWSI8<br>mg/L | NONON<br>Mg/L | Ga<br>Z CADMIUM | ga calcium<br>Téa | а<br>Снкоміим<br>Г | а<br>Р совацт | а<br>Соррек<br>Та | NON<br>mg/L | EAD<br>W   | WOIH111<br>mg/L | MAGNESIUM | Ja manganese | Mercury   | Molybdenum | NICKEL<br>mg/L | WDISSSION WOLL | R SELENIUM | mg/L       | Wniaos<br>mg/L | ខ្មី strontium<br>ក្ | MTHALLIUM<br>mg/T | Z<br>F<br>mg/L | шg/<br>Тітаміuм | WRANIUM<br>mg/L | MUIDANADIUM<br>Moj/L | ZINC<br>mg/L |
| LC_TBLANK          | TB_WG_20170313_015 |                             |            |                  |           |             |                          |                 |               |                 |                   |                    |               |                   |             |            |                 |           |              |           |            |                |                |            |            |                |                      |                   |                |                 |                 | < 0.00050 <          |              |
|                    | TB_WG_20170612_018 | 2017/06/13                  | < 0.0030   | < 0.00010        | < 0.00010 | < 0.000050  | < 0.000020               | < 0.000050      | < 0.010       | < 0.000050      | < 0.050           | < 0.00010          | < 0.00010     | < 0.00050         | < 0.010     | < 0.000050 | < 0.0010        | < 0.0050  | < 0.00010 <  | 0.0000050 | < 0.000050 | < 0.00050      | < 0.050        | < 0.050 <  | < 0.000010 | < 0.050        | < 0.00020            | < 0.000010        | < 0.00010      | < 0.010         | < 0.000010      | < 0.00050            | < 0.0030     |
|                    | TB_WG_20170911_021 | 2017/09/21                  | < 0.0030   | < 0.00010        | < 0.00010 | < 0.000050  | < 0.000020<br>< 0.000020 | < 0.000050      | < 0.010       | < 0.0000050     | < 0.050           | < 0.00010          | < 0.00010     | < 0.00050         | < 0.010     | < 0.000050 | < 0.0010        | < 0.10    | < 0.00010 <  | 0.0000050 | < 0.000050 | < 0.00050      | < 0.050        | < 0.050 <  | < 0.000010 | < 0.050        | < 0.00020            | < 0.000010        | < 0.00010      | < 0.010         | < 0.000010      | < 0.00050            | < 0.0030     |



Appendix I-4: EVO 2017 Annual Groundwater Monitoring Summary and Recommendations



# Appendix I-4: Elkview Operations 2017 Annual Groundwater Monitoring

## Summary

SNC-Lavalin Inc. (SNC-Lavalin, 2018c) completed the 2017 Annual Report for the Elkview Operations (EVO) Site Specific Groundwater Monitoring Program (SSGMP). EVO is located in southeastern British Columbia (BC), directly east of the town of Sparwood, BC and is one of Teck's five active coal mines in the Elk Valley. The following information was taken from the 2017 EVO Annual Report, which was completed to fulfill the reporting requirements outlined in Section 10.4 of Permit 107517 (October 13, 2017). The SSGMP was developed in 2015 with monitoring commencing the same year and the program was approved in April 2017 by the Ministry of Environment (MoE), now referred to as the Ministry of Environment & Climate Change Strategy (ENV).

The groundwater conceptual site model (CSM) for EVO identified the groundwater flow through surficial materials is a more important pathway compared to groundwater flow through bedrock; the two main hydrogeological settings of surficial materials and associated groundwater recharge and flow are in upland areas and valley-bottoms. Hydrogeology in the CSM was described in terms of main stem valley-bottoms including the Elk River and Michel Creek and major tributary drainages including Grave Creek/Harmer Creek, which flow into the Elk River and Erickson Creek, which flows into Michel Creek.

The EVO SSGMP includes a total of 12 monitoring well locations which are monitored and sampled quarterly for a specific list of analytes. The wells monitored and sampled as part of the 2017 annual program are listed in Table A along with the associated rationale (extracted from the 2017 EVO Annual Report). Monitoring well locations are shown on Drawing 653245-002 attached (extracted from the 2017 EVO Annual Report). In 2017, quarterly sampling and monitoring were conducted at all wells with two exceptions: the Q1 sample from EV\_ECgw, which could not be monitored or sampled due to a frozen well; and a manual water level measurement was not recorded from EV\_WF\_SW in Q2, likely due to a field transcription oversight. Samples from site-specific programs were submitted for all parameters on the analyte list except total nitrogen, which was only submitted for analysis for two samples in Q1 of 2017 and dissolved phosphorus, which was not submitted for analysis for any samples in 2017. These modifications to the EVO SSGMP do not affect the overall quality or interpretation of the data. Field and trip blank data are provided in the attached Table 4 (extracted from the 2017 EVO Annual Report).

Groundwater quality screening followed the most recent procedures that have been discussed with ENV and summarized in the Regional Groundwater Monitoring Program (2017 RGMP; SNC-Lavalin-2017c). Groundwater quality at all monitoring locations were compared to applicable primary screening criteria and secondary screening criteria if selenium concentrations were above primary screening. Presentation of results, data interpretation and discussion of water level and chemistry trends for select constituents of interest (CI), including nitrate-nitrogen, sulphate and dissolved selenium, were summarized by main transport pathways (i.e., main stem valley-bottom and major tributary drainage) as defined by the CSM. To assess groundwater and surface water interactions, groundwater chemistry was compared to chemistry at nearby surface water stations.



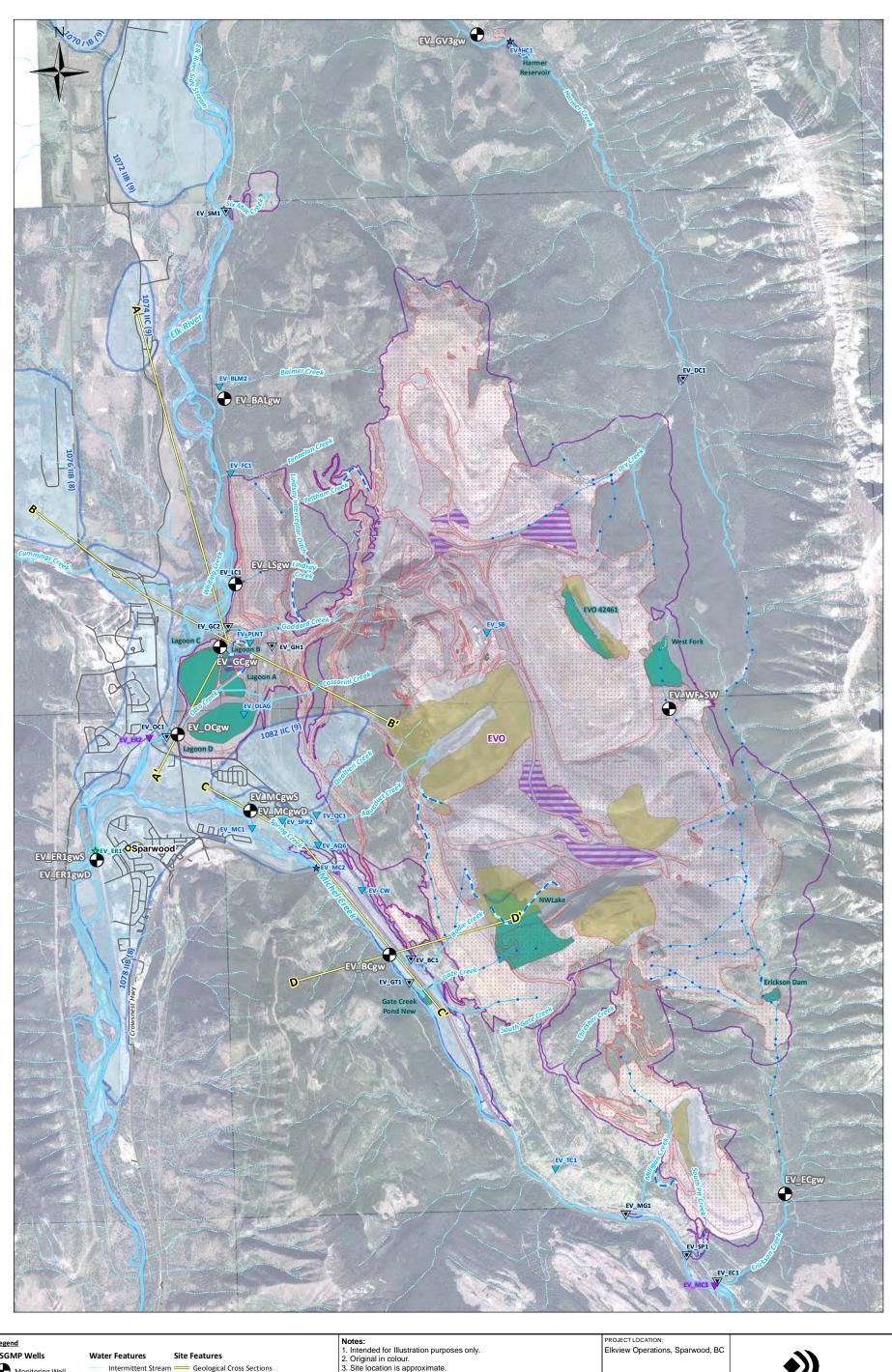
Groundwater quality data for CI are shown in plan view in Drawing 653245-007 attached (extracted from the 2017 EVO Annual Report). In general, groundwater concentrations of CI above primary and secondary screening criteria were consistent with 2015 and 2016 results. Results and interpretation are presented throughout the report by surface water drainage in order of flow (i.e., tributary drainages are presented prior to main stem valley-bottom drainages). A brief summary of results and interpretation is as follows:

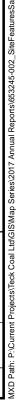
- Grave Creek/Harmer Creek drainage: groundwater samples from 2017 were below primary screening criteria for all CI. Low selenium concentrations in groundwater compared to surface water in Harmer Creek and lack of seasonal variation in groundwater selenium concentrations suggested limited interactions between deep groundwater and surface water in the Harmer Creek/Grave Creek drainage. Based on relatively low groundwater selenium concentrations, groundwater transport of CI from the Harmer Creek/Grave Creek drainage was inferred to be minimal.
- Elk River drainage proximal to EVO: groundwater samples from 2017 were below primary screening criteria for all CI. Selenium concentrations in tributary surface water originating from the western slope of EVO and the Elk River were approximately two orders of magnitude higher compared to groundwater concentrations in the Elk River drainage indicating there is potential for loading of mine-influenced constituents from tributary surface water to groundwater via infiltration. However, based on review of groundwater selenium concentrations there does not appear to be a confirmed groundwater transport pathway between tributary surface water and Elk River valley-bottom.
- Erickson Creek drainage: groundwater samples in 2017 were below primary screening criteria for all CI. Selenium concentrations in groundwater in the Erickson Creek drainage were more than two orders of magnitude lower than surface water concentrations measured in Erickson Creek. Therefore, any effects to groundwater in the Michel Creek valley-bottom where Erickson Creek discharges to Michel Creek are likely the result of infiltration of mine-influenced surface water rather than tributary groundwater transport.
- Michel Creek drainage: groundwater samples were above primary screening criteria for nitrate-nitrogen and dissolved selenium for all sampling events in 2017. Selenium concentrations from select groundwater samples were also above secondary screening criteria. Groundwater selenium, nitrate and sulphate concentrations in groundwater were typically lower compared to concentrations in adjacent tributary surface water from Gate Creek and Bodie Creek and higher compared to nearby Michel Creek suggesting a groundwater transport pathway of CI exists.
- Elk River drainage distal to EVO: dissolved selenium concentrations in 2017 groundwater samples were marginally above primary screening criteria on two sampling events. Consistent with previous years, a clear seasonal trend in selenium concentrations was observed in both groundwater and the surface water (Elk River and Michel Creek) with lower concentrations in spring and summer and higher concentrations in the fall and winter, consistent with the effect of dilution in a freshet dominated regime. Selenium concentrations in groundwater in 2017 were lower than concentrations in Michel Creek and Elk River surface water.

Constituents other than CI were measured above primary screening criteria, including fluoride and dissolved iron, manganese, lithium, and molybdenum. Dissolved lithium did not previously exceed primary screening criteria; however, the drinking water CSR DW standard was recently changed from 730  $\mu$ g/L to 8  $\mu$ g/L on November 1, 2017 which it why it was flagged. The remaining constituents above primary screening criteria were assessed in the 2017 Regional Groundwater Monitoring Program (RGMP) and appeared to originate from natural sources (e.g., interaction with bedrock or unconsolidated materials) with the exception of zinc, which appears to be locally sourced in the Michel Creek valley-bottom.

An update of the SSGMP is due in 2018 and the 2017 and historical groundwater monitoring results will be used in the development of an updated plan.

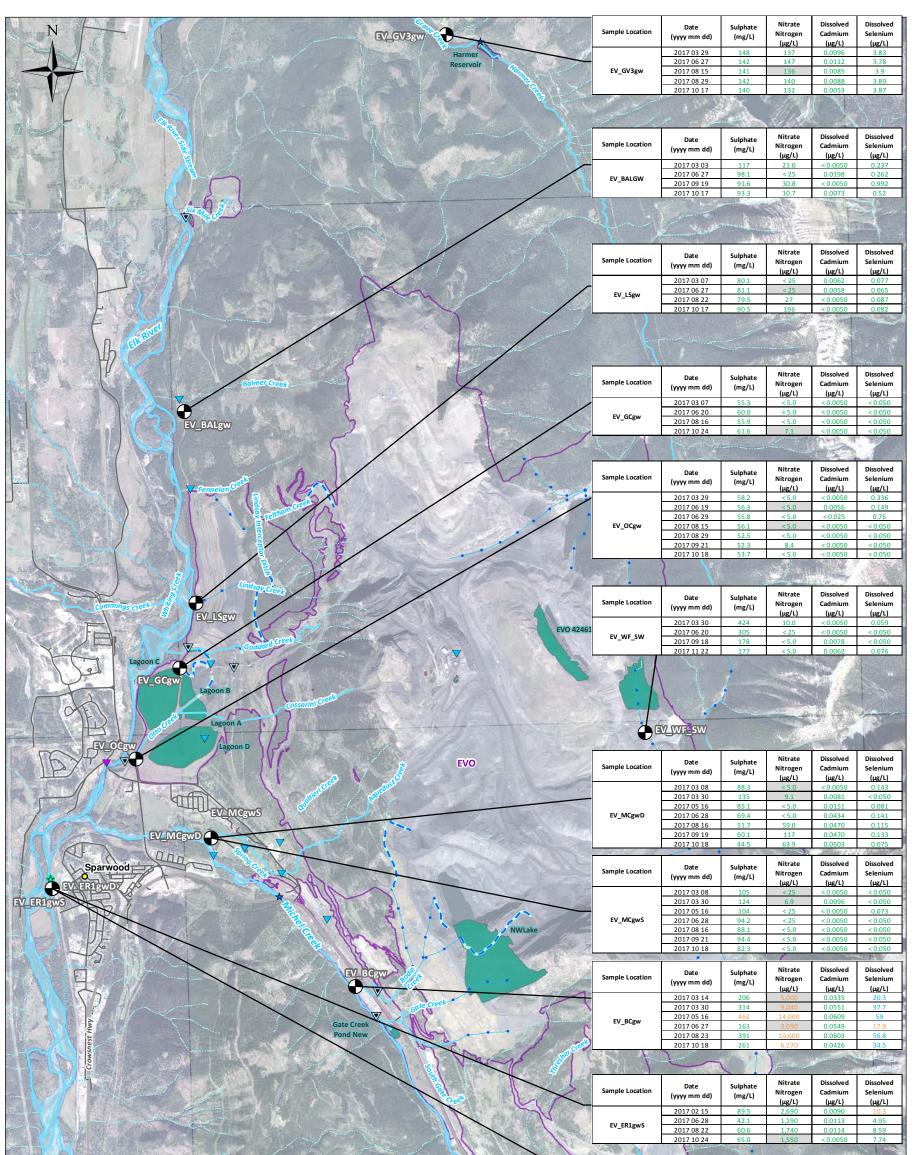



# Recommendations


General recommendations are as follows:

- Analyze for all the parameters listed in the 2015 SSGMP for EVO, including total nitrogen and dissolved phosphorus. The analyte list should be re-evaluated as part of the planned 2018 SSGMP update;
- Collect water level measurements manually prior to sampling, and before deploying or uploading data from level loggers;
- > Calibrate field probes prior to sampling; and
- > For the 2018 update of the EVO SSGMP:
  - Consider removing the nested well EV\_ER1gwS/D based on the fact that it is more applicable to the RGMP. Clear definitions of the differences between SSGMPs and the RGMP were developed in the 2017 RGMP (SNC-Lavalin, 2017c). The SSGMPs will focus on potential sources and transport pathways of mine related constituents to groundwater in the valley-bottom whereas the RGMP focuses on groundwater fate and transport in the valley-bottom of the main stems, and how they relate to applicable receptors. Well EV\_ER1gwS/D is considered to represent groundwater transport in the valley-bottom of the main stem Elk River; and
  - Consider conducting a review hydraulic conductivity testing results of EV\_series monitoring wells.

| Drainage              | Well ID   | Rationale                                                                                                                                                                                         |
|-----------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grave/Harmer<br>Creek | EV_GV3gw  | Monitor groundwater quality and levels in the within valley fill sediments downgradient of the Dry Creek Spoil                                                                                    |
|                       | EV_BALgw  | Monitor baseline groundwater quality and levels within valley fill sediments north of the CCR dump                                                                                                |
| Elk River             | EV_LSgw   | Monitor groundwater quality and levels in valley fill sediments near Lindsay Creek downgradient of Baldy Ridge                                                                                    |
| Proximal to<br>EVO    | EV_GCgw   | Monitor groundwater quality and levels in the valley sediments near<br>Goddard Creek downgradient of Baldy Ridge and adjacent to Lagoons B<br>and C, Goddard Settling Ponds and the Goddard Marsh |
|                       | EV_OCgw   | Monitor groundwater quality and levels in valley fill sediments near Otto Creek downgradient of the southern portion of Baldy Ridge and Lagoon D                                                  |
| Erickson              | EV_WF_SW  | Designed to monitor downgradient flow from the West Fork Tailings Facility                                                                                                                        |
| Creek                 | EV_ECgw   | Monitor groundwater quality and levels within valley fill sediments<br>downgradient of Erickson Spoils                                                                                            |
|                       | EV_MCgwS  | Monitor groundwater quality and levels in valley fill sediments near Michel                                                                                                                       |
| Michel Creek          | EV_MCgwD  | Creek                                                                                                                                                                                             |
|                       | EV_BCgw   | Monitor groundwater quality and levels in valley fill sediments near Michel Creek down gradient of Bodie Creek, Bodie Pond and Gate Creek                                                         |
| Elk River             | EV_ER1gwS | Monitor groundwater quality and levels in valley sediments near the                                                                                                                               |
| Distal to EVO         | EV_ER1gwD | Elk River                                                                                                                                                                                         |


### Table A: Summary of Groundwater Monitoring Locations and Rationale





| Legend<br>SSGMP Wells<br>Monitoring Well<br>Surface Water Stations<br>Compliance Point<br>Order Station | <ul> <li>Stream Ditch</li> <li>Indefinite Stream</li> <li>Stream</li> <li>Subsurface</li> </ul> | Site Features<br>Geological Cross Sections<br>EVO Permitted Boundary<br>Pit<br>Stockpiles<br>Waste Dump (Spoils) | <ol> <li>Original in colour.</li> <li>Site location is ap</li> <li>References:</li> </ol> | proximate.<br>ded by Teck Coal Lto | J.    | NV) | PROJECT LOCATION:<br>Elkview Operation:<br>CLIENT NAME:<br>Teck Coal Ltd | s, Sparwood, BC   | SNC · I         | LAVALI     | N            |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|-------|-----|--------------------------------------------------------------------------|-------------------|-----------------|------------|--------------|
| <ul> <li>Receiving Environment</li> <li>Authorized Discharge</li> <li>Monitoring</li> </ul>             | Mapped Aquifers                                                                                 | Highway<br>Secondary Road<br>Tailings/Settling Pond<br>Reservoir                                                 | Revisons:<br>0 - AO - 2018-01-29<br>1 - AO - 2018-03-26                                   | - FINAL - LH                       |       |     |                                                                          |                   | Scale: 1:50,000 | cation Pla | an<br>REV: 0 |
|                                                                                                         |                                                                                                 | River Bed                                                                                                        |                                                                                           | 0.6 1.2                            | 1.8 2 | 4 3 |                                                                          | COORD SYS: NAD 19 |                 | 653245-002 | KEV. U       |

Project Path: P:\Current Projects\Teck Coal Ltd\GIS\Exports\ANNUAL REPORT



MXD Path: P:\Current Projects\Teck Coal Ltd\GIS\Map Series\2017 Annual Reports\653245-008\_SpatialDistof

| Primary Screening Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sulphate<br>(mg/L)                                                                              | Nitrate<br>Nitrogen | Dissolved<br>Cadmium                                              | Dissolved<br>Selenium                                                                                     |                                                                                                                | Sample Location                             | Date<br>(yyyy mm dd)        | Sulphate<br>(mg/L)   | Nitrate<br>Nitrogen<br>(µg/L) | Dissolved<br>Cadmium<br>(µg/L) | Dissolved<br>Selenium<br>(µg/L)       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------|----------------------|-------------------------------|--------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (8/ =/                                                                                          | (µg/L)              | (µg/L)                                                            | (µg/L)                                                                                                    | Contraction and the second |                                             | 2017 02 15<br>2017 06 28    | 73.8<br>40.0         | 2,100<br>1,260                | < 0.0050<br>< 0.0050           | 8.16<br>5.67                          |
| CSR Aquatic Life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,280-4,290                                                                                     | 400,000             | 0.5-4                                                             | 20                                                                                                        |                                                                                                                | EV_ER1gwD                                   | 2017 08 28                  | 53.8                 | 1,280                         | < 0.0050                       | 6.95                                  |
| CSR Irrigation Watering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a                                                                                             | n/a                 | 5                                                                 | 20                                                                                                        |                                                                                                                |                                             | 2017 10 24                  | 76.9                 | 1,930                         | 0.0103                         | 10.5                                  |
| CSR Livestock Watering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,000                                                                                           | 100,000             | 80                                                                | 30                                                                                                        |                                                                                                                |                                             | <b>P</b>                    | 1 (                  |                               |                                |                                       |
| CSR Drinking Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500                                                                                             | 10,000              | 5                                                                 | 10                                                                                                        |                                                                                                                |                                             | Cre                         |                      | 1 Sectors                     |                                |                                       |
| BCWQG Aquatic Life Short-term Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a                                                                                             | 32,800              | 0.038-2.8                                                         | n/a                                                                                                       |                                                                                                                |                                             | 1                           | 1                    |                               |                                |                                       |
| BCWQG Aquatic Life Long-term Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 309-429                                                                                         | 3,000               | 0.018-0.457                                                       | 2                                                                                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                          |                                             | Date                        | Sulphate             | Nitrate                       | Dissolved                      | Dissolved                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                     |                                                                   | Dissolved                                                                                                 |                                                                                                                | Sample Location                             | (yyyy mm dd)                | (mg/L)               | Nitrogen                      | Cadmium                        | Selenium                              |
| Secondary Scr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eening Criteria                                                                                 |                     |                                                                   | Selenium                                                                                                  |                                                                                                                |                                             | 2017 06 20                  | 27.1                 | (μg/L)<br>86.8                | (μg/L)<br>0.0234               | (μg/L)<br>0.129                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>0</b> • • • •                                                                                |                     |                                                                   | (µg/L)                                                                                                    |                                                                                                                |                                             | 2017 08 20                  | 25.8                 | 28.5                          | 0.0234                         | 0.06                                  |
| Guideline for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Canadian Drin                                                                                   | king Water (        | Juality                                                           | 50                                                                                                        | Charles and the second                                                                                         | EV_ECgw                                     | 2017 10 25                  | 25.8                 | 215                           | 0.0404                         | 0.056                                 |
| and the second sec                                                                                                                                                                                                                                             | nce Objective:                                                                                  |                     |                                                                   | 19                                                                                                        | a state of the second                                                                                          |                                             | 2017 11 22                  | 26.1                 | 121                           | 0.0429                         | 0.212                                 |
| A REAL PROPERTY AND A REAL | oint: EV MC2                                                                                    | _ \                 | 5555                                                              | 28                                                                                                        | CONTRACT STATE                                                                                                 | States She                                  |                             | Gr. Ale              |                               |                                | 1.00                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                     |                                                                   | 20                                                                                                        |                                                                                                                |                                             |                             | 26.0                 | a com                         | Service States                 |                                       |
| Parameter exceeded hold time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                     | Note                                                              | s:                                                                                                        |                                                                                                                | PROJECTLOCA                                 |                             |                      |                               |                                |                                       |
| Below primary screening criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                     | 1. Int                                                            | s:<br>ended for Illustra                                                                                  | on purposes only.                                                                                              |                                             | ATION:<br>erations, Sparwoo | od, BC               |                               | .1)                            |                                       |
| N         Below primary screening criteria           GE         Above at least one of the primary screening criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                     | 1. Int                                                            | s:                                                                                                        | on purposes only.                                                                                              |                                             |                             | od, BC               |                               | ))                             |                                       |
| Below primary screening criteria     Above at least one of the primary screening crit     Selenium concentrations above at least one of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 | ening criteria      | 1. Int<br>2. Or<br>Refe                                           | s:<br>ended for Illustra<br>iginal in colour.<br>rences:                                                  |                                                                                                                | Elkview Ope                                 |                             | od, BC               |                               | •))                            | 22240(20224) - 4433                   |
| Below primary screening criteria     Above at least one of the primary screening crite     Selenium concentrations above at least one of end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | he secondary scre                                                                               | ening criteria      | 1. Int<br>2. Or<br>Refe                                           | s:<br>ended for Illustra<br>iginal in colour.<br>rences:                                                  | on purposes only.<br>by Teck Coal Ltd.                                                                         | Elkview Ope                                 | rations, Sparwoo            | od, BC               |                               | ))                             | i i i i i i i i i i i i i i i i i i i |
| Below primary screening criteria     Above at least one of the primary screening crite     Selenium concentrations above at least one of end IP Wells Water Features Site Fea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | he secondary scre                                                                               |                     | 1. Int<br>2. Or<br>Refe                                           | s:<br>ended for Illustra<br>iginal in colour.<br>rences:                                                  |                                                                                                                | Elkview Ope                                 | rations, Sparwoo            | od, BC               | SNO                           |                                | VALIN                                 |
| Below primary screening criteria           GE         Above at least one of the primary screening criteria           Selenium concentrations above at least one of the primary screening criteria           end           IP Wells         Water Features         Site Features           Monitoring Well         EV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the secondary scre<br>tures<br>D Permitted Bounda                                               |                     | 1. Int<br>2. Or<br><b>Refe</b><br>1. Inf                          | s:<br>ended for Illustra<br>iginal in colour.<br>rences:<br>formation provide                             |                                                                                                                | Elkview Ope                                 | rations, Sparwoo            | od, BC               | SNC                           |                                | VALII                                 |
| N       Below primary screening criteria         GE       Above at least one of the primary screening criteria         Selenium concentrations above at least one of         end         IP Wells       Water Features         Monitoring Well       Intermittent Stream         Stream Ditch       Hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>he secondary scre</u><br><b>tures</b><br>D Permitted Bounda<br>hway                          |                     | 1. Int<br>2. Or<br>Refe<br>1. Inf                                 | s:<br>ended for Illustra<br>iginal in colour.<br>rences:                                                  | by Teck Coal Ltd.                                                                                              | Elkview Ope<br>CLIENT NAME:<br>Teck Coal Lt | rations, Sparwoo            |                      |                               |                                |                                       |
| W         Below primary screening criteria           GE         Above at least one of the primary screening criteria           Selenium concentrations above at least one of the primary screening criteria           end           IP Wells         Water Features         Site Features           Monitoring Well         Intermittent Stream         EV           Stream Ditch         Hig         Stream Ditch         Hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the secondary scre<br>tures<br>D Permitted Bounda<br>hway<br>condary Road                       |                     | 1. Int<br>2. Or<br><b>Refe</b><br>1. Inf<br><b>Revi</b><br>0 - A( | s:<br>ended for Illustra<br>iginal in colour.<br>rences:<br>formation provide<br>sons:                    | by Teck Coal Ltd.<br>RAFT - LH                                                                                 | Elkview Ope<br>CLIENT NAME:<br>Teck Coal Lt | atial Dist                  | ributio              | n of Co                       | onstitu                        | ents of                               |
| N       Below primary screening criteria         GE       Above at least one of the primary screening criteria         Selenium concentrations above at least one of         end         IP Wells       Water Features         Monitoring Well       Intermittent Stream         Stream Ditch       Hig         Compliance Point       Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the secondary scre<br>tures<br>D Permitted Bounda<br>hway<br>condary Road<br>ings/Settling Pond |                     | 1. Int<br>2. Or<br><b>Refe</b><br>1. Inf<br><b>Revi</b><br>0 - A( | s:<br>ended for Illustra<br>iginal in colour.<br>rences:<br>ormation provide<br>sons:<br>O - 2018-01-29 - | by Teck Coal Ltd.<br>RAFT - LH                                                                                 | Elkview Ope<br>CLIENT NAME:<br>Teck Coal Lt | atial Dist                  | ributio              |                               | onstitu                        | ents of                               |
| N       Below primary screening criteria         GE       Above at least one of the primary screening criteria         Selenium concentrations above at least one of         end         IP Wells       Water Features         Monitoring Well       Intermittent Stream         Ce Water Stations       Stream Ditch         Compliance Point       Stream         Order Station       Subsurface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the secondary scre<br>tures<br>D Permitted Bounda<br>hway<br>condary Road                       |                     | 1. Int<br>2. Or<br><b>Refe</b><br>1. Inf<br><b>Revi</b><br>0 - A( | s:<br>ended for Illustra<br>iginal in colour.<br>rences:<br>ormation provide<br>sons:<br>O - 2018-01-29 - | by Teck Coal Ltd.<br>RAFT - LH                                                                                 | Elkview Ope<br>CLIENT NAME:<br>Teck Coal Lt | atial Dist                  | ributio<br>rest in ( | n of Co<br>Ground             | onstitu<br>dwater              | ents of                               |
| N       Below primary screening criteria         GE       Above at least one of the primary screening criteria         Selenium concentrations above at least one of         end         IP Wells       Water Features         Monitoring Well       Intermittent Stream         Stream Ditch       Hig         Compliance Point       Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the secondary scre<br>tures<br>D Permitted Bounda<br>hway<br>condary Road<br>ings/Settling Pond |                     | 1. Int<br>2. Or<br><b>Refe</b><br>1. Inf<br><b>Revi</b><br>0 - A( | s:<br>ended for Illustra<br>iginal in colour.<br>rences:<br>ormation provide<br>sons:<br>O - 2018-01-29 - | by Teck Coal Ltd.<br>RAFT - LH                                                                                 | Elkview Ope<br>CLIENT NAME:<br>Teck Coal Lt | atial Dist                  | ributio              | n of Co<br>Ground             | onstitu                        | ents of                               |

Project Path: P:\Current Projects\Teck Coal Ltd\GIS\Exports\ANNUAL REPORT

### TABLE 1: Summary of Groundater Monitoring Program Locations

| Drainage                   | Well ID   | Monitoring Program | Well Type  |         | dinates<br>NAD 83) | LIDAR<br>Ground<br>Elevation | Ground<br>Elevation | TOC<br>Elevation | Stick Up<br>Height | Drilled<br>Depth | Well<br>Diameter | Top of<br>Screen<br>Depth | Bottom of<br>Screen<br>Depth | Screened<br>Interval    | Depth to<br>Bedrock | Hydraulic<br>Conductivity |
|----------------------------|-----------|--------------------|------------|---------|--------------------|------------------------------|---------------------|------------------|--------------------|------------------|------------------|---------------------------|------------------------------|-------------------------|---------------------|---------------------------|
|                            |           |                    |            | Easting | Northing           | masl                         | masl                | masl             | m                  | mbgs             | mm               | mbgs                      | mbgs                         |                         | mbgs                | m/s                       |
| Grave Creek / Harmer Creek | EV_GV3gw  | SSGMP, RGMP        | Monitoring | 656580  | 5522255            | 1307.01                      | -                   | 1307.96          | 0.91               | 25.0             | 60               | 22.85                     | 24.38                        | Silty Gravel            | -                   | -                         |
|                            | EV_BALgw  | SSGMP              | Monitoring | 653121  | 5517271            | 1180.75                      | 1181.00             | 1182.00          | 1.00               | 12.7             | 60               | 10.50                     | 12.70                        | Bedrock                 | 10.4                | -                         |
| Elk River Proximal to EVO  | EV_LSgw   | SSGMP, RGMP        | Monitoring | 653274  | 5514731            | 1133.05                      | 1133.00             | 1133.93          | 0.93               | 10.7             | 60               | 5.18                      | 6.71                         | Sand and Gravel         | -                   | 1.0E-03                   |
|                            | EV_GCgw   | SSGMP              | Monitoring | 653061  | 5513870            | 1131.68                      | 1131.24             | 1131.96          | 0.72               | 15.6             | 60               | 12.55                     | 15.60                        | Silty Clay              | -                   | 4.0E-06                   |
|                            | EV_OCgw   | SSGMP, RGMP        | Monitoring | 652480  | 5512671            | 1125.48                      | 1126.00             | 1126.89          | 0.89               | 15.5             | 60               | 11.58                     | 14.63                        | Sand                    | 14.5                | 7.0E-07                   |
| Erickson Creek             | EV_WF_SW  | SSGMP              | Monitoring | 659208  | 5513023            | 1694.31                      | 1679.25             | 1678.57          | 0.68               | 163              | 152              | 151.5                     | 159.4                        | Waste Rock <sup>1</sup> | -                   | -                         |
| Entrison oreck             | EV_ECgw   | SSGMP, RGMP        | Monitoring | 660795  | 5506384            | 1327.17                      | 1327.00             | 1327.74          | 0.74               | 11.0             | 60               | 2.59                      | 4.12                         | Sand/Clay and Sand      | -                   | 1.0E-08                   |
|                            | EV_MCgwS  | SSGMP, RGMP        | Monitoring | 653476  | 5511624            | 1131.04                      | 1131.00             | 1131.96          | 0.96               | 10.7             | 60               | 5.79                      | 7.32                         | Clayey Silt             | -                   | 7.0E-08                   |
| Michel Creek               | EV_MCgwD  | SSGMP, RGMP        | Monitoring | 653476  | 5511624            | 1131.04                      | 1131.00             | 1131.84          | 0.84               | 47.6             | 60               | 24.50                     | 27.55                        | Sand and Clay           | -                   | 3.0E-06                   |
|                            | EV_BCgw   | SSGMP, RGMP        | Monitoring | 655381  | 5509659            | 1153.15                      | 1153.00             | 1153.86          | 0.86               | 23.2             | 60               | 17.77                     | 20.82                        | Gravel                  | -                   | 1.0E-04                   |
| Elk River Distal to EVO    | EV_ER1gwS | SSGMP, RGMP        | Monitoring | 651374  | 5510955            | 1114.41                      | 1115.25             | 1115.96          | 0.71               | 17.6             | 60               | 14.56                     | 17.61                        | Sand and Gravel         | -                   | 7.0E-04                   |
|                            | EV_ER1gwD | SSGMP, RGMP        | Monitoring | 651379  | 5510952            | 1114.35                      | 1115.20             | 1115.91          | 0.71               | 30.8             | 60               | 25.82                     | 28.87                        | Sand/Silty Sand         | 27.9                | 9.0E-04                   |

1) AMEC (2011) reported waste rock in the screened interval which is not clear in the borehole log (provided in Appendix I).

masl = metres above sea level mbgs = metres below ground surface

Page 1 of 1

## TABLE 2: Summary of Groundwater Elevations and Calculated Vertical Gradients

|                         |            | LIDAR     | Ground    | тос     | Stick  | Date of Static           | Depth to          | Water                |                                       | Date of Static | Calculated         |
|-------------------------|------------|-----------|-----------|---------|--------|--------------------------|-------------------|----------------------|---------------------------------------|----------------|--------------------|
| Drainage                | Well ID    | Ground    | Elevation |         | Up     | Water Level              | Water             | Level                | Well Pair                             | Water Level    | Vertical           |
| Dramago                 |            | Elevation |           |         | Height | Measurement              |                   | Elevation            | i i i i i i i i i i i i i i i i i i i | Measurement    | Gradient           |
|                         |            | masl      | masl      | masl    | m      | yyyy/mm/dd               | mtoc              | masl                 |                                       | yyyy/mm/dd     | m/m                |
|                         | EV_GV3gw   | 1307.01   | -         | 1307.96 | 0.91   | 2017/03/29               | 10.58             | 1297.38              |                                       |                |                    |
| Grave Creek / Harmer    |            |           |           |         |        | 2017/06/27               | 10.69             | 1297.27              |                                       |                |                    |
| Creek                   |            |           |           |         |        | 2017/08/15               | 10.82             | 1297.14              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/08/29               | 10.86             | 1297.10              |                                       |                |                    |
|                         |            | 4400 75   | 1101.00   | 1100.00 | 1.00   | 2017/10/17               | 10.91             | 1297.05              |                                       |                |                    |
|                         | EV_BALgw   | 1180.75   | 1181.00   | 1182.00 | 1.00   | 2017/03/03               | 11.96             | 1170.04              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/06/27<br>2017/08/15 | 12.01<br>11.99    | 1169.99<br>1170.01   |                                       |                |                    |
|                         |            |           |           |         |        | 2017/09/19               | 11.99             | 1170.01              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/10/17               | 11.95             | 1170.03              |                                       |                |                    |
|                         | EV_LSgw    | 1133.05   | 1133.00   | 1133.93 | 0.93   | 2017/03/07               | 5.43              | 1128.50              |                                       |                |                    |
|                         | Ev_L3gw    | 1133.05   | 1155.00   | 1155.95 | 0.93   | 2017/06/27               | 3.77              | 1130.16              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/08/22               | 4.09              | 1129.84              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/10/17               | 4.03              | 1129.70              |                                       |                |                    |
| Elk River Proximal to   | EV_GCgw    | 1131.68   | 1131.24   | 1131.96 | 0.72   | 2017/03/07               | 2.39              | 1129.57              |                                       |                |                    |
| EVO                     | LV_GCGW    | 1131.00   | 1131.24   | 1131.90 | 0.72   | 2017/06/20               | 2.33              | 1129.85              |                                       |                |                    |
| 210                     |            |           |           |         |        | 2017/08/16               | 2.11              | 1129.72              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/10/24               | 2.24              | 1129.67              |                                       |                |                    |
| -                       | EV_OCgw    | 1125.48   | 1126.00   | 1126.89 | 0.89   | 2017/03/29               | 3.20              | 1123.69              |                                       |                |                    |
|                         | LV_009W    | 1120.40   | 1120.00   | 1120.00 | 0.00   | 2017/06/19               | 3.44              | 1123.45              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/06/29               | 3.55              | 1123.34              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/08/15               | 3.64              | 1123.25              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/08/29               | 4.32              | 1122.57              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/09/21               | 5.29              | 1121.60              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/10/18               | 3.61              | 1123.28              |                                       |                |                    |
|                         | EV_WF_SW   | 1694.31   | 1679.25   | 1678.57 | 0.68   | 2017/03/30               | 144.42            | 1534.15              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/07/20               | -                 | -                    |                                       |                |                    |
|                         |            |           |           |         |        | 2017/09/18               | 147.09            | 1531.49              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/11/22               | 145.47            | 1533.10              |                                       |                |                    |
|                         | EV_ECgw    | 1327.17   | 1327.00   | 1327.74 | 0.74   | 2017/03/13               | Frozen            | -                    |                                       |                |                    |
| Erickson Creek          | _ 5        | -         |           | -       | -      | 2017/06/20               | 1.86              | 1325.88              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/08/23               | 2.35              | 1325.39              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/10/25               | 2.59              | 1325.15              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/11/21               | 1.78              | 1325.96              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/11/22               | 2.05              | 1325.69              |                                       |                |                    |
|                         | EV_MCgwS   | 1131.04   | 1131.00   | 1131.96 | 0.96   | 2017/03/16               | 1.67              | 1130.29              |                                       | 2017/03/16     | -0.054             |
|                         | _ 0        |           |           |         |        | 2017/06/28               | 2.24              | 1129.72              | EV_MCgwS                              | 2017/06/28     | -0.049             |
|                         |            |           |           |         |        | 2017/08/16               | 2.90              | 1129.06              | and                                   | 2017/08/16     | -0.045             |
|                         |            |           |           |         |        | 2017/09/21               | 4.80              | 1127.16 <sup>b</sup> | EV_MCgwD                              | 2017/09/21     | 0.033 <sup>c</sup> |
|                         |            |           |           |         |        | 2017/10/18               | 6.38              | 1125.58 <sup>b</sup> |                                       | 2017/10/18     | 0.105 <sup>c</sup> |
| ł                       | EV_MCgwD   | 1131.04   | 1131.00   | 1131.84 | 0.84   | 2017/03/16               | 2.61              | 1129.23              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/06/28               | 3.07              | 1128.77              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/08/16               | 3.65              | 1128.19              |                                       |                |                    |
| Michel Creek            |            |           |           |         |        | 2017/09/19               | 4.03              | 1127.81 <sup>b</sup> |                                       |                |                    |
|                         |            |           |           |         |        | 2017/10/18               | 4.21              | 1127.63 <sup>b</sup> |                                       |                |                    |
| -                       | EV_BCgw    | 1153.15   | 1153.00   | 1153.86 | 0.86   | 2017/03/14               | 3.11              | 1150.75              |                                       |                |                    |
|                         | 2.7703.    |           |           |         | 0.00   | 2017/03/30               | 2.62              | 1151.24              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/05/16               | 2.15              | 1151.71              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/06/27               | 2.49 <sup>a</sup> | 1151.37              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/08/23               | 3.01              | 1150.85              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/10/18               | 3.14              | 1150.00              |                                       |                |                    |
|                         | EV_ER1gwS  | 1114.41   | 1115.25   | 1115.96 | 0.71   | 2017/02/15               | 5.75              | 1110.21              |                                       | 2017/02/15     | 0.027              |
|                         | Lt_Litig#0 |           | 1110.20   |         | 5.7 1  | 2017/06/28               | 4.30              | 1111.66              | EV_ER1gwS                             | 2017/06/28     | 0.027              |
|                         |            |           |           |         |        | 2017/08/22               | 5.03              | 1110.93              | and                                   | 2017/08/22     | 0.025              |
|                         |            |           |           |         |        | 2017/10/24               | 5.19              | 1110.33              | EV_ER1gwD                             | 2017/10/24     | 0.020              |
| Elk River Distal to EVO | EV_ER1gwD  | 1114.35   | 1115.20   | 1115.91 | 0.71   | 2017/02/15               | 5.40              | 1110.77              |                                       | 2011/10/24     | 0.020              |
|                         | -·         |           |           |         | J      |                          |                   |                      | 1                                     |                |                    |
|                         |            |           |           |         |        | 2017/06/28               | 3.97              | 1111 94              |                                       |                |                    |
|                         |            |           |           |         |        | 2017/06/28<br>2017/08/22 | 3.97<br>4.69      | 1111.94<br>1111.22   |                                       |                |                    |

Notes: a) Reported depth to water was 0.49 m which was considered suspect based on other measurements collected on this day. Value was changed to 2.49 and discrepancy was considered to be a field transcription error; b) Based on continuous water elevation data, depth to water measurements appear to have been collected while sampling; c) Calculated vertical gradients are considered suspect based on information presented in note b.

masl = metres above sea level

mbgs = metres below ground surface

### **TABLE 3: Field Measured Parameters**

|                |                              |              | F              | ield Parameters  |                  |              |
|----------------|------------------------------|--------------|----------------|------------------|------------------|--------------|
| Samula         | Sample Date                  | ъЦ           | Tomporatura    | Conductivity     |                  | Dissolved    |
| Sample         | Sample Date                  | рН           | Temperature    | Conductivity     | ORP              | Oxygen       |
| Location       | (yyyy mm dd)<br>Harmer Creek | рН           | °C             | μS/cm            | mV               | mg/L         |
| EV_GV3gw       | 2017 03 29                   | 7.50         | 4.59           | 624              | 152.0            | 3.57         |
| LV_0V39W       | 2017 06 27                   | 7.37         | 10.70          | 662              | 26.4             | 2.83         |
|                | 2017 08 15                   | 7.48         | 8.57           | 637              | 121.2            | 3.62         |
|                | 2017 08 29                   | 7.40         | 13.00          | 626              | 25.4             | 3.20         |
|                | 2017 10 17                   | 7.45         | 6.86           | 634              | 57.9             | 3.82         |
| Elk River Elk  | River Proximal               | to EVO       |                |                  |                  |              |
| EV_BALgw       | 2017 03 03                   | 7.45         | 4.19           | 835              | 91.3             | 0.65         |
|                | 2017 06 27                   | 6.87         | 10.77          | 813              | 14.9             | 0.52         |
|                | 2017 08 15                   | 7.12         | 7.70           | 761              | 35.4             | 1.00         |
|                | 2017 09 19                   | 6.84         | 6.62           | 766              | 53.7             | 1.51         |
|                | 2017 10 17                   | 7.14         | 9.93           | 772              | 28.7             | 1.54         |
| EV_LSgw        | 2017 03 07                   | 5.19         | 9.60           | 988              | 262.6            | 0.43         |
|                | 2017 06 27<br>2017 08 22     | 6.97<br>7.10 | 12.99<br>15.42 | 1,172<br>1,150   | -105.7<br>-101.5 | 0.70         |
|                | 2017 08 22                   | 7.10         | 13.92          | 1,094            | -101.5           | 0.44         |
| EV_GCgw        | 2017 10 17                   | 5.20         | 2.98           | 435              | 79.4             | 0.49         |
|                | 2017 06 20                   | 7.33         | 16.57          | 465              | -153.8           | 0.55         |
|                | 2017 08 16                   | 7.46         | 15.38          | 436              | -186.9           | 0.30         |
|                | 2017 10 24                   | 7.46         | 9.75           | 452              | -169.4           | 0.28         |
| EV_OCgw        | 2017 03 29                   | 7.78         | 5.07           | 454              | -114.9           | 0.39         |
| _ 0            | 2017 06 19                   | 7.63         | 10.45          | 472              | -165.5           | 1.41         |
|                | 2017 06 29                   | 7.79         | 9.03           | 451              | -148.1           | 0.26         |
|                | 2017 08 15                   | 7.84         | 10.92          | 455              | -173.9           | 0.31         |
|                | 2017 08 29                   | 7.66         | 8.83           | 439 <sup>a</sup> | -118.3           | 0.42         |
|                | 2017 09 21                   | 7.69         | 7.86           | 448              | -113.5           | 0.47         |
|                | 2017 10 18                   | 7.87         | 9.09           | 458              | -175.5           | 0.41         |
| Erickson Cree  | ek 🛛                         |              |                |                  |                  |              |
| EV_WF_SW       | 2017 03 30                   | 7.36         | 5.04           | 1,162            | 86.7             | 6.19         |
|                | 2017 06 20                   | 8.11         | 12.36          | 948              | -184.3           | 2.54         |
|                | 2017 09 18                   | 6.76         | 7.82           | 531              | 114.2            | 3.33         |
|                | 2017 11 22                   | 8.64         | 5.80           | 500              | 32.6             | 2.17         |
| EV_ECgw        | 2017 06 20                   | 7.63         | 6.59           | 433              | 157.9            | 4.12         |
|                | 2017 08 23<br>2017 10 25     | 5.86<br>7.60 | 9.65<br>7.98   | 434<br>426       | 261.6<br>114.3   | 1.72<br>2.55 |
|                | 2017 10 23                   | 6.50         | 6.33           | 420              | 206.8            | 3.55         |
| Michel Creek   |                              | 0.00         | 0.00           | 430              | 200.0            | 0.00         |
| EV_MCgwS       | 2017 03 08                   | 11.55        | 4.05           | 853              | 40.7             | 1.90         |
| ge             | 2017 03 30                   | 7.55         | 6.29           | 682              | 9.5              | 4.61         |
|                | 2017 05 16                   | 7.28         | 5.85           | 803              | -106.2           | 0.80         |
|                | 2017 06 28                   | 7.14         | 7.11           | 871              | -101.1           | 1.67         |
|                | 2017 08 16                   | 7.19         | 9.10           | 822              | -96.7            | 1.17         |
|                | 2017 09 21                   | 6.91         | 8.68           | 820              | -48.6            | 0.54         |
|                | 2017 10 18                   | 7.24         | 7.93           | 809              | -166.5           | 1.90         |
| EV_MCgwD       | 2017 03 08                   | 11.12        | 1.66           | 633              | 69.1             | 0.52         |
|                | 2017 03 30                   | 7.28         | 5.93           | 855              | -31.5            | 0.49         |
|                | 2017 05 16                   | 7.57         | 6.65           | 610              | 125.4            | 11.63        |
|                | 2017 06 28                   | 7.17         | 10.56          | 609              | 41.5             | 7.75         |
|                | 2017 08 16                   | 7.36         | 12.60          | 553              | 178.0            | 4.20         |
|                | 2017 09 19<br>2017 10 18     | 7.28         | 8.73           | 565              | -19.7<br>-36.5   | 1.39         |
| EV_BCgw        | 2017 10 18 2017 03 14        | 7.40         | 6.27<br>5.36   | 534<br>757       | -36.5<br>175.5   | 0.91<br>5.02 |
| LV_DC9W        | 2017 03 14                   | 7.35         | 7.50           | 987              | 24.3             | 3.97         |
|                | 2017 05 30                   | 7.20         | 6.34           | 1,152            | 24.3             | 2.94         |
|                | 2017 06 27                   | 6.96         | 8.02           | 702              | 178.7            | 1.95         |
|                | 2017 08 23                   | 7.18         | 7.84           | 1,175            | 118.5            | 2.09         |
|                | 2017 10 18                   | 7.35         | 6.81           | 924              | 29.4             | 2.16         |
| Elk River Dist |                              |              |                |                  |                  |              |
| EV_ER1gwS      | 2017 02 15                   | 9.83         | 1.94           | 505              | -154.6           | 10.29        |
| _ 0 -          | 2017 06 28                   | 7.36         | 7.17           | 484              | 73.0             | 8.63         |
|                | 2017 08 22                   | 7.54         | 12.30          | 438              | 102.2            | 6.78         |
|                | 2017 10 24                   | 7.51         | 8.60           | 480              | 164.4            | 8.54         |
| EV_ER1gwD      | 2017 02 15                   | 7.15         | 1.35           | 489              | -152.2           | 9.66         |
| -              | 2017 06 28                   | 7.57         | 5.90           | 384              | 13.5             | 10.06        |
|                | 2017 08 22                   | 7.60         | 11.88          | 436              | 104.9            | 6.53         |
|                | 2017 10 24                   | 7.61         | 8.69           | 476              | -73.6            | 7.43         |

All terms defined within the body of SNC-Lavalin's report.

<sup>a</sup> Value inferred to be 439.

|                                                |                                           | Phys     | sical P             | aramet | ers                    |                        |                        |                  |                                      |                                     |            |                                  |           |               |                      |         |          |             |                                       |                       | G                 | eochemical       | Indicato            | rs                     |                     |                  |                     |                  |                                             |                  |                        |                      |                 |                                                     |
|------------------------------------------------|-------------------------------------------|----------|---------------------|--------|------------------------|------------------------|------------------------|------------------|--------------------------------------|-------------------------------------|------------|----------------------------------|-----------|---------------|----------------------|---------|----------|-------------|---------------------------------------|-----------------------|-------------------|------------------|---------------------|------------------------|---------------------|------------------|---------------------|------------------|---------------------------------------------|------------------|------------------------|----------------------|-----------------|-----------------------------------------------------|
|                                                | ity                                       |          |                     |        |                        | sp                     |                        |                  | Ð                                    |                                     |            |                                  |           |               |                      |         |          |             |                                       |                       |                   |                  |                     |                        |                     |                  |                     |                  |                                             |                  |                        | ٩                    |                 |                                                     |
|                                                | Colour<br>Laboratory Conductivity         | Hardness | Oxidation Reduction | Lal 2  | Total Dissolved Solids | Total Suspended Solids | j Laboratory Turbidity | Acidity (pH 8.3) | Alkalinity, Bicarbonat<br>(as CaCO3) | Alkalinity, Carbonate<br>(as CaCO3) | Alk<br>(as | Total Alkalinity<br>• (as CaCO3) | , Tot     | Total Cations | Cation Anion Balance | Bromide | Chloride | , Fluoride  | Sulphate                              | , Dissolved Aluminum  | Dissolved Calcium | , Dissolved Iron | Dissolved Magnesium | , Dissolved Manganese  | Dissolved Potassium | Dissolved Sodium | Kjeldahl Nitrogen-N | Total Nitrogen-N | , Ammonia, total (as N)                     | , Nitrate (as N) | , Nitrite (as N)       | Total Phosphorous as | Ortho-Phosphate | Dissolved Organic<br>Carbon<br>Total Organic Carbon |
| Location (yyyy mm dd)<br>BC Standard/Guideline | CU µS/cn                                  | n mg/L   | mv                  | рН     | mg/L                   | mg/L                   | NTU                    | mg/L             | mg/L                                 | mg/L                                | mg/L       | mg/L                             | meq/      | meq/L         | %                    | mg/L    | mg/L     | µg/L        | mg/L                                  | µg/L                  | mg/L              | µg/L             | mg/L                | μg/L                   | mg/L                | mg/L             | mg/L                | mg/L             | µg/L                                        | µg/L             | µg/L                   | mg/L                 | mg/L            | mg/L mg/L                                           |
|                                                | n/a n/a                                   | n/a      | n/a                 | n/a    | n/a                    | n/a                    | n/a                    | n/a              | n/a                                  | n/a                                 | n/a        | n/a                              | n/a       | n/a           | n/a                  | n/a     | 1 500    | 2 000-3 000 | <sup>1</sup> 1,280-4,290 <sup>c</sup> | n/a                   | n/a               | n/a              | n/a                 | n/a                    | n/a                 | n/a              | n/a                 | n/a              | 3,700-18,500 <sup>e</sup>                   | 400,000          | 200-2 000 <sup>f</sup> | n/a                  | n/a             | n/a n/a                                             |
|                                                | n/a n/a                                   | n/a      | n/a                 |        |                        | n/a                    | n/a                    | n/a              | n/a                                  | n/a                                 | n/a        | n/a                              | n/a       | n/a           | n/a                  | n/a     | 100      | 1,000       | n/a                                   | 5,000                 | n/a               | 5,000            | n/a                 | 200                    | n/a                 | n/a              | n/a                 | n/a              | n/a                                         | n/a              | n/a                    | n/a                  | n/a             | n/a n/a                                             |
| CSR Livestock Watering (LW)                    |                                           | n/a      |                     | n/a    |                        | n/a                    |                        | n/a              | n/a                                  | n/a                                 | n/a        | n/a                              | n/a       | n/a           | n/a                  | n/a     | 600      | 1,000       | 1,000                                 | 5,000                 | 1,000             | n/a              | n/a                 | n/a                    | n/a                 | n/a              | n/a                 | n/a              | n/a                                         | 100,000          | 10,000                 | n/a                  | n/a             | n/a n/a                                             |
|                                                | n/a n/a                                   |          | n/a                 |        |                        | n/a                    |                        | n/a              | n/a                                  | n/a                                 | n/a        | n/a                              | n/a       | n/a           | n/a                  | n/a     | 250      | 1,500       | 500                                   | 9,500                 | n/a               | 6,500            | n/a                 | 1,500                  | n/a                 | 200              |                     | n/a              | n/a                                         | 10,000           | 1,000                  | n/a                  | n/a             | n/a n/a                                             |
| BCWQG Aquatic Life                             | n/a n/a                                   | n/a      | n/a                 |        |                        | n/a                    |                        | n/a              | n/a                                  | n/a                                 | n/a        | n/a                              | n/a       | n/a           | n/a                  | n/a     | n/a      | n/a         | n/a                                   | 31.6-100 <sup>¢</sup> | n/a               | 350<br>(max)     | n/a                 | 546-7,813 <sup>d</sup> | n/a                 | n/a              | n/a                 | n/a              | 5,680-24,500 <sup>e</sup><br>(15°C assumed) | 32,800           | 60-600 <sup>f</sup>    | n/a                  | n/a             | n/a n/a                                             |
| BCWQG Aquatic Life                             | n/a n/a                                   | n/a      | n/a                 | n/a    | n/a                    | n/a                    | n/a                    | n/a              | n/a                                  | n/a                                 | n/a        | n/a                              | n/a       | n/a           | n/a                  | n/a     | n/a      | n/a         | 309-429 <sup>d</sup>                  | 11.2-50 <sup>e</sup>  | n/a               | n/a              | n/a                 | 607-3,509 <sup>d</sup> | n/a                 | n/a              | n/a                 | n/a              | 365-1,780 <sup>e</sup><br>(15°C assumed)    | 3,000            | 20-200 <sup>f</sup>    | n/a                  | n/a             | n/a n/a                                             |
| Grave Creek / Harmer Creek                     |                                           |          |                     |        |                        |                        |                        |                  |                                      |                                     |            |                                  |           |               |                      |         |          |             |                                       |                       |                   |                  |                     |                        |                     |                  |                     |                  | (15 C assumed)                              |                  |                        |                      |                 |                                                     |
| EV_GV3gw 2017 03 29 <                          | < 5.0 600                                 | 336      | 298                 | 8.04   | 421                    | 1.9                    | 2.51                   | 4.5              | 195                                  | < 1.0                               | < 1.0      | 195                              | 7.06      | 6.88          | -                    | < 0.050 | 1.53     | 517         | 148                                   | < 1.0                 | 83.6              | < 10             | 30.9                | 0.59                   | 1.05                | 3.15             | < 0.050             | -                | < 5.0                                       | 137              | < 1.0                  | 0.0044               | < 0.0010        | < 0.50 < 0.50                                       |
| -                                              | 5.0 647                                   |          |                     | 8.06   |                        |                        | 0.14                   |                  |                                      |                                     |            |                                  |           |               | -0.6                 | < 0.050 | 1.68     | 509         | 142                                   | 10.1                  | 82.2              | < 5.0            | 33.5                | 0.13                   | 0.991               | 3.42             | < 0.050             | -                | < 5.0                                       | 147              | < 1.0                  | 0.0083               | 0.0012          | < 0.50 0.53                                         |
|                                                | : 5.0 642                                 | 338      |                     | 8.08   |                        |                        | < 0.10                 |                  |                                      |                                     |            | 205                              |           |               | -1.5                 | < 0.050 | 1.65     | 503         | 142                                   | < 3.0                 | 81.3              | < 5.0            | 32.8                | 0.21                   | 1.01                | 3.46             | < 0.050             | -                | < 5.0                                       | 143              |                        |                      |                 | 0.65 1.08                                           |
| QA/QC RPD%                                     | -                                         | 1        |                     | < 1    |                        | *                      |                        | *                | < 1                                  | *                                   | *          | < 1                              | *         | *             | *                    | *       | 2        | 1           | 0                                     | *                     | 1                 | *                | 2                   | *                      | 2                   | 1                | *                   |                  | *                                           | 3                | *                      | *                    | *               | * *                                                 |
| 2017 08 15 <                                   |                                           |          |                     |        |                        |                        | < 0.10                 |                  |                                      |                                     |            |                                  |           |               |                      | < 0.050 |          | 486         | 141                                   | < 3.0                 | 82.4              | < 10             | 31.7                | 0.84                   | -                   | 3.25             | < 0.050             |                  | < 5.0                                       | 136              |                        |                      |                 | < 0.50 < 0.50                                       |
| Duplicate <                                    | * 641                                     | 332      |                     | 7.90   | 429                    | 1.3                    | < 0.10                 | 5.6              | 197<br>1                             | < 1.0<br>*                          | < 1.0      | 197                              | 6.95<br>* | 6.79<br>*     | -1.1                 | < 0.050 | 1.62     | 486<br>0    | 0                                     | < 3.0                 | 82.5              | < 10<br>*        | 30.6                | < 0.10                 | 0.983               | 3.14             | < 0.050<br>*        | -                | < 5.0<br>*                                  | 137              | 1.1                    | < 0.0020             | *               | < 0.50 < 0.50<br>* *                                |
|                                                | 5.0 618                                   |          |                     | -      | -                      |                        | 0.16                   | -                | -                                    |                                     |            | 212                              | 7.25      | 5.86          | -10.6                | < 0.050 |          | 445         | 142                                   | < 3.0                 | 63.7              | < 10             | 30.7                | < 0.10                 | 0.938               | 3.01             | < 0.050             |                  | < 5.0                                       | 140              | < 1.0                  | < 0.0020             | < 0.0010        | 0.64 0.59                                           |
| 2017 10 17 <                                   |                                           |          |                     |        |                        |                        | 0.35                   |                  |                                      |                                     |            |                                  |           | 6.52          |                      |         | 1.28     | 410         | 140                                   | < 3.0                 | 75.8              | < 10             | 31.3                | < 0.10                 | 0.935               | 3.27             | 0.210               |                  | 6.5                                         | 132              | < 1.0                  |                      |                 | 0.50 < 0.50                                         |
| Duplicate <                                    | 5.0 556                                   | 322      | 283                 | 8.35   | 424                    | < 1.0                  | 0.29                   |                  |                                      |                                     |            |                                  |           | 6.61          | -1.8                 | < 0.050 | 1.29     | 428         | 140                                   | < 3.0                 | 78.7              | < 10             | 30.6                | < 0.10                 | 0.936               |                  | < 0.050             | -                | 6.9                                         | 134              | < 1.0                  | < 0.0020             | 0.0016          | < 0.50 < 0.50                                       |
| QA/QC RPD%                                     | * 1                                       | 1        | *                   | 1      | 3                      | *                      | *                      | *                | 2                                    | *                                   | *          | 6                                | *         | *             | *                    | *       | 1        | 4           | 0                                     | *                     | 4                 | *                | 2                   | *                      | 0                   | 2                | *                   | -                | *                                           | 2                | *                      | *                    | *               | * *                                                 |
| Elk River Proximal to EVO                      | 5 0 700                                   | 050      | 075                 | 7.00   | 40.4                   | 0.0                    | 0.00                   | 05.0             | 0.40                                 | 4.0                                 | 10         | 0.40                             | 0.00      | 0.74          | 1                    | 0.050   | 4 70     | 000         | 447                                   | 10                    | 07.0              | 40               | 00.0                | 01.0                   | 0.40                | 045              | 0.400               | 1                | 40.4                                        | 01.0             | 4.0                    | 0.0007               | 0.0040          | 4.40                                                |
| EV_BALgw 2017 03 03 <<br>2017 06 27 <          | <ul><li>5.0 792</li><li>5.0 802</li></ul> |          |                     | 7.63   |                        |                        | 2.02                   |                  |                                      | < 1.0<br>< 1.0                      |            |                                  |           | 8.74          | - 0.8                | < 0.050 |          | 209<br>220  | 117<br>98.1                           | < 1.0<br>34.0         | 97.2<br>91.3      | 16<br>60.1       | 28.2<br>32.4        | 21.6<br>61.7           | 2.43<br>2.91        | 34.5<br>40.0     | 0.108               |                  | 40.4<br>47.9                                | 21.0<br>< 25     | 1.8<br>< 5.0           |                      |                 | 1.161.221.211.00                                    |
| 2017 09 27 <                                   |                                           |          |                     |        |                        |                        | 0.61                   |                  |                                      |                                     |            |                                  | 7.52      |               |                      | < 0.25  |          | 193         | 91.6                                  | < 3.0                 | 85.2              | 14               | 25.4                | 37.9                   | 2.56                | 31.3             | 0.117               |                  | 43.8                                        | 30.8             | 2.6                    |                      |                 | 2.04 0.91                                           |
| 2017 10 17 <                                   |                                           |          | 288                 |        | 480                    |                        | 2.09                   | 5.8              |                                      | < 1.0                               |            |                                  |           | 8.49          | 0.3                  |         | 1.50     | 133         | 93.3                                  | < 3.0                 | 89.3              | 20               | 30.1                | 56.2                   | 2.66                | 34.1             | 0.121               | -                | 51.5                                        | 10.7             | 3.1                    |                      |                 | 1.13 1.03                                           |
|                                                | 6.5 981                                   | 549      |                     |        | 566                    |                        | 14.4                   |                  |                                      | < 1.0                               |            |                                  |           | 11.7          | -                    | < 0.25  | 12.4     | 270         | 80.1                                  | 6.1                   | 103               | 1,410            | 70.7                | 826                    | 3.59                | 11.1             | 0.208               | -                | 103                                         | < 25             | < 5.0                  |                      |                 | 1.94 2.44                                           |
| 2017 06 27                                     | 5.6 1,120                                 | ) 651    | 284                 | 7.94   |                        |                        | 39.1                   |                  | 564                                  | < 1.0                               | < 1.0      | 564                              | 13.3      | 13.8          | 1.8                  | < 0.25  | 10.7     | 280         | 81.1                                  | < 3.0                 | 119               | 3,430            | 85.7                | 1,050                  | 4.16                | 9.84             | 0.269               | -                | 171                                         | < 25             | < 5.0                  | 0.0527               | 0.0018          | 3.20 2.89                                           |
| 2017 08 22 <                                   | < 5.0 1,080                               | 632      | 215                 | 7.74   | 642                    | 7.6                    | 46.9                   | 10.0             | 608                                  | < 1.0                               | < 1.0      | 608                              | 14.1      | 14.3          | 0.8                  | < 0.25  | 10.2     | 190         | 79.5                                  | 4.1                   | 130               | 3,470            | 87.8                | 1,020                  | 4.67                | 10.2             | 0.198               | -                | 203                                         | 27               | < 5.0                  | 0.0601               | 0.0012          | 2.45 2.64                                           |
| 2017 10 17 <                                   | 5.0 816                                   | 594      | 236                 | 8.15   | 653                    | 18.7                   | 43.0                   | 4.1              | 450                                  | < 1.0                               | < 1.0      | 450                              | 11.2      | 12.6          | 5.9                  | < 0.25  | 9.5      | 210         | 90.5                                  | 3.3                   | 114               | 2,640            | 75.2                | 1,080                  | 4.38                | 8.86             | 0.73                | -                | 208                                         | 196              | < 5.0                  | 0.111                | < 0.0010        | 2.88 3.91                                           |
|                                                | < 5.0 430                                 |          |                     |        |                        |                        |                        |                  |                                      | < 1.0                               |            |                                  | 4.77      | 4.60          | -                    | < 0.050 |          | 493         | 55.3                                  | < 3.0                 | 61.1              | 189              | 16.5                | 82.9                   | 0.789               | 3.70             | < 0.050             | -                | 27.9                                        | < 5.0            | < 1.0                  |                      |                 | 0.60 0.61                                           |
| 2017 06 20 <                                   |                                           |          |                     |        |                        |                        |                        |                  |                                      |                                     |            |                                  |           |               |                      | < 0.050 |          | 445         | 60.0                                  | < 3.0                 | 59.4              | 209              | 16.5                | 93.5                   | 0.756               | 3.66             | 0.073               | -                | 22.2                                        | < 5.0            | < 1.0                  |                      |                 | < 0.50 < 0.50                                       |
| 2017 08 16 <                                   |                                           |          |                     |        |                        |                        |                        |                  |                                      |                                     |            |                                  |           |               |                      |         |          | 416         | 55.9                                  | < 3.0                 | 62.8              | 223              | 18.1                | 91.6                   |                     | -                | < 0.050             |                  | 23.5                                        | < 5.0            |                        |                      |                 | < 0.50 < 0.50                                       |
| 2017 10 24         <                           |                                           |          |                     |        |                        |                        |                        |                  |                                      |                                     |            |                                  |           |               |                      |         |          |             | 61.6<br>58.2                          | 4.5<br>2.7            | 60.1<br>27.8      | 196<br>256       | 16.9<br>19.7        | 91.7<br>98.0           |                     |                  | < 0.050<br>0.163    |                  | 21.7<br>69.9                                | 7.1<br>< 5.0     | 3.6<br>< 1.0           |                      |                 | 1.140.761.181.20                                    |
| Duplicate <                                    |                                           |          |                     |        |                        |                        |                        |                  |                                      |                                     |            |                                  |           |               |                      |         |          |             | 57.5                                  | 2.7                   | 27.7              | 230              | 19.7                | 96.5                   |                     |                  | 0.159               |                  | 68.2                                        | < 5.0            | < 1.0                  |                      |                 | 1.01 1.12                                           |
| QA/QC RPD%                                     |                                           |          |                     |        |                        |                        |                        |                  |                                      |                                     |            |                                  |           | *             |                      |         | 4        | 1           | 1                                     | *                     | < 1               | 8                | 0                   | 2                      | 1.75                | 1                | *                   |                  | 2                                           | *                | *                      | 17                   | *               | * *                                                 |
| 2017 06 19 <                                   |                                           |          |                     |        |                        |                        |                        |                  |                                      |                                     |            |                                  |           |               |                      |         |          | 1,190       | 56.3                                  | 22.2                  | 28.3              | 266              | 18.6                | 89.0                   |                     |                  | 0.100               |                  | 71.8                                        | < 5.0            | < 1.0                  |                      | 0.0048          | 0.78 1.02                                           |
| Duplicate <                                    | 5.0 436                                   | 145      | 356                 | 8.32   | 285                    | 8.1                    | 2.53                   | < 1.0            | 179                                  |                                     |            |                                  |           |               |                      |         |          |             | 57.4                                  | 21.0                  | 27.3              | 268              | 18.5                | 88.7                   |                     |                  | 0.198               |                  | 75.5                                        | < 5.0            | < 1.0                  | 0.0224               | 0.0039          | 1.13 0.87                                           |
| QA/QC RPD%                                     | * <1                                      | 1        | *                   | 0      | 4                      | *                      | 1                      | *                | 1                                    | *                                   | *          | 1                                | *         | *             | *                    | *       | 3        | 2           | 2                                     | 6                     | 4                 | 1                | 1                   | < 1                    | 1                   | 2                | *                   | -                | 5                                           | *                | *                      | 36                   | *               | * *                                                 |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Parameter exceeded hold time.

BOLD\*\*

BOLD Concentration greater than CSR Aquatic Life (AW) standard

Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline or BCWQG Aquatic Life Long-term Average (AW) guideline (applicable to EV\_BCgw, EV\_MCgwD, EV\_MCgwS, EV\_OCgw)

SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").

<sup>c</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

<sup>d</sup> Standard varies with Hardness.

<sup>e</sup> Standard varies with pH.

<sup>f</sup> Standard varies with Chloride.

<sup>g</sup> Standard varies with crop.

<sup>h</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>1</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

|                |                          |        |         |           |          |         |                        |                          |                  |                 |                        |                     | Diss        | olved Meta           | ls           |                        |                  |                       |            |            |          |                |          |          |                  |                       |
|----------------|--------------------------|--------|---------|-----------|----------|---------|------------------------|--------------------------|------------------|-----------------|------------------------|---------------------|-------------|----------------------|--------------|------------------------|------------------|-----------------------|------------|------------|----------|----------------|----------|----------|------------------|-----------------------|
|                |                          |        |         |           |          |         |                        |                          |                  |                 |                        |                     |             |                      |              |                        |                  |                       |            |            |          |                |          |          |                  |                       |
|                |                          |        |         |           |          |         |                        |                          |                  |                 |                        |                     |             |                      |              |                        |                  |                       |            |            |          |                |          |          |                  |                       |
|                |                          |        |         |           |          |         |                        |                          |                  |                 |                        |                     |             |                      |              |                        |                  |                       |            |            |          |                |          |          |                  |                       |
|                |                          |        |         |           |          |         |                        |                          |                  |                 |                        |                     |             |                      |              |                        |                  |                       |            |            |          |                |          |          |                  |                       |
|                |                          |        |         |           |          |         |                        |                          |                  |                 |                        |                     |             |                      | E            |                        |                  |                       |            |            |          |                |          |          |                  |                       |
|                |                          | 2      |         |           | ε        | _       |                        | E                        | Ę                |                 |                        |                     |             |                      | nue          |                        | ٦                |                       |            | ε          | -        |                | -        | -        | E                |                       |
|                |                          | nor    | nic     | E         | lliu     | rt I    | 2                      | niu                      | omium            | Ħ               | er                     |                     | Ę           | L L                  | pde          | -                      | inic             | L                     | 5          | Itin       | <u>i</u> |                | iun      | <u>n</u> | diu              |                       |
|                |                          | Jtin   | Se      | Barium    | eryllium | Bismuth | oron                   | Cadmium                  | Chro             | Cobalt          | Coppe                  | ad                  | Lithium     | ercu                 | Molybdenum   | Nickel                 | aler             | ke                    | Silicon    | Strontium  | Thallium | <u>د</u>       | Titanium | Uranium  | Vanadium         | Zinc <sup>j</sup>     |
| Sample         | Sample Date              | Ā      | A       |           | B        |         | ă                      | -                        | _                |                 |                        | ڐ                   |             | Me                   |              |                        | Ň                | Sil                   |            |            |          | μ              |          |          |                  |                       |
|                | (yyyy mm dd)             | µg/L   | µg/L    | µg/L      | µg/L     | µg/L    | µg/L                   | µg/L                     | µg/L             | µg/L            | μg/L                   | µg/L                | µg/L        | µg/L                 | µg/L         | µg/L                   | µg/L             | µg/L                  | μg/L       | µg/L       | μg/L     | µg/L           | µg/L     | μg/L     | µg/L             | µg/L                  |
| BC Standard/   |                          |        |         |           |          |         | 10.000                 | d                        | h                | 10              | d                      | d                   |             |                      | 10.000       | d                      |                  | d                     |            |            |          |                |          |          |                  | d                     |
| CSR Aquatic L  |                          | 90     | 50      | 10,000    | 1.5      | n/a     | 12,000                 | 0.5-4 <sup>d</sup>       | 10 <sup>n</sup>  | 40              | 20-90 <sup>d</sup>     | 40-160 <sup>d</sup> | n/a         | 0.25                 | 10,000       | 250-1,500 <sup>d</sup> | 20               | 0.5-15 <sup>d</sup>   | n/a        | n/a        | 3        | n/a            | 1,000    | 85       | n/a              | 75-2,400 <sup>d</sup> |
| Ū              | Watering (IW)            | n/a    | 100     | n/a       | 100      | n/a     | 500-6,000 <sup>9</sup> | 5                        | 5 <sup>h</sup>   | 50              | 200                    | 200                 | 2,500       | 1                    | 10           | 200                    | 20               | n/a                   | n/a        | n/a        | n/a      | n/a            | n/a      | 10       | 100              | n/a                   |
|                | Watering (LW)            | n/a    | 25      | n/a       | 100      | n/a     | 5,000                  | 80                       | 50 <sup>h</sup>  | 1,000           | 300                    | 100                 | 5,000       | 2                    | 50           | 1,000                  | 30               | n/a                   | n/a        | n/a        | n/a      | n/a            | n/a      | 200      | 100              | 2,000                 |
| CSR Drinking   | Water (DW)               | 6      | 10      | 1,000     | 8        | n/a     | 5,000                  | 5                        | 50 <sup>h</sup>  | 20 <sup>i</sup> | 1,500                  | 10                  | 8           | 1                    | 250          | 80                     | 10               | 20                    | n/a        | 2,500      | n/a      | 2,500          | n/a      | 20       | 20               | 3,000                 |
| BCWQG Aqua     | itic Life                | n/a    | 5       | n/a       | n/a      | n/a     | n/a                    | 0.038-2.8 <sup>d</sup>   | 1 (Cr(+6))       | 110             | 2.05-64.0 <sup>d</sup> | 3-902 <sup>d</sup>  | n/a         | n/a                  | 2,000        | n/a                    | n/a              | 0.1-3 <sup>d</sup>    | n/a        | n/a        | n/a      | n/a            | n/a      | n/a      | n/a              | 22 460 Ed             |
| Short-term Max | ximum (AW) <sup>b</sup>  | 11/a   | 5       | 11/a      | 11/a     | 11/a    | 11/a                   | 0.030-2.0                | · (O((+0))       | 110             | 2.00-04.0              | 3-902               | 11/a        | n/a                  | 2,000        | 11/a                   | 11/a             | 0.1-3                 | n/a        | n/a        | 11/a     | 1#a            | iva      | 11/a     | 11/a             | 33-460.5°             |
| BCWQG Aqua     | itic Life                | 9      | n/-     | 1 000     | 0.40     | n/-     | 1 000                  | 0.040.045-4              | n/-              | 4               | 0.00.td                | 0.00 <sup>-d</sup>  | n/-         | n/-                  | 1 000        | or crod                | <u> </u>         |                       | n/-        | n/-        | 0.0      | n/-            | n/-      | 0 -      | n/-              |                       |
| Long-term Ave  | erage (AW) <sup>c</sup>  | 9      | n/a     | 1,000     | 0.13     | n/a     | 1,200                  | 0.018-0.457 <sup>°</sup> | n/a              | 4               | 2-26.4 <sup>d</sup>    | 3-38.5 <sup>d</sup> | n/a         | n/a                  | 1,000        | 25-150 <sup>°</sup>    | 2                | 0.05-1.5 <sup>d</sup> | n/a        | n/a        | 0.8      | n/a            | n/a      | 8.5      | n/a              | 7.5-435 <sup>d</sup>  |
| Grave Creek /  | Harmer Creek             |        |         | 1         | 1        |         |                        |                          |                  | 1               |                        |                     |             |                      |              |                        |                  |                       |            |            |          |                |          | 1        |                  |                       |
| EV_GV3gw       | 2017 03 29               | < 0.10 | < 0.10  | 17.7      | < 0.020  | < 0.050 | 15                     | 0.0096                   | 0.25             | < 0.10          | 0.87                   | < 0.050             | 16.5        | < 0.0050             | 1.24         | 0.88                   | 3.83             | < 0.010               | 3,480      | 571        | < 0.010  | < 0.10         | < 10     | 1.61     | < 0.50           | < 1.0                 |
|                | 2017 06 27               | < 0.10 | < 0.030 | 19.3      | < 0.020  | < 0.050 | 12.0                   | 0.0112                   | 0.26             | < 0.050         | < 0.50                 | < 0.030             | 17.1        | < 0.0050             | 0.902        | < 0.10                 | 3.78             | < 0.010               | 3,380      | 540        | < 0.010  |                | < 10     | 1.64     | < 0.50           | < 3.0                 |
|                | Duplicate                | < 0.10 | < 0.030 | 19.2      | < 0.020  | < 0.050 | 11.1                   | 0.0088                   | 0.24             | < 0.050         | < 0.50                 | < 0.030             | 16.3        | < 0.0050             | 0.875        | < 0.10                 | 3.84             | < 0.010               | 3,370      | 537        | < 0.010  | < 0.050        | < 10     | 1.64     | < 0.50           | < 3.0                 |
|                | QA/QC RPD%               | *      | *       | 1         | *        | *       | *                      | *                        | *                | *               | *                      | *                   | 5           | *                    | 3            | *                      | 2                | *                     | < 1        | 1          | *        | *              | *        | 0        | *                | *                     |
|                | 2017 08 15               | 0.28   | < 0.10  | 17.7      | < 0.020  | < 0.050 | 11                     | 0.0085                   | 0.23             | 0.34            | 0.53                   | < 0.050             | 15.8        | < 0.0050             | 0.895        | < 0.50                 | 3.9              | < 0.010               | 3,210      | 543        | < 0.010  |                | < 10     | 1.72     | < 0.50           | < 3.0                 |
|                | Duplicate<br>QA/QC RPD%  | < 0.10 | < 0.10  | 17.0<br>4 | < 0.020  | < 0.050 | 11                     | < 0.0050                 | 0.21             | < 0.10          | < 0.50                 | < 0.050             | <b>16.1</b> | < 0.0050             | 0.891        | < 0.50<br>*            | 3.86             | < 0.010               | 3,110      | 544        | < 0.010  | < 0.10         | < 10     | 1.74     | < 0.50           | < 3.0                 |
|                | 2017 08 29               | < 0.10 | < 0.10  | 4         | < 0.020  | < 0.050 | 11                     | 0.0088                   | 0.21             | < 0.10          | < 0.50                 | < 0.050             | <br>12.2    | < 0.0050             | < 1<br>0.729 | < 0.50                 | 3.89             | < 0.010               | 3<br>3,220 | < 1<br>424 | < 0.010  | < 0.10         | < 10     | 1.49     | < 0.50           | < 3.0                 |
|                | 2017 00 29               | < 0.10 | < 0.10  | 17.3      | < 0.020  | < 0.050 | 12                     | 0.0053                   | 0.21             | < 0.10          | < 0.50                 | < 0.050             | 15.2        | < 0.0050             | 0.865        | < 0.50                 | 3.87             | < 0.010               | 3,220      | 543        | < 0.010  |                | < 10     | 1.49     | < 0.50           | < 3.0                 |
|                | Duplicate                | < 0.10 | < 0.10  | 16.5      | < 0.020  | < 0.050 | 13                     | 0.0078                   | 0.20             | < 0.10          | < 0.50                 | < 0.050             | 15.4        | < 0.0050             | 0.892        | < 0.50                 | 3.81             | < 0.010               | 3,370      | 555        | < 0.010  |                | < 10     | 1.46     | < 0.50           | < 3.0                 |
|                | QA/QC RPD%               | *      | *       | 5         | *        | *       | *                      | *                        | *                | *               | *                      | *                   | 1           | *                    | 3            | *                      | 2                | *                     | 2          | 2          | *        | *              | *        | 1        | *                | *                     |
| Elk River Prox |                          |        |         | -         |          |         |                        |                          |                  |                 |                        |                     | -           |                      |              |                        |                  |                       |            |            |          |                |          | -        |                  |                       |
| EV_BALgw       | 2017 03 03               | 0.19   | 0.15    | 32.0      | < 0.020  | < 0.050 | 200                    | < 0.0050                 | < 0.10           | < 0.10          | 0.26                   | < 0.050             | 130         | < 0.0050             | 1.54         | < 0.50                 | 0.237            | < 0.010               | 4,450      | 2,490      | < 0.010  | < 0.10         | < 10     | 0.245    | < 0.50           | < 1.0                 |
|                | 2017 06 27               | 0.32   | 0.410   | 37.8      | < 0.020  | < 0.050 | 167                    | 0.0198                   | < 0.10           | 0.161           | < 0.50                 | 0.039               | 132         | < 0.0050             | 1.34         | 0.51                   | 0.262            | < 0.010               | 4,650      | 2,240      | 0.013    | < 0.050        | < 10     | 0.227    | < 0.50           | < 3.0                 |
|                | 2017 09 19               | < 0.10 | 0.33    | 33.8      | < 0.020  | < 0.050 | 170                    | < 0.0050                 | < 0.10           | < 0.10          | < 0.50                 | < 0.050             | 120         | < 0.0050             | 1.10         | < 0.50                 | 0.992            | < 0.010               | 4,260      | 2,060      | < 0.010  | < 0.10         | < 10     | 0.166    | < 0.50           | < 3.0                 |
|                | 2017 10 17               | < 0.10 | 0.29    | 33.7      | < 0.020  | < 0.050 | 172                    | 0.0073                   | 0.16             | 0.13            | 0.50                   | < 0.050             | 131         | < 0.0050             | 1.08         | 0.57                   | 0.52             | < 0.010               | 4,380      | 2,290      |          | < 0.10         | < 10     | 0.174    | < 0.50           | 4.7                   |
| EV_LSgw        | 2017 03 07               | < 0.10 | 1.31    | 184       | < 0.020  | < 0.050 | 45                     | 0.0062                   | < 0.10           | 0.77            | < 0.50                 | < 0.050             | 62.3        | < 0.0050             | 2.67         | 3.51                   | 0.077            | < 0.010               | 4,330      | 432        | 0.026    | < 0.10         | < 10     | 2.40     | < 0.50           | < 3.0                 |
|                | 2017 06 27               | < 0.10 | 2.44    | 231       | < 0.020  | < 0.050 | 46.1                   | 0.0058                   | < 0.10           | 1.14            | < 0.50                 | < 0.030             | 68.4        | < 0.0050             | 2.60         | 4.39                   | 0.065            | < 0.010               | 4,990      | 497        | 0.040    | < 0.050        | < 10     | 1.54     | < 0.50           | < 3.0                 |
|                | 2017 08 22               | < 0.10 | 2.76    | 226       | < 0.020  | < 0.050 | 63                     | < 0.0050                 | < 0.10           | 1.00            | < 0.50                 | < 0.050             | 66.2        | < 0.0050             | 2.86         | 4.22                   | 0.087            | < 0.010               | 5,080      | 516        | 0.049    | < 0.10         | < 10     | 1.63     | < 0.50           | < 3.0                 |
|                | 2017 10 17               | < 0.10 | 2.62    | 205       | < 0.020  | < 0.050 | 55                     | < 0.0050                 | < 0.10           | 0.88            | < 0.50                 | < 0.050             | 62.2        | < 0.0050             | 3.22         | 4.37                   | 0.082            | < 0.010               | 5,090      | 545        | 0.042    | 0.11           | < 10     | 1.45     | < 0.50           | 5.1                   |
| EV_GCgw        | 2017 03 07               | < 0.10 | 1.59    | 81.7      | < 0.020  | < 0.050 | 15                     | < 0.0050                 | < 0.10           | 0.19            | < 0.50                 | < 0.050             | 8.3         | < 0.0050             | 2.34         | 0.62                   | < 0.050          | < 0.010               | 4,460      | 255        | 0.033    | < 0.10         | < 10     | 1.24     | < 0.50           | < 3.0                 |
|                | 2017 06 20               | < 0.10 | 1.58    | 73.3      | < 0.020  | < 0.050 | 12                     | < 0.0050                 | < 0.10           | 0.19            | < 0.50                 | < 0.050             | 7.3         | < 0.0050             | 2.20         | 0.56                   | < 0.050          | < 0.010               | 4,030      | 244        | 0.014    | < 0.10         | < 10     | 1.12     | < 0.50           | < 3.0                 |
|                | 2017 08 16               | < 0.10 | 1.52    | 75.4      | < 0.020  | < 0.050 | 12                     | < 0.0050                 | < 0.10           | 0.17            | < 0.50                 | < 0.050             | 7.4         | < 0.0050<br>< 0.0050 | 2.30         | 0.55                   | < 0.050          | < 0.010               | 4,230      | 251        | 0.016    | < 0.10         | < 10     | 1.18     | < 0.50<br>< 0.50 | < 3.0                 |
| EV_OCgw        | 2017 10 24<br>2017 03 29 | < 0.10 |         | 57.1      | < 0.020  | < 0.050 |                        | < 0.0050<br>< 0.0050     | < 0.10<br>< 0.10 | 0.18<br>0.15    | < 0.50<br>< 0.20       | < 0.050<br>< 0.050  |             | < 0.0050             | 2.28<br>14.3 | 0.59<br>1.03           | < 0.050<br>0.336 | < 0.010               |            |            |          | < 0.10<br>0.12 |          | 1.10     | < 0.50           | < 3.0<br>< 1.0        |
| Lv_00gw        | Duplicate                | < 0.10 |         | 57.1      |          | < 0.050 |                        | 0.0057                   | < 0.10           | 0.15            | < 0.20                 | < 0.050             |             | < 0.00050            | 14.3         | 0.93                   | 0.302            | < 0.010               |            |            |          | < 0.12         |          | 1.10     | < 0.50           | < 1.0                 |
|                | QA/QC RPD%               |        | 1.47    | < 1       | *        | *       | 2                      | *                        | *                | *               | *                      | *                   | 1           | *                    | 1            | 10                     | 11               | *                     | 2          | 1          | *        | *              | *        | 0        | *                | *                     |
|                | 2017 06 19               | < 0.10 | 1.26    | 47.3      | < 0.020  |         | 123                    | 0.0056                   | < 0.10           | < 0.10          | < 0.50                 | < 0.050             | 25.6        | < 0.00050            | 14.0         | < 0.50                 | 0.149            | < 0.010               | -          | 373        | < 0.010  | < 0.10         | < 10     | 1.11     | < 0.50           | < 3.0                 |
|                | Duplicate                | < 0.10 |         | 47.3      |          | < 0.050 |                        | < 0.0050                 | < 0.10           | < 0.10          | < 0.50                 | < 0.050             | 25.7        | < 0.00050            |              | < 0.50                 | < 0.050          | < 0.010               |            | 375        |          | < 0.10         |          | 1.08     | < 0.50           | < 3.0                 |
|                | QA/QC RPD%               |        | 5       | 0         | *        | *       | 1                      | *                        | *                | *               | *                      | *                   | < 1         | *                    | 2            | *                      | *                | *                     | 0          | 1          | *        | *              | *        | 3        | *                | *                     |
| L              |                          |        |         |           |          |         |                        |                          |                  |                 |                        |                     |             |                      | -            |                        |                  |                       |            |            |          |                |          |          |                  |                       |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Parameter exceeded hold time.

<sup>a</sup> Standard to protect freshwater aquatic life.

- <sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").
- <sup>c</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").
- <sup>d</sup> Standard varies with Hardness.
- <sup>e</sup> Standard varies with pH.
- <sup>f</sup> Standard varies with Chloride.
- <sup>g</sup> Standard varies with crop.
- <sup>h</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.
- <sup>1</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).
- <sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

<u>BOLD</u> BOLD\*\*

Concentration greater than CSR Aquatic Life (AW) standard

Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline or BCWQG Aquatic Life Long-term Average (AW) guideline (applicable to EV\_BCgw, EV\_MCgwD, EV\_MCgwS, EV\_OCgw)

SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

#### TABLE 4 (Cont'd): Groundwater Analytical Results compared to Primary Screening Criteria

|                                              |                             |                |                                                                                  | Phys            | ical Pa                                                        | ramete               | ers                      |                                    |                                     |                    |                                                |                                         |            |                                    |                     |                      |                                          |        |                  |                  |                                         |                          | G                        | Geochemica            | I Indicato               | rs                         |                            |                       |                            |                         |                                                          |                       |                         |                                  |                           |                         |             |
|----------------------------------------------|-----------------------------|----------------|----------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------|----------------------|--------------------------|------------------------------------|-------------------------------------|--------------------|------------------------------------------------|-----------------------------------------|------------|------------------------------------|---------------------|----------------------|------------------------------------------|--------|------------------|------------------|-----------------------------------------|--------------------------|--------------------------|-----------------------|--------------------------|----------------------------|----------------------------|-----------------------|----------------------------|-------------------------|----------------------------------------------------------|-----------------------|-------------------------|----------------------------------|---------------------------|-------------------------|-------------|
| Sample<br>Location<br>BC Standard/C          | Sample Date<br>(yyyy mm dd) | Colour         | も<br>Solutivity<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a | Hardness<br>T/5 | <ul> <li>B Oxidation Reduction</li> <li>✓ Potential</li> </ul> | 문 Laboratory pH<br>- | G Total Dissolved Solids | 표<br>C Total Suspended Solids<br>기 | Z<br>C<br>C<br>Laboratory Turbidity | G Acidity (pH 8.3) | a Alkalinity, Bicarbonate<br>b<br>┣ (as CaCO3) | a Alkalinity, Carbonate<br>S (as CaCO3) | Alk<br>(as | 표 Total Alkalinity<br>b (as CaCO3) | w<br>bə Total Anion | beu<br>Total Cations | <ul> <li>Cation Anion Balance</li> </ul> | mg/T   | mg/T             | Fluoride<br>T/Br | Sulphate<br>Mg/T                        | 6t<br>Dissolved Aluminum | a Dissolved Calcium<br>↑ | р<br>Д Dissolved Iron | a<br>Dissolved Magnesium | 년 Dissolved Manganese<br>구 | a Dissolved Potassium<br>T | b<br>Dissolved Sodium | ظ Kjeldahl Nitrogen-N<br>۲ | a<br>J Total Nitrogen-N | ත් Ammonia, total (as N)<br>ල්                           | ୟ Nitrate (as N)<br>୮ | bt<br>T∖ Nitrite (as N) | ш<br>Total Phosphorous as P<br>T | a<br>Drtho-Phosphate<br>T | Dissolved Org<br>Carbon | 년<br>T<br>T |
| CSR Aquatic Li                               | -                           | n/a            | n/a                                                                              | n/a             | n/a                                                            | n/a                  | n/a                      | n/a                                | n/a                                 | n/a                | n/a                                            | n/a                                     | n/a        | n/a                                | n/a                 | n/a                  | n/a                                      | n/a    | 1,500            | 2,000-3,00       | 0 <sup>d</sup> 1,280-4,290 <sup>d</sup> | n/a                      | n/a                      | n/a                   | n/a                      | n/a                        | n/a                        | n/a                   | n/a                        | n/a                     | 3,700-18,500 <sup>e</sup>                                | 400,000               | 200-2,000 <sup>f</sup>  | n/a                              | n/a                       | n/a ı                   | n/a         |
| CSR Irrigation \                             | · · /                       | n/a            | n/a                                                                              | n/a             | n/a                                                            | n/a                  | n/a                      | n/a                                | n/a                                 | n/a                | n/a                                            | n/a                                     | n/a        | n/a                                | n/a                 | n/a                  | n/a                                      | n/a    | 100              | 1,000            | n/a                                     | 5,000                    | n/a                      | 5,000                 | n/a                      | 200                        | n/a                        | n/a                   | n/a                        | n/a                     | n/a                                                      | n/a                   | n/a                     | n/a                              | n/a                       |                         | n/a         |
| CSR Livestock                                | Watering (LW)               | n/a            | n/a                                                                              | n/a             | n/a                                                            | n/a                  | n/a                      | n/a                                | n/a                                 | n/a                | n/a                                            | n/a                                     | n/a        | n/a                                | n/a                 | n/a                  | n/a                                      | n/a    | 600              | 1,000            | 1,000                                   | 5,000                    | 1,000                    | n/a                   | n/a                      | n/a                        | n/a                        | n/a                   | n/a                        | n/a                     | n/a                                                      | 100,000               | 10,000                  | n/a                              | n/a                       | n/a ı                   | n/a         |
| CSR Drinking V                               | Vater (DW)                  | n/a            | n/a                                                                              | n/a             | n/a                                                            | n/a                  | n/a                      | n/a                                | n/a                                 | n/a                | n/a                                            | n/a                                     | n/a        | n/a                                | n/a                 | n/a                  | n/a                                      | n/a    | 250              | 1,500            | 500                                     | 9,500                    | n/a                      | 6,500                 | n/a                      | 1,500                      | n/a                        | 200                   | n/a                        | n/a                     | n/a                                                      | 10,000                | 1,000                   | n/a                              | n/a                       | n/a ı                   | n/a         |
| BCWQG Aquat<br>Short-term Max<br>BCWQG Aquat | imum (AW) <sup>b</sup>      | n/a            | n/a                                                                              | n/a             | n/a                                                            | n/a                  | n/a                      | n/a                                | n/a                                 | n/a                | n/a                                            | n/a                                     | n/a        | n/a                                | n/a                 | n/a                  | n/a                                      | n/a    | n/a              | n/a              | n/a                                     | 31.6-100 <sup>e</sup>    | n/a                      | 350<br>(max)          | n/a                      | 546-7,813 <sup>d</sup>     | n/a                        | n/a                   | n/a                        | n/a                     | 5,680-24,500 <sup>e</sup><br>(15 <sup>o</sup> C assumed) | 32,800                | 60-600 <sup>f</sup>     | n/a                              | n/a                       | n/a ı                   | n/a         |
| Long-term Aver                               | age (AW) <sup>c</sup>       | n/a<br>Cont'd) | n/a                                                                              | n/a             | n/a                                                            | n/a                  | n/a                      | n/a                                | n/a                                 | n/a                | n/a                                            | n/a                                     | n/a        | n/a                                | n/a                 | n/a                  | n/a                                      | n/a    | n/a              | n/a              | 309-429 <sup>d</sup>                    | 11.2-50 <sup>e</sup>     | n/a                      | n/a                   | n/a                      | 607-3,509 <sup>d</sup>     | n/a                        | n/a                   | n/a                        | n/a                     | 365-1,780 <sup>e</sup><br>(15°C assumed)                 | 3,000                 | 20-200 <sup>f</sup>     | n/a                              | n/a                       | n/a r                   | n/a         |
| EV_OCgw                                      | 2017 06 29                  | < 5.0          | 457                                                                              | 145             | 472                                                            | 8.29                 | 269                      | 3.8                                | 3.12                                | < 1.0              | 182                                            | < 1.0                                   | < 1.0      | 182                                | 4.91                | 4.76                 | -1.6                                     | < 0.05 | 0 1.95           | 1,190            | 55.8                                    | 5.7                      | 28.2                     | 291                   | 18.1                     | 86.2                       | 1.61                       | 41.2                  | 0.115                      | -                       | 73.6                                                     | < 5.0                 | < 1.0                   | 0.0249                           | 0.0066                    | 1.02 0                  | ).94        |
| (Cont'd)                                     | Duplicate                   | 5.8            | 458                                                                              | 144             | 471                                                            | 8.27                 |                          | 4.0                                | 3.82                                | < 1.0              | 184                                            | < 1.0                                   | < 1.0      | 184                                | 4.97                | 4.70                 | -2.8                                     | < 0.05 |                  | 1,210            | 56.7                                    | 7.6                      | 27.8                     | 284                   | 18.0                     | 85.9                       | 1.59                       | 40.7                  | 0.110                      | -                       | 73.7                                                     | < 5.0                 | < 1.0                   | 0.0230                           |                           | 0.54 0                  | ).99        |
|                                              | QA/QC RPD%                  |                | < 1                                                                              | 1               | *                                                              |                      |                          | *                                  | 20                                  | *                  | 1                                              | *                                       | *          | 1                                  | *                   | *                    | *                                        | *      | 2                | 2                | 2                                       | 29                       | 1                        | 2                     | 1                        | < 1                        | 1                          | 1                     | *                          | -                       | < 1                                                      | *                     | *                       | 8                                | 24                        | *                       | *           |
|                                              |                             | < 5.0          |                                                                                  | 144             |                                                                | 8.20                 |                          |                                    | 1.58                                | 1.2                |                                                |                                         | < 1.0      |                                    |                     |                      |                                          | < 0.05 |                  | 1,190            | 56.1                                    | < 3.0                    | 27.2                     | 230                   | 18.4                     | 79.1                       | 1.54                       | 42.1                  | 0.101                      |                         | 72.2                                                     | < 5.0                 | 1.4                     |                                  |                           | < 0.50 <                |             |
|                                              | Duplicate<br>QA/QC RPD%     | < 5.0          | 461<br>2                                                                         | 143             | 309                                                            | 8.23                 | 275                      | 2.1                                | 1.31<br>19                          | < 1.0              | 1/5                                            | 2.0                                     | < 1.0      | 1//                                | 4.81                | 4.73                 | -0.8                                     | < 0.05 | 2.08             | <b>1,190</b>     | 55.9<br>< 1                             | < 3.0                    | 27.6                     | 222                   | 18.0                     | 76.3                       | 1.54<br>0                  | 41.7                  | 0.115                      | -                       | 73.0                                                     | < 5.0<br>*            | < 1.0<br>*              | 0.0113                           | 0.0078                    | < 0.50 <                | 0.50        |
|                                              |                             | < 5.0          |                                                                                  | 135             | 223                                                            | 8.26                 | 250                      | 1.7                                | 1.98                                | 1.5                | 187                                            | < 10                                    | < 1.0      | 187                                | 4.95                | 4.44                 | -5.4                                     | < 0.05 |                  | 1,170            | 52.5                                    | < 3.0                    | 24.3                     | 240                   | 18.0                     | 78.2                       | 1.48                       | 39.1                  | 0.107                      |                         | 66.5                                                     | < 5.0                 | 1.2                     | 0.0066                           | 0.0047                    | 0.82 0                  | 0.79        |
|                                              | Duplicate                   | < 5.0          |                                                                                  | 142             |                                                                | 8.28                 |                          | 1.5                                | 2.03                                | 1.7                |                                                |                                         | < 1.0      |                                    |                     | _                    |                                          |        |                  | 1,180            | 52.2                                    | < 3.0                    | 27.3                     | 248                   | 17.8                     | 78.0                       | 1.48                       | 38.2                  | 0.089                      | -                       | 73.5                                                     | < 5.0                 | 1.1                     |                                  | 0.0051                    |                         | 0.67        |
|                                              | QA/QC RPD%                  |                | 1                                                                                | 5               | *                                                              | < 1                  | 2                        | *                                  | 2                                   | *                  | 3                                              | *                                       | *          | 3                                  | *                   | *                    | *                                        | *      | 2                | 1                | 1                                       | *                        | 12                       | 3                     | 1                        | < 1                        | 0                          | 2                     | *                          | -                       | 10                                                       | *                     | *                       | 39                               | *                         | *                       | *           |
|                                              | 2017 09 21                  | < 5.0          | 422                                                                              | 141             | 286                                                            | 8.53                 | 245                      | 1.2                                | 2.62                                | < 1.0              | 182                                            | 8.4                                     | < 1.0      | 191                                | 5.01                | 4.70                 | -3.2                                     | < 0.05 | 0 2.00           | 1,170            | 52.3                                    | < 3.0                    | 27.2                     | 245                   | 17.9                     | 82.6                       | 1.63                       | 41.6                  | < 0.050                    | -                       | 80.9                                                     | 8.4                   | < 1.0                   | 0.0129                           | 0.0027                    | < 0.50 <                | 0.50        |
|                                              | 2017 10 18                  | < 5.0          | 418                                                                              | 147             | 262                                                            | 8.34                 | 280                      | 1.7                                | 2.65                                | 1.1                | 172                                            | 5.6                                     | < 1.0      | 177                                | 4.78                | 4.99                 | 2.2                                      | < 0.05 | 0 1.82           | 1,230            | 53.7                                    | < 3.0                    | 28.9                     | 276                   | 18.1                     | 93.6                       | 1.64                       | 45.8                  | 0.109                      | -                       | 85.1                                                     | < 5.0                 | < 1.0                   | 0.0163                           | 0.0060                    | < 0.50 <                | 0.50        |
|                                              | Duplicate                   | < 5.0          | 438                                                                              | 143             | 263                                                            | 8.42                 | 290                      | 1.7                                | 2.82                                | 1.1                | 180                                            |                                         | < 1.0      | 192                                | 5.06                | 4.90                 | -1.7                                     | < 0.05 | 0 1.85           | 1,230            | 53.1                                    | < 3.0                    | 26.6                     | 313                   | 18.7                     | 95.1                       | 1.68                       | 45.1                  | 0.141                      | -                       | 84.4                                                     | < 5.0                 | < 1.0                   | 0.0156                           |                           | < 0.50 <                | 0.50        |
|                                              | QA/QC RPD%                  | <b>b</b> *     | 5                                                                                | 3               | *                                                              | 1                    | 4                        | *                                  | 6                                   | *                  | 5                                              | 74                                      | *          | 8                                  | *                   | *                    | *                                        | *      | 2                | 0                | 1                                       | *                        | 8                        | 13                    | 3                        | 2                          | 2                          | 2                     | *                          | -                       | 1                                                        | *                     | *                       | 4                                | 11                        | *                       | *           |
| Erickson Cree                                |                             | < 5.0          | 1 1 9 0                                                                          | 600             | 212                                                            | 7 75                 | 007                      | 24.0                               | 160                                 | 15 7               | 224                                            | < 1.0                                   | 10         | 224                                | 15.4                | 147                  |                                          | < 0.05 | 0 2 10           | 191              | 424                                     | < 1.0                    | 137                      | 12 600                | 84.2                     | 458                        | 2.72                       | 3.76                  | < 0.20                     |                         | 31.9                                                     | 10.0                  | 3.4                     | < 0.0020                         | - 0.0010                  | 0.06 1                  | 1 22        |
| EV_WF_SW                                     | 2017 03 30<br>Duplicate     |                | 1,180<br>1,180                                                                   | 688<br>632      |                                                                | 7.75<br>7.78         |                          | 34.0<br>61.5                       | 169<br>154                          | 15.7<br>16.1       | 324                                            | < 1.0                                   | < 1.0      |                                    |                     |                      | -                                        |        | 0 3.10<br>0 3.03 | 191              | 424                                     | < 1.0                    | 122                      | 13,600<br>11,400      | 79.4                     | 438                        |                            | 3.76                  | < 0.20                     |                         | 26.7                                                     | 10.0<br>11.5          | 3.4                     | < 0.0020                         |                           | 1.37 2                  | 1.32        |
|                                              | QA/QC RPD%                  |                | 0                                                                                | 8               | *                                                              |                      | < 1                      | 58                                 | 9                                   | 3                  | 2                                              | *                                       | *          | 2                                  | *                   | *                    | -                                        | *      | 2                | 0                | 1                                       | *                        | 122                      | 18                    | 6                        | <b>4</b> 37                | 2.75                       | 2                     | *                          | -                       | 18                                                       | *                     | *                       | *                                | *                         | *                       | *           |
|                                              | 2017 06 20                  |                | 987                                                                              | 502             | 387                                                            | 7.73                 |                          | 48.5                               | 166                                 | 11.6               | 310                                            | < 1.0                                   | < 1.0      | 310                                | 12.6                | 10.7                 | -8.4                                     | < 0.25 | 2.75             | 200              | 305                                     | < 3.0                    | 69.8                     | 6,900                 | 79.5                     | 981                        | 2.91                       | 3.96                  | 0.118                      | -                       | 12.0                                                     | < 25                  | < 5.0                   | 0.0071                           | < 0.0010                  | 0.84 1                  | 1.51        |
|                                              | 2017 09 18                  | -              | 519                                                                              | 237             | 281                                                            | 8.14                 | 326                      | 40.0                               | 32.1                                | < 1.0              | 89.2                                           | < 1.0                                   | < 1.0      | 89.2                               | 5.57                | 5.04                 | -5.0                                     | 0.059  | 2.80             | 71               | 178                                     | 3.1                      | 20.5                     | 458                   | 45.2                     | 306                        | 2.75                       | 4.37                  | 0.250                      | -                       | 55.4                                                     | < 5.0                 | < 1.0                   | 0.0421                           | < 0.0010                  | 1.81 (                  | 6.7         |
|                                              | 2017 11 22                  | < 5.0          | 495                                                                              | 257             | 265                                                            | 8.09                 | 315                      | 32.5                               | 28.7                                | 1.3                | 69.9                                           | < 1.0                                   | < 1.0      | 69.9                               | 5.15                | 5.44                 | 2.7                                      | < 0.05 | 0 2.70           | 57               | 177                                     | < 3.0                    | 19.8                     | < 10                  | 50.5                     | 306                        | 2.65                       | 4.85                  | 0.267                      | -                       | 124                                                      | < 5.0                 | 2.0                     | 0.0207                           | < 0.0010                  | 1.99                    | 5.0         |
| EV_ECgw                                      | 2017 06 20                  | < 5.0          | 403                                                                              | 167             | 326                                                            | 8.04                 | 285                      | 161                                | 180                                 | 3.4                | 224                                            | 4.6                                     | < 1.0      | 229                                | 5.20                | 4.48                 | -7.5                                     | < 0.05 | 0 0.56           | 806              | 27.1                                    | 43.0                     | 37.6                     | 30                    | 17.8                     | 178                        | 0.986                      | 25.0                  | 0.417                      | -                       | 144                                                      | 86.8                  | 47.9                    | 0.239                            | 0.0120                    | 1.90 4                  | 4.45        |
|                                              | 2017 08 23                  | < 5.0          | 384                                                                              | 174             | 205                                                            | 8.22                 | 265                      | 49.2                               | 59.5                                | 3.5                | 202                                            | < 1.0                                   | < 1.0      | 202                                | 4.61                | 4.77                 | 1.7                                      | < 0.05 | 0 < 0.50         | 718              | 25.8                                    | < 3.0                    | 41.7                     | < 10                  | 19.4                     | 178                        | 1.06                       | 24.3                  | 0.310                      | -                       | 174                                                      | 28.5                  | 4.2                     | 0.0651                           | 0.0164                    | 1.75 <                  | < 2.5       |
|                                              | 2017 10 25                  |                |                                                                                  |                 |                                                                |                      |                          |                                    |                                     |                    |                                                |                                         |            |                                    |                     |                      |                                          |        |                  |                  | 25.8                                    | < 3.0                    | 39.5                     |                       | 20.7                     | 178                        |                            |                       | 0.241                      |                         | 19.5                                                     | 215                   | 2.9                     |                                  |                           | 1.50 2                  |             |
|                                              | 2017 11 22                  | < 5.0          | 406                                                                              | 177             | 243                                                            | 8.32                 | 245                      | 75.8                               | 72.1                                | < 1.0              | 208                                            | 5.2                                     | < 1.0      | 213                                | 4.87                | 4.89                 | 0.2                                      | < 0.05 | 0 0.70           | 871              | 26.1                                    | < 3.0                    | 40.2                     | < 10                  | 18.7                     | 170                        | 1.33                       | 29.8                  | 0.475                      | -                       | 166                                                      | 121                   | 6.8                     | 0.115                            | 0.0015                    | 1.85                    | 2.7         |
| Michel Creek<br>EV_MCgwS                     | 2017 03 08                  | . 5.0          | 020                                                                              | 274             | 212                                                            | 7.02                 | 500                      | 04 E                               | 45.0                                | 11 1               | 207                                            | .10                                     | .10        | 207                                | 0.42                | 0.60                 | 1                                        | 10.25  | 1E 4             | 210              | 105                                     | .20                      | 02.1                     | 2 020**               | 22.7                     | 110                        | 1.05                       | 22.7                  | 0 174                      |                         | 120                                                      | . 25                  | . 5.0                   | 0.0174                           | + 0.0010                  | 1.56 1                  | 1 57        |
| Ev_IVIC9W3                                   | 2017 03 08                  |                |                                                                                  |                 |                                                                |                      |                          |                                    |                                     |                    |                                                |                                         |            |                                    |                     |                      |                                          |        |                  | 310<br>287       | 105<br>124                              | < 3.0<br>19.2            | 93.1<br>98.8             |                       | 33.7<br>33.8             | 118<br>113                 |                            |                       | 0.174<br>0.22              |                         | 120<br>102                                               | < 25<br>6.9           | < 5.0<br>7.9            |                                  |                           | 2.11 2                  |             |
|                                              | 2017 05 16                  |                |                                                                                  |                 |                                                                |                      |                          |                                    |                                     |                    |                                                |                                         |            |                                    |                     |                      |                                          |        | 56.0             | 340              | 104                                     | < 3.0                    | 95.7                     |                       | 34.2                     | 107                        |                            |                       | 0.162                      |                         | 102                                                      | < 25                  | < 5.0                   |                                  |                           | 1.62 1                  |             |
|                                              | 2017 06 28                  | < 5.0          | 724                                                                              | 369             | 393                                                            | 7.87                 | 538                      | 89.0                               | 43.3                                | 8.8                | 291                                            | < 1.0                                   | < 1.0      | 291                                | 9.14                | 8.32                 | -4.7                                     | < 0.25 | 48.0             | 290              | 94.2                                    | < 3.0                    | 94.4                     |                       | 32.4                     | 101                        |                            |                       | 0.201                      |                         | 130                                                      | < 25                  | < 5.0                   |                                  |                           | 1.53 1                  |             |
|                                              | 2017 08 16                  | < 5.0          | 772                                                                              | 412             | 233                                                            | 8.06                 | 525                      | 9.3                                | 44.8                                | 8.3                | 278                                            | < 1.0                                   | < 1.0      | 278                                | 8.58                | 8.87                 | 1.6                                      | 0.218  | 42.0             | 205              | 88.1                                    | < 3.0                    | 106                      | < 10                  | 38.2                     | 108                        | 1.99                       |                       | 0.147                      |                         | 122                                                      | < 5.0                 | < 1.0                   |                                  |                           | 1.37 1                  |             |
|                                              | 2017 09 21                  |                |                                                                                  |                 |                                                                |                      |                          |                                    |                                     |                    |                                                |                                         |            |                                    |                     |                      |                                          |        |                  |                  | 94.4                                    | < 3.0                    | 96.7                     |                       | 35.2                     | 110                        |                            |                       | 0.104                      |                         | 113                                                      | < 5.0                 | < 1.0                   |                                  |                           | 1.06 1                  |             |
|                                              | 2017 10 18                  | < 5.0          | /48                                                                              | 424             | 289                                                            | ö.U2                 | 010                      | 179                                | 4ŏ.U                                | 4.9                | 262                                            | < 1.0                                   | < 1.0      | 262                                | ð.11                | 9.41                 | 1.4                                      | 0.204  | 40.7             | 200              | 82.3                                    | < 3.0                    | 100                      | <u>2,280**</u>        | 42.1                     | 134                        | 2.28                       | 17.0                  | 0.160                      | -                       | 131                                                      | < 5.0                 | < 1.0                   | 0.175                            | < 0.0010                  | 1.00 1                  | 1.00        |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Parameter exceeded hold time.



Concentration greater than CSR Aquatic Life (AW) standard

Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline or BCWQG Aquatic Life Long-term Average (AW) guideline (applicable to EV\_BCgw, EV\_MCgwD, EV\_MCgwD, EV\_OCgw)

SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").

<sup>c</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

<sup>d</sup> Standard varies with Hardness. <sup>e</sup> Standard varies with pH.

<sup>f</sup> Standard varies with Chloride.

<sup>g</sup> Standard varies with crop.

<sup>h</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>1</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

|                |                        |          |          |        |           |         |                        |                          |                 |                 |                        |                     | Diss    | olved Meta | ls         |                        |         |                       |        |           |          |        |          |         |          |                       |
|----------------|------------------------|----------|----------|--------|-----------|---------|------------------------|--------------------------|-----------------|-----------------|------------------------|---------------------|---------|------------|------------|------------------------|---------|-----------------------|--------|-----------|----------|--------|----------|---------|----------|-----------------------|
|                |                        |          |          |        |           |         |                        |                          |                 |                 |                        |                     |         |            |            |                        |         |                       |        |           |          |        |          |         |          |                       |
|                |                        |          |          |        |           |         |                        |                          |                 |                 |                        |                     |         |            |            |                        |         |                       |        |           |          |        |          |         |          |                       |
|                |                        |          |          |        |           |         |                        |                          |                 |                 |                        |                     |         |            |            |                        |         |                       |        |           |          |        |          |         |          |                       |
|                |                        |          |          |        |           |         |                        |                          |                 |                 |                        |                     |         |            |            |                        |         |                       |        |           |          |        |          |         |          |                       |
|                |                        |          |          |        |           |         |                        |                          |                 |                 |                        |                     |         |            | ٦          |                        |         |                       |        |           |          |        |          |         |          |                       |
|                |                        | >        |          |        | _         |         |                        | -                        | Е               |                 |                        |                     |         |            | Molybdenum |                        | -       |                       |        | ٦         |          |        |          |         | ٦        |                       |
|                |                        | ő        | <u>.</u> | ۶      | Beryllium | 臣       | _                      | Cadmium                  | Chromium        | ÷               | 7                      |                     | ε       | ≥          | de         | _                      | μ       |                       | c      | Strontium | Thallium |        | E        | Ę       | Vanadium |                       |
|                |                        | <u>.</u> | en       | iur    | ľ         | Bismuth | ю,                     | <u>n</u>                 | uo.             | oal             | ă                      | p                   | nic     | rcu        | lyb<br>d   | ke                     | eni     | /er                   | ō      | out       | i        |        | in       | nir     | Jac      | ت.                    |
| Sample         | Sample Date            | Ant      | Ars      | Barium | Bel       | Bis     | Bo                     | ča                       | chi             | Cobalt          | Coppe                  | Lea                 | Lithium | Me         | ъ          | Nickel                 | Seleniu | Sily                  | Silico | Str       | Th       | Lin    | Titanium | Uranium | Var      | Zinc                  |
| Location       | (yyyy mm dd)           | µg/L     | µg/L     | µg/L   | µg/L      | µg/L    | µg/L                   | µg/L                     | µg/L            | μg/L            | µg/L                   | µg/L                | µg/L    | µg/L       | μg/L       | μg/L                   | µg/L    | µg/L                  | µg/L   | µg/L      | μg/L     | μg/L   | μg/L     | µg/L    | μg/L     | µg/L                  |
| BC Standard/0  |                        | r J      | 19       | 13     | 15        | 19      | 15                     | 15                       | 15              | 13              | 15                     | 15                  | 15      | 15         | 19         | 13                     | 15      | r J                   | 15     | 15        | 15       | 13     | 10       | 13      | 15       | 15                    |
| CSR Aquatic L  |                        | 90       | 50       | 10,000 | 1.5       | n/a     | 12,000                 | 0.5-4 <sup>d</sup>       | 10 <sup>h</sup> | 40              | 20-90 <sup>d</sup>     | 40-160 <sup>d</sup> | n/a     | 0.25       | 10,000     | 250-1,500 <sup>d</sup> | 20      | 0.5-15 <sup>d</sup>   | n/a    | n/a       | 3        | n/a    | 1,000    | 85      | n/a      | 75-2,400 <sup>d</sup> |
| CSR Irrigation | ( )                    | n/a      | 100      | n/a    | 100       | n/a     | 500-6,000 <sup>g</sup> | 5                        | 5 <sup>h</sup>  | 50              | 200                    | 200                 | 2,500   | 1          | 10         | 200                    | 20      | n/a                   | n/a    | n/a       | n/a      | n/a    | n/a      | 10      | 100      | n/a                   |
| -              | Watering (LW)          |          | 25       | n/a    | 100       | n/a     | 5,000                  | 80                       | 50 <sup>h</sup> | 1,000           | 300                    | 100                 | 5,000   | 2          | 50         | 1,000                  | 30      | n/a                   | n/a    | n/a       | n/a      | n/a    | n/a      | 200     | 100      | 2,000                 |
|                |                        | 6        |          |        |           |         |                        | 5                        |                 |                 |                        |                     |         | 1          | 250        | 80                     | 10      | 20                    |        |           |          |        |          | 200     | 20       |                       |
| CSR Drinking \ |                        | 0        | 10       | 1,000  | 8         | n/a     | 5,000                  | 5                        | 50 <sup>n</sup> | 20 <sup>1</sup> | 1,500                  | 10                  | 8       | 1          | 250        | 00                     | 10      | 20                    | n/a    | 2,500     | n/a      | 2,500  | n/a      | 20      | 20       | 3,000                 |
| BCWQG Aquat    |                        | n/a      | 5        | n/a    | n/a       | n/a     | n/a                    | 0.038-2.8 <sup>d</sup>   | 1 (Cr(+6))      | 110             | 2.05-64.0 <sup>d</sup> | 3-902 <sup>d</sup>  | n/a     | n/a        | 2,000      | n/a                    | n/a     | 0.1-3 <sup>d</sup>    | n/a    | n/a       | n/a      | n/a    | n/a      | n/a     | n/a      | 33-460.5 <sup>d</sup> |
| Short-term Max |                        |          | -        |        |           |         |                        |                          | x x =77         | -               |                        |                     |         |            | ,          |                        |         |                       |        |           |          |        |          |         |          |                       |
| BCWQG Aquat    |                        | ۵        | n/a      | 1,000  | 0.13      | n/a     | 1,200                  | 0.018-0.457 <sup>d</sup> | n/a             | 4               | 2-26.4 <sup>d</sup>    | 3-38.5 <sup>d</sup> | n/a     | n/a        | 1,000      | 25-150 <sup>d</sup>    | 2       | 0.05-1.5 <sup>d</sup> | n/a    | n/a       | 0.8      | n/a    | n/a      | 8.5     | n/a      | 7.5-435 <sup>d</sup>  |
| Long-term Ave  | rage (AW) <sup>c</sup> | 3        | n/a      | 1,000  | 0.15      | Π/a     | 1,200                  | 0.016-0.457              | 11/a            | 4               | 2-20.4                 | 3-30.5              | n/a     | n/a        | 1,000      | 25-150                 | 2       | 0.05-1.5              | n/a    | 11/a      | 0.0      | 11/a   | n/a      | 0.5     | n/a      | 7.5-435               |
| Elk River Prox | imal to EVO (C         | ont'd)   |          |        |           |         |                        |                          |                 |                 |                        |                     |         |            |            |                        |         |                       |        |           |          |        |          |         |          |                       |
| EV_OCgw        | 2017 06 29             | < 0.50   | 1.24     | 52.5   | < 0.10    | < 0.25  | 121                    | < 0.025                  | < 0.50          | < 0.50          | < 1.0                  | < 0.25              | 25.4    | < 0.00050  | 13.6       | < 2.5                  | 0.76    | < 0.050               | 4,320  | 381       | < 0.050  | < 0.50 | < 10     | 0.956   | < 2.5    | < 5.0                 |
| (Cont'd)       | Duplicate              | < 0.50   | 1.33     | 52.4   | < 0.10    | < 0.25  | 115                    | < 0.025                  | < 0.50          | < 0.50          | < 1.0                  | < 0.25              | 24.9    | < 0.00050  | 13.2       | < 2.5                  | 0.64    | < 0.050               | 4,230  | 372       | < 0.050  | < 0.50 | < 10     | 0.935   | < 2.5    | < 5.0                 |
|                | QA/QC RPD%             | *        | 7        | < 1    | *         | *       | 5                      | *                        | *               | *               | *                      | *                   | 2       | *          | 3          | *                      | 17      | *                     | 2      | 2         | *        | *      | *        | 2       | *        | *                     |
|                | 2017 08 15             | < 0.10   | 1.23     | 52.0   | < 0.020   | < 0.050 | 110                    | < 0.0050                 | < 0.10          | < 0.10          | < 0.50                 | < 0.050             | 26.3    | < 0.00050  | 13.9       | < 0.50                 | < 0.050 | < 0.010               | 4,180  | 383       | < 0.010  | < 0.10 | < 10     | 1.09    | < 0.50   | < 3.0                 |
|                | Duplicate              | < 0.10   | 1.21     | 51.1   | < 0.020   | < 0.050 | 112                    | < 0.0050                 | < 0.10          | < 0.10          | < 0.50                 | < 0.050             | 26.0    | < 0.00050  | 13.8       | < 0.50                 | 0.223   | < 0.010               | 4,090  | 380       | < 0.010  | < 0.10 | < 10     | 1.09    | < 0.50   | < 3.0                 |
|                | QA/QC RPD%             | *        | 2        | 2      | *         | *       | 2                      | *                        | *               | *               | *                      | *                   | 1       | *          | 1          | *                      | *       | *                     | 2      | 1         | *        | *      | *        | 0       | *        | *                     |
|                | 2017 08 29             | 0.13     | 1.21     | 51.5   | < 0.020   | < 0.050 | 106                    | < 0.0050                 | < 0.10          | 0.22            | < 0.50                 | < 0.050             | 22.4    | < 0.00050  | 12.3       | < 0.50                 | < 0.050 | < 0.010               | 4,250  | 335       | < 0.010  | < 0.10 | < 10     | 1.09    | < 0.50   | < 3.0                 |
|                | Duplicate              | < 0.10   | 1.21     | 53.1   | < 0.020   | < 0.050 | 120                    | < 0.0050                 | < 0.10          | < 0.10          | < 0.50                 | < 0.050             | 24.3    | < 0.00050  | 13.3       | < 0.50                 | 0.129   | < 0.010               | 4,340  | 371       | < 0.010  | < 0.10 | < 10     | 1.13    | < 0.50   | < 3.0                 |
|                | QA/QC RPD%             | *        | 0        | 3      | *         | *       | 12                     | *                        | *               | *               | *                      | *                   | 8       | *          | 8          | *                      | *       | *                     | 2      | 10        | *        | *      | *        | 4       | *        | *                     |
|                | 2017 09 21             | < 0.10   | 1.19     | 55.5   | < 0.020   | < 0.050 | 126                    | < 0.0050                 | < 0.10          | 0.13            | < 0.50                 | < 0.050             | 25.6    | < 0.00050  | 12.7       | < 0.50                 | < 0.050 | < 0.010               | 4,290  | 380       | < 0.010  | < 0.10 | < 10     | 1.10    | < 0.50   | < 3.0                 |
|                | 2017 10 18             | < 0.10   | 1.36     | 53.9   | < 0.020   | < 0.050 | 114                    | < 0.0050                 | < 0.10          | 0.17            | < 0.50                 | < 0.050             | 28.2    | < 0.00050  | 14.0       | < 0.50                 | < 0.050 | < 0.010               | 4,320  | 392       | < 0.010  | < 0.10 | < 10     | 1.11    | < 0.50   | < 3.0                 |
|                | Duplicate              | < 0.10   | 1.44     | 56.4   | < 0.020   | < 0.050 | 106                    | < 0.0050                 | < 0.10          | 0.18            | 0.50                   | < 0.050             | 26.5    | < 0.00050  | 13.3       | < 0.50                 | < 0.050 | < 0.010               | 4,510  | 370       | < 0.010  | 0.15   | < 10     | 1.07    | < 0.50   | < 3.0                 |
|                | QA/QC RPD%             | *        | 6        | 5      | *         | *       | 7                      | *                        | *               | *               | *                      | *                   | 6       | *          | 5          | *                      | *       | *                     | 4      | 6         | *        | *      | *        | 4       | *        | *                     |
| Erickson Cree  |                        |          |          |        |           |         |                        |                          |                 |                 |                        |                     |         |            |            |                        |         |                       |        |           |          |        |          |         |          |                       |
| EV_WF_SW       | 2017 03 30             | < 0.10   | 0.18     | 18.0   | < 0.020   | < 0.050 | 12                     | < 0.0050                 | < 0.10          | 4.28            | < 0.20                 | < 0.050             | 24.6    | < 0.0050   | 1.21       | 5.57                   | 0.059   | < 0.010               | 1,830  | 121       | < 0.010  | < 0.10 | < 10     | 3.02    | < 0.50   | < 1.0                 |
|                | Duplicate              | < 0.10   | 0.18     | 16.1   | < 0.020   | < 0.050 | 11                     | 0.0097                   | < 0.10          | 3.86            | < 0.20                 | < 0.050             | 22.4    | < 0.0050   | 1.12       | 5.02                   | 0.113   | < 0.010               | 1,570  | 106       | < 0.010  | < 0.10 | < 10     | 2.55    | < 0.50   | 1.3                   |
|                | QA/QC RPD%             | *        | 0        | 11     | *         | *       | *                      | *                        | *               | 10              | *                      | *                   | 9       | *          | 8          | 10                     | *       | *                     | 15     | 13        | *        | *      | *        | 17      | *        | *                     |
|                | 2017 06 20             | < 0.10   | < 0.10   | 5.97   | < 0.020   | < 0.050 | 12                     | < 0.0050                 | < 0.10          | 0.25            | < 0.50                 | < 0.050             | 22.3    | < 0.0050   | 0.857      | < 0.50                 | < 0.050 | < 0.010               | 737    | 42.5      | < 0.010  | < 0.10 | < 10     | 0.586   | < 0.50   | < 3.0                 |
|                | 2017 09 18             | 0.44     | < 0.10   | 7.84   | < 0.020   | < 0.050 | < 10                   | 0.0078                   | < 0.10          | 0.13            | 1.82                   | < 0.050             | 12.9    | < 0.0050   | 0.823      | 0.74                   | < 0.050 | < 0.010               | 153    | 15.0      | < 0.010  | 0.18   | < 10     | 0.083   | < 0.50   | < 3.0                 |
|                | 2017 11 22             | < 0.10   | < 0.10   | 7.08   | < 0.020   | < 0.050 | < 10                   | 0.0062                   | < 0.10          | < 0.10          | < 0.50                 | < 0.050             | 11.9    | < 0.0050   | 0.585      | 1.95                   | 0.076   | < 0.010               | 77     | 18.1      | < 0.010  | 0.39   | < 10     | 0.072   | < 0.50   | < 3.0                 |
| EV_ECgw        | 2017 06 20             | 0.18     | 0.38     | 53.6   | < 0.020   | < 0.050 | 104                    | 0.0234                   | < 0.10          | 0.42            | < 0.50                 | < 0.050             | 10.8    | < 0.0050   | 13.1       | 1.68                   | 0.129   | < 0.010               | 4,430  | 423       | 0.060    | < 0.10 | < 10     | 1.32    | < 0.50   | < 3.0                 |
|                | 2017 08 23             | < 0.10   | 0.37     | 59.1   | < 0.020   | < 0.050 | 115                    | 0.0134                   | < 0.10          | 0.31            | < 0.50                 | < 0.050             | 10.3    | < 0.0050   | 12.8       | 0.89                   | 0.06    | < 0.010               | 4,450  | 441       | 0.042    | < 0.10 | < 10     | 1.25    | < 0.50   | < 3.0                 |
|                | 2017 10 25             |          |          |        | < 0.020   |         | 112                    | 0.0404                   | 0.13            | 0.23            | 0.87                   | < 0.050             |         | < 0.0050   | 13.2       | 3.65                   | 0.056   | < 0.010               | ,      |           | 0.034    |        | < 10     |         | < 0.50   | 10.8                  |
|                | 2017 10 20             |          |          |        |           | < 0.050 |                        | 0.0404                   | < 0.10          | 0.20            | 2.31                   | < 0.050             |         | < 0.0050   | 15.2       | 3.67                   | 0.212   | < 0.010               |        |           | 0.031    |        | < 10     |         |          | 6.0                   |
| Michel Creek   | 2011 11 22             | \$ 0.10  | 0.71     | 00.0   | - 0.020   | 10.000  |                        | 0.0 120                  | \$ 0.10         | 0.00            | 2.01                   | - 0.000             | 4       | 10.0000    | 10.2       | 0.07                   | 0.212   | \$ 0.010              | 0,000  |           | 0.001    | 0.12   |          | 1.47    | \$ 0.00  | 0.0                   |
| EV_MCgwS       | 2017 03 08             | 0.11     | 1.57     | 20.1   | < 0.020   | < 0.050 | 24                     | < 0.0050                 | < 0.10          | 0.10            | < 0.50                 | < 0.050             | 21.7    | < 0.00050  | 4.40       | 1.42                   | < 0.050 | < 0.010               | 5,270  | 293       | < 0.010  | < 0.10 | < 10     | 1.59    | < 0.50   | < 3.0                 |
|                |                        | < 0.10   |          |        |           | < 0.050 |                        | 0.0096                   | < 0.10          | 0.13            | 0.36                   | 0.050               |         | < 0.00050  |            | 8.79                   | < 0.050 | < 0.010               |        |           | < 0.010  |        |          |         | < 0.50   | 1.3                   |
|                |                        | < 0.10   |          |        |           | < 0.050 |                        | < 0.0050                 | < 0.10          | < 0.10          | < 0.50                 | < 0.050             |         | < 0.00050  |            | 0.88                   | 0.073   | < 0.010               |        |           |          | < 0.10 |          |         | < 0.50   | < 3.0                 |
|                | 2017 06 28             | < 0.10   |          |        |           | < 0.050 |                        | < 0.0050                 | < 0.10          | < 0.10          | < 0.50                 | < 0.050             |         | < 0.00050  |            | 0.55                   | < 0.050 | < 0.010               |        |           |          |        |          |         | < 0.50   | < 3.0                 |
|                | 2017 08 16             | < 0.10   |          |        |           | < 0.050 |                        | < 0.0050                 | < 0.10          | < 0.10          | < 0.50                 | < 0.050             |         | -          | 3.00       | 0.80                   | < 0.050 | < 0.010               | ,      |           |          |        |          |         | < 0.50   | < 3.0                 |
|                | 2017 09 21             | < 0.10   |          | 29.7   |           | < 0.050 |                        | < 0.0050                 | < 0.10          | < 0.10          | < 0.50                 | < 0.050             |         | < 0.00050  | 2.19       | 1.16                   | < 0.050 | < 0.010               |        |           |          |        |          |         | < 0.50   | < 3.0                 |
|                | 2017 10 18             | < 0.10   |          |        |           | < 0.050 |                        | < 0.0050                 | < 0.10          | < 0.10          | < 0.50                 | < 0.050             |         | < 0.00050  |            | 0.62                   | < 0.050 | < 0.010               |        |           |          |        |          |         |          | < 3.0                 |
|                |                        |          |          |        |           |         | • •                    |                          |                 |                 |                        |                     |         |            |            |                        |         | •                     |        |           |          |        |          |         |          |                       |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Parameter exceeded hold time.

Concentration greater than CSR Aquatic Life (AW) standard <u>BOLD</u>

BOLD\*\*

Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline or BCWQG Aquatic Life Long-term Average (AW) guideline (applicable to EV\_BCgw, EV\_MCgwD, EV\_MCgwS, EV\_OCgw)

SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").

<sup>c</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

<sup>d</sup> Standard varies with Hardness.

<sup>e</sup> Standard varies with pH.

<sup>f</sup> Standard varies with Chloride.

<sup>g</sup> Standard varies with crop.

<sup>h</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>i</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

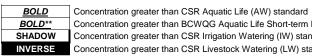
#### TABLE 4 (Cont'd): Groundwater Analytical Results compared to Primary Screening Criteria

|                                              |                             |          |                                       | Phys        | ical Pa               | ramete          | ers                           |                             |                        |                    |                                           |                                         |            |                                    |              |                     |                        |                    |        |            |                                       |                       | G                             | Seochemical    | Indicato                   | rs                      |                       |                       |                               |                       |                                                          |                            |                        |                      |                   |                                 |                           |
|----------------------------------------------|-----------------------------|----------|---------------------------------------|-------------|-----------------------|-----------------|-------------------------------|-----------------------------|------------------------|--------------------|-------------------------------------------|-----------------------------------------|------------|------------------------------------|--------------|---------------------|------------------------|--------------------|--------|------------|---------------------------------------|-----------------------|-------------------------------|----------------|----------------------------|-------------------------|-----------------------|-----------------------|-------------------------------|-----------------------|----------------------------------------------------------|----------------------------|------------------------|----------------------|-------------------|---------------------------------|---------------------------|
| Sample<br>Location                           | Sample Date<br>(yyyy mm dd) | C Colour | ස්<br>රූ Laboratory Conductivity<br>3 | Jg Hardness | B Oxidation Reduction | 로 Laboratory pH | 표<br>여 Total Dissolved Solids | ⊠<br>Total Suspended Solids | Z Laboratory Turbidity | B Acidity (pH 8.3) | 3 Alkalinity, Bicarbonate<br>b (as CaCO3) | 표 Alkalinity, Carbonate<br>전 (as CaCO3) | Alk<br>(as | 표 Total Alkalinity<br>더 (as CaCO3) | , Tot        | be<br>Total Cations | % Cation Anion Balance | mg/T               | mg/T   | Fluoride   | Д<br>Хирhate                          | Dissolved Aluminum    | a<br>a Dissolved Calcium<br>↑ | Dissolved Iron | a<br>G Dissolved Magnesium | ର୍ଘ Dissolved Manganese | 회 Dissolved Potassium | a<br>Dissolved Sodium | ୁ<br>ମୁଧି Kjeldahl Nitrogen-N | a<br>Gotal Nitrogen-N | 효<br>주                                                   | 턴 Nitrate (as N)<br>구      | ba<br>T Nitrite (as N) | a<br>T∕r<br>T        | B Ortho-Phosphate | 표 Dissolved Organic<br>더 Carbon | ∃<br>Total Organic Carbon |
| BC Standard/C                                | Buideline                   |          |                                       |             | 1                     |                 |                               |                             |                        | 1                  |                                           |                                         |            |                                    |              | 1                   |                        |                    |        |            |                                       |                       |                               | 1              |                            |                         |                       |                       |                               |                       |                                                          |                            |                        |                      |                   |                                 |                           |
| CSR Aquatic Li                               | - ( )                       | n/a      | n/a                                   | n/a         | n/a                   | n/a             | n/a                           | n/a                         | n/a                    | n/a                | n/a                                       | n/a                                     | n/a        | n/a                                | n/a          | n/a                 | n/a                    | n/a                |        |            | <sup>d</sup> 1,280-4,290 <sup>d</sup> |                       | n/a                           | n/a            | n/a                        | n/a                     | n/a                   | n/a                   | n/a                           | n/a                   | 3,700-18,500 <sup>e</sup>                                | 400,000                    | ,                      | n/a                  | n/a               | n/a                             | n/a                       |
| CSR Irrigation                               | 9 ( )                       | n/a      | n/a                                   | n/a         | n/a                   | n/a             | n/a                           | n/a                         | n/a                    | n/a                | n/a                                       | n/a                                     | n/a        | n/a                                | n/a          | n/a                 | n/a                    | n/a                | 100    | 1,000      | n/a                                   | 5,000                 | n/a                           | 5,000          | n/a                        | 200                     | n/a                   | n/a                   | n/a                           | n/a                   | n/a                                                      | n/a                        | n/a                    | n/a                  | n/a               | n/a                             | n/a                       |
|                                              | Watering (LW)               |          | n/a                                   | n/a         | n/a                   | n/a             | n/a                           | n/a                         | n/a                    | n/a                |                                           |                                         | n/a        | n/a                                | n/a          | n/a                 | n/a                    | n/a                | 600    | 1,000      | 1,000                                 | 5,000                 | 1,000                         | n/a            | n/a                        | n/a                     | n/a                   | n/a                   | n/a                           | n/a                   | n/a                                                      | 100,000                    | 10,000                 | n/a                  | n/a               | n/a                             | n/a                       |
| CSR Drinking V                               | , ,                         | n/a      | n/a                                   | n/a         | n/a                   | n/a             | n/a                           | n/a                         | n/a                    | n/a                | n/a                                       | n/a                                     | n/a        | n/a                                | n/a          | n/a                 | n/a                    | n/a                | 250    | 1,500      | 500                                   | 9,500                 | n/a                           | 6,500          | n/a                        | 1,500                   | n/a                   | 200                   | n/a                           | n/a                   | n/a                                                      | 10,000                     | 1,000                  | n/a                  | n/a               | n/a                             | n/a                       |
| BCWQG Aquat<br>Short-term Max<br>BCWQG Aquat | imum (AW) <sup>b</sup>      | n/a      | n/a                                   | n/a         | n/a                   | n/a             | n/a                           | n/a                         | n/a                    | n/a                | n/a                                       | n/a                                     | n/a        | n/a                                | n/a          | n/a                 | n/a                    | n/a                | n/a    | n/a        | n/a                                   | 31.6-100 <sup>e</sup> | <sup>e</sup> n/a              | 350<br>(max)   | n/a                        | 546-7,813 <sup>d</sup>  | n/a                   | n/a                   | n/a                           | n/a                   | 5,680-24,500 <sup>e</sup><br>(15 <sup>o</sup> C assumed) | 32,800                     | 60-600 <sup>f</sup>    | n/a                  | n/a               | n/a                             | n/a                       |
| Long-term Aver                               | age (AW) <sup>c</sup>       | n/a      | n/a                                   | n/a         | n/a                   | n/a             | n/a                           | n/a                         | n/a                    | n/a                | n/a                                       | n/a                                     | n/a        | n/a                                | n/a          | n/a                 | n/a                    | n/a                | n/a    | n/a        | 309-429 <sup>d</sup>                  | 11.2-50 <sup>e</sup>  | n/a                           | n/a            | n/a                        | 607-3,509 <sup>d</sup>  | n/a                   | n/a                   | n/a                           | n/a                   | 365-1,780 <sup>e</sup><br>(15°C assumed)                 | 3,000                      | 20-200 <sup>f</sup>    | n/a                  | n/a               | n/a                             | n/a                       |
| EV_MCgwD                                     |                             | < 5.0    | 588                                   | 248         | 332                   | 8.11            | 352                           | 21.5                        | 19.3                   | 5.9                | 238                                       | < 1.0                                   | < 1.0      | 238                                | 6.75         | 6.08                | -                      | < 0.050            | 3.80   | 885        | 88.3                                  | 3.4                   | 57.2                          | <u>1,120**</u> | 25.5                       | 515                     | 1.39                  | 23.0                  | 0.389                         | -                     | 191                                                      | < 5.0                      | < 1.0                  | 0.0330               | < 0.0010          | 2.68                            | 2.51                      |
|                                              | 2017 03 30                  | < 5.0    | 660                                   | 230         | 302                   | 7.99            | 397                           | 73.0                        | 84.6                   | 4.9                | 244                                       | < 1.0                                   | < 1.0      | 244                                | 7.84         | 7.29                | -                      | < 0.050            | 3.21   | 995        | 135                                   | 1.7                   | 50.4                          | 414**          | 25.4                       | 573                     | 1.51                  | 59.7                  | 0.48                          | -                     | 232                                                      | 9.1                        | 8.7                    | 0.0803               | < 0.0010          | 2.30                            | 3.55                      |
|                                              | 2017 05 16                  | < 5.0    | 617                                   | 223         | 298                   | 8.09            | 399                           | 385                         | 312                    | 3.1                | 282                                       | < 1.0                                   | < 1.0      | 282                                | 7.56         | 6.20                | -                      | < 0.050            | 3.75   | 989        | 85.1                                  | 19.3                  | 49.0                          | 10             | 24.5                       | 512                     | 1.46                  | 38.2                  | 0.524                         | -                     | 191                                                      | < 5.0                      | 2.2                    | 0.272                | 0.0024            | 1.56                            | 4.72                      |
|                                              |                             | < 5.0    |                                       | 230         | 353                   | 8.01            | 391                           | 7.9                         | 5.03                   | 4.5                | 237                                       | < 1.0                                   | < 1.0      | 237                                | 6.36         | 6.02                | -2.7                   | < 0.050            | 4.84   | 944        | 69.4                                  | < 3.0                 | 51.0                          | 29             | 24.8                       | 389                     | 1.47                  | 31.5                  | 0.280                         | -                     | 198                                                      | < 5.0                      | 4.0                    |                      | < 0.0010          | 1.64                            | 1.41                      |
|                                              |                             | < 5.0    |                                       | 235         | 223                   |                 |                               | 17.3                        |                        |                    |                                           |                                         | < 1.0      |                                    | 5.80         | 6.03                | 1.9                    | 0.059              | 4.21   | 848        | 51.7                                  | < 3.0                 | 52.5                          | 12             | 27.8                       | 369                     | 1.57                  | 24.6                  | 0.158                         | -                     | 121                                                      | 59.0                       | 3.4                    | 0.0367               | 0.0031            |                                 | 1.05                      |
|                                              |                             | < 5.0    |                                       | 230         | 252                   | 7.84            |                               | 4.2                         | 3.17                   | 2.9                |                                           |                                         | < 1.0      |                                    |              |                     | -5.1                   | 0.078              | 5.66   | 953        | 60.1                                  | 7.2                   | 53.4                          | 64             | 23.5                       | 313                     | 1.48                  | 26.0                  | 0.192                         | -                     | 105                                                      | 117                        | < 1.0                  |                      | < 0.0010          |                                 | 1.12                      |
| 51/ 50                                       |                             | < 5.0    |                                       | 227         | 255                   | 8.45            |                               | 8.3                         | 2.60                   | 2.7                |                                           |                                         |            |                                    | 5.61         | 5.62                | 0.1                    | 0.051              | 4.00   | 912        | 44.5                                  | < 3.0                 | 48.2                          | 94             | 25.8                       | 359                     | 1.53                  | 23.5                  | 0.210                         | -                     | 118                                                      | 63.9                       | 1.3                    | 0.0145               |                   |                                 | 0.79                      |
| EV_BCgw                                      |                             | < 5.0    |                                       | 417         | 310                   |                 |                               | 4.1                         | 1.40                   | 5.0                |                                           |                                         | < 1.0      |                                    | 8.50         | 8.54                | -                      | < 0.25             | 6.04   | 150        | 206                                   | < 3.0                 | 103                           | < 10           | 39.1                       | < 0.10                  | 1.18                  | 4.08                  | 0.082                         | -                     | < 5.0                                                    | <u>5,000**</u>             | < 5.0                  | 0.0073               | 0.0035            |                                 | 0.68                      |
|                                              | 2017 03 30                  | < 5.0    |                                       | 522<br>619  | 365                   | 7.82<br>7.96    |                               | 13.4                        |                        | 7.7                | 194<br>215                                |                                         | < 1.0      |                                    | 11.4         |                     | -                      | < 0.050            |        | 124<br>160 | 314                                   | < 1.0<br>< 3.0        | 126<br>146                    | < 10<br>< 10   | 50.4<br>61.7               | 0.38                    | 1.35<br>1.46          | 5.36<br>6.30          | 0.47<br>0.115                 | -                     | < 5.0<br>< 5.0                                           | <u>9,040**</u><br>14,000** | 3.1<br>< 5.0           | 0.0069               | 0.0035            |                                 | 0.80<br>0.82              |
|                                              | 2017 05 16<br>2017 06 27    | < 5.0    | 1,210<br>692                          | 336         | 404<br>412            | 7.98            |                               | 6.6<br>1.4                  | 2.06<br>0.32           | 6.1<br>4.6         |                                           |                                         | < 1.0      |                                    | 15.5<br>7.55 | 6.96                | -4.1                   | < 0.25<br>< 0.050  | 19.3   | 170        | <u>462**</u><br>163                   | < 3.0                 | 77.8                          | < 5.0          | 34.5                       | 1.02                    | 1.40                  | 4.80                  | 0.115                         | -                     | 61.5                                                     | 3,090**                    | 39.3                   | 0.019<br>0.0084      | 0.0035            |                                 | 1.07                      |
|                                              | 2017 08 23                  |          |                                       | 660         | 246                   |                 |                               | 2.4                         | 1.31                   | 10.4               |                                           |                                         | < 1.0      |                                    |              |                     | 0.1                    | < 0.050            | 13.5   | < 100      | 391                                   | < 3.0                 | 159                           | < 10           | 66.4                       | < 0.10                  | 1.53                  | 7.09                  | 1.01                          | -                     | < 5.0                                                    | 10,600**                   | < 5.0                  | 0.0004               | 0.0020            |                                 | -                         |
|                                              | 2017 10 18                  |          |                                       | 475         |                       | 8.02            |                               | 4.3                         |                        |                    |                                           |                                         | < 1.0      |                                    |              | 9.79                | -                      | < 0.050            |        | 118        | 261                                   | < 3.0                 | 109                           | < 10           | 49.5                       | < 0.10                  | 1.32                  |                       | < 0.050                       | -                     | 6.9                                                      | 6,270**                    | < 1.0                  | 0.0081               | 0.0035            |                                 |                           |
| Elk River Dista                              |                             |          | -                                     | _           | -                     |                 |                               |                             | _                      |                    |                                           | -                                       |            |                                    |              |                     | -                      |                    |        | -          |                                       |                       |                               |                |                            |                         |                       |                       |                               |                       |                                                          |                            | -                      |                      |                   |                                 |                           |
| EV_ER1gwS                                    | 2017 02 15                  | < 5.0    | 498                                   | 269         | 326                   | 8.23            | 315                           | < 1.0                       | 0.10                   |                    |                                           | < 1.0                                   | < 1.0      | 173                                | 5.62         | 5.52                | -                      | < 0.050            | 3.30   | 180        | 89.5                                  | < 3.0                 | 69.4                          | < 10           | 23.2                       | < 0.10                  | 0.568                 |                       | 0.071                         | 2.76                  | < 5.0                                                    | 2,690                      | < 1.0                  | 0.0033               | 0.0029            | < 0.50                          | < 0.50                    |
|                                              |                             | < 5.0    |                                       | 222         | 384                   | 8.07            |                               | 1.4                         | 0.22                   | 3.0                |                                           |                                         | < 1.0      |                                    | 5.02         | 4.77                | -2.6                   |                    |        | 176        | 42.1                                  | < 3.0                 | 58.3                          | < 10           | 18.6                       | < 0.10                  | 0.776                 | 7.10                  | 0.084                         | -                     | < 5.0                                                    | 1,190                      | < 1.0                  | < 0.010              | 0.0028            |                                 | 0.70                      |
|                                              |                             | < 5.0    |                                       | 223         | 232                   | 8.02<br>8.11    |                               | < 2.0                       |                        | 1.3                |                                           |                                         | < 1.0      | -                                  | 4.79         | 5.03                | 2.4                    | < 0.050            |        | 173        | 60.6                                  | 4.7                   | 65.7                          | < 10           | 19.3                       | < 0.10                  | 0.883                 | 3.30                  | 0.052                         | -                     | < 5.0                                                    | 1,740                      | < 1.0                  | 0.0049               | 0.0039            |                                 | < 0.50                    |
| EV_ER1gwD                                    |                             | < 5.0    |                                       | 233<br>260  | 323                   | 8.11            |                               | 5.0<br>275                  | 2.72<br>182            | 3.0                |                                           |                                         | < 1.0      | _                                  |              | 4.79<br>5.34        | -0.8                   | < 0.050<br>< 0.050 |        | 187<br>188 | 65.0<br>73.8                          | 12.8<br>9.9           | 61.5<br>67.4                  | < 10<br>< 10   | 19.3<br>22.2               | 1.52<br>34.0            | 0.695<br>0.603        | 2.70<br>2.93          | 0.098 0.254                   | - 2 19                | < 5.0<br>6.0                                             | 1,550<br>2,100             | 5.7<br>< 1.0           | 0.0085               | 0.0043 0.0041     |                                 |                           |
| LV_LINIGHD                                   |                             | < 5.0    |                                       | 176         | 320                   |                 |                               | 138                         | 44.4                   | 1.3                |                                           |                                         | < 1.0      | -                                  | 4.05         | 3.62                | -5.6                   |                    |        | 231        | 40.0                                  | 11.6                  | 45.4                          | < 10           | 15.2                       | 4.06                    | 0.569                 | 2.00                  | 0.138                         | -                     | < 5.0                                                    | 1,260                      | < 1.0                  | 0.0973               | 0.0030            |                                 | 2.08                      |
|                                              | 2017 08 22                  | < 5.0    | 411                                   | 223         | 239                   | 8.08            | 263                           | 2.4                         | 1.45                   | < 1.0              |                                           |                                         | < 1.0      | 173                                | 4.76         | 4.82                | 0.6                    | < 0.050            | 2.58   | 192        | 53.8                                  | 14.9                  | 60.8                          | < 10           | 20.1                       | 0.51                    | 0.793                 | 2.61                  | < 0.050                       | -                     | < 5.0                                                    | 1,480                      | 35.1                   | 0.0110               | 0.0051            | < 0.50                          | < 0.50                    |
|                                              | 2017 10 24                  | < 5.0    | 434                                   | 233         | 273                   | 8.12            | 347                           | 3.2                         | 1.24                   | 2.7                | 174                                       | < 1.0                                   | < 1.0      | 174                                | 5.30         | 4.80                | -5.0                   | < 0.050            | 2.48   | 170        | 76.9                                  | < 3.0                 | 61.7                          | < 10           | 19.2                       | < 0.10                  | 0.691                 | 2.76                  | 0.132                         | -                     | < 5.0                                                    | 1,930                      | 4.8                    | 0.0073               | 0.0035            | 2.48                            | < 0.50                    |
| Field Blanks                                 |                             |          |                                       |             |                       |                 |                               |                             |                        |                    |                                           |                                         |            |                                    |              |                     |                        |                    |        |            |                                       |                       |                               |                |                            |                         |                       |                       |                               |                       |                                                          |                            |                        |                      |                   |                                 |                           |
| EV_GV3gw                                     | 2017 06 27<br>2017 08 15    |          |                                       |             |                       |                 |                               |                             |                        |                    |                                           |                                         |            |                                    |              |                     |                        |                    |        |            | < 0.30                                | < 3.0<br>< 3.0        |                               |                | < 0.10                     |                         |                       | < 0.010<br>< 0.050    |                               |                       | < 5.0<br>< 5.0                                           | < 5.0                      |                        | < 0.0020<br>< 0.0020 |                   |                                 |                           |
|                                              | 2017 08 15                  |          |                                       |             |                       |                 |                               |                             |                        |                    |                                           |                                         |            |                                    |              |                     |                        |                    |        |            | < 0.30<br>< 0.30                      | < 3.0                 |                               |                | < 0.10<br>< 0.10           |                         |                       | < 0.050               |                               |                       | < 5.0                                                    | < 5.0<br>< 5.0             |                        | < 0.0020             |                   |                                 |                           |
| EV_OCgw                                      | 2017 03 29                  |          |                                       |             |                       |                 |                               |                             |                        |                    |                                           |                                         |            |                                    |              |                     |                        |                    |        |            | < 0.30                                |                       | < 0.050                       |                | < 0.0050                   |                         |                       | < 0.050               |                               |                       | < 5.0                                                    | < 5.0                      | < 1.0                  |                      | < 0.0010          |                                 |                           |
| - 0                                          | 2017 06 19                  | < 5.0    | < 2.0                                 | < 0.50      | 436                   | 6.63            | < 3.0                         | < 1.0                       | < 0.10                 | 1.1                | < 1.0                                     | ) < 1.0                                 | < 1.0      | < 1.0                              | < 0          | < 0                 | 0                      | < 0.050            | < 0.10 | < 20       | < 0.30                                | < 3.0                 | < 0.050                       | ) < 10         | < 0.10                     | < 0.10                  | < 0.050               | < 0.050               | < 0.050                       | -                     | < 5.0                                                    | < 5.0                      |                        | < 0.0020             |                   |                                 |                           |
|                                              | 2017 06 29                  |          |                                       |             |                       |                 |                               |                             |                        |                    |                                           |                                         |            |                                    |              |                     |                        |                    |        |            | < 0.30                                |                       | < 0.050                       |                | < 0.0050                   |                         |                       | < 0.050               |                               |                       | < 5.0                                                    | < 5.0                      |                        | < 0.0010             |                   |                                 |                           |
|                                              | 2017 08 15                  |          |                                       |             |                       |                 |                               |                             |                        |                    |                                           |                                         |            |                                    |              |                     |                        |                    |        |            | < 0.30                                |                       | < 0.050                       |                | < 0.10                     |                         |                       | < 0.050               |                               |                       | < 5.0                                                    | < 5.0                      |                        | < 0.0020             |                   |                                 |                           |
|                                              | 2017 08 29<br>2017 10 18    |          |                                       |             |                       |                 |                               |                             |                        |                    |                                           |                                         |            |                                    |              |                     |                        |                    |        |            | < 0.30<br>< 0.30                      |                       | < 0.050                       |                | < 0.10<br>< 0.10           |                         |                       | < 0.050<br>< 0.050    |                               |                       | < 5.0<br>13.3                                            | < 5.0<br>< 5.0             |                        | < 0.0020<br>< 0.0020 |                   |                                 |                           |
| EV_WF_SW                                     |                             |          |                                       |             |                       |                 |                               |                             |                        |                    |                                           |                                         |            |                                    |              |                     |                        |                    |        |            | < 0.30                                | < 1.0                 |                               |                | 0.0061                     |                         |                       |                       |                               |                       | < 5.0                                                    | 9.6                        | 2.9                    | 0.0037               |                   |                                 |                           |
|                                              |                             |          |                                       |             |                       |                 |                               |                             |                        |                    |                                           |                                         |            |                                    |              |                     |                        |                    |        |            |                                       |                       |                               |                |                            |                         |                       |                       |                               |                       |                                                          |                            |                        |                      |                   |                                 |                           |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.


- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Parameter exceeded hold time.



Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline or BCWQG Aquatic Life Long-term Average (AW) guideline (applicable to EV\_BCgw, EV\_MCgwD, EV\_MCgwS, EV\_OCgw)

SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute"). <sup>c</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

<sup>d</sup> Standard varies with Hardness.

<sup>e</sup> Standard varies with pH.

<sup>f</sup> Standard varies with Chloride.

<sup>9</sup> Standard varies with crop.

<sup>h</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard. <sup>1</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>j</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

|                  |                        |          |         |              |                    |                    |                        |                          |                  |                  |                        |                     | Diss                | olved Meta             | ls            |                        |                       |                     |                |            |          |                  |              |               |          |                       |
|------------------|------------------------|----------|---------|--------------|--------------------|--------------------|------------------------|--------------------------|------------------|------------------|------------------------|---------------------|---------------------|------------------------|---------------|------------------------|-----------------------|---------------------|----------------|------------|----------|------------------|--------------|---------------|----------|-----------------------|
|                  |                        |          |         |              |                    |                    |                        |                          |                  |                  |                        |                     |                     |                        |               |                        |                       |                     |                |            |          |                  |              |               |          |                       |
|                  |                        |          |         |              |                    |                    |                        |                          |                  |                  |                        |                     |                     |                        |               |                        |                       |                     |                |            |          |                  |              |               |          |                       |
|                  |                        |          |         |              |                    |                    |                        |                          |                  |                  |                        |                     |                     |                        |               |                        |                       |                     |                |            |          |                  |              |               |          |                       |
|                  |                        |          |         |              |                    |                    |                        |                          |                  |                  |                        |                     |                     |                        |               |                        |                       |                     |                |            |          |                  |              |               |          |                       |
|                  |                        |          |         |              |                    |                    |                        |                          |                  |                  |                        |                     |                     |                        | _             |                        |                       |                     |                |            |          |                  |              |               |          |                       |
|                  |                        |          |         |              | _                  |                    |                        | _                        | c                |                  |                        |                     |                     |                        | L L           |                        |                       |                     |                | _          |          |                  |              |               | -        |                       |
|                  |                        | , ng     | ы       | -            | E                  | 읖                  |                        | Ę                        | iun              |                  | L                      |                     | -                   | ~                      | len           |                        | Ę                     |                     |                | шn         | ε        |                  | ε            | ٤             | μn       |                       |
|                  |                        | Ĕ        | senic   | un           | Ę                  | 'n                 | u                      | ä                        | omium            | alt              | be                     | σ                   | iun                 | in o                   | Å             | e                      | nin                   | Ŀ                   | Lo<br>Lo       | nti        | llin     |                  | niu          | Jiu           | adi      | · <b>-</b> ,          |
| Samula           | Sample Date            | , Tti    | Arse    | Barium       | er.                | Bismuth            | or                     | Cadmium                  | Chr              | Cobalt           | do                     | ea                  | Lithium             | Mer                    | Molybdenum    | Nickel                 | ele                   | Silv                | Silico         | Strontium  | Thallium | <u>e</u>         | Titanium     | Uranium       | Vanadium | Zinc <sup>i</sup>     |
| Sample           | •                      | <b>∢</b> |         |              |                    |                    | <u> </u>               | -                        | -                |                  | 0                      | /                   |                     |                        |               |                        | 00<br>110/1           | -                   |                |            |          | ⊢<br>            |              |               |          |                       |
|                  | (yyyy mm dd)           | µg/L     | µg/L    | µg/L         | µg/L               | μg/L               | µg/L                   | μg/L                     | µg/L             | µg/L             | μg/L                   | µg/L                | µg/L                | µg/L                   | µg/L          | µg/L                   | µg/L                  | μg/L                | µg/L           | µg/L       | µg/L     | µg/L             | μg/L         | µg/L          | µg/L     | µg/L                  |
| BC Standard/G    | -                      | 00       | 50      | 10.000       | 1 5                | n/o                | 12,000                 | 0 5 4 <sup>d</sup>       | 1 oh             | 40               | oo ood                 | 40.400 <sup>d</sup> | n/o                 | 0.25                   | 10.000        |                        | 20                    |                     | n/n            | n/o        | 2        | n/o              | 1 000        | 05            | n/o      | 75 0 400 <sup>d</sup> |
| CSR Aquatic Li   | , ,                    | 90       |         | 10,000       | 1.5                | n/a                | 12,000                 | 0.5-4 <sup>d</sup>       | 10 <sup>h</sup>  | 40               | 20-90 <sup>d</sup>     | 40-160 <sup>d</sup> | n/a                 | 0.25                   | 10,000        | 250-1,500 <sup>d</sup> | 20                    | 0.5-15 <sup>d</sup> | n/a            | n/a        | 3        | n/a              | 1,000        | 85            | n/a      | 75-2,400 <sup>d</sup> |
| CSR Irrigation \ |                        | n/a      | 100     | n/a          | 100                | n/a                | 500-6,000 <sup>9</sup> | 5                        | 5 <sup>h</sup>   | 50               | 200                    | 200                 | 2,500               | 1                      | 10            | 200                    | 20                    | n/a                 | n/a            | n/a        | n/a      | n/a              | n/a          | 10            | 100      | n/a                   |
|                  | Watering (LW)          | n/a      | 25      | n/a          | 100                | n/a                | 5,000                  | 80                       | 50 <sup>h</sup>  | 1,000            | 300                    | 100                 | 5,000               | 2                      | 50            | 1,000                  | 30                    | n/a                 | n/a            | n/a        | n/a      | n/a              | n/a          | 200           | 100      | 2,000                 |
| CSR Drinking V   | Vater (DW)             | 6        | 10      | 1,000        | 8                  | n/a                | 5,000                  | 5                        | 50 <sup>h</sup>  | 20'              | 1,500                  | 10                  | 8                   | 1                      | 250           | 80                     | 10                    | 20                  | n/a            | 2,500      | n/a      | 2,500            | n/a          | 20            | 20       | 3,000                 |
| BCWQG Aquat      | ic Life                | n/a      | 5       | n/2          | n/a                | n/a                | n/2                    | 0.029.2.9 <sup>d</sup>   | $1 (Cr(\pm 6))$  | 110              | 2 05 64 0 <sup>d</sup> | 2 002 <sup>d</sup>  | n/a                 | n/a                    | 2,000         | n/a                    | n/a                   | 0 1 2 <sup>d</sup>  | n/a            | n/2        | n/a      | n/a              | n/a          | n/a           | n/a      | 22.460.5 <sup>d</sup> |
| Short-term Max   | imum (AW) <sup>b</sup> | n/a      | 5       | n/a          | n/a                | n/a                | n/a                    | 0.038-2.8 <sup>°</sup>   | 1 (Cr(+6))       | 110              | 2.05-64.0 <sup>°</sup> | 3-902ª              | II/a                | n/a                    | 2,000         | n/a                    | n/a                   | 0.1-3 <sup>ª</sup>  | n/a            | n/a        | n/a      | n/a              | n/a          | n/a           | n/a      | 33-460.5°             |
| BCWQG Aquat      | ic Life                |          | ,       |              |                    | ,                  |                        | d                        | ,                |                  | d                      | d                   | ,                   | ,                      |               | d                      | -                     | d                   | ,              | ,          |          | ,                | ,            |               | ,        | d                     |
| Long-term Aver   | age (AW) <sup>c</sup>  | 9        | n/a     | 1,000        | 0.13               | n/a                | 1,200                  | 0.018-0.457 <sup>°</sup> | n/a              | 4                | 2-26.4 <sup>d</sup>    | 3-38.5 <sup>d</sup> | n/a                 | n/a                    | 1,000         | 25-150 <sup>°</sup>    | 2                     | 0.05-1.5°           | n/a            | n/a        | 0.8      | n/a              | n/a          | 8.5           | n/a      | 7.5-435 <sup>d</sup>  |
| Michel Creek (   |                        |          |         |              |                    |                    |                        |                          |                  |                  |                        |                     |                     |                        |               |                        |                       |                     | l              |            |          |                  |              |               |          |                       |
| EV_MCgwD         |                        | < 0.10   | 0.94    | 92.2         | < 0.020            | < 0.050            | 59                     | < 0.0050                 | < 0.10           | 0.41             | < 0.50                 | < 0.050             | 7.6                 | < 0.00050              | 8.83          | 1.33                   | 0.143                 | < 0.010             | 4,850          | 491        | < 0.010  | < 0.10           | < 10         | 1.89          | < 0.50   | < 3.0                 |
| _ 0              | 2017 03 30             | < 0.10   | 0.86    | 69.1         | < 0.020            |                    |                        | 0.0081                   | < 0.10           | 0.44             | < 0.20                 | < 0.050             | 11.2                | < 0.00050              | 13.6          | 3.67                   | < 0.050               | < 0.010             | 5,090          | 467        | < 0.010  |                  | < 10         | 3.46          | < 0.50   | 1.5                   |
|                  | 2017 05 16             | 0.21     | 0.73    | 82.5         | < 0.020            |                    |                        | 0.0151                   | < 0.10           | 0.69             | < 0.50                 | < 0.050             | 9.3                 | < 0.00050              | 12.8          | 14.4                   | 0.081                 | < 0.010             | 4,620          | 434        | 0.022    | < 0.10           |              | 2.78          | < 0.50   | < 3.0                 |
|                  | 2017 06 28             | 0.16     | 0.81    | 86.0         | < 0.020            |                    |                        | 0.0434                   | < 0.10           | 0.75             | 0.63                   | < 0.050             | 9.3                 | < 0.00050              | 13.1          | 15.0                   | 0.141                 | < 0.010             | 4,650          | 493        | 0.096    | < 0.10           |              | 3.08          | < 0.50   | 6.3                   |
| -                | 2017 08 16             | 0.12     | 0.68    | 86.8         | < 0.020            |                    |                        | 0.0470                   | < 0.10           | 0.52             | 1.05                   | < 0.050             | 8.5                 | -                      | 11.6          | 14.2                   | 0.115                 | < 0.010             | 4,820          | 478        | 0.092    | < 0.10           |              | 2.36          | < 0.50   | 13.4                  |
| -                | 2017 09 19             | 0.12     | 0.59    | 85.8         | < 0.020            |                    |                        | 0.0470                   | < 0.10           | 0.34             | 1.47                   | < 0.050             | 9.6                 | < 0.00050              | 11.2          | 15.3                   | 0.133                 | 0.058               | 4,790          | 461        | 0.077    | < 0.10           |              | 2.45          | < 0.50   | 20.0                  |
| -                | 2017 10 18             | 0.14     | 0.81    | 86.6         | < 0.020            |                    |                        | 0.0503                   | < 0.10           | 0.43             | 1.18                   | < 0.050             | 9.1                 | < 0.00050              | 10.9          | 13.2                   | 0.075                 | < 0.010             | 4,990          | 446        | 0.071    | < 0.10           |              | 2.43          | < 0.50   | 17.6                  |
| EV_BCgw          | 2017 03 14             | 0.16     | 0.01    | 37.5         | < 0.020            |                    |                        | 0.0335                   | 0.12             | < 0.10           | < 0.50                 | < 0.050             | 22.8                | < 0.00050              | 0.922         | 0.52                   | <u>20.3**</u>         | < 0.010             | 2,840          | 174        | 0.013    | < 0.10           |              | 1.22          | < 0.50   | < 3.0                 |
| LV_DOGW          | 2017 03 14             | 0.18     | 0.11    | 51.3         | < 0.020            |                    |                        | 0.0555                   | < 0.12           | < 0.10           | 0.86                   | < 0.050             | 30.5                | < 0.0050               | 0.922         | 1.66                   |                       | < 0.010             | 2,840          | 234        | 0.013    | < 0.10           | < 10         | 1.58          | < 0.50   | 2.1                   |
| -                | 2017 03 30             | 0.18     | 0.13    | 57.6         | < 0.020            |                    |                        | 0.0609                   | 0.13             |                  | 0.65                   | < 0.050             | 34.2                | < 0.0050               | 0.717         | 1.00                   | <u>37.7**</u><br>59** |                     | 2,910          | 262        | 0.013    | < 0.10           | < 10         | 1.87          | < 0.50   | < 3.0                 |
| -                | 2017 05 16             | 0.20     |         | 46.5         |                    |                    |                        |                          |                  | < 0.10           |                        |                     | <u>34.2</u><br>17.0 |                        |               |                        | 17.9**                | < 0.010             | ,              |            |          |                  |              |               |          |                       |
|                  | 2017 08 27             | 0.24     | 0.150   | 46.5<br>52.2 | < 0.020<br>< 0.020 | < 0.050<br>< 0.050 |                        | 0.0549 0.0603            | 0.16             | 0.055            | 1.01<br>< 0.50         | < 0.030<br>< 0.050  | 36.5                | < 0.0050<br>< 0.0050   | 1.22<br>0.677 | 4.31<br>0.56           | <u>17.9</u>           | < 0.010             | 2,800<br>3,070 | 140<br>278 | < 0.010  |                  | < 10<br>< 10 | 0.916<br>1.79 | < 0.50   | 5.6                   |
| -                |                        |          | < 0.10  |              |                    |                    |                        |                          | 0.10             | < 0.10           |                        |                     |                     |                        |               |                        | <u> </u>              | < 0.010             |                |            |          | < 0.10           |              |               | < 0.50   | < 3.0                 |
| Elk River Dista  | 2017 10 18             | 0.12     | < 0.10  | 43.6         | < 0.020            | < 0.050            | 17                     | 0.0426                   | 0.17             | < 0.10           | < 0.50                 | < 0.050             | 26.7                | < 0.0050               | 0.799         | 0.60                   | <u>34.5**</u>         | < 0.010             | 2,940          | 203        | 0.014    | < 0.10           | < 10         | 1.40          | < 0.50   | < 3.0                 |
|                  | 2017 02 15             | < 0.10   | 0.11    | 92.2         | < 0.020            | < 0.050            | - 10                   | 0.0090                   | 0.25             | < 0.10           | < 0.50                 | < 0.050             | 7.1                 | < 0.0050               | 1.15          | < 0.50                 | 10.3                  | < 0.010             | 1 0 2 0        | 212        | < 0.010  | 10.10            | < 10         | 1.28          | < 0.50   | .20                   |
| EV_ER1gwS        | 2017 02 15             | < 0.10   | 0.11    | 92.2         | < 0.020            |                    |                        | 0.0090                   | 0.25             | < 0.10           | < 0.50                 | < 0.050             | 7.7                 | < 0.0050               | 1.08          | < 0.50                 | 4.95                  | < 0.010             | 1,930<br>2,590 | 194        | < 0.010  |                  | < 10         | 1.03          | < 0.50   | < 3.0<br>< 3.0        |
| -                | 2017 00 28             | 0.10     | 0.12    | 104          | < 0.020            |                    |                        | 0.0113                   | 0.27             | < 0.10           | < 0.50                 | < 0.050             | 8.2                 | < 0.0050               | 1.00          | < 0.50                 | 8.59                  | < 0.010             | 2,390          | 183        | < 0.010  |                  |              | 1.03          | < 0.50   | < 3.0                 |
| -                | 2017 10 24             | 0.13     | 0.10    | 88.6         | < 0.020            |                    |                        | < 0.0050                 | 0.32             | < 0.10           | < 0.50                 | < 0.050             | 6.9                 | < 0.0050               | 1.42          | < 0.50                 | 7.74                  | < 0.010             | 2,400          | 202        | < 0.010  | 0.12             | < 10         | 1.36          | < 0.50   | < 3.0                 |
| EV_ER1gwD        | 2017 02 15             | < 0.10   | < 0.10  | 85.0         | < 0.020            |                    |                        | < 0.0050                 | 0.25             | 0.10             | 0.52                   | < 0.050             | 6.5                 | < 0.0050               | 1.27          | < 0.50                 | 8.16                  | < 0.010             | 2,410          | 209        |          | < 0.10           |              | 1.30          | < 0.50   | < 3.0                 |
|                  | 2017 06 28             | 0.14     | 0.13    | 65.1         | < 0.020            |                    |                        | < 0.0050                 | 0.23             | < 0.10           | < 0.50                 | < 0.050             | 6.6                 | < 0.0050               | 1.34          | < 0.50                 | 5.67                  | < 0.010             | 2,290          | 160        |          | < 0.10           | < 10         | 1.13          | < 0.50   | < 3.0                 |
|                  | 2017 08 22             | < 0.10   | 0.14    | 85.2         | < 0.020            |                    |                        | < 0.0050                 | 0.28             | < 0.10           | < 0.50                 | < 0.050             | 8.3                 | < 0.0050               | 1.35          | < 0.50                 | 6.95                  | < 0.010             | 2,760          | 188        | < 0.010  |                  | < 10         | 1.26          | < 0.50   | < 3.0                 |
|                  | 2017 10 24             | 0.13     | 0.25    | 98.0         | < 0.020            | < 0.050            | < 10                   | 0.0103                   | 0.27             | < 0.10           | < 0.50                 | < 0.050             | 6.8                 | < 0.0050               | 1.34          | < 0.50                 | 10.5                  | < 0.010             | 2,190          | 194        | < 0.010  | < 0.10           | < 10         | 1.21          | < 0.50   | < 3.0                 |
| Field Blanks     |                        |          |         |              |                    |                    |                        |                          |                  |                  |                        |                     |                     |                        |               |                        | 0                     |                     |                |            |          |                  |              |               |          |                       |
| EV_GV3gw         |                        |          |         |              | < 0.020            |                    |                        | < 0.0050                 | < 0.10           | < 0.050          | < 0.50                 | < 0.030             |                     | < 0.0050               | < 0.050       | < 0.10                 | < 0.050               | < 0.010             |                |            |          | < 0.050          |              |               |          | < 3.0                 |
|                  | 2017 08 15             |          |         |              |                    |                    |                        | < 0.0050                 | < 0.10           | < 0.10           | < 0.50                 | < 0.050             | < 1.0               | 0.0070                 | < 0.050       | < 0.50                 | < 0.050               | < 0.010             |                |            |          | < 0.10           |              |               |          | < 3.0                 |
|                  |                        |          |         |              | < 0.020            |                    |                        | < 0.0050                 | < 0.10           | < 0.10           | < 0.50                 | < 0.050             |                     | < 0.0050               |               | < 0.50                 | < 0.050               | < 0.010             | < 50           | < 0.20     | < 0.010  | < 0.10           | < 10         | < 0.010       | < 0.50   | < 3.0                 |
| EV_OCgw          |                        |          |         |              | < 0.020            |                    |                        | < 0.0050                 | < 0.10           | < 0.10           | < 0.20                 | < 0.050             |                     | < 0.0050               |               | < 0.50                 | < 0.050               | < 0.010             |                |            |          | < 0.10           |              |               |          | < 1.0                 |
|                  |                        |          |         |              | < 0.020            |                    |                        | < 0.0050                 | < 0.10           | < 0.10           | < 0.50                 |                     |                     | < 0.00050              |               | < 0.50                 | < 0.050               | < 0.010             |                |            |          | < 0.10           |              |               |          | < 3.0                 |
|                  |                        |          |         |              | < 0.020            |                    |                        | < 0.0050                 | < 0.10           | < 0.10           | < 0.20                 |                     |                     | < 0.00050              |               | < 0.50                 | < 0.050               | < 0.010             |                |            |          | < 0.10           |              |               |          | < 1.0                 |
|                  |                        |          |         |              | < 0.020            |                    |                        | < 0.0050                 | < 0.10           | < 0.10           | < 0.50                 | < 0.050             |                     | < 0.00050              |               | < 0.50                 | < 0.050               | < 0.010             |                |            |          | < 0.10           |              |               |          | < 3.0                 |
|                  |                        |          |         |              | < 0.020<br>< 0.020 |                    |                        | < 0.0050<br>< 0.0050     | < 0.10<br>< 0.10 | < 0.10<br>< 0.10 | < 0.50<br>< 0.50       | < 0.050<br>< 0.050  |                     | < 0.00050<br>< 0.00050 |               | < 0.50<br>< 0.50       | < 0.050<br>< 0.050    | < 0.010<br>< 0.010  |                |            |          | < 0.10<br>< 0.10 |              |               |          | < 3.0<br>< 3.0        |
| EV WE SW         |                        |          |         |              | < 0.020            |                    |                        | < 0.0050                 | < 0.10           | < 0.10           | < 0.30                 | < 0.050             |                     | < 0.00050              |               | < 0.50                 | < 0.050               | < 0.010             |                |            |          | < 0.10           |              |               |          | < 1.0                 |
|                  | _011 00 00             | \$ 0.10  | \$ 0.10 | \$ 0.000     | < 0.020            | - 0.000            | 10                     | \$ 0.0000                | \$ 0.10          | \$ 0.10          | \$ 0.20                | \$ 0.000            | \$ 1.0              |                        | - 0.000       | - 0.00                 |                       | \$ 0.010            |                | \$ 0.20    | \$ 0.010 | \$ 0.10          | 10           | \$ 0.010      | - 0.00   | - 1.0                 |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Parameter exceeded hold time.

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").

<sup>c</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

<sup>d</sup> Standard varies with Hardness.

<sup>e</sup> Standard varies with pH.

<sup>f</sup> Standard varies with Chloride.

<sup>g</sup> Standard varies with crop.

<sup>h</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>1</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>j</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

Concentration greater than CSR Aquatic Life (AW) standard BOLD BOLD\*\*

Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline or BCWQG Aquatic Life Long-term Average (AW) guideline (applicable to EV\_BCgw, EV\_MCgwD, EV\_MCgwS, EV\_OCgw) SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

#### TABLE 4 (Cont'd): Groundwater Analytical Results compared to Primary Screening Criteria

|                             |                         |       |                         | Phys     | ical Pa                          | ramet         | ers                    |                        |                      |                  |                                       |                                     |                                     |                                |             |               |                      |         |                      |            |                                         |                       | Ge                 | eochemica      | al Indicato         | 'S                     |                     |                  |                     |                  |                                                          |                |                        |                        |                 |                             |                      |
|-----------------------------|-------------------------|-------|-------------------------|----------|----------------------------------|---------------|------------------------|------------------------|----------------------|------------------|---------------------------------------|-------------------------------------|-------------------------------------|--------------------------------|-------------|---------------|----------------------|---------|----------------------|------------|-----------------------------------------|-----------------------|--------------------|----------------|---------------------|------------------------|---------------------|------------------|---------------------|------------------|----------------------------------------------------------|----------------|------------------------|------------------------|-----------------|-----------------------------|----------------------|
| Sample                      | Sample Da               | -     | Laboratory Conductivity | Hardness | Oxidation Reduction<br>Potential | Laboratory pH | Total Dissolved Solids | Total Suspended Solids | Laboratory Turbidity | Acidity (pH 8.3) | Alkalinity, Bicarbonate<br>(as CaCO3) | Alkalinity, Carbonate<br>(as CaCO3) | Alkalinity, Hydroxide<br>(as CaCO3) | Total Alkalinity<br>(as CaCO3) | Total Anion | Total Cations | Cation Anion Balance | Bromide | Chloride             | Fluoride   | Sulphate                                | Dissolved Aluminum    | Dissolved Calcium  | Dissolved Iron | Dissolved Magnesium | Dissolved Manganese    | Dissolved Potassium | Dissolved Sodium | Kjeldahl Nitrogen-N | Total Nitrogen-N | Ammonia, total (as N)                                    | Nitrate (as N) | Nitrite (as N)         | Total Phosphorous as P | Ortho-Phosphate | Dissolved Organic<br>Carbon | Total Organic Carbon |
| Location<br>BC Standard/    | (yyyy mm d              | d) CU | µS/cm                   | mg/L     | mV                               | рН            | mg/L                   | mg/L                   | NTU                  | mg/L             | mg/L                                  | mg/L                                | mg/L                                | mg/L                           | meq/        | neq/L         | %                    | mg/L    | mg/L                 | μg/L       | mg/L                                    | µg/L                  | mg/L               | µg/L           | mg/L                | μg/L                   | mg/L                | mg/L             | mg/L                | mg/L             | µg/L                                                     | µg/L           | µg/L                   | mg/L                   | mg/L            | mg/L                        | mg/L                 |
|                             |                         | n/a   | n/o                     | n/a      | n/a                              | n/a           | n/a                    | n/a                    | n/a                  | n/a              | n/a                                   | n/a                                 | n/a                                 | n/a                            | n/a         | n/a           | n/o                  | n/a     | 1 500                | 2 000 2 00 | 0 <sup>d</sup> 1,280-4,290 <sup>d</sup> | n/o                   | n/a                | n/o            | n/a                 | n/a                    | n/o                 | n/o              | n/a                 | n/a              | 2 700 40 500 <sup>e</sup>                                | 400.000        | 200-2,000 <sup>f</sup> | n/a                    | n/a             | n/o                         | n/a                  |
| CSR Aquatic L               | · · /                   |       | n/a<br>n/a              | n/a      | n/a                              | n/a           | n/a                    | n/a                    | n/a                  | n/a              | n/a                                   | n/a                                 | n/a                                 | n/a                            | n/a         | n/a           | n/a                  | n/a     | 1,500                | 1,000      |                                         | n/a<br>5,000          | n/a<br>n/a         | n/a            | n/a                 |                        | n/a                 | n/a              |                     |                  |                                                          |                |                        |                        | n/a             | n/a                         | n/a                  |
| CSR Irrigation              | 9 (                     | ,     |                         | n/a      | n/a                              | n/a           | n/a                    | n/a                    | n/a                  | n/a              | n/a                                   | n/a                                 | n/a                                 | n/a                            | n/a         | n/a           | n/a                  | n/a     |                      | ,          | n/a                                     |                       |                    | 5,000          | n/a                 | 200                    | n/a                 | n/a              | n/a                 | n/a              | n/a                                                      | n/a            | n/a                    | n/a                    | n/a             | n/a                         |                      |
| CSR Livestock               | 0 (                     |       | n/a                     | n/a      | n/a                              | n/a           |                        |                        |                      | n/a              | n/a                                   |                                     | n/a                                 | n/a                            | n/a         |               | n/a                  | n/a     | 600                  | 1,000      | 1,000                                   | 5,000                 | 1,000              | n/a            | n/a                 | n/a                    | n/a                 | n/a              | n/a                 | n/a              | n/a                                                      | 100,000        | 10,000                 | n/a                    | n/a             | n/a                         | n/a                  |
| CSR Drinking                | . ,                     | n/a   | n/a                     | n/a      | n/a                              | n/a           | n/a                    | n/a                    | n/a                  | n/a              | n/a                                   | n/a                                 | n/a                                 | n/a                            | n/a         | n/a           | n/a                  | n/a     | 250                  | 1,500      | 500                                     | 9,500                 | n/a                | 6,500          | n/a                 | 1,500                  | n/a                 | 200              | n/a                 | n/a              | n/a                                                      | 10,000         | 1,000                  | n/a                    | n/a             | n/a                         | n/a                  |
| BCWQG Aqua<br>Short-term Ma |                         | n/a   | n/a                     | n/a      | n/a                              | n/a           | n/a                    | n/a                    | n/a                  | n/a              | n/a                                   | n/a                                 | n/a                                 | n/a                            | n/a         | n/a           | n/a                  | n/a     | n/a                  | n/a        | n/a                                     | 31.6-100 <sup>6</sup> | ° n∕a              | 350<br>(max)   | n/a                 | 546-7,813 <sup>°</sup> | <sup>d</sup> n/a    | n/a              | n/a                 | n/a              | 5,680-24,500 <sup>e</sup><br>(15 <sup>o</sup> C assumed) | 32,800         | 60-600 <sup>f</sup>    | n/a                    | n/a             | n/a                         | n/a                  |
| BCWQG Aqua                  | itic Life               |       |                         |          |                                  |               |                        |                        | - 1-                 |                  | - 1-                                  |                                     |                                     |                                |             |               |                      |         |                      | - 1-       | beet eee                                |                       | - 1-               |                |                     |                        | d /                 |                  |                     |                  | 365-1,780 <sup>e</sup>                                   | 0.000          | an naaf                | - 1-                   |                 |                             |                      |
| Long-term Ave               | erage (AW) <sup>c</sup> | n/a   | n/a                     | n/a      | n/a                              | n/a           | n/a                    | n/a                    | n/a                  | n/a              | n/a                                   | n/a                                 | n/a                                 | n/a                            | n/a         | n/a           | n/a                  | n/a     | n/a                  | n/a        | 309-429 <sup>ª</sup>                    | 11.2-50 <sup>e</sup>  | n/a                | n/a            | n/a                 | 607-3,509 <sup>°</sup> | n/a                 | n/a              | n/a                 | n/a              | (15°C assumed)                                           | 3,000          | 20-200 <sup>r</sup>    | n/a                    | n/a             | n/a                         | n/a                  |
| Trip Blanks                 |                         |       |                         |          |                                  |               |                        |                        |                      |                  |                                       |                                     |                                     |                                |             |               |                      |         |                      |            |                                         |                       |                    |                |                     |                        |                     |                  |                     |                  |                                                          |                |                        |                        |                 |                             |                      |
| EV_ECgw                     | 2017 03 30              |       | -                       |          |                                  |               | -                      | -                      |                      |                  | < 1.0                                 | _                                   | -                                   | -                              | < 0         | < 0           |                      |         | < 0.50               | -          | < 0.30                                  | < 1.0                 | < 0.050            | < 10           | < 0.0050            |                        |                     |                  | < 0.20              |                  | -                                                        | < 5.0          | 2.8                    | -                      | < 0.0010        |                             | < 0.50               |
|                             | 2017 06 28              |       | -                       | < 0.50   |                                  | -             |                        | -                      |                      | -                | < 1.0                                 | -                                   | -                                   | -                              | < 0         | < 0           | -                    |         | 0 < 0.10             | -          | < 0.30                                  | < 3.0                 | < 0.050            | < 10           | < 0.10              | < 0.10                 |                     |                  | < 0.050             |                  | -                                                        | < 5.0          | < 1.0                  | -                      | < 0.0010        |                             | 0.71                 |
|                             | 2017 09 19              |       |                         | -        |                                  |               |                        |                        |                      |                  | < 1.0                                 |                                     |                                     |                                | < 0         |               |                      |         | 0 < 0.50             |            | < 0.30                                  | -                     | < 0.050            | -              | < 0.0050            | ) -                    |                     |                  | < 0.050             |                  | -                                                        | 30.6           | 1.1                    | -                      | < 0.0010        |                             | < 0.50               |
|                             | 2017 10 17              |       |                         |          |                                  |               |                        |                        |                      |                  | < 1.0                                 |                                     |                                     |                                | < 0         |               | 0                    |         | < 0.50               |            | < 0.30                                  | < 3.0                 | < 0.050            | < 10           | < 0.10              |                        |                     |                  | < 0.050             | -                | -                                                        | < 5.0          | < 1.0                  | -                      | < 0.0010        |                             | < 0.50               |
| EV_MCgwD                    | 2017 03 29              |       | -                       |          |                                  |               |                        |                        |                      |                  | < 1.0                                 |                                     |                                     |                                | < 0         | < 0           | -                    |         | ) < 0.50             |            | < 0.30                                  | < 1.0                 | < 0.050            | < 10           | < 0.0050            | < 0.10                 |                     | 0 < 0.050        |                     | -                | -                                                        | < 5.0          | < 1.0                  | -                      | < 0.0010        |                             | < 0.50<br>< 0.50     |
|                             | 2017 06 27              |       |                         | < 0.50   |                                  |               |                        |                        |                      |                  | < 1.0<br>< 1.0                        |                                     |                                     |                                | < 0         | < 0           |                      |         | ) < 0.10<br>) < 0.50 |            | < 0.30                                  | < 3.0                 | < 0.050<br>< 0.050 | < 5.0          | < 0.10              | < 0.10                 |                     |                  | < 0.050             |                  | -                                                        | < 5.0<br>19.3  | < 1.0<br>< 1.0         | -                      | < 0.0010        |                             | < 0.50               |
|                             | 2017 09 1               |       | -                       | - 0.50   |                                  |               |                        |                        |                      |                  |                                       |                                     |                                     |                                | < 0         |               |                      |         | < 0.50<br>< 0.50     |            | < 0.30                                  |                       | < 0.050            | - < 10         | < 0.0050            | < 0.10                 |                     |                  | < 0.050             |                  | -                                                        | < 5.0          | < 1.0                  | -                      | < 0.0010        |                             | < 0.50               |
| L                           | 2017 10 17              | < 3.0 | < 2.U                   | < 0.30   | 403                              | 5.13          | < 10                   | < 1.0                  | 0.19                 | 1.4              | < 1.0                                 | < 1.0                               | < 1.0                               | < 1.0                          | <u> </u>    | <u></u>       | U                    | < 0.00C | < 0.50               | < 20       | < 0.50                                  | < 5.0                 | < 0.050            | < 10           | < 0.10              | < 0.10                 | < 0.00C             | ~ 0.000          | < 0.030             | -                | -                                                        | < 5.0          | < 1.0                  | -                      | < 0.00 TC       |                             | < 0.50               |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Parameter exceeded hold time.

BOLD BOLD\*\*

Concentration greater than CSR Aquatic Life (AW) standard

Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline or BCWQG Aquatic Life Long-term Average (AW) guideline (applicable to EV\_BCgw, EV\_MCgwD, EV\_MCgwS, EV\_OCgw)

SHADOW Concentration greater than CSR Irrigation Watering (IW) standard

INVERSE Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").

<sup>c</sup> Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

<sup>d</sup> Standard varies with Hardness.

<sup>e</sup> Standard varies with pH.

<sup>f</sup> Standard varies with Chloride.

<sup>g</sup> Standard varies with crop.

<sup>h</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>1</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>j</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

SNC-LAVALIN INC.

|                             |                             |                 |         |                |              |                 |                        |                          |                   |                 |                        |                     | Diss           | olved Metal    | s            |                            |                 |                       |               |           |                      |                |             |             |                    |                       |
|-----------------------------|-----------------------------|-----------------|---------|----------------|--------------|-----------------|------------------------|--------------------------|-------------------|-----------------|------------------------|---------------------|----------------|----------------|--------------|----------------------------|-----------------|-----------------------|---------------|-----------|----------------------|----------------|-------------|-------------|--------------------|-----------------------|
| Sample                      | Sample Date<br>(yyyy mm dd) | 년<br>거 Antimony | ත්<br>T | Barium<br>٦/۵۸ | ඩ් Beryllium | Bismuth<br>T/6h | uoroa<br>hall          | Б<br>Б<br>Сadmium        | Chromium<br>7/6th | Cobalt<br>T/6π  | Copper<br>T/D          | Бћ<br>Гead          | D/D<br>Lithium | Mercury<br>T/D | 년 Molybdenum | H <sup>d</sup> h<br>Nickel | Я<br>N/Selenium | hâh<br>River          | Бћ<br>Njlicon | Strontium | thallium<br>Thallium | і<br>Ц<br>µg/L | banium<br>T | Я<br>П<br>Л | б<br>Г<br>Хanadium | چ<br>Zinc             |
| BC Standard/                |                             | µg/⊏            | µg/⊏    | µg/⊏           | µg/⊏         | µg/⊏            | μ8,⊏                   | μ <u>9</u> /L            | µg/⊏              | µg/⊏            | µg/⊏                   | µg/⊏                | µg/⊏           | µg/⊏           | µg/⊏         | µg/⊏                       | µg/⊏            | µg/⊏                  | µg/⊏          | µg/⊏      | µg/⊏                 | µg/⊏           | µg/⊏        | µg/⊏        | µg/⊏               | µg/∟                  |
| CSR Aquatic L               |                             | 90              | 50      | 10,000         | 1.5          | n/a             | 12,000                 | 0.5-4 <sup>d</sup>       | 10 <sup>h</sup>   | 40              | 20-90 <sup>d</sup>     | 40-160 <sup>d</sup> | n/a            | 0.25           | 10,000       | 250-1,500 <sup>d</sup>     | 20              | 0.5-15 <sup>d</sup>   | n/a           | n/a       | 3                    | n/a            | 1,000       | 85          | n/a                | 75-2,400 <sup>d</sup> |
|                             | Watering (IW)               | n/a             | 100     | n/a            | 100          | n/a             | 500-6.000 <sup>g</sup> | 5                        | 5 <sup>h</sup>    | 50              | 200                    | 200                 | 2,500          | 1              | 10           | 200 1,000                  | 20              | n/a                   | n/a           | n/a       | n/a                  | n/a            | n/a         | 10          | 100                | n/a                   |
| -                           | Watering (LW)               |                 | 25      | n/a            | 100          | n/a             | 5,000                  | 80                       | 50 <sup>h</sup>   | 1.000           | 300                    | 100                 | 5,000          | 2              | 50           | 1.000                      | 30              | n/a                   | n/a           | n/a       | n/a                  | n/a            | n/a         | 200         | 100                | 2.000                 |
| CSR Drinking                |                             | 6               | 10      | 1,000          | 8            | n/a             | 5,000                  | 5                        | 50 <sup>h</sup>   | 20 <sup>i</sup> | 1,500                  | 10                  | 8              | - 1            | 250          | 80                         | 10              | 20                    | n/a           | 2,500     | n/a                  | 2,500          | n/a         | 20          | 20                 | 3,000                 |
| BCWQG Aqua<br>Short-term Ma | atic Life                   | n/a             | 5       | n/a            | n/a          | n/a             | n/a                    | 0.038-2.8 <sup>d</sup>   | 1 (Cr(+6))        | 110             | 2.05-64.0 <sup>d</sup> | 3-902 <sup>d</sup>  | n/a            | n/a            | 2,000        | n/a                        | n/a             | 0.1-3 <sup>d</sup>    | n/a           | n/a       | n/a                  | n/a            | n/a         | n/a         | n/a                | 33-460.5 <sup>d</sup> |
| BCWQG Aqua<br>Long-term Ave |                             | 9               | n/a     | 1,000          | 0.13         | n/a             | 1,200                  | 0.018-0.457 <sup>d</sup> | n/a               | 4               | 2-26.4 <sup>d</sup>    | 3-38.5 <sup>d</sup> | n/a            | n/a            | 1,000        | 25-150 <sup>d</sup>        | 2               | 0.05-1.5 <sup>d</sup> | n/a           | n/a       | 0.8                  | n/a            | n/a         | 8.5         | n/a                | 7.5-435 <sup>d</sup>  |
| Trip Blanks                 |                             |                 |         |                |              |                 |                        |                          |                   |                 |                        |                     |                |                |              |                            |                 |                       |               |           |                      |                |             |             |                    |                       |
| EV_ECgw                     | 2017 03 30                  | < 0.10          |         | < 0.050        |              | < 0.050         | < 10                   | < 0.0050                 | < 0.10            | < 0.10          | < 0.20                 | < 0.050             | < 1.0          | < 0.00050      | < 0.050      | < 0.50                     | < 0.050         | < 0.010               | < 50          | < 0.20    |                      | < 0.10         |             |             | < 0.50             | < 1.0                 |
|                             | 2017 06 28                  | < 0.10          | < 0.10  | < 0.050        | < 0.020      | < 0.050         | < 10                   | < 0.0050                 | < 0.10            | < 0.10          | < 0.50                 | < 0.050             | < 1.0          | < 0.0050       | < 0.050      | < 0.50                     | < 0.050         | < 0.010               | < 50          | < 0.20    | < 0.010              | < 0.10         | < 10        | < 0.010     | < 0.50             | < 3.0                 |
|                             | 2017 09 19                  | -               | -       | -              | -            | -               | -                      | -                        | -                 | -               | -                      | -                   | -              | -              | -            | -                          | -               | -                     | -             | -         | -                    | -              | -           | -           | -                  | -                     |
| 51/ 140 5                   | 2017 10 17                  | < 0.10          |         | < 0.050        |              | < 0.050         | < 10                   | < 0.0050                 | < 0.10            | < 0.10          | < 0.50                 | < 0.050             | < 1.0          | < 0.0050       | < 0.050      | < 0.50                     | < 0.050         | < 0.010               | < 50          | < 0.20    |                      | < 0.10         |             |             | < 0.50             | < 3.0                 |
| EV_MCgwD                    | 2017 03 29                  | < 0.10          |         | < 0.050        |              | < 0.050         | < 10                   | < 0.0050                 | < 0.10            | < 0.10          | < 0.20                 | < 0.050             | < 1.0          | < 0.00050      | < 0.050      | < 0.50                     | < 0.050         | < 0.010               | < 50          | < 0.20    |                      | < 0.10         | < 10        |             | < 0.50             | < 1.0                 |
|                             | 2017 06 27                  | < 0.10          | < 0.030 | < 0.050        | < 0.020      | < 0.050         | < 5.0                  | < 0.0050                 | < 0.10            | < 0.050         | < 0.50                 | < 0.030             | < 1.0          | < 0.0050       | < 0.050      | < 0.10                     | < 0.050         | < 0.010               | < 50          | < 0.20    | < 0.010              | < 0.050        | < 10        | < 0.010     | < 0.50             | < 3.0                 |
|                             | 2017 09 19<br>2017 10 17    | - < 0.10        | - 0.10  | - < 0.050      | -            | - < 0.050       | - < 10                 | - < 0.0050               | - < 0.10          | - < 0.10        | - < 0.50               | - < 0.050           | - < 1.0        | - < 0.0050     | - < 0.050    | - < 0.50                   | - < 0.050       | - < 0.010             | -<br>< 50     | - < 0.20  | -                    | - < 0.10       | -<br>< 10   | - < 0.010   | - < 0.50           | - < 3.0               |
|                             | 2017 10 17                  | < 0.10          | < 0.10  | < 0.050        | < 0.020      | < 0.030         | < 10                   | < 0.0050                 | < 0.10            | < 0.10          | < 0.50                 | < 0.000             | < 1.0          | < 0.0050       | < 0.000      | < 0.50                     | < 0.000         | < 0.010               | < 00          | < 0.20    | < 0.010              | < 0.10         | < 10        | < 0.010     | < 0.50             | < 3.0                 |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPD Denotes relative percent difference.

\* RPDs are not calculated where one or more concentrations are less than five times RDL.

Parameter exceeded hold time.

<sup>a</sup> Standard to protect freshwater aquatic life.

<sup>b</sup> Guideline to protect freshwater aquatic life, short-term maximum (i.e. "acute").

 $^{\rm c}\,$  Guideline to protect freshwater aquatic life, long-term average (i.e. "chronic").

- <sup>d</sup> Standard varies with Hardness.
- <sup>e</sup> Standard varies with pH.

<sup>f</sup> Standard varies with Chloride.

<sup>g</sup> Standard varies with crop.

<sup>h</sup> Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

<sup>1</sup> Interim BC MoE Regional Background Estimate (Protocol 9 Determining Background Groundwater Quality).

<sup>1</sup> There is no Zinc standard specified for H > 400; therefore, the standard for H=300-<400 is applied as a conservative comparison.

BOLD BOLD\*\* INVERSE

Concentration greater than CSR Aquatic Life (AW) standard

Concentration greater than BCWQG Aquatic Life Short-term Maximum (AW) guideline or BCWQG Aquatic Life Long-term Average (AW) guideline (applicable to EV\_BCgw, EV\_MCgwD, EV\_MCgwS, EV\_OCgw)

SHADOW Concentration greater than CSR Irrigation Watering (IW) standard Concentration greater than CSR Livestock Watering (LW) standard

SHADED Concentration greater than CSR Drinking Water (DW) standard

#### TABLE 5: Groundwater Analytical Results compared to Secondary Screening Criteria

| Sample                     | Sample Date                           | Selenium    |
|----------------------------|---------------------------------------|-------------|
| Location                   | (yyyy mm dd)                          | μg/L        |
| Groundwater Quality Crit   | teria                                 |             |
| Guideline for Canadian Dri | nking Water Quality (DW)              | 50          |
| Site Performance Objective | e: EV_ER1 (0200393)                   | 19          |
| Compliance Point: EV_MC    | C2 (E300091)                          | 28          |
| Michel Creek               |                                       |             |
| EV_BCgw                    | 2017 03 14                            | 20.3        |
|                            | 2017 03 30                            | 37.7        |
|                            | 2017 05 16                            | <u>59</u>   |
|                            | 2017 06 27                            | 17.9        |
|                            | 2017 08 23                            | <u>56.8</u> |
|                            | 2017 10 18                            | 34.5        |
| Elk River Distal to EVO    | · · · · · · · · · · · · · · · · · · · |             |
| EV_ER1gwS                  | 2017 02 15                            | 10.3        |
| EV_ER1gwD                  | 2017 10 24                            | 10.5        |

Associated data provided by Teck Coal Ltd.

All terms defined within the body of SNC-Lavalin's report.

| BOLD   | Concentration greater than Canadian Drinking Water Quality guideline |
|--------|----------------------------------------------------------------------|
| SHADOW | Concentration greater than applicable Site Performance Objective     |
| SHADED | Concentration greater than applicable Compliance Point               |



Appendix I-5: CMO 2017 Annual Groundwater Monitoring Summary and Recommendations



# Appendix I-5: Coal Mountain Operations 2017 Annual Groundwater Monitoring

## Summary

Teck Coal Ltd. (Teck, 2018) completed the 2017 Annual Report for the Coal Mountain Operations (CMO) Site Specific Groundwater Monitoring Program (SSGMP). CMO is located in southeastern British Columbia (BC), approximately 25 km southeast of the town of Sparwood, and is one of Teck's five active coal mines in the Elk Valley. The following information was taken from the 2017 CMO Annual Report, which was completed to fulfill the reporting requirements outlined in Section 10.4 of Permit 107517 (October 13, 2017).

According to the groundwater conceptual site model (CSM) for CMO described by Teck (2018), hydrostratigraphy in the valleys includes a layer of clay overlying bedrock, and a thin layer of gravel overlying clay. The clay layer can be silty, sandy, and/or bouldery, and is typically 3 to 5 m thick, but is over 10 m thick at some locations and not present at other locations. The gravel layer and relatively shallow fractured or weathered bedrock are believed to be the main water bearing units. The clay layer may be acting as a confining unit, and/or a relatively low permeability aquitard allowing the shallow gravel to potentially be perched above the deeper bedrock. Groundwater flow is largely driven by differences in topography between the mountain tops and the valley bottoms. Flow in the surficial gravel unit is currently interpreted to originate from shallow recharge along the valley walls and in the valley bottoms.

The CMO SSGMP includes a total of 15 monitoring wells located in the Michel Creek and Corbin Creek valleys and within the mine footprint which are monitored and sampled quarterly for a specific list of analytes. The wells monitored and sampled as part of the 2017 annual program are listed in Table 3 along with the associated rationale. Monitoring well locations are shown on Figure 1 attached (extracted from the 2017 CMO Annual Report). There were zero non-compliances in 2017. Groundwater quality samples were collected from all wells in all quarters of 2017, except E305217 (CM\_MW4-DP). This well was frozen at the time of sampling, thus, a sample could not be collected. Samples were collected using low-flow sampling techniques. Samples collected in December and March from E305213 [CM\_MW4-SH] did not pass QA/QC checks due to the turbidity and the charge balance being above acceptable levels.

CMO's groundwater data were compared to the BC Contaminated Sites Regulation (CSR) water quality standards for aquatic life, drinking water, livestock, and irrigation, in addition to surface water concentration limits or SPOs for constituents of interest from Permit 107517: cadmium (dissolved), nitrate-N, total selenium and sulphate. Eighty (individual parameter) results were elevated above at least one of the CSR standards in 2017. Groundwater quality data for CI are shown in plan view in Figures 16, 18, 20 and 22 attached (extracted from the 2017 CMO Annual Report).

Concentrations above the CSR standards were measured for barium, cadmium, chloride, fluoride, magnesium, manganese, molybdenum, nitrate, selenium, sodium, and sulphate. Concentrations of many parameters were elevated in both background wells and downstream wells and are not interpreted to be a result of mining activities. Concentrations of selenium, nitrate and sulphate in mine influenced wells are associated with elevated loadings from mining activity. The reason for the remaining exceedances is uncertain, however it may be that the bedrock in the area has naturally elevated levels of some



constituents, as observed in the well upstream of the site, CM\_MW3. No synthetic additives were used during drilling of the wells. Sulfate and selenium concentrations were relatively high in shallow groundwater at the northern end of the property, in the Corbin Creek valley and Michel Creek valley (downstream of the confluence with Corbin Creek), compared to deep groundwater and locations to the southern end of the site. Deep groundwater is relatively unaffected in these areas.

Groundwater levels (thus flows) have not changed significantly from 2016.

In general, while there are some local impacts to groundwater quality around open pits or other mine facilities, the impacts are considered to be relatively insignificant. When compared to Permit 107517 secondary screening criteria (for surface water), groundwater quality was below those limits. There were some exceedances of CSR guidelines at MW7 wells adjacent to the 34 pit, but no trends of concern. Overall, groundwater contributions to surface water are considered to be minor.

An update of the SSGMP is due in 2018 and the 2017 and historical groundwater monitoring results will be used in the development of an updated plan.

## Recommendations

Recommendations were made for the 2018 SSGMP, including continued monitoring at existing locations and collection of additional field blanks for quality assurance/quality control (QA/QC) as follows:

- > Continue monitoring at all groundwater monitoring locations;
- Confirm collection of appropriate numbers of quality assurance samples. Add a second duplicate and field blank for monitoring rounds that exceed ten (10) samples;
- > Conduct internal review of anomalous (outlier) data as quickly as possible after receipt of the laboratory data; and

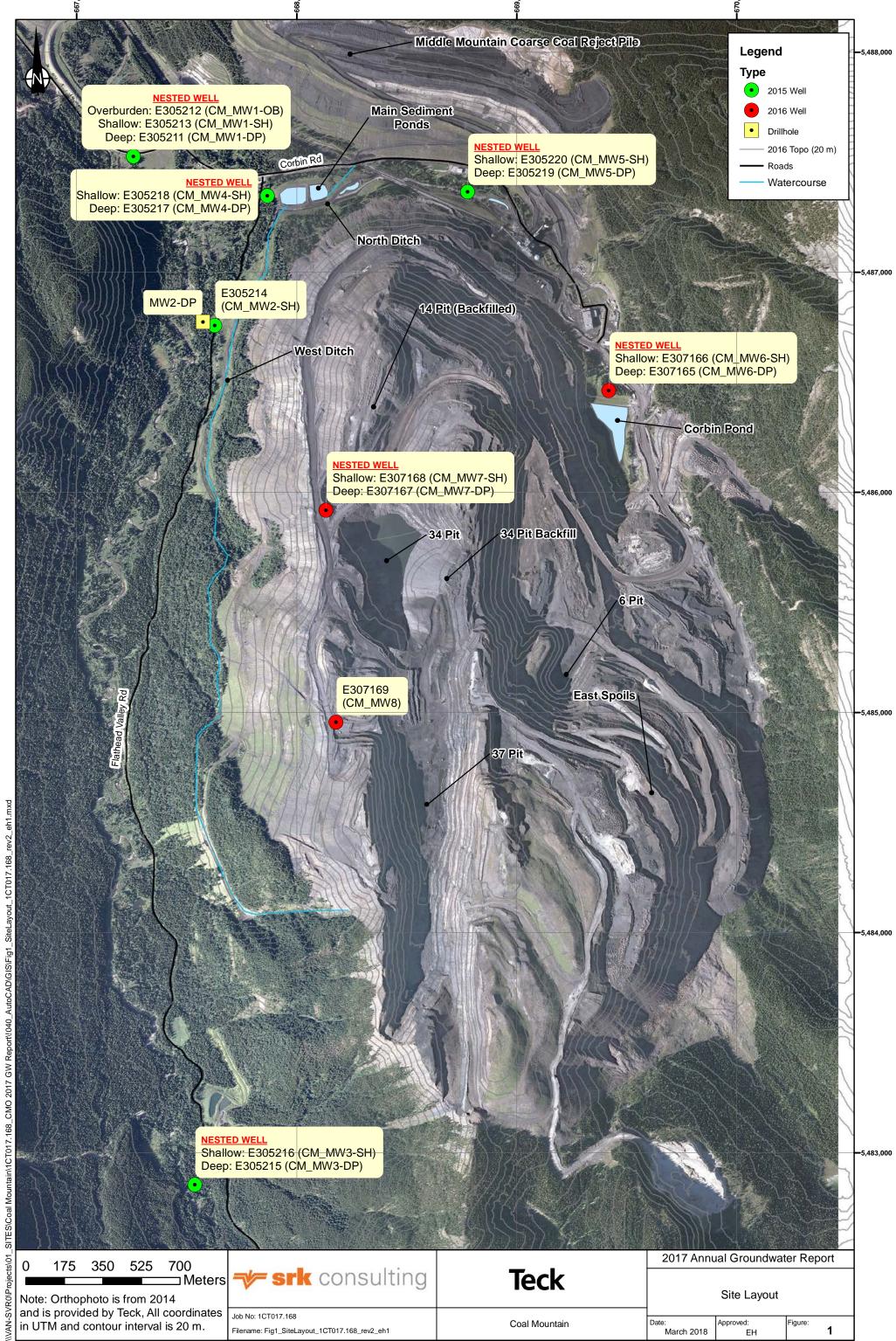
For the 2018 annual monitoring report, review data at E307168 (CM\_MW7-SH) and E307167 (CM\_MW7-DP) in relation to 34 Pit water level and water quality data to better assess potential effects of 34 pit seepage on groundwater quality. Assess water quality trends to determine if the observed increasing trend in cadmium continues.

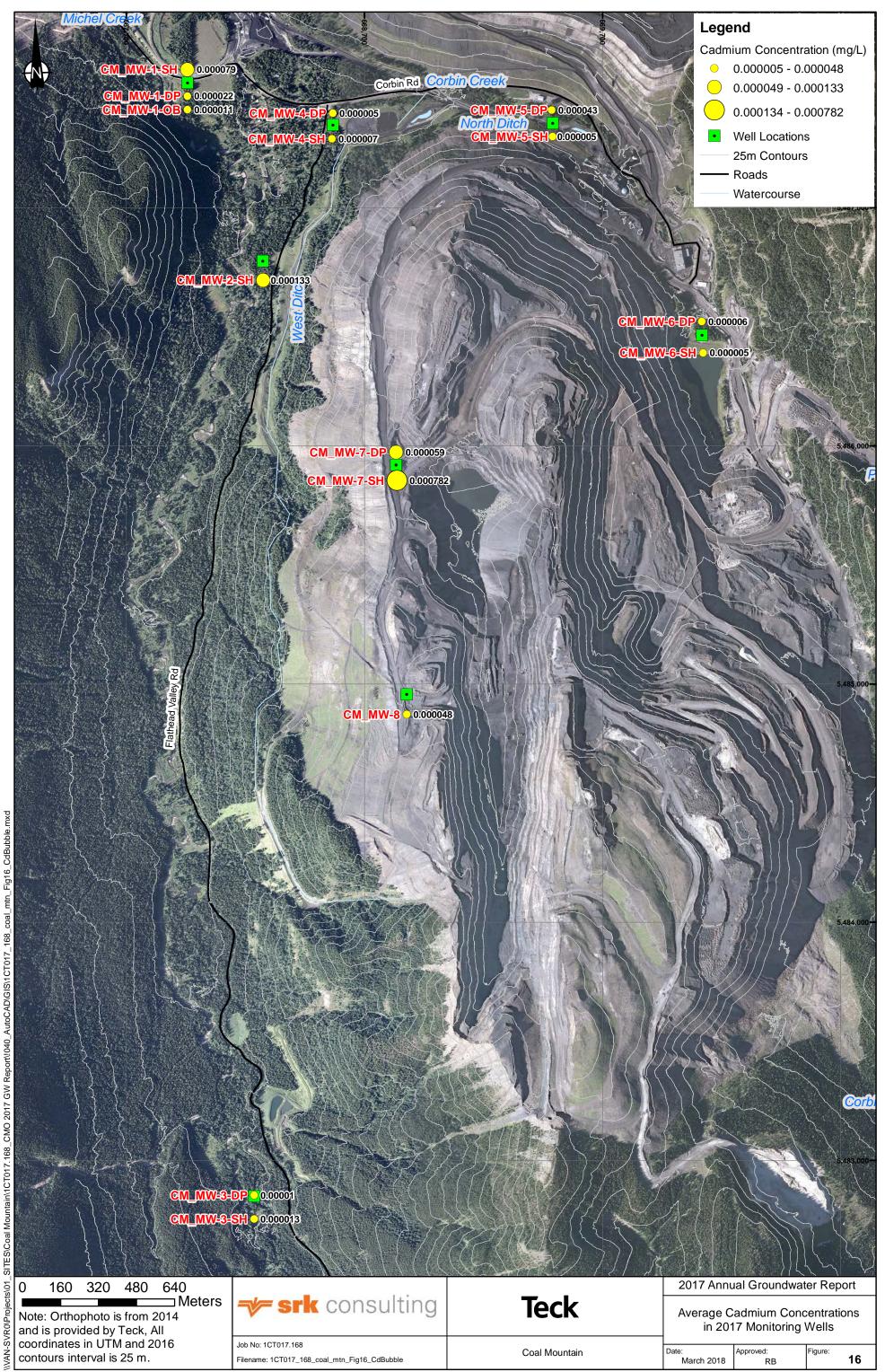
### Table 3: Summary of Groundwater Monitoring Locations

|         |                        | U       | ſMs        | Monitoring                      |                                                                                                                                                                                                                             | Hydraulic Conductivity                       | Depth  | Sampling/Water                             |
|---------|------------------------|---------|------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------|--------------------------------------------|
| EMS ID  | Site ID*               | Easting | Northing   | Program                         | Rationale                                                                                                                                                                                                                   | (m/s)                                        | (mbgs) | Level Monitoring<br>Frequency <sup>6</sup> |
| E305211 | CM_MW1-DP <sup>1</sup> |         |            | Site and Elk<br>Valley Regional |                                                                                                                                                                                                                             | 6.0x10 <sup>-6</sup>                         | 37.27  | Quarterly                                  |
| E305212 | CM_MW1-OB <sup>2</sup> | 667958  | 5487527    | Site and Elk<br>Valley Regional | Furthest downgradient well from CMO. Provides information on valley lithology and groundwater (GW) quality, to the receiving environment from the mine, at different depths (deep bedrock, shallow bedrock and overburden). | 6.6x10 <sup>-5</sup> to 1.2x10 <sup>-4</sup> | 4.39   | Quarterly                                  |
| E305213 | CM_MW1-SH <sup>3</sup> |         |            | Site and Elk<br>Valley Regional |                                                                                                                                                                                                                             | 1.2x10 <sup>-7</sup> to 2.0x10 <sup>-7</sup> | 23.49  | Quarterly                                  |
| E305214 | CM_MW2-SH              | 668327  | 5486758    | Site                            | Downgradient of CMO in the Michel Creek Valley. Provides information on lithology and GW quality (influence from CMO dumps). Well is completed in overburden.                                                               | 6.9x10 <sup>-5</sup> – 2.6x10 <sup>-4</sup>  | 4.43   | Quarterly                                  |
| E305215 | CM_MW3-DP              | 668237  | 5482854    | Site                            | Upgradient of CMO in the Michel Creek Valley. Provides information on lithology and background GW quality, at different                                                                                                     | 5.0x10 <sup>-8</sup> - 4.7x10 <sup>-7</sup>  | 16.27  | Quarterly                                  |
| E305216 | CM_MW3-SH              | 008237  | 5482854    | Site                            | depths (shallow bedrock and overburden).                                                                                                                                                                                    | 1.3x10 <sup>-4</sup> - 6.5x10 <sup>-4</sup>  | 6.62   | Quarterly                                  |
| E305217 | CM_MW4-DP              | 668566  | 5487348    | Site                            | Downgradient of CMO in the Corbin Creek Valley. Provides information on lithology and GW quality influenced by main                                                                                                         | N/A <sup>4</sup>                             | 28.19  | Quarterly                                  |
| E305218 | CM_MW4-SH              | 002800  | 548/348    | Site                            | sediment pond at different depths (deep and shallow bedrock).                                                                                                                                                               | N/A <sup>4</sup>                             | 19.05  | Quarterly                                  |
| E305219 | CM_MW5-DP              | 669476  | 5487365    | Site                            | Downgradient of CMO in the Corbin Creek Valley central. Provides information on lithology and GW quality influenced by                                                                                                      | 2.2x10 <sup>-6</sup> - 5.1x10 <sup>-6</sup>  | 25.86  | Quarterly/Continuous                       |
| E305220 | CM_MW5-SH              | 009470  | 5487305    | Site                            | 14 Pit and North ditch, at different depths (shallow bedrock and shallow overburden)                                                                                                                                        | 7.2x10 <sup>-5</sup> – 1.5x10 <sup>-5</sup>  | 10.11  | Quarterly/Continuous                       |
| E307166 | CM_MW6-SH              | 670110  | E 40C 4C 4 | Site                            | Downgradient of Corbin Pond. Provides information on groundwater quality downgradient of Corbin Pond, spoils, and the                                                                                                       | < 1x10 <sup>-7</sup>                         | 20.73  | Quarterly                                  |
| E307165 | CM_MW6-DP              | 670118  | 5486464    | Site                            | Corbin rock drain at different depths (shallow bedrock and overburden).                                                                                                                                                     | 2x10 <sup>-6</sup>                           | 41.70  | Quarterly                                  |
| E307168 | CM_MW7-SH              | 660000  | E49E020    | Site                            | Within the mine footprint, northwest of 34 Pit. Provides information on the water level between 34 Pit and Michel Creek                                                                                                     | ≈3x10 <sup>-5(5)</sup>                       | 50.60  | Quarterly                                  |
| E307167 | CM_MW7-DP              | 668833  | 5485920    | Site                            | and on groundwater quality of seepage from 34 pit.                                                                                                                                                                          | 3x10 <sup>-5</sup>                           | 67.54  | Quarterly                                  |
| E307169 | CM_MW8                 | 668878  | 5484957    | Site                            | Within the mine footprint, west of the northern end of 37 Pit. Provides information on the water level between 37 Pit and Michel Creek and on groundwater quality adjacent to 37 Pit.                                       | ≈5x10 <sup>-9(5)</sup>                       | 104.02 | Quarterly                                  |

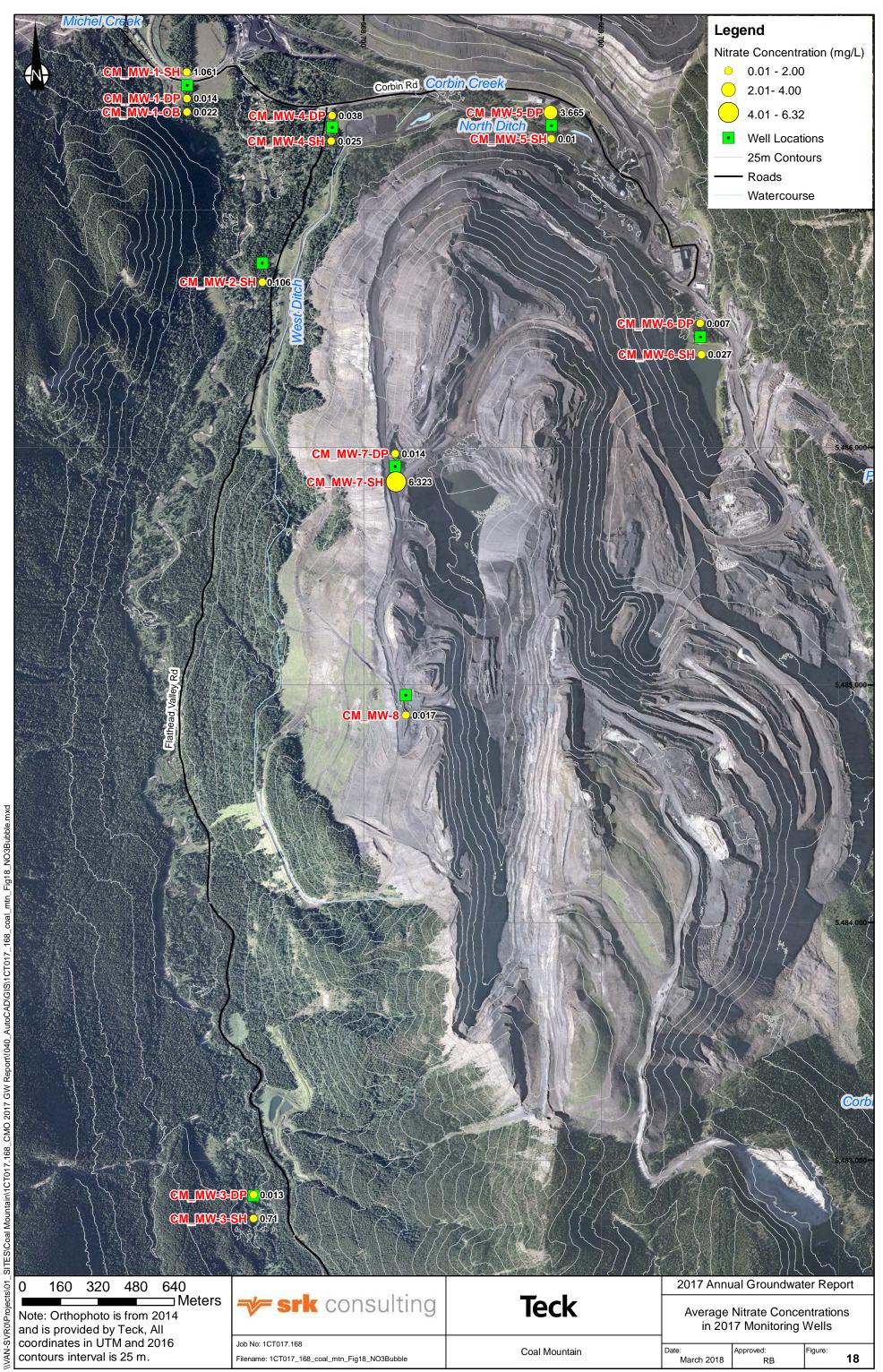
\*Notes:

1. DP = deep well completion (completed in bedrock)

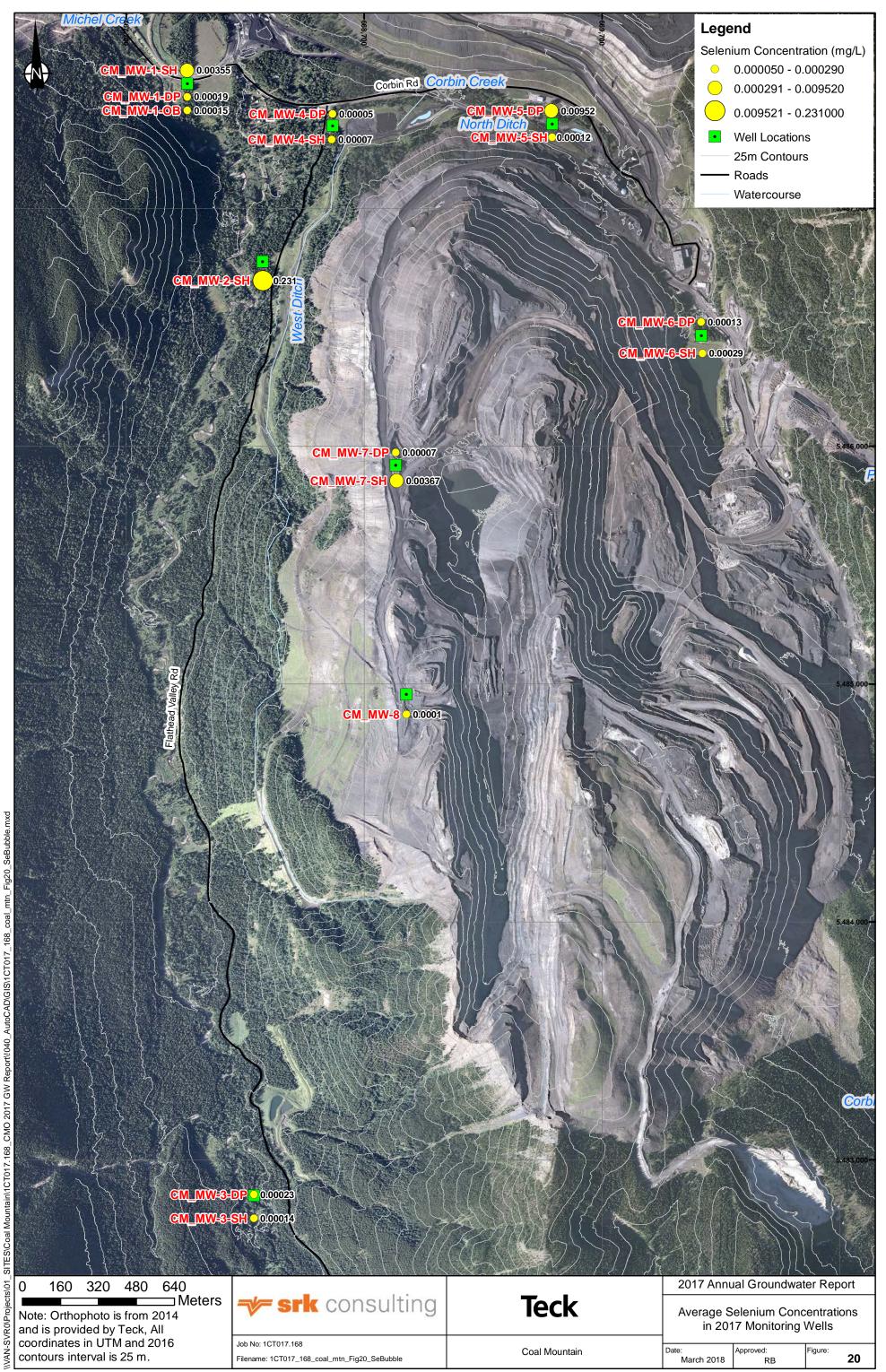

2. OB = near surface overburden well completion


3. SH = shallow well completion (completed in overburden or bedrock, as noted)

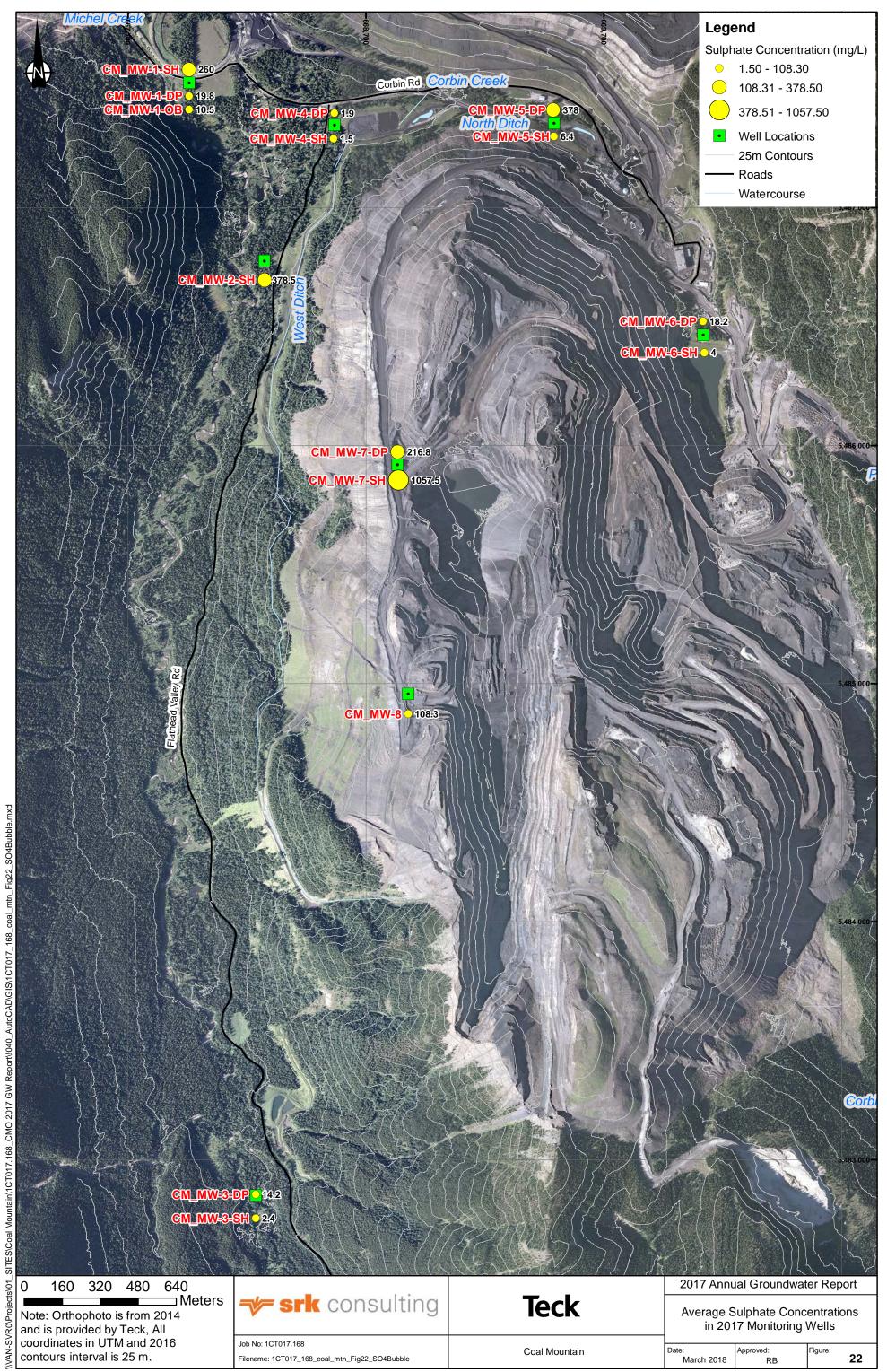
4. N/A = Hydraulic tests not completed at CM\_MW4 as they became flowing artesian once completed


5. ≈ = Specific hydraulic tests not completed but estimate of hydraulic conductivity made from recovery time after development/purging

6. All water levels monitored quarterly at time of sampling with the exception of CM\_MW5 where both wells have a sensor for continuous monitoring







|                                                                                              | DP = 0.00001<br>SH = 0.000013                                      |               | Corb<br>5,483,000                                                                            |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------|
| 0 160 320 480 640<br>Meters<br>Note: Orthophoto is from 2014<br>and is provided by Teck, All | → srk consulting                                                   | Teck          | 2017 Annual Groundwater Report<br>Average Cadmium Concentrations<br>in 2017 Monitoring Wells |
| coordinates in UTM and 2016 contours interval is 25 m.                                       | Job No: 1CT017.168<br>Filename: 1CT017_168_coal_mtn_Fig16_CdBubble | Coal Mountain | Date: Approved: Figure: <b>16</b>                                                            |



| GM_MW+9=<br>CM_MW+9=                                                                                                                                      |                                                                     |               |                     |                                | 5.483.000-        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|---------------------|--------------------------------|-------------------|
| 0 160 320 480 640<br>Meters<br>Note: Orthophoto is from 2014<br>and is provided by Teck, All<br>coordinates in UTM and 2016<br>contours interval is 25 m. | → <b>= srk</b> consulting                                           | Teck          | Average             | ual Groundwat<br>Nitrate Conce | entrations        |
|                                                                                                                                                           | Job No: 1CT017.168<br>Filename: 1CT017_168_coal_mtn_Fig18_NO3Bubble | Coal Mountain | Date:<br>March 2018 | Approved:<br>RB                | Figure: <b>18</b> |



|                                                                                              | DP = 0.00023<br>SM = 0.00014                                       |               | Corb<br>5.483,000-                                                                            |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|
| 0 160 320 480 640<br>Meters<br>Note: Orthophoto is from 2014<br>and is provided by Teck, All |                                                                    | Teck          | 2017 Annual Groundwater Report<br>Average Selenium Concentrations<br>in 2017 Monitoring Wells |
| coordinates in UTM and 2016 contours interval is 25 m.                                       | Job No: 1CT017.168<br>Filename: 1CT017_168_coal_mtn_Fig20_SeBubble | Coal Mountain | Date: Approved: Figure: 20                                                                    |



| GM_MW+s=<br>GM_MW+s=                                                                      |                                                                     |               | Corb<br>5.183,000-                                                                            |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|
| 0 160 320 480 640<br>Meters<br>Note: Orthophoto is from 2014                              | <b>→&gt;= srk</b> consulting                                        | Teck          | 2017 Annual Groundwater Report<br>Average Sulphate Concentrations<br>in 2017 Monitoring Wells |
| and is provided by Teck, All<br>coordinates in UTM and 2016<br>contours interval is 25 m. | Job No: 1CT017.168<br>Filename: 1CT017_168_coal_mtn_Fig22_SO4Bubble | Coal Mountain | Date: Approved: Figure: Approved: RB 22                                                       |



Appendix I-6: Regional Conceptual Site Model



# Appendix I-6: Regional Conceptual Site Model

The Regional CSM is described below with salient points summarized in Section 2 of the main body of the report. The description below builds on the Regional CSM developed for the Synthesis Report (SNC-Lavalin, 2015) using updated information from annual groundwater monitoring data (SNC-Lavalin, 2016, 2017) and recent investigations. Localized conceptual hydrogeology discussion by Study Area and supporting data are provided in Section 5.

## Geology

For reference, bedrock geology for northern and southern portions of MUs 1-4 is shown on Drawings 635544-304 and -305. Stratigraphy is summarized Table I-A and comprises Lower Cretaceous to Mississippian siliciclastic sedimentary rocks deposited in a coastal environment. The Kootenay Group hosts the coal-bearing Mist Mountain Formation and overlies the Fernie Formation, the Spray River Group, the Rocky Mountain Formation, and the Rundle Group. Open-pit mining is used to extract coal from the Mist Mountain Formation along the ridge-tops of the mountain ranges bordering the Elk Valley and tributary drainages to the east. The Alexander Creek syncline is the dominant structure within the coal-bearing units. Rocks are generally folded in large gentle folds and faulted by westward dipping thrust and normal faults, such as the Erickson normal fault. Older carbonate rocks lie to the east of the fault and younger coal-bearing rocks lie to the west. In general, the more resistant rocks are in upland areas and valley-bottoms are eroded into weaker Mesozoic rocks and faulted areas.

| Geologic Period                                 | Lithostratigra | phic Units                 | Principal Rock Types                                                         |
|-------------------------------------------------|----------------|----------------------------|------------------------------------------------------------------------------|
| Lower Cretaceous                                | Blairmore      | Group                      | massive bedded sandstones and conglomerates                                  |
|                                                 |                | Elk Formation              | sandstone, siltstone, shale, mudstone, chert pebble conglomerate, minor coal |
| Lower Cretaceous to<br>Upper Jurassic           | Kootenay Group | Mist Mountain<br>Formation | sandstone, siltstone, shale, mudstone, thick coal seams                      |
|                                                 |                | Morrissey<br>Formation     | fine- to coarse-grained, slightly ferruginous<br>quartz-chert sandstone      |
| Jurassic                                        | Fernie For     | rmation                    | shale, siltstone, fine-grained sandstone                                     |
| Triassic                                        | Spray Rive     | er Group                   | sandy shale, shale quartzite                                                 |
| Permian and<br>Carboniferous<br>(Pennsylvanian) | Rocky Mountai  | n Formation                | quartzite, calcareous sandstone                                              |
| Carboniferous<br>(Mississippian)                | Rundle (       | Group                      | limestone and shale                                                          |

#### Table I-A: Stratigraphy of the Study Area

After Golder, 2013



Surficial geology for northern and southern portions of the Study Area is inferred from soil mapping (Kelly and Sprout, 1956) and is shown on Drawings 635544-302 and -303. George et. al., 1987 provides an excellent description of the Quaternary history of the Elk Valley and, in addition to mapping, was used to infer subsurface conditions in areas where well data was not available. The Elk Valley in MUs 1-4 was ice-free for much of Quaternary Period, and underwent a single ice advance during the late Wisconsin glaciation (George et al., 1987). The advance and subsequent retreat of the ice sheet shaped the surficial landscape. The highest elevations are dominated by exposed bedrock and thin colluvial deposits, often less than a metre thick. Compact, massive morainal till deposits, ranging from about 6 m to 15 m, and thicker colluvial deposits (e.g., talus piles, weathered rock, and landslide debris) are common in middle elevations along valley flanks and locally within the valley-bottoms. In some locations, till was deposited into the main valley-bottoms by tributary glaciers.

The valley-bottoms are infilled with a mixture of overlapping glacial meltwater channels, glaciolacustrine sediments, deltaic deposits, terraces, modern fluvial sediments and till, which are generally on the order of tens of metres thick (collectively referred to as "valley-bottom deposits"). A significant portion of the Elk Valley above the confluence with the Fording River is covered by sandy glacial outwash. Below the confluence with the Fording River, surficial deposits are mostly clay-rich till, glaciolacustrine clay, and alluvial terrace deposits. Smaller alluvial fans are common at the outflow of tributary streams. Within the Elk River and Michel Creek floodplains, alluvial sediments are ubiquitous, consisting of interlayered sand, silt, gravel, and clay, with sand as the dominant component (Kelly and Sprout, 1956).

## Hydrogeology

General physical hydrogeology of the Elk Valley in MUs 1-4 is discussed below.

## Groundwater Recharge

In upland areas (i.e., valley flanks and ridges), rainfall and snow melt recharges groundwater at higher elevations infiltrating through relatively thin overburden, mining spoils, and bedrock. Recharge from precipitation across mine sites will be highly variable, depending on soil/bedrock hydraulic properties, water management strategies, and the presence of mine features such as spoils/dumps, pits and roads. Estimated recharge rates in upland areas of the Elk Valley ranged between 2% (Summit, 2009) and 30% (Harrison et al., 2000a, 2000b), with most water balance and numerical models using between 9 and 24% of the average annual precipitation rate.

In valley-bottoms, recharge to groundwater will be a combination of localized rainfall/snow melt in the valley-bottom and recharge from surface water where the elevation of the surface water body is higher than the groundwater phreatic surface (i.e., groundwater table).



## Bedrock Hydrogeology

Groundwater occurrence in bedrock is predominantly limited to fracture flow within bedding, joints, or along faults, and groundwater flow in bedrock generally represents a relatively small contribution to the groundwater in the valley-bottoms in the Fording River and Elk Valley. Golder (2017) and Hemmera (2017) indicated that flow velocities in bedrock are approximately 1 m/year in comparison to hundreds of metres per year in overburden. The bedrock flow system can be generally divided up into shallow, intermediate and deep flow systems (SNC-Lavalin, 2015; Golder, 2014, 2015; Harrison et al., 2000a, 2000b; Forster and Smith 1988a, 1988b; Toth, 1963):

- > The shallow bedrock flow system consists of groundwater present in weathered or fractured bedrock that is at or near the surface, or near the overburden contact. Groundwater in shallow bedrock is directly hydraulically connected to the overburden flow system and; therefore, localized flow in shallow bedrock is expected both within the existing mining footprint and on the flanks of the mountains.
- The intermediate bedrock flow system has longer flow paths and residence times than the shallow system, with discharge to the valley flanks and not the valley-bottoms of the main stems. The intermediate flow system is controlled by variations in bedrock permeability where more permeable units outcrop on the valley flank, such as where fractured interburden rocks exist between coal seams or overlie a lower permeability unit. Discharge from these exposures occurs along ridges or flanks of upland areas and results in surface or shallow groundwater flow in the tributary drainage; therefore, the intermediate flow system is still relatively localized and does not play an important role in regional groundwater flow.
- A deeper, regional flow system exists that ultimately discharges to the valley-bottom sediments; however, the deep system represents a relatively small portion of total regional groundwater flow. Also, residence times for the deep flow system have been modelled to be on the order of decades to millennia at LCO (Teck, 2011) and EVO (Golder, 2015). Consequently, from a water balance perspective, regional flow through deeper bedrock is negligible compared to flow through overburden.

Shallow and intermediate systems discharge to either the valley flanks or upland overburden materials on the valley flanks, and only the deep bedrock system is considered to contribute to the regional flow system. This is further supported by academic studies of groundwater flow systems:

- Harrison et al. (2000a, 2000b) indicated little to no groundwater inputs from deep bedrock to valleybottom-sediments; and
- Gleeson and Manning (2008) indicated deep regional groundwater flow through bedrock in areas of moderate to high relief would only be important on the geologic timescale (i.e., millennia).

To support the conclusion that regional flow through bedrock is minimal, hydraulic conductivity data from bedrock hydraulic testing programs at each Operation were reviewed, compiled and presented below in Table I-B.

A geometric mean was calculated for each of the Operations; it is noted that the geometric mean at EVO includes the 55 boreholes tested using airlifting techniques (although specific hydraulic conductivity values are not shown for these locations). The following can be concluded from the data and review of the related reports:



- The geometric means for bedrock hydraulic conductivity range between 1 x 10<sup>-6</sup> to 5 x 10<sup>-8</sup> m/s, which is two to five orders of magnitude less than typical values for surficial sediments, with the exception of till deposits.
- Data from the extensive testing at EVO indicate a depth dependency (Golder, 2015), where shallow bedrock has a higher hydraulic conductivity than deeper bedrock. In general, this is consistent with findings at other Operations as the relatively shallower boreholes and monitoring wells had higher values than deeper. There were some exceptions where deeper boreholes at LCO and FRO indicated a higher hydraulic conductivity; however, the assessment of these locations was that the aquifer was of limited extent and therefore not connected to a regional flow system.

The hydraulic conductivity data and observed decreases with depth indicate that the bulk rock hydraulic conductivity is relatively low, and supports the concept that the relative contribution to the valley bottoms is minimal. Consequently, the Regional CSM does not consider groundwater flowing through bedrock to be important for understanding pathways of mine-influenced groundwater.

| Operation | MW or BH | MW/BH ID           | Test Method                                     | Hydraulic Conductivity [K] [m/s]            | Reference          | Geometric Mean K (m/s) |
|-----------|----------|--------------------|-------------------------------------------------|---------------------------------------------|--------------------|------------------------|
| FRO       | BH       | FR_2408            | Pumping Test                                    | 3x10 <sup>-7</sup>                          | Golder (2014)      |                        |
| FRO       | BH       | FR 3001            | Pumping Test                                    | 3x10 <sup>-8</sup>                          | Golder (2014)      |                        |
| FRO       | BH       | FR_3041            | Pumping Test                                    | 6x10 <sup>-8</sup>                          | Golder (2014)      |                        |
| FRO       | BH       | FR_3109            | Pumping Test                                    | 8x10 <sup>-7</sup>                          | Golder (2014)      |                        |
| FRO       | BH       | FR_3109            | Observation                                     | 1x10 <sup>-6</sup>                          | Golder (2014)      |                        |
| FRO       | BH       | FR 3096            | Pumping Test                                    | 2x10 <sup>-7</sup>                          | Golder (2014)      |                        |
| FRO       | BH       | 4-184              | Single Well Pressure Response (Packer) Tests    | 3 x 10 <sup>-6</sup>                        | Golder (2012)      |                        |
| FRO       | BH       | 4-189              | Single Well Pressure Response (Packer) Tests    | 7 x 10 <sup>-6</sup> - 4 x 10 <sup>-5</sup> | Golder (2012)      | 4x10 <sup>-7</sup>     |
| FRO       | BH       | 5-238              | Single Well Pressure Response (Packer) Tests    | 7 x 10 <sup>-8</sup>                        | Golder (2012)      |                        |
| FRO       | BH       | 5-240              | Single Well Pressure Response (Packer) Tests    | $1 \times 10^{-8} - 2 \times 10^{-8}$       | Golder (2012)      |                        |
| FRO       | BH       | 5-247              | Single Well Pressure Response (Packer) Tests    | 2 x 10 <sup>-8</sup>                        | Golder (2012)      |                        |
| FRO       | BH       | 5-249              | Single Well Pressure Response (Packer) Tests    | 8 x 10 <sup>-8</sup>                        | Golder (2012)      |                        |
| FRO       | BH       | 3313               | Single Well Pressure Response (Packer) Tests    | 2 x 10 <sup>-9</sup> – 1 x 10 <sup>-6</sup> | Golder (2016)      |                        |
| FRO       | BH       | 3325               | Single Well Pressure Response (Packer) Tests    | 3 x 10 <sup>-7</sup> - 7 x 10 <sup>-6</sup> | Golder (2016)      |                        |
| FRO       | BH       | 3326               | Single Well Pressure Response (Packer) Tests    | 2 x 10 <sup>-9</sup> – 2 x 10 <sup>-5</sup> | Golder (2016)      |                        |
| GHO       | MW       | GH_MW-GHC-1D       | Packer Test in open BH; Slug Test - rising head | 5x10 <sup>-5</sup>                          | Hemmera (2015)     | 1.106                  |
| GHO       | MW       | GH_MW-UTC-1D       | Slug test                                       | 2.4x10 <sup>-8</sup>                        | Hemmera (2017)     | 1x10 <sup>-6</sup>     |
| LCO       | BH       | LC_RC2453          | Slug Test - falling head                        | 1x10 <sup>-8</sup>                          | Teck (2011)        |                        |
| LCO       | BH       | LC_RC2453          | Constant Rate Test @ 9 hrs                      | 2x10 <sup>-7</sup>                          | Teck (2011)        |                        |
| LCO       | BH       | LC_BR0524          | Slug Test - falling head                        | 4x10 <sup>-6</sup>                          | Teck (2011)        |                        |
| LCO       | BH       | LC_BR0524          | Constant Rate Test @ 8 hrs                      | 3x10 <sup>-7</sup>                          | Teck (2011)        |                        |
| LCO       | BH       | LC_MM0702          | Slug Test - falling head                        | 2x10 <sup>-6</sup>                          | Teck (2011)        |                        |
| LCO       | BH       | LC_MM0702          | Rate measurement from flowing artesian BHs      | 7x10 <sup>-8</sup>                          | Teck (2011)        | 3x10 <sup>-7</sup>     |
| LCO       | BH       | LC_MM0901          | Constant Rate Test @ 6 hrs                      | 3x10 <sup>-5</sup>                          | Teck (2011)        |                        |
| LCO       | BH       | LC_MM0909          | Slug Test - falling head                        | 1x10 <sup>-6</sup>                          | Teck (2011)        |                        |
| LCO       | BH       | LC_MM0706          | Rate measurement from flowing artesian BHs      | 1x10 <sup>-7</sup>                          | Teck (2011)        |                        |
| LCO       | MW       | LCO-WLC-12-10c     | Slug Test - falling head                        | 7.6x10 <sup>-8</sup>                        | Szmigielski (2015) |                        |
| LCO       | MW       | LCO-WLC-12-06c     | Slug Test - falling head                        | 1.4x10 <sup>-8</sup>                        | Szmigielski (2015) |                        |
| EVO       | MW       | EV_BALgw           | Slug Test - falling head                        | 1x10 <sup>-6</sup>                          | Golder (2015)      |                        |
| EVO       | BH       | 22115              | Constant Rate Test @ 5.5 hrs                    | 7x10 <sup>-7</sup>                          | Golder (2015)      |                        |
| EVO       | BH       | 22118              | Constant Rate Test @ 6 hrs                      | 9x10 <sup>-6</sup>                          | Golder (2015)      | 5x10 <sup>-8</sup>     |
| EVO       | BH       | 22205              | Constant Rate Test @ 1.8 hrs                    | 4x10 <sup>-7</sup>                          | Golder (2015)      | 5X10~                  |
| EVO       | BH       | 96107              | Constant Rate Test @ 5 hrs                      | 3x10 <sup>-6</sup>                          | Golder (2015)      |                        |
| EVO       | BH       | 55 exploration BHs | Airlift                                         | 4x10 <sup>-9</sup> - 2x10 <sup>-6</sup>     | Golder (2015)      |                        |
| CMO       | MW       | CM_MW5_DP          | Slug Test - falling head                        | 2.2x10 <sup>-6</sup> - 5.1x10 <sup>-6</sup> | Teck (2017)        |                        |
| CMO       | MW       | CM_MW6_DP          | Slug Test - falling head                        | 2x10 <sup>-6</sup>                          | Teck (2017)        |                        |
| СМО       | MW       | CM_MW7_DP          | Slug Test - falling head                        | 3x10 <sup>-5</sup>                          | Teck (2017)        | 2x10 <sup>-6</sup>     |
| СМО       | MW       | CM_MW7_SH          | Slug Test - falling head                        | 3x10 <sup>-5</sup>                          | Teck (2017)        |                        |
| СМО       | MW       | CM_MW8             | Slug Test - falling head                        | 5x10 <sup>-9</sup>                          | Teck (2017)        |                        |

#### Table I-B: Summary of Relevant Hydraulic Testing Completed in Bedrock





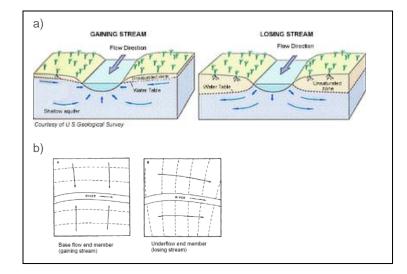
## Overburden or Surficial Hydrogeology

As indicated above, the surficial geology within MUs 1-4 can be highly variable on the regional scale. In general, groundwater can be broadly classified into two general hydrogeologic settings for the overburden or surficial sediments:

- The upland setting, where groundwater typically occurs as a thin saturated zone in surficial deposits on the valley flanks, generally consisting of colluviums, alluvial or moraine/till deposits as well as anthropogenic deposits such as spoils. Infiltration and recharge occurs in the upland setting and consistent with topographically-driven flow and all groundwater within the upland setting eventually flows to valley-bottom surficial deposits, either as surface water or groundwater. The groundwater flow regime is generally governed by the surface of low permeability units (i.e., bedrock or low permeability till), with flow directions typically diverging along drainage divides, and groundwater discharging to mountain streams as base flow where topographic lows are present.
- The valley bottom setting, where groundwater is typically present in surficial deposits such as glaciofluvial, glaciolacustrine, and fluvial deposits, with some till and colluvium also present in valley bottoms. The valley bottom is where the main aquifers exist in the Elk Valley, with the most significant and continuous aquifers in the main stems (i.e., Elk River, Fording River, Michel Creek); however, smaller but still significant aquifers may exist in larger tributaries. Variable degrees of groundwater-surface water interaction occur in the valley-bottom, dependent on local morphology and river gradient, permeability of the underlying materials, and seasonality.

Additional discussion on each of the settings is provided in the Synthesis Report (SNC-Lavalin, 2015). The Synthesis Report also provides a detailed summary of hydraulic conductivity testing results for monitoring wells installed in various hydrostratigraphic units; Table I-C below provides a summary of ranges and typical values for hydraulic conductivities of surficial materials in the Elk Valley.

| Hudro stratigraphia Unit        | Hydraulic Condu                     | ctivity (m/s)    |
|---------------------------------|-------------------------------------|------------------|
| Hydrostratigraphic Unit         | Range                               | Typical          |
| Waste Rock                      | 10 <sup>-4</sup> - 10 <sup>-2</sup> | 10 <sup>-4</sup> |
| Fluvial/Glaciofluvial Sediments | 10 <sup>-8</sup> - 10 <sup>-3</sup> | 10 <sup>-4</sup> |
| Till (upland and valley-bottom) | 10 <sup>-9</sup> - 10 <sup>-6</sup> | 10 <sup>-7</sup> |
| Colluvial Deposits              | 10 <sup>-5</sup> – 10 <sup>-3</sup> | 10 <sup>-4</sup> |


#### Table I-C: Summary of Hydraulic Conductivities in Surficial Sediments

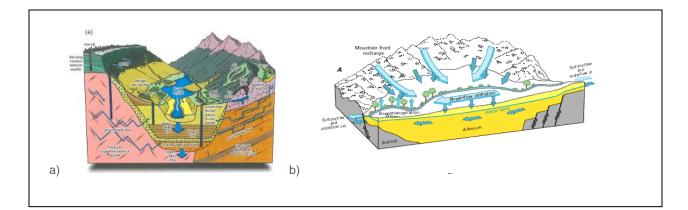
## Valley-Bottom Regional Flow Patterns

Regionally, the main valley-bottom rivers (i.e., Fording River, Elk River, Michel Creek) are gaining on a watershed basis, suggesting a net discharge of groundwater to surface water (i.e., base flow) as is expected in a topographically-driven groundwater flow regime. However, local-scale down-valley flow in the main stem valley bottoms is known to occur, resulting in groundwater recharge from a losing stream. Figure I-A shows the conceptual relationship between gaining and losing streams and groundwater, and the resultant end-member conceptual flows (i.e., base flow vs. underflow).

Regional Groundwater Monitoring Program Teck Coal Ltd.

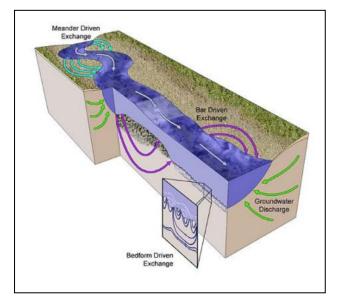





# Figure I-A: Diagrams showing a) conceptual relationship between losing and gaining streams and groundwater, with resultant b) conceptual groundwater flow end-members

Within MUs 1-4, an example of underflow occurs near FRO where the Fording River seasonally dries up. Recent studies have identified an underflow component that is parallel or subparallel to the Fording River, which is supported by both groundwater contours and chemistry (see Section 5, Study Area 1 for more details). Other evidence for a local-scale down-valley flow component resulting in groundwater recharge from surface water is the similarity in water quality between a number of groundwater wells and the nearby surface water body (e.g., Elk River and RG\_DW-02-20 in Study Area 7, Elk River and EV\_ER1gwS/D in Study Area 12; see Section 5 for more details).

While these examples provide evidence for an underflow component resulting in down-valley flow, they are local in scale and the potential for 'regional' groundwater flow via underflow is low. The groundwater flow direction would roughly parallel the valley and the river or creek can provide continuous recharge to the underlying sediments.


Regional Groundwater Monitoring Program Teck Coal Ltd.





# Figure I-B: Diagrams showing underflow and resultant down-valley flow in valley bottoms in a mountainous environment (Sources: a): Canada's Groundwater Resources, Alfonso River 2014; and, b): Groundwater Atlas of the United States, USGS 2016)

However, in the Elk Valley, groundwater regularly interchanges with surface water through frequent local scale recharge and discharge (see Figure I-C). Surface water-groundwater interaction has a high degree of spatial and temporal variability as it is dependent on a number of variables including relative levels in the river and groundwater system, river morphology, river gradient, hydraulic properties of the streambed and valley-bottom deposits, distance from river and pumping from wells. The likelihood for groundwater recharge from surface water is anticipated to be seasonal and highest when freshet occurs.



# Figure I-C: Diagram showing local-scale exchange between groundwater and surface water (from Golder, 2017)

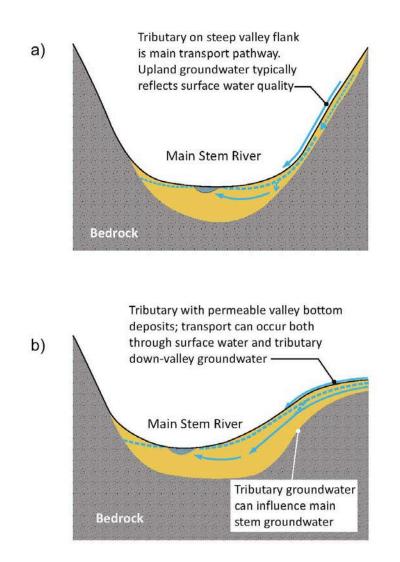


## Delineation of Valley-Bottom Sediments in Main Stems

Because the main stem valley bottoms are the only features that span the region of MUs 1-4, regional flow is only considered possible in the down-valley direction of the main stem valley-bottoms. In the Synthesis Report (SNC-Lavalin, 2015), the extent of the valley-bottom aquifers was approximated and mapped. This mapping was performed qualitatively using topography, morphology, and interpreted surficial geology. In some cases, where fluvial terrace deposits, alluvial fans, or glaciofluvial channels were present, the valley-bottom was extended to include the lower slope of the adjacent upland. The interpreted extent of the valley-bottom aquifers, along with groundwater level data from Q4 2017 for wells in the RGMP, is presented in Drawings 635544-306 and -307, along with vulnerability and aquifer-risk mapping for surficial aquifers in the Elk Valley using the BC aquifer classification system (BC MWLAP, 2002).

## Mining Influences on Regional Groundwater Quality

Results from the 2015 and 2016 Annual Regional Groundwater Monitoring Reports indicated that mining influences on groundwater currently exist in MUs 1-4; the evidence for this was elevated CI concentrations above screening criteria at a number of monitoring locations. In general, the best indicator of mine-influenced groundwater was the assemblage of nitrate, sulphate, and dissolved selenium.


The Regional CSM considers the influence or potential influence that Teck's Operations may have on groundwater quality in the main stem valley bottoms. Although down-valley flow is considered to be local due to heterogeneity, the main stem valley bottom sediments are considered the primary potential pathway for regional transport of mine-influenced groundwater. This is because of the presence of relatively continuous transmissive units, larger saturated thicknesses and high degree of interaction with surface water elevated in mining-related constituents.

In the main stem valley bottom, transport and discharge is expected on the local scale (i.e., 10s of metres to kilometres), but not on the regional scale (i.e., 10s to 100s of kilometres). In addition, mixing with additional inputs of groundwater occurs along the valley, leading to dilution of mining-related constituents in groundwater down-valley from sources of CI.

## Groundwater Transport Pathways

Groundwater transport of CI to the valley bottoms of the main stems can occur from potential sources in upland areas; however, typically, groundwater transport from upland areas is minimal and tributary surface water transport is dominant due to one or more of the following factors: low permeability overburden; steep relief; or thin or non-existent overburden. There are some cases where the thickness and permeability of the valley bottom sediments in a tributary can be sufficient enough to transport CI in groundwater. Down-valley flow in the tributary can occur, and transport to the valley bottom is independent of surface water transport (e.g. Kilmarnock Creek; see Study Area 1, Section 5). Figure I-D below provides an illustration of this.





#### Figure I-D: Diagrams showing Conceptual Transport of CI to Valley Bottom

In Figure I-Ca, tributary surface water is the main transport pathway to the valley bottom. Tributary surface water infiltration can locally affect groundwater quality in both the tributary and main stem sediments. Figure I-Cb shows a tributary that has permeable sediments in the valley bottom, such as glaciofluvial sediments. These tributaries can be large and have an alluvial fan that extends to the valley-bottom. In this scenario, groundwater transport from the tributary valley bottom sediments can occur as well as infiltration of tributary surface water.

Both of these transport scenarios can lead to localized areas of mine-influenced groundwater in the valley bottom and these are referred to as "the groundwater pathway" (formerly called "source release to groundwater"). Potential sources and transport pathways of CI to the main stem valley-bottoms have been developed/defined on the local scale for each Study Area; these are summarized in Section 5.



## Groundwater Recharge from Surface Water

Surface water in the main stems through MUs 1-4 exhibits mining influence. Results from the Drinking Water Evaluation (SNC-Lavalin, 2014) indicated that groundwater distal to Operations can be elevated in CI due to groundwater recharge from surface water in these main stems. This is because of the high degree of interchange with shallow groundwater that occurs in the valley bottoms. Local-scale groundwater recharge from surface water may result in CI concentrations reflective of surface water (i.e., "the surface water pathway"). Unless additional loading of CI occurs along the valley bottom, groundwater quality distal to source inputs is expected to be similar to surface water. Examples, along with supporting data are discussed in Section 5.

## References

- BC Ministry of Water, Land and Air Protection (BC MWLAP), 2002. *Guide to Using the BC Aquifer Classification Maps for the Protection and Management of Groundwater*. Authored by J. Berardinucci and K. Ronneseth, ISBN 0-7726-4844-1.
- Forster, C. and Smith, L., 1988a. Groundwater Flow Systems in Mountainous Terrain 1. Numerical Modeling Technique. *Water Resources Research*. 24, 999-1010.
- Forster, C. and Smith, L., 1988b. Groundwater Flow Systems in Mountainous Terrain 1. Controlling Factors. *Water Resources Research 24.* 1011-1023.
- George, H., W.A. Gorman, and D.F. VanDine, 1987. Late quaternary geology and geomorphology of the Elk Valley, southeastern British Columbia. *Canadian Journal of Earth Science*, 24, 741-751.
- Gleeson, T., and A. H. Manning, 2008. Regional groundwater flow in mountainous terrain: Threedimensional simulations of topographic and hydrogeologic controls. *Water Resources Research*. 44(10) October 2008.
- Golder Associates Ltd. 2012. *Hydrogeological Testing Program*. Technical memorandum submitted to Teck Coal Ltd, dated March 6, 2012.
- Golder Associates Ltd. 2013. Teck Fording River Operations Site-Wide Groundwater Monitoring Review. Teck Fording River Operations. Submitted to Teck Coal Ltd. – FRO. Golder Job No. 13-1348-0003, April 2013.
- Golder Associates Ltd. 2014. *Teck Fording River Operations Swift Project Hydrogeology Baseline Report.* Submitted to Teck Coal, November 2014.
- Golder Associates Ltd. 2015. Site-wide Groundwater Monitoring Plan Teck Coal Ltd. Elkview Operations. Submitted to Elkview Operations, March 2015.
- Golder Associates Ltd. 2016, Groundwater Flow Modelling to Evaluate Potential Seepage Bypass Life of Mine. Teck Coal LCO Phase II: Dry Creek Water Management System. Report prepared for Teck Coal, dated September 2016.
- Golder Associates Ltd. 2017. 2016 LCO Site Annual Groundwater Monitoring Report. Prepared for Teck Coal Limited., dated March 2017.



- Harrison, S.M., J.W. Molson, H.J. Abercrombie, J.F. Barker, D. Rudolph, and R. Aravena, 2000a. Hydrogeology of a coal-seam gas exploration area, southeastern British Columbia, Canada: Part 1 Groundwater flow systems, *Hydrogeology Journal* 8(6), 608-622.
- Harrison, S.M., J.W. Molson, H.J. Abercrombie, and J.F. Barker, 2000b. Hydrogeology of a coal-seam gas exploration area, southeastern British Columbia, Canada: Part 2 Modeling potential hydrogeological impacts associated with depressurizing. *Hydrogeology Journal* 8, 623-635.
- Hemmera Envirochem Inc. 2015. 2014 Monitoring Well Installation and Groundwater Sampling Program. Prepared for Teck Coal Ltd. – Greenhills Operations. File 577-016.04. Report dated March 10, 2015.
- Hemmera Envirochem Inc. 2017. 2016 Monitoring Well Installation and Groundwater Sampling *Program.* Prepared for Teck Coal Ltd. – Greenhills Operations. File: 577-016.07. Report dated March 31, 2017.
- Kelly, C. C., and P. N. Sprout, 1956. Soil Survey of the Upper Kootenay and Elk River Valleys in the East Kootenay District of British Columbia. Report No. 5 of the British Columbia Soil Survey.
- SNC-Lavalin Inc. 2014. Summary of Elk Valley Drinking Water Evaluation and Sampling Program. Prepared for Teck Coal Ltd. Internal Ref 615366. June 25, 2014.
- SNC-Lavalin Inc. 2015. Elk Valley Regional Groundwater Synthesis Report. Prepared for Teck Coal Limited. Project 626147. October 2015.
- SNC-Lavalin Inc., 2016. 2015 Annual Report Regional Groundwater Monitoring Program. Report prepared for Teck Coal Ltd, dated March 31, 2016.
- SNC-Lavalin Inc. 2017. *Hydrogeological Assessment. Fording River Operations*. Internal Reference: 631283. June 5, 2017.
- Summit, 2009. Drainage Assessment and Settling Pond Guidance and Performance Optimization for Fennlon, Feltham, Goddard, and Bodie Creeks. Report prepared for Teck Coal Ltd., Elkview Operations.
- Szmigielski, J. T., 2015. Characterizing a Groundwater System Downgradient of a Coal Mine Waste Dump, Elk Valley, British Columbia, Canada. M.Sc. Thesis.
- Teck, 2011. Line Creek Operations Phase II Project, Environmental Assessment Certificate Application. Volumes A to H with Annexes A to O, December 2011.
- Teck Coal Ltd. 2017. 2016 Groundwater Monitoring Report. Coal Mountain Operations. Dated March 31, 2017.

Toth, J. 1963. A Theoretical Analysis of Groundwater Flow in Small Drainage Basins. *Journal of Geophysical Research*. 68(16), 4795-4812.

# **Appendix II**

Borehole Logs

## FR\_09-01AB

#### RECORD OF MONITORING WELL: 09-01A

#### DATUM: Local

| SE             | ETHOD                                                                                 | SOIL PROFILE                                                                                                                                                                                                                                                                     | 5           |                                                                  |        | APLES              | 1              |                    | ETRATIO<br>BLOWS |                    | <mark>ر</mark> ا | HYDRA<br>10 | k, cm/s |    |       | lo, I |                            | PIEZOMETER<br>OR<br>STANDPIPE                                                               |
|----------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------|--------|--------------------|----------------|--------------------|------------------|--------------------|------------------|-------------|---------|----|-------|-------|----------------------------|---------------------------------------------------------------------------------------------|
| METRES         | BORING METHOD                                                                         | DESCRIPTION                                                                                                                                                                                                                                                                      | STRATA PLOT | ELEV.<br>DEPTH<br>(m)                                            | NUMBER | TYPE<br>BLOWS/0.3m | SHEA<br>Cu, kP | I<br>R STREI<br>'a | I<br>NGTH (      | iat V. +<br>em V.⊕ | Q- ●<br>U- O     | WA<br>Wp    |         |    | PERCE |       | ADDITIONAL<br>LAB. TESTING | INSTALLATIO                                                                                 |
| 4              | Barber Rig - DR.24 - 9" Holo Diameter<br>Beck Drilling and Ervironmental Services Ltd | Ground Surface<br>Silty SAND, trace gravel, loose, dry,<br>light brown<br>Sandy GRAVEL, trace silt, loose, moist,<br>medium brown<br>Clayey SILT, some sand and gravel,<br>soft, tow to medium plasticity, moist,<br>medium brown<br>Sandy GRAVEL, loose, moist, medium<br>brown |             | 1584.1<br>0.0<br>1533.6<br>0.5<br>1582.1<br>2.0<br>1581.6<br>2.5 |        |                    |                |                    | 20               |                    |                  |             |         | 03 |       |       |                            | Stickup<br>=0.85 m<br>Bentonite<br>Granutar Filter<br>Slotted Section<br>Oct. 16, 2009<br>♀ |
| 8              |                                                                                       | End of MONITORING WELL.                                                                                                                                                                                                                                                          |             | 1575.7<br>8,4                                                    |        |                    |                |                    |                  |                    |                  |             |         |    |       |       |                            | Slough                                                                                      |
| 12             |                                                                                       |                                                                                                                                                                                                                                                                                  |             |                                                                  |        |                    |                |                    |                  |                    |                  |             |         |    |       |       |                            |                                                                                             |
| 16<br>18<br>20 |                                                                                       |                                                                                                                                                                                                                                                                                  |             |                                                                  |        |                    |                |                    |                  |                    |                  |             | i       |    |       |       |                            |                                                                                             |

DATA ENTRY: KJM

| PROJECT No.: | 09-1324-1039 |
|--------------|--------------|
| TROBEOTING.  | 00-102+1000  |

### RECORD OF MONITORING WELL: 09-01B

SHEET 1 OF 2

LOCATION: East of Old Stream 8ed Kilmarnock Alluvium

BORING DATE: October 14, 2009

DATUM: Local

| щ                     | T   | 8                                            | SOIL PROFILE                                                                             |                             | SAN    | IPLES              | DYNAMIC I<br>RESISTAN | PENETRATI              | ON<br>3/0.3m         | 1            | HYDRA    | ULIC CO<br>k, cm/s | ONDUCT | ivity, | Т | 10                         | PIEZOMETE                | R                                                                               |
|-----------------------|-----|----------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------|--------|--------------------|-----------------------|------------------------|----------------------|--------------|----------|--------------------|--------|--------|---|----------------------------|--------------------------|---------------------------------------------------------------------------------|
| DEPTH SCALE<br>METDES | 2   | BORING METHOD                                |                                                                                          | PLOT                        | ß      |                    | 20                    | 40                     | 60 E                 | 10 <b>.</b>  | 10       | -6 1(              |        |        |   | ADDITIONAL<br>LAB. TESTING | STANDPIPI<br>INSTALLATIO |                                                                                 |
| EPTH<br>HTM           | 1   | RING                                         | DESCRIPTION                                                                              | STRATA PLOT<br>BEDLH<br>(m) | NUMBER | TYPE<br>BLOWS/0.3m | SHEAR ST<br>Cu, kPa   | RENGTH                 | nat V. +<br>rem V. ⊕ | Q- •<br>U- O | 1        |                    |        | PERCEN |   | AB. TE                     | MOTALLAR                 | 0.1                                                                             |
|                       |     | 8                                            |                                                                                          | 반 (m)<br>57                 | Z      | B                  | 10                    | 20                     | <u>30 4</u>          | 0            | 10<br>10 |                    |        | 0 40   |   | L~                         | Stickup                  |                                                                                 |
| -                     | 0   |                                              | Ground Surface<br>Silty SAND, trace gravel, loose, dry,                                  | 1584.                       |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            | =0.76 m                  | 1<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |
| F                     |     |                                              | light brown<br>Sandy GRAVEL, trace silt, loose, moist,                                   | 0.<br>1583.<br>0.           |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| -                     |     |                                              | medium brown                                                                             | <u>•</u> ()                 |        |                    |                       |                        |                      |              |          | ·                  |        |        |   |                            |                          |                                                                                 |
| È                     |     |                                              |                                                                                          | 0                           |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| 5                     | 2   |                                              | Clayey SILT, some sand and gravel,<br>soft, low to medium plasticity, moist,             | 0                           |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| F                     |     |                                              | manufactor brown                                                                         |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| Ę                     |     |                                              | brown                                                                                    | 0                           |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            | Bentonite                |                                                                                 |
| Ē                     | 4   |                                              |                                                                                          | 0.<br>0.                    |        | Ì                  |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| Ē                     |     |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| Ē                     |     |                                              |                                                                                          | C                           |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| È                     |     |                                              |                                                                                          | 0<br>0                      |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| E                     | 6   |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| E                     |     |                                              |                                                                                          | 0                           |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            | Oct 16, 2009<br>.모.      |                                                                                 |
| Ē                     |     |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            | Σ                        | CARACTERINE<br>CARACTERINE                                                      |
| Ē                     | 8   |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| Ē                     |     | s Ltd.                                       |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| -                     |     | Services                                     |                                                                                          | ŝ                           |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| Ē                     |     | 9 <sup>-</sup> Hole                          |                                                                                          | 0<br>0.0<br>1574.           |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
|                       | 0   | Back Drilling and Erwironmental Services Ltd | Coarse GRAVEL, trace sand, loose, saturated, grey to medium brown                        | 1574.<br>10.1               |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| -                     |     | r Rig - C                                    |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            | Slough                   |                                                                                 |
| F                     |     | sok Drill                                    |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| F 1                   | 2   | ă                                            |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          | 77-                                                                             |
| F                     | ŀ   |                                              | Some silty sand from 12.5 to 13.0 m                                                      |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| F                     | İ   |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| -                     | :   |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| - 1                   | 4   |                                              |                                                                                          |                             |        | ĺ                  |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| Ē                     |     |                                              |                                                                                          | Ř                           |        | ĺ                  |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| È.                    |     |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
|                       | 6   |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            | Bentonite                |                                                                                 |
| Ē                     |     |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
| Ē                     |     |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
|                       |     |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            | Slotted Section          |                                                                                 |
|                       | 8   |                                              | <ul> <li>Medium to coarse gravel, light grey<br/>to brown from 18.0 to 23.0 m</li> </ul> |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
|                       |     |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
|                       |     |                                              |                                                                                          |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            | Slough                   |                                                                                 |
|                       | 20  | _L                                           |                                                                                          | BB                          | +      |                    | +-                    |                        | <u> </u>             |              | ┣━━┝     |                    |        |        |   |                            | <b>I</b>                 |                                                                                 |
|                       |     |                                              | CONTINUED NEXT PAGE                                                                      |                             |        |                    |                       |                        |                      |              |          |                    |        |        |   |                            |                          |                                                                                 |
|                       | DEF | YTH S                                        | SCALE                                                                                    |                             |        | (                  | E E                   | Gold                   | <b>.</b>             |              |          |                    |        |        |   | LOGO                       | GED; EA                  |                                                                                 |
|                       | 1:  | 100                                          |                                                                                          |                             |        |                    | <b>T</b> A            | Golde<br><u>ssocia</u> | ates                 |              |          |                    |        |        | С | HECK                       | (ED; MB                  |                                                                                 |

#### 09-01B RECORD OF MONITORING WELL:

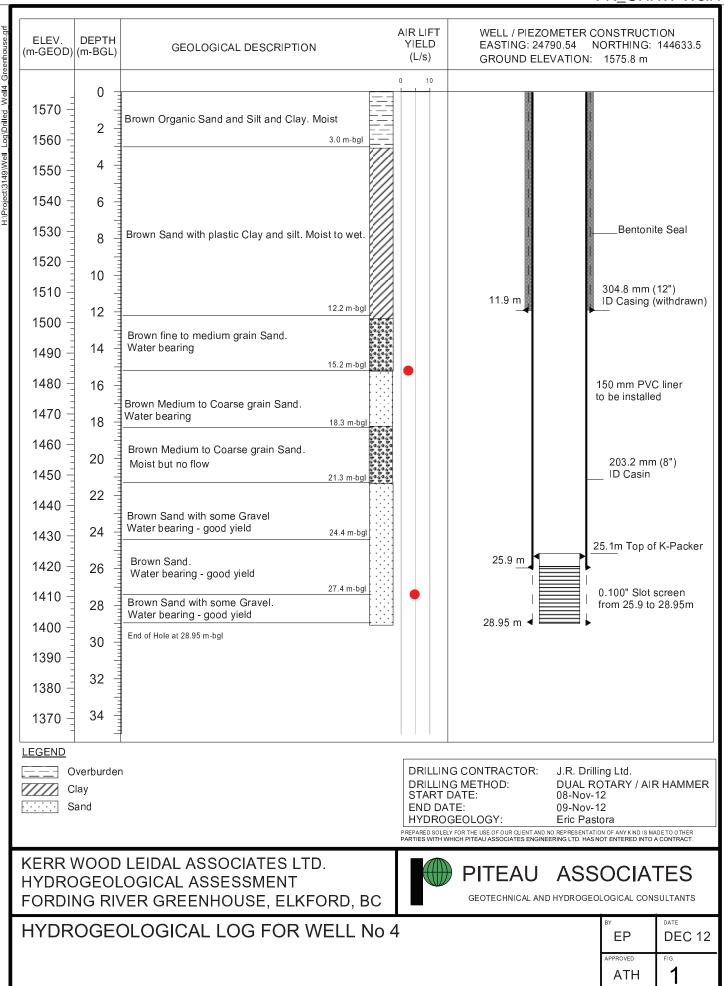
| DATA ENTRY: KJM                                    |                                                                                                                            |                                                                                        | T No.: 09-1324-1039                                                                 |                                      | D OF   |                             | RING WELL:<br>DATE: October 14, 2009                         |                                                                                     | SHEET 2 OF 2<br>DATUM: Local                                              |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|--------|-----------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                    |                                                                                                                            | g                                                                                      | SOIL PROFILE                                                                        |                                      | SAMPLE | S DYNAMIC PER<br>RESISTANCE | ETRATION                                                     | HYDRAULIC CONDUCTIVITY,<br>k, cm/s                                                  | T PIEZOMETER                                                              |
|                                                    | DEPTH SCALE<br>METRES                                                                                                      | BORING METHOD                                                                          | . Description                                                                       | STRATA PLOT<br>(W)<br>H1dad<br>H2dar | NUMBER | E 20<br>SHEAR STREI         | 40 60 80<br>NGTH nat V. + Q. ●<br>rem V. ⊕ U - O<br>20 30 40 | 10 <sup>-6</sup> 10 <sup>-5</sup> 10 <sup>-6</sup> 1<br>WATER CONTENT PERCE<br>Wp I | OR<br>OF<br>OR<br>OR<br>OR<br>OR<br>STANDPIPE<br>INSTALLATION<br>WI<br>40 |
|                                                    | 22<br>22<br>24<br>24<br>26<br>26<br>26<br>27<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | Barber Rig – DR-24 - 9" Hole Diameter<br>Beck Drilling and Environmental Services Lid. | Coarse GRAVEL, trace sand, loose,<br>saturated, grey to medium brown<br>(continued) |                                      |        |                             |                                                              |                                                                                     |                                                                           |
| BOREHOLE 09-1324-1039 LOGS.GPJ CALGARY.GDT 1/11/16 |                                                                                                                            |                                                                                        |                                                                                     |                                      |        |                             |                                                              |                                                                                     |                                                                           |
| BOREHOLE                                           | DE<br>1                                                                                                                    | PTH S                                                                                  | SCALE                                                                               |                                      |        | <b>A</b> SS                 | older                                                        | · · · · · · · · · · · · · · · · · · ·                                               | LOGGED; EA<br>CHECKED: MB                                                 |

FR\_GHHW (Well 3)



#### TABLE A-1 - Detailed Well Record For Well #3

Well Tag Number: 819 Driller: R. J. Drilling Owner: FORDING COAL LTD PUR WELL LOCATION: KOOTENAY Land District District Lot: 6687 Plan: Lot: BCGS Number (NAD 27): 082J006421 Well: 2 WATER QUALITY: Diameter: 6.0 inches Well Depth: 40 feet


GENERAL REMARKS: YIELD: 80 GPM COMMERCIAL & INDUSTRIAL

LITHOLOGY INFORMATION:

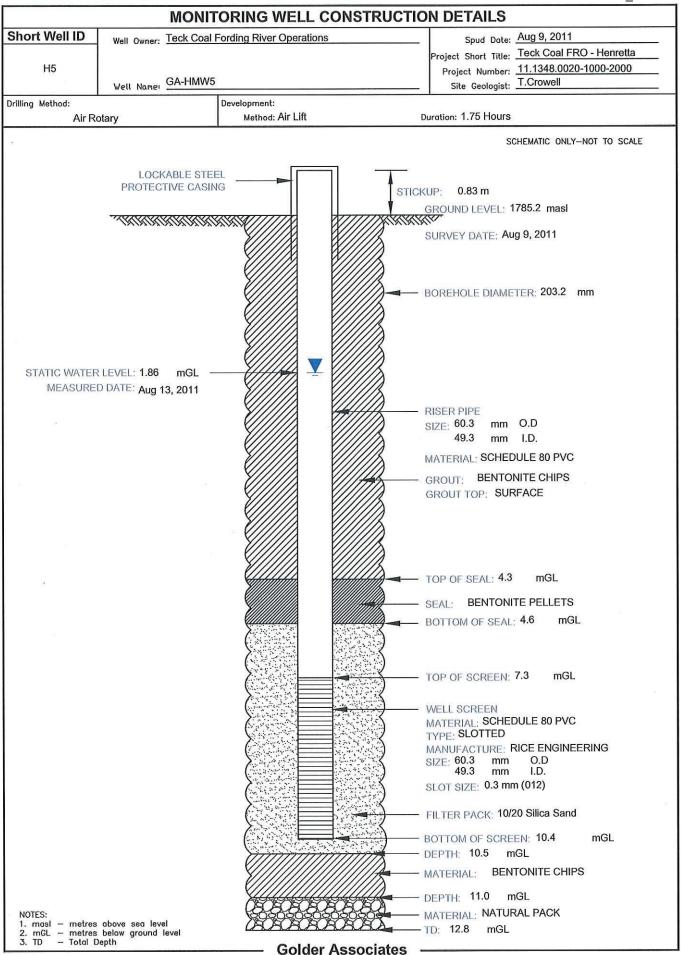
From 0 to 15 Ft. TILL From 15 to 40 Ft. GRAVEL

H:\Project\3149\Well\_Log\[Web\_log.xls]819(well#3)

#### FR\_GHHW-Well4



FR\_HMW5


| ROJECT No.: | 11.1348.0020.2000    |
|-------------|----------------------|
| 11000001110 | 11110101000000000000 |

.

#### RECORD OF BOREHOLE: GA-HMW5

|                                                         |                                                                         | CT No.: 11.1348.0020.2000<br>DN: See Location Plan                                                                                                                                                                                                        | R           | ECC                   | R      | DO   | DF         |                            |                |                      |                      |        | IW5                |        |         |                 |                            | 1 OF 1<br>I: Geodetic     |
|---------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|--------|------|------------|----------------------------|----------------|----------------------|----------------------|--------|--------------------|--------|---------|-----------------|----------------------------|---------------------------|
|                                                         |                                                                         | N: 655476 E: 5567514                                                                                                                                                                                                                                      |             |                       |        |      |            |                            |                |                      |                      |        |                    |        |         |                 |                            |                           |
| щ                                                       | <u>D</u>                                                                | SOIL PROFILE                                                                                                                                                                                                                                              |             |                       | SA     | MPLE | s          | DYNAMIC PEN<br>RESISTANCE, | IETRAT<br>BLOW | ION<br>5/0.3m        | ì                    | HYDR   | AULIC C<br>k, cm/s | ONDUCT | fivity, | T               |                            | PIEZOMETER                |
| DEPTH SCALE<br>METRES                                   | BORING METHOD                                                           | DESCRIPTION                                                                                                                                                                                                                                               | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER | TYPE | BLOWS/0.3m | SHEAR STREM<br>Cu, kPa     | I<br>NGTH      | nat V. +<br>rem V. ⊕ | 10<br>0 - 0<br>0 - 0 | W<br>W | L<br>ATER C<br>p I | NTENT  | PERCE   | 0 <sup>-3</sup> | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION |
| - 0                                                     |                                                                         | Ground Surface<br>Very loose, non-plastic, dry, grey to<br>brown, loose grained to cobble size<br>GRAVEL, non-cohesive with some<br>medium grained, angular to .<br>subangular, (with little matrix)<br>(ALLUVIUM)                                        | 868688      | 1785,20<br>0,00       |        |      |            |                            |                |                      |                      |        |                    |        |         |                 |                            |                           |
| - 2<br>- 3<br>- 5                                       | Åir Rotsry<br>nental Services Ltd.                                      | Soft, low plasticity, damp,<br>non-cohesive, with more grey CLAY                                                                                                                                                                                          |             |                       |        | 3RAB |            |                            |                |                      |                      |        |                    |        |         |                 |                            | 13 Aug 2011<br>⊻          |
| - 7<br>- 8                                              | Barber Rig H24 Air Rotary<br>BECK Drilling & Environmental Services Ltd | Hard layer, angular fragments, low<br>returns GRAVEL<br>Very loose, low plasticity, damp, grey<br>to brown, loose grained to cobble size<br>GRAVEL, non-cohesive with some<br>medium grained, angular to<br>subangular (with little matrix)<br>(ALLUVIUM) |             | 6.90                  |        | GRAD |            |                            |                |                      |                      |        |                    |        |         |                 |                            |                           |
| - 9<br>- 10<br>- 11<br>- 12<br>- 13<br>- 14<br>- 15<br> |                                                                         | Clay becomes dark brown, damp, cohesive and very dense                                                                                                                                                                                                    |             | 1774.50               | 4      | GRAB |            |                            |                |                      |                      |        |                    |        |         |                 |                            |                           |
| - 11                                                    |                                                                         | Very loose fragments (drill cut-up),<br>wet, massive, light to dark grey,<br>angular BEDROCK                                                                                                                                                              |             | 10.70                 |        | grað |            |                            |                |                      |                      |        |                    |        |         |                 |                            |                           |
| - 13                                                    |                                                                         | End of BOREHOLE,                                                                                                                                                                                                                                          |             | 1772,40<br>12.80      |        |      |            |                            |                |                      |                      |        |                    |        |         |                 |                            |                           |
| - 14                                                    |                                                                         |                                                                                                                                                                                                                                                           |             |                       |        |      |            |                            |                |                      |                      |        |                    |        |         |                 |                            |                           |
| - 15                                                    |                                                                         |                                                                                                                                                                                                                                                           |             |                       |        |      |            |                            |                |                      |                      |        |                    |        |         |                 |                            |                           |
| DI<br>1                                                 | EPTH :<br>: 75                                                          | SCALE                                                                                                                                                                                                                                                     |             |                       |        |      |            | <b>A</b>                   | old            | er<br>ates           |                      |        |                    |        |         |                 | Logged:<br>Hecked:         |                           |

FR\_HMW5



|            | - |
|------------|---|
| <b>~</b> n |   |
| 0          |   |
| ۵.         |   |
| -          |   |
| ٠.         |   |
| ~          |   |
| £          |   |
| F          |   |
|            |   |
| ~          |   |
|            |   |

#### PROJECT No.: 11.1422.0052

LOCATION: See Location Plan

#### RECORD OF MONITORING WELL: GA-MW-01

BORING DATE: September 21, 2012

SHEET 1 OF 3

DATUM: UTM Zone 11 (Nad 83)

| N: 5554750 | F: 648019 |
|------------|-----------|

| Bit Home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | N: 5554750 E: 648019                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        |                  |       |                                                                                               |             | (Nad 83)             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|------------------|-------|-----------------------------------------------------------------------------------------------|-------------|----------------------|
| Image: status in the | AETRES<br>VG METHOD                              |                                                                                                                                                               | TA PLOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t T |        |                  | 60 80 | 10 <sup>-6</sup> 10 <sup>5</sup> 10 <sup>-4</sup> 10 <sup>-3</sup> U<br>WATER CONTENT PERCENT | TESTING     | OR<br>STANDPIP       |
| 0         (20) (MAD, connegerated, sol, gay, is a point in particul, sol, ga         | BORIN                                            |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | r Mola | Cu, kPa<br>20 40 |       |                                                                                               | ADD<br>LAB. | Stick-up             |
| sub-angular, trace clay, dark grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2 3 4 5 10 10 10 10 10 10 10 10 10 10 10 10 10 | (SP) SAND, coarse-grained,<br>sub-angular, poorly-graded, dark grey<br>(GP) CLAYEY GRAVEL,<br>coarse-grained, poorly-graded,<br>sub-rounded clay, brown, firm | 0.00<br>1353.00<br>1353.00<br>1353.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.0 | 2 0 |        |                  |       |                                                                                               |             | Bentonite<br>Pellets |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                               |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 ( | 9RAB   |                  |       |                                                                                               |             |                      |

| БG    |  |
|-------|--|
| RY: I |  |
| E     |  |

PROJECT No.: 11.1422.0052

#### RECORD OF MONITORING WELL: GA-MW-01

SHEET 2 OF 3

BORING DATE: September 21, 2012

DATUM: UTM Zone 11 (Nad 83)

| LOCATION: | See Location | Plan      |
|-----------|--------------|-----------|
|           | N: 5554750   | E: 648019 |

|                      | П<br>Р<br>Г                        | SOIL PROFILE                                                                                                   |             |                       | SAM    | PLES       | DYNAMIC PENETRATION<br>RESISTANCE, BLOWS/0.3m                                                                                                                                                                                                                                                                                               |                            | PIEZOMETE                                      |
|----------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|-----------------------|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|
| METRES               | BORING METHOD                      | DESCRIPTION                                                                                                    | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER | BLOWS/0.3m | 20         40         60         80         10 <sup>6</sup> 10 <sup>5</sup> 10 <sup>4</sup> 10 <sup>3</sup> 7           SHEAR STRENGTH<br>Cu, kPa         nat V. + Q. •<br>rem V. ⊕ U - O         WATER CONTENT PERCENT         Wp  W         WWI           20         40         60         80         10         20         30         40 | ADDITIONAL<br>LAB. TESTING | STANDPIF<br>INSTALLAT                          |
| 10<br>11<br>12<br>13 |                                    | (SP) SAND, coarse-grained,<br>pooly-graded, trace gravel,<br>sub-angular, trace clay, dark grey<br>(continued) |             |                       | 4 GF   | IAE        |                                                                                                                                                                                                                                                                                                                                             |                            | Bentonite<br>Pellets                           |
| 15<br>16<br>17       | Barber Rig – Air Rotary<br>Tervita | (SC) CLAYEY SAND, medium-grained, poorty-graded, dark grey                                                     |             | 1342.00<br>15.00      | 5 GI   | RAB        |                                                                                                                                                                                                                                                                                                                                             |                            | 10/20 Sand<br>Slotted<br>Section<br>10/20 Sand |
| 18                   |                                    |                                                                                                                |             | 1338.00               |        |            |                                                                                                                                                                                                                                                                                                                                             |                            | 23 Sep 2012<br>卫                               |
| 20                   |                                    | (SP) SAND, coarse-grained,<br>sub-angular, poorly-graded, dark grey                                            |             | 19.00                 | 6 G    | RAB        |                                                                                                                                                                                                                                                                                                                                             |                            | Bentonite<br>Pellets                           |
| _0                   |                                    | CONTINUED NEXT PAGE                                                                                            |             |                       |        |            |                                                                                                                                                                                                                                                                                                                                             |                            |                                                |

| i | D<br>L |   |
|---|--------|---|
| - | 2      |   |
| - | Z      | I |
|   | Ę      |   |

#### PROJECT No.: 11.1422.0052

#### RECORD OF MONITORING WELL: GA-MW-01

SHEET 3 OF 3

BORING DATE: September 21, 2012

DATUM: UTM Zone 11 (Nad 83)

| LOCATION: | See Location | Plan      |
|-----------|--------------|-----------|
|           | N: 5554750   | E: 648019 |

| S   |        |                         |           | N. 0001700 E. 010010                                               |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|-----|--------|-------------------------|-----------|--------------------------------------------------------------------|-------------|------------------|--------|------|------------|------------------------------------|--------------------------|-----|-------------------|------------------------------|---------|----------------|----------------------------|---------------------------|
|     | 4      | ç                       |           | SOIL PROFILE                                                       |             | 1                | SA     |      | LES        | DYNAMIC PENETRA<br>RESISTANCE, BLO | TION<br>VS/0.3m          |     | HYDRAULI<br>k, ci | C CONDUC <sup>-</sup><br>n/s | FIVITY, | T              |                            | PIEZOMETER<br>OR          |
| 00  | METRES |                         |           |                                                                    | STRATA PLOT | ELEV.            | В      | ш    | BLOWS/0.3m | 20 40                              | 60 80                    | `   | 10 <sup>-6</sup>  |                              |         | р <sup>а</sup> | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION |
|     | ΞΨ     |                         |           | DESCRIPTION                                                        | <b>ATA</b>  | DEPTH            | NUMBER | ТҮРЕ | OWS/       | SHEAR STRENGTH<br>Cu, kPa          | nat V. + Q<br>rem V. ⊕ U | - 0 |                   | R CONTENT                    |         |                | B. TE                      |                           |
| Ĺ   |        |                         |           | 100011-1 UABUAT-13                                                 | LIS I       | (m)              | 2      |      | E          | 20 40                              | 60 80                    |     | 10                |                              | 30 4    |                | ₹₹                         |                           |
| F   | 20     | $\vdash$                | $\square$ | (SP) SAND, coarse-grained,                                         |             |                  |        | _    | -          |                                    |                          |     |                   |                              |         |                |                            |                           |
| F   |        |                         |           | sub-angular, poorly-graded, dark grey (continued)                  |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| E   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| ŧ   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| F   | 21     | r Rotar                 |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   |        | ig – Ai                 | Tervita   |                                                                    |             | ]                | 6      | GRA  | 8          |                                    |                          |     |                   |                              |         |                |                            | Bentonite<br>Pellets      |
| ŧ   |        | Barber Rig – Air Rotary |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| E   | 22     |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| F   |        |                         |           | Bedrock at 22.6 m                                                  |             | ł                | -      |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   |        | $\vdash$                | Ц         | End of MONITORING WELL.                                            |             | 1334.40<br>22.60 |        | GR4  | 1-         |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   | 23     |                         |           | NOTE:                                                              |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| F   |        |                         |           | NOTES:<br>Hit BEDROCK at 22.6 m.<br>Standpipe installed to 18.6 m. |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ę   |        |                         |           | Groundwater level measured at at 17.5 mGL on September 23, 2012.   |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| E   | 24     |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| F   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| E   | 25     |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| F   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| E   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   | 26     |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|     |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|     |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| 5   | 27     |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| - è |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                | -<br>-                     |                           |
|     |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|     | 28     |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|     |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|     |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|     | 29     |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| £   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|     |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
| Ē   |        |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|     | 30     |                         |           |                                                                    |             |                  |        |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|     |        |                         |           |                                                                    |             |                  | L      |      |            |                                    |                          |     |                   |                              |         |                |                            |                           |
|     | DI     |                         |           | CALE                                                               |             |                  |        |      |            | Gol                                | der                      |     |                   |                              |         |                | LOGGED:                    |                           |
|     | 1      | : 5                     | 0         |                                                                    |             |                  |        |      |            | Asso                               | <u>iates</u>             |     |                   |                              |         | (              | CHECKED:                   | JW                        |

|             |                         |         | SOIL PROFILE                                                                                                 |             |                        | SA     | MPL  | ES         | DYNAMIC PENETRA<br>RESISTANCE, BLO                             |       | HYDRAULIC CONDUCTIVITY,<br>k, cm/s      |                             | PIEZOME                                  |
|-------------|-------------------------|---------|--------------------------------------------------------------------------------------------------------------|-------------|------------------------|--------|------|------------|----------------------------------------------------------------|-------|-----------------------------------------|-----------------------------|------------------------------------------|
| METRES      | BORING METHOD           |         | DESCRIPTION                                                                                                  | STRATA PLOT | ELEV.<br>DEPTH<br>(m)  | NUMBER | TYPE | BLOWS/0.3m | RESISTANCE, BLO<br>20 40<br>SHEAR STRENGTH<br>Cu, kPa<br>20 40 | 60 80 | $10^{-6}$ $10^{-5}$ $10^{-4}$ $10^{-3}$ | ADDITTIONAL<br>LAB. TESTING | OR<br>STANDI<br>INSTALLA                 |
| 0           |                         |         | Ground Surface<br>(SP) SAND, coarse-grained, trace fine<br>gravel, angular, poorly-graded, grey              |             | <u>1310,00</u><br>0.00 | 1 (    | GRAE |            |                                                                |       |                                         |                             | Stick-up<br>= 1.02 m                     |
| - 4<br>- 5  | Barber Rig – Air Rotary | Tervita | (GP) GRAVEL, coarse-grained, sub-rounded, brown                                                              |             | 1305.00<br>5.00        | 2 1    | GRAF |            |                                                                |       |                                         |                             | 19 Sep 201:<br>∑<br>Bentonite<br>Pellets |
| 7<br>8<br>9 |                         |         | (CI) SILTY CLAY, some fine gravel,<br>brown, cohesive, water content is close<br>to plastic limit, very soft |             | 1303.00<br>7.00        | 3      | GRA  | в          |                                                                |       |                                         |                             |                                          |
| 0           | F'                      | -       | CONTINUED NEXT PAGE                                                                                          |             | 1300.00                |        | †-   | 1-         | · +                                                            | -+    | +                                       |                             | -                                        |

ŋ

#### ----B B B L 00 ~

| Soll PROFILE SAMPLES DYNAMIC PENETRATION<br>RESISTANCE, BLOWS/0.3m<br>Star L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | JECT No.: 11.1422.0052<br>ATION: See Location Plan                         | RECORD OF N                                                                      | BORING DATE: September 19, 20                                                                                                    |                                                                                                                                             | SHEET 2 OF 3<br>DATUM: UTM Zone 11<br>(Nad 83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| State         DESCRIPTION         ELEW.<br>(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                             | N: 5552115 E: 648291                                                       | E SAMPLE                                                                         | ES DYNAMIC PENETRATION<br>RESISTANCE. BLOWS/0.3m                                                                                 | HYDRAULIC CONDUCTIVITY, T                                                                                                                   | PIEZOMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11 (CV) GCAVE, delta-grande, grave, 4 prove<br>12 (C) SELTY CLAY, with some fine gravel, 1000 11.50 1<br>14 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>15 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>16 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>16 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>16 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>17 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>18 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>19 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>19 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, with some fine gravel, 11.50 1<br>10 (C) SELTY CLAY, 11.50 1<br>10 (C) S | METRES<br>BORING METH         | DESCRIPTION                                                                | STRATA PLOT<br>())<br>())<br>())<br>())<br>())<br>())<br>())<br>())<br>())<br>() | 20         40         60         80           Vis         SHEAR STRENGTH<br>Cu, kPa         nat V. + Q - •<br>rem V. •         0 | 10 <sup>6</sup> 10 <sup>5</sup> 10 <sup>4</sup> 10 <sup>3</sup> ⊥<br>WATER CONTENT PERCENT<br>Wp <b>⊢</b> — <del>0<sup>W</sup> − 1</del> WI | UNIT OF CONTRACTOR OF CONTRACT |
| 12     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL     11.50       13     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL     11.50       14     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL       13     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL       14     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL       13     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL       14     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL       15     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL       16     (c) SLTY CLAY, with some fine gravel, brown, cohesive, very soft, wery soft, w                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | (GW) GRAVEL, coarse-grained,<br>sub-angular, well graded, grey             | 4 GRAE                                                                           |                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18 $\left  \begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                            | (CI) SILTY CLAY, with some fine<br>brown, cohesive, very soft, w~PI        |                                                                                  |                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18<br>19<br>(GW) GRAVEL, coarse-grained, arry<br>(GW) GRAVEL, coarse-grained, arry<br>129.80<br>17.20<br>17.20<br>17.20<br>17.20<br>6 GRAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51<br>Barber Rig – Air Rotary | Datier rug - Ani ruckay<br>Tervita                                         | 5 GRAS                                                                           |                                                                                                                                  |                                                                                                                                             | Bentonite<br>Pellets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (GW) GRAVEL, coarse-grained, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | (SP) SAND, coarse-grained, so<br>gravel, angular, poorly-graded, o<br>grey | ne fine 17.20<br>Jark                                                            |                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | sub-angular, well graded, grey                                             | , 200 1290.50<br>, 200 19.50<br>, 7 GRAE                                         |                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

RY: IPG

#### RECORD OF MONITORING WELL: GA-MW-02

| DATA ENTRY: IPG                                                                   |                                                            |                                    | Г No.: 11.1422.0052<br>N: See Location Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RECOF    | RD O                               | FN     | ION        | NITORING WELL:<br>BORING DATE: September 19, 20                                                                             |                                                                                                                                                      | SHEET<br>DATUM:            | UTM Zone 11                                   |
|-----------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------|--------|------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|
| DATA EI                                                                           | 10                                                         | 0,110                              | N: 5552115 E: 648291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                    |        |            |                                                                                                                             | • • • •                                                                                                                                              |                            | (Nad 83)                                      |
|                                                                                   | SCALE                                                      | AETHOD                             | SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LoT      |                                    | AMPLE  | Щ F        | DYNAMIC PENETRATION<br>RESISTANCE, BLOWS/0.3m<br>20 40 60 80                                                                | $\begin{array}{c} \mbox{Hydraulic conductivity,} & \\ \mbox{K, cm/s} & \\ \mbox{10}^6 & \mbox{10}^5 & \mbox{10}^4 & \mbox{10}^3 \end{array} \right]$ | NAL<br>TING                | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
| -                                                                                 | DEPTH SCALE<br>METRES                                      | BORING METHOD                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATA      | ELEV.<br>EPTH<br>(m)               | TYPE   | BLOWS/0.3m | SHEAR STRENGTH<br>Cu, kPa         nat V. +<br>rem V. ⊕         Q - ●<br>U - O           20         40         60         80 | WATER CONTENT PERCENT<br>Wp                                                                                                                          | ADDITIONAL<br>LAB. TESTING | RUTALLATION                                   |
| BOREHOLE - EXPANDED ADD. LAB TESTING 11.1422.0052_BH LOGS.GPJ CALGARY.GDT 7/30/15 | - 20<br>- 21<br>- 22<br>- 22<br>- 23<br>- 23<br>- 24<br>24 | Barber Rig – Air Rolary<br>Tervita | (GW) GRAVEL, coarse-grained,<br>sub-angular, well graded, grey<br>(continued)<br>(ML) SILT, some fine gravel, trace<br>coarse gravel, dark grey, non-cohes<br>dry<br>(SP) SAND, coarse-grained, some I<br>gravel, angular, poorly-graded, dark<br>grey<br>(SP) SAND, coarse-gravel, angular, poorly-gravel, angular, poorly-gravel, angul |          | 1287.00<br>23.00<br>24.00<br>24.00 | GRAB   |            |                                                                                                                             |                                                                                                                                                      |                            | Bentonite<br>Pellets                          |
| EXPANDED ADD.                                                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>30                 |                                    | (SP) SAND, coarse grained, coarse<br>gravel, bits of bedrock, sub-angular<br>poorly-graded, light grey<br>End of MONITORING WELL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 1280.50<br>1<br>29.60              | 0 GRAB |            |                                                                                                                             |                                                                                                                                                      |                            |                                               |
| BOREHOLE -                                                                        | DI<br>1                                                    | EPTH \$<br>: 50                    | SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>i</u> | I                                  |        | (          | Golder                                                                                                                      | , , , , , , , , , , , , , , , , , , ,                                                                                                                | Logged: "                  |                                               |

|                                                                                        |         | No.: 11.1422.0052 RI                                                                                                                                                                                             | ECC         | ORD                   | OF  | M    | 0      | BORING DATE: Septem                                  |                                |             | -04          |                                     | SHEET                      | 1 OF 2<br>UTM Zone 11<br>(Nad 83)                               |
|----------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|-----|------|--------|------------------------------------------------------|--------------------------------|-------------|--------------|-------------------------------------|----------------------------|-----------------------------------------------------------------|
|                                                                                        | 2       | N: 5552963 E: 648217                                                                                                                                                                                             |             |                       | SAI | MPLE | s      | DYNAMIC PENETRATION<br>RESISTANCE, BLOWS/0.3m        | <u> </u>                       | HYDRAULIC C | ONDUCTIVITY, |                                     |                            | PIEZOMETE                                                       |
| DEPTH SCALE<br>METRES                                                                  |         | DESCRIPTION                                                                                                                                                                                                      | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | ~   |      | S/0.3m | 20 40 60<br>SHEAR STRENGTH nat V<br>Cu, kPa rem V. 6 | 80<br>+ Q - ●<br>Đ U - O<br>80 | WATER CO    |              | 10 <sup>-3</sup><br>INT<br>WI<br>40 | ADDITIONAL<br>LAB. TESTING |                                                                 |
| - 1<br>- 2<br>- 3<br>- 4<br>- 5<br>- 6<br>- 7<br>- 8<br>- 9<br>- 10<br>- DEPT<br>1 : 5 | Tervita | Ground Surface<br>(SP) GRAVELLY SAND,<br>coarse-grained, fine gravel,<br>sub-angular, poorly-graded, dark grey<br>(SM) SILTY SAND, medium to<br>fine-grained, sub-rounded,<br>poorly-graded, brown and dark grey |             | 1304.00<br>0.00       | 2 1 | SRAB |        |                                                      |                                |             |              |                                     |                            | Stick-up<br>= 0.9 m<br>Bentonite<br>Pellets<br>24 Sep 2012<br>∑ |
| 1                                                                                      |         | CONTINUED NEXT PAGE                                                                                                                                                                                              | 1           | 1                     | 1   |      |        | 1 1 1 1                                              |                                |             |              | 1 1                                 |                            | 1                                                               |

|             | PRO                                      | OJEC                              | CT No.: 11.1422.0052                                                                                                                                                                                                                                                               | RECO   | RD C                                 | )F ľ  | ИC         | DNITORING WELL:                                                                    | GA-MW-04                                              | SHEET 2                     | OF 2                             |
|-------------|------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------|-------|------------|------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|----------------------------------|
|             | LOC                                      | CATIO                             | DN: See Location Plan                                                                                                                                                                                                                                                              |        |                                      |       |            | BORING DATE: September 20, 2                                                       | 2012                                                  | DATUM:                      | UTM Zone 11<br>(Nad 83)          |
|             |                                          |                                   | N: 5552963 E: 648217                                                                                                                                                                                                                                                               |        |                                      |       |            |                                                                                    |                                                       |                             |                                  |
| Щ           |                                          | ę                                 | SOIL PROFILE                                                                                                                                                                                                                                                                       |        | 5                                    | SAMPL | .ES        | DYNAMIC PENETRATION<br>RESISTANCE, BLOWS/0.3m                                      | HYDRAULIC CONDUCTIVITY,<br>k, cm/s                    | (1)                         | PIEZOMETER                       |
| DEPTH SCALE | METRES                                   | BORING METHOD                     | DESCRIPTION                                                                                                                                                                                                                                                                        | I < I- | ELEV.<br>DEPTH<br>(m)                | TYPE  | BLOWS/0.3m | 20 40 60 80<br>SHEAR STRENGTH nat V. + Q. ●<br>Cu, kPa rem V. ⊕ U C<br>20 40 60 80 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ADDITTIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION        |
|             | 10 · · · · · · · · · · · · · · · · · · · | Barber Rig – Air Rotary<br>Tewina | (SP) GRAVELLY SAND,<br>coarse-grained, fine gravel,<br>sub-angular, poorly-graded, dark gr<br>(SM) SILTY SAND, medium to<br>fine-grained, sub-rounded,<br>poorly-graded, brown and dark grey<br>(GW) GRAVEL, fine with coarse,<br>sub-angular to sub-rounded, well<br>graded, grey |        | 1290.00<br>14.00<br>1289.50<br>14.50 | 2 GRA | 6          |                                                                                    |                                                       |                             | Slotted<br>Section<br>10/20 Sand |
|             | 17                                       |                                   | (SP) GRAVELLY SAND,<br>coarse-grained, fine gravel,<br>poorly-graded, sub-angular, dark gr<br>End of MONITORING WELL.                                                                                                                                                              |        | 1287.00                              | 6 GRA | .8         |                                                                                    |                                                       |                             | Bentonite<br>Pellets             |
|             | 18<br>19<br>20                           |                                   | End of MONITORING WELL.<br>NOTES:<br>Standpipe installed to 16.7 m.<br>Groundwater present at 6.0 m on<br>September 24, 2012.                                                                                                                                                      |        |                                      |       |            |                                                                                    |                                                       |                             | -                                |
| 2<br>C      |                                          |                                   | 00115                                                                                                                                                                                                                                                                              |        |                                      | ····· |            |                                                                                    |                                                       |                             | 2                                |
| Ū<br>L      |                                          |                                   | SCALE                                                                                                                                                                                                                                                                              |        |                                      |       | (          | Golder                                                                             | C                                                     | LOGGED: TO<br>HECKED: JV    |                                  |
| أمَ         | + :                                      | 50                                |                                                                                                                                                                                                                                                                                    |        |                                      |       |            | - Associates                                                                       |                                                       |                             |                                  |

| DATA ENTRY: IPG         | Pł                    | ROJ        | EC            | T No.: 11.1422.0052                                                                      | REC         | CC          | RD                     | OF     | = N  | ٨C         |
|-------------------------|-----------------------|------------|---------------|------------------------------------------------------------------------------------------|-------------|-------------|------------------------|--------|------|------------|
| ENTF                    | LC                    | CA         | TIO           | N: See Location Plan                                                                     |             |             |                        |        |      |            |
| DATA                    |                       |            |               | N: 5550296 E: 648578                                                                     |             |             |                        |        |      |            |
|                         | щ                     |            | 3             | SOIL PROFILE                                                                             |             |             |                        | SA     | MPL  | ES         |
|                         | DEPTH SCALE<br>METRES |            | BOKING METHOD | DESCRIPTION                                                                              |             | STRATA PLOT | ELEV.<br>DEPTH<br>(m)  | NUMBER | түре | BLOWS/0.3m |
|                         |                       |            |               | Ground Surface                                                                           |             |             | 1294.00                |        |      |            |
|                         |                       |            |               | (SP) SAND, coarse-grained,<br>sub-angular, poorly-graded, dark grey<br>homogenous, moist |             |             | 0.00                   | 1      | GRAE |            |
| GPJ CALGARY.GDT 7/30/15 |                       | Barber Rig | Tervita       | (SP) GRAVELY SAND, coarse-graine<br>fine gravel, poorly-graded, sub-angula<br>grey       | ed, i ar, p |             | <u>1289.50</u><br>4.50 | 2      | GRAI |            |
| U<br>U                  | F                     |            |               | 1                                                                                        |             | è.N         | 1                      | 1 -    | ٢.٠٣ | 1          |

#### IONITORING WELL: GA-MW-3S

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m

BORING DATE: September 23, 2012

HYDRAULIC CONDUCTIVITY, k, cm/s

SHEET 1 OF 2

DATUM: UTM Zone 11 (Nad 83)

PIEZOMETER OR STANDPIPE INSTALLATION Ι ADDITIONAL LAB. TESTING 10<sup>-6</sup> 10<sup>-5</sup> 10-1 10<sup>-3</sup> BLOWS/0.3m 20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O WATER CONTENT PERCENT --0<sup>W</sup>---Wp 🛏 - WI 20 30 40 60 80 10 40 Bentonite Pellets 10/20 Sand 23 Sep 2012 又 BOREHOLE - EXPANDED ADD. LAB TESTING 11.1422.0052 BH LOGS ............. Slotted Section 10/20 Sand 9 ۵ o O 10 CONTINUED NEXT PAGE Golder Associates LOGGED: TG DEPTH SCALE CHECKED: JW 1 : 50

|                                                                                   |                                                                        | PROJECT No.: 11.1422.0052 RECORD OF MONITORING WELL: GA-MW-3S<br>LOCATION: See Location Plan BORING DATE: September 23, 2012<br>N: 5550296 E: 648578 |                                                                                                    |             |                            |  |       |   |                                                                      | Sheet<br>Datum: | 2 OF 2<br>UTM Zone 11<br>(Nad 83) |                     |              |                 |                              |          |                            |                                               |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------|----------------------------|--|-------|---|----------------------------------------------------------------------|-----------------|-----------------------------------|---------------------|--------------|-----------------|------------------------------|----------|----------------------------|-----------------------------------------------|
| $\vdash$                                                                          | DEPTH SCALE<br>METRES                                                  | BORING METHOD                                                                                                                                        | SOIL PROFILE                                                                                       | STRATA PLOT | ELEV.<br>DEPTH<br>(m)      |  | MPLE: | щ | DYNAMIC PEN<br>RESISTANCE,<br>20 4<br>SHEAR STREN<br>Cu, kPa<br>20 4 | 0 6<br>GTH n    | 0 81<br><br>at V. +<br>em V. ⊕    | Q- <b>0</b><br>U- O | 10<br><br>W/ | * 10<br>ATER CO | ) <sup>-4</sup> 10<br>PERCEN | IT<br>NI | ADDITIONAL<br>LAB. TESTING | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
|                                                                                   | <ul> <li>10</li> <li>11</li> <li>12</li> <li>13</li> <li>14</li> </ul> | Barber Rig – Air Rotary<br>Terwita                                                                                                                   | (SP) GRAVELY SAND, coarse-grained,<br>fine gravel, poorly-graded, sub-angular,<br>grey (continued) |             |                            |  | GRAB  |   |                                                                      |                 |                                   |                     |              |                 |                              |          |                            | Slotted<br>Section<br>10/20 Sand              |
|                                                                                   | - 15                                                                   |                                                                                                                                                      | End of MONITORING WELL.<br>NOTES:<br>Encountered BEDROCK at 14.4 m                                 |             | <u>\$ 1279.60</u><br>14.40 |  |       |   |                                                                      |                 |                                   |                     |              |                 |                              |          |                            | Bentonite<br>Pellets                          |
| CALGARY.GDT 7/30/15                                                               | - 16<br>- 17                                                           |                                                                                                                                                      |                                                                                                    |             |                            |  |       |   |                                                                      |                 |                                   |                     |              |                 |                              |          |                            |                                               |
| GOREHOLE - EXPANDED ADD. LAB TESTING 11.1422.0052 BH LOGS.GPJ CALGARY.GDT 7/30/15 | - 18                                                                   |                                                                                                                                                      |                                                                                                    |             |                            |  |       |   |                                                                      |                 |                                   |                     |              |                 |                              |          |                            |                                               |
| EXPANDED ADD. LAB TESTING                                                         | - 19<br>- 20                                                           |                                                                                                                                                      |                                                                                                    |             |                            |  |       |   |                                                                      |                 |                                   |                     |              |                 |                              |          |                            |                                               |
| DEPTH SCALE<br>COGGED: TG<br>CHECKED: JW                                          |                                                                        |                                                                                                                                                      |                                                                                                    |             |                            |  |       |   |                                                                      |                 |                                   |                     |              |                 |                              |          |                            |                                               |

### Log of Monitoring Well: GH\_MW-ERSC-1

Project Name/No: Greenhills Ops Elkford BC/577-016.04

Drilling Company: JR Drilling

Logged by: RM

Client: Teck Coal Ltd.

Drilling Method: Dual air rotary

Date Drilled: November 24, 2014

Site Location: Greenhills Operations, BC

Sheet: 1 of 1

|                                                                       | SUBSURFACE PROFILE SAMPLE                                             |                                                  |                                                                                                                                                      |            |              | E           |                            |                      |                         |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------------|----------------------------|----------------------|-------------------------|
| - Depth                                                               | Symbol                                                                | Description                                      | Depth/Elev (m)                                                                                                                                       | Sample ID  | Analysed Y,N | Sample Type | Vapour<br>ppm<br>0 250 500 | LEL<br>%<br>0 50 100 | Backfill details        |
| $\begin{array}{c} ft \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$ |                                                                       | Below 5.2 m, a water bearing seam <0.31 m width. | 1293.00<br>0.00<br>1288.73<br>4.27<br>1287.82<br>5.18<br>1287.51<br>5.49<br>1286.90<br>6.10<br>1286.29<br>6.71<br>1285.99<br>7.01<br>1285.99<br>7.01 |            |              |             |                            |                      | Bentonite               |
| Well loca                                                             | ation: 5,                                                             | 548,704 N, 649,081 E Well casing diame           | eter: 2"                                                                                                                                             |            |              |             | Dept                       | h of well (TC        | <b>DC):</b> 7.924 m     |
| Depth to                                                              | water l                                                               | evel (TOC): 5.349 m Well casing mater            | rial: Sc                                                                                                                                             | ch. 80 PVC |              |             | Well                       | Elevation (T         | Г <b>ОС):</b> 1293.75 m |
| Date of v                                                             | water lev                                                             | vel: 26 November, 2014 Well screen slot s        | size: 01                                                                                                                                             | 10         |              |             | Grou                       | ind Elevatio         | <b>n</b> : 1293 m       |
| Borehole                                                              | Borehole diameter: 0.17 m Well screen interval (bgs): 4.12 m - 7.17 m |                                                  |                                                                                                                                                      |            |              |             |                            |                      |                         |

## **[]** HEMMERA



#### **Greenhills Well 9 Report 1 - Detailed Well Record**

GH\_POTW09

| [                                                                                                                                                                         |                                                  |        |                                                                          |  |  |  |  |                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------|--------------------------------------------------------------------------|--|--|--|--|-----------------------------------------------------------------------------------------------------------------------------|
| Well Tag Number                                                                                                                                                           | · 85223                                          |        | Construction Date: 1992-06-29 00:00:00                                   |  |  |  |  |                                                                                                                             |
| Well lag Number                                                                                                                                                           | . 03223                                          |        | Driller:                                                                 |  |  |  |  |                                                                                                                             |
| Ownor, FIK WALL                                                                                                                                                           | LEY COAL - GREENHILLS OPER                       | ATTON  |                                                                          |  |  |  |  |                                                                                                                             |
| Cowner, DBR VAD                                                                                                                                                           |                                                  | AIION  | Plate Attached By: KIMBERLY RASMUSSEN                                    |  |  |  |  |                                                                                                                             |
| Address:                                                                                                                                                                  |                                                  |        | Where Plate Attached: WELL CASING                                        |  |  |  |  |                                                                                                                             |
| Area: GREENHILI                                                                                                                                                           | LS                                               |        | PRODUCTION DATA AT TIME OF DRILLING:<br>Well Yield: (Driller's Estimate) |  |  |  |  |                                                                                                                             |
| WELL LOCATION:                                                                                                                                                            |                                                  |        | Development Method:                                                      |  |  |  |  |                                                                                                                             |
| Land District                                                                                                                                                             |                                                  |        | Pump Test Info Flag: N                                                   |  |  |  |  |                                                                                                                             |
|                                                                                                                                                                           | 1588 Plan: 11279 Lot: 1                          |        | Artesian Flow: UNKNOWN YIELD                                             |  |  |  |  |                                                                                                                             |
| Township: Sect                                                                                                                                                            |                                                  |        | Artesian Pressure (ft):                                                  |  |  |  |  |                                                                                                                             |
|                                                                                                                                                                           | Meridian: Block:                                 |        | Static Level:                                                            |  |  |  |  |                                                                                                                             |
| Quarter:                                                                                                                                                                  | neridian. Brock.                                 |        |                                                                          |  |  |  |  |                                                                                                                             |
| Island:                                                                                                                                                                   |                                                  |        | WATER OUALITY:                                                           |  |  |  |  |                                                                                                                             |
|                                                                                                                                                                           | AD 83): Well: 5                                  |        | Character:                                                               |  |  |  |  |                                                                                                                             |
|                                                                                                                                                                           | ,                                                |        | Colour:                                                                  |  |  |  |  |                                                                                                                             |
| Class of Well:                                                                                                                                                            |                                                  |        | Odour:                                                                   |  |  |  |  |                                                                                                                             |
| Subclass of Wel                                                                                                                                                           | 11:                                              |        | Well Disinfected: N                                                      |  |  |  |  |                                                                                                                             |
| Orientation of                                                                                                                                                            |                                                  |        | EMS ID:                                                                  |  |  |  |  |                                                                                                                             |
| Status of Well:                                                                                                                                                           |                                                  |        | Water Chemistry Info Flag: N                                             |  |  |  |  |                                                                                                                             |
| Well Use:                                                                                                                                                                 |                                                  |        | Field Chemistry Info Flag:                                               |  |  |  |  |                                                                                                                             |
| Observation Wel                                                                                                                                                           |                                                  |        | Site Info (SEAM): N                                                      |  |  |  |  |                                                                                                                             |
| Observation Wel                                                                                                                                                           | ll Status:                                       |        |                                                                          |  |  |  |  |                                                                                                                             |
| Construction Me                                                                                                                                                           |                                                  |        | Water Utility: N                                                         |  |  |  |  |                                                                                                                             |
| Diameter: 10.75                                                                                                                                                           | 5 inches                                         |        | Water Supply System Name: GREENHILLS WATER SUPPLY SYSTEM                 |  |  |  |  |                                                                                                                             |
| Casing drive sh                                                                                                                                                           |                                                  |        | Water Supply System Well Name: WELL 9                                    |  |  |  |  |                                                                                                                             |
| Well Depth: 117                                                                                                                                                           |                                                  |        |                                                                          |  |  |  |  |                                                                                                                             |
| Elevation:                                                                                                                                                                |                                                  |        | SURFACE SEAL:                                                            |  |  |  |  |                                                                                                                             |
|                                                                                                                                                                           | tick Up: inches                                  |        | Flag: Y                                                                  |  |  |  |  |                                                                                                                             |
| Well Cap Type:                                                                                                                                                            |                                                  |        | Material:                                                                |  |  |  |  |                                                                                                                             |
| Bedrock Depth:                                                                                                                                                            |                                                  |        | Method:<br>Depth (ft): 88 feet                                           |  |  |  |  |                                                                                                                             |
| Lithology Info                                                                                                                                                            |                                                  |        |                                                                          |  |  |  |  |                                                                                                                             |
| File Info Flag:                                                                                                                                                           |                                                  |        | Thickness (in):                                                          |  |  |  |  |                                                                                                                             |
| Sieve Info Flag                                                                                                                                                           |                                                  |        | WELL CLOSURE INFORMATION:<br>Reason For Closure:                         |  |  |  |  |                                                                                                                             |
| Screen Info Fla                                                                                                                                                           | 19: I                                            |        |                                                                          |  |  |  |  |                                                                                                                             |
| Site Info Detai                                                                                                                                                           |                                                  |        | Method of Closure:                                                       |  |  |  |  |                                                                                                                             |
| Other Info Flag                                                                                                                                                           |                                                  |        | Method of Closure:<br>Closure Sealant Material:                          |  |  |  |  |                                                                                                                             |
| Other Info Deta                                                                                                                                                           |                                                  |        | Closure Backfill Material:                                               |  |  |  |  |                                                                                                                             |
| Coner THILD Dece                                                                                                                                                          |                                                  |        | Details of Closure:                                                      |  |  |  |  |                                                                                                                             |
| L                                                                                                                                                                         |                                                  |        |                                                                          |  |  |  |  |                                                                                                                             |
| Screen from                                                                                                                                                               | to feet                                          | Туре   |                                                                          |  |  |  |  |                                                                                                                             |
| 88                                                                                                                                                                        | 119                                              |        | .25                                                                      |  |  |  |  |                                                                                                                             |
| null                                                                                                                                                                      | null                                             |        | .12                                                                      |  |  |  |  |                                                                                                                             |
| Casing from                                                                                                                                                               | to feet                                          | Diame  | meter Material Drive Shoe                                                |  |  |  |  |                                                                                                                             |
| 0                                                                                                                                                                         | 88                                               | 10.75  |                                                                          |  |  |  |  |                                                                                                                             |
| GENERAL REMARKS                                                                                                                                                           | · ·                                              |        |                                                                          |  |  |  |  |                                                                                                                             |
| CENERAL REPARKS                                                                                                                                                           |                                                  |        |                                                                          |  |  |  |  |                                                                                                                             |
|                                                                                                                                                                           |                                                  |        |                                                                          |  |  |  |  |                                                                                                                             |
| LITHOLOGY INFOR                                                                                                                                                           |                                                  | 0      | asthion optowed                                                          |  |  |  |  |                                                                                                                             |
| From 0 to 19.7 Ft. GRAVELY CLAY 0 nothing entered<br>From 19.7 to 21.4 Ft. GRAVELY CLAY 0 nothing entered<br>From 21.4 to 43 Ft. GRAVELY CLAY COLLUVIUM 0 nothing entered |                                                  |        |                                                                          |  |  |  |  |                                                                                                                             |
|                                                                                                                                                                           |                                                  |        |                                                                          |  |  |  |  | From 21.4 to 43 Ft. GRAVELY CLAY COLLUVIUM 0 nothing entered<br>From 43 to 65 Ft. SILTY CLAY - LACUSTRINE 0 nothing entered |
| From 65 to                                                                                                                                                                | 70 Ft. GRAVEL- DIRTY                             | - WATE | PER 0 nothing entered                                                    |  |  |  |  |                                                                                                                             |
| From 70 to 9                                                                                                                                                              | 70 Ft. GRAVEL- DIRTY<br>98.43 Ft. CLEANER GRAVEL | . 0    | ) nothing entered                                                        |  |  |  |  |                                                                                                                             |
| From 98.43 to                                                                                                                                                             | 118 Ft. GRAVEL SILTY                             | . 0 no | nothing entered                                                          |  |  |  |  |                                                                                                                             |
| From 118.4 to 1                                                                                                                                                           | 121.4 Ft. SANDSTONE AND                          | SHALE  | E 0 nothing entered                                                      |  |  |  |  |                                                                                                                             |
|                                                                                                                                                                           |                                                  |        |                                                                          |  |  |  |  |                                                                                                                             |

• Return to Main

- Return to Search Options
- Return to Search Criteria

Information Disclaimer The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.



IF.

### Greenhills Well 10 Report 1 - Detailed Well Record

#### GH\_POTW10

|                                                         | Construction Date: 2001-06-22 00:00:00                                      |  |  |  |  |  |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Well Tag Number: 85218                                  |                                                                             |  |  |  |  |  |  |  |
| 5                                                       | Driller:                                                                    |  |  |  |  |  |  |  |
| Owner: ELK VALLEY COAL - GREENHILLS OPERATI             | Well Identification Plate Number: 15805<br>Plate Attached By:               |  |  |  |  |  |  |  |
| Address:                                                | Where Plate Attached:                                                       |  |  |  |  |  |  |  |
| Area: GREENHILLS                                        | PRODUCTION DATA AT TIME OF DRILLING:<br>Well Yield: 50 (Driller's Estimate) |  |  |  |  |  |  |  |
| WELL LOCATION:                                          | Development Method:                                                         |  |  |  |  |  |  |  |
| Land District                                           | Pump Test Info Flag: N                                                      |  |  |  |  |  |  |  |
| District Lot: 4588 Plan: 11279 Lot: 1                   | Artesian Flow:                                                              |  |  |  |  |  |  |  |
| Township: Section: Range:                               | Artesian Pressure (ft):                                                     |  |  |  |  |  |  |  |
| Indian Reserve: Meridian: Block:                        | Static Level:                                                               |  |  |  |  |  |  |  |
| Quarter:                                                |                                                                             |  |  |  |  |  |  |  |
| Island:                                                 | WATER QUALITY:                                                              |  |  |  |  |  |  |  |
| BCGS Number (NAD 83): Well: 5                           | Character:                                                                  |  |  |  |  |  |  |  |
| Boob Number (Milb 05): Werr. 5                          | Colour:                                                                     |  |  |  |  |  |  |  |
| Class of Well:                                          | Odour:                                                                      |  |  |  |  |  |  |  |
| Subclass of Well:                                       | Well Disinfected: N                                                         |  |  |  |  |  |  |  |
| Orientation of Well:                                    | EMS ID:                                                                     |  |  |  |  |  |  |  |
| Status of Well:                                         | Water Chemistry Info Flag: N                                                |  |  |  |  |  |  |  |
| Well Use:                                               | Field Chemistry Info Flag:                                                  |  |  |  |  |  |  |  |
| Observation Well Number:                                | Site Info (SEAM): N                                                         |  |  |  |  |  |  |  |
| Observation Well Status:                                |                                                                             |  |  |  |  |  |  |  |
| Construction Method:                                    | Water Utility: N                                                            |  |  |  |  |  |  |  |
| Diameter: 8" inches                                     | Water Supply System Name: GREENHILLS WATER SUPPLY SYSTEM                    |  |  |  |  |  |  |  |
| Casing drive shoe:                                      | Water Supply System Well Name: WELL 10                                      |  |  |  |  |  |  |  |
| Well Depth: 176 feet                                    | hater suppry system herr hame. Here is                                      |  |  |  |  |  |  |  |
| Elevation: feet (ASL)                                   | SURFACE SEAL:                                                               |  |  |  |  |  |  |  |
| Final Casing Stick Up: inches                           | Flag: N                                                                     |  |  |  |  |  |  |  |
| Well Cap Type:                                          | Material:                                                                   |  |  |  |  |  |  |  |
| Bedrock Depth: feet                                     | Method:                                                                     |  |  |  |  |  |  |  |
| Lithology Info Flag: Y                                  | Depth (ft):<br>Thickness (in):                                              |  |  |  |  |  |  |  |
| File Info Flag: N                                       |                                                                             |  |  |  |  |  |  |  |
| Sieve Info Flag: N                                      |                                                                             |  |  |  |  |  |  |  |
| Screen Info Flag: N                                     | WELL CLOSURE INFORMATION:                                                   |  |  |  |  |  |  |  |
| coroon into riag. n                                     | Reason For Closure:                                                         |  |  |  |  |  |  |  |
| Site Info Details:                                      | Method of Closure:                                                          |  |  |  |  |  |  |  |
| Other Info Flag:                                        | Closure Sealant Material:                                                   |  |  |  |  |  |  |  |
| Other Info Details:                                     | Closure Backfill Material:                                                  |  |  |  |  |  |  |  |
|                                                         | Details of Closure:                                                         |  |  |  |  |  |  |  |
| Screen from to feet Ty                                  | pe Slot Size                                                                |  |  |  |  |  |  |  |
| Casing from to feet Di                                  | ameter Material Drive Shoe                                                  |  |  |  |  |  |  |  |
|                                                         | ill Other null                                                              |  |  |  |  |  |  |  |
| GENERAL REMARKS:                                        |                                                                             |  |  |  |  |  |  |  |
| WATER QUALITY GUARANTEED BY CONTRACTOR                  |                                                                             |  |  |  |  |  |  |  |
| LITHOLOGY INFORMATION:                                  |                                                                             |  |  |  |  |  |  |  |
| From 0 to 58 Ft. CLAY 0 nothing entered                 |                                                                             |  |  |  |  |  |  |  |
| From 58 to 78 Ft. GRAVEL AND BOULDERS 0 nothing entered |                                                                             |  |  |  |  |  |  |  |
| From 78 to 110 Ft. CLAY AND GRAVEL                      |                                                                             |  |  |  |  |  |  |  |
|                                                         | 0 nothing entered                                                           |  |  |  |  |  |  |  |
| Peters to Main                                          | s nothing chooled                                                           |  |  |  |  |  |  |  |

- Return to Main
- Return to Search Options
- Return to Search Criteria

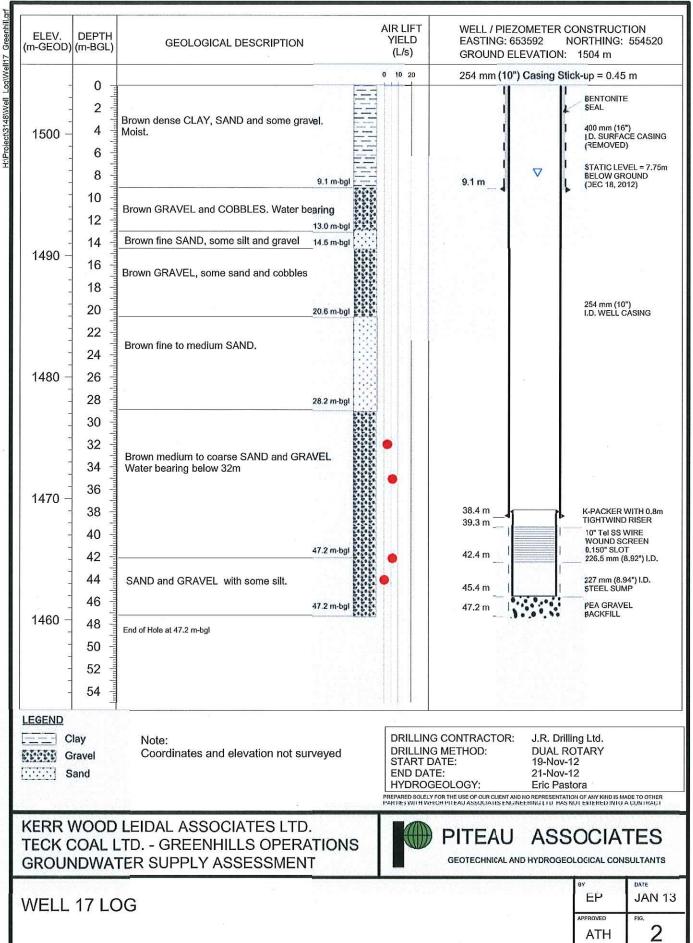
#### **Information Disclaimer**

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.



#### Greenhills Well 15 Report 1 - Detailed Well Record

#### GH\_POTW15


|                                               | Construction Date: 2001-11-01 00:00:00                   |  |  |  |  |  |  |  |
|-----------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|--|
| Well Tag Number: 85221                        |                                                          |  |  |  |  |  |  |  |
| Werr ray Mullber, 05221                       | Driller:                                                 |  |  |  |  |  |  |  |
| CONTACT DIV VALLEY CONT CREENULLIC OPERATOR   |                                                          |  |  |  |  |  |  |  |
| Owner: ELK VALLEY COAL - GREENHILLS OPERATION |                                                          |  |  |  |  |  |  |  |
|                                               | Plate Attached By: KIMBERLY RASMUSSEN                    |  |  |  |  |  |  |  |
| Address:                                      | Where Plate Attached: WELL CASING                        |  |  |  |  |  |  |  |
|                                               |                                                          |  |  |  |  |  |  |  |
| Area:                                         | PRODUCTION DATA AT TIME OF DRILLING:                     |  |  |  |  |  |  |  |
|                                               | Well Yield: 100 (Driller's Estimate)                     |  |  |  |  |  |  |  |
| WELL LOCATION:                                | Development Method:                                      |  |  |  |  |  |  |  |
| Land District                                 | Pump Test Info Flag: N                                   |  |  |  |  |  |  |  |
| District Lot: 4588 Plan: 11279 Lot: 1         | Artesian Flow:                                           |  |  |  |  |  |  |  |
| Township: Section: Range:                     | Artesian Pressure (ft):                                  |  |  |  |  |  |  |  |
| Indian Reserve: Meridian: Block:              | Static Level: 11 feet                                    |  |  |  |  |  |  |  |
| Quarter:                                      |                                                          |  |  |  |  |  |  |  |
| Island:                                       | WATER QUALITY:                                           |  |  |  |  |  |  |  |
| 1                                             |                                                          |  |  |  |  |  |  |  |
| BCGS Number (NAD 83): Well: 7                 | Character:                                               |  |  |  |  |  |  |  |
|                                               | Colour:                                                  |  |  |  |  |  |  |  |
| Class of Well:                                | Odour:                                                   |  |  |  |  |  |  |  |
| Subclass of Well:                             | Well Disinfected: N                                      |  |  |  |  |  |  |  |
| Orientation of Well:                          | EMS ID:                                                  |  |  |  |  |  |  |  |
| Status of Well:                               | Water Chemistry Info Flag: N                             |  |  |  |  |  |  |  |
| Well Use:                                     | Field Chemistry Info Flag:                               |  |  |  |  |  |  |  |
| Observation Well Number:                      | Site Info (SEAM): N                                      |  |  |  |  |  |  |  |
| Observation Well Status:                      |                                                          |  |  |  |  |  |  |  |
| Construction Method:                          | Water Utility: N                                         |  |  |  |  |  |  |  |
| Diameter: inches                              | Water Supply System Name: GREENHILLS WATER SUPPLY SYSTEM |  |  |  |  |  |  |  |
| Casing drive shoe:                            | Water Supply System Well Name: WELL 15                   |  |  |  |  |  |  |  |
| Well Depth: 144 feet                          |                                                          |  |  |  |  |  |  |  |
| Elevation: feet (ASL)                         | SURFACE SEAL:                                            |  |  |  |  |  |  |  |
| Final Casing Stick Up: inches                 | Flag: N                                                  |  |  |  |  |  |  |  |
| Well Cap Type:                                | Material:                                                |  |  |  |  |  |  |  |
| Bedrock Depth: feet                           | Method:                                                  |  |  |  |  |  |  |  |
|                                               | Depth (ft):                                              |  |  |  |  |  |  |  |
| Lithology Info Flag: Y                        | 1 · · ·                                                  |  |  |  |  |  |  |  |
| File Info Flag: N                             | Thickness (in):                                          |  |  |  |  |  |  |  |
| Sieve Info Flag: N                            |                                                          |  |  |  |  |  |  |  |
| Screen Info Flag: N                           | WELL CLOSURE INFORMATION:                                |  |  |  |  |  |  |  |
|                                               | Reason For Closure:                                      |  |  |  |  |  |  |  |
| Site Info Details:                            | Method of Closure:                                       |  |  |  |  |  |  |  |
| Other Info Flag:                              | Closure Sealant Material:                                |  |  |  |  |  |  |  |
| Other Info Details:                           | Closure Backfill Material:                               |  |  |  |  |  |  |  |
|                                               | Details of Closure:                                      |  |  |  |  |  |  |  |
| Screen from to feet Typ                       | e Slot Size                                              |  |  |  |  |  |  |  |
| 11                                            |                                                          |  |  |  |  |  |  |  |
|                                               | meter Material Drive Shoe                                |  |  |  |  |  |  |  |
| 0 144 nul                                     | l Other null                                             |  |  |  |  |  |  |  |
| GENERAL REMARKS:                              |                                                          |  |  |  |  |  |  |  |
| WATER QUALITY GUARANTEED BY CONTRACTOR        |                                                          |  |  |  |  |  |  |  |
|                                               |                                                          |  |  |  |  |  |  |  |
| LITHOLOGY INFORMATION:                        |                                                          |  |  |  |  |  |  |  |
|                                               |                                                          |  |  |  |  |  |  |  |
| From 7 to 15 Ft. CLAY AND GRAVEL              |                                                          |  |  |  |  |  |  |  |
|                                               | ching entered                                            |  |  |  |  |  |  |  |
| From 125 to 144 Ft. COARSE GRAVEL AND (       | COBBLE 0 nothing entered                                 |  |  |  |  |  |  |  |
|                                               |                                                          |  |  |  |  |  |  |  |

- Return to Main
- Return to Search Options
- Return to Search Criteria

#### Information Disclaimer

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

#### GH\_POTW17



### Log of Monitoring Well: GH\_MW-RLP-1D

CI HEMMERA

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation Date Drilled: September 3rd-4th, 2016 Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Site Location: Elkford, BC

Sheet: 1 of 14

| SUBSURFACE PROFILE |                                                                  |                                            |                                                                                                                                                                     |                |           | Real a       |                                  |                      |                  |
|--------------------|------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|--------------|----------------------------------|----------------------|------------------|
| Depth              |                                                                  | Symbol                                     | Description                                                                                                                                                         | Depth/Elev (m) | Sample ID | Analysed Y,N | ed Vapour<br>bel ppm<br>0 250500 | LEL<br>%<br>0 50 100 | Backfill details |
| ft n               | n                                                                |                                            | 5                                                                                                                                                                   |                |           |              |                                  |                      |                  |
| -3                 |                                                                  |                                            |                                                                                                                                                                     |                |           |              |                                  |                      |                  |
| -2                 |                                                                  |                                            |                                                                                                                                                                     |                | ×.        |              |                                  |                      | Steel Casing     |
| -1-                | ł                                                                |                                            | Ground Surface                                                                                                                                                      | 0.00           |           |              |                                  |                      |                  |
| 0                  |                                                                  | 11/2/11                                    | TOPSOIL<br>TOPSOIL, silt, fine sand and fine sub-angular/sub-<br>rounded gravel with rootlets, grayish-brown, dry (likely                                           | 0.00<br>0.00   |           |              |                                  |                      |                  |
| 1                  |                                                                  | 11441                                      | fill)                                                                                                                                                               |                |           |              |                                  |                      |                  |
| 3-                 |                                                                  | 14444<br>14444<br>14444                    |                                                                                                                                                                     |                |           |              |                                  |                      |                  |
| 4-                 | 1                                                                | 1/1/1/1<br>1/1/1/1                         |                                                                                                                                                                     |                |           |              |                                  |                      |                  |
| 5                  |                                                                  | 1212412                                    |                                                                                                                                                                     |                |           |              |                                  |                      | 8                |
| 6-                 | 2                                                                | 1224                                       |                                                                                                                                                                     | -2.00          |           |              |                                  |                      | Bentonite Chips  |
| 7                  | -                                                                | 1,1,1,1,1,1,1,1<br>1,1,1,1,1,1,1,1,1,1,1,1 | TOPSOIL<br>TOPSOIL, silt, fine sand and fine to medium sub-<br>angular/sub-rounded gravel with rootlets and wood<br>debris, dark brown, dry (likely native topsoil) | 2.00           |           |              |                                  |                      | Bent             |
| 9-                 |                                                                  |                                            | SILT, SAND and GRAVEL.<br>SILT, SAND and GRAVEL, light brown, fine sand,<br>fine to medium sub-angular/sub-rounded gravel with<br>rootlets, dry                     | 2.50           |           |              |                                  |                      |                  |
| 10                 | 3                                                                |                                            | Moist from 4.5m                                                                                                                                                     |                |           |              |                                  |                      |                  |
| 11-                |                                                                  | 法法法                                        |                                                                                                                                                                     |                |           |              |                                  |                      | Schedule 40 PVC  |
| 12-                |                                                                  | 差法                                         |                                                                                                                                                                     |                |           |              |                                  | -                    | Sched            |
| 13                 | 4                                                                | たた                                         |                                                                                                                                                                     |                |           |              |                                  |                      |                  |
| 14-<br>-<br>15-    |                                                                  | 装装                                         |                                                                                                                                                                     |                |           |              |                                  |                      |                  |
| 16-                |                                                                  |                                            | *                                                                                                                                                                   | -5.00<br>5.00  |           |              |                                  |                      |                  |
| -1                 | 5                                                                | SK SK                                      |                                                                                                                                                                     | 5.00           |           |              | 1 1 1                            | 1 1 1                |                  |
| Well I             | oca                                                              | ation: R                                   | ail Loop Well casing diam                                                                                                                                           | eter: 5        | 0.8mm     |              | Dept                             | h of well (TC        | DC): -           |
|                    |                                                                  |                                            | evel (TOC): - Well casing mate                                                                                                                                      |                |           | Elevation (T |                                  |                      |                  |
|                    |                                                                  | vater le                                   |                                                                                                                                                                     |                |           |              | Grou                             | Ind Elevation        | n: -             |
| Boreh              | Borehole diameter: 15.24cm Well screen interval (bgs): 82.5-79.5 |                                            |                                                                                                                                                                     |                |           |              |                                  |                      |                  |

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation

Date Drilled: September 3rd-4th, 2016

Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Site Location: Elkford, BC

SAMPLE SUBSURFACE PROFILE Depth/Elev (m) Analysed Y,N LEL Vapour Sample Type **Backfill details** Sample ID Description ppm % Symbol Depth 0 250 500 0 50 100 45 SAND and GRAVEL (TILL) SAND and GRAVEL, fine grained, fine to coarse sub-17 angular/sub-rounded gravel up to 2cm, moist 18 19 -6.00 6 SILTY CLAY (TILL) 20 SILTY CLAY, trace fine sand, some blocky silt, dark brown, homogenous, low to moderate plasticity, saturated 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Depth of well (TOC): -Well location: Rail Loop Well casing diameter: 50.8mm Well casing material: Schedule 40 PVC Well Elevation (TOC): -Depth to water level (TOC): -Date of water level: -Well screen slot size: 0.25mm Ground Elevation: -Well screen interval (bgs): 82.5-79.5 Borehole diameter: 15.24cm

**C**] HEMMERA

Sheet: 2 of 14

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation

Date Drilled: September 3rd-4th, 2016

Site Location: Elkford, BC

Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Sheet: 3 of 14

CI HEMMERA

| SUBSURFACE PROF                                                                                                                                                                                                                | LE                 |                |                      | S            | AMPL        | E                         | 1                    |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|----------------------|--------------|-------------|---------------------------|----------------------|------------------|
| Description<br>Description<br>Description                                                                                                                                                                                      | on                 | Depth/Elev (m) | Sample ID            | Analysed Y,N | Sample Type | Vapour<br>ppm<br>0 250500 | LEL<br>%<br>0 50 100 | Backfill details |
| $ \begin{array}{c} 37 \\ - \\ 38 \\ - \\ - \\ 40 \\ - \\ - \\ 41 \\ - \\ 42 \\ - \\ - \\ 43 \\ - \\ - \\ 43 \\ - \\ - \\ 43 \\ - \\ - \\ 44 \\ - \\ - \\ 45 \\ - \\ - \\ 46 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ |                    |                |                      |              |             |                           |                      |                  |
| Well location: Rail Loop                                                                                                                                                                                                       | Well casing diam   | eter: 5        | 0.8mm                |              |             | Dept                      | h of well (TO        | C): -            |
| Depth to water level (TOC): -                                                                                                                                                                                                  | Well casing mater  | rial: So       | hedule 40 P          | VC           |             | Well                      | Elevation (T         | DC): -           |
| Date of water level: -                                                                                                                                                                                                         | Well screen slot s |                |                      |              |             |                           | nd Elevation         |                  |
|                                                                                                                                                                                                                                |                    |                |                      |              |             | 0.00                      |                      |                  |
| Borehole diameter: 15.24cm                                                                                                                                                                                                     | Well screen interv | ga) inv        | <b>sj:</b> 02.0-19.5 | 5            |             |                           |                      |                  |

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation

Date Drilled: September 3rd-4th, 2016

Site Location: Elkford, BC

Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Sheet: 4 of 14

**[]** HEMMERA

|                                                                                                               | SUBSURFACE PROFILE                                                                                                                                                                                                                     |                |               | S                                       | AMPLE       | E                          |                      |                  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|-----------------------------------------|-------------|----------------------------|----------------------|------------------|
| Depth<br>Symbol                                                                                               | Description                                                                                                                                                                                                                            | Depth/Elev (m) | Sample ID     | Analysed Y,N                            | Sample Type | Vapour<br>ppm<br>0 250 500 | LEL<br>%<br>0 50 100 | Backfill details |
| $\begin{array}{c c} \hline & \hline $ | SILTY SAND and GRAVEL (TILL)<br>SILTY SAND and GRAVEL (TILL)<br>SILTY SAND and GRAVEL, coarse grained, gravel<br>fine to coarse (~1cm), sub-angular, saturated<br>Increasingly clayey, with finer sub-angular gravel from<br>24-25mbgs | -22.00         |               | × · · · · · · · · · · · · · · · · · · · | i           |                            |                      |                  |
| 75-<br>23<br>76                                                                                               | Decreasing gravel/sand with depth, clay/silt from 30-<br>31 mbgs is more consolidated                                                                                                                                                  |                |               |                                         |             |                            |                      |                  |
| Well location: R                                                                                              | ail Loop Well casing diam                                                                                                                                                                                                              | neter: 5       | 0.8mm         |                                         |             | Dept                       | h of well (TO        | C): -            |
| Depth to water                                                                                                | evel (TOC): - Well casing mate                                                                                                                                                                                                         | erial: So      | chedule 40 P  | /C                                      |             | Well                       | Elevation (T         | DC): -           |
| Date of water le                                                                                              | vel: - Well screen slot                                                                                                                                                                                                                | size: 0.       | .25mm         |                                         |             | Grou                       | nd Elevation         |                  |
| Borehole diame                                                                                                | ter: 15.24cm Well screen inter                                                                                                                                                                                                         | val (bg        | s): 82.5-79.5 |                                         |             |                            |                      |                  |

CI HEMMERA

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation

Date Drilled: September 3rd-4th, 2016

Site Location: Elkford, BC

Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Sheet: 5 of 14

| SUBSURFACE PROF               | ILE                |                |               | S            | AMPL        | E                         |                      | 1 L                                                                                                             |
|-------------------------------|--------------------|----------------|---------------|--------------|-------------|---------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| 다. Descripti                  | on                 | Depth/Elev (m) | Sample ID     | Analysed Y,N | Sample Type | Vapour<br>ppm<br>0 250500 | LEL<br>%<br>0 50 100 | Backfill details                                                                                                |
| 77 24<br>79 24<br>80          |                    |                |               |              |             |                           |                      |                                                                                                                 |
| Well location: Rail Loop      | Well casing diam   | eter: 50       | D.8mm         |              |             | Dept                      | h of well (TO        | )C): -                                                                                                          |
| Depth to water level (TOC): - | Well casing mate   |                |               | VC           |             | Well                      | Elevation (T         | OC): -                                                                                                          |
| Date of water level: -        | Well screen slot s |                |               |              |             |                           | nd Elevation         |                                                                                                                 |
| Borehole diameter: 15.24cm    | Well screen inter  |                |               | 5            |             |                           |                      | su .                                                                                                            |
| Dorenole diameter, 10.24011   | Wen seleen niter   | tai (by        | oj. 02.0-10.0 | -            |             |                           |                      | A CONTRACTOR OF |

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation

Date Drilled: September 3rd-4th, 2016

Site Location: Elkford, BC

Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Sheet: 6 of 14

CI HEMMERA

| SUBSURFACE PROFIL             | E                         |                      | SAMPLE                       |                                         | The second se |
|-------------------------------|---------------------------|----------------------|------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Description                   | Depth/Elev (m)            | Sample ID            | Analysed r, N<br>Sample Type | Vapour LEL<br>ppm %<br>250 500 0 50 100 |                                                                                                                 |
| 97                            |                           |                      |                              |                                         |                                                                                                                 |
| Well location: Rail Loop      | Well casing diameter: 5   | ).8mm                |                              | Depth of well (T                        | OC): -                                                                                                          |
| Depth to water level (TOC): - | Well casing material: So  | hedule 40 PVC        |                              | Well Elevation (                        | TOC): -                                                                                                         |
| Date of water level: -        | Well screen slot size: 0. |                      |                              | Ground Elevation                        |                                                                                                                 |
| Borehole diameter: 15.24cm    | Well screen interval (bg  | <b>s):</b> 82.5-79.5 |                              |                                         |                                                                                                                 |

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation Date Drilled: September 3rd-4th, 2016 Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Site Location: Elkford, BC

Sheet: 7 of 14

CI HEMMERA

| SUBSURFACE PROFIL                                     | E                 |                |                      | S            | AMPLI       | E                          |                      |                  |
|-------------------------------------------------------|-------------------|----------------|----------------------|--------------|-------------|----------------------------|----------------------|------------------|
| Line Description                                      |                   | Depth/Elev (m) | Sample ID            | Analysed Y,N | Sample Type | Vapour<br>ppm<br>0 250 500 | LEL<br>%<br>0 50 100 | Backfill details |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                   |                |                      |              |             |                            |                      |                  |
| Well location: Rail Loop                              | Well casing diam  | eter: 5        | 0.8mm                |              |             | Dept                       | h of well (TO        | )C): -           |
| Depth to water level (TOC): -                         | Well casing mate  |                |                      | VC           |             |                            | Elevation (T         |                  |
| Date of water level: -                                | Well screen slot  |                |                      | -01/5.       |             |                            | Ind Elevation        |                  |
| Borehole diameter: 15.24cm                            | Well screen inter |                |                      |              |             | 0.00                       |                      |                  |
|                                                       | wen soleen inter  | vai (ng        | <b>9</b> , 02.0-19.0 |              |             |                            |                      |                  |

CI HEMMERA

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation

Date Drilled: September 3rd-4th, 2016

Site Location: Elkford, BC

Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Sheet: 8 of 14

| SUBSURFACE PROFILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                      |                 | SAMPL                       | E                          | 1                    | (iii) 2          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|-----------------------------|----------------------------|----------------------|------------------|
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Depth/Elev (m)         | Sample ID       | Analysed Y,N<br>Sample Type | Vapour<br>ppm<br>0 250 500 | LEL<br>%<br>0 50 100 | Backfill details |
| 37       -       42         38       -       42         39       -       -         40       -       -         41       -       43         5AND and GRAVEL (TILL)       SAND and GRAVEL, coarse sand, angular gravel, saturated         42       -       -         43       -       -         44       -       -         -       -       -         44       -       -         -       -       -         44       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       - |                        | 20<br>00        |                             |                            |                      |                  |
| Well location: Rail Loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Well casing diameter   | : 50.8mm        |                             | Depth                      | n of well (TOC       | ): -             |
| Depth to water level (TOC): -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Well casing material:  |                 | /C                          |                            | Elevation (TO        | 0                |
| Date of water level: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Well screen slot size: |                 |                             |                            | nd Elevation:        | 100              |
| Borehole diameter: 15.24cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Well screen interval ( | bgs): 82.5-79.5 |                             |                            |                      |                  |

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation Date Drilled: September 3rd-4th, 2016

Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Site Location: Elkford, BC

Sheet: 9 of 14

CI HEMMERA

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SUBSURFACE PROFILE                                                                                |                          |               | S            | AMPL        | E                      |          |                    |        |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------|---------------|--------------|-------------|------------------------|----------|--------------------|--------|-------------|
| Depth<br>Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Description                                                                                       | Depth/Elev (m)           | Sample ID     | Analysed Y,N | Sample Type | Vapou<br>ppm<br>0 2508 |          | LEL<br>%<br>50 100 | Backf  | ill details |
| 7 - 48<br>3 - 48<br>3 - 48<br>3 - 48<br>3 - 49<br>- 48<br>2 - 48<br>- 48<br>2 50<br>48<br>50<br>51<br>3 51<br>3 51<br>3 51<br>52<br>51<br>52<br>53<br>53<br>53<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | SILTY CLAY (TILL)<br>SILTY CLAY with trace sub-angular r<br>dark brown, competent, high plasticit | -48.00<br>48.00<br>48.00 |               |              |             |                        |          |                    |        |             |
| Vell location: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rail Loop                                                                                         | Well casing diameter:    | 50.8mm        |              |             | C                      | epth o   | of well (TC        | DC): - |             |
| epth to water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | level (TOC): -                                                                                    | Well casing material: S  | Schedule 40 I | PVC          |             | v                      | Vell Ele | evation (1         | OC): - |             |
| Date of water le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | evel: -                                                                                           | Well screen slot size:   | 0.25mm        |              |             | G                      | round    | Elevatio           | n: -   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eter: 15.24cm                                                                                     | Well screen interval (b  |               |              |             |                        |          |                    |        |             |

CI HEMMERA

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation

Date Drilled: September 3rd-4th, 2016

Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Site Location: Elkford, BC

Sheet: 10 of 14

| SUBSURFACE PROFIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .E                       | 14             | SAMPI                       | _E                          |                      |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|-----------------------------|-----------------------------|----------------------|-----------------|
| 다. Description<br>다. 다. 고<br>다. 다. 고<br>다. 다. 고<br>다. 다. 다                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth/Elev (m)           | Sample ID      | Analysed Y,N<br>Sample Type | Vapour<br>ppm<br>0 250500 0 | LEL B<br>%<br>50 100 | ackfill details |
| 177       54         178       -         -       -         180       -         -       -         181       -         182       -         183       -         184       -         -       -         185       -         -       -         186       -         -       -         187       -         57       GRAVEL (TILL)         GRAVEL, fine to coarse, sub-ang coarse sand         10       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       - |                          |                |                             |                             |                      |                 |
| Well location: Rail Loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Well casing diameter:    | 50.8mm         |                             | Depth                       | of well (TOC): -     |                 |
| Depth to water level (TOC): -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Well casing material: S  |                | VC                          |                             | evation (TOC):       |                 |
| Date of water level: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Well screen slot size: ( |                |                             |                             | d Elevation: -       | · -             |
| Borehole diameter: 15.24cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Well screen interval (b  | gs): 82.5-79.5 | i                           |                             |                      |                 |

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation

Date Drilled: September 3rd-4th, 2016

Site Location: Elkford, BC

Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

| SUBSURFACE PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |           | S            | AMPL        | E                          |                      |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|--------------|-------------|----------------------------|----------------------|------------------|
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depth/Elev (m)                      | Sample ID | Analysed Y,N | Sample Type | Vapour<br>ppm<br>0 250 500 | LEL<br>%<br>0 50 100 | Backfill details |
| 97 6C<br>98<br>99<br>200 61<br>201<br>202<br><br>203<br><br>203<br><br>203<br><br>204<br><br><br>205<br><br><br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -62.00<br>62.00<br>vel (~<br>-66.00 |           |              |             |                            |                      |                  |
| Well location: Rail Loop Well casin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng diameter: 50                     | .8mm      |              |             | Dept                       | h of well (TO        | C): -            |
| a construction and a construction of the second sec | ng material: Scl                    |           | VC           |             |                            | Elevation (T         |                  |
| Construction of the second sec | en slot size: 0.2                   |           |              |             |                            | Ind Elevation        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en interval (bgs                    |           | i            |             |                            |                      |                  |

Sheet: 11 of 14

CI HEMMERA

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation Date Drilled: September 3rd-4th, 2016 Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Site Location: Elkford, BC

Sheet: 12 of 14

| SUBSURFACE PROFIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .E                                         |                |                      | S            | AMPL        | E                          |                      |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|----------------------|--------------|-------------|----------------------------|----------------------|------------------|
| 다. 고 Description<br>다. 또<br>의 장                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                                          | Depth/Elev (m) | Sample ID            | Analysed Y,N | Sample Type | Vapour<br>ppm<br>0 250 500 | LEL<br>%<br>0 50 100 | Backfill details |
| 217       66         217       SAND and GRAVEL (TILL)         SAND and GRAVEL, fine to coars         18       -         -       -         219       -         -       -         220       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         - | se grained sand, fine<br>gravel, saturated |                |                      |              |             |                            |                      |                  |
| Well location: Rail Loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Well casing diame                          | eter: 50       | D.8mm                |              |             | Dept                       | h of well (T         | DC): -           |
| Depth to water level (TOC): -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Well casing mater                          | rial: So       | hedule 40 P          | /C           |             | Well                       | Elevation (1         | OC): -           |
| Date of water level: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Well screen slot s                         | ize: 0.        | 25mm                 |              |             | Grou                       | Ind Elevatio         | n: -             |
| Borehole diameter: 15.24cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Well screen interv                         | /al (bg        | <b>s):</b> 82.5-79.5 |              |             |                            |                      |                  |

Drilling Company: JR Drilling

CI HEMMERA

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation

Date Drilled: September 3rd-4th, 2016

Dute Diffied. September of a fill

Drilling Method: Dual Rotary

Logged by: TK

Site Location: Elkford, BC

Sheet: 13 of 14

| SUBSURFACE PROF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ILE                |                |           | S            | AMPLE       |                            |                      |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-----------|--------------|-------------|----------------------------|----------------------|------------------|
| tt E C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on                 | Depth/Elev (m) | Sample ID | Analysed Y,N | Sample Type | Vapour<br>ppm<br>0 250 500 | LEL<br>%<br>0 50 100 | Backfill details |
| 237 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 239 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 - 1 = 238 |                    |                |           |              |             |                            |                      |                  |
| Well location: Rail Loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well casing diam   | eter: 50       | ).8mm     |              |             | Dept                       | h of well (TC        | DC): -           |
| Depth to water level (TOC): -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Well casing mate   |                |           | /C           |             |                            | Elevation (1         |                  |
| Date of water level: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Well screen slot s |                |           |              |             |                            | Ind Elevatio         |                  |
| Borehole diameter: 15.24cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Well screen inter  |                |           |              |             |                            |                      |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 1.0            |           |              |             |                            |                      |                  |

# CI HEMMERA

Project Name/No: 577-016.07

Client: Teck Coal Greenhills Operation Date Drilled: September 3rd-4th, 2016 Drilling Company: JR Drilling

Drilling Method: Dual Rotary

Logged by: TK

Site Location: Elkford, BC

Sheet: 14 of 14

| SUB                     | SURFACE PROFILE         |                 |               | S            | AMPL        | E                          |                      |                  |
|-------------------------|-------------------------|-----------------|---------------|--------------|-------------|----------------------------|----------------------|------------------|
| Depth<br>Symbol         | Description             | Depth/Elev (m)  | Sample ID     | Analysed Y,N | Sample Type | Vapour<br>ppm<br>0 250 500 | LEL<br>%<br>0 50 100 | Backfill details |
| 57                      | Clayey from 79-81 mbgs  | -83.50<br>83.50 |               |              |             |                            |                      | Filter Sand      |
| Well location: Rail Loo | p Well casing dian      | neter: 5        | 0.8mm         |              |             | Dept                       | h of well (T         | OC): -           |
| Depth to water level (T | OC): - Well casing mate | erial: So       | hedule 40 P   | VC           |             | Well                       | Elevation (          | TOC): -          |
| Date of water level: -  | Well screen slot        | size: 0.        | 25mm          |              |             | Grou                       | ind Elevatio         | n: -             |
| Borehole diameter: 15   | .24cm Well screen inter | rval (bg        | s): 82.5-79.5 |              |             |                            |                      |                  |

|                                             |             | FNo.: 12.1349.0013<br>N: See Location Plan                                                                                                  | Г                   | E                       | JR  | יט   | U    | F BOREHOLE: EV_BO<br>BORING DATE: October 22, 2013 | - CGM                                                                                               | SHEET<br>DATUM:            | 1 OF 3<br>UTM Zone 1                   |
|---------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|-----|------|------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|
|                                             |             | N: 5509659 E: 655381                                                                                                                        |                     |                         |     |      |      |                                                    |                                                                                                     | Differin                   | (Nad 83)                               |
| METRES<br>ROBING METHOD                     |             | SOIL PROFILE                                                                                                                                | STRATA PLOT         | ELEV.                   |     | MPLE | _    | RESISTANCE, BLOWS/0.3m<br>20 40 60 80              | DRAULIC CONDUCTIVITY,<br>K, cn/s<br>10 <sup>4</sup> 10 <sup>5</sup> 10 <sup>4</sup> 10 <sup>3</sup> | ADDITTONAL<br>LAB. TESTING | PIEZOMET<br>OR<br>STANDPI<br>INSTALLAT |
|                                             |             | Ground Surface                                                                                                                              | STRAT               | DEPTH<br>(m)<br>353.26  | NUM | Ł    | BLOW |                                                    | Wp I j Wl<br>10 20 30 40<br>1 1 1 1 1 1                                                             | ADDII<br>LAB. T            | Stick-up<br>=0.86 m                    |
| 1                                           |             | SANDY GRAVEL, fine-grained with<br>occasional coarse grains, rounded to<br>sub-rounded, moderately graded, dry,<br>very loose               |                     | 0.00<br>351.74<br>1.52  |     |      |      |                                                    |                                                                                                     |                            |                                        |
| 3 4 (0                                      |             | GRAVEL, trace sand, fine-grained with<br>occasional coarse grains, rounded to<br>sub-rounded, poorly graded, very loose<br>— Moist at 2.1 m |                     |                         |     |      |      |                                                    |                                                                                                     |                            | 12 Nov 2013                            |
| os<br>Soric 127 mm (ID) Casing 152.4 mm (OD | JR Drilling |                                                                                                                                             |                     | <u>- 347,17</u><br>6.10 |     |      |      |                                                    |                                                                                                     |                            | Bentonite<br>Chips                     |
| 7                                           |             | Sity SANDY GRAVEL, fine-grained<br>with occasional coarse grains,<br>sub-rounded to sub-angular, poorly<br>graded, wel, very loose          |                     | 6.10                    |     |      |      |                                                    |                                                                                                     |                            |                                        |
| a<br>a                                      |             | · .                                                                                                                                         | Brite Source Source | <u>343,51</u><br>9.75   |     |      |      |                                                    |                                                                                                     |                            |                                        |
|                                             |             | CONTINUED NEXT PAGE                                                                                                                         |                     |                         |     |      |      | Golder                                             |                                                                                                     |                            |                                        |

Sel :Y:

# RECORD OF BOREHOLE: EV\_BCgw

| PROJECT No.: | 12.1349.0013 |
|--------------|--------------|
|              |              |

### RECORD OF BOREHOLE: EV\_BCgw

BORING DATE: October 22, 2013

SHEET 2 OF 3

DATUM: UTM Zone 11 (Nad 83)

LOCATION: See Location Plan

#### N: 5509659 E: 655381

| ų                                                                                           | 8                                                  | SOIL PROFILE                                                                                                             |                   | SAN    | PLES       | DYNAMIC PEN<br>RESISTANCE, | ETRATION<br>BLOWS/0.3m | ì              | HYDRAULI | IC CONDUCTIVITY,                | Т                | <u> </u>                   | PIEZOMETER                      |
|---------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------|--------|------------|----------------------------|------------------------|----------------|----------|---------------------------------|------------------|----------------------------|---------------------------------|
| DEPTH SCALE<br>METRES                                                                       | BORING METHOD                                      |                                                                                                                          | PLOT              | £      | 0.3m       | 20 4                       | 0 60                   | 80             | 10*      | 10 <sup>5</sup> 10 <sup>4</sup> | 10 <sup>-1</sup> | ADDITIONAL<br>LAB. TESTING | OR<br>STANDPIPE<br>INSTALLATION |
| MEL                                                                                         | RING                                               | DESCRIPTION                                                                                                              | LOI ELEV.         | NUMBER | BLOWS/0.3m | SHEAR STREA<br>Cu, kPa     | IGTH лаtV.<br>remV.    | + Q-●<br>⊕ U-O | 1        | R CONTENT PERC                  |                  | C TES                      |                                 |
|                                                                                             | ĝ                                                  |                                                                                                                          | 110<br>110<br>110 | z      | BLO        | 20 4                       | 0 60                   | 80             | 10       | 20 30                           | 40               | 83                         |                                 |
|                                                                                             |                                                    | GRAVEL, some sand, trace sill,<br>fine-grained, sub-angular to angular,<br>poorly graded, wet, very loose<br>(continued) |                   |        |            |                            |                        |                | Wρ I     |                                 | 4 Wi<br>40       |                            |                                 |
|                                                                                             | Sonie 127 mm (D) Casing 152.4 mm (DD)<br>D hallen- | Occasional coarse grains from<br>15,2 m                                                                                  |                   |        |            |                            |                        |                |          |                                 |                  |                            | Bentonite<br>Chips              |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                    |                                                                                                                          |                   |        |            |                            |                        |                |          |                                 |                  |                            | Silica Sand                     |
|                                                                                             |                                                    |                                                                                                                          |                   |        |            |                            |                        |                |          |                                 |                  |                            | Slotted<br>Section              |
| - 20                                                                                        |                                                    | CONTINUED NEXT PAGE                                                                                                      |                   | ΓT     |            |                            |                        |                |          |                                 |                  |                            |                                 |
|                                                                                             | 1                                                  | <u> </u>                                                                                                                 |                   | I L    |            |                            | L. 1.                  | · I ·· ·       | II       |                                 |                  |                            | L                               |
|                                                                                             |                                                    | SCALE                                                                                                                    |                   |        | (          | (PA)G                      | older<br>ociates       |                |          |                                 |                  | LOGGED: I                  |                                 |
| 1:                                                                                          | ; 50                                               |                                                                                                                          |                   |        |            | V Ass                      | ociates                | <u> </u>       |          |                                 |                  | CHECKED: (                 | 2D                              |

DATA ENTRY: IPG

| DATA ENTRY: IPG                                                                     |                                              |                                                      | :T No.: 12.1349.0013<br>DN: See Location Plan<br>N: 5509659 E: 655381                                                                                                                                                           | F           | RECO                  | OR | D    | 0          | F BOF                           |                   |              |                 | EV_<br>22, 2013 |      | gw                  | - · · · · |        |                   | Sheet<br>Datum             | 3 OF 3<br>UTM Zone 11<br>(Nad 83) |
|-------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|----|------|------------|---------------------------------|-------------------|--------------|-----------------|-----------------|------|---------------------|-----------|--------|-------------------|----------------------------|-----------------------------------|
|                                                                                     | IJ                                           | а<br>он                                              | SO/L PROFILE                                                                                                                                                                                                                    | ·····       |                       | SA | MPL  |            | DYNAMIC<br>RESISTAN             | PENE<br>NCE, BI   | TRATIC       | ฟ<br>).3m       | λ               | Hydr | AULIC C<br>k, cm/s  | ONDUCT    |        | T                 |                            | PIEZOMETER<br>OR                  |
|                                                                                     | DEPTH SCALE<br>METRES                        | BORING METHOD                                        | DESCRIPTION                                                                                                                                                                                                                     | STRATA PLOT | elev.<br>Depth<br>(m) |    | TYPE | BLOWS/0.3m | 20<br>SHEAR ST<br>Cu, kPa<br>20 | 40<br>TRENG<br>40 | n HTG<br>P   | atV. +<br>emV.⊕ |                 | . w  | I<br>VATER C<br>P I |           | PERCEI | 03 -T<br>NT<br>WI | ADDITTONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION         |
|                                                                                     | 20 20 21                                     | Sorie 127 mm (ID) Casing 1524 mm (OD)<br>JR Dritting | GRAVEL, some sand, trace silt,<br>fine-grained, sub-angular to angular,<br>poorly graded, wet, very loose<br>(continued)<br>,<br>Sandy SILTY GRAVEL, fine-grained,<br>sub-angular to angular, poorly graded,<br>wet, very loose |             | 331.17                |    |      |            |                                 |                   |              |                 |                 |      |                     |           |        |                   |                            | Slotted<br>Section                |
| BOREHOLE - EXPANDED ADD. LAB, TESTING 12.1349.0013 BH LOGS.GPJ, CALGARY.GDT, 4/8/14 | 24<br>25<br>26<br>27<br>27<br>28<br>29<br>29 |                                                      | End of BOREHOLE.<br>NOTES:<br>Standpipe installed to 20.7 m upon<br>well completion.<br>Groundwater level measured at 2.4 mbgs on October 23, 2013.<br>Groundwater level measured at<br>2.2 mbgs on November 12, 2013.          |             | 330.10<br>SEL         |    |      |            |                                 |                   |              |                 |                 |      |                     |           |        |                   |                            |                                   |
| BOREHOLE                                                                            | DE<br>1                                      | ертн 9<br>: 50                                       | SCALE                                                                                                                                                                                                                           |             |                       |    |      | (          | Ð                               | Go                | olde<br>ocia | r               |                 |      |                     |           |        |                   | Logged: F<br>Hecked: C     |                                   |

.

### RECORD OF BOREHOLE: EV\_ECgw

#### BORING DATE: October 27, 2013

| DATA ENTRY: IPG                                                                  |                           |                     | T No.: 12.1349.0013<br>N; See Location Plan<br>N: 5506384 E: 660795                                                                                                        | RE          | COF                         | RD  | 0   | F BORE                                          |              |            |              | _ECg  | w       |        |        |   | Sheet<br>Datum             | 1 OF 2<br>: UTM Zone 11<br>(Nad 83)               |
|----------------------------------------------------------------------------------|---------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|-----|-----|-------------------------------------------------|--------------|------------|--------------|-------|---------|--------|--------|---|----------------------------|---------------------------------------------------|
|                                                                                  |                           | 0                   | SO/L PROFILE                                                                                                                                                               |             | s                           | AMP | IFS | DYNAMIC PE<br>RESISTANCE                        | NETRATI      | ON         | 1            | HYDRA |         | ONDUCT | IVITY, | т |                            | PIEZOMETER                                        |
|                                                                                  | DEPTH SCALE<br>METRES     | BORING METHOD       | DESCRIPTION                                                                                                                                                                | STRATA PLOT | LIMBER                      | T   | Ę   | RESISTANCE<br>20<br>SHEAR STRE<br>Cu, kPa<br>20 | 40<br>NGTH   | 50 8       | Q- ●<br>U- O | 10    | ATER CO |        | PERCE  |   | ADDITIONAL<br>LAB. TESTING | OR<br>STANDPIPE<br>INSTALLATION<br>'<br>Stick-up  |
|                                                                                  | - 0                       |                     | Ground Surface<br>GRAVELLY SAND, medium and<br>coarse-grained sand with occasional<br>fine gravol grains, rounded to<br>sub-rounded, moderately graded, dry,<br>very loose | 0.00.00     | 3.30                        |     |     |                                                 |              |            |              |       |         |        |        |   |                            | =0.74 m<br>16 Nov 2014<br>⊈<br>Bentonite<br>Chips |
|                                                                                  | 2                         |                     | SAND, trace gravel, medium-grained,<br>rounded to sub-rounded, moderately<br>graded, dry, very loose                                                                       |             | <u>1.77</u><br>1.52         |     |     |                                                 |              |            |              |       |         |        |        |   |                            | Silica Sand                                       |
|                                                                                  | -                         |                     | CLAY and SAND, medium-grained with                                                                                                                                         | 200         | 2.49                        |     |     |                                                 |              |            |              |       |         |        |        |   |                            | Slotted<br>Section                                |
| 4LGARY.GDT 4/8/14                                                                |                           | Sonic 127 mm (ID) C | CLAY, some sand, medium-grained,                                                                                                                                           |             | <u>1.12</u><br>5.18<br>9.44 |     |     |                                                 |              |            |              |       |         |        |        |   |                            | Sllica Sand                                       |
| BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14 | - 7<br>- 8<br>- 9<br>- 10 |                     | graded, moist, semi-firm                                                                                                                                                   |             |                             |     |     |                                                 |              |            |              |       |         |        |        |   |                            | Bentonite<br>Pellets                              |
| EXP.                                                                             | → 10                      |                     | CONTINUED NEXT PAGE                                                                                                                                                        |             |                             |     |     |                                                 |              |            |              |       |         |        |        |   |                            |                                                   |
| BOREHOLE                                                                         | Di<br>1                   | EPTH \$<br>: 50     | SCALE                                                                                                                                                                      |             |                             |     | 1   | <b>A</b>                                        | Gold<br>Soci | er<br>ates |              |       |         |        |        |   | LOGGED:<br>CHECKED: (      |                                                   |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LO             |               | No.: 12,1349,0013<br>N: See Location Plan<br>N: 5506384 E: 660795                                              | F          | RECO                  | DR | DC |     |                          |            | _ <b>E:</b><br>Doctober 2         |              |        | gw                                     |                                  |                            |          |                           | 2 OF 2<br>; UTM Zone 11<br>(Nad 83)           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|----------------------------------------------------------------------------------------------------------------|------------|-----------------------|----|----|-----|--------------------------|------------|-----------------------------------|--------------|--------|----------------------------------------|----------------------------------|----------------------------|----------|---------------------------|-----------------------------------------------|
| 10         CLAY, some sand, medium-genined, rounded to sub-control, moderately graded, mole, semi-stim (control, and the genined) is the control, semi-stim (control, and the genined) is the control of the control of the genined is the genined is the control of the genined i | - 1            | SORING METHOD |                                                                                                                | TRATA PLOT | ELEV.<br>DEPTH<br>(m) | T  |    | E E | 20<br>L<br>AR STRE<br>Pa | 40<br>NGTH | 60 €<br>1<br>nat V. +<br>rem V. ⊕ | Q- ●<br>U- Q | 1<br>W | k, cm/s<br>0 <sup>-5</sup> 1<br>ATER C | 0 <sup>5</sup> 1<br>ONTENT<br>OW | 0 <sup>-4</sup> 1<br>PERCE | NT<br>WI | ADDITTONAL<br>AB. TESTING | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
| 11     End of BOREHOLE.     10.67       NOTES:     Standpipe installed to 4.1 m upon<br>well completion.     10.67       12     Record measured at<br>1.8 mbgs on November 12, 2013.     1.9       13     Image: Standpipe installed to 4.1 m upon<br>well completion.     Image: Standpipe installed to 4.1 m upon<br>well completion.       14     Image: Standpipe installed to 4.1 m upon<br>well completion.     Image: Standpipe installed to 4.1 m upon<br>well completion.       13     Image: Standpipe installed to 4.1 m upon<br>well completion.     Image: Standpipe installed to 4.1 m upon<br>well completion.       14     Image: Standpipe installed to 4.1 m upon<br>well completion.     Image: Standpipe installed to 4.1 m upon<br>well completion.       14     Image: Standpipe installed to 4.1 m upon<br>well completion.     Image: Standpipe installed to 4.1 m upon<br>well completion.       15     Image: Standpipe installed to 4.1 m upon<br>well completion.     Image: Standpipe installed to 4.1 m upon<br>well completion.       16     Image: Standpipe installed to 4.1 m upon<br>well completion.     Image: Standpipe installed to 4.1 m upon<br>well completion.       18     Image: Standpipe installed to 4.1 m upon<br>well completion.     Image: Standpipe installed to 4.1 m upon<br>well completion.       19     Image: Standpipe installed to 4.1 m upon<br>well completion.     Image: Standpipe installed to 4.1 m upon<br>well completion.       19     Image: Standpipe installed to 4.1 m upon<br>well completion.     Image: Standpipe installed to 4.1 m upon<br>well completion. <tr< td=""><td>- 10</td><td>_</td><td>CLAY, some sand, medium-grained,<br/>rounded to sub-rounded, moderately<br/>graded, molst, semi-firm (continued)</td><td>0</td><td></td><td></td><td></td><td></td><td>20</td><td></td><td>60 E</td><td></td><td>1</td><td></td><td>20 :</td><td>30 4</td><td></td><td></td><td>Bentonile<br/>Pellets</td></tr<>                                                                                              | - 10           | _             | CLAY, some sand, medium-grained,<br>rounded to sub-rounded, moderately<br>graded, molst, semi-firm (continued) | 0          |                       |    |    |     | 20                       |            | 60 E                              |              | 1      |                                        | 20 :                             | 30 4                       |          |                           | Bentonile<br>Pellets                          |
| Standpipe installed to 4.1 m upon<br>well completion.<br>Groundwater level measured at<br>1.8 mbgs on November 12, 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 11           |               | End of BOREHOLE.                                                                                               |            | 395.33<br>10.97       |    |    |     |                          |            |                                   |              |        |                                        | ۰.                               |                            |          |                           |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12<br>         |               | Standpipe installed to 4.1 m upon<br>well completion.<br>Groundwater level measured at                         |            |                       |    |    |     |                          |            |                                   |              |        | •                                      |                                  |                            |          |                           |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>- 13<br>- |               |                                                                                                                |            |                       |    |    |     |                          |            |                                   |              |        |                                        |                                  |                            |          |                           |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>\$4<br>   |               |                                                                                                                |            |                       |    |    |     |                          |            |                                   |              |        |                                        |                                  |                            |          |                           |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 15<br>       |               |                                                                                                                |            |                       |    | -  |     |                          |            | -                                 |              |        |                                        |                                  |                            |          |                           |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 16           |               |                                                                                                                |            |                       |    |    |     |                          |            |                                   |              |        |                                        |                                  |                            |          |                           |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 17           |               |                                                                                                                |            |                       |    |    |     |                          |            |                                   |              | -      |                                        |                                  |                            |          |                           |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 18           |               |                                                                                                                |            |                       |    |    |     | -                        |            |                                   |              |        |                                        |                                  |                            |          |                           |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 19           |               | •<br>•                                                                                                         |            |                       |    |    |     |                          |            |                                   |              |        |                                        |                                  |                            |          | ,<br>,                    |                                               |
| DEPTH SCALE LOGGED: RT<br>1: 50 LOGGED: CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -<br>- 20      |               |                                                                                                                |            |                       |    | ×  |     |                          |            |                                   |              |        |                                        |                                  |                            |          |                           |                                               |

DATA ENTRY: IPG

#### PROJECT No.: 12.1349.0013 LOCATION: See Location Plan

### RECORD OF BOREHOLE: EV\_ER1gwD

SHEET 1 OF 4

BORING DATE: 29 and 31 October, 2013

DATUM: UTM Zone 11 (Nad 83)

N: 5510952 E: 651379

| ETHOD                                                                  | SOIL PROFILE                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLI         |           | DYNAMIC PENETRATION<br>RESISTANCE, BLOWS/0.3m<br>20 40 60 80          | HYDRAULIC CONDUCTIVITY,<br>k, cm/s<br>10 <sup>4</sup> 10 <sup>5</sup> 10 <sup>4</sup> 10 <sup>3</sup><br>₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PIEZOMETI<br>OR<br>STANDPIP            |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| MEIRES<br>BORING METHOD                                                | DESCRIPTION                                                                                                                                                               | LOT ELEV.<br>ELEV.<br>DEPTH<br>DEPTH<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NUMBER<br>TYPE | BLOWS/0.3 | SHEAR STRENGTH nat V. + Q. ●<br>Cu, kPa rem V. ⊕ U - Q<br>20 40 60 80 | 10 <sup>4</sup> 10 <sup>5</sup> 10 <sup>4</sup> 10 <sup>3</sup> I         YE           WATER CONTENT PERCENT         EI         WI         Gir         Gir | INSTALLATI<br>Slick-up                 |
| 0<br>t                                                                 | Ground Surface<br>SILTY SAND, fine-grained with<br>occasional medium grains, rounded to<br>sub-rounded, moderately graded, minor<br>organics (roots), dry, very loose     | 339.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>39.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84<br>30.84 |                |           |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =0.71 m                                |
| 2 2 C                                                                  | SAND, medium and coarse-grained,<br>and fine-grained with some<br>coarse-grained GRAVEL, pooly sorted,<br>sub-rounded, sub-angular and angular<br>clasts, dry, very loose |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |           |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 2 م 20<br>Sonic 127 mm (اتا) Casing 152.4 mm (OD)<br>الا Drilling الله | Rinnin ve                                                                                                                                                                 | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |           |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16 Nov 2013<br>V<br>Bentonile<br>Chips |
| 9                                                                      | CONTINUED NEXT PAGE                                                                                                                                                       | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |           | Golder                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |

| о<br>Ц | Γ |
|--------|---|
| TRY    | l |
| Nii A  |   |
| DAT    |   |

#### PROJECT No.: 12.1349.0013

#### RECORD OF BOREHOLE: EV\_ER1gwD

SHEET 2 OF 4

LOCATION: See Location Plan

#### BORING DATE: 29 and 31 October, 2013

DATUM: UTM Zone 11 (Nad 83)

| N: 5510952 | E: 651379 |
|------------|-----------|
|            |           |

| -                     | T           | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOIL PROFILE                                                                                                                        |          |                | SAM      | PLES         | DYNA  | IC PEN | ETRATIO | DN .                      | >      | HYDR     | AULIC C<br>k, cm/s | ONDUC | TIVITY,  | т     |                            | PIEZOMETER                |
|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------|--------------|-------|--------|---------|---------------------------|--------|----------|--------------------|-------|----------|-------|----------------------------|---------------------------|
| DEPTH SCALE<br>METRES | 3           | BORING METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     | 5        | _              |          | - <u>T</u> - | RESIS |        |         |                           | 30     |          |                    |       |          | L •0  | NGE                        | OR                        |
| NH NH                 |             | ΜON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESCRIPTION                                                                                                                         |          | EV.            | NUMBER   | BLOWS/0.3m   |       | STREM  |         | 1<br>nat V. +<br>rem V. ⊕ | 1      | <u>[</u> | L<br>Ater C        | ONTEN | TPERCE   | 1     | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION |
|                       |             | SORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     | LAT (    | PTH<br>m)      | Sz f     | TOW -        |       |        |         |                           |        | 1 W      |                    |       |          | WI    | ADDI<br>AB. T              |                           |
| $\vdash$              | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     | - vi     |                | $\vdash$ |              | 2     | 0 4    | 10 (    | 30 6                      | 30<br> |          | 10 2<br>           | 20    | 30 4     | 10    | L.                         |                           |
|                       | 10 11 12 13 | sone 1/2 mm (LD) casing 1524 mm (LD) casing 1524 mm (LD) 680 mm (LD) 6 | SANDY GRAVEL, fine-grained with<br>some coarse grains, sub-rounded to<br>sub-angular, poorly sorted, wei, very<br>loose (continued) | <u> </u> | 22.94<br>16.92 |          |              |       | 0 4    |         |                           |        |          |                    |       |          |       |                            | Bentonile                 |
| 3                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CONTINUED NEXT PAGE                                                                                                                 |          |                |          |              |       |        |         |                           |        |          |                    |       |          |       |                            |                           |
| i 🗖                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • • • • • • • • • • • • • • • • • • • •                                                                                             |          |                |          |              |       |        | I.,     | •                         | •      |          | •                  | •     | <b>.</b> | · · · |                            | r                         |
|                       | )EP         | TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SCALE                                                                                                                               |          |                |          | (            |       | ĒG     | olde    | er<br>ates                |        |          |                    | •     |          |       | Logged: I                  |                           |
| <u>i</u> 1            | :           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     |          |                |          |              | J     | Ass    | ocia    | ites                      |        |          |                    |       |          | (     | CHECKED: (                 | D                         |

| PROJECT No.: | 12,1349,0013 |
|--------------|--------------|
|--------------|--------------|

### RECORD OF BOREHOLE: EV\_ER1gwD

|                      |                                                         | T No.: 12.1349,0013                                                                                                                          | RE          | COF                    | RD     | 0    | F          | BOR                          |                 |                 |                   |                                 |          | jwD                 |        |         |                                         |                            | 3 OF 4                                                    |
|----------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|--------|------|------------|------------------------------|-----------------|-----------------|-------------------|---------------------------------|----------|---------------------|--------|---------|-----------------------------------------|----------------------------|-----------------------------------------------------------|
| LO                   | САПО                                                    | N: See Location Plan<br>N: 5510952 E: 651379                                                                                                 |             |                        |        |      |            | BOI                          | ring e          | DATE: 2         | 9 and 3           | 1 Octobe                        | er, 2013 |                     |        |         |                                         | DATUM                      | UTM Zone 1<br>(Nad 83)                                    |
|                      | HOD                                                     | SOIL PROFILE                                                                                                                                 |             |                        | SA     | MPL  | ES         | DYNAM<br>RESIST              | IC PEN<br>ANCE, | etrati<br>Blows | 90<br>MC          | λ                               | HYOR     | AULIC C<br>k, crrvs | ONDUC  | TIMITY, | Т                                       |                            | PIEZÓMET<br>OR                                            |
| METRES               | BORING METHOD                                           | DESCRIPTION                                                                                                                                  | STRATA PLOT | ELEV.<br>DEPTH<br>(m)  | NUMBER | TYPE | BLOWS/0.3m | 20<br>SHEAR<br>Cu, kPa<br>20 | STREN           | Igth            | natV. +}<br>emV.⊕ | 80<br>• Q - <b>O</b><br>• U - O | W<br>W   | ATER C              | ONTENT | PERCE   | 0 <sup>3</sup> <sup>⊥</sup><br>NT<br>WI | ADDITTONAL<br>LAB. TESTING | STANDPII<br>INSTALLAT                                     |
| 20<br>21<br>22<br>23 |                                                         | SAND, medlum to coarse-grained,<br>some fine-grained gravel, angular to<br>sub-angular, moderately sorted, wet,<br>very loose (continued)    |             |                        |        |      |            |                              |                 |                 |                   |                                 |          |                     |        |         |                                         |                            | Bentonite<br>Chips                                        |
|                      | Sonic 127 ram (ID) Casing 152.4 ram (OD)<br>JR Drilling |                                                                                                                                              |             |                        |        |      |            |                              |                 |                 |                   |                                 |          |                     |        |         |                                         |                            | Silica Sand                                               |
| 27<br>28<br>29       |                                                         | SILTY SAND, fine to medium-grained,<br>occasional angular gravel, rounded to<br>sub-rounded, moderately graded, dry,<br>very loose (BEDROCK) |             | <u>311.96</u><br>27.09 |        |      |            |                              |                 |                 |                   |                                 |          |                     |        |         |                                         |                            | Slotted<br>Section<br>Silica Sand<br>Bentonite<br>Pellets |
| 30                   |                                                         | CONTINUED NEXT PAGE                                                                                                                          |             |                        |        |      |            | Í                            |                 |                 |                   |                                 |          | <br>                | <br>   | <br>    |                                         |                            | Slough                                                    |

| PROJECT No.: | 12.1349.0013 |
|--------------|--------------|
|--------------|--------------|

### RECORD OF BOREHOLE: EV\_ER1gwD

| DATA ENTRY: IPG                                                                  |                                                      |               | T No.: 12.1349.0013<br>N; See Location Plan<br>N: 5510952 E: 651379                                                                                      | RI          | ECO                   | RE     | 0    | F          | BOREH                 |      |                   |                                   |        | jwD    |        |       |   |                            | 4 OF 4<br>: UTM Zon<br>(Nad 63) |   |
|----------------------------------------------------------------------------------|------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|--------|------|------------|-----------------------|------|-------------------|-----------------------------------|--------|--------|--------|-------|---|----------------------------|---------------------------------|---|
| à                                                                                | S                                                    | ПОР           | SOIL PROFILE                                                                                                                                             | 15          | 1                     |        | MPLE |            | DYNAMIC PER           |      |                   | $\overline{\boldsymbol{\lambda}}$ | 1      |        | ONDUC  |       | Ţ | 귀일                         | PIEZON<br>OI<br>STAND           | R |
|                                                                                  | DEPTH SCALE<br>METRES                                | BORING METHOD | DESCRIPTION                                                                                                                                              | STRATA PLOT | ELEV,<br>DEPTH<br>(m) | NUMBER | TYPE | BLOWS/0.3m | SHEAR STRE<br>Cu, kPa | NGTH | natV. +<br>remV.⊕ | 30<br>Q-<br>U-O<br>30             | W<br>W | ATER C | ONTENT | PERCE |   | ADDITIONAL<br>LAB. TESTING | INSTALL                         |   |
|                                                                                  | → 30                                                 | JR Drilling   | SILTY SAND, fine to medium-grained,<br>occasional angular gravel, rounded to<br>sub-rounded, moderately graded, dry,<br>very toose (BEDROCK) (continued) |             | 309.07                |        |      |            |                       |      |                   |                                   |        |        |        |       |   |                            | Slough                          |   |
| BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14 | - 31<br>- 32<br>- 33<br>- 34<br>- 35<br>- 36<br>- 39 |               | End of BOREHOLE.<br>NOTES:<br>Standpipe installed to 28.9 m upon<br>well completion.<br>Groundwater level measured at<br>4.6 mbgs on November 16, 2013,  |             | 30.70                 |        |      |            |                       |      |                   |                                   |        |        |        |       |   |                            |                                 |   |
| E - EXPANDED ADI                                                                 | - 40                                                 |               |                                                                                                                                                          |             |                       |        | r.   |            |                       |      |                   |                                   |        |        |        |       |   |                            |                                 |   |
| BOREHOLI                                                                         | DE<br>1 :                                            | PTH S         | CALE                                                                                                                                                     |             |                       |        |      | (          | <b>D</b> AS           | olde | er<br>ates        |                                   |        |        |        |       | ( | Logged: I<br>Hecked: (     |                                 |   |

| c   | ۶ľ |
|-----|----|
| 2   | 4  |
| - É | 5  |
| រ៍  |    |
| Ě   |    |
| ć   | 5] |

#### PROJECT No.: 12.1349.0013

### RECORD OF BOREHOLE: EV\_ER1gwS

SHEET 1 OF 2

LOCATION: See Location Plan

# BORING DATE: October 30, 2013

DATUM: UTM Zone 11 (Nad 83)

N: 5510955 E: 651374

|                                                                                  | T              | 8                   | SOIL PROFILE                                                                                                 |             |                       | SA  | MPL  | ES       | DYNAMIC<br>RESISTA | PENE  | TRATIO | DN<br>10.3m | 1           | HYDR | AULIC C | ONDUC     | tivity,          | ĩ          |                            | PIEZOMETER          | -            |
|----------------------------------------------------------------------------------|----------------|---------------------|--------------------------------------------------------------------------------------------------------------|-------------|-----------------------|-----|------|----------|--------------------|-------|--------|-------------|-------------|------|---------|-----------|------------------|------------|----------------------------|---------------------|--------------|
| DEPTH SCALE                                                                      | <u>p</u>       | BORING METHOD       |                                                                                                              | Lot         |                       | α   |      | 3a       | 20                 | 40    |        |             | 80 <b>`</b> |      |         |           |                  | o₃ ⊥       | ADDITIONAL<br>LAB, TESTING | OR<br>STANDPIPE     |              |
| HE                                                                               |                | NG<br>N             | DESCRIPTION                                                                                                  | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | MBE | TYPE | NSN      | SHEAR S<br>Cu, kPa | TRENC | зтн ј  |             |             | W    |         | ONTENT    |                  |            | O LI                       | INSTALLATION        |              |
| Ш.                                                                               |                | SORI                |                                                                                                              | TRA.        | DEPTH<br>(m)          | IN  | 4    | TOV      |                    |       |        |             |             | [ W; |         | OW        |                  |            | ADD<br>ABD                 | <b>н</b>            |              |
| _                                                                                | -+-            | ш<br>               |                                                                                                              | Ś           |                       |     |      | <u>а</u> | 20                 | 40    | ) {    | 30 i        | 80          |      | 10 :    | 20 3<br>T | 30 <u>4</u><br>I | រេ <u></u> | ъ.,                        | Stick-up<br>=0.96 m |              |
|                                                                                  | 0              | <b>T</b>            | Ground Surface<br>SAND medium and coarse-grained                                                             |             | 339,85                |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | आ            |
| F                                                                                |                |                     | SAND, medium and coarse-grained<br>with some fine grains, rounded to<br>sub-rounded, moderately graded, dry, | 3           |                       |     |      |          |                    | 1     |        |             |             |      |         |           |                  |            |                            |                     | ġ-           |
| F                                                                                |                |                     | sub-rounded, moderately graded, dry,<br>very loose                                                           |             |                       |     |      |          |                    |       |        |             | 1           |      |         |           |                  |            |                            |                     |              |
| F                                                                                |                |                     | -                                                                                                            |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     |              |
| F                                                                                |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             | 1.          |      |         |           |                  |            |                            |                     |              |
| Ē                                                                                | 1              |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             | ł           | ]    |         |           |                  |            |                            |                     | ł            |
| E                                                                                |                |                     |                                                                                                              | 2           |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | ŝ.           |
| Ł                                                                                |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8            |
| E.                                                                               |                |                     |                                                                                                              | э.          |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     |              |
| F                                                                                |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             | 1    |         |           |                  |            |                            |                     | đ            |
| F                                                                                | 2              |                     |                                                                                                              | <u> </u>    |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | ł            |
| Ę                                                                                |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8-<br>8-     |
| -                                                                                |                |                     |                                                                                                              | ар.<br>1    |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | -<br>20-     |
| F                                                                                |                |                     |                                                                                                              | 3           |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8            |
| E                                                                                | 3              |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      | 1       |           |                  |            |                            |                     | 8            |
| E                                                                                | °              |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             | 1           |      |         |           |                  |            |                            |                     | 8.<br>8.     |
| Ł                                                                                |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8-<br>1      |
| F                                                                                |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | <b>1</b>     |
| F                                                                                |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             | 1           |      |         | ľ         |                  |            |                            |                     | 8-<br>8-     |
| F                                                                                | 4              |                     |                                                                                                              | 3,0         |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 4            |
| F                                                                                |                | s l                 |                                                                                                              | 2           |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 81           |
| F                                                                                | Į              | <u>2</u>            |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             | ļ    |         |           |                  |            |                            |                     | 81<br>81     |
| F                                                                                | 10<br>10<br>10 | 4<br>7              |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            | 16 Nov 2013<br>모    | 8]]<br>8     |
| E                                                                                |                | 2<br>27<br>27<br>27 |                                                                                                              |             |                       | :   |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     |              |
| F                                                                                | 5              | JR Drilling         |                                                                                                              | 3- j        |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            | Bentonité<br>Chips  |              |
| F                                                                                | Ę              | e S                 |                                                                                                              |             |                       |     |      |          |                    |       |        |             | ]           |      |         |           |                  |            |                            |                     | 83-1<br>83-1 |
| F                                                                                |                | Ē                   |                                                                                                              | 2.1         |                       |     |      |          |                    | Í     |        |             |             |      |         |           |                  |            |                            |                     | 8-           |
| þ                                                                                |                |                     |                                                                                                              | 201         |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | ŝ.           |
| F                                                                                |                | "                   |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8-<br>8-     |
| 2                                                                                | 6              |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             | ĺ    |         | ŀ         |                  |            |                            |                     | 1            |
| н[<br>4                                                                          |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8-           |
| <u>6</u> [                                                                       |                |                     |                                                                                                              |             |                       | ·   |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | - 18<br>-    |
| ¥.                                                                               |                |                     | SAND, medium to coarse-grained,<br>some fine-grained gravel, sub-rounded,                                    |             | <u>333,15</u><br>6,71 |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | -<br>-       |
| ۲Ľ.                                                                              | 7              |                     | some fine-grained gravel, sub-rounded,<br>sub-angular, moderately sorted, dry,                               |             |                       | •   |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 1            |
| 影                                                                                |                |                     | very loose                                                                                                   | 27          |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8-<br>1      |
| 0                                                                                |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     |              |
| ğF                                                                               |                |                     |                                                                                                              | · » .       |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 1            |
| 표[                                                                               |                |                     |                                                                                                              | <u>``</u>   |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8            |
| E-                                                                               | 8              |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         | ļ         | 1                |            |                            |                     |              |
| See.                                                                             |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8-           |
| 2                                                                                |                |                     |                                                                                                              |             | 331.32                |     |      |          |                    |       |        |             |             |      |         |           | l I              |            |                            |                     | ğ-           |
| şÈ                                                                               |                |                     | SAND, medium to coarse-grained,<br>some fine-grained gravel, sub-rounded,                                    |             | 8.53                  |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8-<br>8-     |
| Est.                                                                             |                |                     | sub-angular and angular, moderately sorted, wet, very loose                                                  |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8-<br>1      |
|                                                                                  | 9              |                     | Solied, well vely toose                                                                                      | ×.,         |                       |     |      |          |                    |       |        |             |             |      |         | ļ         |                  |            |                            |                     | <u>-</u>     |
| 4                                                                                |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 8-           |
| 퇈                                                                                |                |                     |                                                                                                              |             |                       |     |      |          |                    | ł     |        |             |             |      |         |           |                  |            |                            |                     | £            |
| ₽E                                                                               |                |                     |                                                                                                              | []]         |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     | 1            |
| ₹ <u></u>                                                                        | 10             |                     |                                                                                                              | 2           |                       | L   |      |          |                    | ₋₋Ĺ   |        | L           | L           | L    | L       | ļ         | <u> </u>         | <u> </u>   |                            |                     | ł            |
|                                                                                  |                |                     | CONTINUED NEXT PAGE                                                                                          |             |                       |     |      |          |                    |       |        |             |             |      |         |           |                  |            |                            |                     |              |
| BOREHOLE - EXPANDED ADD. LAB TESTING 12.1342.0013 BH LOGS.GPJ CALGARY.GDT 4/6/14 |                |                     |                                                                                                              |             |                       |     |      |          |                    |       |        |             | • • • •     |      |         |           |                  |            |                            |                     |              |
| 휪                                                                                |                |                     | CALE                                                                                                         |             |                       |     |      |          |                    | GG    | olde   | r<br>ites   |             |      |         |           |                  |            | LOGGED: I                  |                     |              |
| <u>8</u>                                                                         | 1:             | 50                  |                                                                                                              |             |                       |     |      |          | VI [               | ISS   | ocia   | ites        |             |      |         |           |                  |            | CHECKED: (                 | D                   |              |

| DATA ENTRY: IPG                                                                  |                                                                              |                                                       | TNo.: 12.1349.0013<br>XV: See Location Plan<br>N: 5510955 E: 651374                                                                                     | R           | ECOI                  | RC     | ) C  | )F         |                |         |             | Doctober (        |                         |         | gwS                 |       |         |   |                            | 2 OF 2<br>UTM Zone 11<br>(Nad 83) |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|--------|------|------------|----------------|---------|-------------|-------------------|-------------------------|---------|---------------------|-------|---------|---|----------------------------|-----------------------------------|
|                                                                                  | Li                                                                           | ą                                                     | SOIL PROFILE                                                                                                                                            |             |                       | SA     | MPL  | ES         | DYNA<br>RESIS  | MIC PER | NETRATI     | ON<br>/0.3m       | $\overline{\mathbf{x}}$ | HYDR    | AULIC C<br>k, cm/s  | ONDUC | tivity, | T |                            | PIEZOMETER                        |
|                                                                                  | DEPTH SCALE<br>METRES                                                        | BORING METHOD                                         | DESCRIPTION                                                                                                                                             | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER | TYPE | BLOWS/0.3m | SHEA<br>Cu, kF | R STRE  | NGTH        | natV. +<br>remV.⊕ | 30<br>0-0<br>30         | W<br>Wi | 1<br>/ATER C<br>p } |       | PERCE   |   | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION         |
| BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14 | - 10<br>- 11<br>- 12<br>- 13<br>- 13<br>- 13<br>- 14<br>- 16<br>- 17<br>- 18 | Sonic 127 mm (ID) Caeing 152.4 mm (OD)<br>JR Drifting | SAND, medium to coarse-grained,<br>some fine-grained gravel, sub-rounded,<br>sorted, wet, vory loose (continuad)<br>sorted, wet, vory loose (continuad) |             | 322.24                |        |      |            |                |         |             |                   |                         |         |                     |       |         |   |                            | Silica Sand                       |
| EXPANDED ADD. LAB TES                                                            | — 19<br>-<br>20                                                              |                                                       |                                                                                                                                                         |             |                       |        |      |            |                |         |             |                   |                         |         |                     |       | ·<br>·  |   |                            |                                   |
| BOREHOLE -                                                                       | DE<br>1 :                                                                    | PTH S                                                 | SCALE                                                                                                                                                   | <u> </u>    | F                     |        | 1    |            | Ĵ              | G       | old<br>soci | er<br>ates        | 1                       | 1       |                     | L     | L       |   | Logged: F                  |                                   |

| DATA ENTRY: IPG                                                                  |                       |                                                       | TNo.: 12.1349.0013<br>N: See Location Plan                                                                                                           | RI          | ECO                    | R      | 0                  |                |                    | HOLI<br>DATE: C |            |     |        | gw                   |          |       |   |                            | 1 OF 3<br>: UTM Zone 11<br>(Nad 83) |
|----------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|--------|--------------------|----------------|--------------------|-----------------|------------|-----|--------|----------------------|----------|-------|---|----------------------------|-------------------------------------|
| DATA                                                                             |                       |                                                       | N: 5522255 E: 656580                                                                                                                                 |             |                        |        |                    |                |                    |                 |            |     | •      |                      |          |       |   |                            | , ,                                 |
| ſ                                                                                | Щ                     | ដ្                                                    | SOIL PROFILE                                                                                                                                         |             |                        | SAN    | IPLES              | DYNA           | MIC PEN<br>STANCE, | ETRATIONS       | 0N<br>0.3m | 1   | HYDR   | AULIC C<br>k, crivis | ONDUCT   | INTY, | Ţ |                            | PIEZOMETER<br>OR                    |
|                                                                                  | DEPTH SCALE<br>METRES | BORING METHOD                                         | DESCRIPTION                                                                                                                                          | STRATA PLOT | ELEV.<br>DEPTH<br>(m)  | NUMBER | TYPE<br>BLOWS/0.3m | SHEA<br>Cu, kf | 1                  | 40 GTH I        |            | 0-0 |        |                      | l        | PERCE |   | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION           |
| +                                                                                |                       | ŏ                                                     | Ground Surface                                                                                                                                       | 5           | 400,51                 |        |                    |                | 20 4               | <u>40 (</u>     | 0 8        | 0   | 1      | 0 2                  | 0 3      | 0 4   | 0 | <u>د</u> ۲                 | Stick-up<br>=0,91 m                 |
|                                                                                  | - 0                   |                                                       | SANDY GRAVEL, fine-grained,<br>sub-angular to angular, moderately<br>graded, dry, very loose                                                         |             | 0.00                   |        |                    |                |                    |                 |            |     | ,<br>, |                      |          |       |   |                            |                                     |
|                                                                                  | → 2                   |                                                       | SAND, some grawel, fine to<br>coarse-grained, sub-rounded to<br>sub-angular, moderately graded, dry,<br>vary loose                                   |             | <u>398,98</u><br>1,52  |        |                    |                |                    |                 |            |     |        |                      |          |       |   |                            |                                     |
|                                                                                  | - 3<br>→ 4            | (OD)                                                  | SANDY GRAVEL, fine-grained,<br>sub-angular to angular, moderately<br>graded, dry, vary loose                                                         |             | <u>397,61</u><br>2.90  |        |                    |                |                    |                 |            |     |        |                      |          |       |   |                            |                                     |
| OREHOLE - EXPANDED ADD. LAB TESTING 12,1349.0013 BH LOGS.GFJ. CALGARY.GDT 4/8/14 | - 5<br>- 6<br>- 7     | Sonie 127 mm (ID) Casing 152.4 mm (OD)<br>JR Drilling | SAND, some gravel, localized thin<br>zones of gravel, fine to coarse-grained,<br>sub-rounded to sub-angular, moderately<br>graded, molst, very loose | P           | <u>3355.64</u><br>4.57 |        |                    |                |                    |                 |            |     |        |                      |          |       |   |                            | Bentonite<br>Chips                  |
| (PANDED ADD. LAB TEX                                                             | 9<br>10               |                                                       |                                                                                                                                                      |             |                        |        |                    |                |                    |                 | -          |     |        |                      |          |       |   |                            | 15 Nov 2013<br>모                    |
| 삤                                                                                |                       |                                                       | CONTINUED NEXT PAGE                                                                                                                                  |             |                        |        |                    |                | L                  |                 |            |     |        |                      | <u> </u> |       |   |                            |                                     |
| OREHOLI                                                                          | DE<br>1               | етн S<br>: 50                                         | CALE                                                                                                                                                 |             |                        |        |                    | Â              | Ģ                  | olde            | T          |     |        |                      |          |       | ( | LOGGED:                    |                                     |

| PROJECT No.: | 12.1349.0013 |
|--------------|--------------|
|              |              |

# RECORD OF BOREHOLE: EV\_GV3gw

#### BORING DATE: October 23, 2013

| DATA ENTRY: IPG                                                                  |                                      |                                         | CT No.: 12.1349.0013<br>ION: See Location Plan<br>N: 5522255 E: 656580                                                                                                                                                                                                  | RECO               | ORD | OF         |                         |                | E: EV_                     | GV3gw                                         |                                                               |      | Sheet :<br>Datum:          | 2 OF 3<br>UTM Zone 11<br>(Nad 83) |
|----------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|------------|-------------------------|----------------|----------------------------|-----------------------------------------------|---------------------------------------------------------------|------|----------------------------|-----------------------------------|
| ł                                                                                |                                      | 0                                       |                                                                                                                                                                                                                                                                         |                    | SAM | PLES       | DYNAMIC PE<br>RESISTANC | NETRATIO       | N 1                        | HYDRAULIC C                                   | ONDUCTIVIT                                                    | Y, т |                            | PIEZOMETER                        |
|                                                                                  | · DEPTH SCALE<br>METRES              | BORING METHOD                           | DESCRIPTION                                                                                                                                                                                                                                                             | STRATA PLOT<br>(W) |     | BLOWS/D.3m | 20                      | 40 6<br>NGTH n | alV. + Q. •<br>mV. ⊕ U - O | WATER C                                       | 10 <sup>5</sup> 10 <sup>4</sup><br>CONTENT PER<br>OW<br>20 30 |      | ADDITIONAL<br>LAB. TESTING | - OR<br>STANDPIPE<br>INSTALLATION |
| BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GFJ CALGARY.GDT 4/8/14 | - 10<br>- 11<br>- 12<br>- 13<br>- 14 | Soote 127 mm (ID) Casting 152.4 mm (DD) | SAND, some gravel, localized thin<br>zones of gravel, fine to coarse-grained,<br>sub-rounded to sub-angular, moderately<br>graded, moist, very loose <i>(continued)</i><br>SILTY GRAVEL, fine-grained,<br>sub-rounded to sub-angular, poorly<br>graded, wat, very loose |                    |     |            |                         |                |                            |                                               |                                                               |      |                            | Bontonile                         |
| XPAND                                                                            | - 20                                 |                                         | CONTINUED NEXT PAGE                                                                                                                                                                                                                                                     | °[]<br>21          | -   |            | ┣╺-╃┈·                  |                |                            | +                                             | +                                                             |      |                            |                                   |
| BOREHOLE - E                                                                     | DE<br>1                              | <br>:РТН<br>: 50                        | I SCALE                                                                                                                                                                                                                                                                 | <u> </u>           |     | (          | Ø                       | Golde          | r<br>ites                  | <u>,                                     </u> | L                                                             |      | Logged: F<br>Hecked: C     |                                   |

|                                                                                  |                       |                                                        | CT No.: 12.1349.0013<br>ON: See Location Plan<br>N: 5522255 E: 656580                                                                                   | RECO                  | ORD    | OF         | BORE                        |                     | E: E                                |             | GV3g                  | jw                                                                              |                            |                                  | sheet<br>Datum             | 3 OF 3<br>UTM Zone 11<br>(Nad 83) |
|----------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|------------|-----------------------------|---------------------|-------------------------------------|-------------|-----------------------|---------------------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------|-----------------------------------|
| ł                                                                                | щ                     | 8                                                      | SOR. PROFILE                                                                                                                                            |                       | SAMPL  | ES         | DYNAMIC PEI<br>RESISTANCE   | ETRATIC             | N<br>D,3m                           |             | HYDRA                 | JLIC GO                                                                         | NDUCTIN                    | /ity,                            | -<br>-                     | PIEZOMETER<br>OR                  |
|                                                                                  | DEPTH SCALE<br>METRES | BORING METHOD                                          | DESCRIPTION                                                                                                                                             | ELEV.<br>DEPTH<br>(m) | NUMBER | BLOWS/0.3m | 20<br>SHEAR STRE<br>Cu, kPa | 40 6<br>NGTH n<br>r | 0 80<br>⊨atV.+C<br>emtV.⊕ L<br>0 80 | <u>}- 8</u> | 10 <sup>4</sup><br>WA | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 10 <sup>1</sup><br>NTENT P | 10 <sup>-3</sup><br>ERCENT<br>Wi | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION         |
|                                                                                  | - 20                  |                                                        | SILTY GRAVEL, fine-grained,<br>sub-rounded to sub-angular, poorly<br>graded, wet, very loose (cantinued)                                                | 200<br>200<br>200     |        |            |                             |                     |                                     |             |                       |                                                                                 |                            |                                  |                            |                                   |
|                                                                                  | - 21                  | · та (ОD)                                              | SILTY GRAVEL, fine and<br>coarse-grained, sub-angular to angular,<br>poorly graded, wel, very loose                                                     |                       | 3      |            |                             |                     |                                     |             |                       |                                                                                 |                            |                                  |                            | Bentonite<br>Chips                |
|                                                                                  | - 23                  | Sonic 127 mm (ID) Casing 152.4 mm (OD)<br>ID Districts | Daniela<br>197                                                                                                                                          |                       |        |            |                             |                     |                                     |             |                       |                                                                                 |                            |                                  |                            | Silica Send                       |
|                                                                                  | - 24                  |                                                        |                                                                                                                                                         |                       |        |            |                             |                     |                                     |             |                       |                                                                                 |                            |                                  |                            | Slotted<br>Section                |
|                                                                                  | - 25                  |                                                        |                                                                                                                                                         | 375.5                 | 1      |            |                             |                     |                                     |             |                       |                                                                                 |                            |                                  |                            | Silica Sand                       |
| SOREHOLE - EXPANDED ADD. LAB IESTING 12,1348;0013 BH LOGS:GP3 CALGARY .GU1 44014 |                       |                                                        | End of BOREHOLE.<br>NOTES:<br>Standpipe installed to 24.4 m upon<br>well completion.<br>Groundwater level measured at<br>9.9 mbgs on November 15, 2013. | 25.0                  | 0      |            |                             |                     |                                     |             |                       |                                                                                 |                            |                                  |                            |                                   |
| OKENOLE                                                                          | DE<br>1               | ≘РЛ <b>Н</b><br>: 50                                   | SCALE                                                                                                                                                   | _                     |        |            |                             | olde                | T<br>afes                           |             |                       | . —                                                                             |                            |                                  | LOGGED:<br>CHECKED:        |                                   |

### RECORD OF BOREHOLE: EV\_LSgw

| ц                                | <u>o</u> p                                            | N: 5514731 E: 653274<br>SOIL PROFILE                                                                                                                                  |                         |                       | SAM    | PLES       | DYNAM<br>RESIST              | IG PENE | TRATIO     | N<br>).3m      | <u>ر</u>     | HYDRA | ULIC Co<br>k, cm/s | ÖNDUCI | nvity,      |             |                            | (Nad 83)<br>PIEZOMETER<br>ÓR      |
|----------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|--------|------------|------------------------------|---------|------------|----------------|--------------|-------|--------------------|--------|-------------|-------------|----------------------------|-----------------------------------|
| DEPTH SCALE<br>METRES            | BORING METHOD                                         | DESCRIPTION                                                                                                                                                           | STRATA PLOT             | ELEV.<br>DEPTH<br>(m) | NUMBER | BLOWS/0.3m | 20<br>SHEAR<br>Cu, kPa<br>20 | STREN   | GTH B<br>R | atV.+<br>mrV.⊕ | Q. ●<br>U- O |       | ATER CO            |        | I<br>PERCEI | í           | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION         |
| - 0                              |                                                       | Ground Surface<br>FILL – Sand sized particles, medium to<br>coarse-grained, sub-rounded to<br>sub-angular, well graded, dark black<br>carbonaceous, moist, very loose |                         | 345.03<br>0.00        |        |            |                              |         |            |                |              |       |                    |        |             |             |                            | =0.93 m                           |
| - 2                              |                                                       | SANDY GRAVEL, some silt,<br>fine-grained, sub-rounded to<br>sub-angular, poorly graded, moist, very<br>loose                                                          | , <u>Ö.Ö.Ö.Ö.Ö.Ö.Ö.</u> | 1.52                  |        |            |                              |         |            |                |              |       |                    |        |             |             |                            | Bentonite<br>Chips<br>14 Nov 2013 |
|                                  | Sonic 127 mm (ID) Casing 152.4 mm (OD)<br>JR Drilling | GRAVELY SAND, coarse-grained with<br>fine-grained gravel, sub-rounded to<br>sub-angular, poorly graded, moist, very<br>loose                                          |                         | <u>341.22</u><br>3.81 |        |            |                              |         |            |                |              |       |                    |        |             |             |                            | Silica Sand                       |
| - 6<br>- 7<br>- 8<br>- 9<br>- 10 | Sonic 127                                             | SANDY SILT, fine to medium-grained,<br>wet, mud                                                                                                                       | 6.0.0.0.0.0.            | <u>338.16</u><br>6.66 |        |            |                              |         |            |                |              |       | -                  |        |             |             |                            | Slotted<br>Section                |
| - 9                              |                                                       |                                                                                                                                                                       |                         |                       |        |            |                              |         |            |                |              |       |                    |        |             |             |                            | Silica Sand                       |
| - 10                             |                                                       | CONTINUED NEXT PAGE                                                                                                                                                   |                         |                       | -†     |            |                              |         |            |                |              |       |                    |        | [           | [ <b></b> ] |                            |                                   |

| Ľ<br>A | 2 |
|--------|---|
| ž      |   |
| E.     |   |
| ₫      | 1 |

#### PROJECT No.: 12.1349.0013

### RECORD OF BOREHOLE: EV\_LSgw

SHEET 2 OF 2

DATUM: UTM Zone 11 (Nad 83)

LOCATION: See Localion Plan

#### BORING DATE: October 24, 2013

| A                                                                               |                       |               | N: 6514731 E: 653274                                                                                                     |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      |             |
|---------------------------------------------------------------------------------|-----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|--------|--------|----------|------------------------|---------------------|---------------|--------|-----|----------------|-----------------------------|----|-----------------------------|----------------------------|----------------------|-------------|
| ļ                                                                               | ш<br>Т                | 입어            | SOIL PROFILE                                                                                                             | 1           |                 | SAN    | (PLE   |          | DYNAMIC P<br>RESISTANC | enetrat<br>E, blows | ON<br>\$10.3m | l      |     | k, cm/s        | ONDUCT                      |    | T                           | .0                         | Plezomet<br>OR       |             |
|                                                                                 | DEPTH SCALE<br>METRES | BORING METHOD | ,<br>                                                                                                                    | STRATA PLOT | LEV.            | BER    | щ<br>Н | BLOWSAGE | 20<br>SHEAR STR        |                     | 1             |        |     | l              | 0 <sup>s</sup> 1∉<br>ONTENT | I  | 0 <sup>3 ⊥</sup><br>↓<br>NT | ADDITIONAL<br>LAB. TESTING | STANDPI<br>INSTALLAT | ipe<br>Tion |
|                                                                                 | DEPT                  | SORIN         | DESCRIPTION                                                                                                              | TRAT/       | EPTH<br>(m)     | NUMBER | TYPE   |          | SHEAR STF<br>Gu, kPa   |                     |               |        | 141 | s <b>}−−−−</b> |                             | t' | WI                          | ADDIT<br>AB. TE            |                      |             |
|                                                                                 |                       |               |                                                                                                                          | <i>w</i>    |                 |        | +      | ╧┼       | 20                     | 40                  | <u>60 8</u>   | 10<br> | 1   | 0 2            | 0 3                         |    |                             | · _ 4                      |                      |             |
|                                                                                 | - 10                  |               | SANDY SILT, fine to medium-grained,<br>wet, mud (continued)                                                              |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      |             |
|                                                                                 |                       | JR Drilling   |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            | Silica Sand          |             |
|                                                                                 |                       |               | End of BOREHOLE.                                                                                                         |             | 334.36<br>10.67 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            | I                    | النحا       |
|                                                                                 | → 11                  |               | NOTES:<br>Standpipe installed to 6.7 m upon                                                                              |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               | Standpipe installed to 6.7 m upon<br>well completion.<br>Groundwater level measured at<br>3.4 mbgs on November 14, 2013. |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
| ŀ                                                                               | •                     |               | 3.4 mbgs on November 14, 2013.                                                                                           |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 | - 12                  |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 | - 13                  |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
| ļ                                                                               | - 14                  |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
| ł                                                                               |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 | - 15                  |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      |             |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
| ļ                                                                               |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
| +<br>+                                                                          | - 16                  |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
| 10                                                                              |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
| 10.1                                                                            |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | •           |
|                                                                                 | - 17                  |               |                                                                                                                          |             |                 |        |        |          |                        |                     | 1             |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                | :                           |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             | 2                          |                      | -           |
|                                                                                 | - 18                  |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
| 2                                                                               | - 19                  |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      | -           |
| Ş                                                                               |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      |             |
|                                                                                 |                       |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    | ļ                           |                            |                      | -           |
|                                                                                 | - 20                  |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      |             |
| j                                                                               | - 20                  |               |                                                                                                                          |             |                 |        |        |          |                        |                     |               |        |     |                |                             |    |                             |                            |                      |             |
| BUREHOLE - EXPANDED AUD, LAB LESING 12.1348.0013 BH LOGS.GFU CALGART.GD1 4/8/14 | DE                    | :PTH 5        | SCALE                                                                                                                    |             |                 |        |        |          | Ð.                     | 0.11                |               |        |     |                |                             |    |                             | LOGGED: J                  | रा                   |             |
|                                                                                 |                       | : 50          |                                                                                                                          |             |                 |        |        | 1        | <b>D</b> A             | sold<br>ssoci       | er<br>ates    |        |     |                |                             |    | (                           | CHECKED: C                 |                      |             |

| DATA ENTRY: IPG                                                                  |                                                                    |                     | ECT No.: 12.1349.0013                                                                                                         | RECORD OF BOREHOLE: EV_MCgwD                                                                                | SHEET 1 OF 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| ATA EN                                                                           | LO                                                                 | ICATI               | TON: See Location Plan<br>N: 5511616 E: 653475                                                                                | BORING DATE: November 3, 2013                                                                               | DATUM: UTM Zone 11<br>(Nad 83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| â                                                                                |                                                                    | l g                 | SOIL PROFILE                                                                                                                  | SAMPLES DYNAMIC PENETRATION HYDRAULIC CONDUCTIVITY,<br>RESISTANCE, BLOWS/0.3m k, cm/s                       | - PIEZOMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|                                                                                  | DEPTH SCALE<br>METRES                                              | BORING METHOD       |                                                                                                                               |                                                                                                             | OR<br>STANDPIPE<br>SIS INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                  | DEPTH                                                              | ORING               | DESCRIPTION                                                                                                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                       | - 79<br>- 72<br>- 72 |   |
|                                                                                  | 0                                                                  | <u>m</u>            | Ground Surface                                                                                                                | 50         20         40         60         80         10         20         30         40           344.73 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                     | SAND, coarse and medium-grained,<br>and fine-grained GRAVEL, rounded to<br>sub-rounded, moderately graded, wet,<br>very loose |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|                                                                                  | - 2                                                                |                     | ·                                                                                                                             |                                                                                                             | 15 Nov 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                                                                  | - 4                                                                | Casing 1524 mm (OD) | SAND, fine and medium-grained,<br>sub-rounded to sub-angular, well<br>graded, dry, very loose                                 | 341.07                                                                                                      | Bentonile<br>Pellets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| S.GPJ CALGARY.GDT 4/8/14                                                         | -                                                                  |                     | Sill.7, some fine-grained sand, well<br>graded, very loose<br>Wet at 5.8 m                                                    | 339.09<br>5.84                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14 | - 8<br>- 9<br>- 9                                                  |                     | CLAY, some fine-grained sand,<br>well-sorted, moist, compact                                                                  | 336.65<br>8.09                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| - EXP                                                                            | - 10                                                               |                     | CONTINUED NEXT PAGE                                                                                                           |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ |
| BOREHOLE                                                                         | DE<br>1 :                                                          | ертн<br>: 50        | ISCALE                                                                                                                        | Golder                                                                                                      | Logged: RT<br>Checked: CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |

1

| С<br>Ц |   |
|--------|---|
| UTRY:  |   |
| ATA EV |   |
| ò      | I |

#### PROJECT No.: 12.1349.0013

### RECORD OF BOREHOLE: EV\_MCgwD

SHEET 2 OF 5

DATUM: UTM Zone 11 (Nad 83)

LOCATION: See Location Plan

#### BORING DATE: November 3, 2013

N: 5511616 E: 653475

| State         Description         State         Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 8          |             | SOIL PROFILE                                                             |      |                        | SA   |                     |     | DYNAMIC PE<br>RESISTANCE | NETRAT  | ION<br>5/0.3m         | ٦                               | HYDRAULIC CONDUCTIVITY,<br>k, cm/s |  |    |   |        |       | PIEZOMETI<br>OR      |         |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------------------------------------------------------------------|------|------------------------|------|---------------------|-----|--------------------------|---------|-----------------------|---------------------------------|------------------------------------|--|----|---|--------|-------|----------------------|---------|----------------------------------------|
| 1       CAV. Some Segurated and, well well setted, maint, compact (contractor)         11       CAV. Some Segurated and, well generated and, well generated and, well setted, maint, well sette | METH         | ľ           |                                                                          | PLOT | <b>FI 51</b>           | ų.   | а<br>19<br>10<br>34 |     | 20                       | 40 60 8 |                       |                                 | 1                                  |  |    |   |        | SUAL  | STANDPIPI            |         |                                        |
| 10     CLAV, some flag gränd and, wild     33.92     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td< td=""><td></td><td></td><td>DESCRIPTION</td><td>ATAF</td><td>DEPTH</td><td>UMBE</td><td>년<br/>건</td><td>OWS</td><td>NSWO.</td><td>NSWO.</td><td>SHEAR STRE<br/>Cu, kPa</td><td colspan="3">HEAR STRENGTH nal<br/>u, kPa rer</td><td>W.</td><td></td><td>ONTENT</td><td>PERCE</td><td>1</td><td>AB, TES</td><td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |             | DESCRIPTION                                                              | ATAF | DEPTH                  | UMBE | 년<br>건              | OWS | NSWO.                    | NSWO.   | SHEAR STRE<br>Cu, kPa | HEAR STRENGTH nal<br>u, kPa rer |                                    |  | W. |   | ONTENT | PERCE | 1                    | AB, TES | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 11         Use A screen line-print line.         10           11         Use South, mad, compart footblood         10           12         Use South, we write the south of and, we write the southof and and, we write the south of and and, we write the s                                              | n N          |             |                                                                          | STR  | (m)                    | z    |                     | BLC | 20                       | 40      | <u>60 8</u>           | 10                              |                                    |  |    |   |        | ξŝ    |                      |         |                                        |
| 12     Sili T. some fine-grathed stard, well     13.33.2       13     CLAY. some fine-grathed stard, well     13.34.0       14     Sili T. some fine-grathed stard, well     13.34.0       15     CLAY. some fine-grathed stard, well     13.34.0       16     CLAY. some fine-grathed stard, well     13.34.0       17     CLAY. some fine-grathed stard, well     13.34.0       18     CLAY. some fine-grathed stard, well     13.34.0       19     CLAY. some fine-grathed stard, well     13.34.0       10     CLAY. some fine-grathed stard, well     13.34.0       11     CLAY. some fine-grathed stard, well     13.34.0       10     CLAY. some fine-grathed stard, well     13.34.0       11     CLAY. some fine-grathed stard, well     14.34.0       12 <td></td> <td></td> <td>CLAY, some fine-grained sand,<br/>well-sorted, moist, compact (continued)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |             | CLAY, some fine-grained sand,<br>well-sorted, moist, compact (continued) |      |                        |      |                     |     |                          |         |                       |                                 |                                    |  |    |   |        |       |                      |         |                                        |
| 14     Image: Clark come fine-grafted and, well soft     14.33       15     Image: Clark come fine-grafted and, well soft     14.33       16     Image: Clark come fine-grafted and, well soft     14.33       16     Image: Clark come fine-grafted and, well soft     14.33       17     Image: Clark come fine-grafted and, well soft     15.65       17     Image: Clark come fine-grafted and, well soft     15.65       18     Image: Clark come fine-grafted and, well soft     17.27       18     Image: Clark come fine-grafted and, well soft     17.27       19     Image: Clark come fine-grafted and, well soft     17.27       10     Image: Clark come fine-grafted and, well soft     17.27       10     Image: Clark come fine-grafted and, well soft     17.27       10     Image: Clark come fine-grafted and, well soft     17.27       10     Image: Clark come fine-grafted and, well soft     17.27       11     Image: Clark come fine-grafted and, well soft     17.27       12     Image: Clark come fine-grafted and, well soft     17.27       14     Image: Clark come fine-grafted and, well soft     17.27       16     Image: Clark come fine-grafted and, well soft     17.27       16     Image: Clark come fine-grafted and, well soft     17.27       16     Image: Clark come fine-grafted and, well soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |             | SILT, some fine-grained sand, well<br>graded, wel, very loose            |      | <u>333.30</u><br>11.43 |      |                     |     |                          |         |                       |                                 |                                    |  |    |   |        |       |                      |         |                                        |
| 19         CLAY, some fine-grained sand, well-soled, most, compact         332.85           17         CLAY, some fine-grained sand, well-soled, most, compact         332.85           17         CLAY, some fine-grained sand, well-soled, most, compact         332.85           18         CLAY, some fine-grained sand, well-soled, most, loose         332.85           19         CLAY, some fine-grained sand, well-soled, most, loose         332.85           19         CLAY, some fine-grained sand, well-soled, most, loose         17.37           10         CLAY, some fine-grained sand, well-soled, most, loose         17.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14           |             | CLAY, some fine-grained sand,<br>well-sorted, wet, soft                  |      | <u>330.40</u><br>14.33 |      |                     |     |                          |         |                       |                                 |                                    |  |    |   |        | •     |                      |         |                                        |
| 18     CLAY, some fine-grained sand, well-softed, moist, loose     327.36       19     17.37       19     0       20     CONTINUED NEXT PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sonic 127 mm | JR Drilling | CLAY, some fine-grained sand,<br>well-sorted, moist, compact             |      | 328,88<br>15,85        |      |                     |     |                          |         |                       |                                 | -                                  |  |    |   |        |       | Bentonite<br>Pellets |         |                                        |
| 18<br>19<br>20<br>CONTINUED NEXT PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17           |             | CLAY, some fine-grained sand,<br>well-sorted, moist, loose               |      | <u>327.36</u><br>17.37 |      |                     |     |                          |         |                       |                                 |                                    |  |    |   |        |       |                      |         |                                        |
| CONTINUED NEXT PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19           |             |                                                                          |      |                        |      |                     |     |                          |         |                       |                                 |                                    |  |    |   |        |       |                      |         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | CONTINUED NEXT PAGE                                                      |      |                        |      |                     |     |                          |         |                       |                                 |                                    |  |    |   |        |       |                      |         |                                        |
| DEPTH SCALE     LOGGED: RT       1 : 50     CHECKED: CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEPTH        | s           | CALE                                                                     |      |                        |      |                     | (   |                          | hlof    | er                    |                                 |                                    |  |    | - | -      |       |                      |         |                                        |

.

| PROJECT No .: | 12.1349.0013 |
|---------------|--------------|
|---------------|--------------|

# RECORD OF BOREHOLE: EV\_MCgwD

| N: | 5511616 | E: 653475 |
|----|---------|-----------|

| DATA ENTRY: IPG                                                                  | PROJECT No.: 12.1349.0013 RECORD OF BOREHOLE: EV_MCgwD |                                                                           |                                                                                       |             |                       |            |      |     |                                | SHEET 3 OF 5       |                          |           |             |                                   |                          |                               |      |                            |                                                           |     |
|----------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------|-----------------------|------------|------|-----|--------------------------------|--------------------|--------------------------|-----------|-------------|-----------------------------------|--------------------------|-------------------------------|------|----------------------------|-----------------------------------------------------------|-----|
| ATA ENI                                                                          | LO                                                     | CATIC                                                                     | DN: See Location Plan<br>N: 5511616 E: 653475                                         |             |                       |            |      |     | Boring E                       | ATE: I             | vovernbe                 | er 3, 201 | 3           |                                   |                          |                               |      | DATUM                      | i: UTM Zone 1<br>(Nad 83)                                 | 1   |
| -                                                                                |                                                        | 0                                                                         | SOIL PROFILE                                                                          |             |                       | SA         | MPLE | s D | DYNAMIC PEN<br>RESISTANCE,     | ETRATI             | ON                       | <u>\</u>  | HYDR        | AULICO                            | ONDUC                    | TIVITY,                       |      |                            | PIEZOMET                                                  | 6   |
|                                                                                  | METRES                                                 | BORING METHOD                                                             | DESCRIPTION                                                                           | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | BER        | TYPE |     | 20 4<br>BHEAR STREA<br>Cu, kPa | 0<br>Lasth<br>Igth | 60 €<br>LatV.+<br>remV.⊕ |           | 1<br>W<br>W | 0 <sup>-6</sup> 1<br>/ATER C<br>p | IONTENT                  | IQ <sup>-1</sup> 1<br>I PERCE | wi   | ADDITTONAL<br>LAB. TESTING | OR<br>STANDPII<br>INSTALLAT                               | P   |
|                                                                                  | 20<br>21<br>22<br>23<br>24<br>25                       | Sonic 127 fram (ID) Casing 152.4 mm (OD) BORING M JR Drilling ID Drilling | DESCRIPTION<br>CLAY, some fine-grained sand,<br>well-sorted, moist, loose (continued) | STTATA PI   | DEPTH                 | NUMBER     |      |     | BHEAR STREA<br>Cu, kPa         | GTH                | nat V. +<br>rem V. ⊕     |           | I **        | /ATER C                           | ONTENI<br>O <sup>W</sup> | I<br>FPERCE                   | NT T | ADDITION<br>LAB. TEST      | Bentonite<br>Pellets                                      |     |
| BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14 | 26<br>27<br>28<br>29                                   |                                                                           |                                                                                       |             |                       |            |      |     |                                |                    |                          |           |             |                                   |                          |                               |      |                            | Slotted<br>Section<br>Silica Sand<br>Bentonite<br>Pellets |     |
|                                                                                  | 30                                                     |                                                                           | CONTINUED NEXT PAGE                                                                   |             |                       | ┝╺┤        |      |     |                                |                    |                          |           |             |                                   |                          |                               | ╞╼╼┠ |                            | Slough E                                                  | 2.0 |
| BOREHULE                                                                         | DEI<br>1:                                              |                                                                           | CALE                                                                                  |             |                       | . <u> </u> |      | G   | <b>D</b> AG                    | olde               | r<br>ites                |           | • • • •     |                                   | ·                        | •                             |      | logged; f<br>Hecked: C     |                                                           | -   |

| PROJECT No .: | 12.1349.0013 |
|---------------|--------------|
|---------------|--------------|

### RECORD OF BOREHOLE: EV\_MCgwD

#### BORING DATE: November 3, 2013

| DATA ENTRY: IPG                                                                  |                                                                      |                                  | T No.: 12.1349.0013<br>IN: See Location Plan<br>N: 5511616 E: 653475   | RI          | RECORD OF BOREHOLE: EV_MCgwD<br>BORING DATE: November 3, 2013                   |          |          |            |                              |               |                                  |              |          |          |        | sheet<br>Datum: | 4 OF 5<br>UTM Zone 1'<br>(Nad 83) | 1                          |                              |           |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------|----------|----------|------------|------------------------------|---------------|----------------------------------|--------------|----------|----------|--------|-----------------|-----------------------------------|----------------------------|------------------------------|-----------|
|                                                                                  | 61                                                                   | g                                | SOIL PROFILE                                                           |             | SAMPLES DYNÀMIC PENETRATION<br>RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, - |          |          |            |                              |               |                                  |              |          |          | Т      | l               | PIEZOMET                          | ER                         |                              |           |
|                                                                                  | DEPTH SCALE<br>METRES                                                | BORING METHOD                    | DESCRIPTION                                                            | STRATA PLOT | ELEV.<br>DEPTH<br>(m)                                                           | NUMBER   | ТҮРЕ     | BLOWS/0.3m | 20<br>SHEAR STREA<br>Cu, kPa | 10 (<br>1611) | 30 8<br>⊥<br>natV. +<br>rem.V. ⊕ | 8- 0<br>9- 0 | to<br>W  | ATER CO  | DNTENT | PERCE           |                                   | ADDITIONAL<br>LAB. TESTING | OR<br>STANDPIE<br>INSTALLATI | 'E<br>ION |
|                                                                                  | — 30                                                                 |                                  | CLAY, some fine-grained sand,<br>well-sorted, moist, loose (continued) |             | 216.29                                                                          |          |          |            |                              |               |                                  |              |          |          |        |                 |                                   |                            |                              | 11111     |
| SOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14 | 31<br>32<br>33<br>33<br>34<br>35<br>36<br>36<br>37<br>37<br>38<br>39 | Sorie 127 mm (DD)<br>JR Drilling | CLAY, some fine-grained sand,<br>well-sorted, wol, soft                |             | 314.26<br>30,45<br>307,64<br>37,19<br>305,87<br>38,66                           |          |          |            |                              |               |                                  |              |          |          |        |                 |                                   |                            | Slough                       |           |
| EXPANDE                                                                          | -<br>-<br>-→ 40                                                      |                                  |                                                                        |             |                                                                                 |          |          |            |                              |               |                                  |              |          | <u> </u> |        | E               |                                   |                            |                              |           |
| <b>30REHOLE -</b>                                                                | DE<br>1 :                                                            | і<br>РТН 8<br>: 50               | I                                                                      | 1           | 1                                                                               | <u>.</u> | <u> </u> | (          | <b>A</b>                     | old           | er<br>ates                       | J            | <b>↓</b> |          | 1      | 1               | ı<br>(                            | Logged: I<br>Checked: (    |                              |           |

| PROJECT No.: 12.1349.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SHEET 5 OF 5  |              |                           |                                                        |                                                 |                 |    |                            |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------------------|--------------------------------------------------------|-------------------------------------------------|-----------------|----|----------------------------|---------------------------------------|
| LOCATION: See Location Plan<br>N: 5511616 E: 653475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |              | BORING DATE: N            | lovember 3, 201                                        | 3                                               |                 |    | DATUM                      | : UTM Zone 1<br>(Nad 83)              |
| SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAMPL<br>APPE | BLOWS/0.3m B | SHEAR STRENGTH<br>Cu, kPa | ON<br>60.3m<br>60 80<br>nat V. + Q. ●<br>rem V. ⊕ U. ○ | k, cm/s<br>10 <sup>4</sup> 1<br>WATER C<br>Wp I | ONTENT PERCEN   | NI | ADDITIONAL<br>LAB. TESTING | PIEZOME<br>OR<br>STANDPI<br>INSTALLAT |
| 40       SILT and SAND, coarse-grained, sub-angular, moderately-sorted, wet, vory loose (continued)         41       SANDY SILT, fine-grained, moderately-sorted, wet, very loose         41       CLAYEY SAND, fine-grained, some coarse-grained gravel, angular, moderately-sorted, brown, wet, very loose         43       CLAYEY SAND, fine-grained, some coarse-grained gravel, angular, moderately-sorted, brown, wet, very loose         44       E         45       GRAVEL, fine-grained, sub-rounded, moderately-sorted, grey to brown, very loose, wet         45       SAND, medium-grained with some fine grains, sub-rounded, poorly graded, mainly black to grey and brown, wet         46       End of BOREHOLE. | 0         304.34           1         304.34           40.39         40.39           30         40.39           30         40.39           40.39         40.39           300.69         44.87           300.69         44.04           300.69         44.04           40.39         44.81           300.69         44.81           300.69         44.81           300.69         44.81           300.69         44.81           300.69         44.81 |               |              |                           |                                                        |                                                 |                 | 0  |                            | Slough                                |
| <ul> <li>NOTES:<br/>Sloughing present to 29.9 m.<br/>Standpipe installed to 27.6 m upon<br/>well completion.<br/>Groundwater level measured at<br/>2.5 mbgs on November 7, 2013.<br/>Groundwater tevel measured at<br/>3.4 mbgs on November 15, 2013.</li> <li>49</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |              |                           |                                                        |                                                 |                 |    |                            |                                       |
| IH SCALE ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I <u>. I</u>                                                                                                                                                                                                                                                                                                                                                                                                                                        | _1_           |              | Golde                     | <u> </u>                                               | <u> </u>                                        | <u>ا</u> ـــــا |    | OGGED: F                   |                                       |

~ F

| PROJECT No.: 12.13 | 49.0013 |
|--------------------|---------|
|--------------------|---------|

# RECORD OF BOREHOLE: EV\_MCgwS

#### BORING DATE: November 6, 2013

|                            |                                                       | T No.: 12.1349.0013<br>N: Soe Location Plan<br>N: 5511624 E: 653476                                                                                                                           | R           | RECORD OF BOREHOLE: EV_MCgwS<br>BORING DATE: November 6, 2013                     |        |                    |                                       |  |                                   |  |     |                       |                |       |         | SHEET 1 OF 2<br>DATUM: UTM Zo<br>(Nad 83 |                            |                                      |  |
|----------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------|--------|--------------------|---------------------------------------|--|-----------------------------------|--|-----|-----------------------|----------------|-------|---------|------------------------------------------|----------------------------|--------------------------------------|--|
|                            | g                                                     | SOIL PROFILE                                                                                                                                                                                  |             | SAMPLES DYNAMIC PENETRATION HYDRAULIC CONDUCTIV<br>RESISTANCE, BLOWS/0.3m k, cm/s |        |                    |                                       |  |                                   |  |     |                       |                |       | IVITY,  | Т                                        |                            | PIEZOMET                             |  |
| METRES                     | BORING METHOD                                         | DESCRIPTION                                                                                                                                                                                   | STRATA PLOT | ELEV.<br>DEPTH<br>(m)                                                             | NUMBER | TYPE<br>BI OWS/D3m | E 20 40<br>37 SHEAR STRENG<br>Cu, kPa |  | R STRENGTH nal V, +<br>a rem V, ⊕ |  | - 0 | 10 <sup>4</sup><br>WA | 5 10<br>TER CO |       | PERCE   | T                                        | ADDITTONAL<br>LAB. TESTING | OR<br>STANDP<br>INSTALLA<br>Stick-up |  |
| 0                          |                                                       | Ground Surface<br>SAND, coarse and medium-grained,<br>and fine-grained GRAVEL, rounded to<br>sub-rounded, moderately graded, dark<br>brown, damp, very loose                                  |             | <u>344,73</u><br>0.00                                                             |        |                    |                                       |  |                                   |  |     |                       |                |       | <u></u> |                                          |                            | =0.96 m                              |  |
| 1                          |                                                       | SAND, fine and medium-grained,<br>sub-rounded to sub-angular, poorly<br>graded, brown, dry, very loose                                                                                        |             | 343.81<br>0.91                                                                    |        |                    |                                       |  |                                   |  |     |                       |                |       |         |                                          |                            | 15 Nov 2013<br>⊻                     |  |
| ŝ                          |                                                       |                                                                                                                                                                                               |             |                                                                                   |        |                    |                                       |  |                                   |  |     |                       |                |       |         |                                          |                            | Bentonite<br>Pellets                 |  |
| a<br>mm (D) Casim 159 2 mm | Sonic 127 mm (ID) Casing 152.4 mm (OD)<br>JR Drilling | CLAYEY SILT, some fine-grained sand,<br>dark brown to gray, moist, soft to very<br>loose<br>CLAYEY SILT, some fine-grained sand,<br>dark brown to gray, wet, very soft, very<br>loose (runny) |             | 340.16<br>4.57<br>339.24<br>5.49                                                  |        |                    |                                       |  |                                   |  |     |                       |                |       |         |                                          |                            | Sillca Sand                          |  |
|                            |                                                       |                                                                                                                                                                                               |             |                                                                                   |        |                    |                                       |  |                                   |  |     |                       |                | ,     |         |                                          |                            | Statted<br>Section                   |  |
| 8                          |                                                       | CLAY, some fine-grained sand,<br>well-sorted, molst, compact                                                                                                                                  |             | <u>335.58</u><br>9.14                                                             |        |                    |                                       |  |                                   |  |     |                       |                |       |         |                                          |                            | Slough                               |  |
| 10                         | _L                                                    | CONTINUED NEXT PAGE                                                                                                                                                                           |             | 1                                                                                 |        | +- -               |                                       |  | +                                 |  |     |                       |                | • • • |         | t                                        |                            |                                      |  |

| PROJECT No.: | 12.1349.0013    |
|--------------|-----------------|
| LOCATION: Se | e Location Plan |

# RECORD OF BOREHOLE: EV\_MCgwS

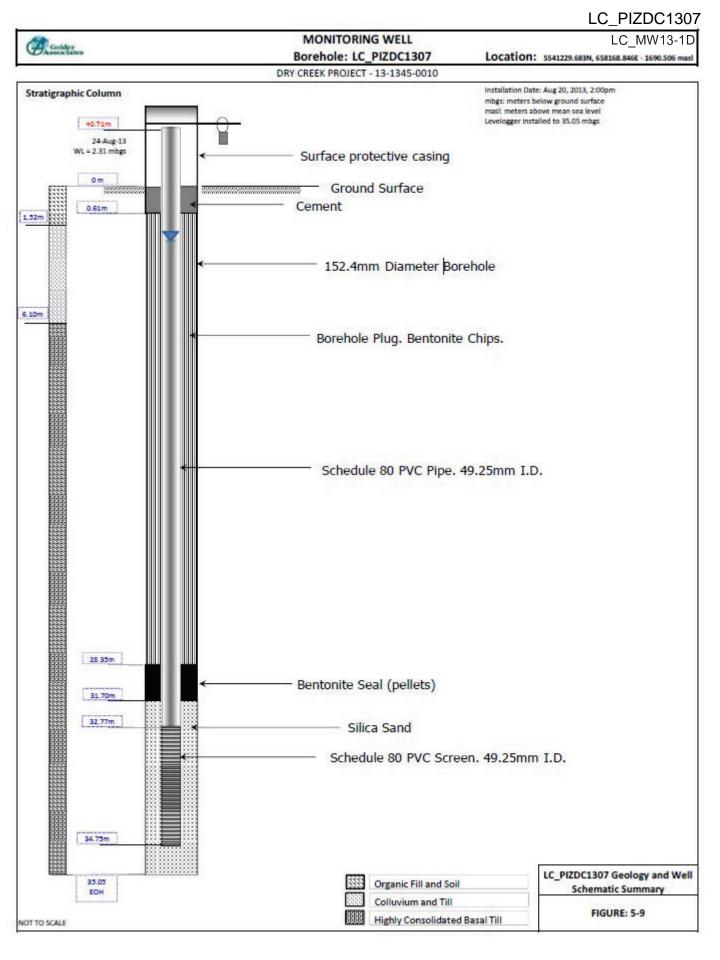
| N | 5511624 | E: 653476 |
|---|---------|-----------|

| RY: IPG                                                                          | PR                                   | PROJECT No.: 12.1349.0013 |                                                                                                                                                                                                       |                             |        | RECORD OF BOREHOLE: EV_MCgwS |      |            |                                             |               |             |            |                                                                                                                         |                    |        |         |                            |                         | SHEET 2 OF 2          |                                                                                             |  |
|----------------------------------------------------------------------------------|--------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|------------------------------|------|------------|---------------------------------------------|---------------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------|----------------------------|-------------------------|-----------------------|---------------------------------------------------------------------------------------------|--|
| DATA ENTRY: IPG                                                                  | LO                                   | опло                      | N: See Location Plan<br>N: 5511624 E: 653476                                                                                                                                                          |                             |        |                              |      |            | BORING                                      | DATE: N       | lovembe     | er 6, 2013 | 3                                                                                                                       |                    |        |         |                            | DATUM                   | : UTM Zor<br>(Nad 83) | e 11                                                                                        |  |
|                                                                                  | Li                                   | ê                         | SOIL PROFILE                                                                                                                                                                                          |                             |        | L                            | MPLO | _          | DYNAMIC PER<br>RESISTANCE                   | ETRATI        | ON<br>10.3m | 1          | HYDR                                                                                                                    | AULIC C<br>k, cm/s | ONDUCT | TIVITY, | T                          |                         | PIEZO                 |                                                                                             |  |
|                                                                                  | DEPTH SCALE<br>METRES                | BORING METHOD             | DESCRIPTION                                                                                                                                                                                           | STRATA PLOT<br>DEbli<br>(w) |        | NUMBER                       |      | BLOWS/0.3m | 20 40 60 60<br>SHEAR STRENGTH nat V. + Q. • |               |             | W<br>Wj    | 10 <sup>6</sup> 10 <sup>5</sup> 10 <sup>4</sup> 10 <sup>3</sup> ⊥<br>WATER CONTENT PERCENT<br>Wp }OW1 WI<br>10 20 30 40 |                    |        |         | ADDITIONAL<br>LAB. TESTING | STANDPIPE               |                       |                                                                                             |  |
|                                                                                  | — 10<br>                             | JR Ddiling                | CLAY, some fine-grained sand,<br>well-sorted, moist, compact (continued)                                                                                                                              |                             | 334.06 |                              | -    |            |                                             |               |             |            |                                                                                                                         |                    |        |         |                            |                         | Slough                |                                                                                             |  |
|                                                                                  | - 11                                 |                           | End of BOREHOLE.                                                                                                                                                                                      |                             | 10,67  |                              |      |            |                                             |               |             |            |                                                                                                                         |                    |        |         |                            |                         |                       |                                                                                             |  |
|                                                                                  | - 12-                                |                           | NOTES:<br>Standpipe installed to 7.32 m upon<br>well completion.<br>Groundwater level measured at<br>3.6 mbgs on November 7, 2013.<br>Groundwater level measured at<br>1.1 mbgs on November 15, 2013. |                             |        |                              |      |            |                                             |               |             |            |                                                                                                                         | -                  |        |         |                            |                         |                       |                                                                                             |  |
| -                                                                                | - 13<br>- 13                         |                           |                                                                                                                                                                                                       |                             |        |                              |      |            |                                             |               |             |            |                                                                                                                         |                    |        |         |                            |                         |                       |                                                                                             |  |
|                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                           |                                                                                                                                                                                                       |                             |        |                              |      |            |                                             |               |             |            |                                                                                                                         |                    |        |         |                            |                         |                       |                                                                                             |  |
|                                                                                  | - 15                                 |                           |                                                                                                                                                                                                       |                             |        |                              |      |            |                                             |               |             |            |                                                                                                                         |                    |        |         |                            |                         |                       |                                                                                             |  |
| 1T 4/B/14                                                                        | - 16                                 |                           |                                                                                                                                                                                                       |                             |        |                              |      |            |                                             |               |             |            |                                                                                                                         |                    |        |         |                            |                         |                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |
| GPJ CALGARY.GL                                                                   | - 17                                 |                           |                                                                                                                                                                                                       |                             |        |                              |      |            |                                             |               |             |            |                                                                                                                         |                    |        |         |                            |                         |                       |                                                                                             |  |
| 2.1349.0013 BH LOGS                                                              | -<br>- 18<br>-                       |                           |                                                                                                                                                                                                       |                             |        |                              |      |            |                                             |               |             |            |                                                                                                                         |                    |        |         |                            |                         |                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                        |  |
| BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14 | - 19                                 |                           |                                                                                                                                                                                                       |                             |        |                              |      |            |                                             |               |             |            |                                                                                                                         | -<br>-<br>-        |        |         |                            |                         |                       |                                                                                             |  |
| ANDED.                                                                           | -<br>-<br>-                          |                           |                                                                                                                                                                                                       |                             |        |                              |      |            |                                             |               |             |            |                                                                                                                         |                    |        |         |                            |                         |                       | -                                                                                           |  |
|                                                                                  | - 20                                 |                           |                                                                                                                                                                                                       |                             |        |                              |      |            |                                             |               | <br>        |            |                                                                                                                         |                    |        |         |                            |                         |                       |                                                                                             |  |
| BOREHOLI                                                                         | DE<br>1:                             | PTH 8                     | CALE                                                                                                                                                                                                  |                             |        |                              |      | (          | <b>D</b> AS                                 | olde<br>socia | r<br>ites   |            |                                                                                                                         |                    |        |         |                            | Logged; F<br>Checked: ( |                       |                                                                                             |  |

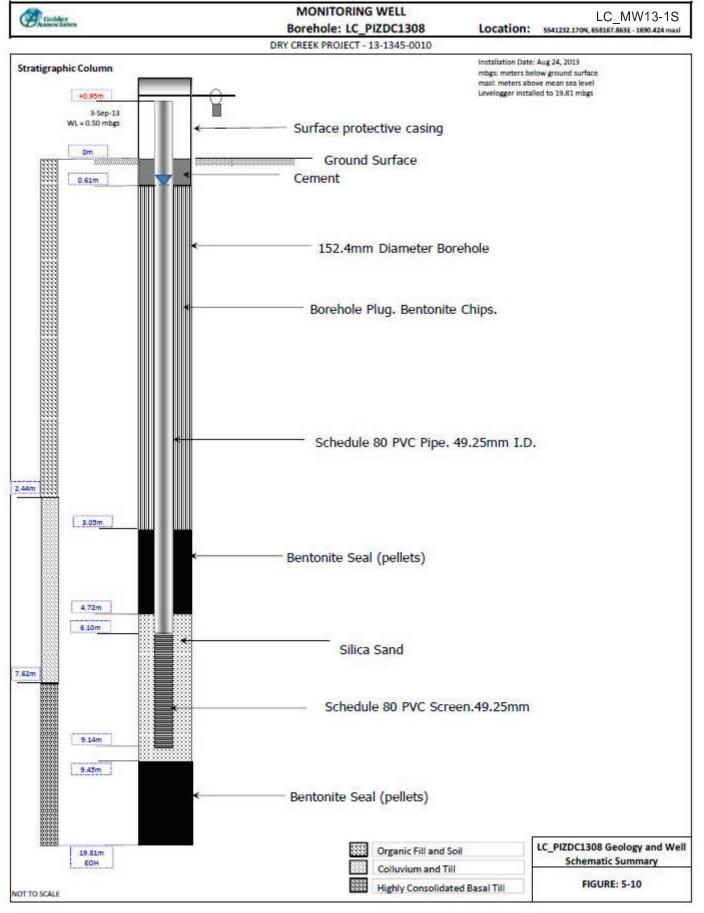
| PROJECT No.: 1 | 12.1349.0013 |
|----------------|--------------|
|----------------|--------------|

# RECORD OF BOREHOLE: EV\_OCgw

| DATA ENTRY: IPG                                                                  |                       |                                                        | T No.: 12.1349.0013<br>WI: See Location Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RECORD OF BOREHOLE: EV_OCgw<br>BORING DATE: November 7, 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SHEET 1 OF 2<br>DATUM: UTM Zone 11<br>(Nad 83)           |
|----------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| DATA                                                                             |                       |                                                        | N: 5512671 E: 652480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Nad 83)                                                 |
| ł                                                                                | ц                     | 8                                                      | SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLES DYNAMIC PENETRATION HYDRAULIC CONDUCTIVITY.<br>RESISTANCE, BLOWSM.3m k, cm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PIEZOMETER                                               |
|                                                                                  | DEPTH SCALE<br>METRES | BORING METHOD                                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SILICK-UP                                                |
| BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349:0013 BH LOGS.GPJ CALGARY.GDT 4/8/14 | - 2 3                 | Sonie 127 mm. (ID) Casing 152.4 mm (OD)<br>JR Drilling | DESCRIPTION         Ground Surface         SANDY GRAVEL, fine-grained with occasional coarse grains, rounded to sub-rounded, moderately graded, dry, very loose         SAND and GRAVEL, coarse sand and fine gravel, rounded to sub-rounded, angular, poorly graded, moist, very loose         — Hole Is being drilled on the edge of a waste rock pile         — Hole Is being drilled on the edge of a waste rock pile         — Moisture at 2.1 m         GRAVEL, trace sand, fine to coarse-grained, sub-rounded to rounded, poorly graded, moist, loose         SAND, fine to medium-grained with occasional coarse grains, some gravel, fine to coarse-grained, sub-rounded to sub-rounded, poorly graded, moist, loose         SAND, fine to medium-grained with occasional coarse grains, some gravel, fine to coarse-grained, sub-rounded, sub-rounded | All of the second sec | 45 Nov 2013<br>45 Nov 2013<br>45 Nov 2013<br>45 Nov 2013 |
| XPANDED ADD. LA                                                                  | - 10                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |
| Ш<br>Ш                                                                           |                       |                                                        | CONTINUED NEXT PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |
| BOREHOL                                                                          | DE<br>1               | erii e<br>50                                           | SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Lanin</b> E Golder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logged: RT<br>Hecked; CD                                 |


| PROJECT No.: | 12.1349.0013 |
|--------------|--------------|
|              |              |

# RECORD OF BOREHOLE: EV\_OCgw


#### BORING DATE: November 7, 2013

٩

| DATA ENTRY: IPG                                                                  |                                  |                                                       | T No.: 12.1349.0013<br>N: See Location Plan                                                                                                                                                                                                                                                                                     | REC                                      | OR     | DO                 |                      |              |                  |                 | EV_ |      | gw                 |                  |         |                                    |                             | 2 OF 2<br>: UTM Zone 11   |
|----------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------|--------------------|----------------------|--------------|------------------|-----------------|-----|------|--------------------|------------------|---------|------------------------------------|-----------------------------|---------------------------|
| DATAE                                                                            |                                  |                                                       | N: 5512671 E: 652480                                                                                                                                                                                                                                                                                                            |                                          |        |                    |                      |              |                  |                 | ,   |      |                    |                  |         |                                    |                             | (Nad 83)                  |
|                                                                                  | Щ                                | P                                                     | SOIL PROFILE                                                                                                                                                                                                                                                                                                                    |                                          | SA     | MPLES              | DYNA                 | VIC PEN      | ETRATIO<br>BLOWS | 3N<br>10.3m     | 1   | HYDR | \ULIC C<br>k, cn√s | ONDUC            | TIVITY, | Т                                  | _                           | PJEZOMETER                |
|                                                                                  | DEPTH SCALE<br>METRES            | BORING METHOD                                         | DESCRIPTION                                                                                                                                                                                                                                                                                                                     | STRATA PLOT<br>STRATA PLOT<br>(m)<br>(m) | NUMBER | TYPE<br>BLOWS/0.3m | 2<br>SHEAI<br>Cu, kP | R STREM<br>a | IGTH I           | hatV.+<br>emV.⊕ |     | w    | ATER C             | и<br>омтемт<br>Ф | PERCE   | 0 <sup>2</sup> I<br>NT<br>Wi<br>K0 | ADDITTIONAL<br>LAB, TESTING | STANDPIPE<br>INSTALLATION |
|                                                                                  | 10<br>11<br>12<br>12<br>13<br>14 | Somie 127 mm (ID) Casing 122.4 mm (OD)<br>JR Drifling | SAND, fine to medium-grained with<br>occasional coarse grains, some gravel,<br>fine to coarse-grained, sub-angular to<br>sub-rounded, dry to moist, toose,<br>(continued)<br>SAND, fine to medium-grained with<br>occasional coarse grains, some<br>fine-grained gravel, sub-angular to<br>sub-rounded, moist, loose to compact | 328,72                                   |        |                    |                      |              |                  |                 |     |      |                    |                  |         |                                    |                             | Bentonile<br>Chips        |
|                                                                                  | - 15                             |                                                       | BEDROCK                                                                                                                                                                                                                                                                                                                         | 14.48                                    |        |                    |                      |              |                  |                 |     |      |                    |                  |         |                                    |                             | Silice Sand<br>Tall Pipe  |
| BOREHOLE - EXPANDED ADD. LAB TESTING 12,1349,0013 BH LOGS,GPJ CALGARY.GDT 4/8/14 | - 16<br>- 17<br>- 18<br>- 19     |                                                       | End of BOREHOLE.<br>NOTES:<br>Standpipe Installed to 14.6 m upon<br>well completion.<br>Groundwater level measured at<br>2.1 mbgs on November 15, 2013.                                                                                                                                                                         | 15.64                                    |        |                    |                      |              |                  |                 |     |      |                    |                  |         |                                    |                             |                           |
| BOREHC                                                                           | DE<br>1 :                        | PTH S<br>50                                           | CALE                                                                                                                                                                                                                                                                                                                            |                                          |        | (                  | Ø                    | G            | olde<br>ocia     | r<br>ites       |     |      |                    |                  |         | c                                  | Logged: F                   |                           |



# LC\_PIZDC1308



# LC\_PIZP1101 LC\_MW11(P)-01

| DRILLER: JR Drilling     LOCATION: Teck - LCO     PROJECT NO: EX06/69       DRILLMETHOD: DR-12/Air Rotary     EX04RDIATIVE     Z060/61m       SAMPLE TYPE     Benomine     [] Structure     [] No theorewy     [] Structure       BACKFILL TYPE     Benomine     [] Pra Gravel     [] Structure     [] No theorewy     [] Structure       BACKFILL TYPE     Demomine     [] Pra Gravel     [] Structure     [] Structure     [] OrtHER TESTS       COMMENTION:     10     SOIL     [] Structure     [] OrtHER TESTS       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                      |                                                                    | LC_MW11                                                                             | (P)-(                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------|
| DRILL/METHOD: DR-12/ Air Rotary       BOREHOLE LOCATION: Refer to site plan       ELEVATION: 1266.06 m         SAMPLE TYPE       Sheby Tube       No Recovery       SPT Test (N)       Grab Sample       Split-Pen       Core         BACKFILL TYPE       Benchnite       Pea Gravel       South sample       South sample       Dott Cutings       Split-Pen       Core         BACKFILL TYPE       Benchnite       Pea Gravel       South sample       Dott Cutings       Split-Pen       Core         South sample       South sample       South sample       South sample       Dott Cutings       Split-Pen       Core         South sample       South sample       South sample       South sample       Split sample       Dott Sample       OTHER TESTS         Comments       Comments       South sample       South sample       South sample       Split sample       OTHER TESTS         Comments       Sample       Status sample       Status sample       Split sample       Split sample       OTHER TESTS         Comments       Sample       Status sample       Status sample       Split sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CLIENT: Teck Coal Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                     |                      |                                                                    | BOREHOLE NO: MW11(P)-01                                                             |                      |
| SAMPLE TYPE Shelby Tube No Recovery SPT Test (N) Crab Sample Split-Pen Core BACKFILL TYPE Test (N) Crab Sample Split-Pen Core BACKFILL TYPE Test (N) Crab Sample Split-Pen Core Solution Control Contr | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                      |                                                                    |                                                                                     |                      |
| BACKFILL TYPE Deatorate III Stough Contact Including Stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                      |                                                                    |                                                                                     |                      |
| Image: Construct where the standard product of                                 | SAMPLE TYPE Shelby Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                      |                                                                    |                                                                                     |                      |
| 20       200       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       800       80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BACKFILL TYPE Bentonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pea Gravel Slough                                                                                                                                                                                   | Grout                |                                                                    | Drill Cuttings                                                                      |                      |
| 0       SALD, sity, some gravel, trace day, loose, compact, medium       1       1       2         -gravelly       -gravelly       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (E) 400 600 800<br>■ STANDARD PEN (N) ■<br>20 40 60 80<br>PLASTIC M.C. LIQUID<br>■ STANDARD PEN (N) ■<br>20 40 80<br>PLASTIC M.C. LIQUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     | SAMPLE TYPE          | SAMPLE NO<br>SPT (N)                                               | OTHER TESTS<br>COMMENTS                                                             | EI EVATION (m)       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} 0 \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -6 \\ -7 \\ -8 \\ -9 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ -14 \\ -15 \\ -16 \\ -17 \\ -18 \\ -19 \\ -20 \\ -21 \\ -22 \\ -23 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -24 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\ -25 \\$ | brown, dry<br>-gravelly<br>SILT, sandy, some cobbles, some gravel,<br>damp<br>SILTY SAND, some gravel, compact, med<br>SILT , some cobbles, trace FG sand, firm,<br>-damp<br>-dry<br>-damp<br>-damp | compact, grey brown, | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | Depth to groundwater was<br>30.81 m from TOC 23<br>November 2011 (1236.25<br>mASL). | 12i                  |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -35<br>-36<br>-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CG SAND, some gravel, dense, brown gre                                                                                                                                                              | y, wet (sub rounded  |                                                                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                               | 12<br>12<br>12       |
| -42    42     Borehole wet at completion. Monitoring well installed.       -43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -38<br>-39<br>-40<br>-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                      |                                                                    | PVC screen was installed from<br>37.5 m to 40.5 m.                                  | 12<br>12<br>12<br>12 |
| 45   : : : : : : : : : : : [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     |                      |                                                                    |                                                                                     | -12<br>-12<br>-12    |
| AMEC Environment & Infrastructure<br>Medicine Hat, Alberta Medicine Hat, Alberta AMEC Environment & Infrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |                      |                                                                    |                                                                                     | 1                    |

CM\_MW1

|           | srk (         | consulting                                     |                          | MW-1                                          | COOR          |            |        | E 548752         | 21 N    | Page: 1 of 3            |
|-----------|---------------|------------------------------------------------|--------------------------|-----------------------------------------------|---------------|------------|--------|------------------|---------|-------------------------|
|           |               | 9                                              | LOCATION:<br>PROJECT NO: | СМО<br>1СТ017.098                             | GROUND ELI    |            | UTM Z  |                  |         |                         |
|           |               | <b>eck</b>                                     |                          | AquaPro Drilling Ltd.                         |               | LAR DIP:   |        | +                |         |                         |
|           |               | eck                                            | CONTRACTOR:              | , quu le prinig pui                           | EOH ELE       | V. (masl): | 1463.2 | 5                |         |                         |
|           |               |                                                | DRILLING TYPE:           | Air Rotary                                    | TOTAL DEPT    | H (mbgs):  | 37.19  |                  |         |                         |
|           |               | oundwater Monitoring                           | LOGGED BY:               |                                               | STICKUP HEIGI |            |        |                  |         |                         |
| CLIENT:   | Teck Coal     | Ltd CMO                                        | BORING DATE:             | 8/12/2015 to 8/13/2015                        | CASING STICK  | JP (magl): | 0.85   | AREA: <b>Mic</b> | hel Cr  | eek                     |
|           |               | Lithologi                                      | cal Symbol               |                                               |               | draulic    |        |                  | Insta   | allation                |
| L (E      |               | CL-Clay                                        | SA-Sand                  | . SS-Sandstone                                |               | ctivity (m | /s)    | Sand<br>Scree    |         | Chips<br>Chips/Backfill |
| Depth (m) |               | LO-Loam<br>SI-Silt                             | GV-Gravel                | ST-Siltstone                                  | 8 ~ 9         | , u 5      | 5 5 1  |                  |         | Backfill                |
| De        |               |                                                |                          |                                               | 1E-8<br>1E-7  | 1E-5       | 0.001  | Pellets          | \$      | Casing                  |
|           |               | Lithology Descr                                | iption                   | Drilling Notes and<br>Additional Comment      | s             |            |        | Cave             |         |                         |
| -2        |               |                                                |                          |                                               |               |            |        |                  |         |                         |
| -         |               |                                                |                          |                                               |               |            |        |                  |         |                         |
| -         |               |                                                |                          |                                               |               |            |        |                  |         |                         |
| -         |               |                                                |                          |                                               |               |            |        |                  |         |                         |
| - 0       |               | Crovel and eand (CI                            | A): Como                 |                                               |               |            |        |                  |         |                         |
| _         | $\dot{\cdot}$ | Gravel and sand (GM silt. Very dark brown      |                          |                                               |               |            |        |                  |         |                         |
|           |               | graded, moist, sub-re                          | ounded,                  |                                               |               |            |        |                  |         |                         |
|           | . 0           | non-plastic, non-coh                           | esive.                   |                                               |               |            |        |                  |         |                         |
| -         | O             |                                                |                          |                                               |               |            |        |                  |         |                         |
| - 2       |               | Gravel (GW); Sandy<br>silt. Grayish brown, v   |                          |                                               |               |            |        |                  |         |                         |
| -         | • • • •       | graded, dry, sub-ang                           | jular,                   |                                               |               |            |        |                  | 3       | 18-Aug-15               |
| -         | 0.            | \non-plastic, non-coh                          |                          |                                               |               |            |        |                  |         |                         |
| -         |               | Gravel and sand (GN<br>silt. Very dark grayis  |                          | Very fast drilling                            |               |            |        |                  | 14-Aug- |                         |
| - 4       |               | \well graded, moist, re                        | ounded,                  | (through sand)                                |               |            |        |                  |         |                         |
|           |               | \non-plastic, non-coh<br>Silt and sand (ML); ( | esive.<br>Fravelly       |                                               |               |            |        |                  |         |                         |
|           | ЩЩЦ           | Very dark grayish bro                          | own, well                | Hit very wet material                         | ,             |            |        | 8                |         |                         |
| -         |               | graded, wet, sub-rou                           |                          | holding for 20 - 30<br>minutes to determine   |               |            |        |                  |         |                         |
| -         |               | \non-plastic, cohesive<br>Clay (CH); Trace sar | nd. Verv                 | SWL                                           |               |            |        |                  |         |                         |
| - 6       |               | dark grayish brown,                            | wet,                     | Very wet, firm clay of                        |               |            |        | 7 7              | 7       | 777777                  |
| -         |               | high-plasticity, cohes                         | sive.                    | drillbit at end of first r                    |               |            |        | 4                | 4       |                         |
| -         |               |                                                |                          |                                               |               |            |        | 4                | 7       |                         |
| -         |               |                                                |                          |                                               |               |            |        | 4                | 4       |                         |
| - 8       |               |                                                |                          |                                               |               |            |        | 7 [              | 7       |                         |
|           |               |                                                |                          |                                               |               |            |        | 4 (              | 4       |                         |
|           |               |                                                |                          |                                               |               |            |        | 4 0              | 4       |                         |
|           |               |                                                | S                        | econd run just wet cl<br>added about 50% of t | ay            |            |        | 4 1              | 4       |                         |
| -         |               |                                                | (c                       | water observed)                               |               |            |        | 20               | 4       |                         |
| - 10      |               |                                                |                          |                                               |               |            |        | / /              | 2       |                         |
| -         |               |                                                |                          |                                               |               |            |        | 44               | 7       |                         |
| -         |               |                                                |                          |                                               |               |            |        | 77               | 7       |                         |
| _         |               |                                                |                          |                                               |               |            |        | 4                | 7       |                         |
|           |               |                                                |                          |                                               |               |            |        | 7 [              | 4       |                         |
| - 12      |               |                                                |                          |                                               |               |            |        | 7 [              | 7       |                         |
| -         |               |                                                |                          |                                               |               |            |        | 4 (              | 4       |                         |
| -         |               |                                                |                          |                                               |               |            |        | 4 7              | 4       |                         |
|           | 1////         |                                                |                          |                                               |               |            |        | 7 K              | 4       | V////                   |

|                                          | erk (                | consulting            | HOLE II              | D: <b>MW-1</b>                  |          | со           | ORDINATE              | s: 667          | 969 E                   | 5487521 N     | Page: 2 of 3               |
|------------------------------------------|----------------------|-----------------------|----------------------|---------------------------------|----------|--------------|-----------------------|-----------------|-------------------------|---------------|----------------------------|
|                                          |                      | consulting            | LOCATION             | N: CMO                          |          |              | DATU                  | M: UTI          | M Zone                  | e 11          |                            |
|                                          |                      |                       |                      | D: 1CT017.098                   |          |              | ELEV (ma              |                 | 0.44                    |               |                            |
|                                          |                      | eck                   | DRILLIN<br>CONTRACTO | G AquaPro Drilling Lt           | d.       |              | COLLAR D              |                 |                         |               |                            |
|                                          | •                    |                       |                      | E Air Rotary                    | -        |              | ELEV. (ma:            |                 |                         |               |                            |
|                                          | Phase 1 Gr           | oundwater Monitoring  | LOGGED B             | -                               |          |              | EPTH (mbg             |                 |                         |               |                            |
|                                          | Teck Coal            |                       |                      | E: 8/12/2015 to 8/13/2          |          |              | EIGHT (mag            |                 |                         | EA: Michel C  | reek                       |
|                                          |                      |                       |                      |                                 | .010 CA3 |              |                       | yı). 0.00       |                         |               |                            |
|                                          |                      | Lithologi             | cal Symbol           |                                 |          |              | Hydraulio             |                 |                         | Well Inst     |                            |
| Depth (m)                                |                      |                       | SA-Sand              | SS-Sandstone                    |          |              | ductivity             |                 |                         | Sand          | Chips                      |
| 닱                                        |                      |                       | GV-Gravel            | ST-Siltstone                    |          |              | <i>(</i> <b>0</b> ) 0 | <u> </u>        |                         | Screen Screen | Chips/Backfill<br>Backfill |
| Dep                                      |                      | SI-Silt               |                      |                                 |          | 1E-8<br>1E-7 | 1E-6<br>1E-5          | 0.0001<br>0.001 |                         | Pellets       | Casing                     |
|                                          |                      | Lithology Descr       | intion               | Drilling Note                   | s and    |              | 1 1                   | 1               |                         | Cave          |                            |
|                                          |                      | Ennology Deser        |                      | Additional Cor                  | nments   |              |                       |                 | $\overline{\mathbf{Z}}$ |               | 77777                      |
| - 14                                     |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
|                                          |                      |                       |                      | Same clay all the<br>bedrock    | way to   |              |                       |                 |                         |               |                            |
| -                                        |                      |                       |                      | Dedrock                         |          |              |                       |                 |                         |               |                            |
| -                                        |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| -                                        |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| - 16                                     |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| 10                                       |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| -                                        |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| -                                        |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| -                                        |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
|                                          |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| - 18                                     | <u> </u>             | Siltstone bedrock; BI | ack, wet.            | Bedrock is mix of               |          |              |                       |                 |                         |               |                            |
| -                                        | <u> </u>             |                       |                      | siltstone, grey                 |          |              |                       |                 |                         |               |                            |
| -                                        | - • •                |                       |                      | sandstone, and lig<br>sandstone | gnt tan  |              |                       |                 |                         |               |                            |
| -                                        |                      |                       | -                    |                                 |          |              |                       |                 |                         |               |                            |
|                                          | • •                  |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| - 20                                     | • — • —              |                       |                      |                                 |          |              |                       |                 |                         |               | -                          |
| -                                        | ·                    |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| -                                        | - · <u>- · -</u> · - |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| -                                        | — • — •              |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
|                                          | <u> </u>             |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| - 22                                     | <u> </u>             |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| -                                        |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| -                                        |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
|                                          | • — • —              |                       |                      |                                 |          |              |                       |                 | 5.                      | يم ور         |                            |
|                                          | · _ · _ ·            |                       |                      |                                 |          |              |                       |                 | 15                      | $\sum$        | $\gtrsim$                  |
| - 24                                     | <u> </u>             |                       |                      |                                 |          |              |                       |                 |                         |               | r'n Y                      |
| -                                        | -••-                 |                       |                      | Mix of rock chips               | - light  |              |                       |                 |                         |               | U AM                       |
| -                                        |                      |                       |                      | and dark sandsto                |          |              |                       |                 |                         | <u>\</u>      | $\diamond$ ·               |
|                                          | <u> </u>             |                       |                      | siltstone                       |          |              |                       |                 | $\overline{\langle}$    | ~             | $\dot{}$                   |
| an a |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| - 26                                     |                      |                       |                      |                                 |          |              |                       |                 | -                       | · <           | S.M.                       |
|                                          |                      |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
| -                                        | · · ·                |                       |                      |                                 |          |              |                       |                 |                         |               |                            |
|                                          | · _ · _ ·            |                       |                      |                                 |          |              |                       |                 | $\langle \$             | $\sim$        | 105                        |
| -                                        | -·                   |                       |                      |                                 |          |              |                       |                 | 7, .                    | 7. •          |                            |
| - 28                                     |                      |                       |                      |                                 |          |              |                       |                 | •کم                     | J. 4          |                            |
| -                                        | • •                  |                       |                      |                                 |          |              |                       |                 | 2                       | E             | $\sim$                     |
|                                          | <u> </u>             |                       |                      |                                 |          |              |                       |                 | -                       |               | NDY                        |
| L                                        | 1                    |                       |                      |                                 |          |              |                       | 11111           |                         |               |                            |

|           | srk consulting                 | HOLE                 | D: <b>MW-1</b>          |             | COORD                | INATES: 66                   | 67969 E | 5487521 N     | Page: 3 of 3                                                                                      |
|-----------|--------------------------------|----------------------|-------------------------|-------------|----------------------|------------------------------|---------|---------------|---------------------------------------------------------------------------------------------------|
|           |                                | LOCATION             |                         |             |                      | DATUM: U                     | TM Zon  | e 11          |                                                                                                   |
|           | •                              | PROJECT NO           | D: 1CT017.098           | GI          | ROUND ELE            | V (masl): 1                  | 500.44  |               |                                                                                                   |
|           | Teck                           | DRILLIN<br>CONTRACTO | G AquaPro Drillir<br>२: | ng Ltd.     |                      | .AR DIP: -9<br>/. (masl): 14 |         |               |                                                                                                   |
|           |                                | DRILLING TYPI        | E: Air Rotary           | тс          | DTAL DEPTH           |                              |         |               |                                                                                                   |
| PROJECT:  | Phase 1 Groundwater Monitoring | LOGGED B             |                         |             | KUP HEIGH            |                              |         |               |                                                                                                   |
|           | Teck Coal Ltd CMO              | BORING DAT           | E: 8/12/2015 to 8       |             |                      |                              |         | EA: Michel CI | reek                                                                                              |
|           | Litholog                       | ical Symbol          |                         |             |                      |                              |         | Well Inst     | allation                                                                                          |
| (L)       | CL-Clay                        | SA-Sand              | SS-Sandstone            |             | Hyd<br>Conduc        | raulic<br>ivity (m/s)        |         | Sand 🚽        | Chips<br>Chips/Backfill                                                                           |
| Depth (m) | LO-Loam SI-Silt                | GV-Gravel            | ST-Siltstone            |             | 1E-8<br>1E-7<br>1E-6 | 1E-5<br>0.0001               |         | PVC           | Backfill                                                                                          |
|           |                                |                      | Drilling                | Notes and   | = = =                | ₹                            |         | Pellets       | Casing                                                                                            |
|           | Lithology Desc                 | ription              |                         | al Comments |                      |                              |         | Cave          |                                                                                                   |
|           | Siltstone bedrock; S           | ilty.                | Layer of claye          | y bedrock   |                      |                              | ۲       |               |                                                                                                   |
| - 30      | Black, wet.                    | امماد طعر            | at approximat           | ely 29.3 m  |                      |                              | Ζ       |               | $\sim \sim $ |
| 30        | Siltstone bedrock; B           | lack, dry.           |                         |             |                      |                              |         |               | V                                                                                                 |
| **        | ·                              |                      | Switch to<br>sandston   |             |                      |                              |         | $\bowtie$ .   |                                                                                                   |
| -         | · ·                            | -                    | Gundeton                | io, ury     |                      |                              |         | •             |                                                                                                   |
| -         | <u></u>                        |                      |                         |             |                      |                              |         |               |                                                                                                   |
| - 32      |                                |                      |                         |             |                      |                              |         |               |                                                                                                   |
|           | ·                              |                      |                         |             |                      |                              |         |               |                                                                                                   |
|           | <u> </u>                       |                      |                         |             |                      |                              |         |               |                                                                                                   |
| -         | - · - ·                        |                      |                         |             |                      |                              |         |               |                                                                                                   |
|           |                                |                      |                         |             |                      |                              |         |               |                                                                                                   |
| - 34      |                                | -                    |                         |             |                      |                              |         |               |                                                                                                   |
|           | · ·                            |                      |                         |             |                      |                              |         |               |                                                                                                   |
|           | · ·                            |                      |                         |             |                      |                              |         | 18-Aug-15     |                                                                                                   |
| an        |                                |                      | Intermittent du         | icty zonoc  |                      |                              |         |               |                                                                                                   |
|           | <u></u>                        |                      | for last                | 3 m         |                      |                              |         | 15-Aug 15     |                                                                                                   |
| - 36      | · · · · ·                      |                      |                         |             |                      |                              |         | 14-Avg-18     |                                                                                                   |
| -         | —·—·                           |                      |                         |             |                      |                              |         |               |                                                                                                   |
|           | <u> </u>                       |                      |                         |             |                      |                              |         |               |                                                                                                   |
| -         | - • <u> </u>                   |                      | -<br>inished drillin    | a to target |                      |                              |         |               |                                                                                                   |
| -         |                                | ľ                    | potentially             |             |                      |                              |         |               |                                                                                                   |
| - 38      |                                |                      |                         |             |                      |                              |         |               |                                                                                                   |
|           |                                |                      |                         |             |                      |                              |         |               |                                                                                                   |
|           |                                |                      |                         |             |                      |                              |         |               |                                                                                                   |
|           |                                |                      |                         |             |                      |                              |         |               |                                                                                                   |



# **Report 1 - Detailed Well Record**

RG\_01-03 (Elkford Supply Well)

| r                                                                                                                | - <u>-</u> (                            |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|
|                                                                                                                  | Construction Date: 1979-07-01 00:00:00  |  |  |  |  |  |  |
| Well Tag Number: 42698                                                                                           |                                         |  |  |  |  |  |  |
|                                                                                                                  | Driller:                                |  |  |  |  |  |  |
| Owner: VILLAGE OF ELKFORD                                                                                        | Well Identification Plate Number:       |  |  |  |  |  |  |
|                                                                                                                  | Plate Attached By:                      |  |  |  |  |  |  |
| Address: BOIVIN CK & ELK RIVER                                                                                   | Where Plate Attached:                   |  |  |  |  |  |  |
| Area:                                                                                                            | PRODUCTION DATA AT TIME OF DRILLING:    |  |  |  |  |  |  |
|                                                                                                                  | Well Yield: 0 (Driller's Estimate)      |  |  |  |  |  |  |
| WELL LOCATION:                                                                                                   | Development Method:                     |  |  |  |  |  |  |
| Land District                                                                                                    | Pump Test Info Flag: Y                  |  |  |  |  |  |  |
| District Lot: 12378 Plan: Lot:                                                                                   | Artesian Flow:                          |  |  |  |  |  |  |
| Township: Section: Range:                                                                                        | Artesian Pressure (ft):                 |  |  |  |  |  |  |
| Indian Reserve: Meridian: Block:                                                                                 | Static Level:                           |  |  |  |  |  |  |
| Quarter:                                                                                                         |                                         |  |  |  |  |  |  |
| Island:                                                                                                          | WATER QUALITY:                          |  |  |  |  |  |  |
| BCGS Number (NAD 83): Well: 5                                                                                    | Character:                              |  |  |  |  |  |  |
| · · ·                                                                                                            | Colour:                                 |  |  |  |  |  |  |
| Class of Well:                                                                                                   | Odour:                                  |  |  |  |  |  |  |
| Subclass of Well:                                                                                                | Well Disinfected: N                     |  |  |  |  |  |  |
| Orientation of Well:                                                                                             | EMS ID:                                 |  |  |  |  |  |  |
| Status of Well: New                                                                                              | Water Chemistry Info Flag: Y            |  |  |  |  |  |  |
| Well Use:                                                                                                        | Field Chemistry Info Flag:              |  |  |  |  |  |  |
| Observation Well Number:                                                                                         | Site Info (SEAM):                       |  |  |  |  |  |  |
| Observation Well Status:                                                                                         |                                         |  |  |  |  |  |  |
| Construction Method:                                                                                             | Water Utility:                          |  |  |  |  |  |  |
| Diameter: 0.0 inches                                                                                             | Water Supply System Name:               |  |  |  |  |  |  |
| Casing drive shoe:                                                                                               | Water Supply System Well Name:          |  |  |  |  |  |  |
| Well Depth: 0 feet                                                                                               |                                         |  |  |  |  |  |  |
| Elevation: 0 feet (ASL)                                                                                          | SURFACE SEAL:                           |  |  |  |  |  |  |
| Final Casing Stick Up: inches                                                                                    | Flag:                                   |  |  |  |  |  |  |
| Well Cap Type:                                                                                                   | Material:                               |  |  |  |  |  |  |
| Bedrock Depth: feet                                                                                              | Method:                                 |  |  |  |  |  |  |
| Lithology Info Flag:                                                                                             | Depth (ft):                             |  |  |  |  |  |  |
| File Info Flag:                                                                                                  | Thickness (in):                         |  |  |  |  |  |  |
| Sieve Info Flag:                                                                                                 |                                         |  |  |  |  |  |  |
| Screen Info Flag:                                                                                                | WELL CLOSURE INFORMATION:               |  |  |  |  |  |  |
|                                                                                                                  | Reason For Closure:                     |  |  |  |  |  |  |
| Site Info Details:                                                                                               | Method of Closure:                      |  |  |  |  |  |  |
| Other Info Flag:                                                                                                 | Closure Sealant Material:               |  |  |  |  |  |  |
| Other Info Details:                                                                                              | Closure Backfill Material:              |  |  |  |  |  |  |
|                                                                                                                  | Details of Closure:                     |  |  |  |  |  |  |
| Screen from to feet Type                                                                                         | Slot Size                               |  |  |  |  |  |  |
| Casing from to feet Diame                                                                                        | ter Material Drive Shoe                 |  |  |  |  |  |  |
| GENERAL REMARKS:<br>YIELD:NO DATA EXPLORATORY & WATER WELL                                                       |                                         |  |  |  |  |  |  |
| LITHOLOGY INFORMATION:<br>From 0 to 0 Ft. MEASURED I<br>From 0 to 12.2 Ft. DRY MED. F<br>From 0 to 0 Ft. GRAVEL. | N METERS<br>INE SAND SOME SILT TRACE OF |  |  |  |  |  |  |

| h    |        |         |     |                                          |
|------|--------|---------|-----|------------------------------------------|
| -    |        |         |     | DRY GRAVEL SOME SILT & TRACE OF SAND.    |
| From |        |         |     | GRAVEL WELL ROUNDED TO @ 1.5cm           |
| From |        |         |     | DRY GRAVEL SOME BOULDERS & SILT, TRACE   |
| From | 0 t    | 0 0     | Ft. | OF SAND.                                 |
| From | 21.3 t | 22.9    | Ft. | SANDY GRAVEL SOME SILT & CLAY            |
| From | 22.9 t | 33.5    | Ft. | DRY GRAVEL, SOME SAND, TRACE OF SILT &   |
| From | 0 t    | 0 0     | Ft. | BROWN CLAY.                              |
| From | 33.5 t | 47.2    | Ft. | MOIST STICKY GRAVEL, SOME SAND, TRACE OF |
| From | 0 t    | 0 0     | Ft. | SILT & CLAY.                             |
| From | 47.2 t | 48.8    | Ft. | BOULDER, PREDOMINANTLY SHALE             |
| From | 48.8 t | 57.3    | Ft. | GRAVEL SOME SAND, TRACE OF SILT, SUB-    |
| From | 0 t    | 0 0     | Ft. | -ROUNDED PEBBLES TO @ 2cm.               |
| From | 57.3 t | 67.1    | Ft. | SANDY GRAVEL WITH SOME COBBLES & TRACE   |
| From | 0 t    | 0 0     | Ft. | OF SILT.SAND IS MOSTLY COARSE.GRAVEL     |
| From | 0 t    | 0 0     | Ft. | FROM FINE TO COARSE.                     |
| From | 67.1 t | 70.7    | Ft. | SANDY GRAVEL & TRACE OF SILT.ABUNDENT    |
| From | 0 t    | 0 0     | Ft. | MUD & FINE SAND.                         |
| From | 70.7 t | 0 77.4  | Ft. | SANDY GRAVEL WITH SOME COBBLES & TRACE   |
| From | 0 t    | 0 0     | Ft. | OF SILT.                                 |
| From | 77.4 t | .0 79.3 | Ft. | SANDY GRAVEL WITH SOME FINE SAND & SILT  |
| From | 79.3 t | 81.4    | Ft. | SANDY GRAVEL WITH SOME COBBLES & TRACE   |
| From | 0 t    | 0 0     | Ft. | OF SILT.                                 |
| From | 81.4 t | 84.4    | Ft. | SANDY GRAVEL WITH TRACE COBBLES & SILT.  |
| From | 0 t    | 0 0     | Ft. | SUBROUNDED GRAVEL 1-3 cm.                |
| From | 84.4 t | 0 89.3  | Ft. | FINE SANDY GRAVEL TRACE COBBLES & SILT   |
|      |        |         |     | SILTY SAND WITH SOME GRAVEL & COBBLES    |

- Return to Main
- Return to Search Options
- Return to Search Criteria

### **Information Disclaimer**

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments. BRITISH COLUMBIA

**Report 1 - Detailed Well Record** 

|                                                 | Report 1 - Detailed Well                                | Record         | RG_DW-01-07                     |
|-------------------------------------------------|---------------------------------------------------------|----------------|---------------------------------|
|                                                 | Construction Date: 1985-07                              | -22 00:00:00.0 |                                 |
| Well Tag Number: 55014                          | Driller: Owen's Drilling I                              | td.            |                                 |
| Owner: JOE SMITHIES                             | Well Identification Plate<br>Plate Attached By:         | Number:        |                                 |
| Address: 5 M BEFORE                             | Where Plate Attached:                                   |                |                                 |
| Area: ELKFORD                                   |                                                         |                | lons per Minute (U.S./Imperial) |
| WELL LOCATION:<br>KOOTENAY Land District        | Development Method:<br>Pump Test Info Flag:             |                |                                 |
| District Lot: 7995 Plan: 13618 Lot: 3           | Artesian Flow:                                          |                |                                 |
| Township: Section: Range:                       | Artesian Pressure (ft):                                 |                |                                 |
| Indian Reserve: Meridian: Block:                | Static Level: 22 feet                                   |                |                                 |
| Quarter:                                        |                                                         |                |                                 |
| Island:                                         | WATER QUALITY:                                          |                |                                 |
| BCGS Number (NAD 83): 082G096144 Well: 1        | Character:<br>Colour:                                   |                |                                 |
|                                                 | Odour:                                                  |                |                                 |
| Class of Well:                                  | Well Disinfected: N                                     |                |                                 |
| Subclass of Well:                               | EMS ID:                                                 |                |                                 |
| Orientation of Well:<br>Status of Well: New     | Water Chemistry Info Flag:                              |                |                                 |
| Well Use: Private Domestic                      | Field Chemistry Info Flag:                              |                |                                 |
| Observation Well Number:                        | Site Info (SEAM):                                       |                |                                 |
| Observation Well Status:                        |                                                         |                |                                 |
| Construction Method: Drilled                    | Water Utility:                                          |                |                                 |
| Diameter: 6.0 inches                            | Water Supply System Name:<br>Water Supply System Well N |                |                                 |
| Casing drive shoe:                              | Water Suppry System werr N                              | ame:           |                                 |
| Well Depth: 32 feet                             | SURFACE SEAL:                                           |                |                                 |
| Elevation: 0 feet (ASL)                         | Flag:                                                   |                |                                 |
| Final Casing Stick Up: inches<br>Well Cap Type: | Material:                                               |                |                                 |
| Bedrock Depth: feet                             | Method:                                                 |                |                                 |
| Lithology Info Flag:                            | Depth (ft): 0 feet                                      |                |                                 |
| File Info Flag:                                 | Thickness (in):                                         |                |                                 |
| Sieve Info Flag:                                | Liner from To:                                          | feet           |                                 |
| Screen Info Flag:                               | WELL CLOSURE INFORMATION:                               |                |                                 |
|                                                 | Reason For Closure:                                     |                |                                 |
| Site Info Details:                              | Method of Closure:                                      |                |                                 |
| Other Info Flag:                                | Closure Sealant Material:                               |                |                                 |
| Other Info Details:                             | Closure Backfill Material:                              |                |                                 |
|                                                 | Details of Closure:                                     |                |                                 |
| Screen from to feet                             | Туре                                                    | Slot Size      |                                 |
| 0 0                                             |                                                         | 0              |                                 |
| 0 0                                             |                                                         | 0              |                                 |
| 0 0                                             |                                                         | 0              |                                 |
| 0 0                                             |                                                         | 0              |                                 |
| Casing from to feet                             | Diameter                                                | Material       | Drive Shoe                      |
| 0 0                                             | 0                                                       | null           | null                            |
| GENERAL REMARKS:                                |                                                         |                |                                 |
|                                                 |                                                         |                | -                               |
| LITHOLOGY INFORMATION:                          |                                                         |                |                                 |
| From 0 to 31 Ft. sandy gravel an                | d clay wet                                              |                |                                 |
| From 31 to 32 Ft. sandy gravel                  |                                                         |                |                                 |
| <ul> <li><u>Return to Main</u></li> </ul>       |                                                         |                |                                 |

Return to Search Options

• Return to Search Criteria

Information Disclaimer

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.



#### **Report 1 - Detailed Well Record**

## RG\_DW-02-20

|                                | Construction Da    | ate: 2002-04-02 00:00:00    |                      |
|--------------------------------|--------------------|-----------------------------|----------------------|
| Well Tag Number: 101942        |                    | D                           |                      |
|                                | Driller: J. R.     |                             |                      |
| Owner: ELK VALLEY FLYING CLUB  |                    | ation Plate Number:         |                      |
|                                | Plate Attached     |                             |                      |
| Address:                       | Where Plate Att    | tached:                     |                      |
|                                | PRODUCTION DATA    | A AT TIME OF DRILLING:      |                      |
| Area:                          | Well Yield:        | 60 (Driller's Estimate) U.S | . Gallons per Minute |
|                                |                    | hod: Air lifting            | · outions per minute |
| WELL LOCATION:                 | Pump Test Info     |                             |                      |
| KOOTENAY Land District         | Artesian Flow:     | 11031 11                    |                      |
| District Lot: 4144 Plan: Lot:  | Artesian Pressu    | re (ft):                    |                      |
| Township: Section: Range:      | Statio Ional, 5    |                             |                      |
| Indian Reserve: Meridian: Bl   | ock:               | ICEL                        |                      |
| Quarter:                       | WATER QUALITY:     |                             |                      |
| Island:                        | Charactor          |                             |                      |
| BCGS Number (NAD 27): 082G0862 | B1 Well: 4 Colour: |                             |                      |
|                                | Odour:             |                             |                      |
| Class of Well: Water supply    | Well Disinfecte    | .d. N                       |                      |
| Subclass of Well: Domestic     | EMS ID:            | ia: N                       |                      |
| Orientation of Well: Vertical  |                    | T (                         |                      |
| Status of Well; New            | Water Chemistry    |                             |                      |
| Well Use: Private Domestic     | Field Chemistry    |                             |                      |
| Observation Well Number:       | Site Info (SEAM    | 1) :                        |                      |
| Observation Well Status:       |                    |                             |                      |
| Construction Method:           | Water Utility:     |                             |                      |
| Diameter: inches               | Water Supply Sy    |                             |                      |
| Casing drive shoe: Y           | Water Supply Sy    | stem Well Name:             |                      |
| Well Depth: 60 feet            |                    |                             |                      |
| Elevation: feet (ASL)          | SURFACE SEAL:      |                             |                      |
| Final Casing Stick Up: inches  | Flag: N            |                             |                      |
| Well Cap Type:                 | Material:          |                             |                      |
| Bedrock Depth: feet            | Method:            |                             |                      |
| Lithology Info Flag: N         | Depth (ft):        |                             |                      |
| File Info Flag: N              | Thickness (in):    |                             |                      |
| Sieve Info Flag: N             | Liner from         | To: feet                    |                      |
| Screen Info Flag: N            |                    |                             |                      |
| Screen Into Flag: N            | WELL CLOSURE IN    | FORMATION:                  |                      |
| Site Info Details:             | Reason For Clos    | ure:                        |                      |
|                                | Method of Closu    | re:                         |                      |
| Other Info Flag:               | Closure Sealant    | Material:                   |                      |
| Other Info Details:            | Closure Backfil    |                             |                      |
|                                | Details of Clos    |                             |                      |
| Screen from to fee             | t Type             | Slot Size                   |                      |
| Casing from to fee             | t Diameter         | Material                    | Drive Shoe           |
| 0 60                           | 6                  | Steel                       |                      |

MEASUREMENTS: TOP OF CASING. PITLESS UNIT: WELDED. SHOE: BARBER. WATER QUALITY AND QUANTITY NOT GUARANTEED BY CONTRACTOR.

| LITHOL | OGI. | INFO | RMATION: |        |
|--------|------|------|----------|--------|
| From   | 0    | to   | 47 Ft.   | gravel |
| From   | 47   | to   | 52 Ft.   | clay   |
| From   | 52   | to   | 60 Ft.   | gravel |

Return to Main

- Return to Search Options
- Return to Search Criteria

#### Information Disclaimer

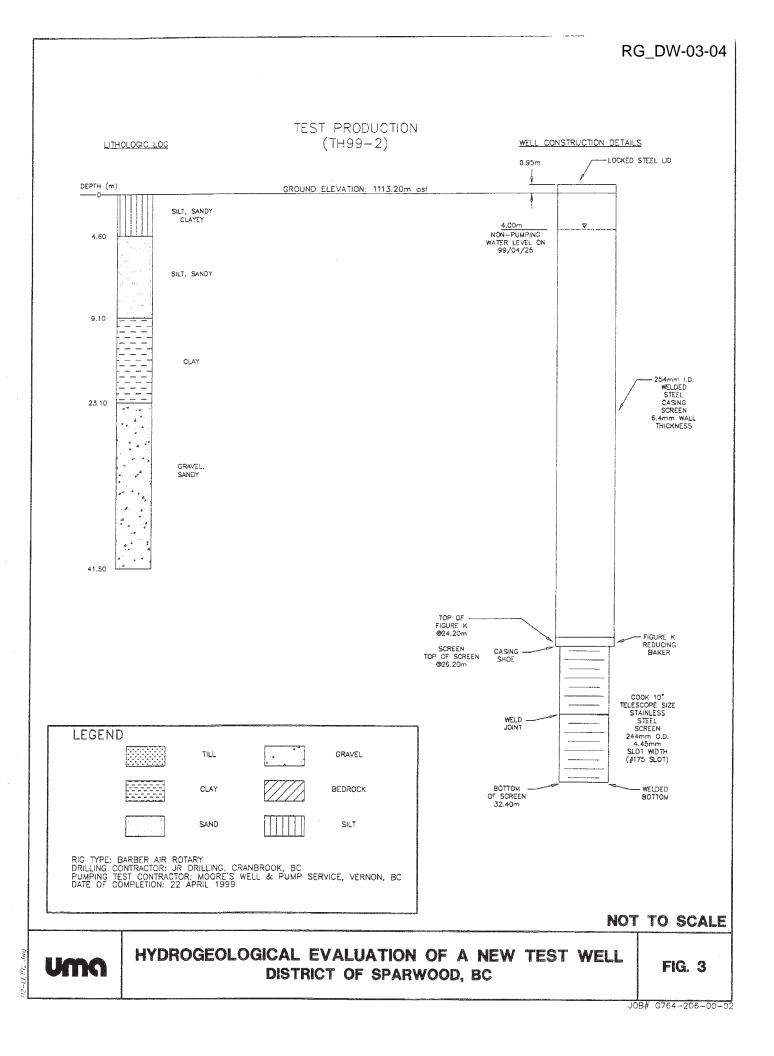
The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.



## **Report 1 - Detailed Well Record**

RG\_DW-03-01

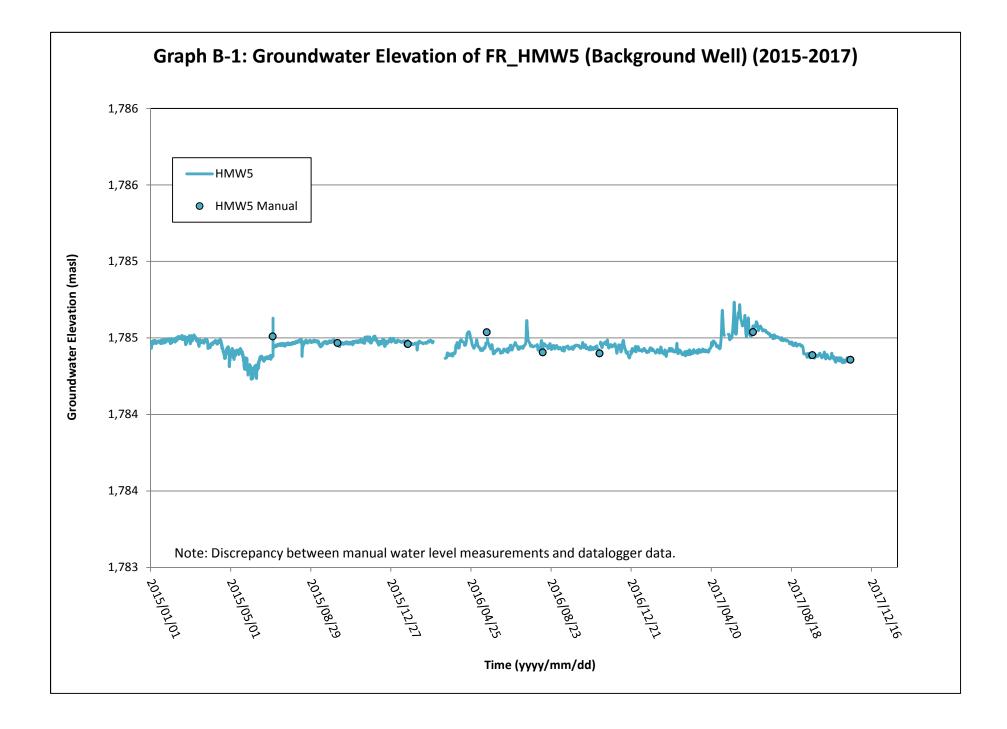
| Casing from                                                         | to feet<br>46              | Diameter Material Drive Shoe<br>6 Steel Y                                |                                 |  |  |
|---------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------|---------------------------------|--|--|
| 4 6                                                                 | to feet<br>50              | Type Slot Size<br>30                                                     |                                 |  |  |
| Screen from                                                         | to foot                    | Details of Closure:                                                      |                                 |  |  |
| Other Info Details                                                  | :                          | Closure Backfill Material:                                               |                                 |  |  |
| Other Info Flag:                                                    |                            | Closure Sealant Material:                                                |                                 |  |  |
| Site Info Details:                                                  |                            | Method of Closure:                                                       |                                 |  |  |
|                                                                     |                            | Reason For Closure:                                                      |                                 |  |  |
| Screen Info Flag: Y                                                 |                            | WELL CLOSURE INFORMATION:                                                | WELL CLOSURE INFORMATION:       |  |  |
| Sieve Info Flag: N                                                  | I                          |                                                                          |                                 |  |  |
| File Info Flag: N                                                   |                            | Liner from To: feet                                                      |                                 |  |  |
| -<br>Lithology Info Flag: Y                                         |                            | Thickness (in): 2 inches                                                 |                                 |  |  |
| Bedrock Depth: fe                                                   | et                         | Depth (ft): 15 feet                                                      | Depth (ft): 15 feet             |  |  |
| Well Cap Type: BOI                                                  | JT ON                      | Method: Poured                                                           |                                 |  |  |
| Final Casing Stick                                                  | Up: 12 inches              | Material: Bentonite clay                                                 |                                 |  |  |
| -<br>Elevation: 3697 f                                              |                            | Flag: Y                                                                  |                                 |  |  |
| Well Depth: 50 fee                                                  |                            | SURFACE SEAL:                                                            |                                 |  |  |
| Casing drive shoe:                                                  | Y                          |                                                                          |                                 |  |  |
| Diameter: inches                                                    |                            | Water Supply System Well Name:                                           |                                 |  |  |
| Construction Metho                                                  |                            | Water Supply System Name:                                                |                                 |  |  |
| Observation Well N                                                  |                            | Water Utility:                                                           |                                 |  |  |
| Observation Well N                                                  |                            | Sice Into (SEAM).                                                        |                                 |  |  |
| Licence General Status: UNLICENSED<br>Well Use: Water Supply System |                            | Site Info (SEAM):                                                        | Field Chemistry Info Flag:      |  |  |
|                                                                     |                            |                                                                          | Water Chemistry Info Flag: N    |  |  |
| Status of Well: Ne                                                  |                            |                                                                          |                                 |  |  |
| Drientation of Well:                                                |                            | EMS ID:                                                                  |                                 |  |  |
| Class of Well: Wat<br>Subclass of Well:                             |                            | Well Disinfected: N                                                      |                                 |  |  |
| Class of Woll. Wot                                                  | er supply                  | Odour:                                                                   |                                 |  |  |
| BCGS Number (NAD 8                                                  | 33): 082G076233 Well: 9    |                                                                          | Colour:                         |  |  |
|                                                                     | 33): 082G076233 Well: 9    | Character:                                                               | WATER QUALITY:                  |  |  |
| Island:                                                             |                            |                                                                          |                                 |  |  |
| Ouarter:                                                            | CITATAN. DIUCK.            |                                                                          |                                 |  |  |
| Township: Section<br>Indian Reserve: M                              | -                          | Artesian Pressure (ft):<br>Static Level:                                 |                                 |  |  |
|                                                                     | 8 Plan: 1358 & NEP 64776 L |                                                                          |                                 |  |  |
| KOOTENAY Land Dist                                                  |                            |                                                                          | Pump Test Info Flag: N          |  |  |
| WELL LOCATION:                                                      |                            |                                                                          | Development Method: Air lifting |  |  |
|                                                                     |                            | Well Yield: 30 (Driller's Estimate) U.S. Gallo                           | ons per Minu                    |  |  |
| Area: SPARWOOD                                                      |                            | PRODUCTION DATA AT TIME OF DRILLING:                                     |                                 |  |  |
|                                                                     |                            |                                                                          |                                 |  |  |
| Address: 100 INDUS                                                  | TRIAL ROAD #1              | Where Plate Attached: TOP OF CASING                                      |                                 |  |  |
| Owner: SPARDELL MOBILE HOME PARK LTD                                |                            | Plate Attached By: MIKE CALDWELL                                         |                                 |  |  |
|                                                                     |                            | Driller: Owen's Drilling Ltd.<br>Well Identification Plate Number: 26287 |                                 |  |  |
| Vell Tag Number: 94779                                              |                            |                                                                          |                                 |  |  |
|                                                                     |                            | Construction Date: 2008-02-28 00:00:00                                   |                                 |  |  |
|                                                                     |                            | Construction Date: 2008-02-28 00:00:00                                   |                                 |  |  |

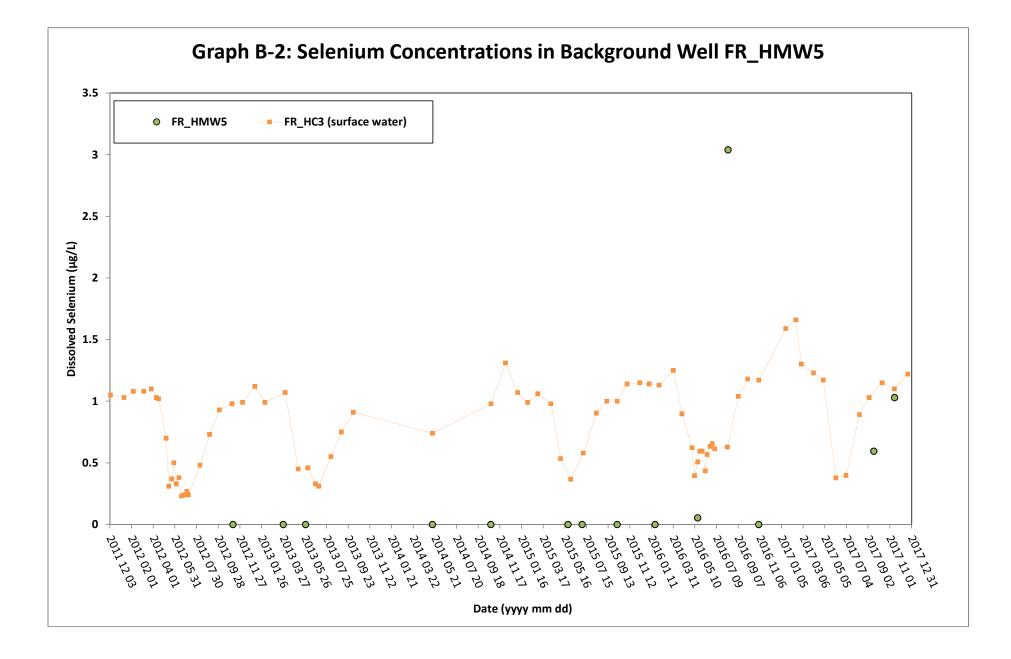

| GENERAL REMARKS:       |       |        |                                   |       |  |  |  |  |
|------------------------|-------|--------|-----------------------------------|-------|--|--|--|--|
|                        |       |        |                                   |       |  |  |  |  |
|                        |       |        |                                   |       |  |  |  |  |
| LITHOLOGY INFORMATION: |       |        |                                   |       |  |  |  |  |
| From                   | 0 to  | 15 Ft. | Medium CLAY & TOP SOIL brown      |       |  |  |  |  |
| From                   | 15 to | 30 Ft. | Medium brown                      |       |  |  |  |  |
| From                   | 30 to | 45 Ft. | Medium CLAY & GRAVEL brown        |       |  |  |  |  |
| From                   | 45 to |        | Medium 30 U.S. Gallons per Minute | brown |  |  |  |  |

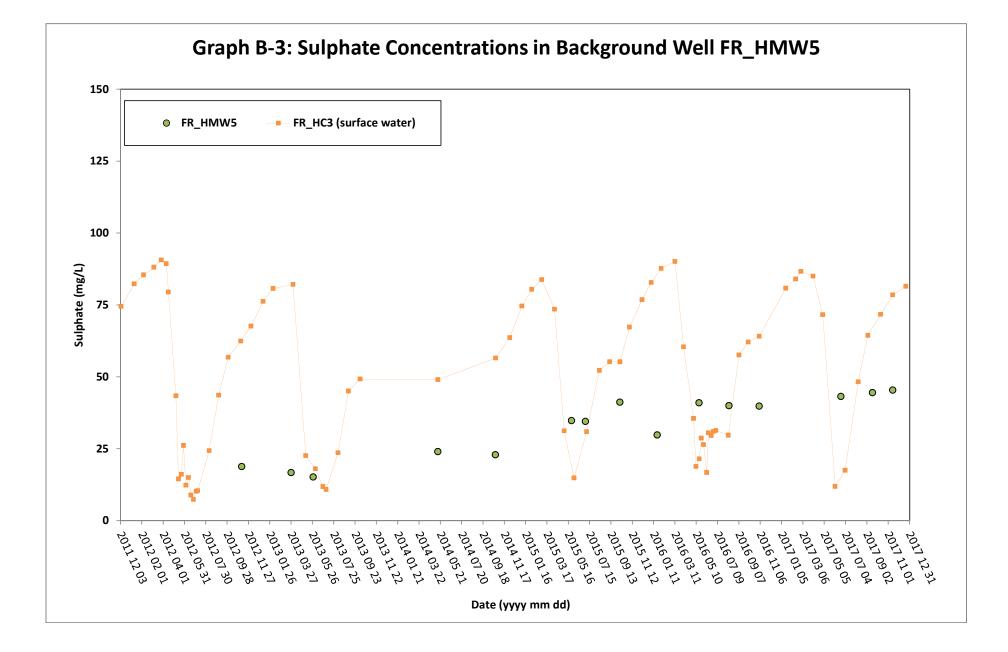
Return to Main

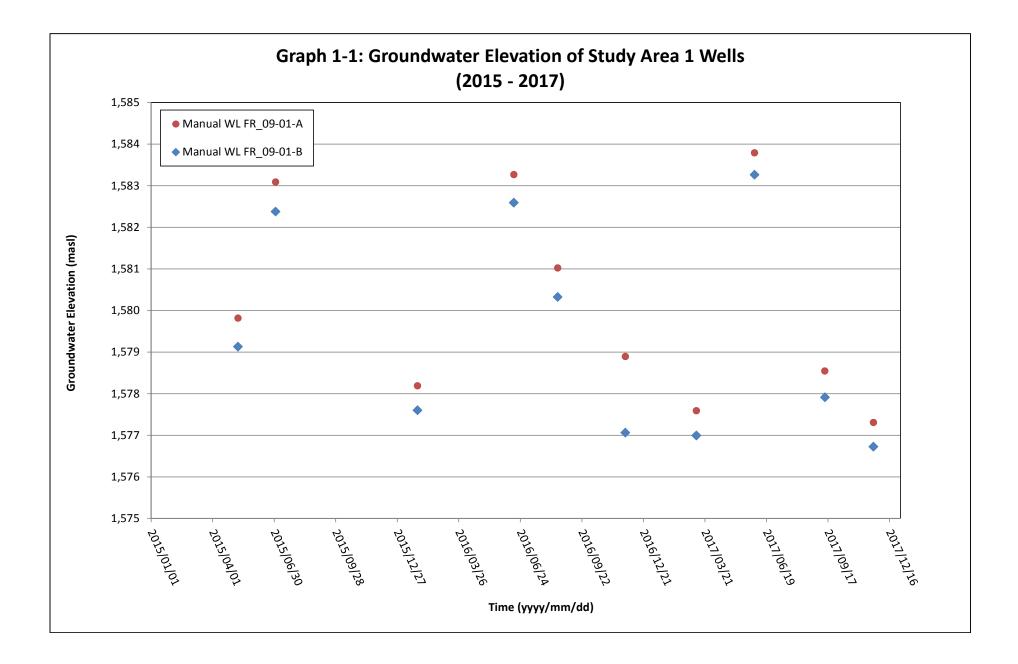
- Return to Search Options
- Return to Search Criteria

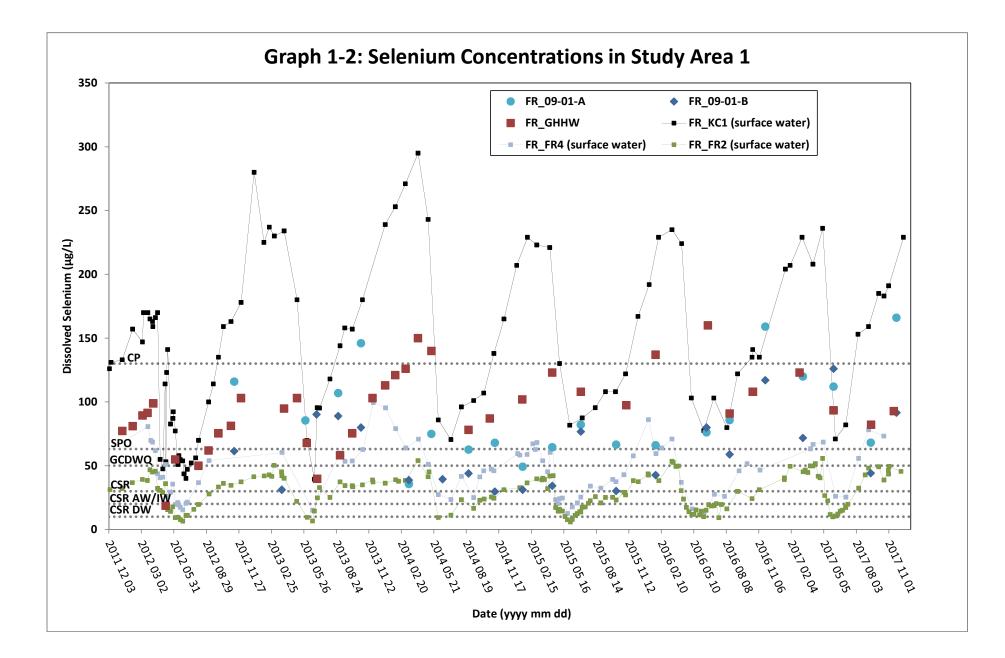
#### Information Disclaimer

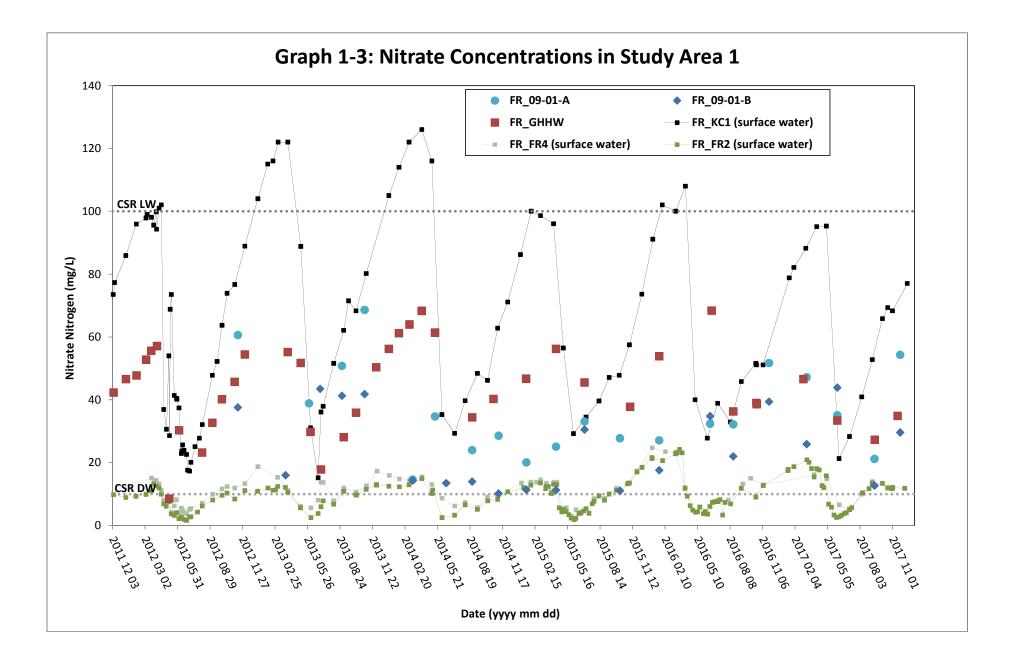

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

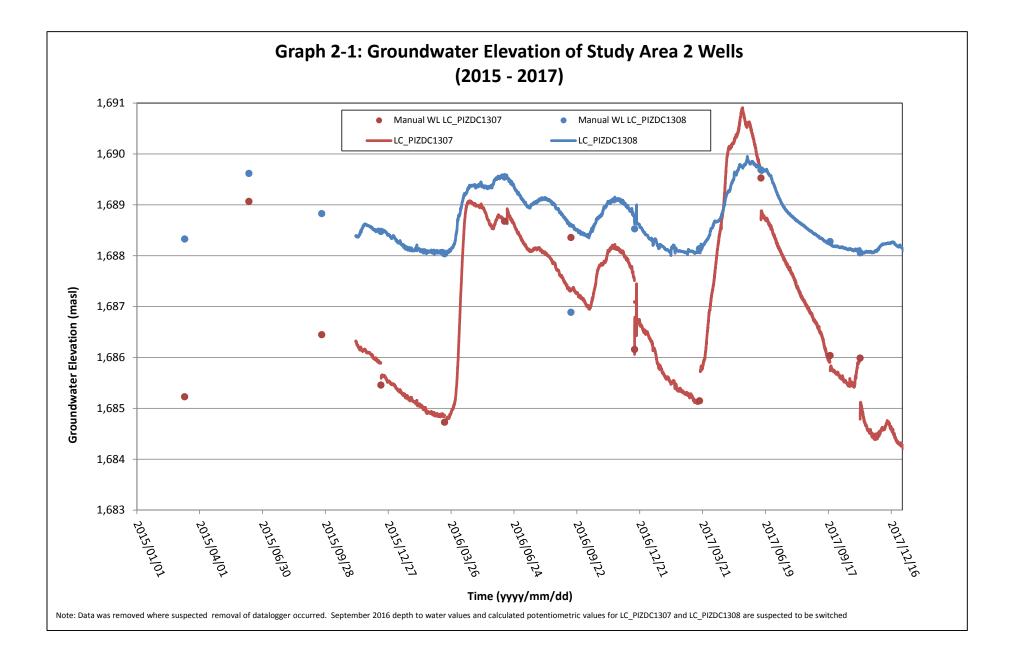


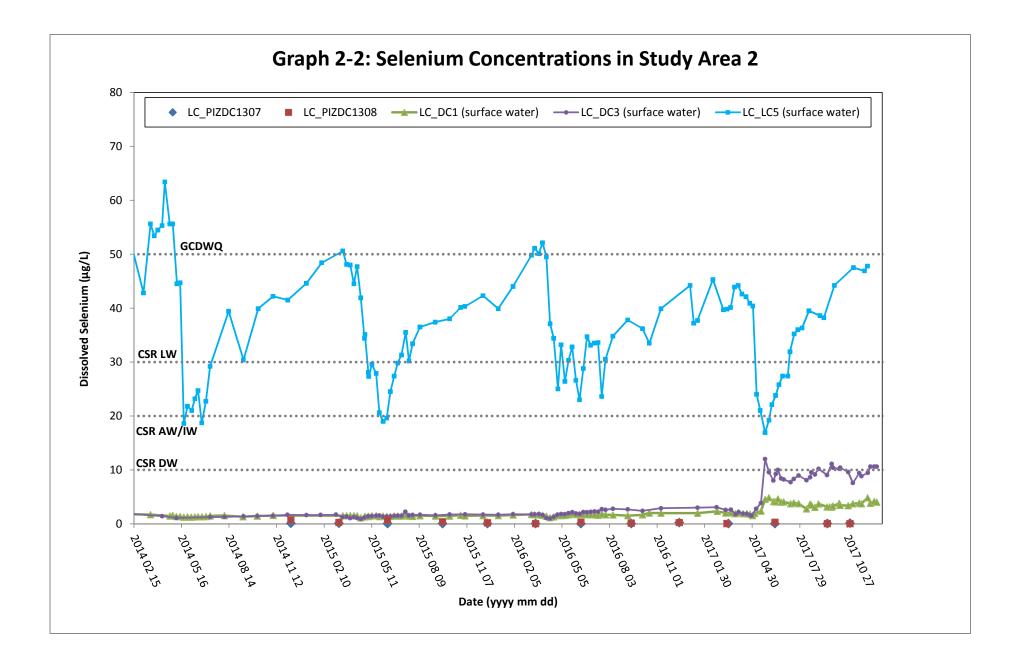


# Appendix III

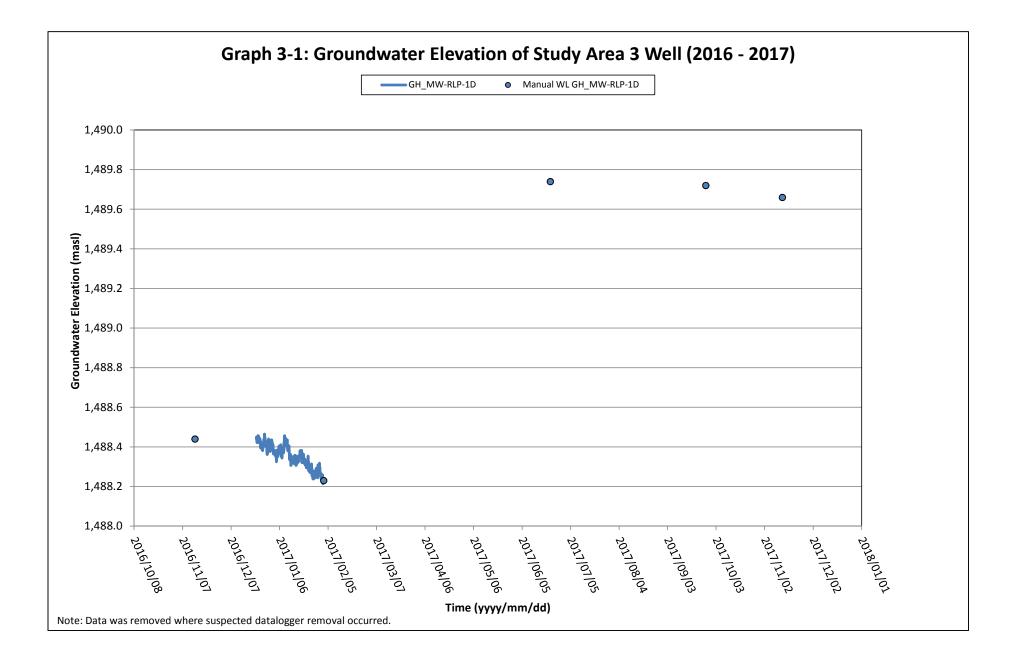

# **Time-Series Graphs**

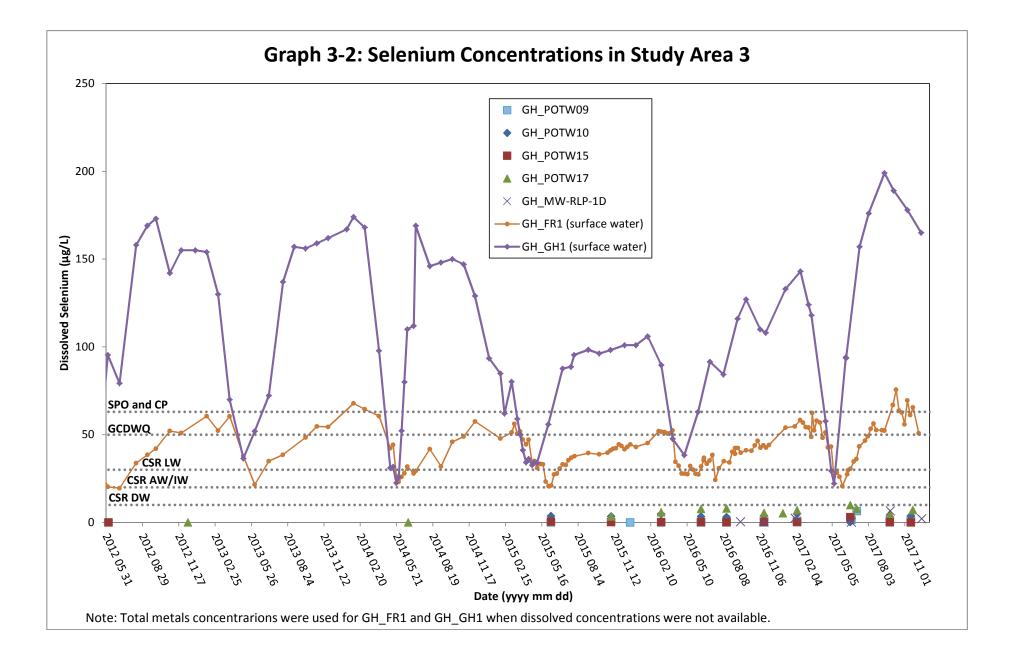

- Graph B-1: Groundwater Elevation of FR\_HWM5 (Background Well) (2015 2017)
- Graph B-2: Selenium Concentrations in Background Well FR\_HMW5
- Graph B-3: Sulphate Concentrations in Background Well FR\_HMW5
- Graph 1-1: Groundwater Elevation of Study Area 1 Wells (2015 2017)
- Graph 1-2: Selenium Concentrations in Study Area 1
- Graph 1-3: Nitrate Concentrations in Study Area 1
- Graph 2-1: Groundwater Elevation of Study Area 2 Wells (2015 2017)
- > Graph 2-2: Selenium Concentrations in Study Area 2
- Graph 3-1: Groundwater Elevation of Study Area 3 (2016 2017)
- Graph 3-2: Selenium Concentrations in Study Area 3
- > Graph 3-3: Sulphate Concentrations in Study Area 3
- Graph 4-1: Groundwater Elevation of Study Area 4 Wells (2015 2017)
- Graph 4-2: Selenium Concentrations in Study Area 4
- Graph 6-1: Groundwater Elevation of Study Area 6 Well (March 2015 to December 2017)
- Graph 6-2: Selenium Concentrations in Study Area 6
- Graph 7-1: Groundwater Elevation of Study Area 7 Well (2015 2017)
- Graph 7-2: Selenium Concentrations in Study Area 7
- Graph 8-1: Groundwater and Surface Water Elevation in Study Area 8 (2015 2017)
- > Graph 8-2: Selenium Concentrations in Study Area 8
- Graph 9-1: Groundwater and Surface Water Elevation in Study Area 9 (2015 2017)
- Graph 9-2(1): Selenium Concentrations in Study Area 9 (up to 550 µg/L)
- Graph 9-2(2): Selenium Concentrations in Study Area 9 (up to 60 μg/L)
- Graph 9-3: Nitrate Concentrations in Study Area 9
- > Graph 9-4: Sulphate Concentrations in Study Area 9
- Graph 10-1: Groundwater Elevation of Study Area 10 Wells (2015 2017)
- Graph 10-2(1): Selenium Concentrations in Study Area 10 (up to 300 µg/L)
- Graph 10-2(2): Selenium Concentrations in Study Area 10 (up to 12 µg/L)
- Graph 11-1: Groundwater Elevation of Study Area 11 Wells (2015 2017)
- Graph 11-2: Selenium Concentrations in Study Area 11
- Graph 11-3: Sulphate Concentrations in Study Area 11
- Graph 12-1: Groundwater Elevation and Pumping Rate in Study Area 12 (2015 2017)
- Graph 12-2: Selenium Concentrations in Study Area 12 and Elk River Water Level

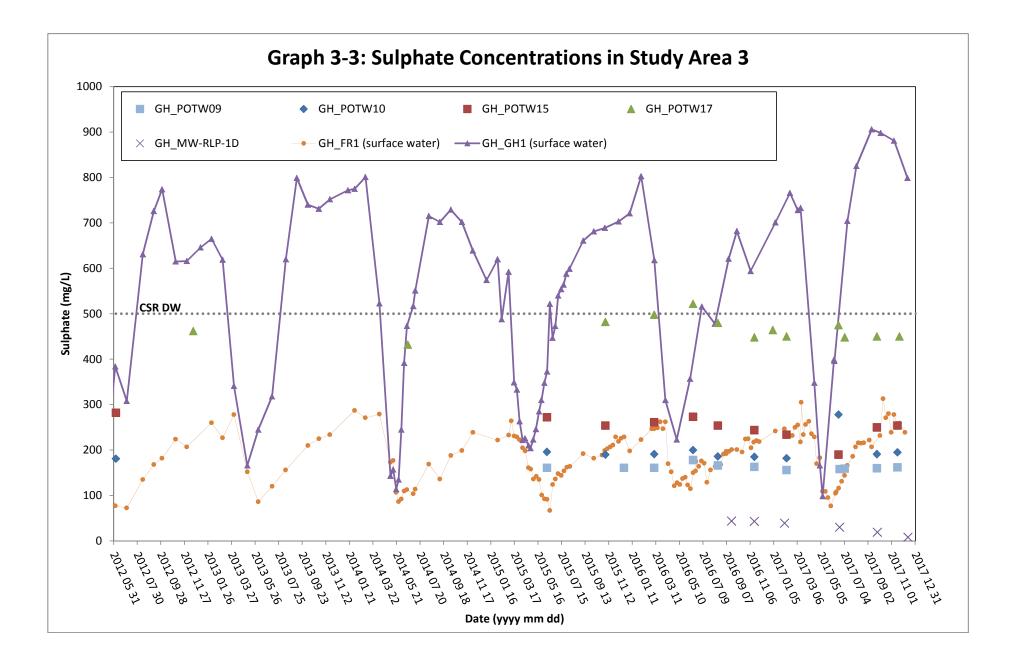


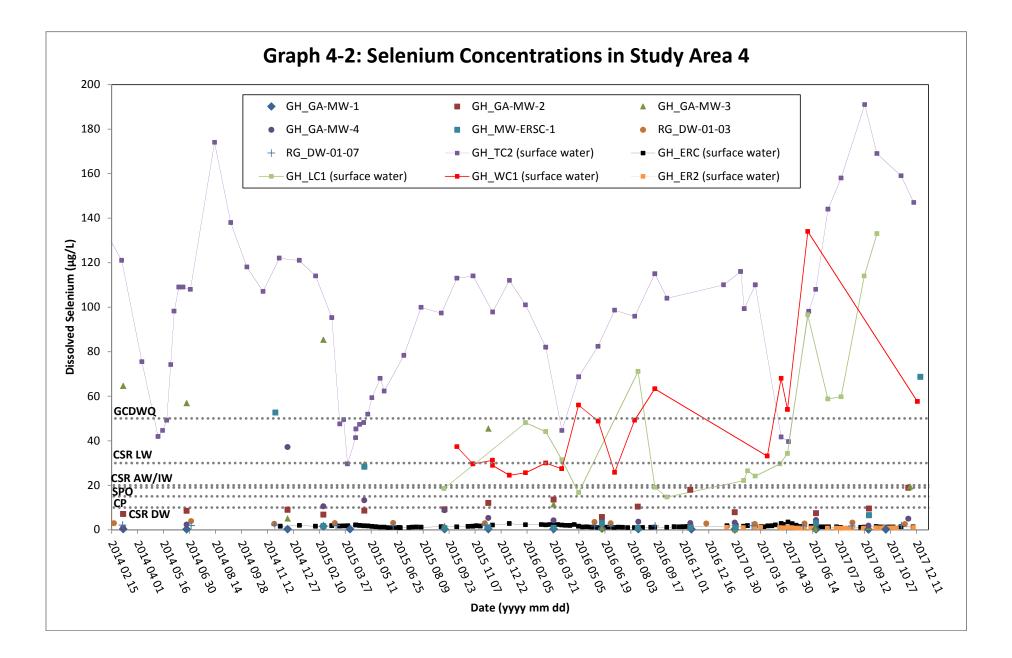



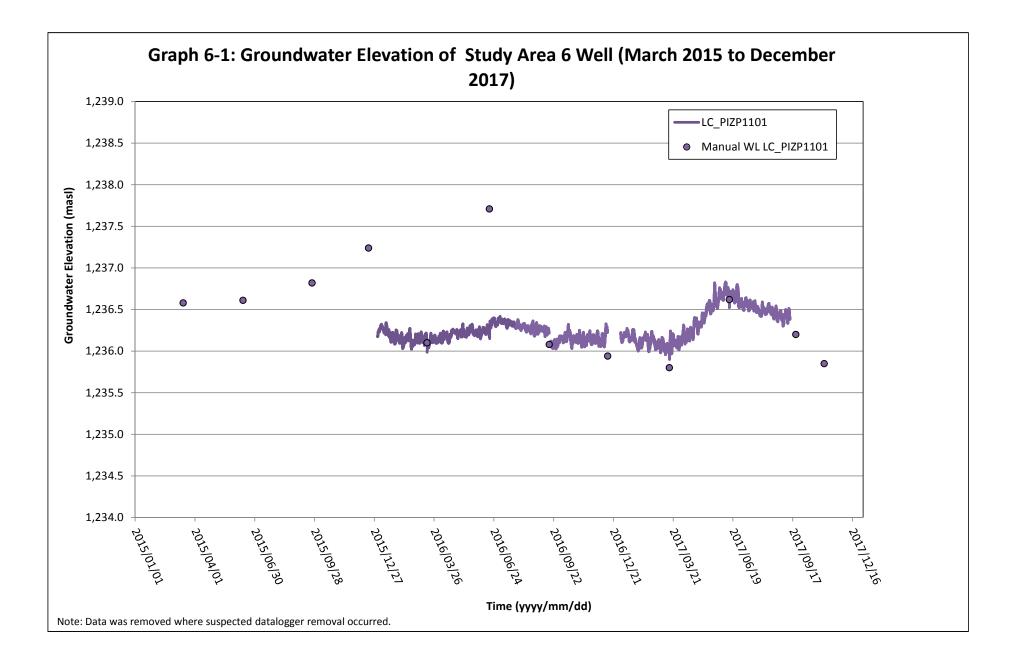



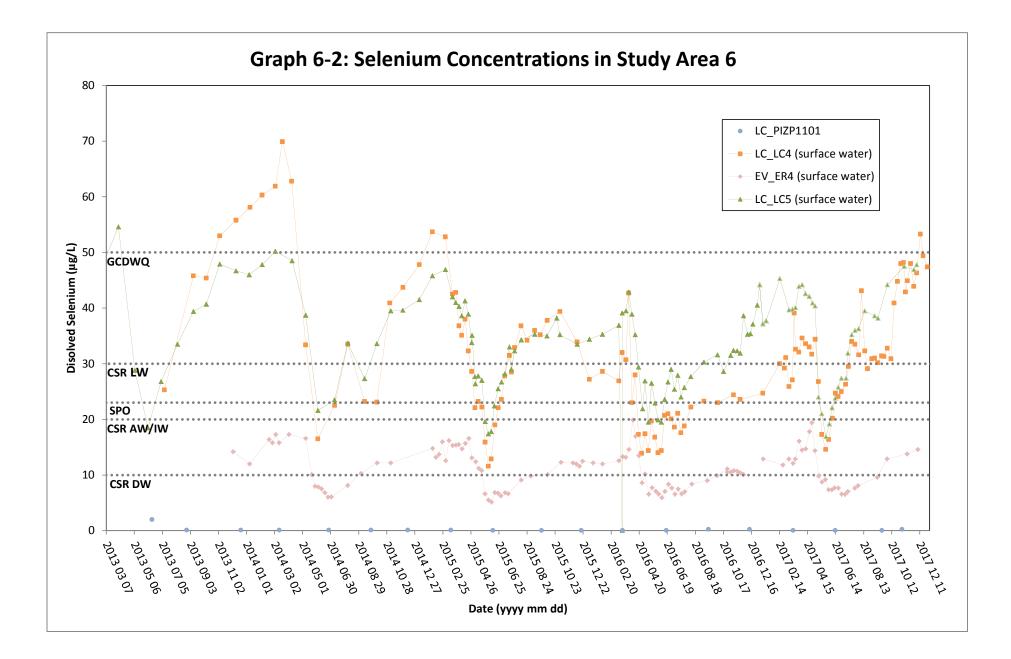



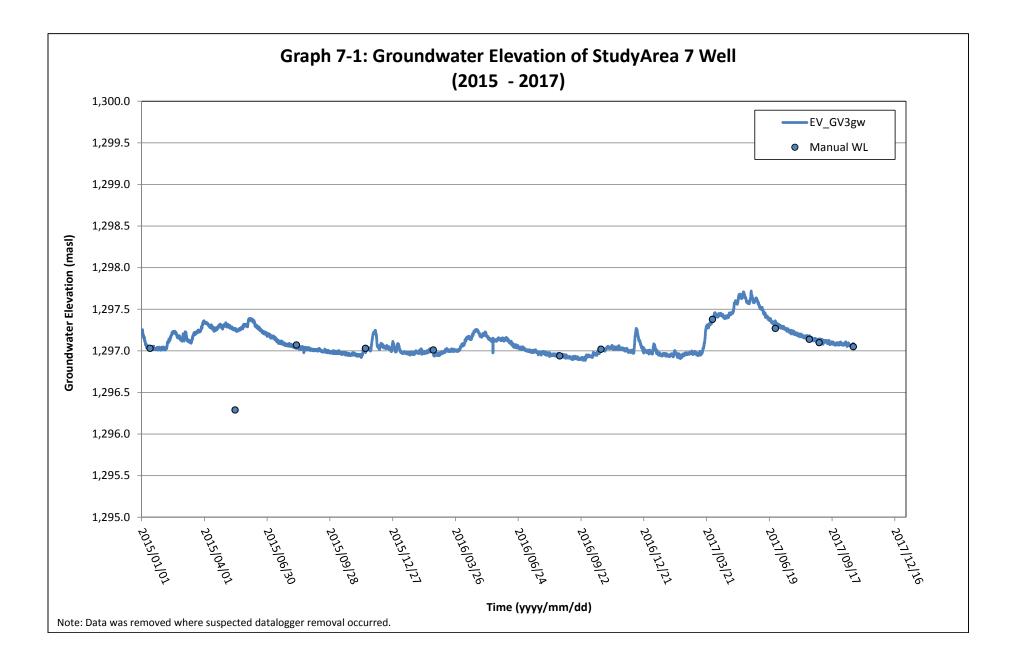



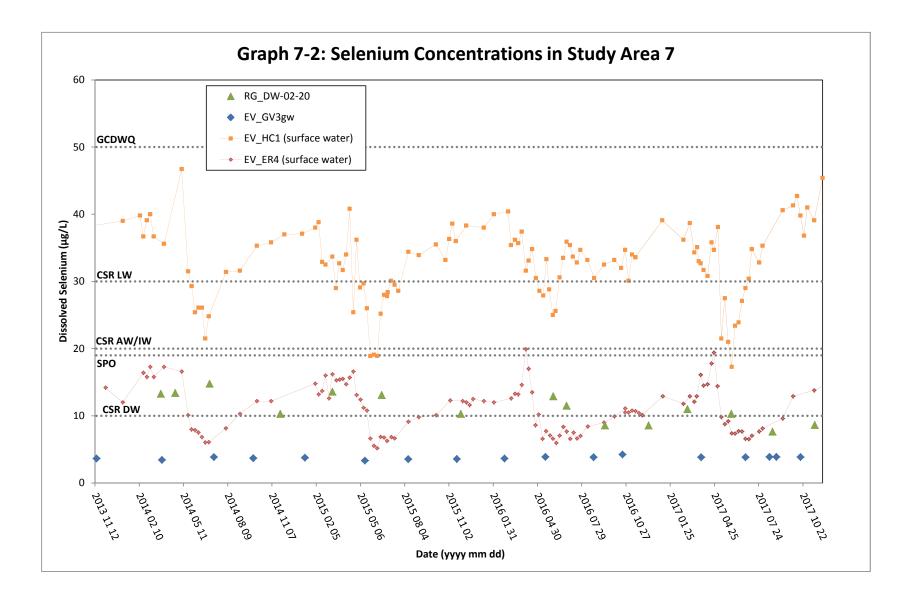


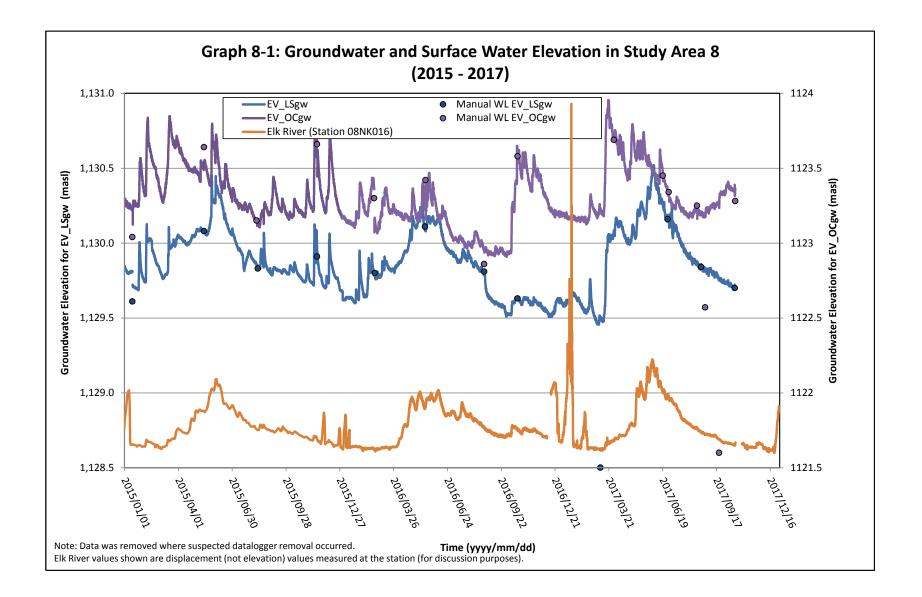



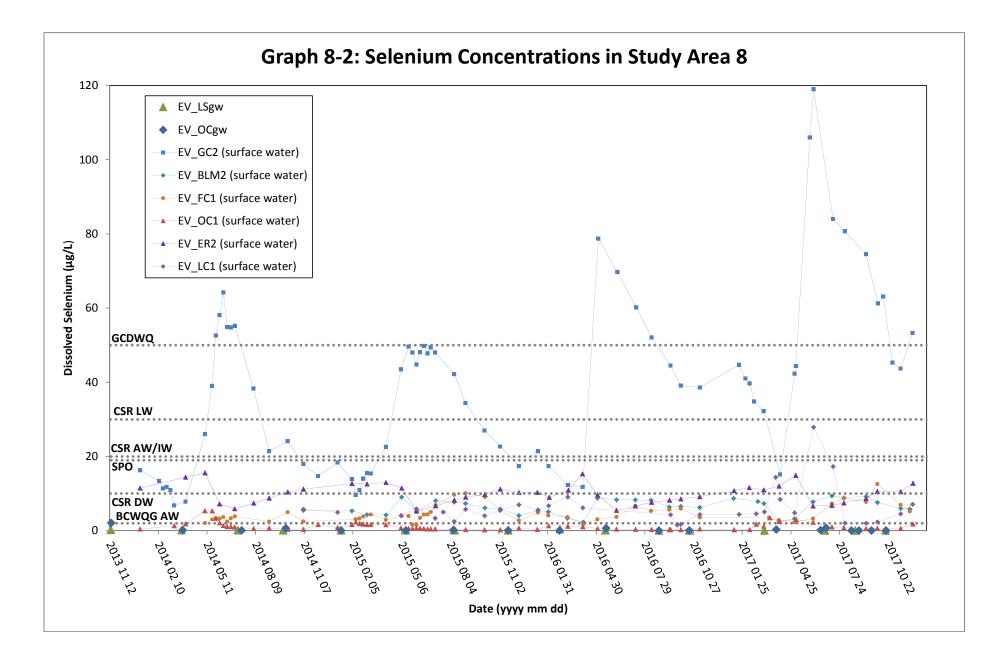



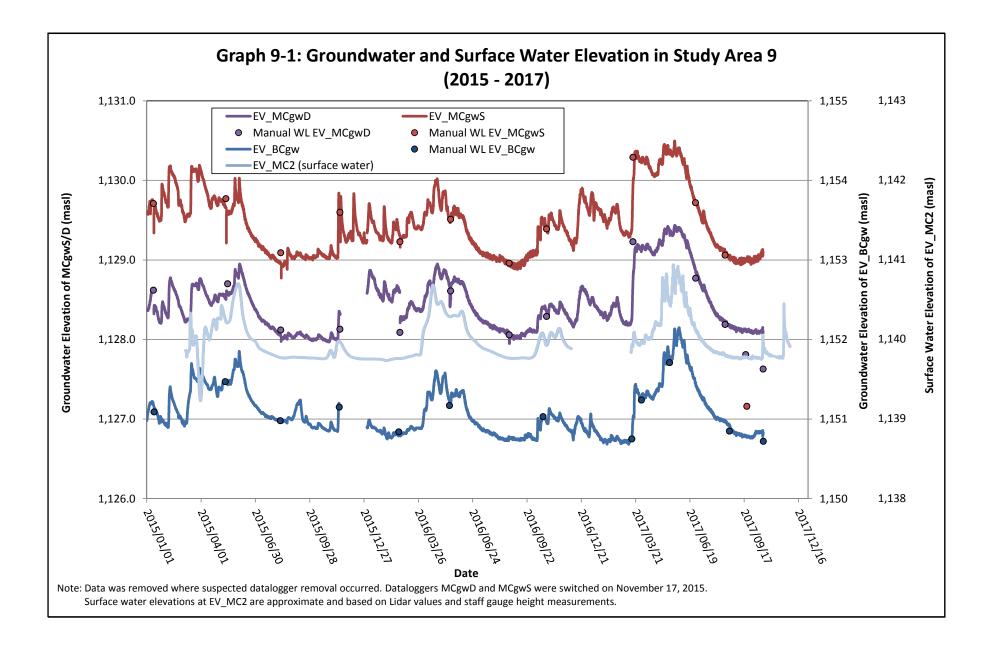



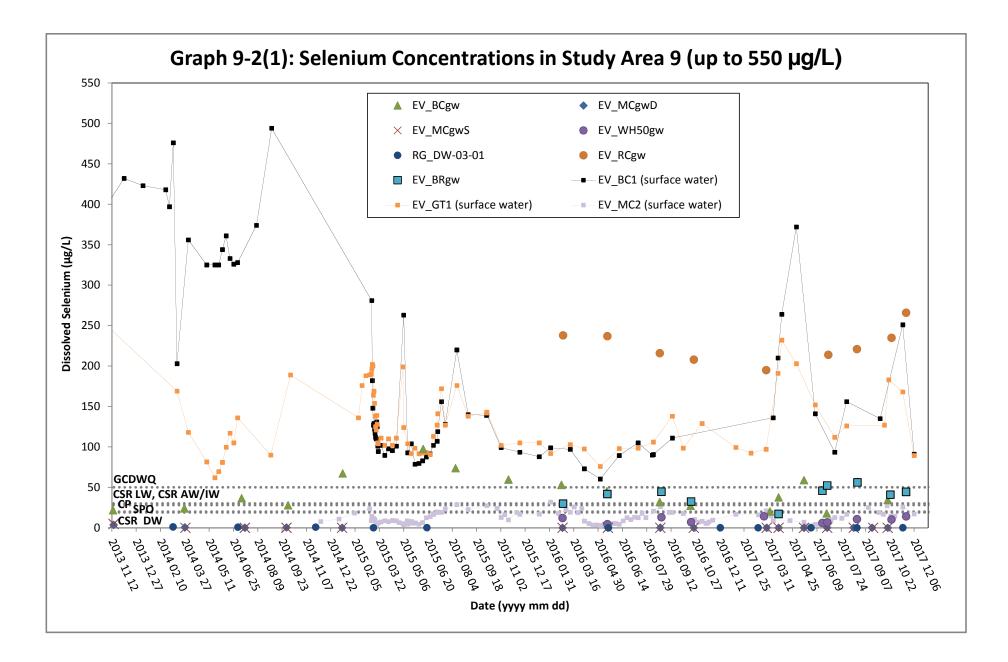



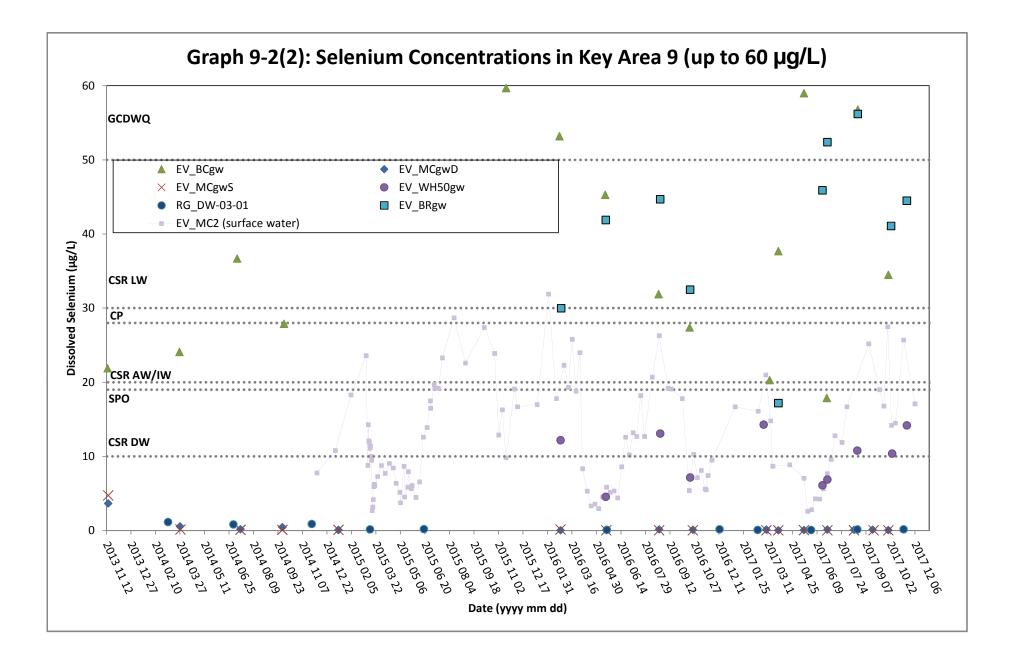



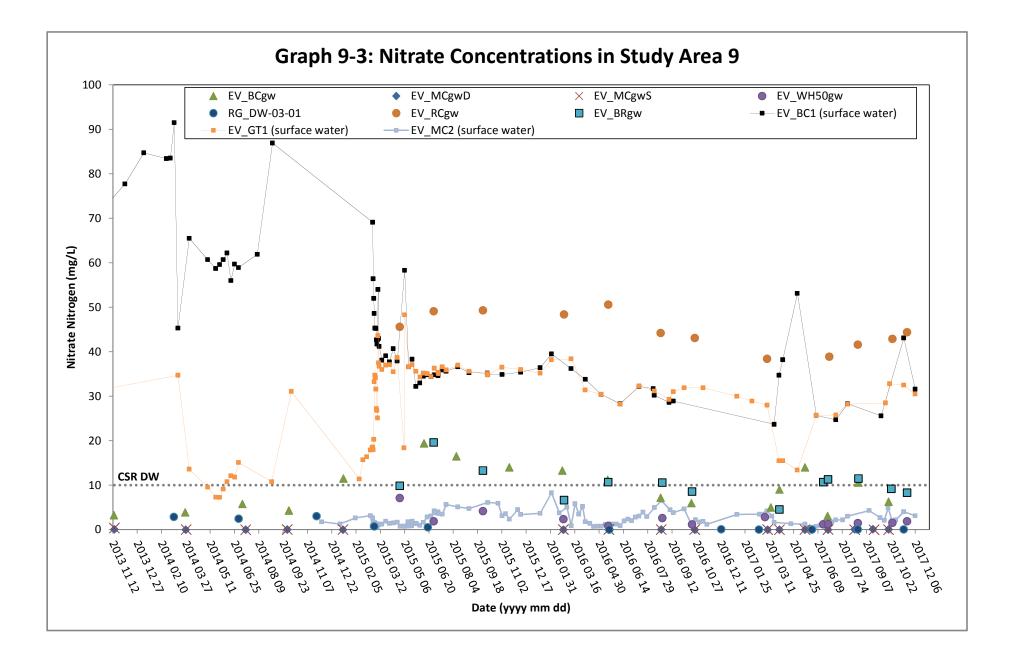



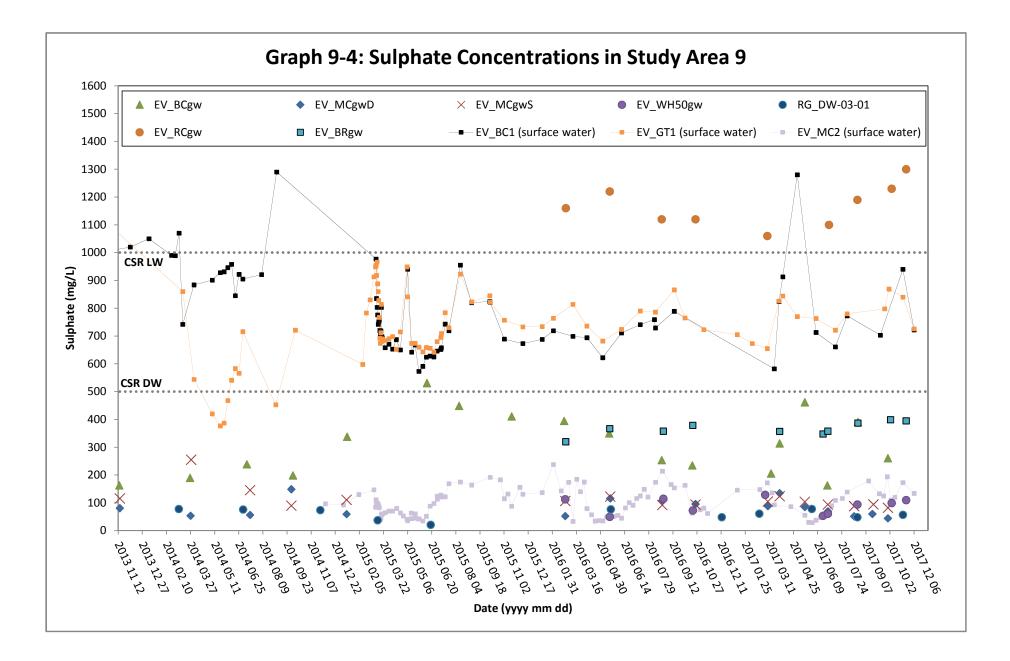



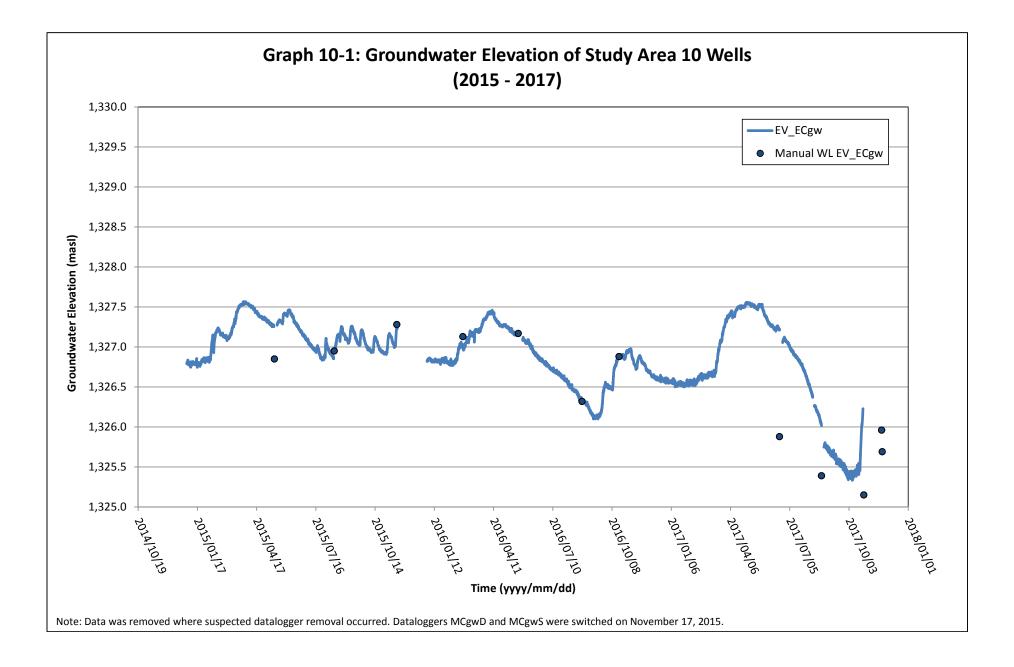



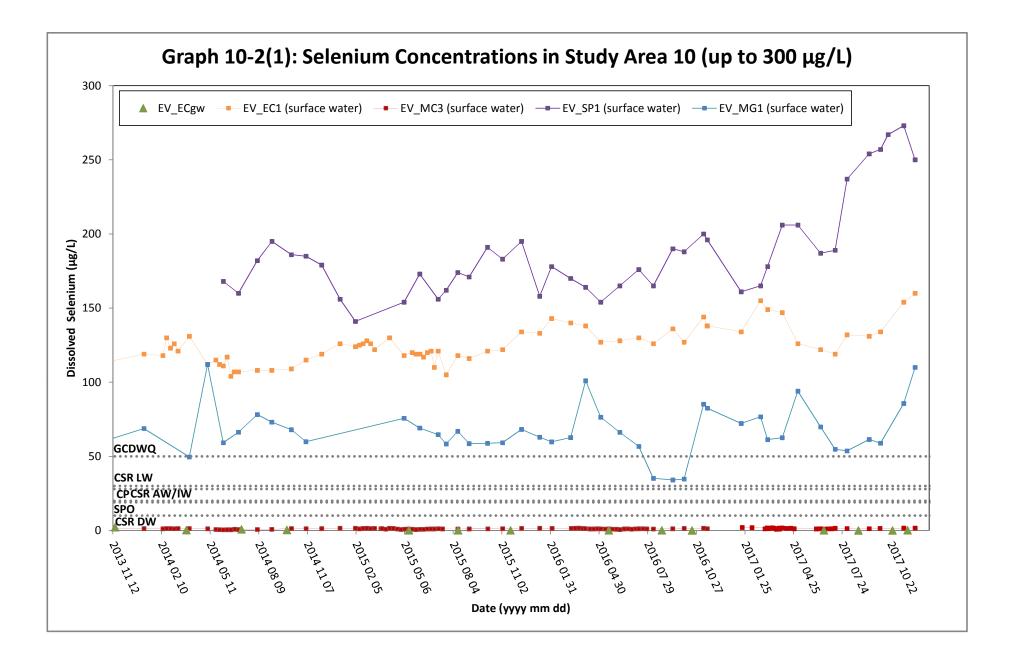



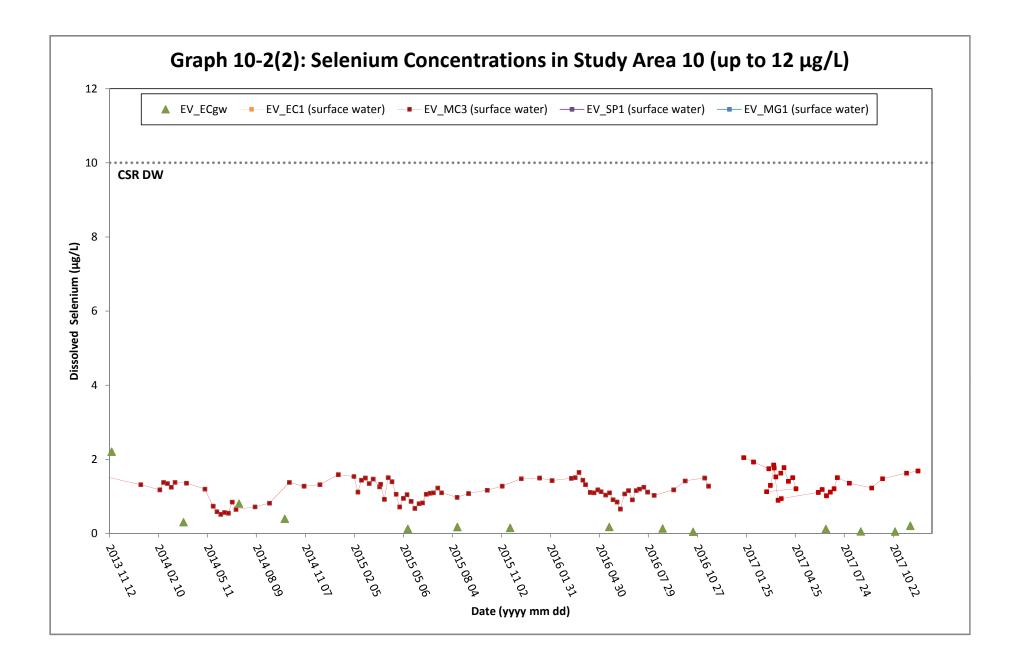



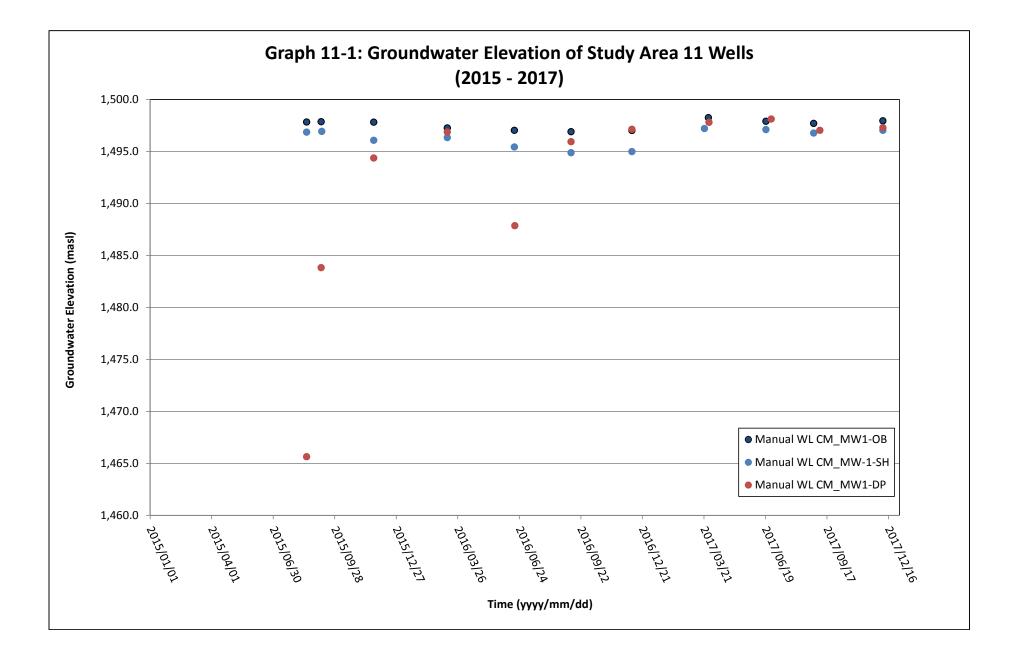



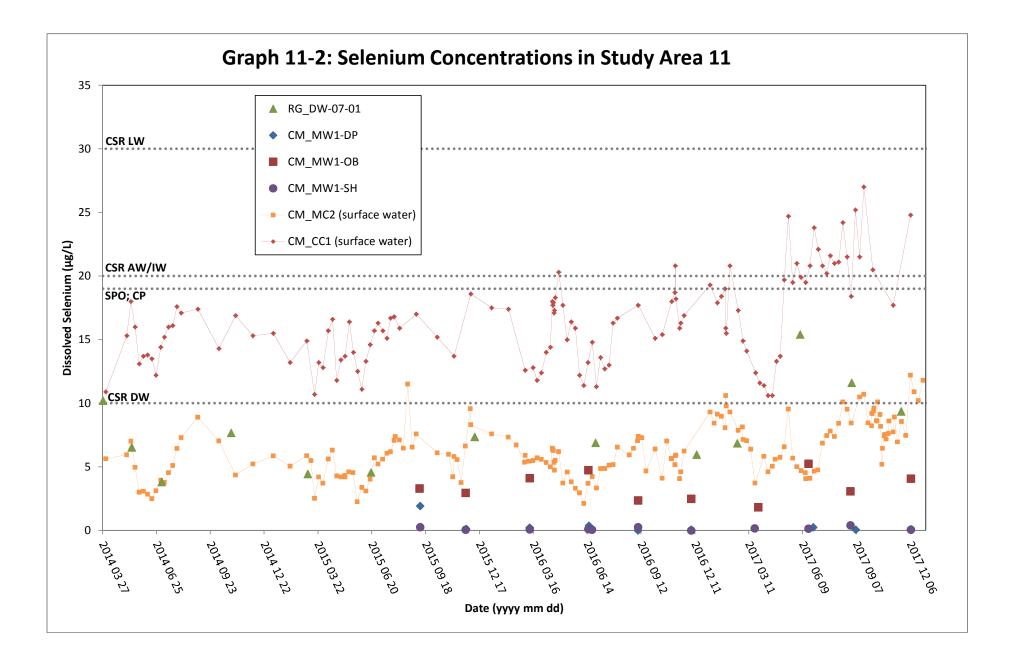



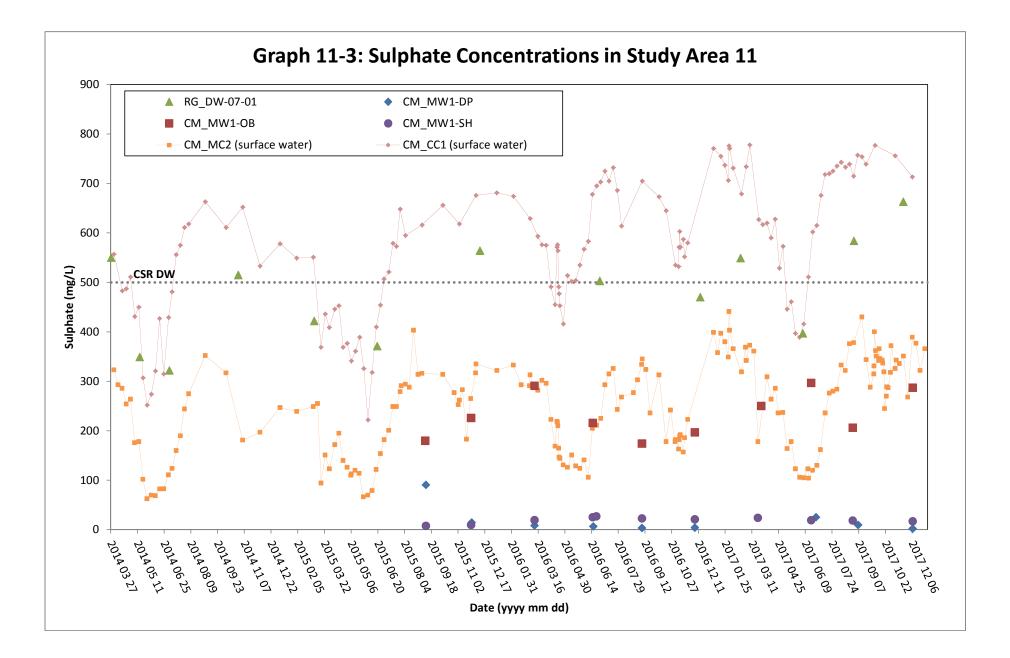



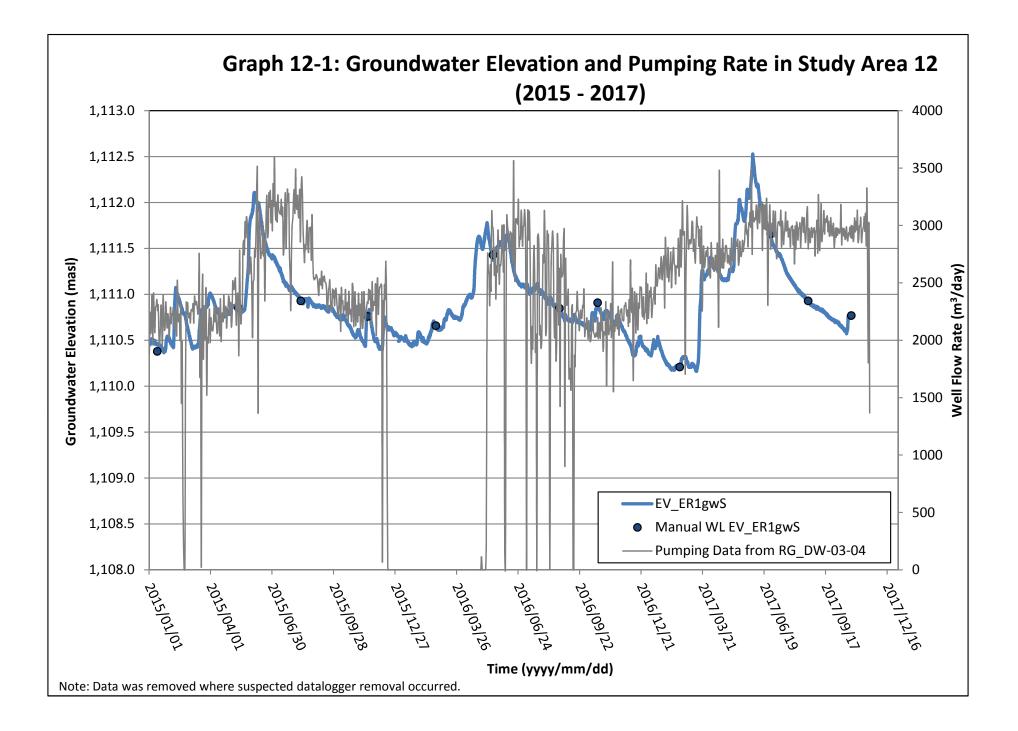



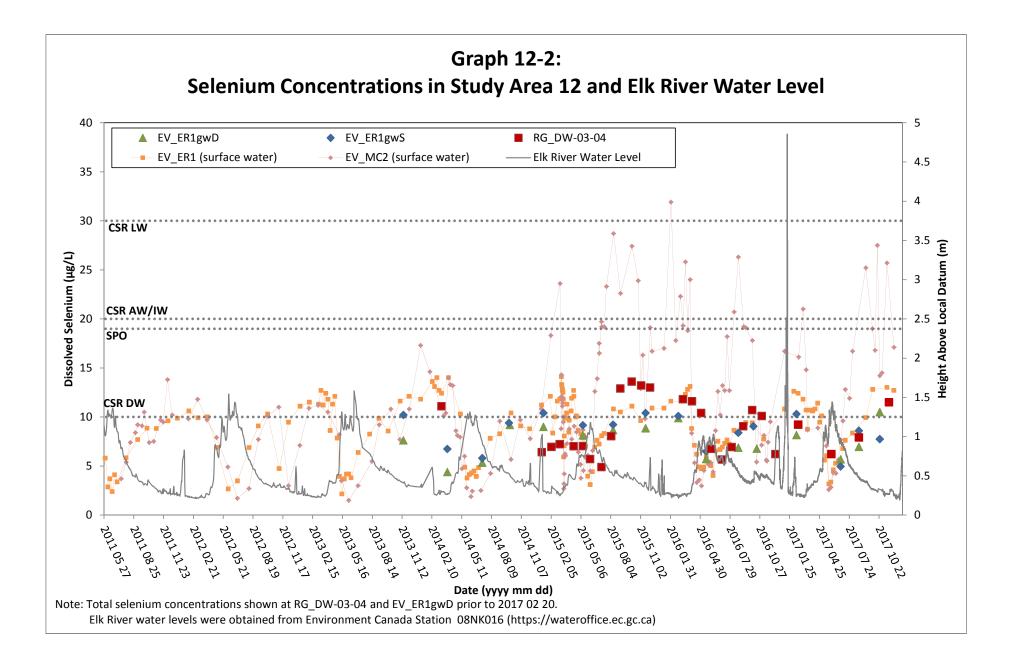



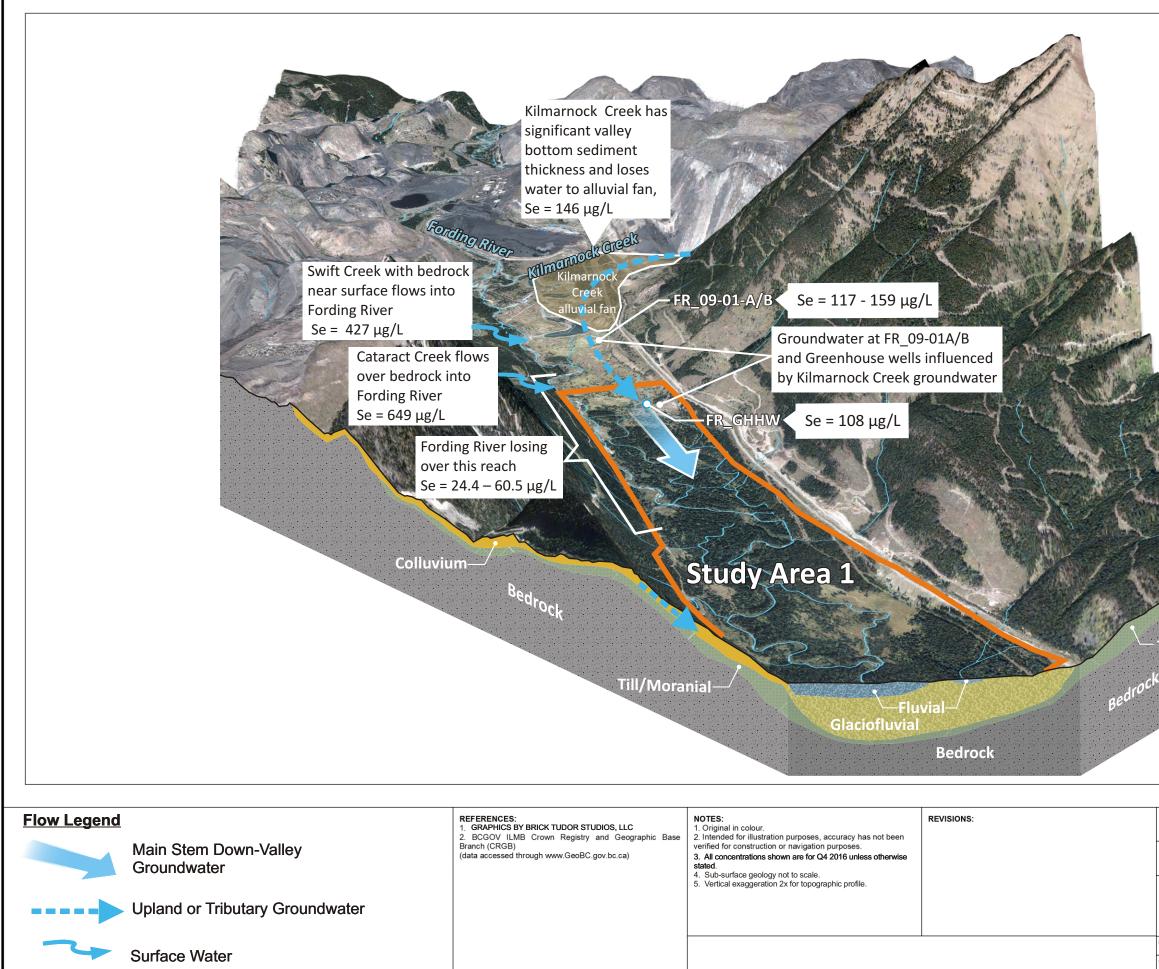



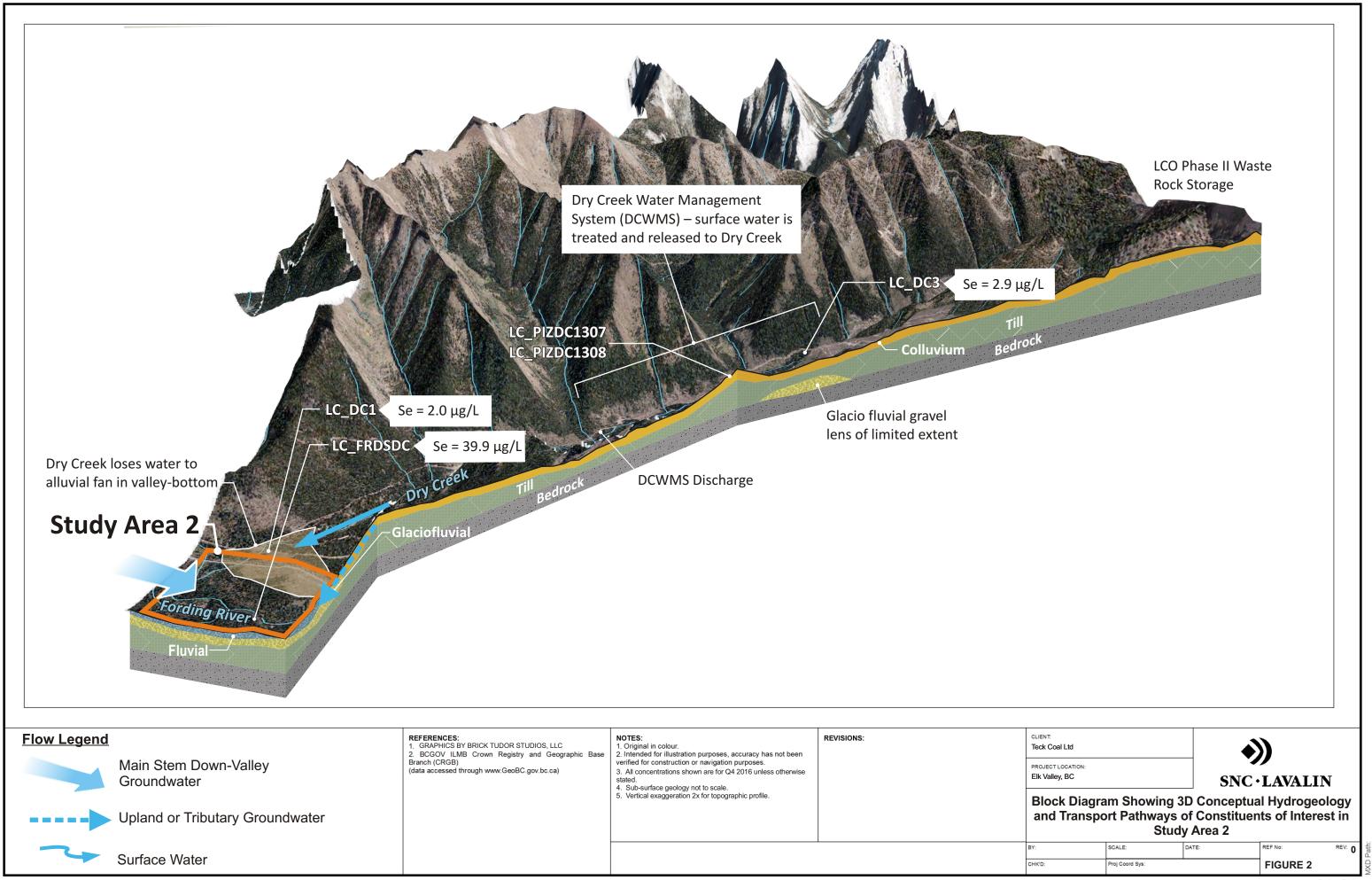



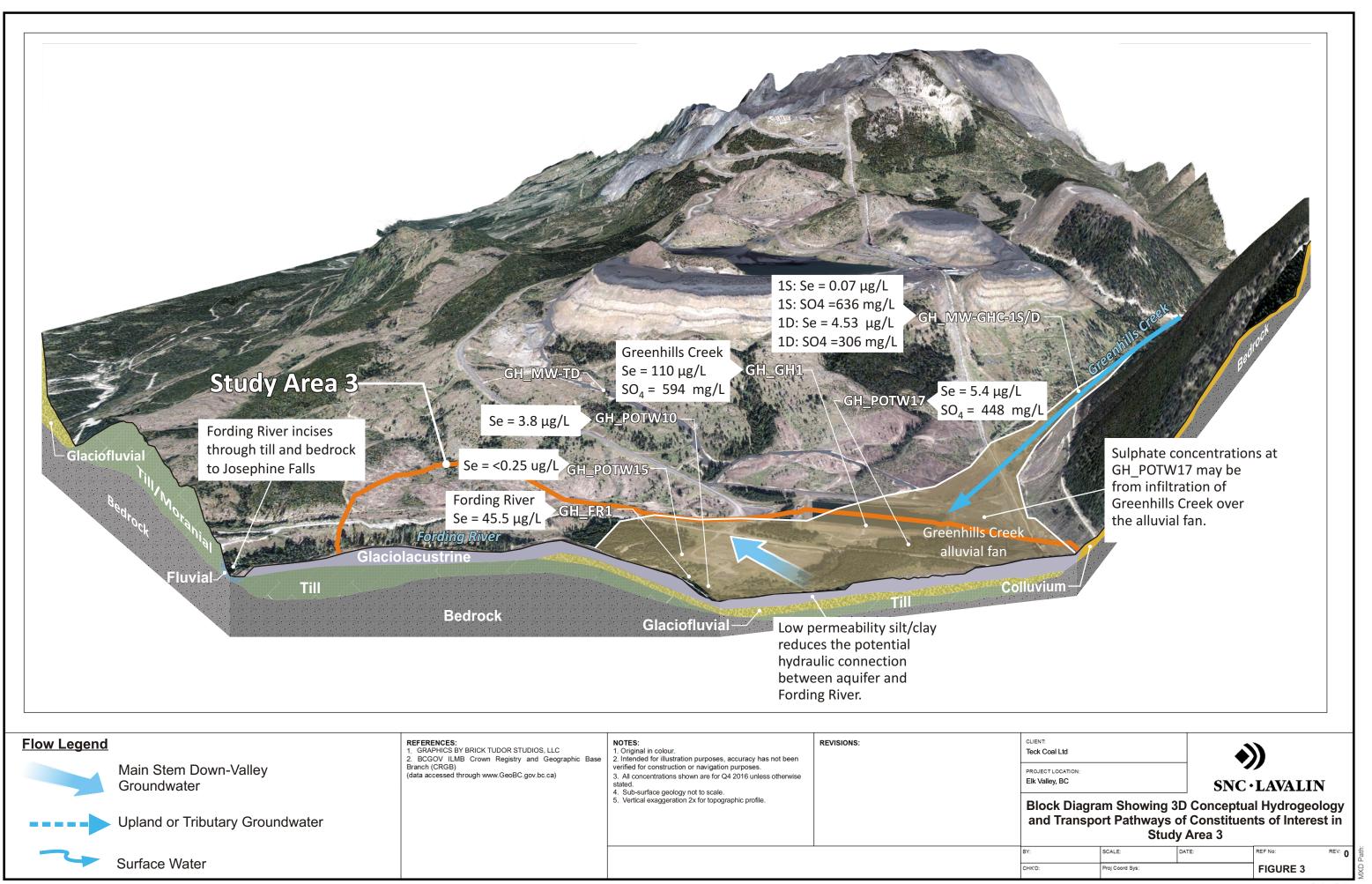


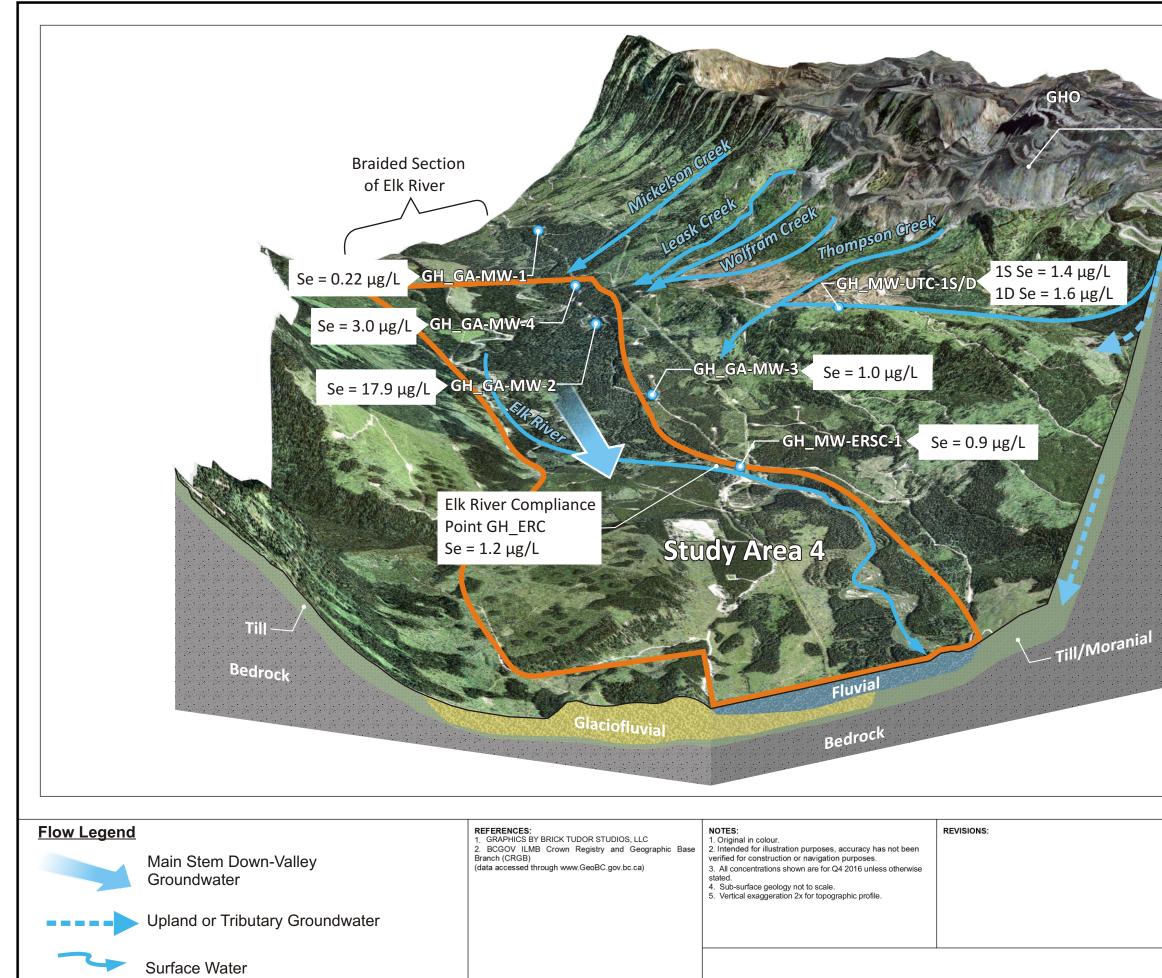




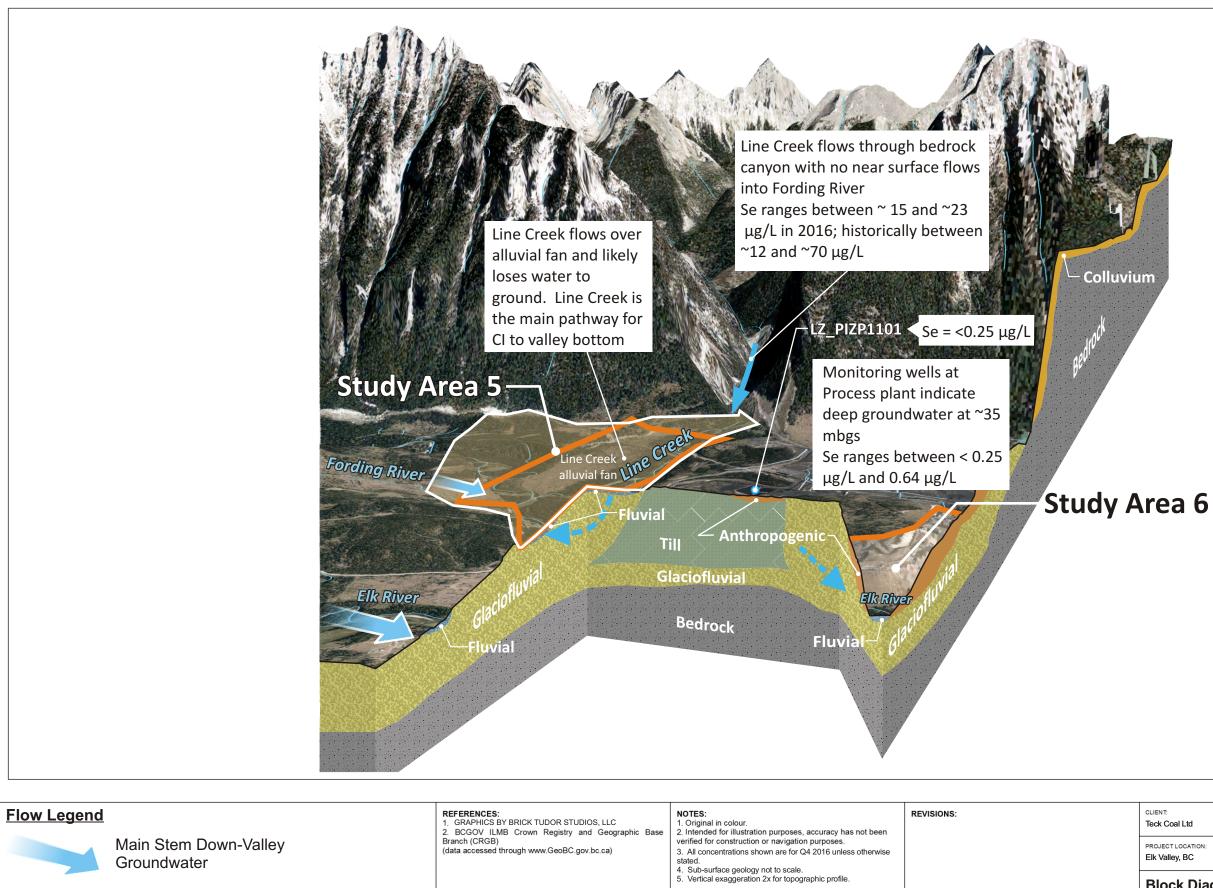





Block Diagrams



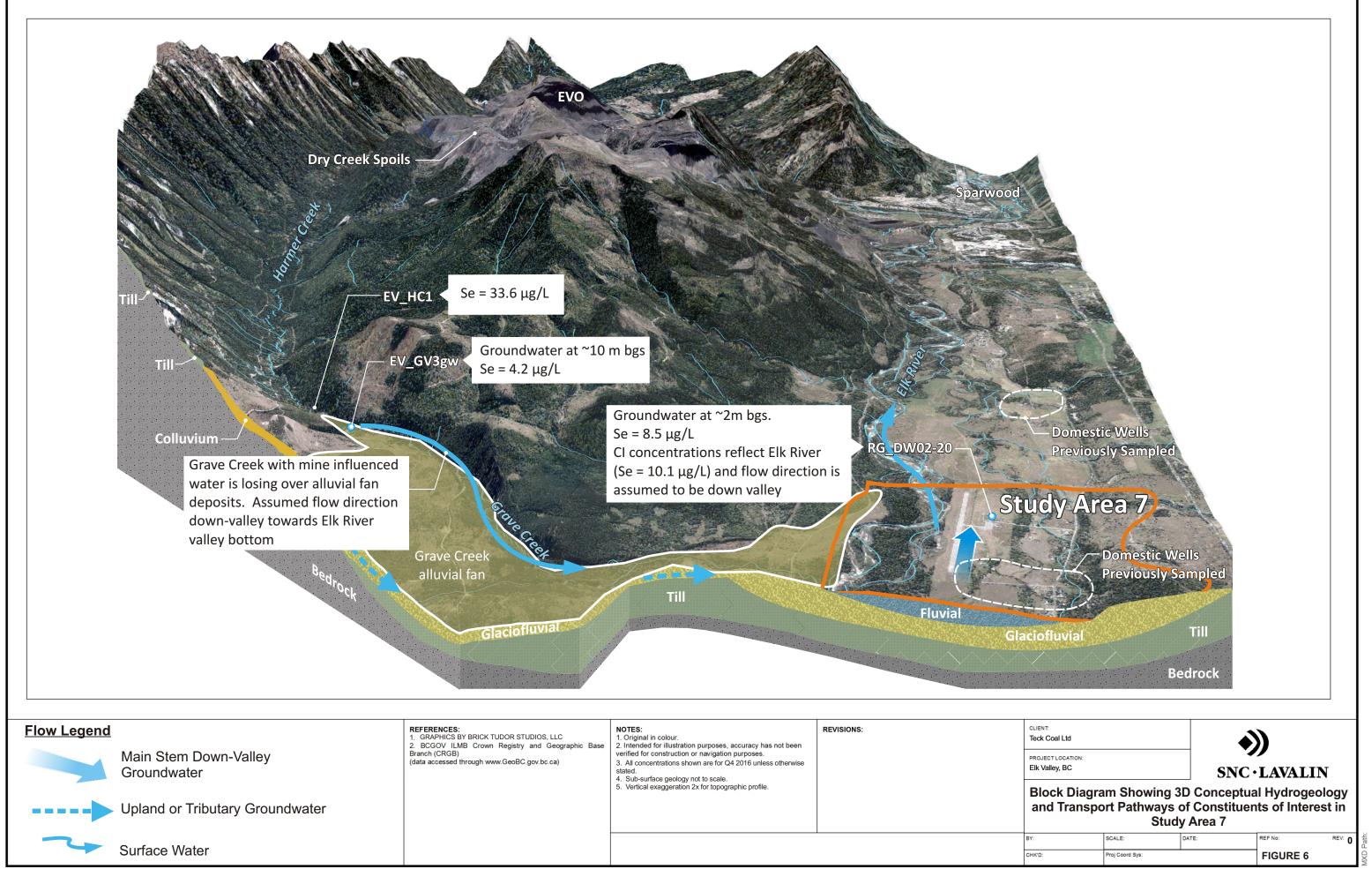
| al | CLIENT:<br>TECK Coal Ltd<br>PROJECT LOCATION:<br>Elk Valley BC | ial             |            |                      |        |
|----|----------------------------------------------------------------|-----------------|------------|----------------------|--------|
|    | Elk Valley, BC                                                 |                 |            | SNC·LAVALIN          |        |
|    | Block Diag                                                     | ram Showi       | ng 3D Con  | ceptual Hydrogeo     | logy   |
|    | and Trans                                                      | oort Pathwa     | ays of Con | stituents of Interes | st in  |
|    |                                                                | S               | Study Area |                      |        |
|    | BY:                                                            | SCALE:          | DATE:      | REF No:              | REV: 0 |
|    | CHK'D:                                                         | Proj Coord Sys: |            | FIGURE 1             |        |

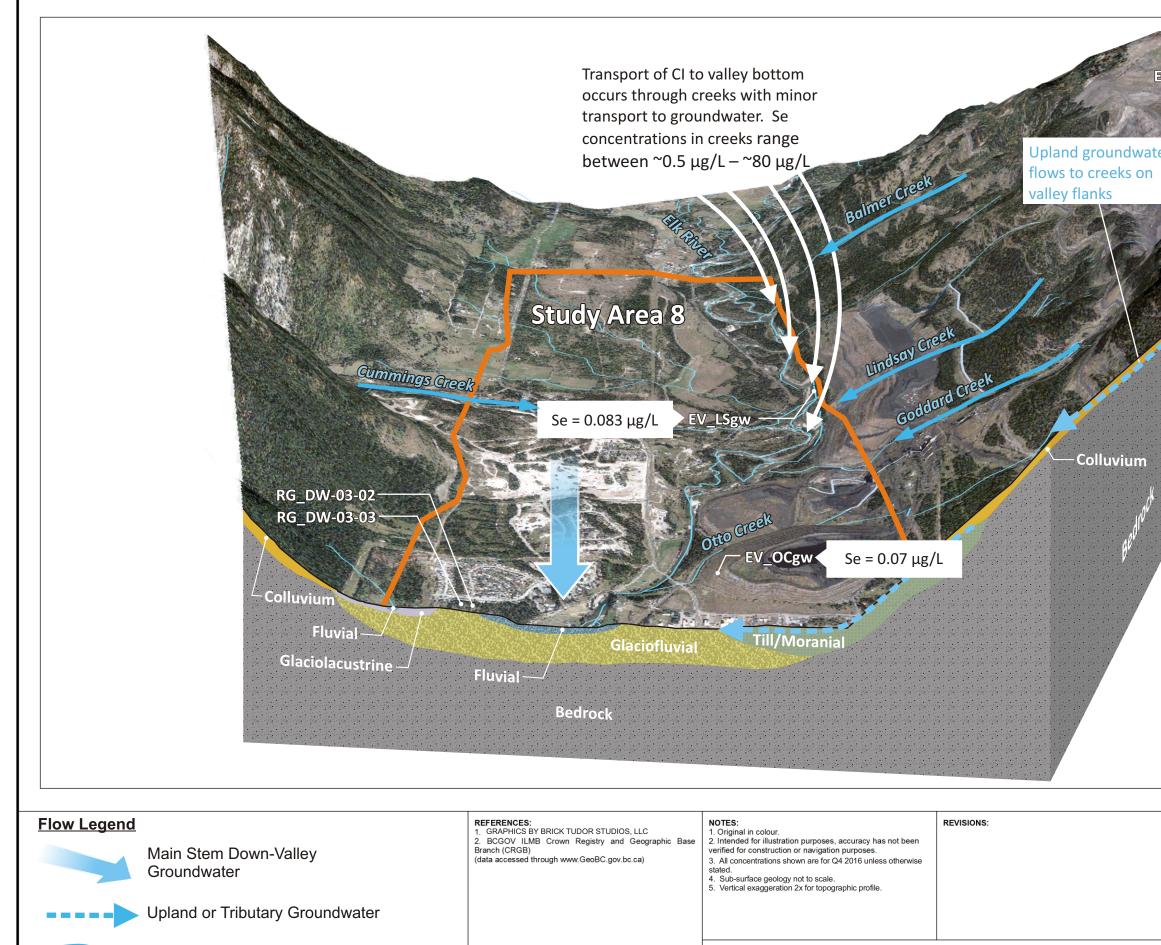






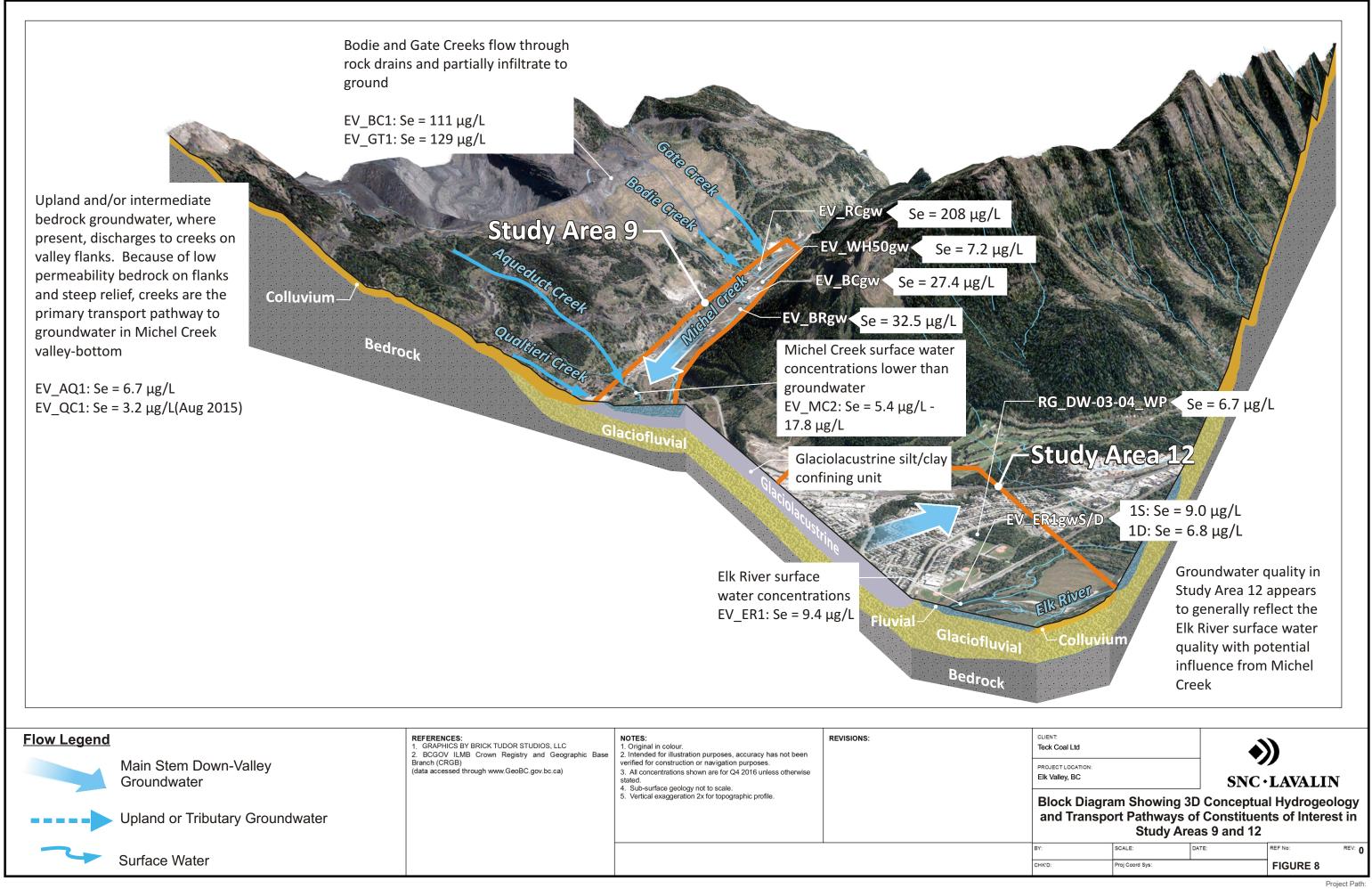

| 10   | -                                                                                   | y till on flank<br>nsport pathw |                                          | uie                                        |           |
|------|-------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|--------------------------------------------|-----------|
|      | bottom.                                                                             |                                 |                                          |                                            |           |
|      |                                                                                     | Creek, GH_M                     | -                                        | ıg/L                                       |           |
| - AL |                                                                                     | k, GH_LC1 Se<br>eek, GH_WC      |                                          | a /I                                       |           |
|      |                                                                                     | Creek, GH_WC                    |                                          | -                                          |           |
|      |                                                                                     |                                 |                                          | -                                          |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      |                                                                                     |                                 |                                          |                                            |           |
|      | CLIENT                                                                              |                                 |                                          |                                            |           |
|      | CLIENT:<br>Teck Coal Ltd                                                            |                                 |                                          |                                            |           |
|      |                                                                                     |                                 | SNC.                                     |                                            |           |
|      | Teck Coal Ltd<br>PROJECT LOCATION:<br>Elk Valley, BC                                | am Showing 3                    |                                          | )<br>LAVALIN                               |           |
|      | Teck Coal Ltd PROJECT LOCATION: Elk Valley, BC Block Diagra                         | ort Pathways                    | D Conceptua                              | LAVALIN Il Hydrogeology its of Interest in |           |
|      | Teck Coal Ltd PROJECT LOCATION: Elk Valley, BC Block Diagra                         | ort Pathways                    | D Conceptua<br>of Constituen             | I Hydrogeology                             |           |
|      | Teck Coal Ltd<br>PROJECT LOCATION:<br>Elk Valley, BC<br>Block Diagra<br>and Transpo | ort Pathways<br>Study           | D Conceptua<br>of Constituen<br>y Area 4 | Il Hydrogeology<br>Its of Interest in      | MXD Path: |


Rock drains through waste spoils flows to

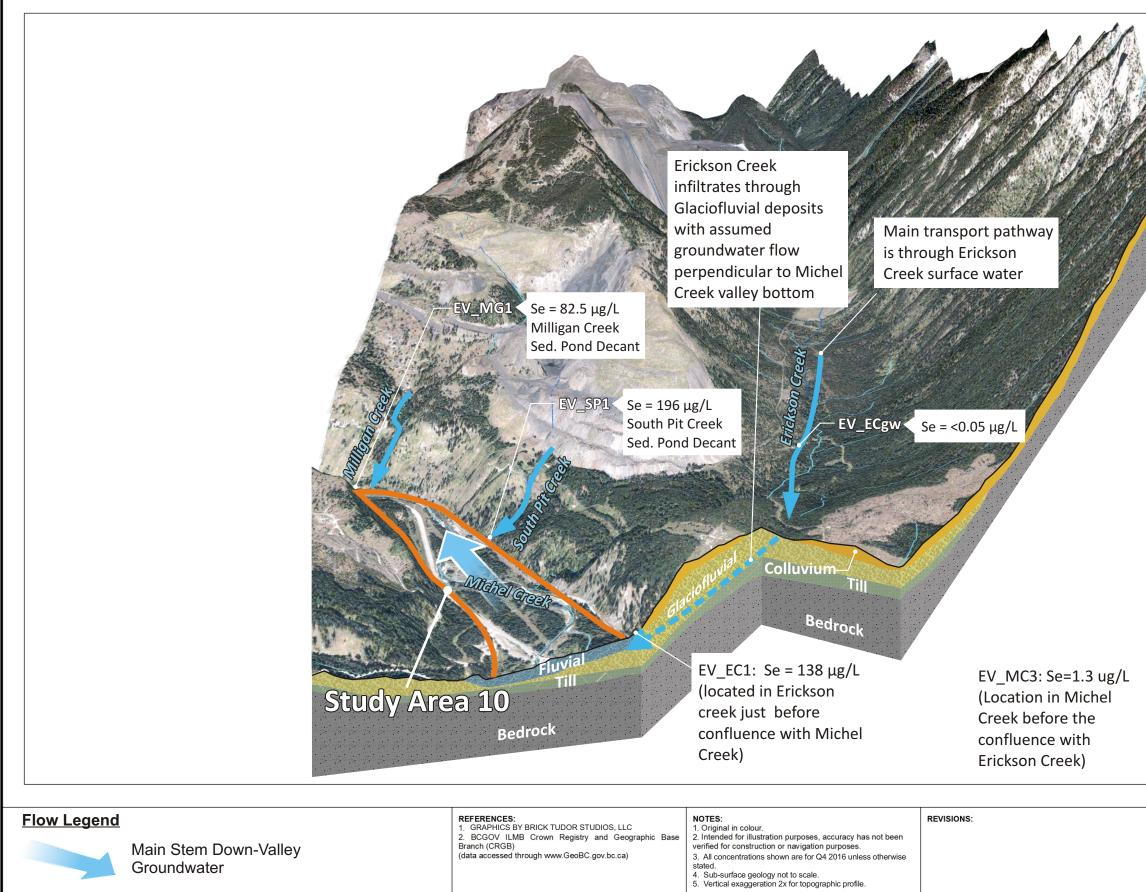



Upland or Tributary Groundwater

Surface Water


| _ |                                                                                                                              |                 |       |                |        |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|----------------|--------|--|--|
|   | CLIENT:<br>Teck Coal Ltd                                                                                                     |                 |       |                |        |  |  |
|   | PROJECT LOCATION:<br>Elk Valley, BC                                                                                          |                 | SNC · | //<br>·LAVALIN |        |  |  |
|   | Block Diagram Showing 3D Conceptual Hydrogeology<br>and Transport Pathways of Constituents of Interest in<br>Study Areas 5/6 |                 |       |                |        |  |  |
|   | BY:                                                                                                                          | SCALE:          | DATE: | REF No:        | REV: 0 |  |  |
|   | CHK'D:                                                                                                                       | Proj Coord Sys: |       | FIGURE 5       |        |  |  |





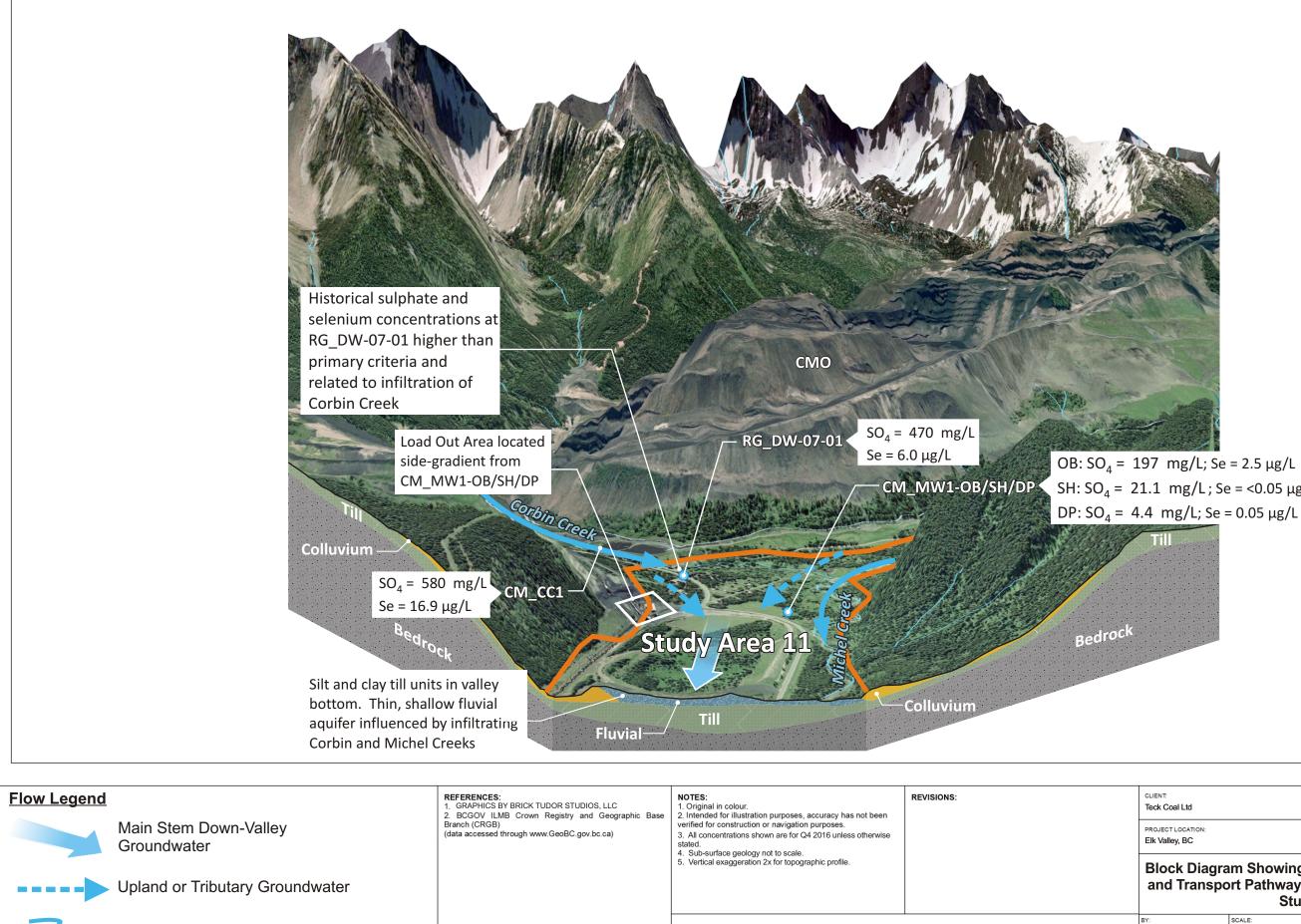

Surface Water

|    | ALC: NO                     |                                            |                         |          | ]      |           |
|----|-----------------------------|--------------------------------------------|-------------------------|----------|--------|-----------|
| er | 0                           |                                            |                         |          |        |           |
|    |                             |                                            |                         |          |        |           |
|    |                             |                                            |                         |          |        |           |
|    |                             |                                            |                         |          |        |           |
|    | CLIENT:<br>Teck Coal Ltd    |                                            | •>                      |          | J<br>  |           |
|    | Block Diagra<br>and Transpo | m Showing 3D<br>ort Pathways of<br>Study / | Conceptua<br>Constituen | LAVALIN  | ogy    |           |
|    | BY:                         | SCALE: DAT                                 |                         | REF No:  | REV: 0 | ath:      |
|    | CHK'D:                      | Proj Coord Sys:                            |                         | FIGURE 7 | -      | IXD Path: |



|        | -               |       |          |      |
|--------|-----------------|-------|----------|------|
| BY:    | SCALE:          | DATE: | REF No:  | REV: |
| CHK'D: | Proj Coord Sys: |       | FIGURE 8 |      |




Surface Water

Upland or Tributary Groundwater

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   | E.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   | All and a second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| In the second se |   |   |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 | / |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                  | . The second sec |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / |   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

| CLIENT:<br>Teck Coal Ltd            |                 | •                                          |          |        |        |
|-------------------------------------|-----------------|--------------------------------------------|----------|--------|--------|
| PROJECT LOCATION:<br>Elk Valley, BC |                 |                                            | •LAVALIN | ŗ      |        |
|                                     | ort Pathways    | 3D Conceptua<br>of Constituer<br>y Area 10 |          |        |        |
| BY:                                 | SCALE:          | DATE:                                      | REF No:  | REV: 0 | Dath.  |
| CHK'D:                              | Proj Coord Sys: |                                            | FIGURE 9 |        | L<br>X |

| Project Path |  |
|--------------|--|
|--------------|--|



Surface Water

SH:  $SO_4 = 21.1 \text{ mg/L}$ ; Se = <0.05 µg/L

| CLIENT:<br>Teck Coal Ltd                                                                                                   |                 |       |               |           |        |   |
|----------------------------------------------------------------------------------------------------------------------------|-----------------|-------|---------------|-----------|--------|---|
| PROJECT LOCATION:                                                                                                          | •//             |       |               |           |        |   |
| Elk Valley, BC                                                                                                             |                 |       | SNC · LAVALIN |           |        |   |
| Block Diagram Showing 3D Conceptual Hydrogeology<br>and Transport Pathways of Constituents of Interest in<br>Study Area 11 |                 |       |               |           |        |   |
| BY:                                                                                                                        | SCALE:          | DATE: |               | REF No:   | REV: 0 |   |
| CHK'D:                                                                                                                     | Proj Coord Sys: |       |               | FIGURE 10 |        | 5 |

## Appendix V

Vertical Hydraulic Gradient Calculation

## Appendix V: Summary of Vertical Gradient Calculations

| Key Area  | Well IDs          | Date of Static<br>Water Level<br>Measurement<br>(yyyy/mm/dd) | Screen<br>Elevation<br>Difference<br>(m) | Head<br>Difference<br>(m) | Vertical<br>Hydraulic<br>Gradient |
|-----------|-------------------|--------------------------------------------------------------|------------------------------------------|---------------------------|-----------------------------------|
|           |                   | 2017/03/08                                                   |                                          | -0.60                     | -0.05                             |
| 1         | FR 09-01-A/B      | 2017/06/01                                                   | -0.53                                    | -0.04                     |                                   |
| · · · · · | ITT_03-01-A/D     | 2017/09/12                                                   | 12.56                                    | -0.63                     | -0.05                             |
|           |                   | 2017/11/22                                                   |                                          | -0.58                     | -0.05                             |
|           |                   | 2017/03/16                                                   |                                          | -2.99                     | -0.11                             |
| 2         | LC PIZDC1308/1307 | 2017/06/12                                                   | 26.14                                    | -0.16                     | -0.01                             |
| 2         | LO_FIZDO1300/1307 | 2017/09/19                                                   |                                          | -2.24                     | -0.09                             |
|           |                   | 2017/11/01                                                   |                                          | -2.07                     | -0.08                             |
|           |                   | 2017/03/16                                                   |                                          | -1.06<br>-0.95            | -0.05                             |
|           |                   | 2017/06/28                                                   |                                          |                           | -0.05                             |
| 9         | EV_MCgwS/D        | 2017/08/16                                                   | 19.47                                    | -0.87                     | -0.04                             |
|           |                   | 2017/09/21                                                   |                                          | -                         | -                                 |
|           |                   | 2017/10/18                                                   |                                          | -                         | -                                 |
|           |                   | 2017/03/27                                                   |                                          | -1.04                     | -0.06                             |
|           | CM_MW1-OB/SH      | 2017/06/19                                                   | 18.34                                    | -0.79                     | -0.04                             |
|           |                   | 2017/08/28                                                   | 10.54                                    | -0.93                     | -0.05                             |
| 11        |                   | 2017/12/07                                                   |                                          | -0.92                     | -0.05                             |
| 11        |                   | -                                                            |                                          | -                         | -                                 |
|           | CM_MW1-SH/DP      | -                                                            | 13.78                                    | -                         | -                                 |
|           |                   | -                                                            | 13.70                                    | -                         | -                                 |
|           |                   | 2017/12/07                                                   | ]                                        | 0.26                      | 0.02                              |
|           |                   | 2017/02/15                                                   |                                          | 0.30                      | 0.03                              |
| 12        | EV ER1gwS/D       | 2017/06/28                                                   | 11.26                                    | 0.28                      | 0.02                              |
| 12        |                   | 2017/08/22                                                   | 11.20                                    | 0.29                      | 0.03                              |
|           |                   | 2017/10/24                                                   |                                          | 0.29                      | 0.03                              |

\* Vertical gradient values were not calculated between EV\_MCgwS/D in September and October 2017 as depth to water values and calculated potentiometric elevations are considered suspect based on level logger data. In addition, vertical gradients were not calculated bewteen CM\_MW1-SH/DP in Q1, Q2, and Q3 as the depth to water measurements were not collected on the same date.



SNC-Lavalin Inc. Nelson, British Columbia, Canada V1L 4C6 &250.354.1664 www.snclavalin.com

