

Report: Regional Groundwater Monitoring Program 2016 Report

Overview: This report presents the 2016 results of the regional groundwater monitoring program required under Permit 107517. This report summarizes the results of groundwater quality in 2016 and compares groundwater chemistry to nearby surface water chemistry to understand groundwater transport pathways.

This report was prepared for Teck by SNC-Lavalin Inc.

For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley

2016 Annual Report

G.

POMERLEAL # 29857

OVINC

S. A. HUMPHR #31909 BRITISH COLUMBIA SCIEN

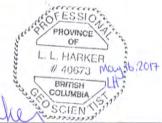
Regional Groundwater Monitoring Program

16,2012

May 16, 2017 Internal Ref: 635544

Prepared For:

Teck Coal Limited


Prepared By:

C BRITISH NGINEER 22 Genevieve Pomerleau, M.Sc., P.Eng Senior Hydrogeologist

Environment & Geoscience Infrastructure

Reviewed By:

Stefan Humphries, M.Sc., P.Geo. Senior Hydrogeologist/Senior Project Manager Environment & Geoscience Infrastructure

Leslie Harker, M.Sc., P.Geo. Project Hydrogeologist Environment & Geoscience Infrastructure

Executive Summary

This report meets annual reporting requirements for regional groundwater monitoring in the Elk Valley as outlined in Section 10.4 of Permit 107517 (dated March 1, 2017). The Elk Valley Regional Groundwater Monitoring Program started in 2015 and consists of data from selected locations in the following groundwater monitoring programs:

- > Fording River Operations (FRO);
- Greenhills Operations (GHO);
- Line Creek Operations (LCO);
- > Elkview Operations (EVO);
- > Coal Mountain Operations (CMO); and
- > The Regional Drinking Water Sampling Program (RDW).

The Elk Valley Regional Groundwater Monitoring Program (RGMP) focuses on twelve areas ("Key Areas") identified in the Regional Groundwater Synthesis Report for the Elk Valley (the "Synthesis Report", SNC-Lavalin, 2015b) as being areas where a potential groundwater transport pathway of Constituents of Interests (CIs) in the valley bottom may exist. The 2016 Annual Regional Groundwater Monitoring Report has been prepared following the approved RGMP (SNC-Lavalin, 2015a) and incorporated feedback received from the Environmental Monitoring Committee (EMC) and Groundwater Working Group (GWG) on the RGMP Groundwater Synthesis Report and the 2015 Annual Report (SNC-Lavalin, 2016b).

Quarterly samples were collected from all wells included in the RGMP with the exception of the Q1 sample from EV_ECgw (located in Key Area 10) due to a frozen well. Samples from site-specific programs were submitted for all parameters on the analyte list except specific conductance which was not reported for samples collected at FRO, GHO and EVO (during Q3 and Q4). In addition, field conductivity was not recorded at samples collected at LCO and EVO (during Q1 and Q2). RG_DW-series wells were sampled on four occasions in 2016; however, the first sample was collected in late May/early June and therefore samples were not collected during the Q1 period (i.e., January to March). These modifications to the RGMP do not impact the overall quality or interpretation of the data.

Groundwater quality at all groundwater monitoring locations were compared to applicable primary and secondary screening criteria and discussion of trends as well as interpretation of water levels and selected parameters were completed by Key Area. To assess groundwater and surface water interaction and increase our understanding of groundwater transport pathways, groundwater chemistry was compared to chemistry at nearby surface water station in some Key Areas where relevant.

In general, groundwater conditions were relatively similar to those outlined in the Groundwater Synthesis Report and the 2015 Annual Report. Concentrations of CIs above primary and secondary screening criteria were generally consistent with previous observations and are summarized by Key Area within the report. Concentrations of other constituents were also compared to primary screening criteria. Most concentrations of other constituents above primary screening criteria noted are not considered a concern because there was no identified receptor for the specific pathway and/or the results were only marginally above criteria. In some Key Areas, concentrations for some constituents (i.e., copper, fluoride, iron and manganese) were significantly higher than primary criteria and the source was unclear. These constituents may be naturally occurring and continued monitoring is recommended. Results of the RGMP will be considered under Big Question 6 in the Adaptive Management Plan (AMP; Teck, 2016). Additional

linkages between the RGMP and the AMP will be considered through the RGMP update submission (Sept 30, 2017) and in future updates to the AMP.

General recommendations for the RGMP are as follows:

- > Increase water level data quality by:
 - collecting concurrent (before and after) manual water level measurements each time a water level logger is deployed or removed from a well and prior to each sampling event;
 - re-deploying level logger at exact same depth in monitoring well after it was removed for downloading; and
 - using a barometer and manual water level measurements to compensate and correct the data;
- > Review the QA/QC programs, specifically related to field and trip blanks; and
- Analyse for all the parameters listed in the RGMP in 2017, including expansion of the parameters for RDW wells that are part of the RGMP.

Conclusions from the 2016 results and specific recommendations for the RGMP are presented by Key Area within the report. It is noted that these recommendations will be considered and prioritized as part of the September 30, 2017 RGMP submission.

Table of Contents

E>	ecut	tive S	ummary	i
1	Intr	oduct	ion	1
	1.1	Backg	round Information	1
	1.2	Repor	t Structure and Content	4
	1.3	Data S	Sources and Limitations	5
	1.4	Linkag	ge to Adaptive Management	6
2	Re	gional	Groundwater Monitoring Program Description	8
	2.1	Monito	oring Locations and Rationale	8
	2.2	Samp	ling Methodology	12
		2.2.1	Fording River Operations (FRO)	12
		2.2.2	Greenhills Operations (GHO)	12
		2.2.3	Line Creek Operation (LCO)	12
		2.2.4	Elkview Operations (EVO)	13
		2.2.5	Coal Mountain Operations (CMO)	13
		2.2.6	Regional Drinking Water Sampling Program (RDW)	13
	2.3	Samp	le Handling, Shipment and Analysis	13
	2.4	Monito	oring Specifications in the RGMP	14
		2.4.1	Sampling Frequency	14
		2.4.2	Analyte List	14
	2.5	Modifi	cations to Regional Groundwater Monitoring Program	14
		2.5.1	Site-specific Programs	14
		2.5.2	Regional Drinking Water Sampling Program (RDW)	15
	2.6	QA/Q	C Program	15
		2.6.1	Site-specific Programs	15
			2.6.1.1 Shipping and Handling Issues	15
			2.6.1.2 Duplicate Samples	16
			2.6.1.3 Field Blanks	17
			2.6.1.4 Trip Blanks	18
			2.6.1.5 Turbidity Threshold	19
		2.6.2	Regional Drinking Water Sampling Program (RDW)	19
		19		

3	Gro	Groundwater Quality Screening Criteria 20							
	3.1	Primar	y Screening Criteria (Provincial Guidance)	20					
	3.2	Secon	dary Screening	21					
4	Results and Discussion								
	4.1	Backg	round (Reference) Station FR_HMW5	23					
		4.1.1	Groundwater Levels	23					
		4.1.2	Groundwater Quality	24					
		4.1.3	Discussion	24					
	4.2	Key Aı	rea 1: Fording River Valley-bottom Downgradient of FRO, Cataract and Porter Creeks	24					
		4.2.1	Groundwater Levels	24					
		4.2.2	Groundwater Quality	25					
		4.2.3	Discussion	25					
	4.3	Key Aı	rea 2: Fording River Valley-bottom Downgradient of LCO Dry Creek	26					
		4.3.1	Groundwater Levels	26					
		4.3.2	Groundwater Quality	27					
		4.3.3	Discussion	27					
	4.4	Key Aı	rea 3: Fording River Valley-bottom Downgradient of GHO Rail Loop and Greenhills Creek	28					
		4.4.1	Groundwater Levels	28					
		4.4.2	Groundwater Quality	28					
		4.4.3	Discussion	29					
	4.5	Key Aı	rea 4: Elk River Valley-bottom Downgradient of Leask, Wolfram and Thompson Creeks	30					
		4.5.1	Groundwater Levels	30					
		4.5.2	Groundwater Quality	30					
		4.5.3	Discussion	32					
	4.6		reas 5 and 6: Fording River Valley-bottom Downgradient of Line Creek and Elk River Valley gradient of Confluence with Fording River	-bottom 33					
		4.6.1	Groundwater Levels	33					
		4.6.2	Groundwater Quality	34					
		4.6.3	Discussion	34					
	4.7	Key Aı	rea 7: Elk River Valley-bottom Downgradient of Grave Creek	35					
		4.7.1	Groundwater Levels	35					
		4.7.2	Groundwater Quality	36					
		4.7.3	Discussion	36					

7	INOt	ice to	Reader	56
7	Not	ioo to	Poodor	EE
6	Ref	erence	es	54
	5.12	Key Are	ea 12	53
	5.11	Key Are	ea 11	53
	5.10	Key Are	ea 10	52
	5.9	Key Are	ea 9	52
	5.8	Key Are	ea 8	52
	5.7	Key Are	ea 7	51
	5.6	Key Are	eas 5 and 6	51
	5.5	Key Are	ea 4	51
	5.4	Key Are		50
	5.3	Key Are		50
	5.2	Key Are		50
•••••	5.1	Backgr	ound (Reference) Station FR_HMW5	49
5	Cor	nclusic	ns and Recommendations	49
		4.12.3	Discussion	48
			Groundwater Quality	47
			Groundwater Levels	46
	4.12	Key Are	ea 12: Elk River Valley-bottom at Study Area Boundary	46
			Discussion	45
		4.11.2	Groundwater Quality	44
			Groundwater Levels	43
	4.11	Key Are	ea 11: Michel Creek Valley-bottom Downgradient of CMO	43
		4.10.3	Discussion	43
		4.10.2	Groundwater Quality	42
		4.10.1	Groundwater Levels	42
	4.10	Key Are	ea 10: Michel Creek Valley-bottom Downgradient of Erickson Creek	42
		4.9.3	Discussion	41
		4.9.2	Groundwater Quality	39
		4.9.1	Groundwater Levels	39
	4.9	Key Are	ea 9: Michel Creek Valley-bottom Downgradient of Bodie Creek	38
		4.8.3	Discussion	38
		4.8.2	Groundwater Quality	37
		4.8.1	Groundwater Levels	37
	4.8	Key Are	ea 8: Elk River Valley-bottom Downgradient of Balmer, Lindsay and Otto/Cossarini Creeks	37

In-Text Figure

Figure 1: The process for re-evaluating the answer to Big Question 6 (Teck 2016, AMP Figure 6) 7					
In-Text Tables					
Table A: Key Areas for Groundwater Monitoring as defined in SNC-Lavalin (2015a, 2015b)Table B: Groundwater Monitoring Locations by Key Area, Well Type, Associated Operation and	2				
Description	10				
Table C: Summary of Shipping and Handling Issues	16				
Table D: Summary of Duplicate Sample Results above Acceptable Levels	17				
Table E: Summary of Field Blank Sample Results	18				
Table F: Summary of Trip Blank Sample Results	18				
Table G: Secondary Groundwater Screening Criteria for Aquatic Life	22				
Table H: Summary of Results above Primary Screening Criteria for Key Area 1	25				
Table I: Summary of Results above Secondary Screening Criteria for Key Area 1	25				
Table J: Summary of Results above Primary Screening Criteria upgradient of Key Area 2	27				
Table K: Summary of Results above Primary Screening Criteria for Key Area 3	28				
Table L: Summary of Results above Primary Screening Criteria for Key Area 4	31				
Table M: Summary of Results above Secondary Screening Criteria for Key Area 4	32				
Table N: Summary of Results above Primary Screening Criteria for Key Area 6	34				
Table O: Summary of Results above Primary Screening Criteria for Key Area 7	36				
Table P: Summary of Results above Primary Screening Criteria for Key Area 8	37				
Table Q: Summary of Results above Primary Screening Criteria for Key Area 9 (1/2)	39				
Table R: Summary of Results above Primary Screening Criteria for Key Area 9 (2/2)	40				
Table S: Summary of Results above Secondary Screening Criteria for Key Area 9	41				
Table T: Summary of Results above Primary Screening Criteria for Key Area 10	42				
Table U: Summary of Results above Primary Screening Criteria for Key Area 11	44				
Table V: Summary of Results Above Primary Screening Criteria for Key Area 12	47				

Tables

- 1: Summary of Applicable Primary and Secondary Screening Criteria
- 2: Well Installation Details, Monitoring Values and Hydrogeological Information
- 3: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Inorganics in Groundwater
- 4: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Metals in Groundwater
- 5: Summary of Analytical Results compared to Secondary Screening Criteria for Constituents of Interest

Drawings

- > 635544-101: Site Location and Management Units
- > 635544-102: Key Areas 1 to 4 and Sample Location Plan
- > 635544-103: Key Areas 5 7 and Sample Location Plan
- 635544-104: Key Areas 8 10 and 12 and Sample Location Plan
- > 635544-105: Key Area 11 and Sample Location Plan
- > 635544-106: Surficial Geology North Half of Study Area
- > 635544-107: Surficial Geology South Half of Study Area
- > 635544-108: Bedrock Geology North Half of Study Area
- > 635544-109: Bedrock Geology South Half of Study Area
- > 635544-110: Inferred Geological Cross Section A-A'
- > 635544-111: Inferred Geological Cross Section B-B'
- > 635544-112: Inferred Geological Cross Section C-C'
- > 635544-113: Inferred Geological Cross Section D-D'
- > 635544-114: Inferred Geological Cross Section E-E'
- 635544-115: Groundwater Elevations from Q4 and Conceptual Regional Groundwater Flow North Half of Study Area
- 635544-116: Groundwater Elevations from Q4 and Conceptual Regional Groundwater Flow South Half of Study Area
- > 635544-117: Spatial Distribution of Selected Groundwater Analytical Data Key Areas 1 to 4
- > 635544-118: Spatial Distribution of Selected Groundwater Analytical Data Key Areas 5 7
- > 635544-119: Spatial Distribution of Selected Groundwater Analytical Data Key Areas 8 10 and 12
- > 635544-120: Spatial Distribution of Selected Groundwater Analytical Data Key Area 11

Appendices

- I: Borehole Logs
- II: Time-Series Graphs
 - Graph B-1: Groundwater Elevation of FR_HWM5 (Background Well) (2015 2016)
 - Graph 1-1: Groundwater Elevation of Key Area 1 Wells (2015 2016)
 - Graph 1-2: Selenium Concentration in Key Area 1
 - Graph 1-3: Nitrate Concentrations in Key Area 1
 - Graph 2-1: Groundwater Elevation of Key Area 2 Wells (2015 2016)
 - Graph 2-2: Selenium Concentrations in Key Area 2
 - Graph 3-1: Selenium Concentrations in Key Area 3
 - Graph 3-2: Sulphate Concentrations in Key Area 3
 - Graph 4-1: Groundwater Elevation of Key Area 4 Wells (2015 2016)
 - Graph 4-2: Selenium Concentrations in Key Area 4
 - Graph 6-1: Groundwater Elevation of Key Area 6 Well (March 2015 to December 2016)
 - Graph 6-2: Selenium Concentration in Key Area 6
 - Graph 7-1: Groundwater Elevation of Key Area 7 Well (2015 2016)
 - Graph 7-2: Selenium Concentrations in Key Area 7
 - Graph 8-1: Groundwater Elevation of Key Area 8 Wells (2015 2016)
 - Graph 8-2: Selenium Concentrations in Key Area 8
 - Graph 8-3: Sulphate Concentrations in Key Area 8
 - Graph 9-1: Groundwater Elevation of Key Area 9 Wells (2015 2016)
 - Graph 9-2(1): Selenium Concentrations in Key Area 9
 - Graph 9-2(2): Selenium Concentrations in Key Area 9 (Low concentration)
 - Graph 9-3: Nitrate Concentrations in Key Area 9
 - Graph 9-4: Sulphate Concentrations in Key Area 9
 - Graph 10-1: Groundwater Elevation of Key Area 10 Wells (2015 2016)
 - Graph 10-2: Selenium Concentrations in Key Area 10
 - Graph 11-1: Groundwater Elevation of Key Area 11 Wells (2015 2016)
 - Graph 11-2: Selenium Concentrations in Key Area 11
 - Graph 11-3: Sulphate Concentrations in Key Area 11
 - Graph 12-1: Groundwater Elevation and Pumping Rate in Key Area 12 (2015 2016)
 - Graph 12-2: Selenium Concentrations in Key Area 12 and Elk River Water Level
- III: Vertical Hydraulic Gradient Calculation
- IV: Cross-Sections for the GHO Rail Loop

P:\CP\TECK COAL LTD\SPO\635544\5.0 DEL\5.3 FINAL\R516LHA_2016 ANNUAL REPORT_FINAL.DOCX

Acronyms

BCWQG	British Columbia Water Quality Guidelines
СМО	Coal Mountain Operations
СР	Compliance Point
CI	Constituents of interest
EMC	Environmental Monitoring Committee
EVWQP	Elk Valley Water Quality Plan
EVO	Elkview Operations
FRO	Fording River Operations
GHO	Greenhills Operations
GWG	Groundwater Working Group
GCDWQ	Guidelines for Canadian Drinking Water Quality
IHA	Interior Health
KNC	Ktuxana Nation Council
FLNR	Lands and Natural Resource Operations
LCO	Line Creek Operations
MU	Management Unit
MDL	Method Detection Limit
MEM	Ministry of Energy and Mines
MoE	Ministry of Environment
RDW	Regional Drinking Water
RGMP	Regional Groundwater Monitoring Program
RPDs	Relative percent differences
SPO	Site Performance Objective
SP&P	Standard Practice and Procedure
TOR	Terms of Reference
QA/QC	Quality Assurance/Quality Control

1 Introduction

This report was generated to meet annual reporting requirements for Teck Coal Limited (Teck) for regional groundwater monitoring in the Elk Valley outlined in Permit 107517 (dated March 1, 2017). SNC-Lavalin Inc. (SNC-Lavalin) and Teck developed a Regional Groundwater Monitoring Program (RGMP) to monitor groundwater in the valley bottoms of defined areas within Management Units (MU[s]) 1, 2, 3 and 4 as described in the Elk Valley Water Quality Plan (EVWQP; Teck, 2014) and shown on Drawing 635544-101. This report fulfills reporting requirements listed in Section 10.4 of Permit 107517, specifically:

Regional groundwater monitoring results and interpretation must be compiled into a written report and submitted on an annual basis for each calendar year to the Director by May 16 of the following year. The Annual Report must include summaries of the site specific groundwater reports.

The report(s) must include, but is not limited to:

- *i.* A map of monitoring locations with EMS and Permittee descriptors;
- *ii.* Cross sections showing well installation details, stratigraphy, groundwater elevations, and flow. Cross sections should be in the direction of groundwater flow and perpendicular to groundwater flow.
- *iii.* Drawings showing locations and water quality data of groundwater sampling points.
- *iv.* A summary of background information on that year's program, including discussion of program modifications relative to previous years;
- v. A summary of measured parameters, including appropriate graphs and comparison of results to, Approved and Working Water Quality Guidelines, or other criteria and benchmarks as specified by the Director;
- vi. If applicable, a summary of exceedances of screening benchmarks;
- vii. Evaluation and discussion of spatial patterns and temporal trends;
- viii. A summary of all QA/QC issues during the year; and
- ix. Recommendations for further study or measures to be taken.

1.1 Background Information

The basis for the RGMP was a regional hydrogeological conceptual model (the "Regional Conceptual Model") developed to describe groundwater flow patterns and quality, focussing on mine-related constituents including selenium, cadmium, sulphate, and nitrate, or "constituents of interest" (hereafter referred to as CIs). The Regional Conceptual Model was described in a Regional Groundwater Synthesis Report for the Elk Valley (the "Synthesis Report", SNC-Lavalin, 2015b) which compiled and interpreted all relevant groundwater information available in the Elk Valley. The Regional Conceptual Model identified potential groundwater migration pathways of CI from mining operations and the RGMP integrates data from ongoing monitoring programs to measure and evaluate the regional effects of these operations on groundwater (SNC-Lavalin, 2015b). The RGMP consists of collecting monitoring data from selected locations in the following groundwater monitoring programs:

- > Fording River Operations (FRO);
- Greenhills Operations (GHO);
- Line Creek Operations (LCO);
- > Elkview Operations (EVO);
- > Coal Mountain Operations (CMO); and
- > Regional Drinking Water Sampling Program (RDW).

The Regional Conceptual Model defined twelve areas ("Key Areas") at the local scale (i.e., on the order of tens of metres to a few kilometres) as being areas where groundwater monitoring may be required to confirm the concepts of the Regional Conceptual Model and reduce uncertainties associated with understanding potential groundwater pathways of CI in the valley bottom in the main river systems. These Key Areas were described in detail in the Synthesis Report and summarized below in Table A.

Table A: Key Areas for Groundwater Monitoring as defined in SNC-Lavalin (2015a, 2015b)

Key Area	Description	MU	Program(s)
1	Fording River Valley Bottom Downgradient of FRO, Cataract and Porter Creeks: This area is the focal point for the majority of upland and tributary flow to the Fording River valley bottom near the FRO and GHO property boundaries, and the primary off-site migration pathway from FRO.	1	FRO
2	Fording River Valley Bottom Downgradient of LCO Dry Creek : This area receives drainage from the planned LCO Phase II development as well as upgradient Fording River valley-bottom groundwater from FRO and GHO.	1	LCO
3	Fording River Valley Bottom Downgradient of GHO Rail Loop and Greenhills Creek: This area receives upland groundwater from GHO.	1	GHO
4	Elk River Valley Bottom Downgradient of Leask, Wolfram and Thompson Creeks: This area receives groundwater recharge from upgradient mining activities along the western slope of GHO, and is a potential offsite migration pathway.	2	GHO / RDW
5	Fording River Valley Bottom Downgradient of Line Creek: The valley bottom in this area receives inputs from Line Creek, the Fording River and the LCO Process Plant.	2 and 4	LCO
6	Elk River Valley Bottom Downgradient of Confluence with Fording River: This area receives input from the Fording River valley-bottom, the Elk River valley-bottom and the Line Creek Process Plant site.	4	LCO
7	Elk River Valley Bottom Downgradient of Grave Creek: This area receives input from drainages flowing from the northwest slope of EVO, as well as upgradient input from the Elk River and Key Area 6.	4	EVO / RG
8	Elk River Valley Bottom Downgradient of Balmer, Lindsay, Goddard, Otto and Marsh Creeks: Upland groundwater flows into the Elk River valley bottom from potential sources along the western slope of EVO.	4	EVO
9	Michel Creek Valley Bottom Downgradient of Bodie Creek: Upland groundwater flows into the Michel Creek valley bottom from potential sources along the western slope of EVO.	4	EVO / EVO / RDW

Table A (Cont'd): Key Areas for Groundwater Monitoring as defined in SNC-Lavalin (2015a, 2015b)

Key Area	Description	MU	Program(s)
10	Michel Creek Valley Bottom Downgradient of Erickson Creek: Mining activities on the southwest slope of EVO around Erickson Creek, are a potential source of mining-related constituents to valley-bottom groundwater into the Michel Creek valley bottom.	4	EVO
11	Michel Creek Valley Bottom Downgradient of CMO: The Michel Creek valley bottom receives input from CMO immediately downgradient of the confluence of Michel and Corbin Creeks. Valley-bottom deposits in this area are the primary off-site migration pathway.	4	CMO / RDW
12	Elk River Valley Bottom at Study Area Boundary: This area is at the boundary of MU4 and the Study Area. Coarse sediments in this area have been identified as a potential migration pathway, and previous studies have inferred that surface water recharge from the Elk River occurs in this area.	4	EVO / RDW

The first Annual Regional Monitoring Report was submitted to the MoE on March 31, 2016 (the "2015 Annual Report", SNC-Lavalin, 2016b), to fulfill groundwater reporting commitments outlined in Permit 107517 (Section 10.4). On October 26 and 27, 2016, SNC-Lavalin and Teck facilitated a workshop that was held with a multi-stakeholder group comprised of Teck, the Ktunaxa Nation Council (KNC) and the MoE. This group has been termed 'the Groundwater Working Group (GWG)', which included members who provided feedback on the 2015 submissions (i.e., Synthesis Report, RGMP, and 2015 Annual Report). In the workshop, content of the 2015 submissions were reviewed. In particular, the following were presented and discussed:

- > Important aspects of the Regional Conceptual Model;
- > Differentiation between site-specific and regional groundwater monitoring programs;
- > Proposed purpose and objective statements; and,
- > EMC written comments on the Synthesis Report, and RGMP.

The RGMP was approved on April 18, 2017 with a number of conditions, listed as follows:

- 1. The Groundwater Working Group established October 2016 will continue to provide guidance for groundwater programs. The Groundwater Working Group will consist of members from Teck Coal Limited (Teck), the Ktunaxa Nation Council (KNC) and Ministry of Environment (ENV), and may expand to include participants from Ministry of Energy and Mines (MEM), Ministry of Forest, Lands and Natural Resource Operations (FLNR), and Interior Health (IHA).
- 2. A meeting of the Groundwater Working Group will be held by the end of June 2017 to discuss the Terms of Reference (TOR) for the RGMP update due in 2017. It is expected that TOR will include a draft framework for identifying and prioritizing additional areas for investigation under the regional monitoring program.

- 3. An update of the RGMP will be submitted to the Director for approval by September 30, 2017, and will contain at a minimum:
 - a. A list of areas of additional study, and a system for prioritizing the implementation of groundwater studies for the specific areas identified, and a tentative schedule of the additional studies. The list of areas of additional study will be developed from previous assessments (i.e., 12 Key Areas) as well as evaluation of available data and gaps based on criteria identified in the Groundwater Workshop (October 26 and 27, 2016);
 - b. Integration of information from the Site Specific groundwater programs, which will also be used to identify potential areas of additional study;
 - c. A Glossary;
 - d. An updated Conceptual Site Model with well-presented data to support the model;
 - e. Maps and visual data presentation;
 - f. Defined purpose and objectives, with measurable outcomes;
 - g. Definitions and conceptual boundaries of site and regional groundwater programs and the linkages between them;
 - h. Screening benchmarks with rationale; and,
 - *i.* A framework for developing and prioritizing groundwater triggers that integrate with the Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley.

1.2 Report Structure and Content

The 2016 Annual Regional Groundwater Monitoring Report has been prepared following the approved RGMP (SNC-Lavalin, 2015a) and the annual groundwater reporting requirements listed in Section 10.4 of Permit 107517. The structure and content of this report has incorporated EMC and GWG feedback on the Synthesis Report and the 2015 Annual Report where appropriate. The 2016 Annual Regional Groundwater Monitoring Report is structured as follows:

- Section 1 includes background information on the RGMP;
- Section 2 provides a description of the RGMP including monitoring locations, sampling methodologies and Quality Assurance/Quality Control (QA/QC). This Section meets the Permit 107517 Section 10.4 requirements:
 - *i. a map of monitoring locations with EMS and Permittee descriptors;*
 - iv. a summary of background information on that year's program, including discussion of program modifications relative to previous years; and
 - viii. a summary of all QA/QC issues for the year.
- > Section 3 provides a description and explanation of primary and secondary screening criteria for comparison of groundwater quality data as defined in the approved RGMP;

- Section 4 includes results from the 2016 RGMP, including comparison to screening criteria outlined in Section 3, broken into Key Area. Trends for water levels and groundwater quality and a comparison against available surface water data, where sufficient data are available, are presented and used for data interpretation by Key Area. This Section which meets the Permit 107517 Section 10.4 requirements:
 - *ii. cross sections showing well installation details, stratigraphy, groundwater elevations, and flow. Cross sections should be in the direction of groundwater flow and perpendicular to groundwater flow;*
 - iii. drawings showing locations and water quality data of groundwater sampling points;
 - v. a summary of measured parameters, including appropriate graphs and comparison of result to, Approved and Working Water Quality Guidelines, or other criteria and benchmarks as specified by the Director;
 - vi. if applicable, a summary of exceedances of screening benchmarks; and
 - vii. evaluation and discussion of spatial patterns and temporal trends.
- Section 5 provides the conclusions from the 2016 RGMP as well as any recommendations for monitoring, intended to meet Permit 107517 Section 10.4 requirement:
 - ix: recommendations for further study or measures to be taken.

As indicated in Section 1.1, an update of the RGMP will be submitted to the Director for approval by September 30, 2017. This includes, but is not limited to, review of screening criteria, definitions of site-specific vs. regional groundwater monitoring and development of a draft framework for identification and prioritization of additional areas for investigation. As such, throughout the 2016 Annual Report we refer to some of these components that may be subject to change in the September 2017 RGMP submission.

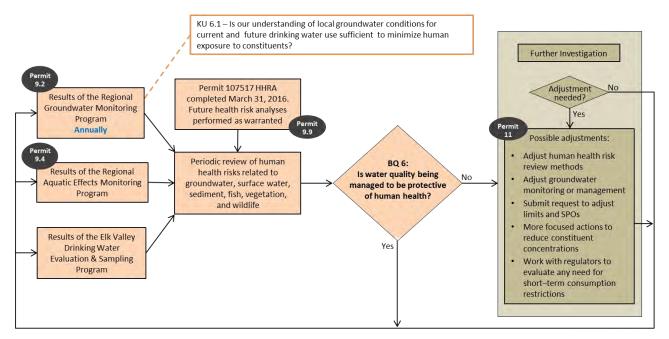
1.3 Data Sources and Limitations

SNC-Lavalin received field and chemistry data from both the site-specific and RDW groundwater monitoring programs listed above (including both manual and level logger groundwater levels, top of casing information, field measurements and laboratory analytical results, where applicable). Teck also received some data from the District of Sparwood that has been transferred to SNC-Lavalin through Teck. SNC-Lavalin has relied on data and information provided by Teck and, as such, has assumed that the information provided is both complete and accurate. To confirm that field activities are conducted in a manner that meets the overall data quality objective of the QA/QC program, Teck's sampling activities are conducted in accordance with the 2013 Edition of the British Columbia Field Sampling Manual (Clark, 2002). Environmental personal are trained using on-site Standard Practice and Procedure (SP&P) as detailed in the "Teck Field Sampling Manual". Interpretations and conclusions within this report are made with the assumption that data collection was performed following these standards using the proper duty of care.

1.4 Linkage to Adaptive Management

As required in Permit 107517 Section 11, Teck has developed an Adaptive Management Plan (AMP) to support implementation of the EVWQP, to achieve water quality targets including calcite targets, ensure that human health and the environment are protected, and where necessary, restored, and to facilitate continuous improvement of water quality in the Elk Valley. Teck has provided this section of SNC's report in order to provide a consistent approach to describing linkages between Adaptive Management and related programs and reports.

Following an adaptive management framework, the AMP identifies six Big Questions that will be reevaluated at regular intervals as part of AMP updates throughout the duration of EVWQP implementation. For each Big Question, the AMP describes how the Big Question will be periodically re-evaluated, and how the key uncertainties under the Big Question will be reduced.


The AMP was submitted to the Environmental Monitoring Committee and MOE Director July 31 2016 as required. Study designs for many programs (including the RGMP) were established before the AMP was submitted. Teck is working to embed elements of the AMP within each program through reviews of monitoring programs at the study design and annual report stages. As the AMP is currently under review and in the process of being implemented, this is the first cycle where the monitoring programs are being explicitly reviewed to confirm all required monitoring is included. Gaps identified in review of 2016 annual reports will inform study design updates as required.

As defined in the July 31 2016 AMP, Big Question 6 ("Is water quality being managed to be protective of human health?") will be re-evaluated through periodic review of RGMP monitoring data. This process is outlined in Figure 1. In addition, the analysis of RGMP information will assist in addressing Key Uncertainty 6.1 "Is our understanding of local groundwater conditions for current and future drinking water use sufficient to minimize human exposure to constituents?".

This annual Report supports the re-evaluation of Big Question 6 through evaluating RGMP data. In this report, uncertainty in the RWQM is identified to be considered in the RGMP update submission (September 30, 2017). The evaluation of RGMP performance will be reviewed as part of the update process and adjustments to the program will be discussed with the Groundwater Working Group. In addition, as required by the RGMP approval letter, the update of the RGMP will contain a framework for developing and prioritizing groundwater triggers that integrate with the AMP.

Figure 1: The process for re-evaluating the answer to Big Question 6 (Teck 2016, AMP Figure 6)

2 Regional Groundwater Monitoring Program Description

The approved RGMP outlines monitoring locations; sampling methodology; sampling frequency; analytical parameters; and a quality assurance/quality control (QA/QC) program which combined define a comprehensive groundwater monitoring program for Management Units 1, 2, 3 and 4 as required by Permit 107517 Section 9.2.1. The intent of the RGMP is to dovetail with the Site-specific Groundwater Monitoring Programs to monitor for potential regional effects of mining activities on groundwater. Details of the 2016 monitoring program are provided in the following subsections.

2.1 Monitoring Locations and Rationale

A total of 37 existing monitoring, supply and/or domestic wells were included in the RGMP. These wells provide information on the regional groundwater understanding and have been selected for inclusion into the RGMP as they are existing locations that best characterize groundwater conditions and potential groundwater transport of CI to the valley bottom in Key Areas as defined by the Regional Conceptual Model. Monitoring locations were selected in the RGMP based on the following:

- > Wells completed in valley-bottom sediments upgradient of, within, or downgradient of a Key Area;
- > Wells in upland or tributary areas upgradient of Key Areas where potential for a groundwater transport pathway was identified by Site-specific Groundwater Monitoring Programs; and,
- A background or reference well to provide a suggestion of naturally occurring conditions in the main river valley-bottoms.

The wells selected for the RGMP are an integration of Site-specific Groundwater Monitoring Programs, the RDW and other ongoing sampling programs such as operational water supply sampling programs. Wells consist of dedicated monitoring wells, supply wells and domestic wells; general rationale for selection and limitations are described below:

- Dedicated groundwater monitoring wells are preferred for inclusion in the monitoring network because they provide a discrete, representative sample of groundwater and water level from the targeted formation. Where available, nested wells screened at two or more different depths were chosen to monitor the variation of water constituents with depth. Multi-level wells may also be used to assess the vertical hydraulic gradient and inform groundwater and surface water interactions;
- Supply wells can provide representative average groundwater quality over a much larger region compared to dedicated monitoring wells and can identify potential influences due to pumping. Water supply wells are not ideal for discrete sampling of groundwater due to longer well screens and mixing effects within the well's capture zone induced by pumping. Also, in most cases static water levels are not available which limits their application for monitoring groundwater levels. However, water supply wells were included in the RGMP in areas where dedicated monitoring wells do not exist;

Domestic wells selected in the RGMP are distal to operations and provide a representative indication of groundwater quality in areas that would be subject to recharge from surface water such as the Elk and Fording Rivers. Similar to supply wells, the use of domestic wells for monitoring is limited by the effects of long well screens and limited access to wellhead to measure static water level or conduct hydraulic testing. Also, continued monitoring of these wells is at the discretion of the private well owners; therefore, changes may occur to sampling plan based on desired participation of landowners. However, the current RDW Sampling Program allows quarterly access to domestic wells that are useful for monitoring groundwater quality in Key Areas where dedicated monitoring wells or supply wells are not available.

Review of selected locations and the supporting rationale for selection for monitoring will be performed as part of the September 30, 2017 RGMP submission.

Table B provides a list of locations associated with each Key Area, as well as information such as well type (monitoring, supply or domestic), associated operation and location UTMs. Table B also includes a description of each well location and a rationale indicating why these wells were included in the monitoring program. Drawings 635544-102 to -105 indicate the location of monitoring locations included in the RGMP in each Key Area in relation to MUs and permitted mine boundaries. Other monitoring wells not included in RGMP but presented on geological cross sections are also shown.

Additional details on rationale for well selection and information associated with well type (i.e., monitoring supply, or domestic well) are provided in the RGMP (SNC-Lavalin, 2015a). Borehole logs for the wells sampled as part of the RGMP are included in Appendix I.

Key Area	Well ID	Well Type	Management Unit (MU)	Operation	Easting (m)	Northing (m)	Setting	Location Description an	
Background	FR_HMW5	Monitoring	1	FRO	655476	5567514	Tributary valley-bottom	Background well upgradient of FRO in Henretta Creek Drainage. Selected to	
	FR_09-01-A	Monitoring	1	FRO	652601	5558300		Downgradient of South Kilmarnock Phase 1 and 2 Settling Ponds, Swift Cree	
1	FR_09-01-B	Monitoring	1	FRO	652601	5558300	Fording River valley-bottom	Key Area 1. Completed in coarse sediments within the Fording River Valley. FRO.	
	FR_GHHW ¹	Supply	1	FRO	653150	5557337	valley-bottom	Wells screened within coarse Fording River valley-bottom sediments at the s Cataract Creeks. Selected to monitor groundwater transport outside of mine	
2	LC_PIZDC1308	Monitoring	1	LCO	<u>658111</u>	<u>5541266</u>	Tributary	Multi-level overburden sentry well upgradient of Key Area 2 in the LCO Dry 0	
2	LC_PIZDC1307	Monitoring	1	LCO	<u>658111</u>	<u>5541266</u>	valley-bottom	planned upland and tributary valley-bottom development at LCO Phase II.	
	GH_POTW09	Supply	1	GHO	<u>654207</u>	<u>5545403</u>			
3	GH_POTW10	Supply	1	GHO	<u>653291</u>	<u>5545667</u>	Fording River	Located in the Fording River Valley Aquifer. Selected to monitor groundwate	
0	GH_POTW15	Supply	1	GHO	<u>653169</u>	<u>5545667</u>	valley-bottom	Located in the Fording River valley Aquiler. Delected to monitor groundwate	
	GH_POTW17	Supply	1	GHO	653592	5545620			
	GH_MW-ERSC-1	Monitoring	3	GHO	649081	5548704			Located near the southern boundary of Key Area 4. Selected as a potential s bottom sediments.
	GH_GA-MW-1	Monitoring	3	GHO	648019	5554750		Upgradient area of Key Area 4. Selected to monitor groundwater conditions the upgradient area of Key Area 4.	
	GH_GA-MW-2	Monitoring	3	GHO	648291	5552115	Elk River valley-bottom	Located downgradient of Wolfram Creek Settling Ponds. Selected to monitor side of GHO and evolution of groundwater quality in within the Elk River valle	
4	GH_GA-MW-3	Monitoring	3	GHO	648578	5550296		Located downgradient of Thompson Creek Settling Ponds. Selected to moni side of GHO and evolution of groundwater quality in within the Elk River valle	
	GH_GA-MW-4	Monitoring	3	GHO	648217	5552963		Located downgradient of Leask Creek Settling Ponds. Selected to monitor u of GHO and evolution of groundwater quality in within the Elk River valley bo	
	RG_DW-01-03	Supply	3	RG	649089	5545617		Located 5 km downgradient of Key Area 4. Selected as a potential sentry we bottom sediments downgradient of Key Area 4.	
	RG_DW-01-07	Domestic	3	RDW	649737	5534117		Located 15 km downgradient of Key Area 4. A sentry well to monitor ground Area 4.	
5/6	LC_PIZP1101	Monitoring	4	LCO	653960	5528263	Elk River valley-bottom	Southwest of the effluent ponds at the LCO Process Plant Site, upgradient o LCO Process Plant Site on the Elk River valley bottom in Key Area 6.	
7	EV_GV3gw	Monitoring	4	EVO	656580	5522255	Tributary valley-bottom	Nearest upgradient well of Key Area 7, within the Grave Creek valley bottom from drainages to the northeast of EVO.	
7	RG_DW-02-20	Domestic	4	RDW	652327	5522262	Elk River valley-bottom	Located 4 km downgradient of Key Area 6. Selected to monitor groundwater	
<u>_</u>	EV_LSgw	Monitoring	4	EVO	653274	5514731	Elk River	Located near the discharge of Lindsay Creek to the Elk River. Selected to m valley bottom, and Elk River valley bottom features along the western slope	
8	EV_OCgw	Monitoring	4	EVO	652480	5512671	valley-bottom	Located immediately downgradient of Lagoon D and adjacent to Otto Creek. upland, tributary valley bottom, and Elk River valley bottom features along the	

Table B: Groundwater Monitoring Locations by Key Area, Well Type, Associated Operation and Description

and Rationale

I to provide background regional groundwater conditions.

reek and Kilmarnock Creek, upgradient of Cataract Creek and ey. Selected to monitor groundwater near the Site boundary of

e southern border of FRO, downgradient of Swift, Porter and ne-permitted areas in Key Area 1.

Creek valley bottom. Selected to monitor potential influence of

ater conditions in Key Area 3.

I sentry well to monitor groundwater quality in Elk River valley-

is in Elk River valley-bottom groundwater conditions near GHO in

tor upland and tributary valley bottom influences from the west alley bottom in Key Area 4.

ponitor upland and tributary valley bottom influences from the west alley bottom in Key Area 4.

r upland and tributary valley bottom influences from the west side bottom in Key Area 4.

well to monitor groundwater within coarse Elk River valley

ndwater within the Elk River valley bottom downgradient of Key

t of Key Area 6. Selected to monitor potential influence from the

om. Selected to monitor upland and tributary valley-bottom input

ter in the Elk River valley bottom in Key Area 7.

monitor potential inputs to Key Area 8 from upland, tributary be of EVO.

ek. Selected to monitor potential inputs to Key Area 8 from the western slope of EVO.

Key Area	Well ID	Well Type	Management Unit (MU)	Operation	Easting (m)	Northing (m)	Setting	Location Description and
	EV_BCgw	Monitoring	4	EVO	655381	5509659	Michel Creek valley-bottom	Downgradient of the confluence of Bodie Creek and Michel Creek. Selected t Creek valley-bottom sediments in relation to potential inputs in Key Area 9.
	EV_MCgwS	Monitoring	4	EVO	653476	5511624		Located 1.8 km upgradient of the confluence of Michel Creek and the Elk Riv
	EV_MCgwD	Monitoring	4	EVO	653475	5511616		within Michel Creek valley-bottom sediments in relation to potential inputs in I
9	EV_BRgw	Supply	4	EVO	<u>655019</u>	<u>5510193</u>	Michal Crook	
	EV_RCgw	Supply	4	EVO	<u>655902</u>	<u>5509299</u>	Michel Creek valley-bottom	Michel Creek valley bottom upgradient and downgradient of Gate Creek and monitor spatial variation in groundwater quality within Michel Creek valley bot
	EV_WH50gw	Supply	4	EVO	<u>654963</u>	<u>5510219</u>	2	monitor spatial variation in groundwater quarky within whoter ereck varies bo
	RG_DW-03-01	Domestic	4	RDW	653073	5511973		Located 1.2 km upgradient of the confluence of Michel Creek and the Elk Riv within coarse Elk River valley bottom sediments downgradient from Key Area
10	EV_ECgw	Monitoring	4	EVO	660795	5506384	Tributary valley-bottom	Nearest upgradient well of Key Area 10, within Erickson Creek valley bottom. upland and tributary valley-bottom groundwater from the southwest portion of
	CM_MW1-OB	Monitoring	4	СМО	667957	5487526		
	CM_MW1-SH	Monitoring	4	CMO	667957	5487526	Michel Creek	Multi-level sentry well immediately downgradient of CMO and the confluence groundwater in the Michel Creek valley-bottom in Key Area 11.
11	CM_MW1-DP	Monitoring	4	СМО	667957	5487526	valley-bottom	
	RG_DW-07-01	Domestic	4	RDW	668407	5487454	, , , , , , , , , , , , , , , , , , ,	Immediately downgradient of CMO at the confluence of Michel Creek and Co conditions in the Michel Creek Valley bottom downgradient of CMO in Key Ar
	EV_ER1gwS	Monitoring	4	EVO	651374	5510955		Adjacent to the Elk River, 1 km downgradient of the confluence with Michel C
12	EV_ER1gwD	Monitoring	4	EVO	651379	5510952	Elk River	River valley-bottom sediments in Key Area 12.
12	RG_DW-03-04	Supply	4	RG	651836	5510611	valley-bottom	Located near the border of MU4 and MU5 in the Elk River valley bottom. Sele groundwater in the Elk River valley bottom at the southern extent of the Stud

Table B (Cont'd): Groundwater Monitoring Locations by key Area, Well Type, Associated Operation and Description

¹ Greenhouse water supply includes four wells (FR_GH_WELL1, FR_GH_WELL2, FR_GH_WELL3 and FR_GH_WELL4) which are collectively referred to as FR_GHHW. Easting and Northing are listed for FR_GH_WELL4. <u>Underlined italics indicate values are approximate. Approximate locations are estimated based on Drawings.</u>

Ind Rationale

ed to monitor spatial distribution of water quality within Michel

River. Selected to monitor spatial distribution of water quality n Key Area 9.

nd Bodie Creek confluence with Michel Creek. Selected to bottom in relation to Key Area 9.

River. Selected as a potential sentry well to monitor groundwater ea 9.

om. Selected as a sentry well to monitor potential influence of of EVO to Key Area 10.

ce of Michel Creek and Corbin Creek. Selected to monitor

Corbin Creek. Selected as a sentry well to monitor groundwater Area 11.

I Creek. Multi-level sentry well to monitor groundwater in Elk

elected as a sentry well to monitor deep overburden udy Area in Key Area 12.

2.2 Sampling Methodology

Sampling for the RGMP was completed by Teck or others and carried out in accordance with the 2013 edition of the British Columbia Field Sampling Manual (Clark, 2002), as required in Permit 107517, and Teck's Field Sampling Guidance documents for water sample collection and handling (TC_GW-01 and TC_GW-02) using well-specific methods based on well construction, type and recharge. Specific sampling methodology varied by program and well type. SNC-Lavalin reviewed site-specific 2016 annual monitoring reports for each operation (Golder, 2017; Hemmera, 2017; SRK, 2017; Teck, 2017a,b) and groundwater samples were collected in accordance with the 2013 edition of the British Columbia Field Sampling Manual (Clark, 2002). A summary of sampling methodology for each monitoring program is provided in Sections 2.2.1 to 2.2.5 below. Teck provided details relating to the sampling methodology for the 2016 RDW program, which is summarized below in Section 2.2.6.

2.2.1 Fording River Operations (FRO)

Manual water elevation measurements (i.e., water level tape) were used to measure groundwater elevation. There is a level logger deployed at FR_HMW5 however Teck was not able to retrieve the barologger (due to frozen conditions in the well); therefore FR_HMW5 level logger data from 2016 could not be provided. Samples collected from FR_09-01-A, FR_09-01-B and FR_HMW5 were collected using a peristaltic pump. Samples collected from supply well FR_GHHW (includes FR_GH_WELL1, FR_GH_WELL2, FR_GH_WELL3 and FR_GH_WELL4); were collected from a distribution point (i.e., faucet) within the water system for Q1, Q2 and Q3 (consistent with previous samples from this location). However, during Q4, the FR_GHHW well pumps were non-operational and it was not possible to collect a sample from the distribution point; instead, the Q4 samples were collected from FR_GH_WELL2 using a peristaltic pump (Teck, 2017a).

2.2.2 Greenhills Operations (GHO)

Water levels were manually measured from the top of the well casing using a water level tape. Level loggers were also deployed at select wells including GH_GA-MW-1, GH_GA-MW-2 and GH_GA-MW-3. Prior to sampling, wells were purged using a Geosub submersible pump with dedicated polyethylene tubing. The pump was run for several minutes at each well prior to sampling to minimize cross contamination between each sample location. The wells were purged at a rate of less than 1 L/min depending on purging duration and stability of parameters. Wells were sampled after the field measured parameters had stabilized. Field parameters (pH, temperature, electrical conductivity) were measured using a calibrated YSI Pro-DSS (Hemmera, 2017).

2.2.3 Line Creek Operation (LCO)

Manual water elevation measurements (i.e., water level tape) and level loggers (deployed at LC_PIZDC1307, LC_PIZDC1308 and LC_PIZP1101) were used to measure groundwater elevation. Wells were purged using a low-flow pump until field parameters (pH, temperature, turbidity, dissolved oxygen and electrical conductivity) stabilized which was monitored with a calibrated YSI Pro-Plus multi-parameter instrument, prior to sample collection (Golder, 2017).

2.2.4 Elkview Operations (EVO)

Both manual water elevation measurements (i.e., water level tape) and level loggers were used to measure groundwater elevation; all monitoring wells from EVO included within the RGMP contained level loggers, with the exception of EV_ER1gwD. Level loggers were set to record hourly pressure and temperature measurements; pressure measurements were corrected using barometric pressure (with a barologger). Wells were purged until field parameters stabilized (conductivity, dissolved oxygen, pH, oxidation-reduction potential, turbidity and temperature). Field parameters were recorded once stable, prior to sampling. The specific sampling method selected for each monitoring well location was determined based on well construction, type and recharge characteristics (Teck, 2017b).

2.2.5 Coal Mountain Operations (CMO)

Water level measurements are collected manually using a Heron – Dipper T graduated water level tape. Sampling of all wells was carried out using a portable bladder pump (i.e., Geotech) and disposable bladders. Water was purged from the well at a rate low enough to avoid (when possible) changes in water level and minimize increases in turbidity. Water was purged from the well until field parameters stabilized which was monitored with a multi-parameter meter (i.e., YSI 556) and a turbidity meter (i.e., Hach 2100Q) (SRK, 2017).

2.2.6 Regional Drinking Water Sampling Program (RDW)

In 2016, sampling of RG_DW-series wells from the RDW was completed by Teck. Teck indicated sampling methodology was as follows:

- > Where possible, the sample port used in the initial drinking water evaluation or previous sampling events was used to collect the sample;
- Prior to collection of samples, the tap or valve at the sample location was opened for a minimum of five minutes to purge water through the distribution system; the objective of the purging was to obtain samples representative of the water source and not influenced by the distribution system;
- Water quality parameters (pH/electrical conductivity/temperature) were monitored until stable readings were observed. Once the stabilized water quality parameters were recorded, the flow was reduced to minimize splashing and samples were collected into laboratory supplied bottles.

The Sparwood Municipal Supply Well (RG_DW-03-04) is considered part of the RDW; however, this well was sampled monthly by the District of Sparwood during Q1, Q2 and Q3. Teck sampled RG_DW-03-04 during Q4 following the same sampling methodology outlined above for RG_DW-series wells.

2.3 Sample Handling, Shipment and Analysis

Sample bottles and preservatives were provided by the third-party analytical laboratory, ALS Environmental Laboratories (ALS). Sample bottles were certified clean and nitrile gloves were worn by the samplers. Samples collected for dissolved parameters were filtered using an in-line filter, with the exception of the RDW which used a syringe filter. Samples requiring preservation were preserved in the field. Samples were shipped in ice-chilled coolers following chain-of-custody procedures.

Lab analyses for all groundwater samples were completed by ALS in Burnaby, British Columbia and Calgary, Alberta. ALS is certified by the Canadian Association for Laboratory Accreditation and follows the procedures described in British Columbia Laboratory Methods Manual for the Analyses of Water, Wastewater, Sediment, Biological Materials and Discrete Ambient Air Samples (Horvath, 2005).

2.4 Monitoring Specifications in the RGMP

The RGMP (SNC-Lavalin, 2015a) provided details and rationale on sampling frequency and the analyte list as summarized below.

2.4.1 Sampling Frequency

The RGMP specified quarterly sampling, as follows:

- Winter (First Quarter Q1): January, February, March;
- > Spring (Second Quarter Q2): April, May, June;
- Summer (Third Quarter Q3): July, August, September; and
- > Fall (Fourth Quarter Q4): October, November, December.

A summary of wells not sampled each quarter of 2016 is provided in Section 2.5.

2.4.2 Analyte List

The RGMP indicated groundwater will be analyzed for select constituents based on the core list of general water quality analytes provided in Table 2 of the BC MoE's (2016b) Water and Air Baseline Monitoring Document for Mine Proponents and Operators and Permit 107517 Table 26. The minimum detection limits for each parameter will be suitable for comparison to the applicable standards and/or guidelines. Analyses for dissolved metals was specified in the RGMP to prevent misrepresentation of the mobile concentrations of constituents due to increased turbidity, which may occur as the result of sampling techniques, well construction, and/or geological formation (i.e., clay or silt bearing formations).

2.5 Modifications to Regional Groundwater Monitoring Program

A summary and discussion of modifications to the program outlined in the RGMP (SNC-Lavalin, 2015a) is provided below.

2.5.1 Site-specific Programs

Groundwater levels were monitored at all locations during all quarters except where data cannot be collected (from supply or domestic wells). Quarterly samples were collected from all wells included in the RGMP with the exception of the Q1 sample from EV_ECgw (located in Key Area 10) due to a frozen well.

Samples from site-specific programs were submitted for all parameters on the analyte list except field conductivity which was not recorded at samples collected at EVO (during Q1 and Q2). The absence of field conductivity values does not impact the overall quality or interpretation of the data.

2.5.2 Regional Drinking Water Sampling Program (RDW)

RG_DW-series wells were sampled on four occasions in 2016; however, the first sample was collected in late May/early June and therefore samples were not collected during the Q1 period (i.e., January to March). Teck indicated that going forward an effort will be made to collect samples four times per year and within each quarter. The RG_DW-series wells were sampled for a limited number of parameters, as outlined in the RDW and RGMP, including:

- > Field parameters including pH, temperature, electrical conductivity;
- > Alkalinity, sulphate, nitrate-N, nitrite-N, chloride, hardness; and
- > Total and dissolved selenium, total cadmium, calcium, magnesium, potassium and sodium.

Parameters analysed have been limited to those considered to be either mine-related indicators or major ions; as such, not all of the parameters listed in the RGMP were analyzed. In the 2015 RGMP report SNC-Lavalin recommended continued sampling with the limited parameters outlined as part of the RDW.

During Q1, Q2 and Q3, the Sparwood Municipal Supply Well (RG_DW-03-04) which was sampled by the Town of Sparwood, was only sampled for total selenium. Starting in Q4, Teck sampled RG_DW-03-04 for the same limited parameters listed above. SNC-Lavalin recommends continued sampling of these parameters for all RG_DW-series wells, consistent with the RDW. A review of the how the RDW program supports the RGMP will be performed as part of the September 30, 2017 RGMP submission.

2.6 QA/QC Program

The RGMP included a Quality Assurance/Quality Control (QA/QC) program for the analysis of groundwater samples to be implemented in accordance with Permit 107517, the British Columbia Field Sampling Manual, and Teck's internal guidance documents. A QA/QC program specific to the RGMP is not yet in place; however, each site conducted a QA/QC program which is described in site-specific reports and summarized in Section 2.6.1. QA/QC results of RDW Sampling Program are summarized in Section 2.6.2.

2.6.1 Site-specific Programs

Results of each site-specific QA/QC program was summarized in each annual report (Golder, 2017; Hemmera, 2017; SRK, 2017; Teck, 2017a,b). Each operation identified: shipping and handling issues; summarized results of relative percent differences (RPDs) from duplicate samples; and any detections of trip blanks or field blanks. Results of the QA/QC program for each of the site-specific groundwater monitoring programs is summarized in the following sections.

2.6.1.1 Shipping and Handling Issues

A summary of shipping and handling issues from each of the site specific annual groundwater monitoring programs is provided in Table C below.

Operation	Key Area	Area Well ID		Issue	
FRO	Background FR_HMW5		Q2	Total Dissolved Solids (TDS) hold time exceeded due to shipping delay	
FRO	1	FR_GHHW	Q2	TDS hold time exceeded due to shipping delay	
GHO	4	GH_GA-MW-1 GH_GA-MW-2 GH_GA-MW-3 GH_GA-MW-4	Q3	Laboratory reported temperature of samples collected in August was greater than acceptable limit of 10 °C	
EVO	8	EV_OCgw	Q2	TDS hold time exceeded due to laboratory error	
EVO		EV_MCgwD	Q2	TDS hold time exceeded due to laboratory error	
EVO	9	9		Q2	TDS hold time exceeded due to laboratory error
EVO	0	EV_MCgwS	Q4	Sample for dissolved mercury was not submitted in correct container with HCI preservative.	
EVO	10	EV_ECgw	Q2	TDS hold time exceeded due to laboratory error	
EVO	12	EV_ER1gwD EV_ER1gwS	Q2	TDS hold time exceeded due to laboratory error	

Table C: Summary of Shipping and Handling Issues

Teck (2017a) provided the following related to the shipping delay of FRO samples:

"FRO continues to plan its sampling events, to the extent feasible, to increase the likelihood of same day shipping to Sparwood and subsequent next day delivery through the Cranbrook International Airport to ALS Environmental in Burnaby. As a result, we have seen a significant decrease in hold time exceedances throughout 2016. In addition, Teck has initiated a program to evaluate the efficiencies of using a more local lab (ALS Environmental Calgary) in order to further reduce the potential for hold time exceedances. Teck will evaluate lab performance and review lab preference upon completion of this program. Initial results of this program have indicated improvement as shown by the absence of hold time exceedances since the beginning of the program in December."

The temperature exceedance reported for GHO samples was not expected to influence the interpretation of results (Hemmera, 2017). The hold time exceedances of TDS at EVO are attributable to laboratory error and are not expected to influence the interpretation of results. Teck will endeavour to utilize the correct bottles and preservatives for sampling programs (to avoid the issue identified above for the Q4 sample from EV_MCgwS).

2.6.1.2 Duplicate Samples

Duplicate samples were collected at a frequency of approximately 1 per 10 samples, during site-specific sampling events to assess the precision of the field sampling methodology and consistency of laboratory analysis. Duplicate samples were evaluated by calculation of the relative percent difference (RPD) of the concentration between the sample and duplicate.

RPD = (original value - duplicate value)/[(original value +duplicate value)/2] *100

RPDs were calculated for parameters where at least one of the samples was greater than five times the laboratory detection limit (BC MOE 2015). A RPD of less than 20% for metals and inorganics is considered as an acceptable level of precision per BC MOE Water and Air Baseline Monitoring Guidance Document for Mine Proponents and Operators (2016). Consistent with reporting in site-specific reports, where the result was close to the detection limit, the acceptable RPD was modified as follows:

- RPD of < 20% = Pass
- > RPD of > 20% with results < 5 times the detection limit = Pass-1
- > RPD of > 20% and <50% with results > 5 times the detection limit = Pass-2
- > RPD of >50% with results > 5 times the detection limit = Fail

Table D below summarizes the number of sample duplicates for wells included in the RGMP and any RPDs above acceptable levels (RPD > 50% with results > 5 times the detection limit).

Operation	Number of Duplicates Included in the RGMP	Summary of RPDs above Acceptable Levels
FRO	2	No RPD values above acceptable level.
GHO	2	RPD values above acceptable level for Total Suspended Solids (TSS) and laboratory turbidity from the sample collected from GW_MW-ERSC-1 on 2016-11-14.
LCO	0	Four duplicate samples were collected as part of the 2016 annual groundwater monitoring program at LCO, however no duplicate samples were collected from wells included in the RGMP. Readers are referred to Golder (2017) for details.
EVO	4	RPD of laboratory conductivity above acceptable levels from Q4 sample collected at EV_OCgw. Teck (2017b) noted the field measured conductivity at this location was consistent with historical data.
СМО	2	RPD of laboratory turbidity above acceptable levels from the Q2 sample collected at CM_MW1-OB.

Table D: Summary of Duplicate Sample Results above Acceptable Levels

Review of duplicate sample results from each operation indicated that at select operations (GHO, EVO and CMO) TSS, laboratory conductivity or laboratory turbidity exhibited RPDs above acceptable levels. It is likely that variability in these parameters is attributable to entrainment of sediment accumulated in the bottom caps of monitoring wells during sampling. Sediment disturbance can be minimized by ensuring the pump or tubing intake is > 10 cm from the bottom of the well and the purging/sampling rate is decreased.

2.6.1.3 Field Blanks

In 2016, field blank samples were collected as part of each site-specific groundwater sampling program. Field blank samples are collected at the sampling site during normal sample collection using de-ionized water which was filtered and preserved using the same method as groundwater samples. Field blanks provide information on contamination resulting from the handling technique and atmospheric contamination. A summary of field blank sample results is provided in Table E.

Table E: Summary of Field Blank Sample Results

Operation	Number of Field Blanks and Summary of Results
FRO	Four field blank samples were collected in 2016 with all sample results below detection limit.
GHO	Field blanks were collected in all quarters except Q2. Results for field blanks were non-detectable for wells included in the RGMP. Readers are referred to Hemmera (2017) for details related to detections of field blanks collected at other locations not included in this report.
LCO	Four field blanks were collected throughout 2016. One field blank (location where bottle filled unknown) contained NO3-N (0.0079 mg/L) above the detection limit of <0.005 mg/L and total magnesium (0.028 mg/L) above the detection limit of < 0.10 mg/L.
EVO	Six field blanks were collected during 2016. Field blank samples were not collected in Q1 2016 due to sample planning oversight. On May 18 and August 23, total aluminum and ortho-phosphate were detected in the field blank sample, respectively. Teck (2017b) concluded that sample results on this day are consistent with historical values; therefore, these detections were not considered to be significant to the 2016 groundwater monitoring program.
СМО	Four field blanks were collected. A field blank was collected during the Q3 sampling survey which had parameters above detection limits; however, the sample was collected from a location not included in the RGMP. Readers are referred to SRK (2017) for additional details.

SNC-Lavalin reviewed field blank results from each operation and recommends that Teck reviews the water used (ultra-pure de-ionized water is recommended) for future field blanks to avoid parameter detection in field blanks. For the field blank collected from LCO, it is noted that the detections are three and four orders of magnitude lower than the lowest applicable groundwater standard for nitrate-N and total magnesium and are not considered to be a concern for data reliability.

2.6.1.4 Trip Blanks

Trip blanks were collected as part of some of the 2016 site-specific annual monitoring programs. Trip blanks are ordered from the lab and are unopened throughout the sampling trip and are meant to detect any widespread contamination from the container and preservative during transport and storage. A summary of trip blank sample results are provided in Table F.

Operation	Number of Trip Blanks and Summary of Results
FRO	Four trip blank samples were conducted in 2016 with detections occurring in the Q2 and Q4 samples. The Q2 sample produced results above the detection limits for total alkalinity (as CaCO3). The Q4 sample produced a result above the detection limit for nitrogen, ammonia (as N). The detections noted above were at, or less than five times the method detection limit reported by the laboratory, and therefore Teck (2017a) did not consider the detections to be a concern for data reliability.
GHO	Will be incorporated going forward
LCO	Will be incorporated going forward
EVO	Four trip blank samples were collected throughout Q3 and Q4 2016 (started collecting trip blanks at EVO in Q3). On Aug 22, 2016 the trip blank sample detected Total Alkalinity (as CaCO3). This detection was considered by Teck (2017b) during interpretation of the groundwater monitoring data.
СМО	Will be conducted and incorporated going forward.

Table F: Summary of Trip Blank Sample Results

Detections of trip blanks were considered as part of the data interpretation but were not considered to affect the data reliability. SNC-Lavalin notes that generally detectable concentrations are not expected in trip blanks and Teck should review QAQC procedures related to trip/field blanks to reduce the possibility that going forward these samples do not contain detectable parameters.

2.6.1.5 Turbidity Threshold

SRK (2017) reported that one sample from CMO included in the RGMP (CM_MW1_SH collected on June 22) was measured to contain a turbidity value of 382 NTU, greater than the threshold of 50 NTU. This well was re-sampled on June 16, 2016 with acceptable results for turbidity in Q2.

2.6.2 Regional Drinking Water Sampling Program (RDW)

A summary of QA/QC results for the RG_DW-series wells is provided below:

- All Certificates of Analysis were reviewed by SNC-Lavalin. No QA/QC issues were identified by the laboratory with the exception of hold time exceedances identified for nitrate and nitrite for RG_DW-02-20 and RG_DW-07-01 during the Q2 sampling event. Nitrate and nitrite concentrations from 2016 at these wells were similar to 2015 results, and as such the exceedances of hold times are not considered to be an issue; and,
- One field duplicate was collected in 2016 from RG_DW-series wells included in the RGMP. The duplicate was collected at RG_DW-02-20 and calculated RPD values were below 20%. On trip blank and one field blank were also collected and all results were below the detection limit.

2.6.3 Summary of QA/QC Results

Data from site-specific groundwater monitoring programs were considered acceptable with the exception of one sample (CM_MW1-SH from June 22, 2016) from CMO which was not used for interpretation based on elevated turbidity (i.e., greater than 200 NTU). Detectable concentrations were measured in field and trip blank samples which were considered as part of the data interpretation but were not considered to affect the reliability of results. For future sampling programs, SNC-Lavalin recommends Teck review their methodology used to collect these samples and ensure that ultra-pure de-ionized water is used.

In addition, we note that during data analysis of groundwater levels, some discrepancies between level logger data and manual water level measurements became apparent. In order to increase the quality of the water level data, the following are suggested:

- > collecting concurrent (before and after) manual water level measurements each time a water level logger is deployed or removed from a well and prior to each sampling event;
- > re-deploying level logger at exact same depth in monitoring well after it was removed for downloading; and
- > using a barometer and manual water level measurements to compensate and correct the data.

3 Groundwater Quality Screening Criteria

Groundwater quality data were screened against a number of different criteria based on applicable receptors. A technically-based screening process was developed in the Synthesis Report that took into consideration provincial water quality criteria and guidance, Permit 107517 specifications, and applicable receptors (SNC-Lavalin, 2015a, 2015b). This screening process was prescribed in the approved RGMP and was used for interpretation purposes in the 2016 Annual Report, with some modifications to the secondary screening process, receptors considered and modifications to secondary screening are summarized below.

3.1 Primary Screening Criteria (Provincial Guidance)

The primary screening approach developed for the RGMP is consistent with regulatory guidance, including the updated MoE Technical Guidance 6 (TG 6) Water and Air Baseline Monitoring Guidance Document for Mine Proponents and Operators (BC MoE, 2016b) for EMA Applications. The following briefly summarizes the "Protection of Groundwater Quality" Section listed in *Appendix 8, Hydrogeology Rationale*:

- Resource development should be protective of all existing or reasonably expected future uses of groundwater.
- > Unless other evidence is provided, drinking water use and freshwater aquatic life are assumed to be default uses of groundwater, whether existing or reasonably expected in the future.
- The mining project must not result in a significant adverse impact to groundwater or surface water quality at any time in areas outside the initial dilution zone (this zone will need to be identified on a site-specific basis). The following will be taken to constitute significant adverse impacts:
 - Substances in groundwater exceeding the standards set out in the *Contaminated Sites Regulation* (CSR) (BC MoE, 1996) for drinking water use and freshwater and marine aquatic life use. The drinking water standard will not apply to substances for which the background groundwater concentration exceeds the applicable standard.
 - Substances in surface water exceeding established water quality concentration guidelines (or site-specific objectives) for protection of aquatic life.
- Reasonable use of groundwater with respect to water quality requires consideration of background water quality and both existing and reasonably expected future contaminant sources.

The primary screening process for the 2016 Annual Report considered the protection of groundwater quality for the following receptors:

- Human Health groundwater used for drinking water for current and future use as a default use, consistent with TG 6. Primary screening of groundwater data for protection of drinking water was conducted against the applicable CSR Drinking Water (DW);
- Freshwater Aquatic Life groundwater discharging to aquatic environments as a default use, consistent with TG 6. No dilution zone was applied which is considered to be a conservative approach. Primary screening of groundwater data for protection of aquatic life was conducted against CSR Aquatic Life (AW) standards. The exception to this was for wells located within 10 m from a receiving surface water body where the concentrations were screened against the British Columbia Water Quality Guidelines (BCWQG; BC MoE, 2016a). The application of BCWQG to wells within

10 m of the high water mark is consistent with MoE Technical Guidance 15 (TG 15) which outlines an approach to application of concentration limits for protection of aquatic receiving environments (BC MoE, 2013); and

Irrigation and Livestock Watering - groundwater for livestock or irrigation watering use. This use was not described in Appendix 8 of TG 6; however, these uses have been applied to be conservative as livestock and irrigation water supplies are sourced from groundwater wells in some locations. Primary screening of groundwater data protection of irrigation and livestock watering was conducted against CSR Irrigation (IW) and Livestock (LW) standards.

As described in the Synthesis Report and approved RGMP, this screening process allows for water to be compared to uniform criteria for groundwater protection across the Elk Valley (i.e., CSR standards and Approved and Working BCWQG), as applicable.

3.2 Secondary Screening

In some MUs, existing concentrations of CI in surface water can be higher than BCWQG and potentially above CSR standards. Due to the high degree of connection between groundwater and surface water as described in the Regional Conceptual Model (SNC-Lavalin 2015b), there is a potential for elevated concentrations of CI in groundwater to be a result of recharge of groundwater from surface water.

A secondary screening step was developed to provide a comparison to area-based surface water quality requirements laid out in Permit 107517 (SNC-Lavalin, 2015a, 2015b). The intention of the secondary screening criteria was to provide context in relation to Teck's operational surface water quality requirements, as well as to provide a technically-based framework for regional evaluation of groundwater as it related to the protection of aquatic life in the Elk Valley (i.e., the area-based Site Performance Objective [SPO] and Compliance Point [CP] concentrations specified in Permit 107517). As such, geographically relevant CPs and SPOs concentration values were utilized for the secondary screening process. Secondary screening for selenium also included comparison to Health Canada's Guidelines for Canadian Drinking Water Quality (GCDWQ).

The secondary screening was intended to be performed for CI when concentrations were above primary screening criteria, and only for the specific parameter and pathway (i.e., drinking water or aquatic life) that exceeded the primary criteria; however, recent review of current BCWQG for aquatic life suggests that secondary screening levels (i.e., CP and SPO) are generally lower than BCWQG for aquatic life for nitrate, sulphate and cadmium. The exception to this is for selenium, for which the CP and SPO are consistently higher than BCWQG or CSR standards. As indicated above, a full review of primary and secondary screening steps will be performed for the September 30, 2017 submission of the RGMP.

As a secondary screening step in the 2016 Annual Report, groundwater concentrations for selenium were screened against Permit 107517 SPO and CP. CP and SPO criteria in the main river systems (i.e., Elk and Fording Rivers) differ along the flow path, and as such different groundwater criteria should be applied accordingly. There are no CP or SPO concentrations for drinking water in Permit 107517. However, as a secondary screening step for drinking water use, groundwater concentrations for selenium was screened against the Health Canada's Guidelines for Canadian Drinking Water Quality (GCDWQ; Health Canada, 2014) to provide context in relation to recent toxicological studies. The GCDWQ for selenium was updated in October 2014 from 10 to 50 µg/L. Secondary screening for selenium was completed only where sample concentrations exceeded primary screening criteria.

The CP and SPO criteria for selenium that apply to the approved RGMP are shown below in Table G.

Table G: Secondary Groundwater Screening Criteria for Aquatic Life

Cl (Monthly Average Limits)		Con	npliance Poir	Site Performance Objectives					
	Elk River	Fordin	g River	Michel	Creek		Fording River		
	GH_ERC E300090	GH_FR1 E200378	FR_FRCP1 E300071	CM_MC2 E258937	EV_MC2 E300091	GH_ER1 E206661	EV_ER4 0200027	EV_ER1 0200393	GH_FR1 0200378
Selenium ¹ (µg/L)	15	80	130	19	28	19	23	19	63 ²

Notes: 1) Criteria to be applied to dissolved metals only as per the approved RGMP. 2) SPO is effective December 31 2019

Not shown in the table is the updated GCDWQ for selenium of 50 μ g/L. This will be applied to all samples exceeding the DW primary screening as a secondary screening criteria for drinking water.

4 Results and Discussion

Results are presented by Key Area, as defined in the Synthesis Report (SNC-Lavalin, 2015b). Drawings with well locations and tables summarizing results above screening criteria are referenced throughout the text below. Graphs which show temporal trends, including select surface water data, are also referenced and provided in Appendix II. Surficial and bedrock geology is presented on Drawings 635544-106 to -109. To fulfill permit requirement *(ii)* listed in Section 1, cross sections showing well installation, stratigraphy and groundwater elevations are presented on Drawings 635544-110 to -114 and focus on Key Areas where the distribution of monitoring well allows for representative cross sections perpendicular and parallel to groundwater flow in the valley bottom. For some cross sections, strict adherence to generations of sections perpendicular and parallel to groundwater flow was not possible given monitoring well distribution and complexities of local scale groundwater flow regime. The cross sections locations are shown on Drawings 635544-102 to -105.

Drawings 635544-115 and -116 show the spatial distribution of groundwater elevations and conceptual groundwater flow path through valley-bottom aquifers. Groundwater elevations prior to sampling for the fourth quarter were selected to include on Drawings 635544-115 and -116 to provide regional context. Drawings 635544-117 to -120 show the spatial distribution of groundwater quality results for nitrate, selenium and sulphate in the Study Area.

4.1 Background (Reference) Station FR_HMW5

A background well installed in the valley-bottom was specified in the RGMP. Information from this well can give a reference for naturally occurring conditions since it is located upgradient of the mining footprint at FRO. Monitoring well FR_HMW5 is completed in an alluvial gravel unit in the Henretta Creek valley-bottom, a tributary of the upper watershed of the Fording River.

4.1.1 Groundwater Levels

In 2016, manual water level measurements from FR_HMW5 (Table 2) were used to assess seasonal water levels. Groundwater elevations from January 2015 to December 2016 were plotted on a time-series graph and included in Appendix II (Graph B-1). Continuous groundwater level data were available from January to June of 2015 (presented in the 2015 annual water level report); as shown on Graph B-1, there is an approximate 0.8 m discrepancy between manual water level measurements and data logger data. The continuous water level data were included on Graph B-1 as the data can still be used to assess relative changes in groundwater levels. The 2016 level logger data were not presented since it was not barometrically corrected (the barologger could not be retrieved from a frozen well).

The maximum fluctuation of groundwater elevation in 2016 was approximately 0.14 m. In 2015, groundwater elevations at FR_HMW5 exhibited a seasonal trend with generally higher groundwater elevations during the spring from April until the end of June (based on continuous groundwater level data); limited 2016 groundwater elevations (from manual measurements) generally supported this trend observation. Groundwater elevation prior to sampling for the fourth quarter was selected and shown on Drawing 635544-115 to provide regional context.

4.1.2 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening). Groundwater quality results were below primary screening criteria for all of the samples collected. Nitrate and dissolved cadmium were below the laboratory reported method detection limit (MDL) in all samples. Sulphate was above the MDL and concentrations were an order-of-magnitude lower than in downgradient monitoring locations at FRO. Dissolved selenium was below the MDL during Q1 and Q3 (< $0.05 \mu g/L$) and slightly above the MDL in Q2 ($0.054 \mu g/L$). The Q4 dissolved selenium concentration was considerably higher ($3.04 \mu g/L$); this result is considered anomalous as it is more than 50 times the previous sample concentrations at this location and no upgradient sources are known. In contrast, concentrations of other CIs were consistent throughout the monitoring period with no similar increases noted in Q4.

4.1.3 Discussion

All CIs concentrations (except for Selenium concentration in Q4) in background well FR_HMW5 were below or near the MDL and therefore no trend analysis for groundwater quality parameters was performed. Since concentrations of all parameters were below primary screening criteria, monitoring well FR_HMW5 was considered an appropriate reference monitoring well for the RGMP.

4.2 Key Area 1: Fording River Valley-bottom Downgradient of FRO, Cataract and Porter Creeks

This area was identified as it is the focal point for the majority of upland and tributary valley groundwater flow to the Fording River valley-bottom near the FRO and GHO property boundaries (Drawing 635544-102). The valley-bottom groundwater in this area receives recharge from the Fording River as well as infiltration from the South Tailings Pond, and South Kilmarnock Phase 1 and 2 settling ponds. This area may be receiving mine-influenced constituents (i.e., nitrate, and selenium) from waste rock dumps in the Kilmarnock, Swift, Cataract and Porter Creek watersheds, as well as from surface water recharge from the Fording River and other tributaries. The groundwater flow direction in the Fording River valley-bottom is inferred to be to the southeast, parallel or sub-parallel to the river.

Wells included in the 2016 RGMP for Key Area 1 are two monitoring wells: FR_09-01-A/B (nested) and the greenhouse water supply wells which consist of four wells (FR_GH_WELL1, FR_GH_WELL2, FR_GH_WELL3 and FR_GH_WELL4), collectively referred to as FR_GHHW. FR_09-01-A/B and FR_GHHW were selected to monitor valley-bottom groundwater near the southern site boundary of FRO.

4.2.1 Groundwater Levels

Manual water level measurements were provided for FR_09-01-A/B for all four quarters in 2016 (Table 2). Groundwater elevations from May 2015 to November 2016 at those wells were plotted on a time-series graph and included in Appendix II (Graph 1-1). Groundwater elevations at both wells followed a seasonal trend with higher groundwater elevations recorded in June-July. Water levels at both FR_09-1A/B varied by 5 m between January 2016 and June 2016. Based on the groundwater elevations recorded at the FR_09-01-A/B, the vertical groundwater flow is inferred to be downwards from the shallow sandy gravel unit towards the deeper gravel unit. The calculated vertical hydraulic gradient varied from -0.05 to -0.15 in 2016 (Appendix III). Groundwater elevations for the fourth quarter of 2016 are shown on Drawing 635544-115 to provide regional context.

No groundwater levels were recorded at FR_GHHW as this is a supply well, consistent with the RGMP.

4.2.2 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening). A summary of the results above primary screening criteria for Key Area 1 are presented in Table H below.

Parameter ^{1,2}	FR_09-01-A				FR_09-01-B				FR_GHHW ³			
Parameter	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Nitrate Nitrogen	DW	DW	DW	DW	DW	DW	DW	DW	DW	DW	DW	DW
Selenium	AW IW	AW IW	AW IW	AW IW	AW IW	AW IW	AW IW	AW IW	AW IW	AW IW	AW IW	AW IW
Selenium	LW DW	LW DW	LW DW	LW DW	DW	LW DW	LW DW	LW DW	LW DW	LW DW	LW DW	LW DW

Table H: Summary of Results above Primary Screening Criteria for Key Area 1

Notes: 1.) Dissolved parameter unless otherwise indicated; and 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) Q4 sample from FR_GHHW was collected from FR_GH_WELL2.

Groundwater quality at FR_09-01-A/B and FR_GHHW was above primary screening criteria concentrations in all samples for nitrate (DW) and dissolved selenium (AW, IW, DW and LW) in all samples except at FR_09-01-B in Q1 where concentrations were below the LW criteria.

Secondary screening was completed where sample concentrations exceeded primary screening criteria for selenium. Table I shows the summary of results above secondary screening criteria for Key Area 1. Most samples were above secondary SPO and DW criteria and a few samples were also above CP criteria.

Parameter ^{1,2}	FR_09-01-A					FR_0	9-01-B		FR_GHHW			
	Q1	Q2	Q3	Q4	Q1	Q2	Q 3	Q4	Q1	Q2	Q3	Q4
Selenium	SPO DW	SPO DW	SPO DW	CP SPO DW	-	SPO DW	SPO DW	SPO DW	CP SPO DW	CP SPO DW	SPO DW	SPO DW

Table I: Summary of Results above Secondary Screening Criteria for Key Area 1

Notes: 1.) '--' denotes result below secondary screening criteria; and 2.) Secondary screening criteria are Site Performance Objective (SPO), Compliance Point (CP) and GCDWQ for drinking water (DW).

4.2.3 Discussion

Discussion of trends in groundwater quality in Key Area 1 focuses on dissolved selenium and nitrate which are the CIs above screening criteria. Drawing 635544-117 shows the spatial distribution of the concentrations of dissolved selenium, sulphate and nitrate for wells in Key Area 1. Time-series plots of dissolved selenium and nitrate from the selected wells located in Key Area 1 are shown in Appendix II (Graphs 1-2 and 1-3). For comparison purposes, surface water concentrations measured in Fording River at surface water station FR_FRCP1 and in Kilmarnock Creek at surface water station FR_KC1 were added to Graphs 1-2 and 1-3.

Groundwater concentrations of dissolved selenium and nitrate were generally the highest at FR_GHHW during the spring (Q2), while no distinct seasonal trend in the concentrations of dissolved selenium and nitrate can be identified for FR_09-01-A/B. Concentrations of dissolved selenium and nitrate at FR_09-01-A/B increased throughout the 2016 monitoring period with the highest concentrations measured in November 2016. Groundwater concentrations at FR_GHHW generally follow a seasonal trend comparable to surface water concentrations measured at surface water station FR_KC1. Concentrations are typically at their lowest in the summer, slowly increase throughout the year with maximum values in March/April and decrease in May. The low concentrations measured in surface water and groundwater are similar but the high concentrations measured are much less in groundwater. Except for some higher dissolved selenium concentrations measured in Fording River in winter 2015 and 2016, concentrations in groundwater at FR_GHHW are generally lower than the concentrations in Kilmarnock Creek but higher than concentrations in Fording River.

As indicated in the Synthesis Report, Fording River interaction with groundwater is dynamic in this area, (i.e., consisting of gaining and losing stretches). The greenhouse supply wells (FR_GHHW) are also intermittently pumped at low volumes and, as such, concentrations from FR_GHHW may be considered average groundwater concentrations in the valley-bottom aquifer. Comparison of pumping rates and groundwater at FR_GHHW and surface water chemistry suggested that the variability in concentration magnitude may be related to seasonal effects from upgradient surface water in Kilmarnock Creek (SNC-Lavalin, 2015c). The location of Kilmarnock Creek and the extent of the sand and gravel aquifer is shown on cross section A-A', a geological section of the Fording River valley-bottom in the direction of the groundwater flow (Drawing 635544-110).

The furthest downgradient monitoring points (FR_GHHW) reported selenium and nitrate above primary screening criteria. Selenium concentrations at FR_GHHW were also above secondary screening criteria for some sampling events. Discharge and mixing with Fording River surface water likely occurs between these points and the nearest downgradient monitoring points at GHO; however, these monitoring points are over 15 km downstream and the localized extents of CI in groundwater are not known. Delineation of localized affected groundwater as well as an understanding of local groundwater flow paths was identified in the Synthesis Report as a data gap.

4.3 Key Area 2: Fording River Valley-bottom Downgradient of LCO Dry Creek

This area was identified as it receives drainage from the LCO Phase II development in the LCO Dry Creek watershed, which is a tributary to the Fording River. The valley-bottom in the LCO Dry Creek watershed consists of a relatively thick till unit with little to no fluvial or glaciofluvial deposits. The till has a relatively low hydraulic conductivity, on the order of 10⁻⁷ m/s to 10⁻⁹ m/s. Monitoring wells LC_PIZDC1308 and LC_PIZDC1307 are shallow and deep wells installed in a colluvium/till and basal till, respectively. These wells are downgradient of any potential mine influence and are expected to identify any mine-related impacts to groundwater.

4.3.1 Groundwater Levels

Manual and continuous groundwater elevation data available for nested wells LC_PIZDC1308 (shallow) and LC_PIZDC1307 (deep) were reviewed and assessed for seasonal variability, vertical flow and long-term trends (manual values are presented in Table 2 and both manual and continuous data are presented on Graph 2-1). The data indicate a seasonal trend is apparent, with annual fluctuations in 2016

of 1.6 m and 4.4 in LC_PIZDC1308 and LC_PIZDC1307 respectively (based on continuous level data). In both 2015 and 2016 the highest groundwater levels were measured in June and the lowest elevations were measured in March. The inferred vertical groundwater flow at the nested well LC_PIZDC1308/1307 was consistently downwards in 2016 (based on continuous groundwater level data) and ranged in magnitude from -0.14 m/m to -0.025 m/m. The Q4 groundwater elevation measured at LC_PIZDC1308 and LC_PIZDC1307 is shown on Drawing 635544-115 to provide regional context.

4.3.2 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening). A summary of results above primary screening criteria for Key Area 2 is presented in Table J below.

Parameter ^{1,2,3}		LC_PIZ	DC1307		LC_PIZDC1308						
i didileter	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4			
Barium	DW	DW	DW	DW	-	-	-	-			
Molybdenum	IVV	IW	IVV	IW	-	-	-	-			

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) ' –' denotes result below primary screening criteria for given constituents.

Groundwater quality in LC_PIZDC1308 and LC_PIZDC1307 was below the primary screening criteria concentrations for all the CI; therefore, no secondary screening was performed. Groundwater concentrations were above primary screening criteria for dissolved barium (DW) and dissolved molybdenum (IW) for all the sampling events in LC_PIZDC1307. The concentrations of dissolved barium ranged from 1,360 to 1,430 μ g/L which was above CSR DW (1,000 μ g/L). The concentrations of dissolved molybdenum ranged from 30.8 to 32.0 μ g/L, which was marginally above the higher CSR IW (10-30 μ g/L). Since no drinking or irrigation wells are located in this area these constituents are not considered a concern.

4.3.3 Discussion

Key Area 2 was identified as an area where transport of CIs to the Fording River valley-bottom may be occurring due to the LCO Phase II development in the LCO Dry Creek watershed. There are no groundwater wells in the Fording River valley-bottom aquifer in this area; however, this data gap is addressed through monitoring of LC_PIZDC1308 and LC_PIZDC1307 located upgradient in the LCO Dry Creek drainage. Drawing 635544-117 shows the results of the screening process for dissolved selenium, sulphate and nitrate for samples collected in Key Area 2. Time series plots of dissolved selenium concentrations are shown in Appendix II (Graph 2-2). Groundwater guality in LC PIZDC1308 and LC_PIZDC1307 has historically been consistently below all primary screening criteria for the CIs; results from 2015 and 2016 are consistent with historical results. Concentrations in the shallow well (LC PIZDC1308) appear to follow a seasonal trend with higher concentrations measured in June. To assess groundwater and surface water interactions, selenium concentrations measured in groundwater at LC PIZDC1308 and LC PIZDC1307 were compared to concentrations in surface water in LCO Dry Creek (LC_DC1 and LC_DC3) (Appendix II; Graph 2-2). Selenium concentrations in groundwater at LC_PIZP1307 (deep well) and LC_PIZP1308 (shallow) were below detection limit or slightly above detection limit for all samples collected in 2016. Selenium concentrations have been relatively low and stable since December 2014 and are lower than concentrations measured in LCO Dry Creek. Based on

the monitoring results at LC_PIZDC1308 and LC_PIZDC1307 and the presence of till in the LCO Dry Creek drainage, a significant pathway for groundwater transport of CI to Key Area 2 does not appear to exist. The most significant pathway for effects of mine-contact water to the valley-bottom appears to be through surface water from LCO Dry Creek.

4.4 Key Area 3: Fording River Valley-bottom Downgradient of GHO Rail Loop and Greenhills Creek

This Key Area was identified as groundwater in the Fording River valley-bottom may be influenced by upland groundwater from GHO. The thickness of the Fording River valley-bottom sediments is approximately 70 m. Silt and clay units are generally present near surface with at least two evident underlying glaciofluvial gravel units: one at approximately 1,470 metres above sea level (masl) less than 10 m thick; and a deeper unit at approximately 1,455 masl approximately 20 m thick. For reference, cross-sections originally developed by Piteau (2012) and included in the Synthesis Report are included in Appendix IV. An alluvial fan associated with Greenhills Creek is present to the north.

The upper silt and clay units appear to be relatively continuous aquitards reducing the potential for vertical flow. These units also appear to be encountered in a new, deep well drilled in the Rail Loop area at GHO (Hemmera, 2017). The two deeper gravel units appear to be semi-confined or confined, and are relatively continuous along the strike of the valley. Monitoring location GH_POTW09 is completed in the upper gravel unit and GH_POTW17 is completed at the margin of the alluvial fan and the upper gravel unit. Locations GH_POTW10 and GH_POTW15 are completed in the lower gravel unit. Potential sources of groundwater recharge to the valley-bottom in this area include surface water and upland groundwater flow from Greenhills Creek and the Fording River (SNC-Lavalin, 2015b).

4.4.1 Groundwater Levels

No groundwater levels were recorded at any monitoring stations as they are active water supply wells.

4.4.2 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and Table 5 (secondary screening). A summary of values above primary screening criteria for Key Area 3 is presented in Table J below.

Parameter ^{1,3}		GH_PC	OTW09		GH_POTW10	GH_POTW15		GH_PC	DTW17²	
Parameter	Q1	Q2	Q 3	Q4	Q1 to Q4	Q1 to Q4	Q1	Q2	Q3	Q4
Manganese	-	IW	IW	IW	-	-	-	-	-	-
Selenium	-	-	-	-	-	-	AW	AW	AW	AW
Sulphate	-	-	-	-	-	-	AW	AW DW	AW	AW

Table K: Summary of Results above Primary Screening Criteria for Key Area 3

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW) with the exception of GW_POT17 which was compared to BCWQG AW; 3.) '-' denotes result below primary screening criteria for given constituents.

Groundwater quality in GH_POTW09 was above primary screening criteria for manganese (IW) for three of four sampling events in 2016. GH_POTW17 was above primary screening levels for selenium (AW) and sulphate (AW) in all four sampling events in 2016; in addition, sulphate concentrations in Q2 were above the CSR DW standard. All other parameters were below primary screening criteria.

Secondary screening was completed for selenium at GW_POTW17 as concentrations were above primary screening criteria; selenium concentrations from all four sampling events in 2016 were below secondary screening criteria.

4.4.3 Discussion

Discussion of trends in groundwater quality in Key Area 3 focuses on total selenium (historical selenium concentrations were reported as total values) and sulphate concentrations which were above primary screening criteria at GH_POTW17. Time series plots of total selenium and sulphate concentrations are shown in Appendix II (Graphs 3-1 and 3-2). To assess potential groundwater and surface water interactions, selenium and sulphate concentrations in surface water in the Fording River (GH_FR1) and Greenhill Creek (GH_GH1) were also plotted in these graphs. Drawing 635544-117 shows the spatial distribution of dissolved selenium, sulphate and nitrate for samples collected in Key Area 3.

Concentrations of total selenium at GH_POTW17 in 2016 were relatively similar for all four sampling events in 2016 (concentration ranged from 5.2 µg/L to 7.7 µg/L) and were within the range of historical concentrations. Surface water concentrations of total selenium in the Fording River at GH_FR1 were consistently higher than groundwater concentrations at GH_POTW17 and all other GH_POTW-series wells; in 2016 total selenium concentrations at GH_FR1 ranged from 24.2 to 50.6 µg/L. Surface water concentrations in Fording River (GH_FR1) follow a seasonal trend with higher concentrations measured during winter months (lower flow rates) and lower concentrations measured during spring freshet as a result of dilution of constituents. In 2016 total selenium concentrations at GH_POTW17 were slightly higher during Q2 and Q3 relative to other sampling events.

Concentrations of sulphate at GH_POTW17 in 2016 were relatively similar between all four sampling events (concentrations ranged from 448 mg/L to 522 mg/L) and similar to historical results. The highest concentration of sulphate at GH_POTW17 was measured in June of 2016 and was slightly above CSR DW standards. Surface water sulphate concentrations at GH_FR1 were lower (ranged from 115 to 262 mg/L in 2016) compared to concentrations measured at GH_POTW17 but were similar in magnitude to groundwater sulphate concentrations at GH_POTW10 and GHPOTW15. Surface water sulphate concentrations at GH_POTW10 in 2016) than surface and groundwater concentrations measured at other locations.

Concentrations of total selenium and sulphate in GH_POTW09, GH_POTW10 and GH_POTW15 were relatively consistent suggesting little seasonal influence and therefore not a direct connection with Fording River surface water. This is consistent with the interpretation that relatively continuous aquitards exist in the valley bottom in Key Area 3. The higher sulphate concentrations at GH_POTW17 suggest influence from Greenhill Creek surface water at this location.

4.5 Key Area 4: Elk River Valley-bottom Downgradient of Leask, Wolfram and Thompson Creeks

Key Area 4 was identified as surface water and upland groundwater flow into the Elk River valley-bottom setting occurs from potential sources of CIs in the Mickelson, Leask, Wolfram and Thompson Creek drainages (Drawing 635544-102). Surface water from each of these creeks is diverted to settling ponds located near the valley-bottom. Groundwater in upland areas is inferred to flow toward the Elk River valley-bottom. The linear distribution of the monitoring wells in the valley-bottom does not allow for triangulation for determining groundwater flow direction; however, groundwater is expected to discharge to the Elk River, with a flow component parallel or sub-parallel to the river. The RGMP for Key Area 4 includes five monitoring wells (GH_GA-MW-1, GH_GA-MW-2, GH_GA-MW-3, GH_GA-MW-4 and GH_MW-ERSC-1), one water supply well (RG_DW-01-03) and one domestic well (RG_DW-01-07).

Valley-bottom deposits consist mainly of fluvial and glaciofluvial deposits in this area and there are a number of former channels of the Elk River; however, the observed stratigraphy at monitoring wells GH_GA-MW-1 and GH_GA-MW-2 indicates lower permeability till and lacustrine/glaciolacustrine (i.e., soft, silty clay) is present at subsurface. To the south at GH_GA-MW-3 and GH_GA-MW-4, coarser-grained materials with sub-angular gravel suggest glaciofluvial deposits overlie bedrock. Monitoring well GH_MW-ERSC-1, situated approximately 1 km south of the Lower Thompson Creek Settling Pond, appears to be installed in a fluvial sand and gravel.

4.5.1 Groundwater Levels

Continuous groundwater level data available from level loggers installed in GH_GA-MW-1, GH_GA-MW-2 and GH_GA-MW-3 were recorded along with manual water level measurements during the monitoring period (Table 2). Groundwater elevations from January 2015 to December 2016 were plotted on a time-series graph and included in Appendix II (Graph 4-1); we note that we have manually corrected 2016 data to be consistent with 2015 data. Groundwater elevations at GH_GA-MW-3 exhibited a seasonal trend with generally higher groundwater elevations during the spring from mid-March to June whereas groundwater elevations at GH_GA-MW-1 and GH_GA-MW-2 were relatively consistent throughout the year and did not appear to vary seasonally.

The fluctuation in groundwater levels in GH_GA-MW-2 and GH_GA-MW-3 was relatively high ranging from 2.3 m to 4.9 m, respectively. The trend observed in each well is unique suggesting a different groundwater/surface water interaction pattern at each location. There is no seasonal trend observed at GH_GA-MW-1 and groundwater elevations showed a time lag of approximately 30 days for groundwater levels to go back to static levels after a sampling event. This is consistent with the low hydraulic conductivity value reported in previous studies.

Groundwater elevations prior to sampling for the fourth quarter were selected and shown on Drawing 635544-115 to provide regional context.

4.5.2 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and Table 5 (secondary screening). A summary of results above primary and secondary screening criteria for Key Area 7 is presented in Table L below.

		GH_G/	\-MW-1			GH_G/	-MW- 2		GF	I_GA	-MW-	3	GH	_GA·	-WW-	4
Parameter ^{1,2,3}	ð	0 2	o3	0 4	ð	02	o3	Q4	ð	Q2	03	Q 4	ð	Q2	0 3	Q4
Sulphate	-	DW	-	DW	-	-	-	-	-	-	-	-	DW	-	-	-
Boron	IW	IW	IW	IW	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	IW DW	IW DW		IW	-	-	-	-	-	-	-	-	-	-	-	-
Molybdenum	IW	IW	-	IW	IW	IW	IW	IW	-	-	-	-	-	-	-	-
Selenium	-	-	-	-	AW DW	-	AW DW	AW DW	AW DW	-	-	-	-	-	-	-
Sodium ⁴	-	DW		DW	-	-	-	-	-	-	-	-	-	-	-	-

Table L: Summary of Results above Primary Screening Criteria for Key Area 4

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) '-' denotes result below primary screening criteria for given constituents; 4.) Total parameter.

Of the CI, only selenium and sulphate concentrations were measured above primary screening criteria in Key Area 4. Groundwater quality in GH_GA-MW-2 and GH_GA-MW-3 was above primary screening criteria for selenium (DW and AW) for at least one sampling event in 2016. Groundwater quality in GH_GA-MW-1 and GH_GA-MW-4 was above primary screening criteria for sulphate (DW) for at least one sampling event in 2016.

Groundwater at GH_GA-MW-1 also contained additional parameter concentrations above the IW or DW CSR standards (dissolved boron, dissolved manganese, dissolved molybdenum and sodium). Dissolved molybdenum concentrations were also above the IW primary screening criteria GH_GA-MW-2. Parameter concentrations of these parameters were similar to 2015 concentrations.

The CSR IW standard of 10 μ g/L for molybdenum is relatively conservative as it is the default CSR IW standard in the absence of soil data (it relates to poorly drained soils where the Cu:Mo ratio is less than 2:1 used for foraging). All other CSR IW standards are higher (either 20 or 30 μ g/L); however, soil and crop information would be required to determine whether a higher standard is applicable. Molybdenum concentrations in 2016 from GH_GA-MW-1 and GH_GA-MW-2 ranged from 5.92 to 32.4 μ g/L, similar to 2015 concentrations. A review of molybdenum results from other Key Areas suggests that it may be naturally occurring. Since no irrigation wells are located in this area this constituent is not currently considered a concern.

Manganese in groundwater can be naturally elevated due to limited interaction with atmosphere and is generally not a concern. Sodium concentrations were marginally above CSR DW standards at GH_GA-MW-1 and is also not considered a concern.

Dissolved boron concentrations were above CSR IW standard which varies from 500 µg/L to 6,000 µg/L based on crop sensitivity. Boron concentrations in 2015 and 2016 in GH_GA-MW-1 ranged from 742 µg/L to 909 µg/L and would generally only impact the very sensitive to sensitive crops. Since no irrigation wells are located in this area this constituent is not currently considered a concern. Additional information on risk to human health from groundwater and surface water is provided in the human health risk assessment performed as part of Permit 107517 requirements (Ramboll Environ, 2016). Continued monitoring should occur and the above results and receptors should be further considered in the September 30, 2017 RGMP submission.

At GH_MW-ERSC-1, RG_DW-01-04 and RG_DW-01-07, groundwater concentrations of all parameters were below primary screening criteria.

Secondary screening for selenium was completed where sample concentrations were above primary screening criteria. Table M shows the summary of results above secondary screening criteria for Key Area 4. The only result above secondary screening criteria (Elk River CP) was the Q4 sample from GH_GA-MW-2.

				-	•						
Constituents		GH_	GA-MW-2			GH_GA-MW-3					
of Interest (CI)	Q1	Q2 Q3		Q4	Q1	Q2	Q3	Q4			
Selenium	-	-	-	CP	-	-	-	-			

Table M: Summary of Results above Secondary Screening Criteria for Key Area 4

Notes: 1) Secondary screening criteria are Site Performance Objective (SPO), Compliance Point (CP) and GCDWQ for drinking water (DW); and 2.) '--' denotes result below secondary screening criteria.

4.5.3 Discussion

Discussion of trends in groundwater quality in Key Area 4 focuses on dissolved selenium concentrations which is the CI above the primary and secondary screening criteria in select monitoring wells. Drawing 635544-117 shows the spatial distribution of dissolved selenium, sulphate and nitrate for samples collected in Key Area 4. A time series plot of dissolved selenium from the selected wells located in Key Area 4 and included in the 2016 RGMP is shown in Appendix II (Graph 4-2). To compare groundwater concentration trends to surface water in Key Area 4, dissolved selenium concentrations measured in nearby surface water at Elk River (GH_ERC) and Thompson Creek (GH_TC2) were plotted on these graphs.

Historical dissolved selenium concentrations measured at GH_GA-MW-3, GH_GA-MW-4 and GH_MW-ERSC-1 varied considerably with no distinct seasonal or long-term trend based on 2014-2016 data. No significant variation in concentrations was noted in 2015 or 2016 for GH_GA-MW-1, RG_DW-01-03 and RG_DW-01-07. Dissolved selenium concentrations at GH_GA-MW-2 in 2016 were marginally higher compared to 2014 and 2015 concentrations. In contrast, dissolved selenium concentrations at GH_GA-MW-3 in 2016 appear to be lower compared to 2014 and 2015 concentrations. Overall, the highest dissolved selenium concentrations in groundwater in Key Area 4 in 2016 were at GH_GA-MW-2 (ranged from $5.7 \mu g/L$ to $17.9 \mu g/L$).

Surface water dissolved selenium concentrations in Thompson Creek (located directly upstream of GH_GA_MW-3) were consistently higher than all groundwater samples collected in 2016 (ranged from 44.6 μ g/L to 115 μ g/L). Dissolved selenium in the Elk River was at least an order of magnitude lower compared to Thompson Creek in 2016 (ranged from 0.967 μ g/L to 2.75 μ g/L).

Groundwater selenium concentrations in Key Area 4 have shown considerable variability (i.e., orders-ofmagnitude) in select wells. The local-scale interaction with surface water and groundwater discharge is not clear based on available data but it is suspected that variable groundwater concentrations are due to elevated selenium concentrations in surface water.

Downgradient groundwater quality in the Elk River valley-bottom improves, and delineation (i.e., extent of groundwater impacts) is achieved on a regional scale. Selenium concentrations in the valley-bottom groundwater were below all screening criteria at the water supply well RG_DW-01-03, with concentrations decreasing further downgradient of Elkford at domestic well location RG_DW-01-07, suggesting dilution is occurring along the valley-bottom groundwater flow path due to mixing with surface water and additional fresh water inputs.

4.6 Key Areas 5 and 6: Fording River Valley-bottom Downgradient of Line Creek and Elk River Valley-bottom Downgradient of Confluence with Fording River

Key Areas 5 and 6 were selected as the RDW Sampling Program identified elevated selenium in groundwater downgradient of the confluence with Fording River. These Key Areas receive inputs from Line Creek, the Fording River and the LCO Process Plant. Based on field reconnaissance, bedrock is present at the confluence of the Fording and Elk Rivers which may locally affect river grade and restrict groundwater recharge to the valley-bottom (SNC-Lavalin, 2015a). In this area, surficial geology indicates that the depositional environment in the valley-bottom is glaciofluvial and fluvial (Drawing 635544-106), which is supported by information from domestic water well logs. Bedrock elevations and detailed surficial stratigraphy, well installation and groundwater elevations in Key Area 6 are presented on cross section B-B' and C-C' (Drawing 635544-111 and 112). Cross section A-A' is perpendicular to groundwater flow and extends from Fording River to the north to the East Refuse Expansion to the south. Cross section C-C' is parallel to groundwater flow and extends from Line Creek to the northeast to the Elk River to the southwest. There is no monitoring well within Key Area 5 and one monitoring well located in Key Area 6 (LC_PIZP1101) is included in the RGMP. Monitoring well LC_PIZP1101 is screened in a deeper sand aquifer at approximately 41 mbgs.

4.6.1 Groundwater Levels

In 2016, a level logger was installed in LC_PIZP1101 to monitor groundwater levels in Key Areas 5 and 6. Continuous groundwater level data along with manual water level measurements (Table 2) were plotted on Graph 6-1 (Appendix II), reviewed and assessed for seasonal variability and long-term trend. The manual groundwater level readings do not always appear to correlate with level logger data; the level logger data show a muted response to seasonal variation (variation up to 0.4 m) in groundwater levels in 2016 whereas the manual readings indicate a defined seasonal trend with groundwater levels up to 1.6 m higher in June 2016. The reason of these differences has not been investigated but it is inferred to be associated with correction/compensation of the level logger data or manual reading error. The groundwater elevation measured at LC_PIZP1101 prior to sampling for the fourth quarter is shown on Drawing 635544-115 to provide regional context.

4.6.2 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening). A summary of results above primary screening criteria for Key Area 6 is presented in Table N below.

Parameter ^{1,2,3}		LC_PIZ	P1101	
Falameter	Q1	Q2	Q3	Q4
Fluoride	IW, LW, DW	IW, LW, DW	IW, LW, DW	IW, LW, DW
Manganese	-	-	IW	IVV
Molybdenum	IW	IW	IW	IVV

Table N: Summary of Results above Primary Screening Criteria for Key Area 6

Notes: 1.) Dissolved parameter unless otherwise indicated; and 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); and 3.) '--' denotes result below primary screening criteria.

Groundwater quality in LC_PIZP1101 was below the primary screening criteria concentrations for all the Cls; therefore, no secondary screening was performed.

Similar to 2015 results, groundwater concentrations were above primary screening criteria for dissolved molybdenum (IW) and above primary screening criteria for fluoride (DW, IW and LW) for all the sampling events. The CSR IW standard of 10 μ g/L for molybdenum is relatively conservative as it is the default CSR IW standard in the absence of soil data (it relates to poorly drained soils where the Cu:Mo ratio is less than 2:1 used for foraging). All other CSR IW standards are higher (either 20 μ g/L or 30 μ g/L); however, soil and crop information would be required to determine whether a higher standard is applicable. Molybdenum concentrations were relatively low from this well ranging from 11.6 μ g/L to 12.9 μ g/L in 2016. A review of molybdenum results from other Key Areas suggests that it may be naturally occurring. Since no irrigation wells are located in this area this constituent is not currently considered a concern.

The source of fluoride at this location is unclear. Fluoride can be naturally elevated in groundwater. Concentrations of fluoride are marginally above the respective criteria. Additional information on risk to human health from groundwater and surface water is provided in the human health risk assessment performed as part of Permit 107517 requirements (Ramboll Environ, 2016). Continued monitoring should occur and results and receptors considered in the September 30, 2017 RGMP submission.

In 2016, concentrations of manganese in LC_PIZP1101 were marginally above the CSR IW standard in Q3 and Q4. The source of dissolved manganese at this location is unclear but its occurrence is inferred to be related to reducing conditions in groundwater in the deep aquifer.

4.6.3 Discussion

Groundwater from the LCO Process Plant Site has been shown to flow towards Key Area 6; however, relatively low concentrations of CIs were measured in groundwater collected from LC_PIZP1101 during the 2015 and 2016 groundwater monitoring program. This is consistent with historical sampling results from several wells situated in the Process Plant Site. Previous studies indicated that activities at the Process Plant do not appear to be locally affecting groundwater quality; however, there are no wells situated in the Fording River and/or Elk River valley-bottom in Key Areas 5 and/or 6 to locally assess groundwater quality.

To assess groundwater and surface water interactions, selenium concentrations measured in groundwater at LC_PIZP1101 were compared to concentrations in surface water in Line Creek (LC_LC4) and in the Elk River downstream of Key Area 6 (EV_ER4), respectively (Appendix II; Graph 6-2). Concentrations in groundwater at LC_PIZP1101 have been relatively low and stable since May 2013 and are significantly lower than concentrations measured in Line Creek and also lower than concentrations in the Elk River. Based on this, the most significant pathway for effects of mine-contact water to the valley-bottom appears to be through surface water from Line Creek.

As part of the 2015 site-specific groundwater monitoring program at LCO (Golder, 2016), groundwater and surface water chemistry were compared at downgradient domestic well RG_DW-02-20 to further assess valley-bottom groundwater pathway. This is also further assessed below in Key Area 7. The results showed that groundwater quality at RG_DW-02-20 was tracking surface water quality from the nearest surface water station EV_ER4. The results suggest surface water infiltration rather that a valley-bottom groundwater pathway might be the cause of the results above screening criteria measured at RG_DW-02-20.

4.7 Key Area 7: Elk River Valley-bottom Downgradient of Grave Creek

This area was selected as Harmer Creek flows from EVO into the Grave Creek drainage and Grave Creek is a tributary to the Elk River, and samples from the RDW Sampling Program (i.e., RG_DW-02-20) exceeded the primary screening criteria (AW and DW) for selenium (Drawing 635544-103).

The surficial geology in the Grave Creek is mapped as colluvium; however, borehole logging at monitoring well EV_GV3gw indicates a relatively large thickness (i.e., up to 25 m) of loose sand and sub-angular gravel and silty gravel deposits. This well is situated near the confluence of Grave and Harmer Creeks, and the thicker sediments in this area may be reflective of the Grave Creek alluvial fan. The groundwater level at EV_GV3gw is relatively deep, approximately 10 m bgs, with a saturated thickness of approximately 15 m. Based on a comparison of groundwater elevation with the elevation of Grave Creek, the creek appears to have a losing reach in this area, and accordingly the creek is interpreted to be losing along the approximate 120 m drop in elevation to the Elk River. As such, groundwater from the Grave Creek valley-bottom is interpreted to flow into the Elk River valley-bottom.

The monitoring wells for the 2016 RGMP in Key Area 7 included the monitoring well EV_GV3gw, the nearest well upgradient to Key Area 7 to monitor upland and tributary valley-bottom input from drainage to the northeast of EVO, and the domestic well RG_DW-02-20 to monitor groundwater in the Elk River valley bottom in Key Area 7.

4.7.1 Groundwater Levels

Continuous groundwater level data in Key Area 7, available from a level logger installed in monitoring well EV_GV3gw along with manual water level measurements (Table 2), were reviewed and assessed for seasonal variability and long-term trend. Groundwater elevations from January 2015 to October 2016 were plotted on a time-series graph and included in Appendix II (Graph 7-1). Groundwater elevations in EV_GV3gw ranged from approximately 1296.9 masl to 1297.4 masl throughout the monitoring period and followed a seasonal trend. Higher groundwater elevations were recorded in the spring months. The groundwater elevation prior to sampling for the fourth quarter was selected and shown on Drawing 635544-116 to provide regional context.

4.7.2 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening). A summary of results above primary screening criteria for Key Area 7 is presented in Table O below.

Parameter ^{1,2,3}		EV_G\	/3gw			RG_DW-	0 2-20 ⁴	
Parameter	Q1 Q2 Q3 Q4		Q2 ⁴	Q2	Q3	Q4		
Selenium	-	-	-	-	AW, DW	AW, DW	-	-

Table O: Summary	v of Results above	Primary Screening	Criteria for Key Area 7	
Table O. Summar	y of nesults above	Frinaly Screening	Cillena IOI Rey Alea I	

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) '-' denotes result below primary screening criteria; 4.) No sample collected in Q1, 2 samples collected in Q2.

Groundwater quality in the domestic well RG_DW-02-20 was above primary screening criteria for selenium (DW, AW) for the two sampling events in June 2016 but below the primary screening criteria for all other parameters. Groundwater concentrations in EV_GV3gw were below the primary screening criteria for criteria for all parameters including the four CIs.

Secondary screening was performed for dissolved selenium concentrations in well RG_DW-02-20 and all results were below the secondary screening criteria.

4.7.3 Discussion

Discussion of trends in groundwater quality in Key Area 7 focuses on dissolved selenium which exceeded the primary screening criteria in domestic well RG_DW-02-20. Drawing 635544-118 shows the spatial distribution of dissolved selenium, sulphate and nitrate for samples collected in Key Area 7. A time series plot of dissolved selenium for EV_GV3gw and RG_DW-02-20 is shown in Appendix II (Graph 7-2).

To assess groundwater and surface water interactions, selenium concentrations measured in groundwater at EV_GV3gw and RG_DW-02-20 were compared to concentrations in surface water in Harmer Creek (EV_HC1) and in the Elk River upstream from the confluence with Grave Creek (EV_ER4), respectively. Concentrations in groundwater at EV_GV3gw have been stable since November 2013 and are significantly lower than concentrations measured in Harmer Creek at EV_HC1 and also lower than concentrations in Elk River upstream from the confluence with Grave Creek. Concentrations measured at RG_DW-02-20 appear to follow a seasonal trend with the highest concentrations measured during the spring months and were generally within the range of concentrations in Harmer Creek. Surface water concentrations fluctuate and are typically lower during freshet which is consistent with the effect of dilution on constituents in a freshet dominated regime. We note that although selenium concentrations at RG_DW-02-20 are similar in magnitude to the Elk River, they do not follow the same seasonal trend as observed in surface water suggesting some lag in groundwater-surface water interaction.

Significant groundwater transport of CI from the Harmer Creek drainage to the Elk River valley bottom is inferred to be minimal based on relatively low groundwater concentrations measured in Harmer Creek drainage at EV_GV3gw compared to surface water. We note that EV_GV3gw is screened in the deeper aquifer (approximately 25 m bgs) and as such is representative of groundwater quality in the deeper part of the aquifer. However, considering that 1) the sub-surface geology in EV_GV3gw is described as very loose and varies from sand with some gravel to silty gravel with no confining unit; and 2) the depth to water is relatively deep at this location (approximately 10 m bgs), groundwater quality in the shallower part of the aquifer is not expected to be significantly different

4.8 Key Area 8: Elk River Valley-bottom Downgradient of Balmer, Lindsay and Otto/Cossarini Creeks

This area was selected as surface water and upland groundwater flow into the Elk River valley-bottom from potential sources of CIs in the Lindsay, Otto/Cossarini drainages, as well as Goddard Marsh (Drawing 635544-104). Potential groundwater recharge in this Key Area include infiltration of precipitation, surface water infiltration in the valley-bottom, and recharge from tailings ponds such as Lagoons C and D (refer to site-specific monitoring program at EVO). Groundwater in Key Area 8 will eventually discharge to the Elk River or flow towards the valley-bottom setting in Key Area 12.

The valley-bottom consists mainly of fluvial, glaciofluvial and alluvial fan deposits in this area as the area is near the confluence with Cummings Creek. Underlying the coarse units are finer-grained deposits of lower permeability silt and clay suggesting relatively thick lacustrine/glaciolacustrine deposits exist in the subsurface. Groundwater flow in upland areas is inferred to be toward the Elk River valley-bottom. Groundwater flow direction in the valley-bottom is assumed to be parallel or sub-parallel to the Elk River.

The monitoring wells for the 2016 RGMP in Key Area 8 included the monitoring wells EV_LSgw and EV_OCgw to monitor potential inputs from upland, tributary valley bottom, and Elk River valley bottom features along the western slope of EVO.

4.8.1 Groundwater Levels

Continuous groundwater level data, available from water level level loggers installed in monitoring wells EV_LSgw and EV_OCgw along with manual water level measurements prior to sampling events (Table 2), were reviewed and assessed for seasonal variability and long-term trends. Groundwater elevations from January 2015 to October 2016 at those wells were plotted on a time-series graph and included in Appendix II (Graph 8-1). Groundwater elevations in both wells show a seasonal trend with slightly higher groundwater elevations in the spring. The maximum fluctuation in groundwater elevation is approximately 0.8 m at EV_LSgw and 0.7 m at EV_OCgw throughout the monitoring period. Groundwater elevations prior to sampling for the fourth quarter were selected and shown on Drawing 635544-116 to provide regional context.

4.8.2 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening). A summary of results above primary screening criteria for Key Area 8 is presented in Table P below.

Parameter ^{1,2,3}		EV_	LSgw			EV_C	Cgw**	
Farameter	Q1	Q2	Q3	Q4 Q1		Q2	Q3	Q4
Fluoride	-	-	-	-	IW, LW	IW, LW	IW, LW	IW, LW
Manganese	IW, DW	IW, DW	IW, DW	IW, DW	-	-	-	-
Molybdenum	-	-	-	-	IW	IW	IW	IW

Table P: Summary of Results above Primary Screening Criteria for Key Area 8

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are BCWQG for Aquatic Life (AW) and CSR standards for Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) '-' denotes result below primary screening criteria for given constituents; and **) Wells located within 10 m of surface water; comparison to BCWQG.

Groundwater quality in EV_LSgw and EV_OCgw was below the primary screening criteria concentrations for all the CIs. Groundwater quality in EV_LSgw was above primary screening criteria concentrations for dissolved manganese (IW and DW). Manganese can be naturally elevated in groundwater and is generally not a concern. Dissolved manganese concentrations ranging from 892 μ g/L to 1,530 μ g/L were above CSR DW (550 μ g/L) and IW (200 μ g/L). The source of dissolved manganese at this location is unclear but its occurrence is inferred to be related to reducing conditions in groundwater. Continued monitoring should occur and results and receptors considered in the September 30, 2017 RGMP submission.

Groundwater quality in EV_OCgw was above primary screening criteria concentrations for fluoride (IW and LW) for all four events. The source of fluoride at this location is unclear but fluoride can be naturally elevated in groundwater. Concentrations of fluoride are marginally above the respective criteria and there appears to be no usage of groundwater for livestock or irrigation watering in the area; therefore fluoride is not interpreted to be a concern. Continued monitoring should occur and results and receptors considered in the September 30, 2017 RGMP submission.

Groundwater quality in EV_OCgw was also above primary screening criteria concentrations for dissolved molybdenum (IW) for all four events. The CSR IW standard of 10 μ g/L for molybdenum is relatively conservative as it is the default CSR IW standard in the absence of soil data (it relates to poorly drained soils where the Cu:Mo ratio is less than 2:1 used for foraging). All other CSR IW standards are higher (either 20 μ g/L or 30 μ g/L); however, soil and crop information would be required to determine whether a higher standard is applicable. A review of molybdenum results from other Key Areas suggests that it may be naturally occurring.

4.8.3 Discussion

Discussion of trends in groundwater quality in Key Area 8 focuses on dissolved selenium and sulphate concentrations which were above the primary and secondary screening criteria in previous sampling events. Time series plots of dissolved selenium and sulphate concentrations for EV_LSgw and EV_OCgw are shown in Appendix II (Graphs 8-2 and 8-3). Both graphs show that the higher concentrations measured in November 2013 and March 2014 appear to be isolated events and concentrations since then have been stable and significantly lower than the primary screening criteria for both parameters. Based on previous information from site monitoring programs and the Synthesis Report, sampling techniques employed might have explained the high concentrations obtained from these single sampling events. Based on the 2016 results, potential sources in Key Area 8 do not appear to result in elevated concentrations of CIs.

4.9 Key Area 9: Michel Creek Valley-bottom Downgradient of Bodie Creek

This area was selected as the upland Bodie Creek area was identified as a potential source of CIs to the Michel Creek valley-bottom (Drawing 635544-104). The valley-bottom setting consists mainly of fluvial and glaciofluvial deposits. Groundwater recharge of this Key Area may occur in the form of infiltration of surface water from Bodie Creek, surface water from Michel Creek, or as a result of upland groundwater discharging to the valley-bottom. Groundwater flow in the Bodie Creek area is inferred to be toward the Michel Creek valley-bottom and flow direction in the valley-bottom is assumed to be parallel or sub-parallel to the creek. The monitoring wells for the 2016 RGMP in Key Area 9 included three water supply wells: EV_RCgw (previously EV_RCS1 or EV_Road Crew Shop Well), EV_WH50gw (previously EV_WHS1/EV_WHS2 or EV_Rec Office Well) and EV_BRgw (previously EV_BRS1/EV_BRS2 or

EV_Bus Shop Well), two monitoring wells: EV_BCgw and EV_MCgwS/D (nested) to monitor spatial variation in groundwater quality within Michel Creek valley bottom in Key Area 9 and one domestic well RG_DW-03-01 to monitor valley-bottom groundwater in Michel Creek further downgradient.

4.9.1 Groundwater Levels

Continuous groundwater level data, available from level loggers installed in monitoring wells EV_BCgw, EV_MCgwS and EV_MCgwD, were recorded along with manual water level measurements during the monitoring period (Table 2). Groundwater elevations from January 2015 to October 2016 at those wells was plotted on a time-series graph and included in Appendix II (Graph 9-1). Groundwater elevations in all three wells followed the same pattern and showed a seasonal trend with generally higher groundwater elevations during the spring from April to beginning of June. The lowest elevations during the monitoring period were recorded from August to September in each year. The maximum fluctuation in groundwater elevation was just under 1 m throughout the monitoring period in EV_MCgwD and EV_BCgw and up to 1.2 m in EV_MCgwS. The vertical groundwater flow at the nested well EV_MCgwS/D is downwards with a vertical hydraulic gradient ranging from -0.05 m/m to -0.06 m/m based on the groundwater level data recorded (Appendix III). Groundwater elevations prior to sampling for the fourth quarter were selected and shown on Drawing 635544-116 to provide regional context.

4.9.2 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and Table 5 (secondary screening). A summary of results above primary screening criteria for Key Area 9 is presented in Table Q (monitoring wells) and Table R (supply and domestic wells) below.

Parameter ^{1,2,3}		EV_BC	gw**			EV_N	/ICgwS**		EV_MCgwD**					
Farameter	Q1	Q2	Q 3	Q4	Q 1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		
Nitrate Nitrogen	AW DW	AW DW	AW	AW	-	-	-	-	-	-	-	-		
Iron	-	-	-	-	AW	AW	AW	AW	AW	AW	AW	AW		
Manganese	-	-	-	-	-	-	-	-	IW	IW	IW	IW		
Molybdenum	-	-	-	-	-	-	-	-	IW	-	-	-		
Selenium	AW IW LW DW	AW IW DW	AW IW DW	AW IW DW	-	-	-	-	-	-	-	-		

Table Q: Summary of Results above Primary Screening Criteria for Key Area 9 (1/2)

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are BCWQG for Aquatic Life (AW) and CSR standards for Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) '--' denotes result below primary screening criteria for given constituents, and **) Wells located within 10 m of surface water; comparison to BCWQG.

Parameter		EV_E	BRgw			EV_W	H50gw			EV_F	RCgw		RG_	DW-03	-01 ⁵
1,2,3,4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q2	Q3	Q4
Nitrate Nitrogen	-	DW	DW	-	-	-	-	-	DW	DW	DW	DW	-	-	-
Sulphate	-	-	-	-	-	-	-	-	AW IW DW	AW IW DW	AW IW DW	AW IW DW	-	-	-
Copper	-	-	-	-	-	-	-	-	-	-	-	AW	na	na	na
Magnesium	-	-	-	-	-	-	-	-	DW	DW	DW	DW	-	-	-
Selenium	AW IW DW	AW IW DW	AW IW DW	AW IW DW	AW DW	-	AW DW	-	AW IW LW DW	AW IW LW DW	AW IW LW DW	AW IW LW DW	-	-	-

Table R: Summary of Results above Primary Screening Criteria for Key Area 9 (2/2)

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for AW, DW, LW and IW; 3.) '-' denotes result below primary screening criteria for given constituents; and 4.) na indicates the well was not sampled for specific parameter; and 5.) No sample collected in Q1 and 2 samples collected in Q2.

Groundwater quality in EV_BCgw, EV_BRgw, EV_RCgw and EV_WH50gw was above primary screening criteria concentrations for selenium (DW, AW, IW and/or LW) for most sampling events in 2016. The highest concentrations were measured at EV_RCgw. Groundwater quality in EV_BCgw, EV_BRgw and EV_RCgw was also above primary screening criteria concentrations for nitrate (DW and/or AW) for most monitoring samples. Groundwater quality in EV_RCgw was also above primary screening criteria concentrations for sulphate (DW, AW and IW) and magnesium (DW) for all samples during the monitoring period and for dissolved copper (AW) only for the Q4 sample.

Dissolved copper concentrations at EV_RCgw were above AW primary screening criteria in the Q4 sample in 2016. This result appears to be an isolated event in 2016 compared to 2015 where copper concentrations above primary screening criteria was measured in the three supply wells (EV_BRgw, EV_WH50gw and EV_RCgw). The source of copper in Key Area 9 is unclear and concentrations varied significantly between sampling events. Similar to 2015, groundwater concentrations were above CSR DW standard for magnesium in the water supply well EV_RCgw in 2016. Further review of data from this well will be completed as part of the September 30, 2017 RGMP submission.

In monitoring wells EV_MCgwS and EV_MCgwD, groundwater concentrations for CIs were below the primary screening criteria; however, dissolved iron concentrations were above the primary screening criteria (AW) in both wells. Monitoring wells EV_MCgwS/D are screened within a clayey unit with low hydraulic conductivity values; as such, the results are likely naturally occurring due to limited exchange with the atmosphere resulting in higher dissolved iron concentrations.

Groundwater quality in EV_MCgwD was above primary screening criteria concentrations for dissolved manganese (IW) for all sampling event and above dissolved molybdenum (IW) for Q1. Similar to iron, manganese in groundwater can be naturally elevated due to limited interaction with atmosphere. The concentration in dissolved molybdenum (10.3 μ g/L) was marginally above the CSR IW standard. The CSR IW standard of 10 μ g/L for molybdenum is relatively conservative as it is the default CSR IW standard in the absence of soil data (it relates to poorly drained soils where the Cu:Mo ratio is less than 2:1 used for foraging). All other CSR IW standards are higher (either 20 μ g/L or 30 μ g/L); however, soil and crop information would be required to determine whether a higher standard is applicable. A review of molybdenum results from other Key Areas suggests that it may be naturally occurring.

Secondary screening for selenium was completed where sample concentrations were above primary screening criteria. Table S shows the summary of results above secondary screening criteria for Key Area 9. EV_BCgw, EV_BRgw, and EV_RCgw concentrations were above SPO secondary screening criteria for selenium for all the sampling events. Selenium concentrations were also above Michel Creek CP concentrations for most sampling events. The CDWG of 50 mg/L was exceeded for all four sampling events at EV_RCgw and only marginally during Q1 at EV_BCgw.

						oonaa											
		EV_E	BCgw			EV_E	BRgw			EV_W	H50gv	V		EV_RCgw			
Paramete r 1,2	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Selenium	SPO CP DW	SPO CP	SPO CP	SPO	SPO CP	SPO CP	SPO CP	SPO CP	-	-	-	-	SPO CP DW	SPO CP DW	SPO CP DW	SPO CP DW	

Table S: Summary of Results above Secondary Screening Criteria for Key Area 9

Notes: 1) Secondary screening criteria are Site Performance Objective (SPO), Compliance Point (CP) and GCDWQ for drinking water (DW); and 2.) '--' denotes result below secondary screening criteria.

4.9.3 Discussion

Discussion of trends in groundwater quality in Key Area 9 focuses on dissolved selenium, nitrate and sulphate concentrations which are the CIs that approach or were above the primary and secondary screening criteria in some monitoring wells in this Key Area. Drawing 635544-119 shows the spatial distribution of dissolved selenium, sulphate and nitrate for samples collected in Key Area 9. Time series plots of dissolved selenium, nitrate and sulphate from the selected wells located in Key Area 9 and included in the 2016 RGMP are shown in Appendix II (Graphs 9-2(1), 9-2(2), 9-3, 9-4). To compare groundwater concentration trends to surface water in Key Area 9, dissolved selenium, nitrate and sulphate concentrations measured in nearby surface water at Bodie Creek (EV_BC1), Gate Creek (EV_GT1) and further downstream at Michel Creek (EV_MC2) were plotted on these graphs.

No distinct seasonal trend in the concentrations of selenium, nitrate and sulphate in groundwater can be identified based on 2013-2016 data. No significant variation in concentrations was noted for most wells except for EV_BCgw where concentrations for all three constituents show an increase of more than twofold from October 2014 to June 2015; concentrations have been decreasing since then. The highest concentrations in dissolved selenium, nitrate and sulphate have been measured in water supply well EV_RCgw with levels consistently higher than concentrations measured in surface water stations EV_BC1 and EV_GT1 since 2015. The source and extent of high concentrations measured at EV_RCgw are not well understood.

Based on monitoring results, attenuation of dissolved selenium, nitrate and sulphate appears to be occurring in the Michel Creek valley-bottom suggesting dilution along the flow path and/or groundwater recharge at the local scale. Selenium concentrations above primary and secondary screening criteria and nitrate concentrations above primary screening criteria are still noted in assumed downgradient wells EV_BCgw and EV_BRgw but concentrations are lower than measured at EV_RCgw as shown on Drawing 635544-119. Further downgradient in Key Area 9, concentrations at EV_MCgwS/D and RG_DW_03-01 respectively are below all screening criteria suggesting further attenuation along the flow path. EV_MCgwS/D is installed in a clayey unit and RG_DW-03-01 is a domestic well located more than 2 km downgradient from EV_BRgw. SNC-Lavalin (2016b) noted that wells EV_MCgwS/D might not be ideal downgradient sentry wells due to their installation. Also, monitoring locations do not extend to the deep sand and gravel unit as shown on cross-section E-E' (Drawing 635544-114).

Uncertainty exists in the groundwater quality delineation (i.e., extent of groundwater impacts) in Key Area 9.

4.10 Key Area 10: Michel Creek Valley-bottom Downgradient of Erickson Creek

Key Area 10 consists of Michel Creek valley bottom deposits located downgradient of Erickson Creek (Drawing 635544-104). Mining activities (waste rock dumps and other potential sources) on the southwest slope of EVO around Erickson Creek are a potential source of mining-related constituents to valley-bottom groundwater into the Michel Creek valley bottom with transport through the Erickson Creek valley-bottom. The only monitoring point upgradient of Key Area 10 is EV_ECgw situated in the Erickson Creek valley-bottom; surficial geology mainly consists of colluvium overlying till consistent with surficial geology presented in Drawing 635544-107. Bedrock was not encountered at this location. The bottom half of the monitoring well screened in a clay and sand unit with a hydraulic conductivity value of 1 x 10^{-8} m/s.

4.10.1 Groundwater Levels

Continuous groundwater level data, available from a level logger installed at monitoring well EV_ECgw, were recorded along with manual water level measurements during the monitoring period (Table 2). Groundwater elevation from January 2015 to October 2016 at EV_ECgw was plotted on a time-series graph and included in Appendix II (Graph 10-1). Groundwater elevation in EV_ECgw ranged from approximately 1,326.1 masl to 1327.5 masl, throughout the monitoring period and followed a seasonal trend fluctuating 1.4 m throughout the monitoring period. In 2016, groundwater levels were at their highest in April and at their lowest in September. Groundwater elevation prior to sampling for the fourth quarter was selected and shown on Drawing 635544-116 to provide regional context.

4.10.2 Groundwater Quality

Groundwater quality results for EV_ECgw (site-specific monitoring program at EVO) were compared to screening criteria and presented in Tables 3 and 4 (primary screening). A summary of results above primary screening criteria for Key Area 10 is presented in Table T below.

Parameter ^{1,2,3}		EV_ECgw ⁴										
Parameter	Q2	Q3	Q4									
Molybdenum	IW	IW	IVV									

Table T: Summary of Results above Primary Screening Criteria for Key Area 10

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking water (DW), Livestock (LW) and Irrigation (IW); 3.) '--' denotes result below primary screening criteria for given constituents and 4.) Chemistry data were not available from specific quarterly sampling events as summarized in Section 2;

Groundwater concentrations for the four CIs in Key Area 10 were below the applicable primary screening criteria (i.e., CSR standards). Dissolved molybdenum concentrations were above the CSR IW as shown in Table T. The concentrations of dissolved molybdenum were marginally above the default CSR IW standard of 10 μ g/L and as discussed above for Key Area 8, at these concentrations this constituent is not considered a concern. Continued monitoring should occur and results and receptors considered in the September 30, 2017 RGMP submission.

4.10.3 Discussion

Key Area 10 was identified as an area where transport of CIs to the valley-bottom may be occurring due to spoils in Erickson Creek. There are no groundwater wells in the valley-bottom aquifer; however, groundwater monitoring of EV_ECgw located upgradient in the tributary is considered adequate to assess potential groundwater transport to Key Area 10. Drawing 635544-119 shows the concentrations of dissolved selenium, sulphate and nitrate for samples collected in 2016 in Key Area 10. Groundwater transport of CI in the Erickson drainage appears to be minimal. The 2016 results are consistent with historical results available at this location since the end of November 2013.

To assess groundwater and surface water interaction in the Erickson drainage and potential impacts to the Michel Creek valley-bottom sediments, selenium concentrations measured in shallow groundwater at EV_ECgw were compared to concentrations in surface water at the mouth of Erickson Creek (EV_EC1) and Michel Creek (EV_MC3) upstream from Erickson Creek discharge. A time series plot of dissolved selenium from the selected well and surface water stations located in Key Area 10 is shown in Appendix II (Graph 10-2). Concentrations in groundwater at EV_ECgw are significantly lower than concentrations measured in Erickson Creek at EV_EC1 and also lower than concentrations in Michel Creek (EV_EC1) follow a seasonal trend with lower concentrations measured during freshet as a result of dilution of constituents. Graph 10-2 also shows an overall increasing trend in dissolved selenium concentrations in Erickson Creek at EV_EC1.

In the absence of monitoring well, groundwater quality in the Michel valley-bottom aquifer immediately downgradient of Erickson Creek is unknown, however, impacts on groundwater, if any, is likely to be the result of infiltration of impacted surface water rather than tributary groundwater transport.

4.11 Key Area 11: Michel Creek Valley-bottom Downgradient of CMO

Key Area 11 consists of Michel Creek valley bottom deposits located downgradient of CMO (Drawing 635544-105). The Michel Creek valley bottom receives input from CMO immediately downgradient of the confluence of Michel and Corbin Creeks. Valley-bottom deposits in this area were identified as the primary migration pathway outside of mine-permitted areas from CMO. The monitoring locations for the 2016 RGMP in Key Area 11 included a domestic well near Corbin Creek (RG_DW-07-01) located just west of the Main Settling Pond and the nested monitoring well (CM_MW1-OB, CM_MW1-SH, CM_MW1-DP) installed immediately downgradient of CMO at the confluence of Michel Creek and Corbin Creek by SRK Consulting (Canada) Inc (SRK) in 2015.

The nested monitoring well CM_MW1-OB/SH/DP was installed in 2015 to provide additional monitoring locations in the Michel Creek valley-bottom deposits. The shallower well CM_MW1-OB was installed in a gravel unit at 4.4 mbgs. CM_MW1-SH and CM_MW1-DP were both installed in bedrock (siltstone) at a total depth of 23.5 mbgs and 37.3 mbgs, respectively.

4.11.1 Groundwater Levels

Manual groundwater levels measured after the installation of the new monitoring wells in August 2015 and quarterly since then were reviewed and assessed for seasonal variability and vertical groundwater flow. Table 2 shows manual water level measurements recorded at CM_MW1 in 2015 and 2016; manual

water level measurements are presented in Appendix II (Graph 11-1). The data show no significant variation in groundwater levels in the two upper wells (CM_MW1-OB and CM_MW1-SH); however, groundwater elevation in the deeper well CM_MW1-DP fluctuated up to 28 m in 2015 and up to 8 m in 2016. Groundwater elevations at other monitoring wells reported in the 2016 Site-Specific Groundwater Monitoring Report at CMO were further reviewed (SRK, 2017). Based on the manual water level readings reported, fluctuations do not correlate with a seasonal trend and appear to be only observed at CM_MW1-DP. The reason of these fluctuations has not been investigated but it is suspected to be an artefact of the timing of groundwater measurement in relation to groundwater sampling at CM_MW1-SH and –DP. Groundwater levels in the three wells should be measured prior any sampling occur in the nested wells. Groundwater elevations for the fourth quarter are shown on Drawing 635544-116 to provide regional context.

Based on the groundwater elevations recorded at the nested well CM_MW1 (Table 2), the vertical groundwater flow is inferred to be downwards from the shallow gravel aquifer to the bedrock aquifer. The calculated vertical hydraulic gradients between CM_MW1-OB and CM_MW1-SH varied from -0.05 m/m to -0.11 m/m in 2016 (Appendix III). The groundwater elevations reported for CM_MW1-DP appear to be transient and affected by groundwater sampling due to a slow recharge of low conductivity bedrock; therefore vertical hydraulic gradients were not calculated using the deep bedrock well.

4.11.2 Groundwater Quality

Groundwater quality results for CM_MW1 and RG_DW-07-01 were compared to screening criteria in Tables 3 and 4 (primary screening). A summary of results above primary screening criteria for Key Area 11 is presented in Table U below.

Parameter	C	CM_M\	N-1-O	в	(N-1-SI	H I	(CM_M	N-1-DI	Ρ	RG_DW-07-01 ⁴				
1,2,3,5	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q2	Q2	Q3	Q4	
Sulphate	-	-	-	-	-	-	-	-	-	-	-	-	-	DW	DW	-	
Chloride	-	-	-	-	IW	IW	IW	IW	IW	IW	IW	IW	-	-	-	-	
Sodium	-	-	-	-	-	DW	-	-	DW	DW	DW	DW	-	-	-	-	
Barium	-	-	-	-	-	-	-	-	DW	DW	DW	DW	na	na	na	na	
Manganese	-	-	-	-	IW	IW	IW	IW	IW	IW	IW	IW	na	na	na	na	
Molybdenum	-	-	-	-	IVV	IW LW	IW	IW LW	-	-	-	-	na	na	na	na	

Table U: Summary of Results above Primary Screening Criteria for Key Area 11

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) '-' denotes result below primary screening criteria for given constituents; 4.) No sample collected in Q1 and 2 samples collected in Q2.; and 5.) na indicates the well was not sampled for specific parameter.

The only result above primary screening criteria noted for the CIs in Key Area 11 is the sulphate concentration that was marginally above the primary screening value for DW (500 mg/L) in domestic well RG_DW-07-01 in two samples. Groundwater concentrations for other CIs in Key Area 11 were below the applicable primary screening criteria (i.e., CSR standards).

Other parameters (chloride, sodium, barium, manganese and molybdenum) were above the primary screening criteria in the bedrock monitoring wells (CM_MW1-SH and CM_MW1-DP) as shown in Table U. All concentrations were below primary screening criteria in the shallow overburden well (CM_MW1-OB).

Concentrations of chloride and sodium above primary screening criteria were measured in other wells at CMO as reported in the Site-Specific Annual report (i.e., CM_MW3, CM_MW4 and CM_MW6; SRK, 2017). Within the period of record, there was no obvious seasonal variation in concentrations. The highest chloride and sodium concentrations were measured in the deep bedrock well at CM_MW3 located upgradient of CMO in the Michel Creek valley suggesting elevated chloride and sodium concentrations or from another source.

As noted for other Key Areas, groundwater concentrations exceeding CSR IW, LW and/or DW standards in dissolved barium, dissolved manganese and dissolved molybdenum has been observed in deeper monitoring wells. Concentrations of dissolved manganese at CM_MW1-SH and -DP are marginally above the standards and are not considered a concern. Concentrations of dissolved molybdenum and dissolved barium were the highest compared to other wells at CMO at CM_MW1 (i.e., shallow bedrock for dissolved molybdenum and deep bedrock for dissolved barium) based on information from the Site-Specific Annual program (SRK, 2017), and have been increasing during the monitoring period.

4.11.3 Discussion

Discussion of trends in groundwater quality in Key Area 11 focuses on dissolved selenium and sulphate concentrations which are the CIs that approach or are above the primary screening criteria at RG DW-07-01. Time series plots of dissolved selenium and sulphate from the RGMP monitoring locations in Key Area 11 are shown in Appendix II (Graphs 11-2 and 11-3, respectively). A seasonal trend in concentrations of dissolved selenium and sulphate appears to be present at RG DW-07-01 based on 2014-2016 data. In general, concentrations of these constituents at this location are lowest in spring and summer, and increase through the fall and winter, which is consistent with the effect of dilution on constituents in shallow groundwater in a freshet dominated regime. Sulphate concentrations were slightly above the CSR DW standard of 500 mg/L in some of the samples during the monitoring period as shown on Graph 11-3. Dissolved selenium concentrations were below applicable CSR standards in 2015-2016 and only above CSR AW and DW in March 2014. Not enough data were available for interpretation of seasonal trends at nested well CM_MW1; however, the data for the nested well show higher concentrations of dissolved selenium and sulphate in the shallow overburden well (CM MW1-OB) compared to the two bedrock monitoring wells (CM MW1-SH and CM MW1-DP). This observation is consistent with the Regional Conceptual Model identifying the surficial deposits as the main groundwater transport pathway for CI in the Study Area.

For comparison purposes, dissolved selenium and sulphate concentrations measured in Corbin Creek at surface water location CM_CC1 and in Michel Creek downstream from the confluence with Corbin Creek at surface water location CM_MC2 were added to Graphs 11-2 and 11-3. Fluctuations of surface water concentration are more prominent compared to groundwater, with lower concentrations measured during freshet as a result of dilution. Selenium concentrations measured at RG_DW-07-01 are within the range of concentrations measured in Michel Creek at CM_MC2 and generally follow the same temporal trend; however, sulphate concentrations measured at RG_DW-07-01 are higher than those measured in Michel Creek but within the range of concentrations measured in Corbin Creek at CM_CC1. These results suggest groundwater sampled from RG_DW-07-01 is hydraulically connected to surface water.

Drawing 635544-120 shows the spatial distribution of dissolved selenium, sulphate and nitrate for samples collected in Key Area 11. The highest concentrations of dissolved selenium and sulphate in groundwater have been measured in domestic well RG_DW-07-01. Attenuation of sulphate and dissolved selenium appears to be occurring in the Michel Creek valley-bottom further downgradient of the confluence of Corbin Creek and Michel Creek as no parameter concentrations above screening criteria were noted in CM_MW1-OB installed in valley-bottom deposits furthest downgradient from CMO.

Based on groundwater geochemistry and water levels, groundwater monitoring in the bedrock monitoring wells CM_MW1-SH and CM_MW1-DP is not recommended as they are not suitable for monitoring groundwater transport of CI from CMO. Continued monitoring of CM_MW1-OB and domestic well RG_DW-07-01 on a quarterly basis is recommended. Based on sampling history at RG_DW-07-01 we recognize there are challenges with sampling this well on a quarterly basis. A detailed review of this and other locations as well as sampling frequencies will be performed as part of the September 30, 2017 submission of the RGMP.

4.12 Key Area 12: Elk River Valley-bottom at Study Area Boundary

Key Area 12 was selected as it is at the boundary of MU4 and therefore the Study Area. The valley-bottom setting consists mainly of fluvial and glaciofluvial deposits. Based on domestic water well logs, the depth to bedrock in this area and therefore thickness of valley-bottom sediments, is over 40 m. This Key Area receives flow from valley-bottom groundwater in Key Areas 8 (Elk River) and 9 (Michel Creek), and groundwater is recharged from Elk River and/or Michel Creek surface water (Franz, 2013) as well as local precipitation. Groundwater flow is assumed to be parallel or sub-parallel to the Elk River; however, variations in local groundwater flow in the capture zone of the municipal well RW_DW-03-04 is expected. The two monitoring points in Key Area 12 are EV_ER1gwS/D and RG_DW-03-04 (also identified as the Sparwood Municipal Well 3).

4.12.1 Groundwater Levels

Groundwater elevation measured during the fourth quarter at EV_ER1gwS/D in Key Area 12 is shown on Drawing 635544-116 to provide regional context with other Key Areas. Continuous groundwater level data available from a water level datalogger installed in monitoring well EV_ER1gwS were recorded along with manual water level measurements during the monitoring period (Table 2). Groundwater elevation from January 2015 to October 2016 at EV_ER1gwS/D was plotted on a time-series graph and included in Appendix II (Graph 12-1). No static pumping water levels were available for RG_DW-03-04 but pumping rate data were provided by the District of Sparwood and added to the time-series plot in Appendix II (Graph 12-1). Daily water level data recorded for Elk River (hydrometric station 08NK016) were also added to the time-series graph to compare with shallow groundwater elevation in Key Area 12. We note that the elevation of water level measurement at the hydrometric station is unknown; therefore, the water level data shown on Graph 12-1 are relative and based on the local datum.

Groundwater elevation in EV_ER1gwS ranged from approximately 1110.4 masl to 1112.1 masl throughout the 2015-2016 monitoring period and followed a typical seasonal trend associated with a freshet regime as shown on Graph 12-1. The fluctuation in the shallow well at EV_ER1gwS generally follows the surface water fluctuation observed at the Elk River hydrometric station suggesting a strong hydraulic connection between groundwater and surface water at this location. We note that the amplitude of the fluctuation in groundwater and surface water are not directly comparable as the hydrometric station

is located approximately 15 m north of Sparwood. The vertical hydraulic gradients calculated at the nested well EV_ER1gwS/D using the 2016 manual water level measurements were consistent throughout the year with a value of 0.02 m/m – 0.03 m/m (Appendix III) and indicated an upward component of groundwater flow.

The reported average pumping rate of Sparwood Municipal Well 3 between May and December 2016 was approximately 2,250 m³/day. No pumping occurred from mid-December 2015 to mid-May 2016. Based on pumping data reviewed, the pumping rate fluctuates throughout the year with generally higher pumping rates during the spring and summer months and lower pumping rates between September and December. Locally, groundwater levels in Key Area 12 may also be affected by groundwater extraction at the municipal well RG_DW-03-04. As shown on Graph 12-1, groundwater levels at EV_ER1gwS do not appear to be affected by groundwater extraction at RG_DW-03-04. In the absence of continuous water level data for EV_ER1gwD, it is unknown if the deep aquifer is affected by groundwater extraction. The nested monitoring well EV_ER1gwS/D is located more than 600 m away and generally upgradient from the municipal well RG_DW-03-04. Interference at this distance is expected to be minimal. In addition, it is possible that EV_ER1gwS/D is outside the capture zone of RG_DW-03-04 as per previous assessment completed by UMA (2008).

4.12.2 Groundwater Quality

The analytical results compared to screening criteria are presented in Tables 3 and 4 (primary screening) and Table 5 (secondary screening). A summary of results above primary screening criteria for Key Area 12 is presented in Table V.

Parameter ^{1,2,3,4}		EV_I	ER1gw	S		EV_EF	R1gwD		RG_DW-03-04						
Parameter	Q1	Q2	Q3	Q4	Q 1	Q2	Q3	Q4	Q1	Q2	Q3	Q4			
Dissolved Selenium	AW DW	-	-	-	-	-	-	-	na	na	na	na			
Total Selenium	-	-	-	-	-	-	-	-	AW DW	AW DW	-	AW DW			

Table V: Summary of Results Above Primary Screening Criteria for Key Area 12

Notes: 1.) Dissolved parameter unless otherwise indicated; 2.) Primary screening criteria applied are CSR standards for Aquatic Life (AW), Drinking Water (DW), Livestock (LW) and Irrigation (IW); 3.) '-' denotes result below primary screening criteria for given constituent; and 4.) na indicates the well was not sampled for specific parameter.

Selenium is the only CI with concentrations above primary screening criteria in Key Area 12. Dissolved selenium concentration was marginally above the primary screening criteria (AW and DW) in February 2016 at EV_ER1gwS and total selenium concentrations were also marginally above AW and DW primary screening criteria of 10 μ g/L in RG_DW-03-04 in the monthly samples collected in March, April, May, October and November 2016. Groundwater concentrations for other CIs in Key Area 12 were below applicable primary screening criteria. Secondary screening was performed for total selenium where concentrations were above primary criteria and all concentrations were below secondary screening criteria.

4.12.3 Discussion

Discussion of trends in groundwater quality in Key Area 12 focuses on dissolved/total selenium, which had concentrations marginally above the primary screening criteria for at least part of the year in this Key Area. Since groundwater in this area hydraulically connected to surface water, a time-series plot of weekly and monthly selenium concentrations from samples collected in the Elk River (EV_ER1), Michel Creek (EV_MC2), and RG_DW-03-04 (Sparwood Municipal Well 3) from 2011 is shown in Appendix II (Graph 12-2). Sampling results were provided by the District of Sparwood and sampling locations for the Elk River and Michel Creek are consistent with previous sampling locations reported by Franz (2013). Selenium concentrations available at monitoring wells EV_ER1gwS/D since November 2013 were also added to the time-series plot. We note that the selenium concentrations presented on the graph are dissolved except at RG_DW-03-04 where only total selenium concentrations were provided.

A clear seasonal trend in selenium concentrations is observed in the surface water (Elk River and Michel Creek) and groundwater (RG_DW-03-04 and EV_ER1gwS/D) monitoring points although not as pronounced in monitoring wells EV_ER1gwS/D. In general, concentrations of these constituents are lowest in spring and summer, and increase through the fall and winter, which is consistent with the effect of dilution on constituents in shallow groundwater in a freshet dominated regime. Daily discharge data for the Elk River (hydrometric station 08NK016) were also added to the time-series graph and clearly show the effect of freshet on water concentrations in Key Area 12.

Since 2015, selenium concentrations in Michel Creek have been significantly higher compared to Elk River concentrations and groundwater concentrations in Key Area 12. In 2016, groundwater quality in the deeper aquifer at municipal well RG_DW-03-04 (completed at approximately 35 mbgs) appears to generally reflect the Elk River surface water quality. However, we note that selenium concentrations measured at RG_DW-03-04 were above the concentrations measured in Elk River surface water during the fall of 2015 and 2016 also suggesting influence of Michel Creek surface water quality. It is therefore inferred that surface water recharge have reached the deeper aquifer due to the lack of a laterally continuous confining unit as shown cross-section D-D' (Drawing 635544-113). Induced hydraulic gradients from well extraction might also be a contributing factor.

Drawing 635544-119 shows the spatial distribution of dissolved selenium, sulphate and nitrate for samples collected in 2016 in Key Area 12 and provide regional context with the other Key Areas in the south half of the Study Area. Selenium concentrations above primary screening criteria but below secondary screening criteria were measured at the farthest downgradient monitoring location in Management Unit #4 and the Study Area (i.e., EV_ER1gwS/D). Delineation of groundwater quality in the Elk River valley-bottom aquifer is not achieved. However, since groundwater quality in Key Area 12 appears to reflect the Elk River surface water quality, surface water infiltration (recharge) rather than a valley-bottom groundwater pathway appears to be the cause of concentrations above screening criteria measured at this location.

5 Conclusions and Recommendations

In general, groundwater conditions in 2016 were similar to those outlined in the Regional Conceptual Model in the Synthesis Report (SNC-Lavalin, 2015b) and in the 2015 Annual Report (SNC-Lavalin, 2016b). Concentrations of CIs above primary and secondary screening criteria were generally consistent with previous observations and are summarized by Key Area below. Concentrations of other constituents were also compared to primary screening criteria. Most concentrations of other constituents above primary screening criteria noted are not considered a concern because there was no identified receptor for the specific pathway (e.g., irrigation or livestock watering) and/or the results were only marginally above criteria. In some Key Areas, concentrations for some constituents (i.e., copper, fluoride, iron and manganese) were significantly higher than primary criteria and the source was unclear. These constituents may be naturally occurring and continued monitoring is recommended. Results of the RGMP will be considered under Big Question 6 in the Adaptive Management Plan (Teck, 2016). Additional linkages between the RGMP and the AMP will be considered through the RGMP update submission (Sept 30, 2017) and in future updates to the AMP.

General recommendations for the RGMP are as follows:

- > Increase water level data quality by:
 - collecting concurrent (before and after) manual water level measurements each time a water level logger is deployed or removed from a well and prior to each sampling event;
 - re-deploying level logger at exact same depth in monitoring well after it was removed for downloading; and
 - using a barometer and manual water level measurements to compensate and correct the data.
- > Review the QA/QC programs, specifically related to field and trip blanks;
- Analyse for all the parameters listed in the RGMP starting in Q2 2017, including expansion of the parameters for RDW wells that are part of the RGMP;

The following summarizes conclusions from the 2016 results and recommendations to be considered in the update of the RGMP by Key Area for the September 30, 2017 RGMP submission.

5.1 Background (Reference) Station FR_HMW5

All CIs concentrations (except for selenium concentration in Q4) in background well FR_HMW5 were below or near the MDL and therefore no trend analysis for groundwater quality parameters was performed. Since concentrations of all parameters were below primary screening criteria, monitoring well FR_HMW5 was considered an appropriate reference monitoring well for the RGMP.

Recommendations for the background location are:

- > Continued groundwater monitoring at FR_HMW5 on a quarterly basis; and
- Re-evaluation of this location and other existing monitoring points in the September 30, 2017 RGMP submission.

5.2 Key Area 1

The furthest downgradient monitoring points (FR_GHHW) reported selenium and nitrate above primary screening criteria. Selenium concentrations at FR_GHHW were also above secondary screening criteria for some sampling events. Discharge and mixing with Fording River surface water likely occurs between these points and the nearest downgradient monitoring points at GHO; however, these monitoring points are over 15 km downstream and the localized extents of CI in groundwater are not known. Additional groundwater studies have been initiated at FRO to further assess groundwater influence from Kilmarnock Creek, Swift Creek and Cataract Creek, and the adequacy of existing monitoring wells.

Recommendations for key Area 1 are the following:

- > Continued groundwater monitoring at FR_09-01-A/B and FR_GHHW on a quarterly basis; and
- Incorporate results of additional groundwater studies in the September 30, 2017 RGMP submission; any additional studies required for delineation will be assessed and prioritized as part of the submission.

5.3 Key Area 2

Groundwater quality in LC_PIZDC1308 and LC_PIZDC1307 has historically been consistently below all primary screening criteria for the CIs. The most significant pathway for effects of mine-contact water to the valley-bottom appears to be through surface water from LCO Dry Creek. This is supported by low concentrations of CIs in LC_PIZDC1308 and LC_PIZDC1307 compared surface water concentrations and the presence of till in the LCO Dry Creek drainage.

Recommendations for Key Area 2 are the following:

- Continued groundwater monitoring at LC_PIZDC1308 and LC_PIZDC1307 on a quarterly basis until the September, 2017 RGMP submission; and
- Re-assess the inclusion of current wells in the September 30, 2017 RGMP submission.

5.4 Key Area 3

Concentrations of total selenium and sulphate in GH_POTW09, GH_POTW10 and GH_POTW15 were relatively consistent suggesting little seasonal influence and therefore not a direct connection with Fording River surface water. This is consistent with the interpretation that relatively continuous aquitards exist in the valley bottom in Key Area 3. The higher sulphate concentrations at GH_POTW17 suggest influence from Greenhill Creek surface water at this location.

Recommendations for Key Area 3 are the following:

- Continued monitoring at GH_POTW9, GH_POTW10, GH_POTW15 and GH_POTW17 on a quarterly basis; and
- Review of data gaps and prioritization for investigation as part of the September 30, 2017 RGMP submission.

5.5 Key Area 4

Elevated dissolved selenium concentrations above both primary and secondary screening criteria were measured in a number of wells in Key Area 4. Groundwater selenium concentrations in Key Area 4 has shown considerable variability (i.e., orders-of-magnitude) in select wells, which is suspected to be a results of local-scale interaction with surface water. Additional comparison to surface water quality could be performed to understand the connection. Downgradient groundwater quality in the Elk River valley-bottom appears to improve.

Recommendations for Key Area 4 are the following:

- Continued monitoring of monitoring wells GH_GA-MW-2, GH_GA-MW-3, GH_GA-MW-4 and GH_MW-ERSC-1, water supply well RG_DW-01-03 and domestic well RG_DW-01-07;
- Remove GH_GA-MW-01 from the RGMP as data obtained from GH_GA-MW-01 are likely not representative of groundwater conditions in the valley-bottom aquifer in Key Area 4;
- Review of data gaps and prioritization for investigation as part of the September 30, 2017 RGMP submission; and,
- Re-assess inclusion of current wells in the September 30, 2017 RGMP submission.

5.6 Key Areas 5 and 6

Groundwater from the LCO Process Plant Site has been shown to flow towards Key Area 6; however, relatively low concentrations of CIs, below primary screening criteria were measured in groundwater collected from LC_PIZP1101 during the 2015 and 2016 groundwater monitoring program. Based on a comparison of groundwater concentrations at this location and surface water concentrations in Line Creek, the most significant pathway of mine-contact water to the valley-bottom appears to be through surface water from Line Creek.

Recommendations for Key Areas 5 and 6 are the following:

- Maintain groundwater monitoring at LC_PIZP1101 and comparison to data collected at nearby surface water monitoring stations LC_LC4 and EV_ER4; and
- Review of data gaps and prioritization for investigation as part of the September 30, 2017 RGMP submission. Complete further assessment if there is material divergence between domestic groundwater quality in the Key Area 7 and surface water quality that suggest down-valley groundwater mine contact water in addition to surface water infiltration.

5.7 Key Area 7

Significant groundwater transport of CI from the Harmer Creek drainage to the Elk River valley bottom is inferred to be minimal based on relatively low groundwater concentrations measured in Harmer Creek drainage at EV_GV3gw compared to surface water. We note that EV_GV3gw is screened in the deeper aquifer (approximately 25 m bgs) and as such is representative of groundwater quality in the deeper part of the aquifer. However, considering that 1) the sub-surface geology in EV_GV3gw is described as very loose and varies from sand with some gravel to silty gravel with no confining unit; and 2) the depth to water is relatively deep at this location (approximately 10 m bgs), groundwater quality in the shallower part of the aquifer is not expected to be significantly different

Recommendations for Key Area 7 are the following:

- Maintain groundwater monitoring at EV_GV3 and RG_DW-02-20 and surface water monitoring of Harmer Creek (as a proxy for shallow groundwater) at EV_HC1 (EMS E102682) on a quarterly basis; and
- Review of data gaps related to Key Area 7 and prioritization for investigation as part of the September 30, 2017 RGMP submission.

5.8 Key Area 8

Potential sources in Key Area 8 do not appear to result in elevated concentrations of Cls. Higher concentrations in dissolved selenium and sulphate measured at EV_LSgw and EV_OCgw in 2013 and 2014 appear to be isolated events and concentrations since then have been stable and significantly lower than the primary screening criteria for both parameters.

Recommendations for Key Area 8 are the following:

- > Continued monitoring of EV_LSgw and EV_OCgw on a quarterly basis; and
- > Re-evaluate inclusion of these wells as part of the September 30, 2017 RGMP submission.

5.9 Key Area 9

Groundwater concentrations of dissolved selenium, nitrate and sulphate exceeded the primary and secondary screening criteria in several wells in this Key Area. Monitoring results below primary screening criteria at downgradient monitoring wells EV_MCgwS/D and domestic well RG_DW_03-01 indicate attenuation of dissolved selenium, nitrate and sulphate appears to be occurring in the Michel Creek valley-bottom suggesting dilution along the flow path and/or discharge of contaminated groundwater to Michel Creek at the local scale. However, EV_MCgwS/D is installed in a clayey unit and RG_DW_03-01 is a domestic well, both locations are more than 2 km downgradient from the known groundwater impacted area. As such, these monitoring locations are not ideal downgradient sentry wells. Uncertainty exists in the groundwater quality delineation (i.e., extent of groundwater impacts) in Key Area 9. A Groundwater Supporting Study has been initiated in the Sparwood Area to further assess groundwater conditions and potential impacts from mine-related activities.

Recommendations for Key Area 9 are the following:

- In the absence of other monitoring wells downgradient of Michel Creek before the confluence with the Elk River, maintain groundwater monitoring at EV_MCgwS/D and RG_DW-03-01 on a quarterly basis and evaluated further to assess suitability of wells to support regional groundwater understanding; and
- Incorporate available information from the Sparwood Area Groundwater Supporting Study in the September 30, 2017 RGMP submission; any additional studies will be assessed and prioritized as part of the submission.

5.10 Key Area 10

Groundwater quality in EV_ECgw was below all primary screening criteria for the CI in 2016; therefore, groundwater transport of CI in the Erickson drainage appears to be minimal. The 2016 results are consistent with historical results available at this location since the end of November 2013. In the absence of monitoring well, groundwater quality in the Michel valley-bottom aquifer downgradient of Erickson

Creek is unknown, however, impacts on groundwater, if any, is likely to be the result of infiltration of surface water rather than tributary groundwater transport.

Recommendations for Key Area 10 are the following:

- > Maintain groundwater monitoring at EV_ECgw on a quarterly basis; and
- Review of data gaps related to Key Area 10 and prioritization for investigation as part of the September 30, 2017 RGMP submission.

5.11 Key Area 11

The nested monitoring well (CM_MW1) was added to the RGMP in 2015 to provide an additional monitoring point in the Michel Creek valley-bottom deposits. No results above primary screening criteria were noted in CM_MW1-OB which is installed in valley-bottom deposits furthest downgradient from CMO; therefore, attenuation of sulphate and dissolved selenium appears to be occurring in the Michel Creek valley-bottom further downgradient of the confluence of Corbin Creek and Michel Creek.

Recommendations for Key Area 11 are the following:

- > Continued monitoring of CM_MW1-OB and domestic well RG_DW-07-01 on a quarterly basis;
- Groundwater monitoring in the bedrock monitoring wells CM_MW1-SH and CM_MW1-DP is not recommended as they are not suitable for monitoring groundwater transport of CI from CMO. This observation supports the CSM which considers deep bedrock CI pathways insignificant compared to surface water or shallow subsurface pathways; and
- Review sampling frequency at RG_DW-07-01 and other locations as part of the September 30, 2017 submission of the RGMP.

5.12 Key Area 12

Selenium concentrations above primary screening criteria but below secondary screening criteria were measured at the farthest downgradient monitoring location in Key Area 12, Management Unit #4 and the Study Area (i.e. EV_ER1gwS/D). Delineation of groundwater quality in the Elk River valley-bottom aquifer is not achieved. However, since groundwater quality in Key Area 12 appears to reflect and be affected by Elk River and Michel Creek surface water quality, surface water infiltration (recharge) rather than a valley-bottom groundwater pathway appears to be the cause of concentrations above screening criteria measured at this location. A Groundwater Supporting Study has been initiated in the Sparwood Area to further assess groundwater conditions and potential impacts from mine-related activities.

Recommendations for Key Area 12 are the following:

- > Continued monitoring of EV_ER1gwS/D and RG_DW-03-04 on a quarterly basis;
- Installation of a level logger to monitor continuous groundwater levels in the deep well EV_ER1gwD; and
- Incorporate available information from the Sparwood Area Groundwater Supporting Study in the September 30, 2017 RGMP submission; any additional studies will be assessed and prioritized as part of the submission.

6 References

- BC Ministry of Environment. 1996. Contaminated Sites Regulation (CSR), B.C. Reg. 375/96, includes amendments up to B.C. Reg. 4/2014, January 31, 2014.
- BC Ministry of Environment. 2008. Environmental Management Act (EMA), S.B.C. 2003, c. 53, as am. by S.B.C. 2004, c. 18.BC MoE, 2013. Technical Guidance 15: Concentration Limits for the Protection of Aquatic Receiving Environments. Version 1.0, April 2013.
- BC Ministry of Environment. 2016a. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Summary Report. March 2016.
- BC Ministry of Environment. 2016b. *Technical Guidance 6: Water and Air Baseline Monitoring Guidance Document for Mine Proponents and Operators*. Technical Guidance for Environmental Management Act Applications, Version 1.0, October 2012.
- Clark, M.J.R. (editor). 2002. British Columbia Field Sampling Manual. Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Victoria, BC, Canada. 312 pp.
- Franz Environmental Inc. 2013. Review of Selenium in Groundwater (Revised February 28, 2015). Memo to District of Sparwood.
- Golder Associates Ltd. 2016. 2015 LCO Site Groundwater Monitoring Program Annual Report. Prepared for Teck Coal Limited. March 2016.
- Golder Associates Ltd. 2017. 2016 LCO Annual Groundwater Monitoring Report. Report prepared for Teck Coal Ltd., dated March 2017.
- Hemmera Envirochem Inc., 2017. 2016 Groundwater Monitoring Report Greenhills Operations. Report prepared for Teck Coal Ltd., dated March 2017.
- Horvath, S. (editor) 2005 British Columbia Environmental Laboratory Manual. Water and Air Monitoring and Reporting; Water, Air and Climate Change Branch; Ministry of Environment; Victoria BC; Canada.
- Piteau Associates (Piteau), 2012. *Hydrogeological Assessment of Groundwater Supply Source Greenhouse Groundwater Supply Fording River Operations*. Submitted to Teck Coal Ltd. Fording River Operations, July 2012.
- Ramboll Environ. 2016. Elk Valley Permit 107517: Section 9.9 Human Health Risk Assessment. Prepared for Teck Coal Limited. March 30, 2016.
- SNC-Lavalin Inc. 2015a. Elk Valley Regional Groundwater Monitoring Program. Prepared for Teck Coal Limited. July 31, 2015.
- SNC-Lavalin Inc. 2015b. Elk Valley Regional Groundwater Synthesis Report. Prepared for Teck Coal Limited. October 2015.
- SNC-Lavalin Inc. 2015c. Fording River Operations Site Wide Groundwater Monitoring Program (2015 Update). Submitted to British Columbia Ministry of Environment in October 2015.

- SNC-Lavalin Inc. 2016a. 2015 Summary Report Elk Valley Drinking Water Program. Prepared for Teck Coal Limited. March 30, 2016.
- SNC-Lavalin Inc. 2016b. 2015 Annual Report Regional Groundwater Monitoring Program. Prepared for Teck Coal Limited. March 31, 2016.
- SNC-Lavalin Inc., 2017. Sparwood Area Groundwater Supporting Study Terms of Reference. Prepared for Teck Coal Limited. April 28, 2017.
- SRK Consulting (Canada) Inc., 2015. Coal Mountain Operations- Phase 1 Groundwater Monitoring Well Installation Report. Prepared for Teck Coal Ltd. – Coal Mountain Operations. October 2015.
- SRK Consulting (Canada) Inc., 2017. 2016 Groundwater Monitoring Report Coal Mountain Operations. Report prepared for Teck Coal Ltd., dated March 31, 2017.
- Teck Coal Ltd., 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Ministry of Environment for approval on July 22, 2014.
- Teck Coal Ltd., 2016. Adaptive Management Plan for the Elk Valley Water Quality Plan. Submitted to the British Columbia Ministry of Environment for approval on February 29, 2016.
- Teck Coal Ltd., 2017a. 2016 Annual Site Specific Groundwater Report Fording River Operations. Report dated March 31, 2017.
- Teck Coal Ltd., 2017b. 2016 Groundwater Monitoring Report Elkview Operations. Report dated March 31, 2017.
- UMA Engineering Ltd. 2008. District of Sparwood Source Water Protection Plan Drinking Water Wells. Job no. 0764-251-00-02. January 2008.

7 Notice to Reader

This report has been prepared and the work referred to in this report have been undertaken by SNC-Lavalin Inc. (SNC-Lavalin) for the exclusive use of Teck Coal Limited (Teck), who has been party to the development of the scope of work and understands its limitations. The methodology, findings, conclusions and recommendations in this report are based solely upon the scope of work and subject to the time and budgetary considerations described in the proposal and/or contract pursuant to which this report was issued. Any use, reliance on, or decision made by a third party based on this report is the sole responsibility of such third party. SNC-Lavalin accepts no liability or responsibility for any damages that may be suffered or incurred by any third party as a result of the use of, reliance on, or any decision made based on this report. Should this report be submitted to the BC Ministry of Environment (MoE) by Teck, the MoE is authorized to rely on the results in the report, subject to the limitations set out herein, for the sole purpose of determining whether Teck has fulfilled its obligations with respect to meeting the regulatory requirements of the MoE.

The findings, conclusions and recommendations in this report (i) have been developed in a manner consistent with the level of skill normally exercised by professionals currently practicing under similar conditions in the area, and (ii) reflect SNC-Lavalin's best judgment based on information available at the time of preparation of this report. No other warranties, either expressed or implied, are made as to the professional services provided under the terms of our original contract and included in this report. The findings and conclusions contained in this report are valid only as of the date of this report and may be based, in part, upon information provided by others. If any of the information is inaccurate, new information is discovered, site conditions change or applicable standards are amended, modifications to this report may be necessary. The results of this assessment should in no way be construed as a warranty that the subject site is free from any and all contamination.

Any soil and rock descriptions in this report and associated logs have been made with the intent of providing general information on the subsurface conditions of the site. This information should not be used as geotechnical data for any purpose unless specifically addressed in the text of this report. Groundwater conditions described in this report refer only to those observed at the location and time of observation noted in the report.

This report must be read as a whole, as sections taken out of context may be misleading. If discrepancies occur between the preliminary (draft) and final version of this report, it is the final version that takes precedence. Nothing in this report is intended to constitute or provide a legal opinion.

The contents of this report are confidential and proprietary. Other than by Teck, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of Teck and SNC-Lavalin.

Tables

- 1: Summary of Applicable Primary and Secondary Screening Criteria
- 2: Well Installation Details, Monitoring Values and Hydrogeological Information
- 3: Summary of Primary Screening Criteria for Dissolved Inorganics in Groundwater
- 4: Summary of Primary Screening Criteria for Dissolved Metals in Groundwater
- 5: Summary of Secondary Screening Criteria for Constituents of Interest

					Primary S	creening		Secondary Screening (Selenium Only)						
Key Area	Well ID	Operation	MU	AW Criteria	DW Criteria	IW Criteria	LW Criteria	Site Performance	Compliance Point	DW Guidelines				
				Applied**	Applied	Applied	Applied	Objective	Compliance Point	Applied				
Background	FR_HMW5	FRO	1	BC CSR	BC CSR	BC CSR	BC CSR	GH_FR1 (0200378)	FR_FRCP1 (E300071)	CDWQG				
	FR_09-01-A	FRO	1	BC CSR	BC CSR	BC CSR	BC CSR	GH_FR1 (0200378)		CDWQG				
1	FR_09-01-B	FRO	1	BC CSR	BC CSR	BC CSR	BC CSR	GH_FR1 (0200378)		CDWQG				
	FR_GHHW	FRO	1	BC CSR	BC CSR	BC CSR	BC CSR	GH_FR1 (0200378)	FR_FRCP1 (E300071)	CDWQG				
2	LC_PIZDC1308	LCO	1	BC CSR	BC CSR	BC CSR	BC CSR	GH_FR1 (0200378)	GH_FR1 (200378)	CDWQG				
2	LC_PIZDC1307	LCO	1	BC CSR	BC CSR	BC CSR	BC CSR	GH_FR1 (0200378)	GH_FR1 (200378)	CDWQG				
	GH_POTW09	GHO	1	BC CSR	BC CSR	BC CSR	BC CSR	GH_FR1 (0200378)	GH_FR1 (200378)	CDWQG				
3	GH_POTW10	GHO	1	BC CSR	BC CSR	BC CSR	BC CSR	GH_FR1 (0200378)	GH_FR1 (200378)	CDWQG				
5	GH_POTW15	GHO	1	BC CSR	BC CSR	BC CSR	BC CSR	GH_FR1 (0200378)	GH_FR1 (200378)	CDWQG				
	GH_POTW17	GHO	1	BCWQG	BC CSR	BC CSR	BC CSR	GH_FR1 (0200378)	GH_FR1 (200378)	CDWQG				
	GH_MW-ERSC-1	GHO	3	BC CSR	BC CSR	BC CSR	BC CSR	GH_ER1 (E206661)	GH_ERC (E300090)	CDWQG				
	GH_GA-MW-1	GHO	3	BC CSR	BC CSR	BC CSR	BC CSR	GH_ER1 (E206661)	GH_ERC (E300090)	CDWQG				
	GH_GA-MW-2	GHO	3	BC CSR	BC CSR	BC CSR	BC CSR	GH_ER1 (E206661)	GH_ERC (E300090)	CDWQG				
4	GH_GA-MW-3	GHO	3	BC CSR	BC CSR	BC CSR	BC CSR	GH_ER1 (E206661)	GH_ERC (E300090)	CDWQG				
	GH_GA-MW-4	GHO	3	BC CSR	BC CSR	BC CSR	BC CSR	GH_ER1 (E206661)	GH_ERC (E300090)	CDWQG				
	RG_DW-01-03	RG	3	BC CSR	BC CSR	BC CSR	BC CSR	GH_ER1 (E206661)	-	CDWQG				
	RG_DW-01-07	RDW	3	BC CSR	BC CSR	BC CSR	BC CSR	GH_ER1 (E206661)	-	CDWQG				
6	LC_PIZP1101	LCO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER4 (0200027)	-	CDWQG				
7	EV_GV3gw	EVO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	-	CDWQG				
1	RG_DW-02-20	RDW	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	-	CDWQG				
8	EV_LSgw	EVO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	-	CDWQG				
0	EV_OCgw	EVO	4	BC WQG	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	-	CDWQG				
	EV_BCgw	EVO	4	BC WQG	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	EV_MC2 (E300091)	CDWQG				
	EV_MCgwS	EVO	4	BC WQG	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	EV_MC2 (E300091)	CDWQG				
	EV_MCgwD	EVO	4	BC WQG	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	EV_MC2 (E300091)	CDWQG				
9	EV_BRgw	EVO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	EV_MC2 (E300091)	CDWQG				
	EV_RCgw	EVO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	EV_MC2 (E300091)	CDWQG				
	EV_WH50gw	EVO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	EV_MC2 (E300091)	CDWQG				
	RG_DW-03-01	RDW	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	-	CDWQG				
10	EV_ECgw	EVO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	EV_MC2 (E300091)	CDWQG				
	CM_MW1-OB	CMO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	CM_MC2 (E258937)	CDWQG				
11	CM_MW1-SH	CMO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	CM_MC2 (E258937)	CDWQG				
	CM_MW1-DP	CMO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	CM_MC2 (E258937)	CDWQG				
	RG_DW-07-01	RDW	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	-	CDWQG				
	EV_ER1gwS	EVO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	-	CDWQG				
12	EV_ER1gwD	EVO	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	-	CDWQG				
	RG_DW-03-04	RG	4	BC CSR	BC CSR	BC CSR	BC CSR	EV_ER1 (0200393)	-	CDWQG				

TABLE 1: Summary of Applicable Primary and Secondary Screening Criteria

** BCWQG applied for wells located within 10 m from a receiving surface water body

TABLE 2: Well Installation Details, Monitoring Values and Hydrogeological Information

Key Area	Well ID	Туре	Operation	MU	Ground Elevation (masl)	TOC Elevation (masl)	Drilled Depth (mbgs)	Screened Depth (mbgs)	Screened Formation	Date of Static Water Level Measurement	Depth to Water (mbtoc)	Potentiometric Elevation (masl)	Depth to Bedrock (mbgs)	Hydrostratigraphic Unit	Hydrauli Conductiv (m/s)
					(((2016/01/21	1.57	1784.46	((11/3)
)		Manitarian	FRO	1	4705.0	4700.00	12.8	70 40 4	Orevel	2016/05/18	1.49	1784.54	10.7		0.005.00
заскдгоипа	FR_HMW5	Monitoring	FRO	1	1785.2	1786.03	12.8	7.3 - 10.4	Gravel	2016/08/10	1.62	1784.41	10.7	-	3.00E-03
										2016/11/03	1.63	1784.40	1		
										2016/01/25	6.76	1578.19			
	FR 09-01-A	Monitoring	FRO	1	1584.10	1584.95	7.6	3.83 - 6.88	Sandy Gravel	2016/06/14	1.68	1583.27		Fording River valley bottom sediments	_
		Monitoring	1110	·	1004.10	1004.00	7.0	0.00 0.00	Oundy Oraver	2016/08/17	3.93	1581.02			
										2016/11/24	6.05	1578.90			
										2016/01/25	7.26	1577.60	-		
1	FR 09-01-B	Monitoring	FRO	1	1584.10	1584.86	19.3	17.15 - 18.67	Coarse Gravel	2016/06/14	2.27	1582.59		Fording River valley bottom sediments	1.50E-
										2016/08/17	4.54	1580.33	-		
										2016/11/24	7.80	1577.06			
								Well 1: 20.4 - 21.6	Well 1: Gravel	_					
	FR_GHHW ¹	Supply	FRO	1	1575.8	-		Well 2: 10.7 - 16.8	Well 2: Gravel		-	-	-	Valley-bottom fluvial aquifer	-
		,						Well 3: 10.4 - 11.6	Well 3: Gravel	_					
							Well 4: 29.0	Well 4: 25.9 - 29.0	Well 4: Sand and Gravel	0010/00/10		1000.01			
										2016/03/16	3.33	1688.04	-		
	LC_PIZDC1308	Monitoring	LCO	1	1685.7	1691.37	9.01	-	-	2016/06/10	1.82	1689.55	-	Colluvium and till	-
										2016/09/13	4.48**	1686.89**	-		
2										2016/12/13		1688.53			
										2016/03/16	6.48	1684.73	-		
	LC_PIZDC1307	Monitoring	LCO	1	<u>1685.7</u>	1691.21	34.6	-	-	2016/06/10 2016/09/13	2.53 2.85**	1688.68 1688.36**		Highly consolidated basal till	-
											5.05	1686.16	-		
										2016/12/13	5.05	1000.10			
	GH_POTW09	Supply	GHO	1	<u>1495</u>	-	37	26.8 - 36.3	Silty Gravel	-	-	-	36.08	Fluvial sediments overlying bedrock	-
2	GH_POTW10	Supply	GHO	1	<u>1489</u>	-	53.6	-	Gravel	-	-	-	-	Fluvial/glaciofluvial sediments	-
3	GH_POTW15	Supply	GHO	1	<u>1490</u>	-	43.9	-	Gravel and Cobbles	-	-	-	-	Fluvial/glaciofluvial sediments	-
	GH_POTW17	Supply	GHO	1	1504		47.2	39.3 - 42.4	Sand and Gravel	_	-			Fluvial sediments underlying lacustrine sediments	
		Ouppiy	0110	'	1504	_	47.2	33.3 - 42.4					_		_
										2016/03/22	5.74	1278.37			
	GH MW-ERSC-1	Monitoring	GHO	3	1283.36	1284.11	7.924	4.12 - 7.17	Till/Bedrock	2016/06/14	5.29	1278.82	6.1	Till/ Bedrock interface	3.00E
		Monitoring	0110		1205.50	1204.11	1.021		The Dourook	2016/08/15	6.00	1278.11	0.1		0.002
										2016/11/14	5.97	1278.14			
										2016/03/22	17.05	1363.21	-		
	GH GA-MW-1	Monitoring	GHO	3	1379.21	1380.26	22.6	15.5 - 18.5	Clayey Sand	2016/06/14	17.02	1363.24	22.6	Interlayered alluvial and lacustrine sediments	1.00E
	_	Ŭ							, , , , , , , , , , , , , , , , , , ,	2016/08/15	17.10	1363.16	-	,	
										2016/11/16	19.54	1360.72			
										2016/03/22	5.16	1302.52	-		
	GH_GA-MW-2	Monitoring	GHO	3	1306.66	1307.68	29	23 - 28	Sand/Silt	2016/06/14	4.04	1303.64	29.6	Fluvial sediments about the bedrock contact	1.00E
		-								2016/08/15	5.15	1302.53	-		
4										2016/11/14	5.78	1301.90			
										2016/03/22	6.72	1294.03	-		
	GH_GA-MW-3	Monitoring	GHO	3	1299.78	1300.75	29.6	8 - 14	Sand and Gravel	2016/06/14	7.00	1293.75	14.4	Fluvial sediments above the bedrock contact	2.00E
										2016/08/15	8.87	1291.88 1291.97	-		
										2016/11/14 2016/03/22	8.78 5.54	1307.51			
										2016/06/14	5.08	1307.97	-		
	GH_GA-MW-4	Monitoring	GHO	3	1312.15	1313.05	17.2	13.7 - 16.7	Sand and Gravel	2016/08/15	5.89	1307.16	17.2	Alluvial sediments	1.00E
										2016/08/13	6.5	1306.55	-		
			50		(000		47.00		<u> </u>						
	RG_DW-01-03	Supply	RG	3	1266	-	17.06	-	Sand and Gravel	-	-	-	-	Interlayered Silt Sand and Gravel Fluvial Sediments	-
	RG_DW-01-07	Domestic	RDW	3	<u>1231</u>	-	9.8	-	Sandy Gravel	-	-	-	-	-	-
	6 LC_PIZP1101									2016/03/15	30.96	1236.1	-		
6		Monitoring	LCO	4	1266	1267.06	41.2	38.2 - 41.2	Sand and Gravel	2016/06/17	29.35	1237.71		Fluvial sediments	7.40E
										2016/09/15	30.98	1236.08	-		
				-						2016/12/12	31.12	1235.94			
										2016/02/23	10.95	1297.01	-		
	EV_GV3gw	Monitoring	EVO	4	<u>1307</u>	1307.96	25	22.85 - 24.38	Silty Gravel	2016/05/16	2.14*	1305.82*	-	Alluvial sediments in the Grave Creek valley-bottom	-
			1	1						2016/08/22	11.02 10.94	1296.94 1297.02	-		
7															1
7										2016/10/20	10.94	1237.02			

¹ Greenhouse water supply includes four wells (FR_GW_WELL1, FR_GW_WELL2, FR_GW_WELL3 and FR_GW_WELL4) which are collectively referred to as FR_GHHW. Ground elevation of FR_GW_WELL4 is included in Table 2.

² Average hydraulic conductivity.

A field transcription error is suspected for the depth to water value provided for September at GH_GA-MW-1.

** Depth to water values and calculated potentiometric values for LC_PIZDC1307 and LC_PIZDC1308 are suspected to be switched based on levelogger data presented in Graph 2-1.

TOC: Top of casing

Underlined italics indicates values are approximate. Approximate locations are estimated based on figures. Approximate ground elevations are based on LiDAR survey of the Elk Valley.

- indicates that data for the given field is unavailable

TABLE 2 (Cont'd): Well Installation Details, Monitoring Values and Hydrogeological Information

Key Area	Well ID	Туре	Operation	MU	Ground Elevation (masl)	TOC Elevation (masl)	Drilled Depth (mbgs)	Screened Depth (mbgs)	Screened Formation	Date of Static Water Level Measurement	Depth to Water (mbtoc)	Potentiometric Elevation (masl)	Depth to Bedrock	Hydrostratigraphic Unit	Hydraulic Conductivity ²
					(masi)	(masi)		(IIIbg3)		2016/02/23	4.13	1129.80	(ilibgs)		(11/5)
	E)/ 1.0mm	Manitarian	EV/O		1100	4400.00	40.07	5 40 6 74	Canad and Crowal	2016/05/17	3.82	1130.11		Fluxial valley, hetters and incente	1.005.00
	EV_LSgw	Monitoring	EVO	4	<u>1133</u>	1133.93	10.67	5.18 - 6.71	Sand and Gravel	2016/08/24	4.12	1129.81	-	Fluvial valley-bottom sediments	1.00E-03
8										2016/10/19	4.30	1129.63			
0										2016/02/22	3.59	1123.30			
	EV_OCgw	Monitoring	EVO	4	<u>1126</u>	1126.89	15.54	11.58 - 14.63	Sand	2016/05/18	3.47	1123.42	14.48	Fluvial vallev-bottom sediments	7.00E-07
		monitoring				1.20.00	10101	1100 1100	Cana	2016/08/24	4.03	1122.86	Bedrock (mbgs) Hydrostratigraphic Unit Conductivity ² (m/s) · Fluvial valley-bottom sediments 1.00E-03 14.48 Fluvial valley-bottom sediments 7.00E-07 · Fluvial valley-bottom sediments 1.00E-04 · Fluvial valley-bottom sediments 1.00E-04 · Fluvial valley-bottom sediments 1.00E-04 · Shallowest valley-bottom aquifer 7.00E-08 · Deepest valley-bottom aquifer 3.00E-06 · Fluvial sediments in the Michel Creek valley bottom - · Fluvial sediments in the Michel Creek valley bottom - · Fluvial sediments in the Michel Creek valley bottom - · Fluvial sediments in the Michel Creek valley bottom - · · · - · Colluvium overlying till 1.00E-08 1.20E-04 · Siltstone 2.00E-07 - · · · · -		
										2016/10/19	3.31	1123.58			
										2016/02/22	3.02	1150.84			
	EV_BCgw	Monitoring	EVO	4	<u>1153</u>	1153.86	23.16	17.77 - 20.82	Gravel	2016/05/16	2.69	1151.17	-	Fluvial valley-bottom sediments	1.00E-04
										2016/08/22 2016/10/18	3.12 2.83	1156.98 1151.03			
										2016/02/24	2.03	1129.23			
			EVO							2016/02/24 2016/05/18	2.73	1129.23			
	EV_MCgwS	Monitoring		4	<u>1131</u>	1131.96	10.67	5.79 - 7.32	Clayey Silt	2016/08/23	3.00	1129.51	-	Shallowest valley-bottom aquifer	7.00E-08
										2016/10/24	2.57	1120.30			
										2016/02/24	3.75	1128.09			
			51/0				17.55			2016/05/18	3.23	1128.61			a aa c aa
9	EV_MCgwD	Monitoring	EVO	4	<u>1131</u>	1131.84	47.55	24.50 - 27.55	Sand and Clay	2016/08/23	3.78	1128.06	-	Deepest valley-bottom aquifer	3.00E-06
										2016/10/24	3.55	1128.29			
	EV_BRgw	Supply	EVO	4	<u>1149</u>	-	-	-	-	-	-	-	-	Fluvial sediments in the Michel Creek valley bottom	-
	EV_RCgw	Supply	EVO	4	<u>1161</u>	-	-	-	Sand and Gravel	-	-	-	-	Fluvial sediments in the Michel Creek valley bottom	-
	EV_WH50gw	Supply	EVO	4	<u>1159</u>	-	-	-	-	-	-	-	-	Fluvial sediments in the Michel Creek valley bottom	-
	RG_DW-03-01	Domestic	RDW	4	<u>1127</u>	-	15.24	7.6 - 15.2	Gravel	-	-	-	-	-	-
										2016/02/24	0.61	1327.13			
10	EV_ECgw	Monitoring	EVO	4	<u>1327</u>	1327.74	10.97	2.59 - 4.12	Sand/Clay and Sand	2016/05/18	0.57	1327.17	-	Colluvium overlving till	1.00E-08
										2016/08/23	1.42	1326.32			
										2016/10/18	0.86	1326.88			
										2016/03/10	3.16	1497.28			
	CM_MW1-OB	Monitoring	CMO	4	1500.44	1501.29	37.27	2.87 - 4.39	Gravel	2016/06/16	3.40	1497.04	-	Fluvial sediments in the Michel Creek valley bottom	1.20E-04
										2016/09/07	3.52	1496.92			
										2016/12/05	3.41	1497.03			
										2016/03/10	4.09	1496.35			
	CM_MW1-SH	Monitoring	CMO	4	1500.44	1501.29	37.27	20.44 - 23.49	Siltstone	2016/06/16	4.99 5.54	1495.45	-	Siltstone	2.00E-07
11										2016/09/07 2016/12/05	5.54	1494.90 1495.00			
										2016/03/10 2016/06/17	3.56 12.56	1496.88 1487.88			
	CM_MW1-DP	Monitoring	CMO	4	1500.44	1501.29	37.27	34.22 - 37.27	Siltstone	2016/09/07	4.48	1495.96	18	Siltstone	6.00E-06
	RG_DW-07-01	Domestic	RDW	4	<u>1506</u>	-	13.7	-	-	- 2016/12/05	3.30	- 1497.14	-	Hydrostratigraphic Unit Condition ial valley-bottom sediments 1.0 ial valley-bottom sediments 7.0 ial valley-bottom sediments 1.0 ial valley-bottom sediments 1.0 ial valley-bottom sediments 1.0 ial valley-bottom sediments 1.0 iowest valley-bottom aquifer 7.0 pest valley-bottom aquifer 3.0 vial sediments in the Michel Creek valley bottom 1.0 vial sediments in the Michel Creek valley bottom 1.0 uvium overlying till 1.0 ial sediments in the Michel Creek valley bottom 1.2 ial sediments in the Michel Creek valley bottom 1.2 ial sediments in the Michel Creek valley bottom 1.2 ial sediments in the Michel Creek valley bottom 1.2 ial sediments in the Michel Creek valley bottom 1.2 ione 2.0 ione 6.0 - 1.2 ione 1.2	-
				+						2016/02/24	5.30	1110.66			
										2016/02/24 2016/05/18	4.53	1111.43			
	EV_ER1gwS	Monitoring	EVO	4	<u>1115</u>	1115.96	17.61	14.56 - 17.61	Sand and Gravel	2016/08/23	5.11	1110.85	-	Shallowest fluvial aquifer	-
										2016/10/18	5.05	1110.91			
										2016/02/24	4.95	1110.96			
12	2 EV_ER1gwD		E. / 0			4445.04	00.70	05 00 00 07	0	2016/05/18	4.20	1111.71	07.00		0.005.04
		Monitoring	EVO	4	<u>1115</u>	1115.91	30.78	25.82 - 28.87	Sand/Silty Sand	2016/08/23	4.76	1111.15	27.89	Deepest fluvial aquiter	9.00E-04
										2016/10/18	4.72	1111.19			
	RG_DW-03-04	Supply	F a		<u>1114</u>		32.4	24.2 - 32.4	Sandy Gravel						
		Supply	RG	4	1111	-	1 22 1	040 004	L'andy Croyal		-	-	-	I have a demonstration that I lly Diversion level hottom	-

¹ Greenhouse water supply includes four wells (FR_GW_WELL1, FR_GW_WELL2, FR_GW_WELL3 and FR_GW_WELL4) which are collectively referred to as FR_GHHW. Ground elevation of FR_GW_WELL4 is included in Table 2.

² Average hydraulic conductivity.

A field transcription error is suspected for the depth to water value provided for September at GH_GA-MW-1.

** Depth to water values and calculated potentiometric values for LC_PIZDC1307 and LC_PIZDC1308 are suspected to be switched based on levelogger data presented in Graph 2-1.

TOC: Top of casing

Underlined italics indicates values are approximate. Approximate locations are estimated based on figures. Approximate ground elevations are based on LiDAR survey of the Elk Valley.

- indicates that data for the given field is unavailable

TABLE 3: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Inorganics in Groundwater

			-	Field Parameters Physical Parameters									Dissolved Inorganics														
Control Contro Control Control <th< th=""><th>-</th><th></th><th></th><th></th><th></th><th>Dissolved</th><th></th><th>Field</th><th></th><th>Har</th><th>Conductivity,</th><th>Total Suspended</th><th>Total Dissolved</th><th>Turbidity,</th><th>Total Alkalinity CaCO3)</th><th>Ammonia</th><th></th><th></th><th></th><th>Nitrate</th><th></th><th></th><th></th><th>Total</th><th></th><th>Total Organic</th><th>Dissolved Carbon</th></th<>	-					Dissolved		Field		Har	Conductivity,	Total Suspended	Total Dissolved	Turbidity,	Total Alkalinity CaCO3)	Ammonia				Nitrate				Total		Total Organic	Dissolved Carbon
Control Contro Control Control <th< td=""><td>BCWQG Aquatic Lif</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	BCWQG Aquatic Lif																										
Control <th< td=""><td>CSR Aquatic Life (A</td><td>W)^a</td><td></td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>3.7 - 11.3^b</td><td>n/a</td><td>1,500</td><td>2 - 3^c</td><td>400</td><td>0.2 - 2^d</td><td>n/a</td><td>n/a</td><td>n/a</td><td>1,000</td><td>n/a</td><td>n/a</td></th<>	CSR Aquatic Life (A	W) ^a		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.7 - 11.3 ^b	n/a	1,500	2 - 3 ^c	400	0.2 - 2 ^d	n/a	n/a	n/a	1,000	n/a	n/a
Proto Proto Proto Proto Proto Proto Proto Proto Proto Proto<	CSR Livestock Wate CSR Drinking Water	ering (LW)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	600	1	100	10	n/a	n/a	n/a	1,000	n/a	n/a
Market Bit Add Add Add Add Add Add Add Add Add Ad		FR_HMW5_QSW_04042016_N FR_HMW5_QSW_04072016_N	2016 05 18 2016 08 10	4.3 3.9	8.20 8.08	1.82 0.26	358.5 359.6	-	8.36 8.34	183 164	402 430	< 1.0 < 1.0	229 234	0.11 0.11	166 170	0.0632 0.0612	< 0.050 < 0.050	1.57 1.83	0.579 0.597	< 0.0050 < 0.0050	< 0.0010 < 0.0010	0.079 0.062	0.0232 0.0258	0.0248	41.0 40.0	< 0.50 < 0.50	<pre>0 < 0.50 0 < 0.50</pre>
Image: stateImage: state <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1															1									
Image: sector Image: sector Image: sector Image: sec		QA/QC RPD%		-	*	*	*	-	< 1	1	1	*	2	*	2	*	*	0	0	2	*	*	*	*	2	*	*
Image: Section of the sectio		FR_DC1-WG-201606141205 QA/QC RPD%	Duplicate	-	*	-	-	-	8.10 < 1	583 0	1,020 1	1.1	783 5	<0.10 *	251 1	< 0.0050 *	< 0.25 *	0.90 3	0.27 4	32.1	< 0.0050 *	< 0.050 *	0.0036	0.0041	224 1	0.67 *	0.64 *
Image: Section of the sectio	FR_09-01-B	FR_09-01-B_QSW_04012016_N	2016 11 24 2016 01 25	4.1 6	7.41 7.59	9.46 6.99	1,379 935	-	7.83 7.74	641	1,060	< 1.0	1,160 762	<0.10 0.12	295 240	< 0.0050 < 0.0050	< 0.25 < 0.25	1.16 3.2	0.14 0.17	51.7 17.6	< 0.0050 < 0.0050	0.051 0.059	0.0031 0.0025	0.0027 0.0024	347 291	< 0.50 0.54	<pre>0 < 0.50 < 0.50</pre>
P P P P P P		FR_09-01-B_QSW_04072016_N	2016 08 17	9.7	7.66	7.73	990	-	7.73	723	1,220	< 1.0	857	0.11	299	< 0.0050	< 0.25	3.20	0.19	22.0	< 0.0050	< 0.050	0.0023	0.0031	297	0.59	0.54
Processor Processor Processor Processor P	FR_GHHW	FR_GHHW_QSW_04012016_N	2016 01 25	12	7.52	8.97	612.2	-	7.84	862	1,450	< 1.0	1,080	1.19	272	< 0.0050	< 0.25	2.2	0.15	53.9	< 0.0050	0.063	0.0012	0.0028	360	0.57	< 0.50
Image: 10 modelImage: 10 model	FR GH WELL 2 ^e	FR_GHHW_QSW_04072016_N	2016 08 17	16	7.71	8.18	983		7.85	655	1,220	1.4	833	0.78	278	< 0.0050	< 0.25	0.93	0.16	36.3	< 0.0050	0.120	0.0023	0.0045	252	0.60	0.54
Control Control <t< td=""><td></td><td>QA/QC RPD%</td><td></td><td></td><td></td><td>-</td><td>*</td><td>2</td><td>< 1</td><td>1</td><td>2</td><td>10</td><td>2</td><td>-</td><td>3</td><td>*</td><td>*</td><td>3</td><td>11</td><td>3</td><td>*</td><td>*</td><td>*</td><td>3</td><td>3</td><td>*</td><td>*</td></t<>		QA/QC RPD%				-	*	2	< 1	1	2	10	2	-	3	*	*	3	11	3	*	*	*	3	3	*	*
Terr and interval sectors in the sector sec		· · · · · · · · · · · · · · · · · · ·																									
Image: 10 marrow and section in the section		LC_PIZDC1307_WG_2016-06-13_NP	2016 06 10	5	8.15	0.42	392.9	22.73	8.19	193	397	9.0	217	15.8	216	0.107	< 0.050	0.19	0.552	< 0.0050	< 0.0010	0.211	< 0.0010	0.0224	< 0.30	2.28	2.56
LLDADDEDD	LC PIZDC1308	LC_PIZDC1308_WG_2016-03-14_NP	2016 03 16	2.3	7.55	1.9	459.7	1.63	7.86	252	509	2.6	293	6.96	268	0.0382	< 0.050	1.0	0.291	0.0082	< 0.0010	0.117	< 0.0010	0.0060	3.23	2.22	2.45
Here Image:		LC_PIZDC1308_WG_2016-09-12_NP	2016 09 13	5.5	7.26	0.21	423	2.27	7.87	314	555	< 1.0	343	0.45	332	0.0054	< 0.050	1.15	0.199	0.0326	< 0.0010	0.101	< 0.0010	< 0.0020	4.60	2.78	3.23
eth eth Set Set <td></td> <td>-</td> <td>-</td>																										-	-
in Proving Substrate <		GH_POTW09_WG_2016-08-15_NP	2016 08 16	9.2	7.71	2.20	107.5	3.49	7.92	395	791	< 1.0	526	2.63	256	0.0271	< 0.25	6.78	0.81	< 0.025	< 0.0050	0.061	< 0.0010	0.0021	166	0.55	< 0.50
contrant weight	GH POTW10	GH_POTW10_WG_2016-06-14_NP	2016 03 07 2016 06 14	- 7.4	8.07 7.84	5.75 2.75	650.9 717.6	- 1.26	7.78 7.86	405 407	740 703	1.4 2.0	453 500	9.68 9.98	203 201	0.0616 0.0626	< 0.25 < 0.25	4.5 4.93	0.76 0.89	0.705 0.445	0.0140 0.0122	0.093 0.108	< 0.0010 < 0.0010	< 0.0020 < 0.0020	191 200	< 0.50 < 0.50	<pre>0 < 0.50 0 < 0.50</pre>
Partner Partner <t< td=""><td>CH POTW15</td><td>GH_POTW10_WG_2016-11-17_NP</td><td>2016 11 17</td><td>7.5</td><td>7.72</td><td>3.63</td><td>595.3</td><td>2.02</td><td>7.92</td><td>367</td><td>694</td><td>1.1</td><td>465</td><td>10.8</td><td>199</td><td>0.0582</td><td>< 0.050</td><td>4.44</td><td>0.845</td><td>0.478</td><td>0.0183</td><td>0.237</td><td>< 0.0010</td><td>0.0028</td><td>185</td><td>< 0.50</td><td>< 0.50</td></t<>	CH POTW15	GH_POTW10_WG_2016-11-17_NP	2016 11 17	7.5	7.72	3.63	595.3	2.02	7.92	367	694	1.1	465	10.8	199	0.0582	< 0.050	4.44	0.845	0.478	0.0183	0.237	< 0.0010	0.0028	185	< 0.50	< 0.50
GL LO VIT GL LO VIT GL LO VIT GL LO VIT G	GH FOIWIS	GH_POTW15_WG_2016-06-14_NP	2016 06 14	7	7.9	8.13	914	1.5	7.84	522	911	1.9	649	5.88	219	0.0349	< 0.25	32.4	0.20	< 0.025	< 0.0050	0.111	< 0.0010	< 0.0020	273	1.02	1.02
	GH_POTW17**	GH_POTW17_WG_2016-03-07_N	2016 03 07	6.3	7.76	7.45	1,182	0.38	7.64	786	1,330	1.2	1,020	2.18	268	0.0159	< 0.25	22.4	0.17	0.198	< 0.0050	< 0.050	< 0.0010	< 0.0020	<u>498**</u>	0.84	0.73
Part Protect Part Protect<		GH_POTW17_WG_2016-08-15_NP	2016 08 16	7.6	7.72	8.25	121.1	1.71	8.05	734	1,370	1.7	1,010	1.95	284	0.0112	< 0.25	20.1	0.18	0.330	< 0.0050	0.063	< 0.0010	0.0028	480**	0.92	0.83
GH MP, HES 0 sources <		GH_POTW17_WG_2016-11-17_FD		-	-	-	-	-	8.05	713	1,230		945	1.48	276		< 0.050	18.9	0.138	0.245	0.0020				422	< 5.0	< 0.50
HAR MEX LONG 2000 MIN Mar MeX LONG 2000 MIN																											-
OH CAMU1 ON CONSTRUE I I		GH_MW-ERSC-1_WG_2016-08-15_NP	2016 08 15	9.8	7.07	6.3	114.1	6.02	7.92	365	709	4.5	390	5.53	378	0.0286	< 0.25	2.29	0.23	0.037	< 0.0050	0.100	0.0015	0.0210	16.3	1.95	2.10
GL_AMM GL_AMM GL_AMM </td <td></td> <td>QA/QC RPD%</td> <td></td> <td> 7</td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td>1</td> <td>< 1</td> <td>3</td> <td>97</td> <td>1</td> <td>74</td> <td>2</td> <td>*</td> <td>*</td> <td>7</td> <td>4</td> <td>1</td> <td>*</td> <td>*</td> <td>*</td> <td>12</td> <td>1</td> <td>*</td> <td>*</td>		QA/QC RPD%		7	*		*	*	1	< 1	3	97	1	74	2	*	*	7	4	1	*	*	*	12	1	*	*
GH GA-MW2 GH GA-MW2 GW GA MW2 GW GA GW GA SUB SUB SUB SUB <	GH GA-MW-1	GH_GA-MW-1_WG_2016-06-14_NP	2016 06 14	8	7.63	3.39	1,851	601.6	7.51	514	1,970	262	1,410	155	376	1.36	0.92	60.4	0.40	0.600	0.016	2.36	0.0044	0.517	715	26.3	13.3
Bit Control Bit Control Bit Control Bit Control Bit Control Bit Control Control <th< td=""><td>GH GA-MW-2</td><td>GH_GA_MW-2_WG_2016-03-22_NP</td><td>2016 03 22</td><td>5.2</td><td>7.71</td><td>1.6</td><td>629.9</td><td>9.53</td><td>7.99</td><td>400</td><td>713</td><td>7.0</td><td>449</td><td>5.46</td><td>214</td><td>< 0.0050</td><td>< 0.25</td><td>8.0</td><td>0.12</td><td>3.49</td><td>< 0.0050</td><td>0.125</td><td>0.0023</td><td>0.0110</td><td>158</td><td>1.36</td><td>1.07</td></th<>	GH GA-MW-2	GH_GA_MW-2_WG_2016-03-22_NP	2016 03 22	5.2	7.71	1.6	629.9	9.53	7.99	400	713	7.0	449	5.46	214	< 0.0050	< 0.25	8.0	0.12	3.49	< 0.0050	0.125	0.0023	0.0110	158	1.36	1.07
Gui GA.MM3 Gui GA.MM3 Gui GA.MM3 GUI GAMM3 GUI GAM3		GH_GA-MW-2_WG_2016-08-15_NP	2016 08 15	8	7.61	0.56	704.1	16.07	8.10	366	734	14.8	476	9.95	222	< 0.0050	< 0.25	7.40	0.13	1.63	0.0431	0.112	0.0029	0.0190	157	1.09	1.13
Grigsson	GH GA-MW-3	GH_GA_MW-3_WG_2016-03-22_NP GH_GA-MW-3_WG_2016-06-14_NP	2016 03 22 2016 06 14	5.5 6.9	8.02 7.75	1.95 2.53	670.2 534	60.25 152	7.66 7.71	321 265	723 600	65.7 210	387 354	71.8 79.8	245 270	0.370 0.366	< 0.050 < 0.050	8.1 6.93	0.633 0.701	0.789 < 0.0050	0.174 0.0011	0.663 0.753	< 0.0010 0.0037	0.342 0.508	117 37.7	2.61 5.35	0.51 < 0.50
Orig Orig <thorig< th=""> Orig Orig <tho< td=""><td>GH GA-MW-4</td><td>GH_GA-MW-3_WG_2016-11-14_NP</td><td>2016 11 14</td><td>5</td><td>7.67</td><td>0.29</td><td>481.4</td><td>2.38</td><td>8.40</td><td>234</td><td>571</td><td>9.5</td><td>337</td><td>28.9</td><td>270</td><td>0.360</td><td>< 0.050</td><td>6.38</td><td>0.683</td><td>< 0.0050</td><td>< 0.0010</td><td>0.398</td><td>0.0045</td><td>0.0160</td><td>26.9</td><td>< 0.50</td><td>< 0.50</td></tho<></thorig<>	GH GA-MW-4	GH_GA-MW-3_WG_2016-11-14_NP	2016 11 14	5	7.67	0.29	481.4	2.38	8.40	234	571	9.5	337	28.9	270	0.360	< 0.050	6.38	0.683	< 0.0050	< 0.0010	0.398	0.0045	0.0160	26.9	< 0.50	< 0.50
RG DW (-1)3 RG (-103, WP 2016 6604, MP 2016 602 M 2 O16 (00 1 0 27 11 3) -		GH_GA-MW-4_WG_2016-06-14_NP	2016 06 14	6.3	7.96	6.24	1,330	3.97	7.74	813	1,100	21.4	850	1.53	219	< 0.0050	< 0.25	4.00	0.18	5.97	0.0064	0.129	< 0.0010	0.0050	425	0.87	0.77
RG 0103 WP 2016-014 WP 2016 014 WP 2016 121 G 7 7.7 1.7 <th1.7< th=""> <th1.7< th=""> 1.7 <</th1.7<></th1.7<>	RG DW-01-03	RG_01-03_WP_2016-06-01_NP	2016 06 01	6.6	7.4	10.3	-	-	-	202	253	-	-	-	-	-	-	1.17	-	0.806	< 0.0010	-	-	-	49.2	-	1.90
R.G. 01-07. WP 2016-0329 MP NP 0160 029 6.5 Y 70 Y 74 Y		RG_01-03_WP_2016-09-14_NP	2016 09 14	6.7	7.1	10.5	-	-	- -	216	369	-	-	-	-	-	-	1.42	-	0.840	< 0.0010	-	-	-	53.7	-	-
R6 Ord VP 2016 12 6 9 1	RG DW-01-07	RG_01-07_WP_2016-6-01_NP RG_01-07_WP_2016-06-29_NP	2016 06 01 2016 06 29	6.4 6.5	6.9 7.07	7.8 7.4	-	-	- 7.45	455 474	559 549	-	-	-	317	-	-	61.9 50.4	- 0.077	0.652 0.612	< 0.0050 0.0013		-	-	65.1 61.3	-	-
LC_PIZ1101 WC_20160344.N 2016035 55 8.06 8.03 278.6 8.00 8.07 7.65 6.66 0.0171 0.0080 0.007 1.02 0.0000 0.0000 0.0010 0.008 0.0017 0.008 0.0017 0.0000 0.0000 0.0017 0.0000 0.0000 0.0010 0.001 0.0000 0.0010 0.011 0.0000 0.0010 0.011 0.0000 0.0010 0.001 <	Key Area 6								-			-	-	-			< 0.25										
Lic_prignation Quite 0-12 N Quite 0-15																			1.74 1.75								
EV GV3GW.WG Z016 0223.NP Z016 0223 Z												-							1.96 1.84							-	
EV_GV3GW_MG_2016-02-0_NP 2016 1020 5.4 7.42 2.75 622 9.1 8.19 352 593 <1.0 388 <0.10 192 <0.0050 1.45 0.485 0.136 <0.001 <0.050 0.0015 1.29 <0.005 1.29 <0.0050 0.001 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <		EV_GV3GW_WG_2016-05-16_NP	2016 05 16	8.2	7.46	2.4	603	0.82	8.09	358	615	< 1.0	408	0.14	201	< 0.0050	< 0.25	1.74	0.52	0.150	< 0.0050	< 0.050	0.0014	< 0.0020	149	< 0.50	< 0.50
RG_02-20_WP_2016-06-28_MP 2016 06 28 7.5 7.44 9.1 329 - - 2.5 - - - - - 2.45 - 3.26 <0.0010 - - - - - - 2.45 - 3.26 <0.0010 - - - - - - - - - 2.45 - - - - - - 2.45 - - - 2.16 - - - - - - - - - - - 2.35 - - - -	RG DW-02-20	EV_GV3GW_WG_2016-10-20_NP	2016 10 20	5.4	7.42	2.75	622	-9.1	8.19	352	593	< 1.0	388		192		< 0.050	1.45	0.485	0.136	< 0.0010	< 0.050	0.0015	0.0051	129	< 0.50	
RG_DUP_WP_2016-12-12_NP Duplicate - - - 241 - <		RG_02-20_WP_2016-06-28_NP RG_02-20_WP_2016-09-14_NP	2016 06 28 2016 09 14	7.5 8.6	7.44 7.2	9.1 9	329 409.4	-	-	259 232	-	-	-		-	-	-	2.45 1.66	-	3.26 2.12	< 0.0010 < 0.0010	-	-	-	83.6 59.9	-	-
Key Area 8 EV_LSGW_WG_2016-02-23_NP 2016 02 23 7.7 7.23 0.37 934 2.33 7.58 556 953 17.8 568 18.7 426 0.204 < 0.25 15.2 0.29 < 0.0050 0.322 < 0.0010 < 0.0020 110 1.95 5.30 EV_LSGW_WG_2016-02-3_NP 2016 05 24 15 7.12 0.63 979 1.49 8.29 592 988 5.3 575 14.4 490 0.116 < 0.25		RG_DUP_WP_2016-12-12_NP		-	-	-	-	-		241	-	-		-	-	-	< 0.050	2.05	0.200	2.19	0.0013	-	-	-	63.3	-	
EV_LSGW_WG_2016-05-17_NP 2016 05 17 11 7.22 0.63 979 1.49 8.29 592 988 5.3 575 14.4 490 0.116 <0.25 1.39 0.35 0.048 <0.0050 0.205 <0.010 0.0194 101 1.73 3.31 EV_LSGW_WG_2016-06-24_NP 2016 08 24 15 7.12 0.58 1,114 -7.6 8.23 650 1,030 6.1 690 29.3 551 0.143 <0.25		EV_LSGW_WG_2016-02-23_NP		7.7	7.23	0.37	934	2.33		556	953	17.8	568	18.7	426	0.204	< 0.25	15.2	0.29	< 0.025	< 0.0050	0.322	< 0.0010	< 0.0020	110	1.95	5.30
EV_OCGW** EV_OCGW_G2016-02-22_NP 2016 02 22 6.7 7.84 0.48 433 1.1 8.03 149 453 8.1 282 6.41 178 0.0666 <0.050 2.2 1.30 <0.005 <0.001 0.132 0.0067 0.0288 56.0 0.72 0.69 EV_OCGW_WG_2016-05-18_NP 2016 05 18 9.9 7.84 0.42 430 4.7 8.41 159 445 126 262 9.41 183 0.0600 <0.050		EV_LSGW_WG_2016-05-17_NP EV_LSGW_WG_2016-08-24_NP	2016 05 17 2016 08 24	11 15	7.22 7.12	0.63 0.58	979 1,114	1.49 -7.6	8.29 8.23	592 650	988 1,030	5.3 6.1	575 690	14.4 29.3	490 551	0.116 0.143	< 0.25 < 0.25	13.9 14.4	0.35 0.32	0.048 < 0.025	< 0.0050 < 0.0050	0.205 0.248	< 0.0010 0.0029	0.0194 0.0510	101 95.0	1.73 2.35	3.31 2.61
EV_OCGW_WG_2016-08-24_NP 2016 08 24 12 7.95 0.42 455 10.3 8.32 149 449 18.6 281 18.9 194 0.0734 <0.050 1.02 <0.0010 0.129 0.0090 0.0358 57.9 0.64 1.33 EV_OCGW_WG_2016-10-19_NP 2016 10 19 6.4 7.61 0.63 464 3.7 8.37 145 430 4.6 262 4.72 193 0.0742 <0.050	EV_OCgw**	EV_OCGW_WG_2016-02-22_NP	2016 02 22	6.7	7.84	0.48	433	1.1	8.03	149	453	8.1	282	6.41	178	0.0686	< 0.050	2.2	1.30	< 0.0050	< 0.0010	0.132	0.0067	0.0288	56.0	0.72	0.69
EV_MC5GW_WG_2016-10-19_NP Duplicate 8.11 150 178 6.0 253 6.71 191 0.0739 < 0.050 2.15 1.25 < 0.0050 < 0.0010 0.130 0.0086 0.0264 60.6 0.70 1.11		EV_OCGW_WG_2016-08-24_NP	2016 08 24	12	7.95	0.42	455	10.3	8.32	149	449	18.6	281	18.9	194	0.0734	< 0.050	1.96	1.32	< 0.0050	< 0.0010	0.129	0.0090	0.0358	57.9	0.64	1.73
		EV_MC5GW_WG_2016-10-19_NP		-	-	-	-	-	8.11	150	178		253	6.71		0.0739	< 0.050	2.15	1.25	< 0.0050			0.0086	0.0264	60.6	0.70	1.11

Data provided by Teck Coal, associated lab reports available upon request. All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

RPDs are not calculated where one or more concentrations are less than five times RDL.

** Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline. Concentration greater than CSR Aquatic Life (AW) standard. Concentration greater than CSR Irrigation Watering (IW) standard. BOLD**

BOLD SHADOW

Concentration greater than CSR Livestock Watering (LW) standard. Concentration greater than CSR Drinking Water (DW) standard. INVERSE

SHADED

^a Standard to protect freshwater aquatic life.
 ^b Standard/guideline varies with pH.

^c Standard/guideline varies with Hardness.

^e During Q4, the FR_GHHW well pumps were non-operational and it was not possible to collect a sample from the distribution point. Instead, the Q4 sample was collected from FR_GW_Well 2 ^f Guideline only for lakes where the predominant species is salmonids.

^d Standard/guideline varies with Chloride.

TABLE 3: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Inorganics in Groundwater

						neters				Physica	I Paran	neters							Di	ssolved Inc	organics				T	1
Sample Location	Sample ID	Sample Date (yyyy mm	റ് Temperature	На Н	a bissolved Oxygen	ත් ති Sonductivity	Z Field Turbidity	нан	b A Hardness	a⊃/Sn motivity	Total Suspended Solids	표 Total Dissolved Solids	로 Turbidity, Lab	표 Total Alkalinity (as 다 CaCO3)	a Ammonia Nitrogen 7	mg T/Bromide	a T/b T/b Chloride	B Fluoride	Mitrate Nitrogen	M Nitrite Nitrogen	a ∏∕S Kjeldahl Nitrogen-N	a ⊃rtho-Phosphate	. Total Phosphorus 고	a Sulphate	Total Organic Carbon	B Dissolved Organic
3C Standards		())))	C	рп	iiig/⊏	porem	NIU	рп	ing/⊏	μo/cm	iiig/⊏	ilig/∟	NIU	iiig/⊏	iiig/L	iiig/⊏	ing/⊏	iiig/∟	ilig/∟	ing/⊏	iiig/⊏	ing/∟	ilig/∟	ing/∟	iiig/⊏	iiig/
	fe Short-term Maximum (AW) ^a			6.5-9.0		n/a	n/a	6.5-9.0	n/a	n/a	n/a	n/a	n/a		12.3 - 24.5 ^b	n/a		0.4 - 2.6		0.06 - 0.6 ^d	n/a	n/a	0.015 ^f	n/a	n/a	n/a
	fe Long-term Average (AW) ^a		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	<u>1.09 - 1.77^b</u>	n/a	150	n/a	3 400	0.02 - 0.2 ^d	n/a	n/a	n/a n/a	<u>128 - 429'</u> 1,000		n/a
CSR Aquatic Life (A CSR Irrigation Wate			n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a	n/a n/a	n/a n/a	n/a n/a	<u>3.7 - 11.3⁵</u> n/a	n/a n/a	1,500 100	2 - 3 ^c 1	400 n/a	0.2 - 2 ^d n/a	n/a n/a	n/a n/a	n/a	n/a	n/a n/a	n/a n/a
CSR Livestock Wate	tering (LW)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	600	1	100	10	n/a	n/a	n/a	1,000	n/a	n/a
CSR Drinking Water Key Area 9	r (DW)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	250	1.5	10	3.2	n/a	n/a	n/a	500	n/a	n/a
EV_BCgw**	EV_BCGW_WG_2016-02-22_NP	2016 02 22	6.5	7.17	3.03	-	0	7.48	667	1,160	1.3	871	0.85	209	< 0.0050	< 0.25	13.9	0.14	<u>13.3**</u>	< 0.0050	< 0.050	0.0036	0.0069	395	0.64	0.76
	EV_BCGW_WG_2016-05-16_NP	2016 05 16	8.3	7.25	3.42	-	3.87	7.95	619	1,050	3.0	776	0.65	199	< 0.0050	< 0.25	12.6	0.14	<u>11.2**</u>	< 0.0050	< 0.050	0.0038	0.0056	350	0.64	0.68
	EV_BCGW_WG_2016-08-22_NP EV_BCGW_WG_2016-10-18_NP	2016 08 22 2016 10 18	7.4 6.7	7.26 7.29	2.49 2.67	897 809	-7.3 -9	8.01 8.23	504 449	904 777	< 1.0 < 1.0	632 576	0.34	207 203	< 0.0050 < 0.0050	< 0.25	8.66 7.51	0.13 0.15	<u>7.19**</u> 5.96**	< 0.0050 < 0.0050	0.087	0.0029	0.0054	254 235	0.68	1.03
EV MCgwS**	EV_MCGWS_WG_2016-02-24_NP	2016 02 24	3.9	7.26	0.74	-	21.2	7.66	432	869	34.9	510	47.8	294	0.125	< 0.25	46.8	0.36	< 0.025	< 0.0050	0.189	< 0.0010	0.0323	107	1.59	1.59
	EV_MCGWS_WG_2016-05-18_NP EV_MCGWS_WG_2016-08-23_NP	2016 05 18 2016 08 23		7.2 7.41	0.38	- 859	0.6	7.99 7.90	438 404	863 826	17.3 18.3	541 510	35.5 44.2	282 310	0.0948	< 0.25 < 0.25	43.7 47.0	0.33	< 0.025 < 0.025	< 0.0050 < 0.0050	0.183	< 0.0010 < 0.0010	0.0289	123 92.2	2.02	
	EV_MCGWS_WG_2016-06-23_NP EV_MCGWS_WG_2016-10-24_NP	2016 08 23 2016 10 24		6.97	1.51	859	2.4	7.90	395	826	16.9	510	44.2	310	0.114	< 0.25	47.0	0.33	< 0.025	< 0.0050	0.168	< 0.0010	0.0141	92.2 94.1	1.59	
EV MCgwD**	EV_MCGWD_WG_2016-02-24_NP	2016 02 24		7.45	0.45	-	115.5	7.79	250	528	80.2	318	122	245	0.273	< 0.050		0.946	< 0.0050		0.48	0.0030	0.250	52.5	3.32	
	EV_MCGWD_WG_2016-05-18_NP EV_MCGWD_WG_2016-08-23_NP	2016 05 18 2016 08 23	11 14	7.38 7.37	0.52	- 653	26.8 7.3	8.31 8.00	284 270	659 630	46.8 54.2	406 408	35.9 37.8	239 244	0.223	0.054	3.45 4.21	0.829	< 0.0050 < 0.025	< 0.0010 < 0.0050	0.446	< 0.0010 < 0.0010	0.0889	116 108	3.22 2.53	
	EV_MCGWD_WG_2016-10-24_NP	2016 10 24	6	7.2	1.02	695	79	7.79	245	610	65.9	380	32	244	0.238	< 0.050	3.53	0.902	< 0.0050	0.0015	0.453	< 0.0010	0.0914	95.8	2.50	2.75
EV BRgw	EV_BRGW_WG_2016-02-25_NP EV_BRGW_WG_2016-05-17_NP	2016 02 25 2016 05 17		7.06 7.3	0.82 5.29	-	0 4.15	7.40 8.10	663 706	1,160	6.4 3.3	820 929	6.23 2.64	274 243	0.0053	0.27	35.4 26.5	0.15 0.13	6.64 10.7	0.0054	0.085	0.0014 0.0020	0.0082	320 367	0.93	
	EV_BRGW_WG_2016-03-17_NP EV_BRGW_WG_2016-08-25_NP	2016 05 17	9.52 7.9	6.47	5.29	- 1,234	-6.3	8.04	706	1,180	3.3	929 894	4.94	243	< 0.0050	< 0.25	26.5	0.13	10.7	< 0.0050	< 0.050	0.0020	0.0055	358	< 0.50	0.58
	EV_BRGW_WG_2016-10-19_NP	2016 10 19	9.5	7.3	3.53	1,191	-	7.92	690	1,090	41.2	922	6.82	247	< 0.0050	< 0.25	22.5	0.13	8.60	< 0.0050	0.094	0.0020	0.0318	379	0.74	
EV_RCgw	EV_RCSGW_WG_2016-02-25_NP EV_RCSGW_WG_2016-05-17_NP	2016 02 25 2016 05 17	5.58 8.41	6.83 7.84	5.06 9.07	-	0.97	7.35 8.09	1,610	2,510 2,470		2,250 2,150	1.54 0.39	253 267	< 0.0050 < 0.0050	< 1.0 < 1.0	12.7 23.0	< 0.40 < 0.40	48.4 50.6	< 0.020 0.029	0.103	0.0047 0.0049	0.0069	<u>1,160</u> 1.220	1.23	1.40
	EV_RCSGW_WG_2016-08-22_NP	2016 05 17	7.9	7.71	9.07	- 2,433	-7.5	7.86	1,530			2,130	0.39	207	< 0.0050	< 1.0	13.3	< 0.40	44.2	< 0.029	0.195	0.0049	0.0047	1,120	1.17	1.16
	EV_RCSGW_WG_2016-10-24_NP	2016 10 24	15	7.12	7.56	2,429	-0.9	7.54	1,520	2,370	< 1.0	2,210	0.21	281	< 0.0050	< 1.0	20.5	< 0.40	43.1	0.051	0.079	0.0022	0.0023	1,120	1.42	
EV WH50gw	EV_WH50GW_WG_2016-02-24_NP EV_WH50GW_WG_2016-05-17_NP	2016 02 24 2016 05 17	4.64 4.57	7.36 7.32	9.41 9.41	-	1 0.2	7.93 8.32	294 186	548 335	8.6 7.0	339 200	15.1 13.0	168 126	< 0.0050 < 0.0050	< 0.050	3.6 1.54	0.149 0.177	2.36 0.861	< 0.0010 < 0.0010	0.081	0.0044 0.0031	0.0284	113 49.9	0.67	0.74
	EV_WH50GW_WG_2016-08-25_NP			7.45	3.98	544	3.7	8.25	305	538	1.4	389	3.28	172	< 0.0050	< 0.050		0.153	2.60	< 0.0010	0.085	0.0035	0.0092	115	0.77	
	EV_WH50GW_WG_2016-10-19_NP	2016 10 19		7.72	6.2	298	-6.2	8.33	234	410	3.8	279	7.74	169	< 0.0050	< 0.050		0.165	1.18	< 0.0010	0.074	0.0055	0.0136	72.8	0.68	0.99
RG_DW-03-01	RG_03-01_WP_2016-05-19_NP RG_03-01_WP_2016-09-21_NP	2016 05 19 2016 09 21	- 7.89	- 7.18	- 2.41	-	-	7.42	420 440	813	-	-	-	-	-	- < 0.25	30.1 34.1	- 0.16	< 0.025 0.069	< 0.0050 < 0.0050	-	-	-	76.9 57.8	-	-
	RG_03-01_WP_2016-12-12_NP	2016 12 12		7.21	2.57	-	-	-	481	-	-	-	-	-	-	< 0.25	35.5	0.18	0.089	< 0.0050	-	-	-	48.5	-	-
EV ECgw	EV_ECGW_WG_2016-05-18_NP	2016 05 18	2	171.1	7.66	-	409	8.33	191	425	131	277	137	212	0.155	< 0.050	0.53	0.778	0.0720	0.0093	0.697	0.0162	0.683	26.9	7.23	1.68
EV Eogu	EV_ECGW_WG_2016-08-24_NP	2016 08 24	10	6.36	2.82	430	15.2	8.12	177	405	47.9	253	58.8	211	0.126	< 0.050	0.51	0.879	0.103	0.0224	0.213	0.0208	0.0630	27.5	1.00	1.27
(av. Area 11	EV_ECGW_WG_2016-10-19_NP	2016 10 19	8.1	7.76	2.44	424	11.5	8.36	176	398	13.1	234	18.7	217	0.160	< 0.050	0.54	0.853	0.0473	0.0098	0.233	0.0202	0.0459	28.7	1.07	0.96
Key Area 11 CM_MW1-DP	CM_MW1-DP_WG_Q1_N	2016 03 10	2.4	7.9	0.31	1,159	10.22	8.37	149	1,330	7.0	695	7.05	352	0.547	0.83	211	0.21	< 0.025	< 0.0050	0.613	< 0.0010	0.0159	8.4	1.98	1.74
	CM_MW1-DP_WG_Q2_N	2016 06 17	5.8	8.02	3.74	811	77.4	8.40	160	1,250	1.0	690	3.80	345	0.513	0.823	212	0.234	0.0113	0.0028	0.480	< 0.0010	0.0122	6.77	1.67	1.65
	CM_MW1-DP_WG_Q3_N	2016 09 07	8.7	7.88	1.72	899	8.59	8.06	136	1,200	13.1	650	8.29	348	0.640	0.851	221	0.182	< 0.0050		0.668	< 0.0010	0.0153	3.54	1.78	1.78
CM MW1-OB	CM_MW1-DP_WG_Q4_N CM_MW1-OB_WG_Q1_N	2016 12 05 2016 03 10		7.18	5.27 3.69	965 1,079	44 1.18	7.88 7.88	152 575		35.0 < 1.0	655 789	24.8 0.29	337 272	0.525	0.82 < 0.25	212 65.6	0.17 < 0.10	< 0.025 1.95	0.008	0.702	< 0.0010 0.0021	0.0188	4.4 291	< 0.50	2.28
	CM_MW1-OB_WG_Q2_N	2016 06 16		7.4	8.5	682	3.45	7.75	504	1,030	3.2	675	2.26	274	< 0.0050	0.066	61.0	0.090	1.21	< 0.0010	0.110	0.0044	0.0065	216	0.81	
	CM_NNP_WG_Q2_N QA/QC RPD%	Duplicate	-	-	-	-	-	7.73	519 3	1,030	2.2	660 2	1.34 51	292 6	< 0.0050	0.062	60.4 1	0.097	1.20	< 0.0010	-	0.0029	0.0034	216 0	-	-
l	CM_MW1-OB_WG_Q3_N	2016 09 07	9.5	7.41	7.09	674	8.11	7.50	447	869	3.6	575	2.61	334	< 0.0050	0.077	53.3	0.106	0.820	< 0.0010	< 0.050	0.0033	0.0044	174	1.06	1.19
	CM_MW1-OB_WG_Q4_N	2016 12 05			5.48	620	1.15	7.24	496	975			0.53	282 292	0.0150	< 0.25		< 0.10	0.824	0.0059	0.230	0.0018	0.006	197	1.15	
	CM_NNP_WG_Q4_N QA/QC RPD%	Duplicate	-	-	-	-	-	7.22	484 2	978 < 1	< 1.0	6	0.49	3	< 0.0050 *	< 0.25 *	55.4 < 1	< 0.10	0.821 < 1	0.0064	-	*	0.0061	197 0	*	-
CM_MW1-SH	CM_MW1-SH_WG_Q1_N	2016 03 10		7.79	0.46	702.9	15.55	8.27	160	965	6.0	509	6.33	218	0.0403	0.66	158	0.49	< 0.025	< 0.0050		< 0.0010	0.017	19.5	1.28	-
	CM_MW1-SH_WG_Q2_N	2016 06 16		7.9	3.1	723	5.26	8.24	142	1,110		590	4.71	203	0.0582	0.924	229	0.687	< 0.0050			< 0.0010	0.0133	25.2	1.01	-
	CM_MW1-SH_WG_Q2_NP CM_MW1-SH_WG_Q3_N	2016 06 22 2016 09 07	- 75	- 7.7	- 1.59	- 627	- 9.05	8.32 7.94	208 147	1,150 889	468 7.7	625 460	382 4.34	216 215	0.0211 0.0724	0.93 0.699	222 172	0.83 0.632	0.030	0.0055	0.393	0.0010	0.306	27.2 23.0	2.02	-
	CM_MW1-SH_WG_Q4_N	2016 12 05		7.6	3.33	548	6.25	7.81	151	927	3.8	543	5.77	209	0.0609	0.000	168	0.052	< 0.0050	0.0053		< 0.0010	0.0077	21.1	1.35	-
RG DW-07-01	RG_07-01_WP_2016-05-20_NP	2016 05 20	4.78	7.21	9.35	-	-	-	700	-	-	-	-	-	-	-	6.27	-	3.38	< 0.0050	-	-	-	433	-	-
	RG_07-01_WP_2016-06-28_NP RG_07-01_WP_2016-09-12_NP	2016 06 28 2016 09 12	- 84	- 7.1	- 7.3	-	-	-	754 867	-	-	-	-	-	-	- < 0.25	16.7 8.5	- 0.17	4.20 4.63	< 0.0050 < 0.0050	-	-	-	503 569	-	-
	RG_07-01_WP_2016-09-12_NP	2016 09 12 2016 12 14			9.2	-	-	-	762	-	-	-	-	-	-	-	11.4	-	2.63	< 0.0050	-	-	-	470	-	-
ey Area 12	EV ERIGWS WC 2010 02 04 ND	2016 02 24	25	7 01	0.07		1 20	7.04	200	F24	-10	217	0.24	177	< 0.0050	< 0.050	EO	0.104	2 54	< 0.0010	0.050	0.0027	0.0050	95.0	2050	0.7
EV ER1gwS	EV_ER1GWS_WG_2016-02-24_NP EV_ER1GWS_WG_2016-05-18_NP	2016 02 24 2016 05 18		7.81	9.07 8.41	-	1.28 1.4	7.94 8.29	288 209	531 394	< 1.0 < 1.0		0.21 0.17	177 149	< 0.0050 < 0.0050	< 0.050 < 0.050		0.194 0.204	2.51 1.46	< 0.0010 < 0.0010	0.052 0.059	0.0037 0.0023	0.0056	85.2 48.7	< 0.50 0.99	-
	EV_MC5GW_WG_2016-05-18_NP	Duplicate	-	-	-	-	-	8.32	218	394	< 1.0	241	0.13	153	< 0.0050	< 0.050	3.15	0.204	1.46	< 0.0010	< 0.050	0.0022	< 0.0020	48.8	0.92	1.05
	QA/QC RPD%		-	-	*	- 431	-7.5	< 1 8.18	4 225	0 420	*	0 263	27 0.21	3 159	*	*	0 1.81	0.239	0 2.04	* < 0.0010	*	* 0.0039	* 0.0044	< 1 63.9	*	*
	EV ER1GWS WG 2016-08-23 NP	2016 08 23	12	76				0.10	~~~	-120	, ~ I.V	200	U.2 I	100							× 0.000	0.0000			- 0.00	
	EV_ER1GWS_WG_2016-08-23_NP EV_ER1GWS_WG_2016-10-18_NP	2016 08 23 2016 10 18	9.1		6.57 8.77	435	-9.3	8.34	235	413	< 1.0		0.18	164	< 0.0050	< 0.050		0.223	1.99	< 0.0010			0.0033	70.6	0.65	
EV ER1gwD	EV_ER1GWS_WG_2016-10-18_NP EV_ER1GWD_WG_2016-02-24_NP	2016 10 18 2016 02 24	9.1 2.7	7.64 7.73	8.77 10.22	435 -	-9.3 10.6	8.34 7.96	275	413 503	< 1.0 10.3	309	5.55	177	< 0.0050	< 0.050	4.1	0.216	2.41	< 0.0010	0.071	0.0052	0.0033 0.0194	70.6 82.2	0.62	< 0.5
EV ER1gwD	EV_ER1GWS_WG_2016-10-18_NP	2016 10 18	9.1 2.7 5.7	7.64	8.77	435	-9.3	8.34		413	< 1.0	309 241 276					4.1 2.79						0.0033	70.6		< 0.5 1.02

Data provided by Teck Coal, associated lab reports available upon request. All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline. * RPDs are not calculated where one or mor ** Comparison to BCWQG Aquatic Life (AW) RPDs are not calculated where one or more concentrations are less than five times RDL. ^a Standard to protect freshwater aquatic life. ^b Standard/guideline varies with pH.

^o Standard/guideline varies with Hardness.
 ^c Standard/guideline varies with Chloride.
 ^e Standard/standard/guideline varies with Chloride.
 ^e During Q4, the FR_GHHW well pumps were non-operational and it was not possible to collect a sample from the distribution point. Instead, the Q4 sample was collected from FR_GW_Well 2
 ^f Guideline only for lakes where the predominant species is salmonids.

Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline

Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD** Concentration greater than CSR Aquatic Life (AW) standard. Concentration greater than CSR Irrigation Watering (IW) standard. BOLD SHADOV INVERSE SHADED

Concentration greater than CSR Livestock Watering (LW) standard. Concentration greater than CSR Drinking Water (DW) standard.

																		r	Dissolved	Metals													
																		-		metals								\top					
											ê	E											E		_ <u>ê</u>	E							
			ss	Ę	2			ε	_		т Е	E	_	Ę						ium	ese		eun		E E	E			Ę	<u>ح</u>	F	_ §	
			que	nin	ē	anic	Ē	lii	nut	ы Б	, min	min	iun	omi	alt	per		-	E I	ues	gar	Curo 1		e	assi	niu	-	iu m	utir.	, in the second s	niur	Uranium Vanadiun	****
Sample	Sample	Sample Date	Hard	Alur	Anti	Arse	Bari	Bery	Bisr	Bore	Cad	Cad	Calc	Chr	양	b Cop	lron	Lea	Lithiu	Mag	Man	Mer		Nick	Sele	Sele	Silv	Sod	Stro	Lin Tha	Titar	Van	Zinc
Location	ID	(yyyy mm dd)		µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L		ng/L		ug/L μο	g/L	μg/L n	ng/L µg/L	μg/L	µg/L	mg/L	μg/L μ	g/L μg/	/L µg/L	µg/L µg/	-
BC Standard/Guide	-		n/o	100	n/a	5	n/a	n/a	n/a	1,200	0.000 0.06	0.000 0.00	n/a	1/(Cr(16))	110	15.6 - 77.5 ^c	250 (max)	404 4 457		n/a 0.40	27 0 000	n/a 2,0	000	n/a	n/a 2	2	0.1 - 3 ^c	n/a	n/a r	n/a n/	'a n/a	n/a n/a	74 - 568 [°]
	e Short-term Maximum (AW) ^a e Long-term Average (AW) ^a		n/a	50	9	n/a	1,000		n/a	n/a	0.862 - 2.8 ^c 0.278 - 0.457 ^c			n/a		5.8 - 32.1°		8.4 - 48.5 ^c		n/a 1,24					n/a n/a					0.8 n/		8.5 n/a	
CSR Aquatic Life (A			n/a	n/a	200		10,000			50,000	0.5 - 0.6 ^c	0.5 - 0.6 ^c	n/a	10 ^d	40	50 - 90°	n/a	60 - 160 ^c							n/a 10			-				3,000 n/a	
CSR Irrigation Wate				5,000	_		n/a	100		00 - 6,000 ^b	5	5	n/a	5 ^d	50	200	5,000	200	2,500				-30 ^e		n/a 20 ^f	20 ^f	n/a				a n/a) 1,000 (pH<6.0) ^g
CSR Livestock Wate				5,000 9,500		25 10	n/a 1,000	100 n/a	n/a n/a	5,000	80 5	80 5	1,000 n/a	50 ^d 50	1,000 n/a	300	n/a 6,500	100 10		n/a 100			50 50		n/a 50 n/a 10	_		n/a 200 2		n/a n/a n/a 22,0	'a n/a 000 n/a	200 100 20 n/a	
Background		I	Π¢α	0,000	U	10	1,000	Π/A	11/4	3,000	5	5	πø	50	πνα	1,000	0,000	10	750	100	550	1 2	50	11/4	10	10	Π/a	200 2	22,000	1/a 22,0	500 11/a	20 100	3,000
FR_HMW5						0.10				69	< 0.0050	< 0.0050	38.0				< 10		280			0.0050 0.1										0.060 < 0.	
	FR_HMW5_QSW_04042016_N FR HMW5 QSW 03102016 N	2016 05 18 2016 11 03	183 158	6.1 6.4	-	< 0.10		< 0.020 < < 0.020 <	< 0.050 < 0.050	48 62	< 0.0050 < 0.0050	< 0.0050	40.8 34.7	< 0.10 < 0.10	< 0.10		< 10 < 10	< 0.050 < 0.050	206 241			0.0050 < 0 .00050 < 0					50 < 0.010					0.019 < 0.9	
			164					< 0.020 <		57	< 0.0050	< 0.0050		< 0.10			< 10	< 0.050				.00050 < 0										0.021 < 0.5	
Key Area 1 FR_09-01-A	FR_09-01-A_QSW_04012016_N	2016 01 25	763	< 3 O	0.33	< 0.10	110	< 0.10	0.050	21	0.0418	0.0488	176	< 0.10	0.33	< 0.50	< 10	< 0.050	76.1	79.0	< 0.10 < 0	0.0050 0.0	624	1.32	3.38 66.1	50.5	< 0.010	4.11	167 20	010 - 0	10 14	4.36 < 0.5	50 < 3.0
11C_05-01-A	FD_QSW_04012016_001	Duplicate		< 3.0	-			< 0.10		20	0.0418	0.0488	180	< 0.10	0.33	< 0.50	< 10	< 0.050	71.7			0.0050 0.0			3.33 66.3	<u>58.3</u>	< 0.010			0.010 < 0. 0.010 < 0.		4.33 < 0.	
	QA/QC RPD%	·	1	*	*	*	1	*	*	*	11	9	2	*	*	*	*	*	6		*	*	2		1 < 1	2	*	1	1	* *	0	1 *	*
								< 0.020 <		15	0.0203	0.0234	134	< 0.10			< 10		37.4			0.0050 1.			2.77 76.1	77.1	< 0.010	_				5.19 < 0.5	
	FR_DC1-WG-201606141205 QA/QC RPD%	Duplicate	583 0		0.27		85.4	< 0.020 <	< 0.050 *	15	0.0250	0.0257	134 0	< 0.10 *	< 0.10 *	< 0.50	< 10	< 0.050	37.3 (*	.75		2.68 <u>77.5</u> 3 2	1	< 0.010	1.77			.10 < 10	5.14 < 0.5	50 < 3.0
		2016 08 17	-		-	< 0.10	105	< 0.020 <	< 0.050	22	0.0348	0.0326	155	< 0.10		< 0.50	< 10		53.3			0.0050 1.			3.52 <u>85.7</u>	83.7						4.84 < 0.5	50 < 3.0
	FR_09-01-A_QSW_03102016_N	2016 11 24	796	< 3.0	0.22	< 0.10	112	< 0.020 <	< 0.050	17	0.0257	0.0283	177	< 0.10	< 0.10	< 0.50	< 10	< 0.050	56.3	86.3	< 0.10 < 0	0.0050 0.8	803		3.05 <u>159</u>	137			174 < 0	0.010 < 0.	.10 < 10	5.71 < 0.5	50 < 3.0
FR_09-01-B					_	< 0.10	1	< 0.10		20	0.0325	0.113	151		0.32	< 0.50	< 10		72.8			0.0050 0.0			3.66 <u>42.6</u>	37.8			157 < 0			3.09 < 0.5	
	FR_09-01-B-WG-201606141245 FR_09-01-B_QSW_04072016_N	2016 06 14 2016 08 17	595 723	< 3.0	_	< 0.10	1	< 0.020 <	< 0.050	15 16	0.0194 0.0316	0.0216	136 161	< 0.10 < 0.10	< 0.10	< 0.50 < 0.50	< 10 < 10	< 0.050 < 0.050	43.8 (58.7)			0.0050 0.1			2.67 79.9 3.48 58.9	<u>80.5</u>					.10 < 10 .10 < 10	3.59 < 0.5 5.09 < 0.5	
	FR_09-01-B_QSW_03102016_N	2016 11 24			-				< 0.050	19	0.0328	0.0279	177		0.17	< 0.50	< 10	< 0.050				0.0050 0.1			3.48 117	106						4.72 < 0.5	
FR_GHHW	FR_GHHW_QSW_04012016_N	2016 01 25	862	4.3	< 0.10	< 0.10	96.5	< 0.10 <	< 0.050	16	0.0336	0.0445	201		< 0.10		20	0.067	55.5	87.7	1.30 < 0	0.0050 0.6			B.18 <u>137</u>	123	< 0.010	2.42	177 < 0	0.010 < 0.	.10 15	5.18 < 0.5	
	FR_GHHW_QSW_04042016_N	2016 05 18			-	< 0.10			< 0.050	14	0.0353	0.0329	216	< 0.10			< 10	< 0.050	42.3 9			0.0050 0.0			3.03 <u>160</u>	152					.10 < 10		
	FR_GHHW_QSW_04072016_N FR_GH WELL 2-20161020	2016 08 17 2016 10 20				< 0.10< 0.10			< 0.050	17 18	0.0305	0.0388 0.153	149 182	< 0.10 0.11	< 0.10		< 10 < 10	< 0.050 < 0.050	45.1 0			0.0050 0.1 0.0050 0.1			2.88 <u>91</u> 3.14 108	<u>95.4</u> 100		2.30 2.44			.10 < 10	4.16 < 0.5 4.54 < 0.5	
FR_GH WELL 2 ^t	FR_DC1-20161020	Duplicate			_		1	< 0.020 <		18	< 0.0050	0.130	181	0.11			< 10	< 0.050	44.7			0.0050 0.1			3.02 110	103						4.59 < 0.	
	QA/QC RPD%	·	1	*	*	*	3	*	*	*	*	16	1	*	*	*	*	*	< 1	3	2	*	1	*		6	*	3	0	* *	*	1 *	7
Koy Area 2	FR_GH WELL 2-20161021	2016 10 21	689	< 3.0	< 0.10	< 0.10	82.4	< 0.020	< 0.050	18	< 0.0050	0.163	159	< 0.10	< 0.10	< 0.50	< 10	< 0.050	46.4	71.0	1.41 < 0	0.0050 0.1	702	< 0.50	3.17 <u>108</u>	<u>103</u>	< 0.010	2.33	145 < 0	0.010 < 0.	.10 < 10	4.77 < 0.5	50 < 3.0
Key Area 2 LC_PIZDC1307	LC_PIZDC1307_WG_2016-03-14_NP	2016 03 16	186	< 3.0	< 0.10	0.77	1.380	< 0.10	< 0.050	24	< 0.0050	0.0323	40.8	< 0.10	< 0.10	< 0.50	18	< 0.050	78.3	20.3	9.66 < 0	0.0050 3 ⁴	1.3	1.21	5.16 < 0.05	50 < 0.05	60 < 0.010	14.5	132 < 0	0.010 < 0.	.10 < 10	0.047 < 0.5	50 8.4
_	LC_PIZDC1307_WG_2016-06-13_NP				< 0.10			< 0.020 <		24	< 0.0050	0.0259	44.1	< 0.10			< 10	< 0.050	87.4			0.0050 30					60 < 0.010				.10 < 10		
	LC_PIZDC1307_WG_2016-09-12_NP				_	1.15		< 0.020 <		22	< 0.0050	0.0168	37.8	< 0.10			401		71.5			0.0050 3					50 < 0.010				.10 < 10		
LC PIZDC1308	LC_PIZDC1307_WG_2016-12-12_NP LC_PIZDC1308_WG_2016-03-14_NP					0.26		< 0.10	< 0.25	< 50 15	< 0.025 < 0.0050	< 0.025	40.0 66.2				1,040 < 10	< 0.25	72.3 2 24.9 2			0.0050 3 0.0050 8.										< 0.050 < 2. 0.715 < 0.5	
20 112001300	LC_PIZDC1308_WG_2016-06-13_NP	2016 06 10				< 0.10		< 0.020 <		11	0.161	0.149	95.4		0.21	< 0.50	< 10	< 0.050	7.5			0.0050 1.			1.79 0.31			1.29		018 < 0.			
	LC_PIZDC1308_WG_2016-09-12_NP LC_PIZDC1308_WG_2016-12-12_NP				-	< 0.10				11 < 50	0.0950	0.164 0.187		< 0.10		< 0.50	38		9.3			0.0050 2.	.25				< 0.010 5 < 0.050					1.03 < 0.5	
Key Area 3	LC_PIZDC1306_WG_2016-12-12_NP	2016 12 13	331	< 5.0	< 0.50	< 0.50	202	< 0.10	< 0.25	< 50	0.170	0.107	90.4	< 0.50	< 0.50	< 1.0	< 50	< 0.25	7.8	23.7	10.0 < 0	0.0050 1.	.55	< 2.5	1.03 < 0.2	5 < 0.23	5 < 0.050	1.40	90.0 < 0	0.050 < 0.	.50 < 10	1.23 < 2.	5 < 5.0
GH_POTW09	GH_POTW09_WG_2016-03-07_N				_		1	< 0.10		19	< 0.0050	0.0081				< 0.50	< 10		11.8			0.0050 2.										1.98 < 0.5	
	GH_POTW09_WG_2016-06-14_NP				-			< 0.020 <		20 20	0.0064 0.0088	0.0101	101	< 0.10		0.64	< 10		12.1			0.0050 2.										1.94 < 0.	
	GH_POTW09_WG_2016-08-15_NP GH_POTW09_WG_2016-11-17_NP				_		1	< 0.020 <		19	0.0088	0.0175		< 0.10 < 0.10		5.24 2.73	< 10 152		12.1			0.0050 2. 0.0050 2.										1.99 < 0.9 1.78 < 0.9	
GH POTW10	GH_POTW10_WS_2016-03-07_N	2016 03 07						< 0.10		34	0.0065	0.0061		< 0.10			< 10		15.5	41.6	46.9 < 0	0.0050 2.		0.88	1.65 4.8	4.62	< 0.010	4.87	504 < 0	0.010 < 0.	.10 < 10	0.648 < 0.5	50 < 3.0
								< 0.020 <		36	< 0.0050	0.0052		< 0.10			< 10	< 0.050				0.0050 2.										0.615 < 0.5	
								< 0.020 < < 0.020 <		35 33	< 0.0050 0.0089	0.0067		< 0.10 < 0.10			< 10 680		15.1			0.0050 2.										0.634 < 0.5	
GH_POTW15	GH_POTW15_WG_2016-03-07_N	2016 03 07	505	< 3.0	< 0.10	0.97	22.4	< 0.10 <	< 0.050	18	0.0161	0.0175	129	< 0.10	0.23	< 0.50	33	< 0.050	14.1	44.4	181 < 0	0.0050 2.	.51	1.20	1.50 0.20	6 0.233	3 < 0.010	9.96	358 0.	015 < 0.	.10 < 10	1.36 < 0.5	50 < 3.0
	GH_POTW15_WG_2016-06-14_NP GH_POTW15_WG_2016-08-15_NP							< 0.020 < < < < < < < < < < < < < < < < < <		19 19	0.0175 0.0082	0.0231 0.0263		< 0.10		0.61 < 0.50	< 10 < 10	< 0.050 < 0.050	14.6			0.0050 2.										1.33 < 0.5 1.35 < 0.5	
	GH_POTW15_WG_2016-11-17_NP	2016 11 17	465	< 5.0	< 0.50	1.37	23.6	< 0.10	< 0.25	< 50	< 0.025	< 0.025	116	< 0.50	< 0.50	< 1.0	713	< 0.25	13.3 4	42.4	195 < 0	0.0050 2.	.59	< 2.5	1.62 < 0.2	5 < 0.2	5 < 0.050	10.3	354 < 0	0.050 < 0.	.50 < 10	1.21 < 2.	5 8.3
GH_POTW17**	GH_POTW17_WG_2016-03-07_N									20	0.0500	0.0467		< 0.10			14		11.7			0.0050 1.			-							2.12 < 0.	
	GH_POTW17_WG_2016-06-14_NP GH_POTW17_WG_2016-08-15_NP				_		1	< 0.020 < < < < < < < < < < < < < < < < < <		21 20	0.0506	0.0515		< 0.10 < 0.10			< 10 < 10	< 0.050	12.9			0.0050 1. 0.0050 1.										2.23 < 0.5 2.29 < 0.5	
	GH_POTW17_WG_2016-11-17_NP							< 0.10		< 50	0.066	0.070	170	< 0.50			247	0.27	12.1			0.0050 1.										2.01 < 2.	
		Duplicate						< 0.10	< 0.25	< 50 *	0.048	0.057	169	< 0.50	< 0.50 *	< 1.0 *	238		12.1).0050 1. *									.50 < 10	1.97 < 2.	
L	QA/QC RPD%		<1			*	2				32	20	1	*			4	*	0	1	3	*	4	2	1 6	1			1			2 *	12

Data provided by Teck Coal, associated lab reports available upon request.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

* RPDs are not calculated where one or more concentrations are less than five times RDL.

** Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD** Concentration greater than CSR Aquatic Life (AW) standard. Concentration greater than CSR Irrigation Watering (IW) standard.

BOLD SHADOW

INVERSE Concentration greater than CSR Livestock Watering (LW) standard.

SHADED Concentration greater than CSR Drinking Water (DW) standard.

^a Standard to protect freshwater aquatic life. ^b Standard varies with crop.

^c Standard/guideline varies with Hardness.

^d Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

^e Standard varies with crop, soil drainage and Mo:Cu ratio.

^f Individual standards exist for continuous and intermittent applications on crops. Reported value denotes more stringent standard.

^g Standard varies with soil pH. Zinc IW quideline of 1,000 mg/L (soil pH < 6) was used due to no soil pH values.

^h Reported metals values are Total values.
ⁱ During Q4, the FR_GHHW well pumps were non-operational and it was not possible to collect a sample from the distribution point. Instead, the Q4 sample was collected from FR_GW_Well 2.

TABLE 4: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Metals in Groundwater

																			incolund	Matala														i
														г т				U	issolved	Metals				-		1	1	1						
											(0)	£								E	Ð		Ę		_ 0	E								
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	Cadmium	Cadmium	Calcium	Chromium	Cobalt	Copper	lron	Lead	_	Magnesiur	Manganes	Mercury	Molybden		Selenium	Selenium	Silver	Sodium	Strontium		Tin Titanium		Vanadium	Zinc [†]
Location BC Standard/Guide	ID	(yyyy mm dd)	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ug/L	ıg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L r	ng/L	µg/L	µg/L µ	g/L µg/	L m	g/L µg/L	µg/L	µg/L	mg/L	µg/L µ	µg/L µ	g/L µg/	/L µg/L µ	ıg/L	µg/L
	e Short-term Maximum (AW) ^a		n/a	100	n/a	5	n/a	n/a	n/a 1	,200	0.000 0.000	0.862 - 2.8 ^c	n/2	$1 (Cr(\pm 6))$	110 4	15 C 77 5 ^C	350 (max)	101 11570	n/a	n/a 0.1	107 0 200 ⁰	n/a 2	000 n/a		n/a 2	2	0.1 20	n/a	n/a	n/a r	n/a n/a	a n/a	n/a 74	- 568 ^c
	· · · ·		n/a	50	9	n/a	1,000			,200 n/a		0.002 - 2.0 0.278 - 0.457 ^c		n/a		5.8 - 32.1°	n/a	8.4 - 48.5 ^c	n/a		243 - 4,138°		000 110 -		n/a n/a		0.05 - 1.5				n/a n/a			- 560 - 542 ^c
CSR Aquatic Life (A	e Long-term Average (AW) ^a		n/a		200		10,000			0,000	0.278 - 0.457 0.5 - 0.6 ^c	0.278 - 0.457 0.5 - 0.6 ^c	n/a	10 ^d		50 - 90 ^c	n/a	60 - 160 ^c	n/a		n/a		,000 1,10		n/a 10		0.5 - 15					00 3,000		- 542 - 1,400 ^c
CSR Irrigation Wate				5,000		100	n/a			- 6,000 ^b	5	5	n/a	5 ^d	50	200	5,000	200	2,500		200)-30 ^e 20		1/a 10		n/a				n/a n/a			(pH<6.0) ^g
CSR Livestock Wat				5,000		25	n/a	100		.000	80	80	1,000	-	1,000	300	n/a	100	5,000		n/a		50 1,00		n/a 50		n/a				n/a n/a		1	2,000
CSR Drinking Wate				9,500			1,000			,000	5	5	n/a	50	n/a	1,000	6,500	10	730		550		250 n/a		n/a 10		n/a		22,000		2,000 n/a			5,000
Key Area 4																																		
GH_MW-ERSC-1		2016 03 22			0.17		111	< 0.10 <		24	0.0062	0.152	83.5			< 0.50	66	< 0.050	15.0		87.7	< 0.0050 5			.28 0.847							10 0.585 <		3.4
	GH_MW-ERSC-1_WG_2016-06-14_NP GH_MW-ERSC-1_WG_2016-08-15_NP	2016 06 14	-	< 3.0	< 0.10	0.20	82.3	< 0.020 < < 0.020 <		11 16	0.0088	0.117 0.0395	60.8 104		< 0.10	< 0.50 < 0.50	< 10 164	< 0.050 < 0.050	7.7		17.2 22.4		.72 0.6 .31 1.6		842 3.01 .02 0.815					0.012 < 0		10 0.737 < 10 0.780 <		< 3.0
	GH_MW-ERSC-1_WG_2016-08-15_NP GH_MW-ERSC-1_WG_2016-11-14_NP	2016 08 15 2016 11 14			0.13			< 0.020 <		15	< 0.0050	0.0395	89.7		0.13	< 0.50	331	< 0.050	11.7		49.4		.31 1.0		881 0.932			4.95				10 0.780 <		< 3.0 < 3.0
	GH_MW_ERSC-1_WG_2016-11-14_FD				0.13			< 0.020 <		15	< 0.0050	0.0254	88.7	< 0.10			336	< 0.050	11.0		50.4	< 0.0050 5		-	885 0.908			4.49				10 0.707 <		< 3.0
	QA/QC RPD%		<1	*	*	4	0	*	*	*	*	31	1	*	*	*	1	*		2	2	*	1 *		<1 3	3	*	1	2	*	* *	< 1	*	*
GH_GA-MW-1	GH_GA_MW-1_WG_2016-03-22_NP	2016 03 22	426	< 3.0	1.61	0.78	59.4	< 0.10 <	0.050	769	0.0377	0.188	89.7	0.49	1.67	0.86	167	< 0.050	130	49.2	761	< 0.0050	2.4 5.0	6 3	.92 0.306	0.38	< 0.010	183	5,490 0	0.026 < 0	0.10 10	0 3.28 0).57	5.3
	GH_GA-MW-1_WG_2016-06-14_NP	2016 06 14	514	3.8	0.87	1.08	52.6	< 0.020 <	0.050	834	0.0580	<u>0.671</u>	101	< 0.10	2.76	0.80	471	< 0.050	123	63.4	1,750	< 0.0050 1	4.7 4.4	0 4	.72 0.56	1.61	< 0.010	240	6,960 0	0.062 <	0.10 < 1	10 3.49 1	1.25	4.2
	GH_GA-MW-1_WG_2016-08-15_NP	2016 08 16	260	< 3.0	2.31	0.47	41.3	< 0.020 <	0.050	800	0.0352	0.0672	55.0	< 0.10	0.42	2.04	< 10	< 0.050	158	29.9	166	< 0.0050 5	.93 2.5	1 3	.23 0.296	0.335	< 0.010	145	3,540 0	0.028 < 0	0.10 < 1	1.74 <	0.50	4.5
	GH_GA-MW-1_WG_2016-11-16_NP		459			0.55	53.9	< 0.020 <		775	0.0059	-	89.4		1.55	1.17	< 10	< 0.050	139		525	< 0.0050 1		7 4	.33 0.218			228						< 3.0
GH_GA-MW-2	GH_GA_MW-2_WG_2016-03-22_NP			< 3.0		0.30	105	< 0.10 <		20	0.0312	0.0882	110	< 0.10		< 0.50	< 10	< 0.050	14.7		8.77	< 0.0050 1				<u>12.5</u>				0.010 <				3.3
	GH_GA-MW-2_WG_2016-06-14_NP			< 3.0		0.31		< 0.020 <		23	0.0204	0.113	103	< 0.10			< 10	< 0.050	16.2		42.9	< 0.0050 3			.06 5.7			8.15						5.0
	GH_GA-MW-2_WG_2016-08-15_NP				1.17			< 0.020 <		19	0.0338	0.0493	101	< 0.10			< 10	< 0.050	16.0		42.3	< 0.0050 2			.01 <u>10.4</u>			7.85						3.3
	GH_GA-MW-2_WG_2016-11-14_NP				0.95			< 0.020 <		17	0.0428	0.0675	108	< 0.10			< 10	< 0.050	16.8		23.4	< 0.0050 1			.08 <u>17.9</u>			7.90						3.2
GH_GA-MW-3	GH_GA_MW-3_WG_2016-03-22_NP	2016 03 22 2016 06 14	321		< 0.10		114	< 0.10 < < 0.020 <		220 279	< 0.0050 < 0.0050	0.256	64.4 46.4				< 10 < 10	0.067	84.6 97.7		18.4 12.5	< 0.25 < 0			.33 <u>11.3</u> .50 0.783							10 0.189 < 10 0.036 <		< 3.0
	GH_GA-MW-3_WG_2016-06-14_NP GH_GA-MW-3_WG_2016-08-15_NP		265 230		< 0.10 <			< 0.020 <		279	< 0.0050	0.403	40.4		< 0.10 < 0.10	< 0.50 < 0.50	< 10	< 0.050	102		6.91	< 0.0050 < 0			.50 0.783 .43 0.972			36.2		0.010 < 0		10 0.036 <		< 3.0 < 3.0
	GH_GA-MW-3_WG_2016-11-14_NP				< 0.10			< 0.020 <		240	< 0.0050	0.0055	42.1		< 0.10	< 0.50	< 10	< 0.050	105		9.97	< 0.0050 < 0			.52 1.03					0.010 < 0				< 3.0
GH_GA-MW-4	GH_GA_MW-4_WG_2016-03-22_NP				0.13 •		95.6	< 0.10 <		15	0.0266	0.0257	216		< 0.10	< 0.50	< 10	< 0.050	62.6		< 0.10	< 0.0050 1				3.79				0.010 < 0		5 4.17 <		< 3.0
	GH_GA-MW-4_WG_2016-06-14_NP				0.14			< 0.020 <		16	0.0150	0.0258	183			< 0.50	< 10	< 0.050	65.9		0.17	< 0.0050 2			.43 3.66					0.010 <				< 3.0
	GH_GA-MW-4_WG_2016-08-15_NP				0.18			< 0.020 <		15	0.0152	0.0153	114		< 0.10		< 10	< 0.050	48.0		< 0.10	< 0.0050 1			.19 3.62					0.010 < 0				< 3.0
	GH_GA-MW-4_WG_2016-11-14_NP		202	< 3.0	0.13	< 0.10	69.5	< 0.020 <	0.050	- 15	0.0162	0.0145 0.0083	115 57.5	0.16	< 0.10	< 0.50	< 10	< 0.050	44.8	52.9 14.2	< 0.10		.68 < 0.		.38 3 446 3.43		< 0.010	6.34	352 <	0.010 < 0	0.10 < 1	10 3.60 <	0.50	< 3.0
RG DW-01-03"	RG_01-03_WP_2016-06-01_NP RG_01-03_WP_2016-06-29_NP		202	-	-	-	-	-	-	-	-	< 0.0085	64.5	-	-	-	-	-		15.9	-				.43 2.92		-	1.35	-	-		-	-	-
	RG_01-03_WP_2016-09-14_NP		216	-	-	-	-	-	-	-	-		61,700		-	-	-	-		5.000	-					3.28	-	1.350	-	-			-	-
	RG_01-03_WP_2016-12-12_NP		225	-	-	-	-	-	-	-	-	< 0.0050	65.7	-	-	-	-	-		14.8	-	-			442 2.77		-	1.39	-	-		-	-	-
RG DW-01-07 ^h	RG_01-07_WP_2016-6-01_NP	2016 06 01	455	-	-	-	-	-	-	-	-	0.0451	115	-	-	-	-	-		40.7	-	-		0	.95 1.69	1.67	-	5.95	-	-		-	-	-
	RG_01-07_WP_2016-06-29_NP		474	-	-	-	-	-	-	-	-	0.039	122	-	-	-	-	-		41.4	-	-			.88 1.54		-	6.88	-	-		-	-	-
	RG_01-07_WP_2016-09-14_NP		446	-	-	-	-	-	-	-	-	0.0415	115	-	-	-	-	-		38.8	-				921 1.72			6.84						-
Key Area C	RG_01-07_WP_2016-12-12_NP	2016 12 12	486	-	-	-	-	-	-	-	-	0.0397	128	-	-	-	-	-	-	40.6	-	-		0.	929 1.79	1.72	-	6.59	-	-		-	-	-
Key Area 6 LC_PIZP1101	LC_PIZP1101_WG_2016-03-14_N	2016 03 15	126	36	< 0.10	1 21	471	< 0.10 <	0.050	18	< 0.0050	0.160	30 1	< 0.10	0.22	< 0.50	190	< 0.050	9.5	14.5	199	< 0.0050 1	2.3 < 0.	50 0	750 ~ 0.05	0 0 470	< 0.010	17.9	200	0.010 -	0 10 - 1	10 1.67 <	0.50	< 3.0
20_11211101	LC_PIZP1101_WG_2016-05-14_N				< 0.10			< 0.020 <		21	< 0.0050	0.0226	30.4			< 0.50	126	< 0.050	10.8		199	< 0.0050			760 < 0.05			17.5						< 3.0
	LC_PIZP1101_WG_2016-09-12_N		129		< 0.50		466			< 50	< 0.0050	0.476	28.1	< 0.50		< 1.0	< 50	< 0.25	9.3		238		2.3 < 0.3		.80 < 0.2						0.50 < 1			< 5.0
	LC_PIZP1101_WG_2016-12-12_N									< 50	< 0.025							< 0.25				< 0.0050 1										10 1.36 <		< 5.0
Key Area 7					1.00												_,,,																	
EV_GV3gw	EV_GV3GW_WG_2016-02-23_NP	2016 02 23	366	< 3.0	< 0.10	< 0.10	17.4	< 0.10 <	0.050	12	0.0059							< 0.050			< 0.10	0.0054 0										10 1.74 <		< 3.0
	EV_GV3GW_WG_2016-05-16_NP									12	0.0086	< 0.0050										< 0.0050 0										10 1.65 <		< 3.0
	EV_GV3GW_WG_2016-08-22_NP									12	0.0099	< 0.0050							14.2		< 0.10	< 0.0050 0										10 1.61 <		< 3.0
DO DIVISION-h	EV_GV3GW_WG_2016-10-20_NP									12	0.0088							< 0.050			< 0.10	< 0.0050 0										10 1.60 <		< 1.0
RG DW-02-20 ⁿ	RG_02-20_WP_2016-06-01_NP RG_02-20_WP_2016-06-28_NP				-	-	-	-		-	-		71.2 70.2	-	-	-	-	-	-	20.8	-				641 <u>12.9</u> 637 <u>11.5</u>			2.53					-	-
	RG_02-20_WP_2016-06-28_NP RG_02-20_WP_2016-09-14_NP					-	-			-	-		63.2		-	-	-	-		18	-				608 8.58							-		-
	RG_02-20_WP_2016-12-12_NP									-	-	0.0070	69.2		-	-	-	-	-		-				579 8.57									-
	RG_DUP_WP_2016-12-12_NP						-	-		-	-	0.006	65	-	-	-	-	-	-		-				603 8.63					-				-
	QA/QC RPD%		2	-	-	-	-	-	-	-	-	*	6	-	-	-	-	-	-	9	-	-			4 1	0	-	7	-	-		-	-	-
												-																				-		

Data provided by Teck Coal, associated lab reports available upon request.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

* RPDs are not calculated where one or more concentrations are less than five times RDL.

** Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD** Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline. BOLD SHADOW

Concentration greater than CSR Aquatic Life (AW) standard. Concentration greater than CSR Irrigation Watering (IW) standard.

INVERSE Concentration greater than CSR Livestock Watering (LW) standard.

SHADED Concentration greater than CSR Drinking Water (DW) standard.

^a Standard to protect freshwater aquatic life.

^b Standard varies with crop.

^c Standard/quideline varies with Hardness.

^d Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

^e Standard varies with crop, soil drainage and Mo:Cu ratio.

^f Individual standards exist for continuous and intermittent applications on crops. Reported value denotes more stringent standard.

^g Standard varies with soil pH. Zinc IW guideline of 1,000 mg/L (soil pH < 6) was used due to no soil pH values.

^h Reported metals values are Total values.

¹ During Q4, the FR_GHHW well pumps were non-operational and it was not possible to collect a sample from the distribution point. Instead, the Q4 sample was collected from FR_GW_Well 2.

TABLE 4: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Metals in Groundwater

																	Г	Dissolve	d Metal	ls														
																			a mota															
Sample Location	Sample ID	Sample Date (yyyy mm dd)	⊒ T/Hardness	6t Aluminum	antimony P	ДÂ Arsenic	: Barium Marium Marium	L Beryllium) ⁵⁴ Bismuth Baron 7/54	р Cadmium (D)	Б Сadmium (T)	T/6 T/6	Бt Сhromium	ד ר	T/Gopper	uou µg/L	Lead Лд	Lithium 7/64	a Magnesium	р Маnganese Т	Mercury Tjoth	b 了 Molybdenum	Па Nicke	⊒76ª	Бб Selenium (D) Н	jā Selenium (T)		J/D Bodium			64 Tin Titanium		tanadium ↑	Zinc ^í Tà
BC Standard/Guide				1 1		- 1					-	1.					.1	-				1		т	- 1	- 1	- 1							
	e Short-term Maximum (AW) ^a		n/a	1					n/a 1,200		0.862 - 2.8 ^c											2,000	n/a				.1 - 3 ^c I				n/a n/		n/a	74 - 568 ^c
	e Long-term Average (AW) ^a		n/a	50				.13	n/a n/a		^c 0.278 - 0.457 ^c		n/a		0.0 02.1		8.4 - 48.5 ^c	+ +		1,243 - 4,138		1,000	110 - 150°					n/a r			n/a n/		n/a	49 - 542 ^c
CSR Aquatic Life (A CSR Irrigation Wate			n/a n/a	n/a				53	n/a 50,000	0.5 - 0.6 ^c 0 ^b 5	0.5 - 0.6 ^c 5	n/a	10 ^d	40 50	50 - 90°	n/a 5,000	60 - 160 ^c 200	n/a		n/a 200		10,000	1,100 - 200	n/a							n/a 1,0			900 - 1,400 ^c
CSR Livestock Wate			n/a	5,000 5,000				00	n/a 500 - 6,00 n/a 5,000	80	80	n/a 1,000		1,000	200 300	5,000 n/a	100	2,500 5,000		200 n/a	1 2	10-30 ^e 50	1,000	-							n/a n/ n/a n/		100 <u>1,</u> 100	<u>,000 (pH<6.0)⁹</u> 2,000
CSR Drinking Water				9,500		10 1		/a	n/a 5,000	5	5	n/a		n/a		6,500	100	730		550	1	250	n/a								2,000 n/			5,000
Key Area 8				0,000	Ű		.,	, a	1,000	0	0		00	100	1,000	0,000		1.00		000		200	i v u	140					,000	100 2	-,000 1.	. 20	100	0,000
EV_LSgw	EV_LSGW_WG_2016-02-23_NP	2016 02 23	556	< 3.0	< 0.10	0.42	190 < 0).10 <	0.050 25	0.0128	0.0341	105	< 0.10	1.45	< 0.50	1,450	< 0.050	43.7	71.1	1,530	< 0.0050	3.58	5.27	2.82	0.413 0	.383 <	0.010 9	9.99 4	120 0	.054 <	0.10 1	0 1.67	< 0.50	< 3.0
	EV_LSGW_WG_2016-05-17_NP	2016 05 17	592	< 3.0	< 0.10	1.17	168 < 0	.020 <	0.050 47	0.0118	0.0237	112	< 0.10	0.89	< 0.50	1,400	< 0.050	58.1	75.9	911	< 0.0050	3.10	4.12	3.51	0.12 0	.107 <	0.010 1	10.5 4	151 0	.055 <	0.10 < '	10 2.34	< 0.50	< 3.0
	EV_LSGW_WG_2016-08-24_NP		650	< 3.0	< 0.10	2.57	205 < 0	.020 <	0.050 60	< 0.0050	0.0122	124	< 0.10	0.82	< 0.50	2,580	< 0.050	68.6	82.5	892	< 0.0050	3.57	4.13	4.47	0.069 0	> 0.09 <	0.050 1	11.8 5	523 0	.045 <	0.10 < 1	10 2.09	< 0.50	< 3.0
	EV_LSGW_WG_2016-10-19_NP		625	< 3.0	< 0.10	1.84		.020 <		< 0.0050	0.0102	116		-	< 0.50	1,910	< 0.050	58.7	81.5	1,030	< 0.0050		4.34	4.44				12.6 4		.047 <		10 1.80	< 0.50	< 3.0
EV_OCgw**	EV_OCGW_WG_2016-02-22_NP		149		< 0.10		-).10 <		< 0.0050	0.0093	28.8			< 0.50	180	< 0.050	24.2		86.6	< 0.0050	-	< 0.50		0.050 < 0						0.10 < 1			< 3.0
	EV_OCGW_WG_2016-05-18_NP		159				52.7 < 0			< 0.0050	0.0091	31.2		0.21	< 0.50	254	< 0.050	24.9		92.9	< 0.00050		< 0.50				0.010 4							< 3.0
	EV_OCGW_WG_2016-08-24_NP		149				53.1 < 0			< 0.0050	0.0159	28.6		< 0.10		143	< 0.050	26.0		85.4	< 0.00050		< 0.50									10 1.12		< 3.0
	EV_OCGW_WG_2016-10-19_NP						54.0 < 0			< 0.0050	0.0058	27.5		-		196	< 0.050	24.9		89.4	< 0.00050		< 0.50									10 1.05		< 3.0
	EV_MC5GW_WG_2016-10-19_NP						54.4 < 0	.020 <	0.050 125	< 0.0050	< 0.0050	28.0		< 0.10	< 0.50	198	< 0.050	24.0		90.5	< 0.00050		< 0.50			*					0.10 < 7	10 1.04		< 3.0
Key Area 9	QA/QC RPD%	1	3			0	1	-	4	-	-	2	-	-	-	1	_	4	5	1	-	2		1		-		7	2	-		' 1		
EV_BCgw**	EV_BCGW_WG_2016-02-22_NP	2016 02 22	667	< 3.0	0.12	0.11	46.7 <	0.10 <	0.050 17	0.0544	0.0567	160	0.14	< 0.10	< 0.50	< 10	< 0.050	33.1	64.7	< 0.10	< 0.0050	0.772	0.71	1.50	3.2** 59	9.3** <	0.010 6	6.95 2	266 0	.018 <	0.10 1	4 1.68	< 0.50	< 3.0
	EV_BCGW_WG_2016-05-16_NP				< 0.10		44.8 < 0			0.0529	0.0541	149		< 0.10		< 10	< 0.050	29.6		< 0.10	< 0.0050		0.71		5.3** 42		0.010 5							< 3.0
	EV_BCGW_WG_2016-08-22_NP		504				42.7 < 0			0.0440	0.0465	122		< 0.10		< 10	< 0.050	26.0		0.12	< 0.0050		< 0.50	1.26 3	31.9** 31							10 1.37		< 3.0
	EV_BCGW_WG_2016-10-18_NP	2016 10 18	449	< 3.0	0.11	0.14	38.3 < 0	.020 <	0.050 15	0.0361	0.0342	107	0.10	< 0.10	< 0.50	< 10	< 0.050	24.7	44.1	< 0.10	< 0.0050	0.763	0.53	1.20 2	27.4** 25	5.2** <	0.010 4	1.83 1	77 0	.013 <	0.10 < 1	10 1.23	< 0.50	< 3.0
EV_MCgwS**	EV_MCGWS_WG_2016-02-24_NP	2016 02 24	432	< 3.0	< 0.10	1.59	21.4 <	0.10 <	0.050 28	< 0.0050	0.0251	110	< 0.10	< 0.10	< 0.50	2.990**	< 0.050	27.4	37.9	95.0	< 0.0050	3.18	< 0.50	2.18	0.155 0.	.479 <	0.010 2	22.6 3	816 <	0.010 <	0.10 < '	10 1.60	< 0.50	< 3.0
	EV_MCGWS_WG_2016-05-18_NP		438				22.4 < 0			< 0.0050	0.0121	113		-		<u>2.610**</u>		29.5		100	< 0.00050		< 0.50				0.010 3						< 0.50	< 3.0
	EV_MCGWS_WG_2016-08-23_NP		404		< 0.10			.020 <		< 0.0050	0.0179	102		< 0.10		<u>2,960**</u>	< 0.050	29.2		107	< 0.00050		< 0.50		0.050 < 0		0.010 2							< 3.0
	EV_MCGWS_WG_2016-10-24_NP		1	1			27.8 < 0			< 0.0050	0.0133	101	-		< 0.50		< 0.050	29.6		111	< 0.0050	-	0.80	-								10 1.61		< 3.0
EV_MCgwD**	EV_MCGWD_WG_2016-02-24_NP						79.8 < 0			< 0.0050	0.295	55.7			< 0.50	<u>522**</u>	< 0.050	7.9		471	< 0.0050		1.17		0.050 0							10 2.28		< 3.0
	EV_MCGWD_WG_2016-05-18_NP						94.7 < 0			< 0.0050	0.0764	65.2	-	-		<u>708**</u>	< 0.050	10.1		527	< 0.00050		1.25		0.071 0							10 2.24		< 3.0
	EV_MCGWD_WG_2016-08-23_NP EV_MCGWD_WG_2016-10-24_NP		270	1	< 0.10		97.2 < 0			< 0.0050	0.146	60.5 54.9				<u>608**</u>	< 0.050 < 0.050	10.3		494 537	< 0.00050		1.18 1.58		0.169 0		0.010 2							< 3.0 < 3.0
EV_BRgw	EV_MCGWD_WG_2016-10-24_NP EV_BRGW_WG_2016-02-25_NP		663		< 0.10		74.9 < 0	031 <		< 0.0050	0.0071	175	< 0.10	0.43		<u>645**</u> 45	< 0.050	9.3 57.0		5.13	< 0.00050 < 0.0050		1.56		0.119 0. 30** 27					0.010 <				< 3.0 26.5
LV_DRGW	EV_BRGW_WG_2016-05-17_NP		706				90.2 < 0			0.0579	0.0610	186				15	< 0.050	51.8		0.63	< 0.0050		1.85		1.9** 37					0.010 <		10 1.49		< 3.0
	EV BRGW WG 2016-08-25 NP		700	1	< 0.10			.020 <		0.0581	0.101	185		< 0.10		18	< 0.050	67.0		0.92	< 0.0050		2.06		4.7** 4						0.10 <			< 3.0
	EV_BRGW_WG_2016-10-19_NP		690				80.5 < 0			0.0539	0.197	177		< 0.10		22	< 0.050	54.8		2.21	< 0.0050		2.35		2.5** 31						0.10 <			< 3.0
EV_RCgw	EV RCSGW WG 2016-02-25 NP			1			37.4 <			0.205	0.213	364	< 0.20			< 20	< 0.10	61.1		1.26	< 0.0050		1.3	3.21	238 2	1					0.20 1			9.9
5	EV_RCSGW_WG_2016-05-17_NP		-				40.5 < 0			0.238	0.243	364	< 0.20			< 20	< 0.10	62.9		0.99	< 0.0050		1.3	3.45	237 2							10 7.49		9.1
	EV_RCSGW_WG_2016-08-22_NP	2016 08 22	1,530	< 3.0	< 0.20 <	< 0.20	39.2 < 0	.040	< 0.10 < 20	0.226	0.227	338	< 0.20	-		< 20	5.03	64.0	166	2.57	< 0.0050	1.34	34.3	3.37	216 2	219 <	0.020 4	4.76 3	389 <	0.020 <	0.20 < 1	10 7.03	< 1.0	30.5
	EV_RCSGW_WG_2016-10-24_NP	2016 10 24		1	0.29 <		41.9 < 0			0.284	0.295	336	< 0.20	0.21	123	< 20	0.75			21.6	< 0.0050	1.21	10.7	3.83	208 2	200 <	0.020 7	7.62 4	405 <	0.020 <	0.20 < 1	10 6.59	< 1.0	187
EV_WH50gw	EV_WH50GW_WG_2016-02-25_NP						96.0 < 0			0.0201	0.108	76.2			< 0.50	24	< 0.050	9.9		2.97			< 0.50									10 1.45		< 3.0
	EV_WH50GW_WG_2016-05-17_NP									0.0122	0.0715		< 0.10				< 0.050				0.0061		< 0.50	0.648	4.56 4	4.65 <	0.010 2	2.49 9	3.5 <	0.010 <	0.10 < 1	10 0.742	< 0.50	< 3.0
	EV_WH50GW_WG_2016-08-25_NP									0.0208							< 0.050				< 0.0050											10 1.16		< 3.0
DO DUI as ath	EV_WH50GW_WG_2016-10-19_NP									0.0196		59.3					< 0.050			1	< 0.0050		< 0.50		7.17 6 0.106 0							10 0.892		< 3.0
RG DW-03-01 ^h	RG_03-01_WP_2016-05-19_NP RG_03-01_WP_2016-09-21_NP						-			-	0.0640	112		-	-	-	-		34.1 38.3	-	-	-	-		0.106 0		- 1 - 1							-
	RG_03-01_WP_2016-09-21_NP RG_03-01_WP_2016-12-12_NP										0.0602				-				33.9				-		0.124 0									-
Key Area 10				+								1	1			+	1		- 5.0		· · · · · ·							·	I					
EV_ECgw	EV_ECGW_WG_2016-05-18_NP	2016 05 18	191	23.4	0.23	0.39	48.4 < 0	.020 <	0.050 107	< 0.0050	0.164	44.1	< 0.10	0.42	< 0.50	14	< 0.050	10.9	19.6	182	< 0.0050	13.0	1.27	0.988	0.18 0	.274 <	0.010 2	23.6 4	33 0	.055 <	0.10 < 1	10 1.49	< 0.50	< 3.0
	EV_ECGW_WG_2016-08-24_NP									0.0529	0.105		< 0.10				< 0.050				< 0.0050		1.50									10 1.44		7.7
	EV_ECGW_WG_2016-10-19_NP	2016 10 19	176	< 3.0	< 0.10	0.43	55.0 < 0	.020 <	0.050 117	0.0148	0.0595	38.5	< 0.10	0.32	< 0.50	< 10	< 0.050	10.5	19.3	194	< 0.0050	13.4	1.23	1.10 <	0.050 0	.119 <	0.010 2	27.4 4	25 0	.043 <	0.10 <	10 1.37	< 0.50	< 3.0
		-											-																					

Data provided by Teck Coal, associated lab reports available upon request.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value. - Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline. * RPDs are not calculated where one or more concentrations are less than five times RDL.

** Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

Concentration greater than CSR Aquatic Life (AW) standard. Concentration greater than CSR Irrigation Watering (IW) standard.

Concentration greater than CSR Livestock Watering (LW) standard.

SHADED Concentration greater than CSR Drinking Water (DW) standard.

^a Standard to protect freshwater aquatic life.

^b Standard varies with crop.

^c Standard/guideline varies with Hardness.

^d Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

^e Standard varies with crop, soil drainage and Mo:Cu ratio.

^f Individual standards exist for continuous and intermittent applications on crops. Reported value denotes more stringent standard.

 g Standard varies with soil pH. Zinc IW quideline of 1,000 mg/L (soil pH < 6) was used due to no soil pH values.

^h Reported metals values are Total values. ⁱ During Q4, the FR_GHHW well pumps were non-operational and it was not possible to collect a sample from the distribution point. Instead, the Q4 sample was collected from FR_GW_Well 2.

TABLE 4: Summary of Analytical Results compared to Primary Screening Criteria for Dissolved Metals in Groundwater

																		n	issolvo	ed Metal	le														
			-																1330146																
			rdness	minum	timony	senic	rium	ryllium	muth	uo	dmium (D)	dmium (T)	lcium	romium	balt	pper	E	- Pa	Lithium	gnesium	nganese	rcury	Molybdenum	kel	assium	enium (D)	enium (T)	ver	Sodium	ontium	allium		anium	nadium	-0
Sample	Sample	Sample Date	На	AIL	Ā	Ars	Ba	Be	Bism	Во	Ca	Ca	Ca	- F	Cop Co	ပိ	<u>2</u>	Le	Ē	Ma	Ma	Re	ĕ	Nic.	Pota	Se	Sel	Si	Š	Str	Ĕ	Ц	Urani	Va	Zin
Location	ID	(yyyy mm dd)	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	μg/L	mg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L j	µg/L µg/l	µg/L	µg/L
BC Standard/Guide			. (.	400	. (.	-	. (. (.	. (.	4 000			. 1.	1 (0 (0))			050 (. (.		. 1.	0.000	. [.		0	0			. (. 1.	. 1.			
	e Short-term Maximum (AW) ^a		n/a				n/a	n/a	n/a	1,200											2,137 - 9,389 ^c		2,000	n/a			2	0.1 - 3 ^c	+ +					n/a	
	e Long-term Average (AW) ^a		n/a	50	9 200	n/a	1,000	0.13 53	n/a n/a	n/a 50,000	0.278 - 0.457 ^c			n/a 10 ^d		<u>5.8 - 32.1^c</u> 50 - 90 ^c		8.4 - 48.5 ^c	-		1,243 - 4,138°	n/a 1	1,000 10,000	110 - 150 [°] 1,100 -	n/a	n/a	n/a	0.05 - 1.5	+ +	n/a	0.8		n/a 8.5		49 - 542 ^c
CSR Aquatic Life (A CSR Irrigation Wate			n/a n/a	5,000		100	n/a	100	n/a	500 - 6.000 ^b	0.5 - 0.6 ^c 5	0.5 - 0.6 ^c 5	n/a n/a	10 ⁻	50	200	n/a 5,000	60 - 160 ^c 200	2,500	n/a	n/a 200	1		200	n/a	10 20 ^f	10 20 ^f	0.5 - 15 ^c n/a	n/a n/a	n/a	3 n/a		n/a 10		
CSR Livestock Wate				5,000			n/a	100	n/a	5,000	80	80	1,000	-	1,000		n/a	100		n/a	200 n/a	2	10-30 ^e 50	1,000	n/a n/a	20 50	<u>20</u> 50	n/a	n/a	n/a	n/a		n/a 200		1,000 (pH<6.0) ⁹ 2,000
CSR Drinking Water				9,500				n/a	n/a	5.000	5	5	n/a	50		1,000	6,500	100		100	550	1	250	n/a	n/a	10	10	n/a				22,000		n/a	5,000
Key Area 11	(211)			0,000			.,000			0,000	Ŭ	0		00	100	1,000	0,000		1.00		000		200					170	200	22,000	.,,	22,000		.,,	0,000
CM_MW1-DP	CM_MW1-DP_WG_Q1_N	2016 03 10	149	3.1	0.21	2.54	5,320	< 0.020	< 0.050	236	< 0.0050	0.0275	32.6	< 0.10	0.91	< 0.20	417	< 0.050	653	16.4	281	< 0.0050	6.38	< 0.50	5.70	0.223	0.062	< 0.010	213	1,890	< 0.010	0.26 <	: 0.30 1.14	4 < 0.50	2.4
	CM_MW1-DP_WG_Q2_N	2016 06 17	160	3.4	0.21	2.56	5,760	< 0.020	< 0.050	255	< 0.0050	0.0056	33.8	< 0.10	1.07	< 0.20	126	< 0.050	625	18.3	313	< 0.0050	7.51	0.60	5.97	0.374	0.065	< 0.010	244	1,960	< 0.010	< 0.10	< 10 1.1	l < 0.50	4.3
	CM_MW1-DP_WG_Q3_N	2016 09 07	136	6.7	< 0.50	2.45	6,120	< 0.10	< 0.25	233	< 0.025	< 0.025	28.6	< 0.50	0.93	3.2	529	< 0.25	716	15.6	250	< 0.0050	6.08	< 2.5	4.95	< 0.25	< 0.25	< 0.050	214	2,020	< 0.050	< 0.50	< 1.5 0.98	8 < 2.5	< 5.0
	CM_MW1-DP_WG_Q4_N	2016 12 05	152	4	0.15	2.01	6,480	< 0.020	< 0.050	223	< 0.0050	-	32.5	< 0.10	1.11	< 0.20	18	< 0.050	717	17.2	262	< 0.0050	6.2	0.88	4.74	0.054	-	< 0.010	236	2,170	< 0.010	< 0.10 <	0.30 1.22	2 < 0.50	3.6
CM MW1-OB	CM_MW1-OB_WG_Q1_N	2016 03 10	575	-	< 0.10			< 0.020		29	0.0685	0.0654	155	0.21	< 0.10		< 10	< 0.050		45.8	0.92	< 0.0050		0.82	1.53		3.92	< 0.010				< 0.10 <		3 < 0.50	1.4
	CM_MW1-OB_WG_Q2_N	2016 06 16	504	1.5	< 0.10			< 0.020	< 0.050	37	0.0570	0.0602	135	0.35	< 0.10	0.33	< 10	< 0.050		40.7	1.04	< 0.0050		0.59			3.38	< 0.010				< 0.10	< 10 1.18	3 < 0.50	1.7
	CM_NNP_WG_Q2_N QA/QC RPD%	Duplicate	519 3	-	-	-	-	-	-	-	-	0.0566	138	-	-	- *	-	-	-	42.1	-	-	-	-	1.89	-	3.26	-	45.7	-	-	*	* *	-	-
	CM MW1-OB WG Q3 N	2016 09 07	-	< 5.0	< 0.50	< 0.50	93.4	< 0.10	< 0.25	< 50	0.057	0.050	2 118	< 0.50	< 0.50	1.2	< 50	< 0.25	16.7	36.9	0.76	< 0.0050	0.43	< 2.5	1.80	2.36	2.22	< 0.050	33.0	308	< 0.050	< 0.50	< 1.5 1.0	5 < 2.5	< 5.0
	CM_MW1-OB_WG_Q4_N	2016 12 05	496		0.10			< 0.020		34	0.0588	-	134		< 0.10		< 10	< 0.050	25.5		0.58	< 0.0050		< 0.50			-	< 0.000				< 0.10 <		3 < 0.50	
	CM_NNP_WG_Q4_N	Duplicate	484					< 0.020		35	0.0613	-	131		< 0.10		< 10	< 0.050	26.3		0.55	< 0.0050		< 0.50	1.50	2.49	-	< 0.010					: 0.30 1.2	l < 0.50	1.8
	QA/QC RPD%		2	*	*	*	0	*	*	*	4	-	2	*	*	*	*	*	3	-	5	*	4	*	0		-	*	2	3	*	*	* 2	*	*
CM_MW1-SH	CM_MW1-SH_WG_Q1_N	2016 03 10	160		< 0.10			< 0.020		68	0.0102	0.0150	41.3				360		25.1		278	< 0.0050		0.65				< 0.010					: 0.30 1.0		
	CM_MW1-SH_WG_Q2_N	2016 06 16	142		< 0.10			< 0.020		63	0.0150	0.0218	33.6				486		25.5		305	< 0.0050		< 0.50									< 10 1.13		1.8
	CM_MW1-SH_WG_Q2_NP	2016 06 22	208		< 0.10		327	< 0.020		57	0.0141	0.315	26.3	< 0.10		< 0.50	< 10	< 0.050	24.8		197		72.7	0.76				< 0.010						4 < 0.50	3.1
	CM_MW1-SH_WG_Q3_N	2016 09 07	147		< 0.50		288	< 0.10		66	< 0.025	0.034	37.6		< 0.50		385	< 0.25		12.8	210	< 0.0050		< 2.5		0.26							< 1.5 1.2		< 5.0
n n n n n n h	CM_MW1-SH_WG_Q4_N	2016 12 05	151		< 0.10		302	< 0.020		62	< 0.0050	-	36.8	< 0.10	-		285	< 0.050	-	14.5	260	< 0.0050	52.6	2.11		< 0.050		< 0.010				< 0.10 <		5 < 0.50	1.3
RG DW-07-01 ⁿ	RG_07-01_WP_2016-05-20_NP RG_07-01_WP_2016-06-28_NP		700 754	-	-	-	-	-	-	-	-	0.071 0.0512	169 183	-	-	-	-	-		67.6 72.1	-	-	-	-		8.61 6.88		-	24.5 27.5	-	-	-			-
	RG_07-01_WP_2016-08-28_NP		867	-	-	-	-	-	-		-	0.0512	206	-	-	-			-	85.8	-	-	-	-			9.16	-	27.5	-	-	-			-
	RG_07-01_WP_2016-12-14_NP		762	-	-	-	-	-	-	-	-	0.0271	187	-	-	-	-	-		71.9	-	-	-	-		5.96		-	29.8	-	-	-			-
Key Area 12				· · · · ·			I				I											I				2.50		1							
EV_ER1gwS	EV_ER1GWS_WG_2016-02-24_NP	2016 02 24		< 3.0			98.1	< 0.10	< 0.050	< 10	0.0096	0.0094	77.3			< 0.50	< 10			23.1	< 0.10	< 0.0050		< 0.50	0.618	<u>10.1</u>	10	< 0.010					< 10 1.2		
	EV_ER1GWS_WG_2016-05-18_NP			< 3.0		-		< 0.020		< 10	0.0081	0.0072	56.4		< 0.10		< 10	< 0.050		16.5	< 0.10	< 0.0050		< 0.50			6.18	< 0.010					< 10 0.82		
	EV_MC5GW_WG_2016-05-18_NP	Duplicate	-	< 3.0	< 0.10	0.11		< 0.020	< 0.050	< 10	0.0079	0.0062	59.0	0.19	< 0.10	< 0.50	< 10	< 0.050	-	17.1	< 0.10	< 0.0050 *	1.15	< 0.50		6.46	6.27	< 0.010	3.03		< 0.010	< 0.10	< 10 0.82	1 < 0.50	< 3.0
	QA/QC RPD% EV ER1GWS WG 2016-08-23 NP	2016 08 23	4	< 3.0	< 0.10	0.15	< 1 100	* < 0.020	< 0.050	< 10	0.0091	0.0106	5 59.5	0.21	< 0.10	< 0.50	< 10	< 0.050	0	4 18.5	< 0.10	* < 0.0050	2	< 0.50	3 0.763	< 1	7.9	< 0.010	2 10	0	< 0.010	× 0.10		* 3 < 0.50	* < 3.0
	EV_ER1GWS_WG_2016-06-23_NP EV_ER1GWS_WG_2016-10-18_NP							< 0.020		< 10	0.0091	0.0106	59.5 61.8	0.21	< 0.10		< 10	< 0.050		10.5	< 0.10	< 0.0050	1.51	< 0.50	0.763		8.34	< 0.010			< 0.010			2 < 0.50	< 3.0
EV_ER1gwD	EV_ER1GWD_WG_2016-02-24_NP		275		< 0.10		75.3		< 0.050	< 10	< 0.0050	0.0138	73.2	0.22	< 0.10		< 10	< 0.050		22.4	0.53	< 0.0050		< 0.50			9.29	< 0.010			< 0.010			5 < 0.50	< 3.0
	EV_ER1GWD_WG_2016-05-18_NP		225		< 0.10		70.3	< 0.020		< 10	< 0.0050	< 0.0050	60.1		< 0.10		< 10	< 0.050		18.2	3.08	< 0.0050		< 0.50	0.595		5.16	< 0.010			< 0.010			3 < 0.50	< 3.0
	EV_ER1GWD_WG_2016-08-23_NP		228		< 0.10	-	-	< 0.020		< 10	< 0.0050	0.0640	60.2	0.27	< 0.10		< 10	< 0.050			25.0	< 0.0050		< 0.50			6.41	< 0.010	-	-	< 0.010		-	< 0.50	< 3.0
	EV_ER1GWD_WG_2016-10-18_NP		237	13.9	< 0.10	0.13	85.4	< 0.020	< 0.050	< 10	< 0.0050	0.0128	63.4		< 0.10	< 0.50	< 10	< 0.050	7.3	19.2	5.10	< 0.0050	1.49	< 0.50	0.723	6.77	6.24	< 0.010	2.47	198	< 0.010	< 0.10	< 10 1.2	5 < 0.50	< 3.0
RG DW-03-04 WP	WELL PUMP #3 (RAW WATER), WELL START UP		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11.8		-	-	-	-		-	-
	WELL PUMP #3 (RAW WATER) WELL PUMP #3 (RAW WATER)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>11.6</u> 10.4	-	-	-	-	-		-	-
	WELL PUMP #3 (RAW WATER)	2016 05 03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	10.4 6.75		-	-	-	-			
	WELL PUMP #3 (RAW WATER)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-		-	-	5.66			-	-	-			-
	WELL PUMP #3	2016 08 03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	6.93	-	-	-	-	-		-	-
	WELL PUMP #3 (RAW WATER)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9.04	-	-	-	-	-		-	-
	WELL PUMP #3 (RAW WATER)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10.7	-	-	-	-	-			-
	WELL PUMP #3	2016 11 02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10.1	-	-	-	-	-			-
	RG_03-04_WP_2016-12-13_NP	2016 12 13	251	-	-	-	-	-	-	-	-	0.0101	66.7	-	-	-	-	-	-	20.4	-	-	-	-	0.916	6.65	6.21	-	6.29	-	-	-		-	-

Data provided by Teck Coal, associated lab reports available upon request.

All terms defined within the body of SNC-Lavalin's report.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not conducted.

n/a Denotes no applicable standard/guideline.

* RPDs are not calculated where one or more concentrations are less than five times RDL. ** Comparison to BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline.

BOLD** Concentration greater than BCWQG Aquatic Life (AW) Short-term Maximum and/or Long-term Average guideline. BOLD SHADOW

Concentration greater than CSR Aquatic Life (AW) standard. Concentration greater than CSR Irrigation Watering (IW) standard.

INVERSE Concentration greater than CSR Livestock Watering (LW) standard.

SHADED Concentration greater than CSR Drinking Water (DW) standard.

^a Standard to protect freshwater aquatic life.

^b Standard varies with crop.

^c Standard/guideline varies with Hardness.

^d Individual standards exist for Cr +3 and Cr +6. Reported value represents more stringent standard.

^e Standard varies with crop, soil drainage and Mo:Cu ratio.

^f Individual standards exist for continuous and intermittent applications on crops. Reported value denotes more stringent standard.

^g Standard varies with soil pH. Zinc IW quideline of 1,000 mg/L (soil pH < 6) was used due to no soil pH values.

^h Reported metals values are Total values.

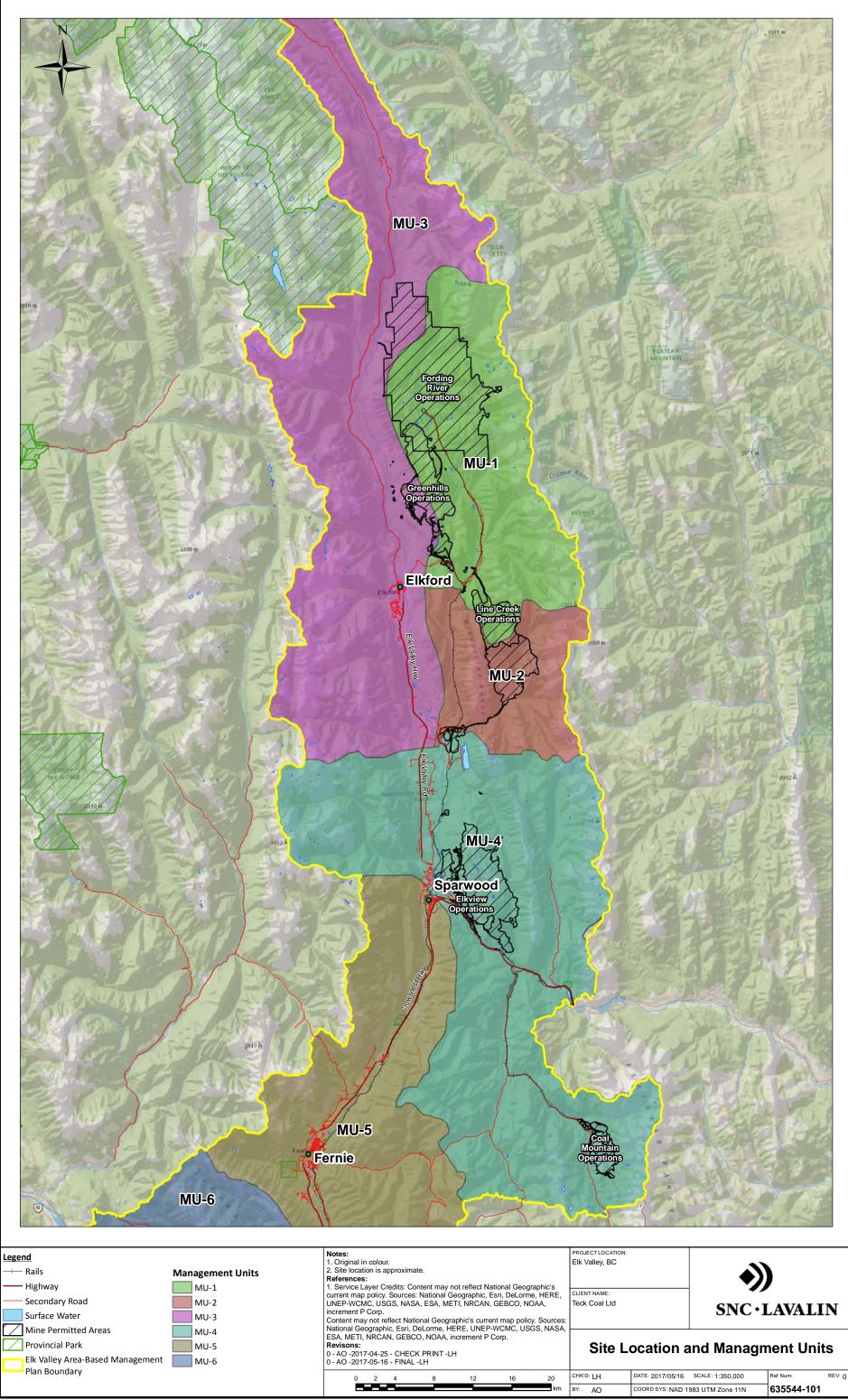
¹ During Q4, the FR_GHHW well pumps were non-operational and it was not possible to collect a sample from the distribution point. Instead, the Q4 sample was collected from FR_GW_Well 2.

TABLE 5: Summary of Analytical Results compared to Secondary Screening Criteria for Constituents of Interest

Sample Location	Sample ID	Sample Date (yyyy mm dd)	SPO	Compliance Point	Dissolved Selenium µg/L	Total Selenium μg/L
	enchmarks Drinking Water Quality (DW)				50	50
SPO		Elk River [GH_ER1 (E206661)/EV_ER1 (0200393)]			19	19
Compliance Point		Fording River [GH_FR1 (0200378)] Fording River [FR_FRCP1 (E300071)]			63 130	63 130
Compliance Foint		Fording River [FH_FR1 (0200378)]			80	80
		Elk River [GH_ERC (E300090)]			15	15
		Michel Creek [EV_MC2 (E300091)]			28	28
Key Area 1 FR_09-01-A	FR_09-01-A_QSW_04012016_N	2016 01 25	CH EP1 (0200378)	FR_FRCP1 (E300071)	66.1	59.5
	FD_QSW_04012016_001	Duplicate	, ,	FR_FRCP1 (E300071)	66.3	58.3
	QA/QC RPD%				< 1	2
	FR_09-01-A-WG-201606141205	2016 06 14	GH_FR1 (0200378)	FR_FRCP1 (E300071)	<u>76.1</u>	<u>77.1</u>
	FR_DC1-WG-201606141205	Duplicate	GH_FR1 (0200378)	FR_FRCP1 (E300071)	<u>77.5</u>	<u>77.5</u>
	QA/QC RPD%				2	1
	FR_09-01-A_QSW_04072016_N	2016 08 17		FR_FRCP1 (E300071)	<u>85.7</u> 159	<u>83.7</u> 137
FR_09-01-B	FR_09-01-A_QSW_03102016_N FR_09-01-B_QSW_04012016_N	2016 11 24 2016 01 25		FR_FRCP1 (E300071) FR_FRCP1 (E300071)	42.6	37.8
FK_09-01-D	FR_09-01-B-WG-201606141245	2016 06 14		FR_FRCP1 (E300071)	79.9	80.5
	FR_09-01-B_QSW_04072016_N	2016 08 17	- , ,	FR_FRCP1 (E300071)	58.9	60.2
	FR_09-01-B_QSW_03102016_N	2016 11 24	,	FR_FRCP1 (E300071)	117	106
FR_GHHW	FR_GHHW_QSW_04012016_N	2016 01 25	GH_FR1 (0200378)	FR_FRCP1 (E300071)	<u>137</u>	<u>123</u>
	FR_GHHW_QSW_04042016_N	2016 05 18		FR_FRCP1 (E300071)	<u>160</u>	<u>152</u>
	FR_GHHW_QSW_04072016_N	2016 08 17		FR_FRCP1 (E300071)	<u>91</u>	<u>95.4</u>
FR_GH WELL 2	FR_GH WELL 2-20161020	2016 10 20	,	FR_FRCP1 (E300071)	<u>108</u>	<u>109</u>
	FR_DC1-20161020	Duplicate	GH_FR1 (0200378)	FR_FRCP1 (E300071)	<u>110</u>	<u>103</u>
	مر FR_GH WELL 2-20161021	A/QC RPD% 2016 10 21	GH EP1 (0200270)	FR_FRCP1 (E300071)	2 108	6 103
ey Area 3	FR_GH WELL 2-20161021	2016 10 21	GH_FR1 (0200378)	FR_FRCP1 (E300071)	108	103
GH_POTW17**	GH_POTW17_WG_2016-03-07_N	2016 03 07	GH FR1 (0200378)	GH_FR1 (0200378)	5.76	5.39
	GH_POTW17_WG_2016-06-14_NP	2016 06 14		GH_FR1 (0200378)	7.71	7.66
	GH_POTW17_WG_2016-08-15_NP	2016 08 16		GH_FR1 (0200378)	7.98	7.66
	GH_POTW17_WG_2016-11-17_NP	2016 11 17		GH_FR1 (0200378)	5.41	5.2
	GH_POTW17_WG_2016-11-17_FD QA/QC RPD%	Duplicate	GH_FR1 (0200378)	GH_FR1 (0200378)	<u>5.1</u> 6	5.23
ey Area 4					0	
GH_GA-MW-2	GH_GA_MW-2_WG_2016-03-22_NP			GH_ERC (E3000090)	13.5	12.5
	GH_GA-MW-2_WG_2016-06-14_NP			GH_ERC (E3000090)	5.7	5.34
	GH_GA-MW-2_WG_2016-08-15_NP	2016 08 15 2016 11 14	_ ` ` '	GH_ERC (E3000090)	10.4	9.39
GH_GA-MW-3	GH_GA-MW-2_WG_2016-11-14_NP GH_GA_MW-3_WG_2016-03-22_NP	2016 03 22	, ,	GH_ERC (E3000090) GH_ERC (E3000090)	17.9 11.3	17.9 7.69
	GH_GA-MW-3_WG_2016-06-14_NP	2016 06 14		GH_ERC (E3000090)	0.783	2.05
	GA-MW-3_WG_2016-08-15_NP	2016 08 15		GH_ERC (E3000090)	0.972	< 0.050
	GH_GA-MW-3_WG_2016-11-14_NP	2016 11 14	GH_ER1 (E206661)	GH_ERC (E3000090)	1.03	< 0.050
ey Area 7	RG 02-20 WP 2016-06-01 NP	2016.06.01	EV_ER1 (0200393)	2/2	12.0	10.6
RG_DW-02-20 ^h	RG_02-20_WP_2016-06-01_NP RG_02-20_WP_2016-06-28_NP	2016 06 01 2016 06 28	EV_ER1 (0200393) EV_ER1 (0200393)		12.9 11.5	12.6 11.2
	RG_02-20_WP_2016-09-14_NP	2016 09 14	EV_ER1 (0200393)		8.58	7.43
	RG_02-20_WP_2016-12-12_NP	2016 12 12	EV_ER1 (0200393)	n/a	8.57	8.54
ey Area 9					50.0	50.0
EV_BCgw**	EV_BCGW_WG_2016-02-22_NP	2016 02 22	, , ,	EV_MC2 (E3000091)	<u>53.2</u>	<u>59.3</u>
	EV_BCGW_WG_2016-05-16_NP	2016 05 16		EV_MC2 (E3000091)	45.3 31.9	42.4 31.6
	EV_BCGW_WG_2016-08-22_NP EV_BCGW_WG_2016-10-18_NP	2016 08 22 2016 10 18		EV_MC2 (E3000091) EV_MC2 (E3000091)	27.4	25.2
EV_BRgw	EV_BCGW_WG_2016-10-18_NP	2016 00 205		EV_MC2 (E3000091) EV_MC2 (E3000091)	30	27.8
- · _Di (914	EV_BRGW_WG_2016-02-23_NP	2016 02 25		EV_MC2 (E3000091) EV_MC2 (E3000091)	41.9	37.6
	EV_BRGW_WG_2016-08-25_NP	2016 08 25	, , ,	EV_MC2 (E3000091)	44.7	45.5
	EV_BRGW_WG_2016-10-19_NP	2016 10 19		EV_MC2 (E3000091)	32.5	31.3
EV_RCgw	EV_RCSGW_WG_2016-02-25_NP	2016 02 25		EV_MC2 (E3000091)	<u>238</u>	<u>228</u>
	EV_RCSGW_WG_2016-05-17_NP	2016 05 17		EV_MC2 (E3000091)	237	224
	EV_RCSGW_WG_2016-08-22_NP	2016 08 22		EV_MC2 (E3000091)	<u>216</u>	<u>219</u>
	EV_RCSGW_WG_2016-10-24_NP	2016 10 24		EV_MC2 (E3000091)	<u>208</u>	<u>200</u>
EV_WH50gw	EV_WH50GW_WG_2016-02-25_NP	2016 02 24		EV_MC2 (E3000091)	12.2	11.5
	EV_WH50GW_WG_2016-05-17_NP EV_WH50GW_WG_2016-08-25_NP	2016 05 17 2016 08 25		EV_MC2 (E3000091) EV_MC2 (E3000091)	4.56	4.65
	EV_WH50GW_WG_2016-08-25_NP EV_WH50GW_WG_2016-10-19_NP	2016 08 25		EV_MC2 (E3000091) EV_MC2 (E3000091)	7.17	6.99
ey Area 12		-				
EV_ER1gwS	EV_ER1GWS_WG_2016-02-24_NP	2016 02 24	EV_ER1 (0200393)		10.1	10
	EV_ER1GWS_WG_2016-05-18_NP	2016 05 18 Duplicate	EV_ER1 (0200393)		6.49 6.46	6.18
	EV_MC5GW_WG_2016-05-18_NP QA/QC RPD%		EV_ER1 (0200393)	n/a	<u> </u>	6.27
	EV_ER1GWS_WG_2016-08-23_NP	2016 08 23	EV_ER1 (0200393)	n/a	8.39	7.9
	EV_ER1GWS_WG_2016-08-23_NP_2	Duplicate	EV_ER1 (0200393)	n/a	3.44	3.07
	QA/QC RPD%				84	88
	EV_ER1GWS_WG_2016-10-18_NP	2016 10 18	EV_ER1 (0200393)		9.04	8.34
	EV_ER1GWS_WG_2016-10-18_NP_2 QA/QC RPD%	Duplicate	EV_ER1 (0200393)	n/a	2.7 108	2.55 106
RG_DW-03-04_WP	VELL PUMP #3 (RAW WATER), WELL START U	2016 03 09	EV_ER1 (0200393)	n/a	-	11.8
	WELL PUMP #3 (RAW WATER)	2016 04 05	EV_ER1 (0200393)	n/a	-	11.6
	WELL PUMP #3 (RAW WATER)	2016 05 03	EV_ER1 (0200393)	n/a	-	10.4
	WELL PUMP #3 (RAW WATER) WELL PUMP #3	2016 10 04 2016 11 02	EV_ER1 (0200393)		-	10.7 10.1
		2016 11 02	EV_ER1 (0200393)	n/a	-	101

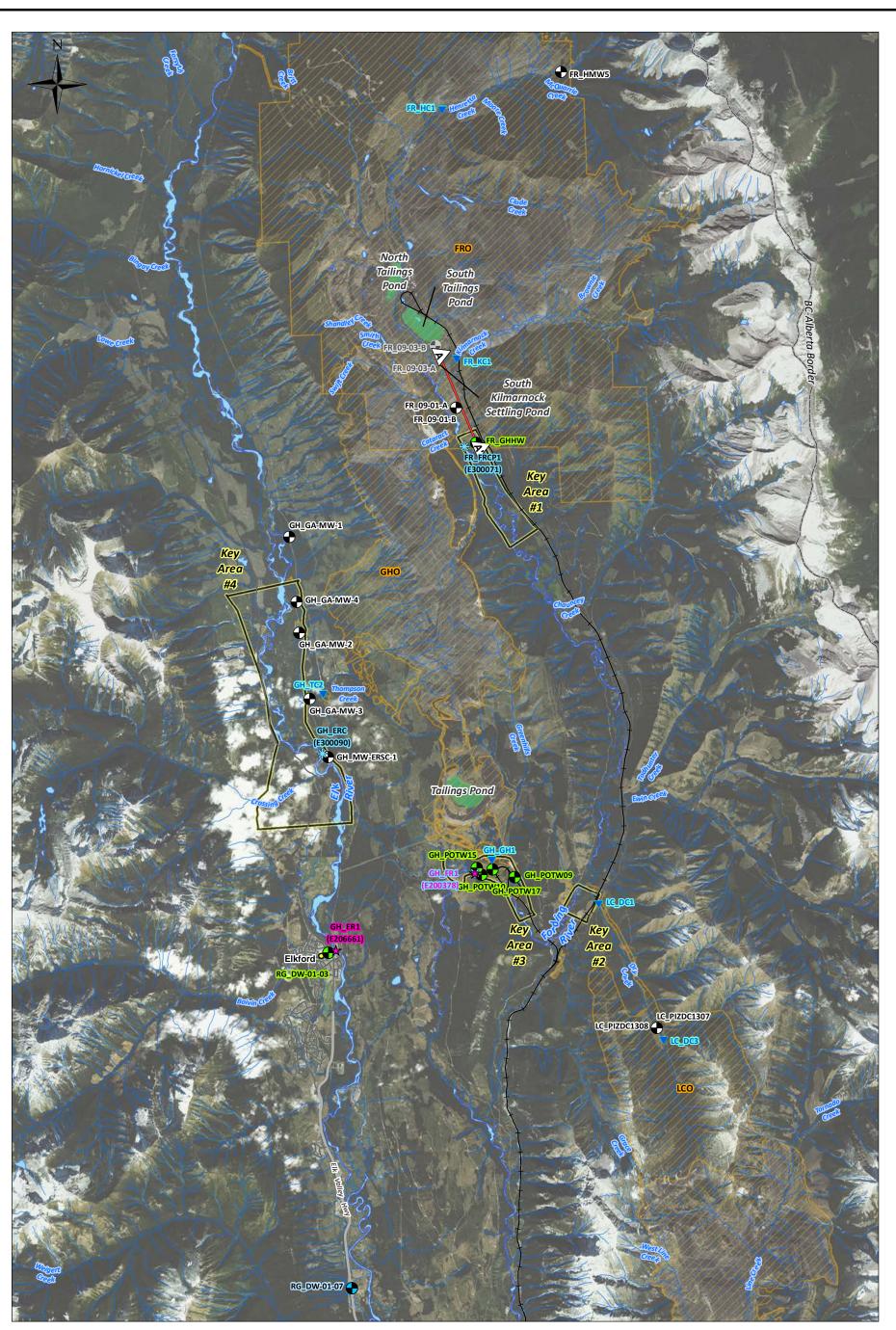
Data provided by Teck Coal, associated lab reports available upon request.

All terms defined within the body of SNC-Lavalin's report.

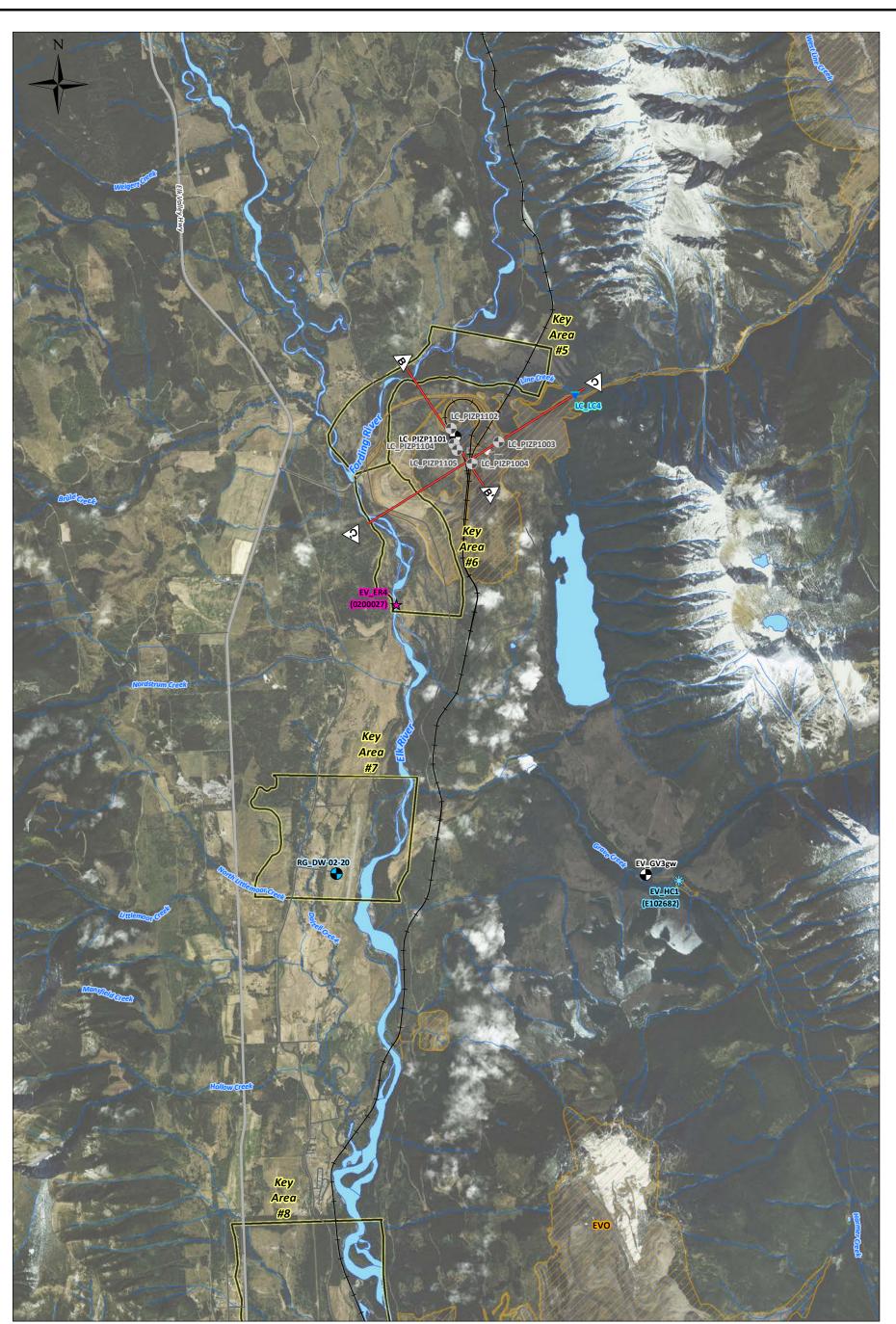

- < Denotes concentration less than indicated detection limit or RPD less than indicated value.
- Denotes analysis not conducted.
- * RPDs are not calculated where one or more concentrations are less than five times RDL.

<u>BOLD</u>	Concentration greater than or equal to Canadian Drinking Water Quality Drinking Water (DW) guideline.
SHADOW	Concentration greater than SPO by Area.
SHADED	Concentration greater than Compliance Point by Area.

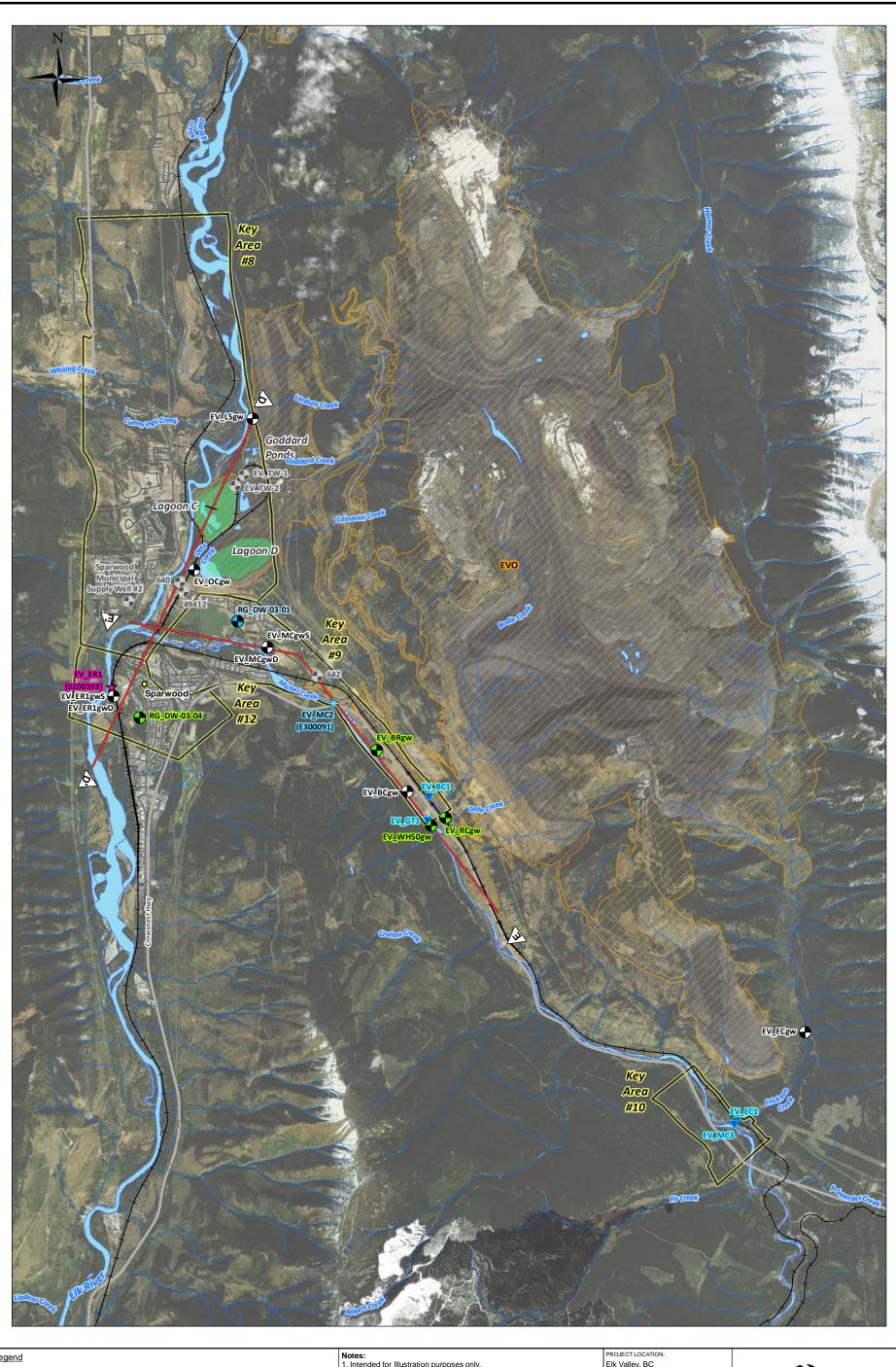
^a During Q4, the FR_GHHW well pumps were non-operational and it was not possible to collect a sample from the distribution point. Instead, the Q4 sample was collected from FR_GW_Well 2.


Drawings

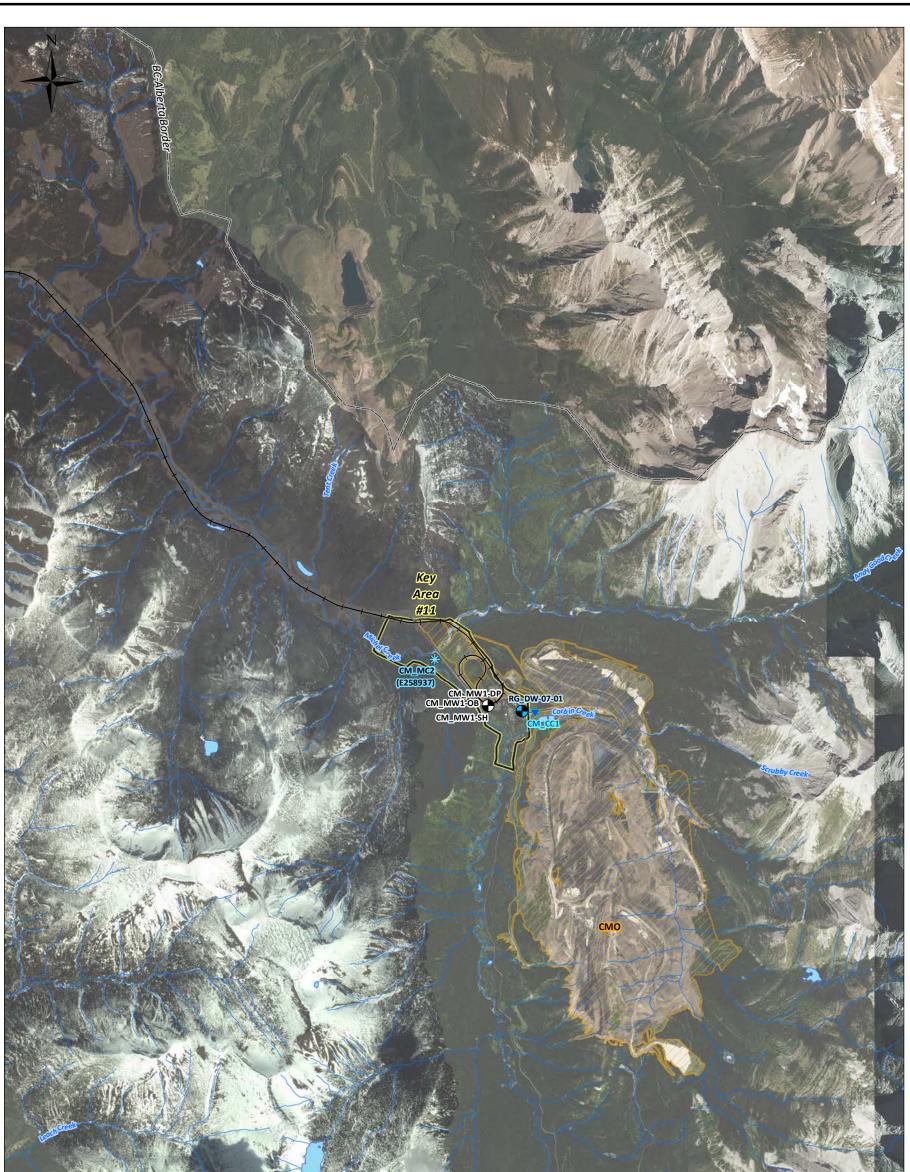
- > 635544-101: Site Location and Management Units
- 635544-102: Key Areas 1 to 4 and Sample Location Plan
- 635544-103: Key Areas 5 7 and Sample Location Plan
- 635544-104: Key Areas 8 10 and 12 and Sample Location Plan
- > 635544-105: Key Area 11 and Sample Location Plan
- > 635544-106: Surficial Geology North Half of Study Area
- Key Area and Sample Location Plan:
- > 635544-107: Surficial Geology South Half of Study Area
- > 635544-108: Bedrock Geology North Half of Study Area
- > 635544-109: Bedrock Geology South Half of Study Area
- > 635544-110: Inferred Geological Cross Section A-A'
- > 635544-111: Inferred Geological Cross Section B-B'
- > 635544-112: Inferred Geological Cross Section C-C'
- > 635544-113: Inferred Geological Cross Section D-D'
- > 635544-114: Inferred Geological Cross Section E-E'
- 635544-115: Groundwater Elevations from Q4 and Conceptual Regional Groundwater Flow North Half of Study Area
- 635544-116: Groundwater Elevations from Q4 and Conceptual Regional Groundwater Flow South Half of Study Area
- > 635544-117: Spatial Distribution of Selected Groundwater Analytical Data Key Areas 1 to 4
- 635544-118: Spatial Distribution of Selected Groundwater Analytical Data Key Areas 5 7
- 635544-119: Spatial Distribution of Selected Groundwater Analytical Data Key Areas 8 10 and 12
- > 635544-120: Spatial Distribution of Selected Groundwater Analytical Data Key Area 11



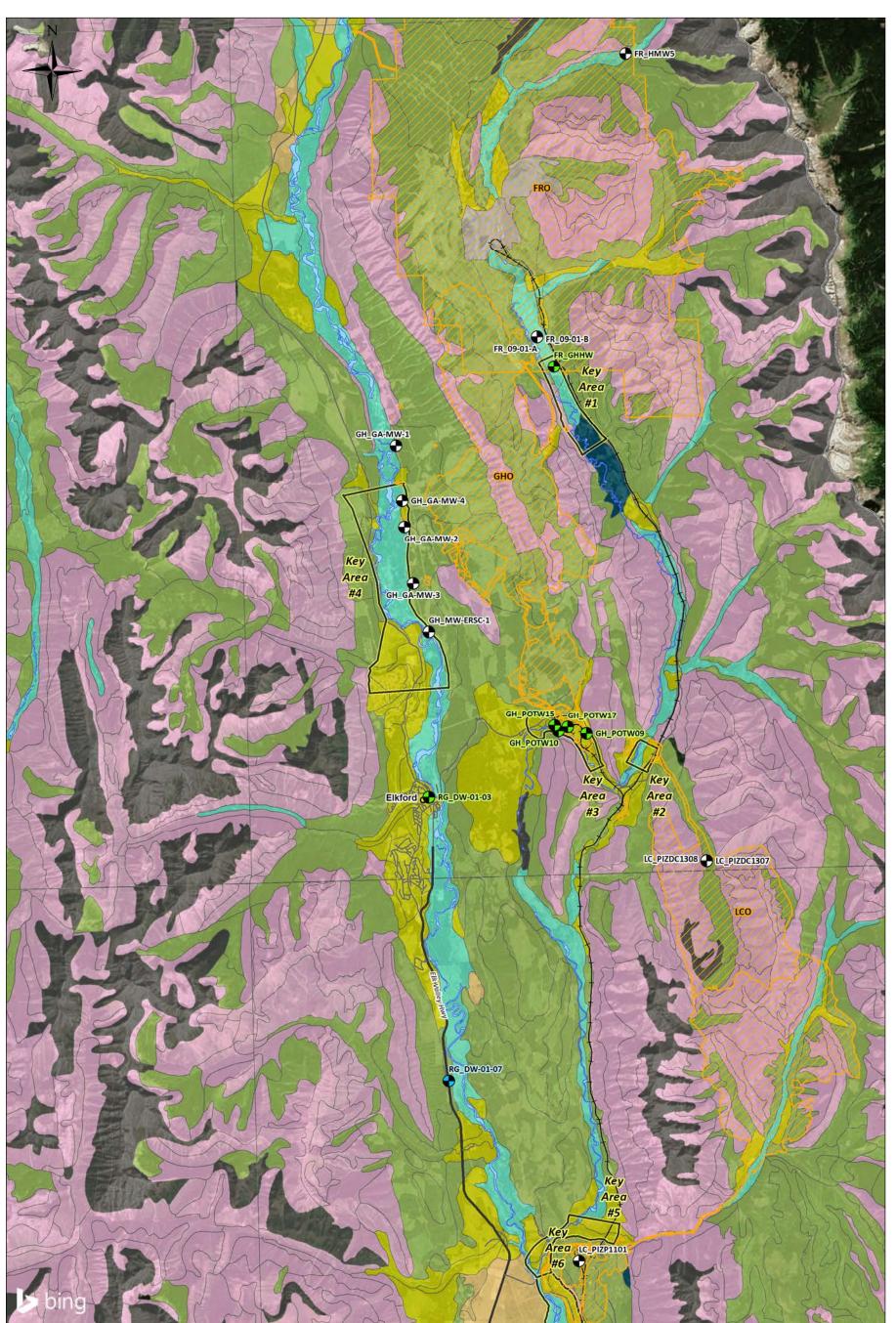
\\Proj_srv\projects\C


MXD Path

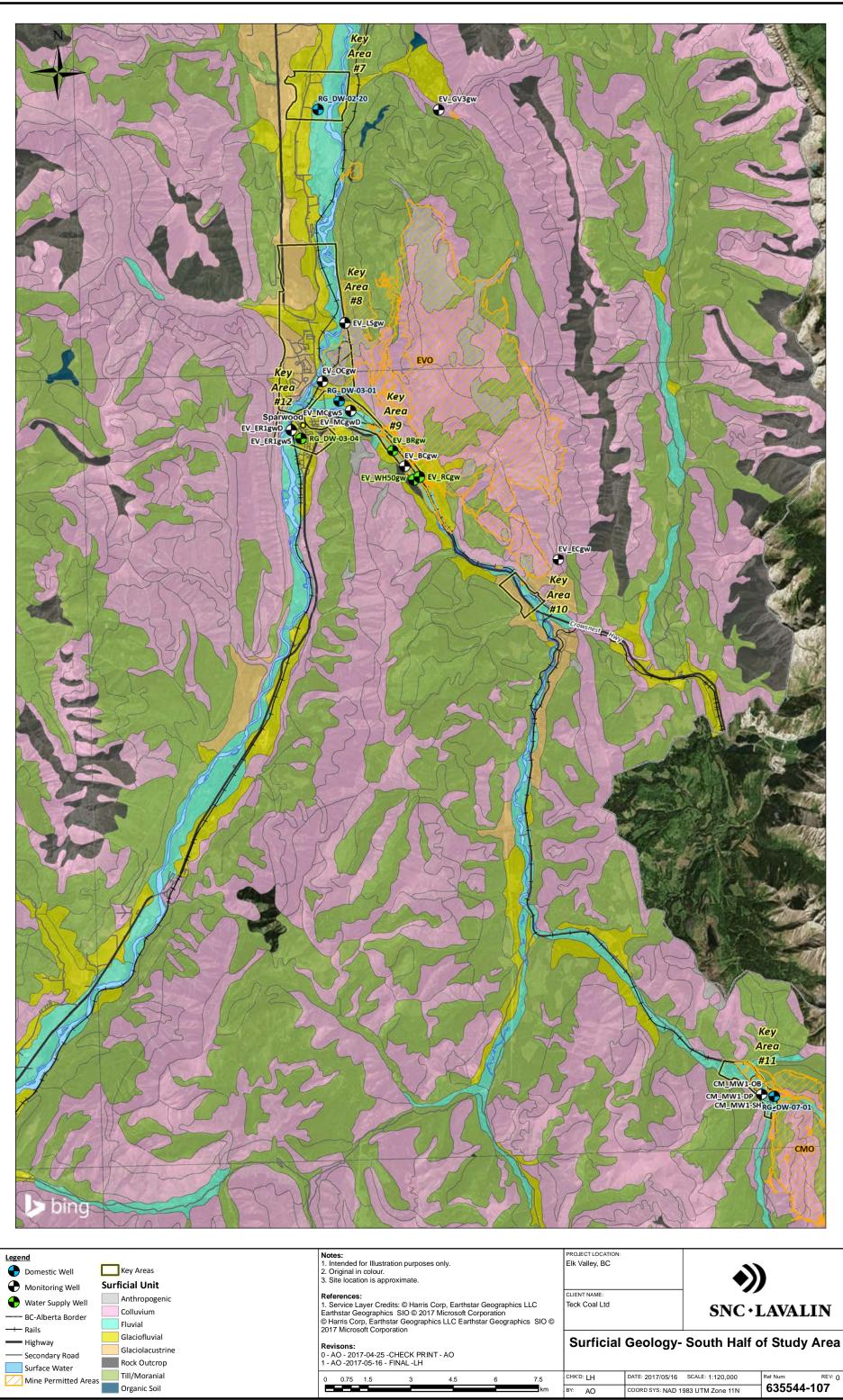
Legend Surface Water Sampling Stations	Geological Cross-Section	Notes: 1. Intended for Illustration purposes only. 2. Original in colour. 3. Site location is approximate.	PROJECT LOCATION: Elk Valley, BC	•))
 Compliance Points (CP) Permitted Surface Water Points Groundwater Sampling Stations 	Highway Secondary Road Streams BC-Alberta Border	References: 1. Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community	CLIENT NAME: Teck Coal Ltd	SNC · LAVALIN
 Domestic Well Monitoring Well Water Supply Well 	Settling Pond Tailing Pond Key Areas	Revisons: 0 - AO - 2017-04-26 - CHECK PRINT - LH 1 - AO - 2017-05-16 - FINAL - LH	Key Areas 1 to 4	and Sample Location Plan
Well not included in the RGMP but included on the cross-sections	Surface Water	0 0.4 0.8 1.6 2.4 3.2 4 Kilometers	CHK'D: LH DATE: 2017/05/16 BY: AO COORD SYS: NAD	SCALE: 1:100000 Ref Num: REV: 0 1983 UTM Zone 11N 635544-102

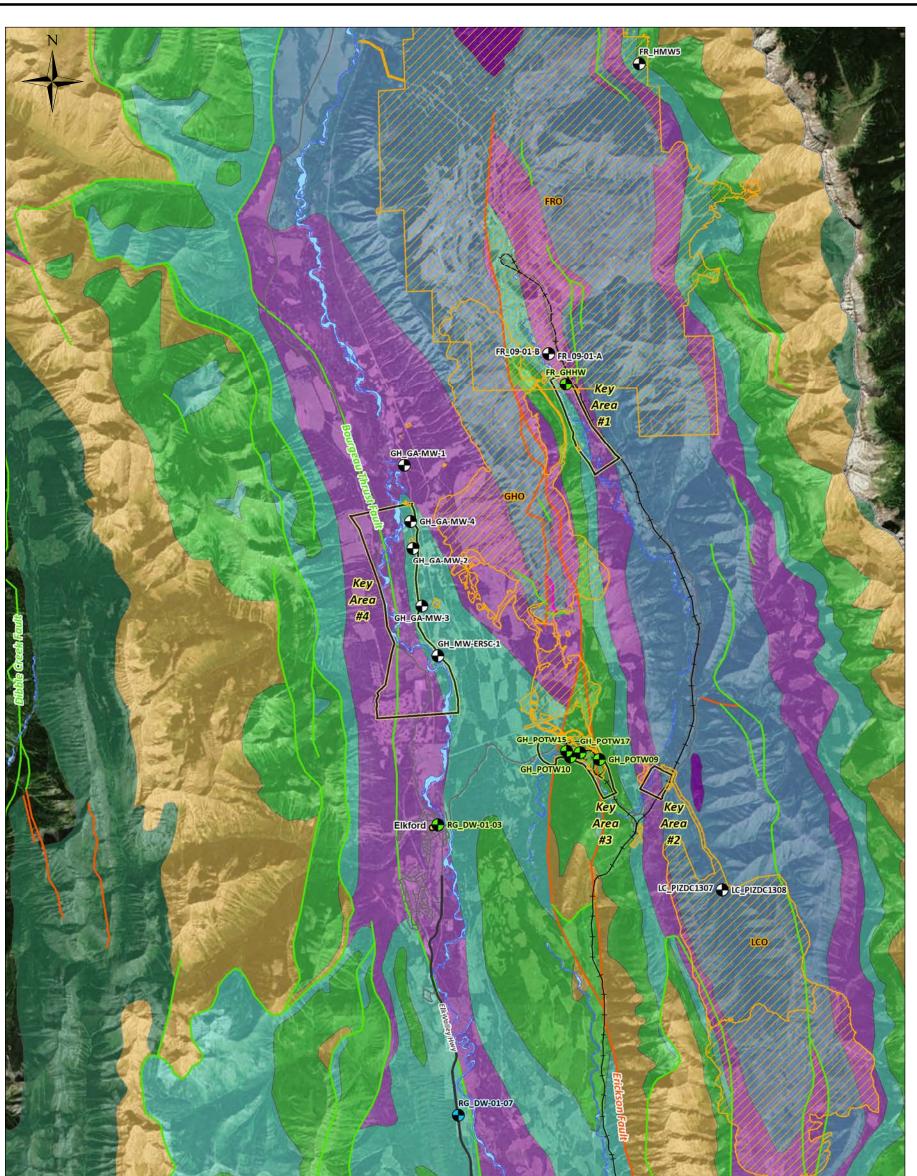


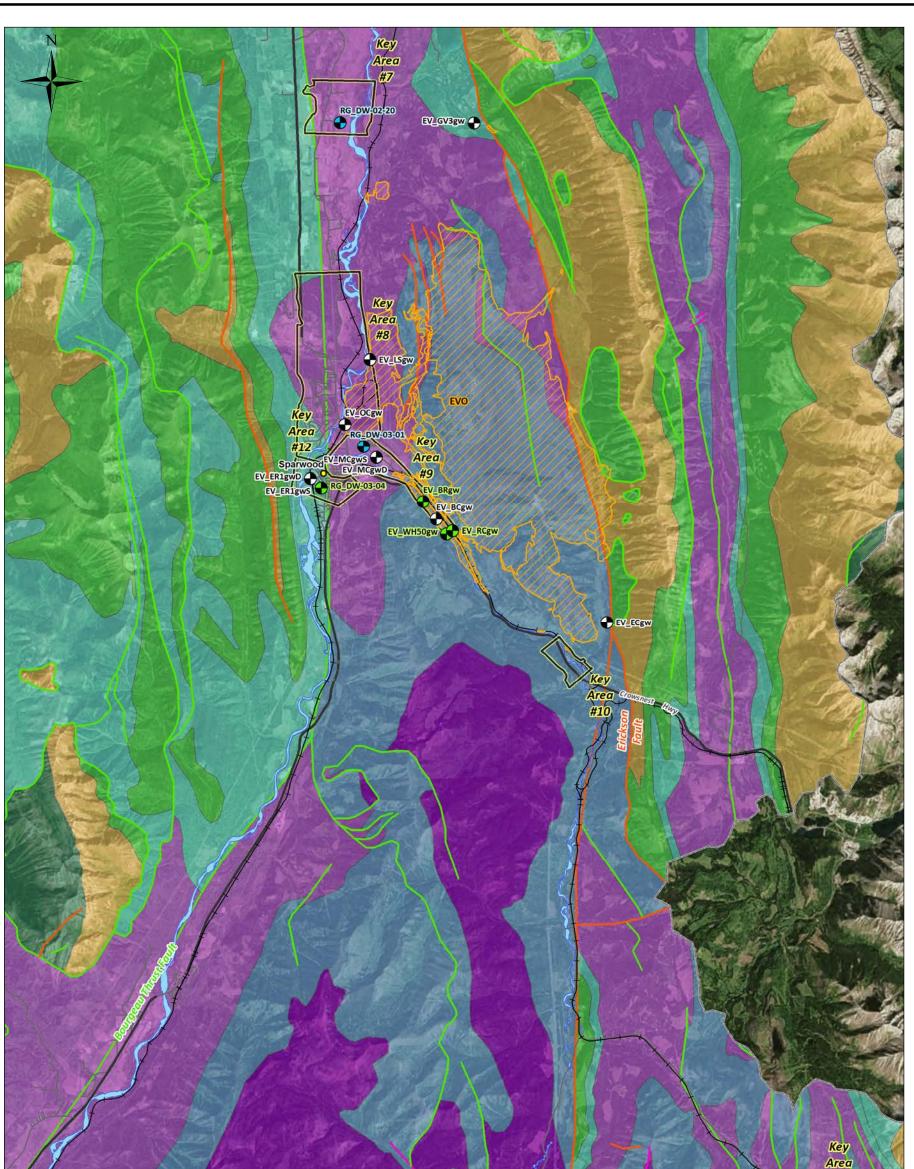
Legend Surface Water Sampling Stations ★ Site Performance Points (SPO) Compliance Points (CP) ▼ Permitted Surface Water Points Groundwater Sampling Stations	Highway	Notes: 1. Intended for Illustration purposes only. 2. Original in colour. 3. Site location is approximate. References: 1. Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community	PROJECT LOCATION: Elk Valley, BC CLIENT NAME: Teck Coal Ltd	SNC · I) LAVALIN
 Domestic Well Monitoring Well Well not included in the RGMP but included on the cross-sections 	Key Areas Surface Water Mine Permitted Areas	Revisons: 0 - AO - 2017-04-26 - CHECK PRINT - LH 1 - AO - 2017-05-16 - FINAL - LH 0 0.2 0.4 0.8 1.2 1.6 2 Kilometers		AS 5 to 7 and Sample Lo	Ref Num: REV: 635544-103 REV:



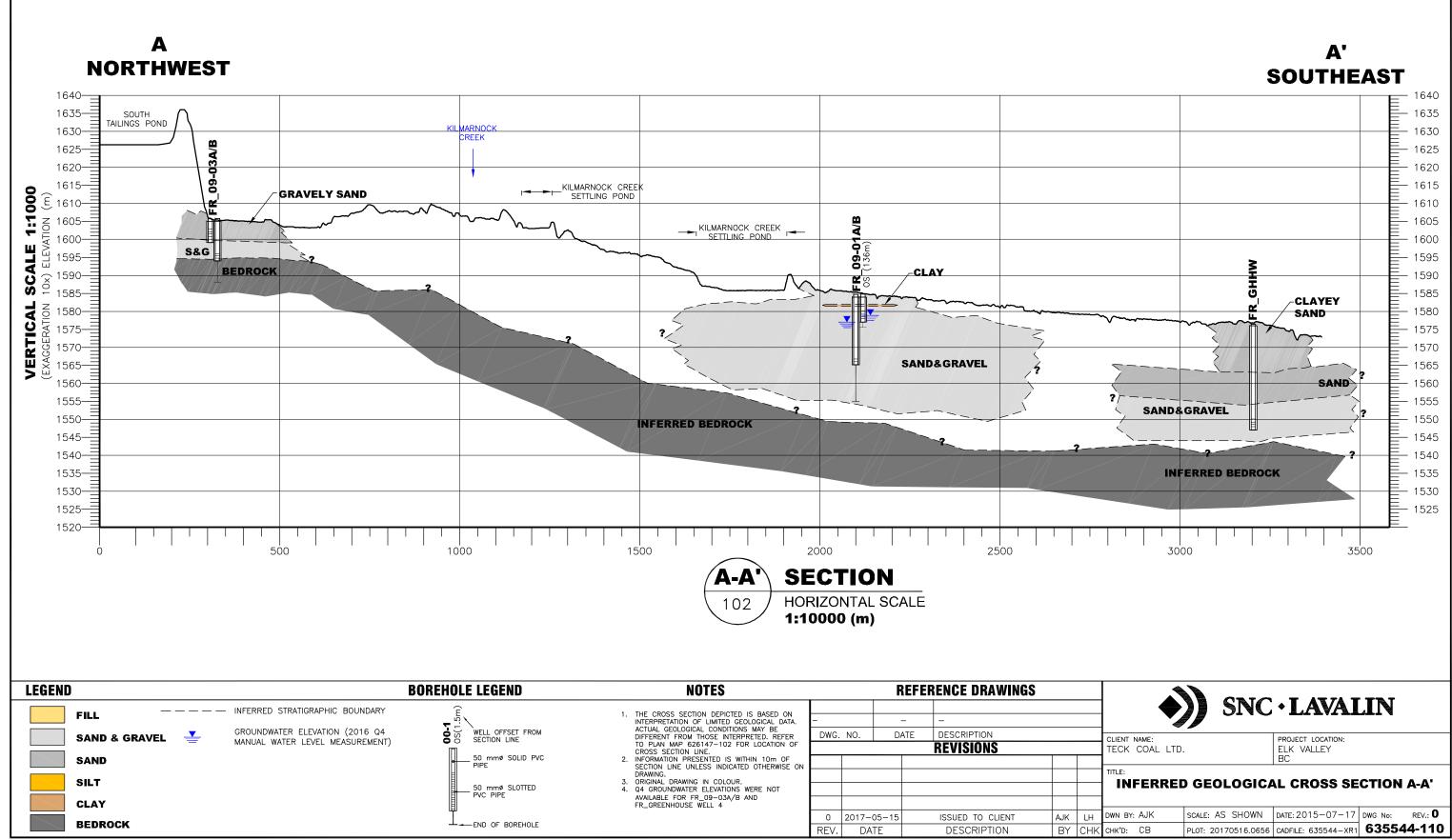
Legend Surface Water Sampling Stations Site Performance Points (SPO)	Geological Cross-Section Rails	Notes: 1. Intended for Illustration purposes only. 2. Original in colour. 3. Site location is approximate.	PROJECT LOCATION: Elk Valley, BC	((
 Compliance Points (CP) Permitted Surface Water Points Groundwater Sampling Stations 	Highway Secondary Road Streams	References: 1. Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community	CLIENT NAME: Teck Coal Ltd	SNC · LAVALIN
 Domestic Well Monitoring Well Water Supply Well 	Settling Pond Tailing Pond Key Areas Surface Water	Revisons: 0 - AO - 2017-04-26 - CHECK PRINT - LH 1 - AO - 2017-05-16 - FINAL - LH	Key Are	as 8-10 and 12 and Sample Location Plan
Well not included in the RGMP but included on the cross-sections	Mine Permitted Areas	0 0.2 0.4 0.8 1.2 1.6 2 Kilometers		DATE: 2017/05/16 SCALE: 1: 50000 Ref Num: REV: C COORD SYS: NAD 1983 UTM Zone 11N 635544-104

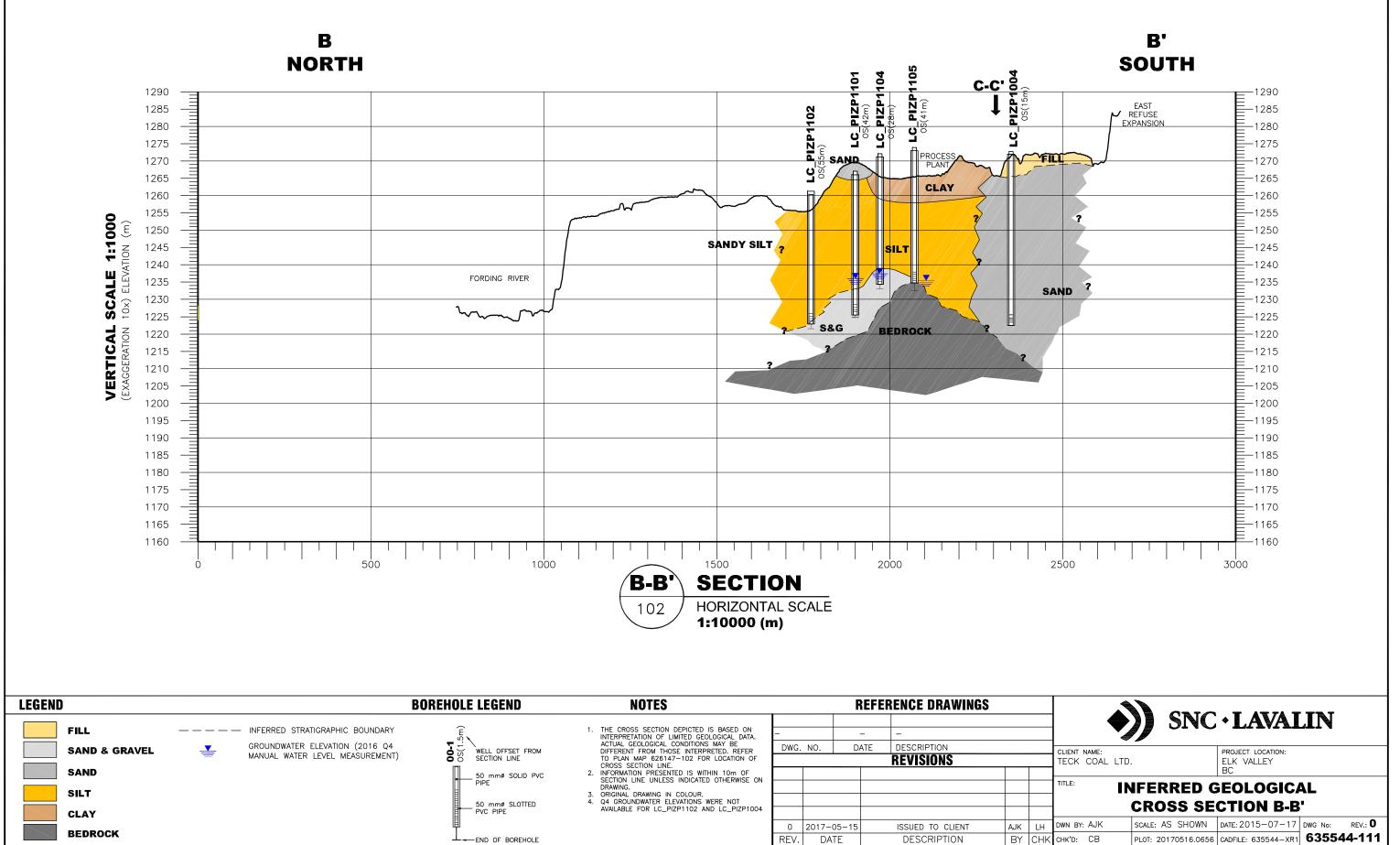


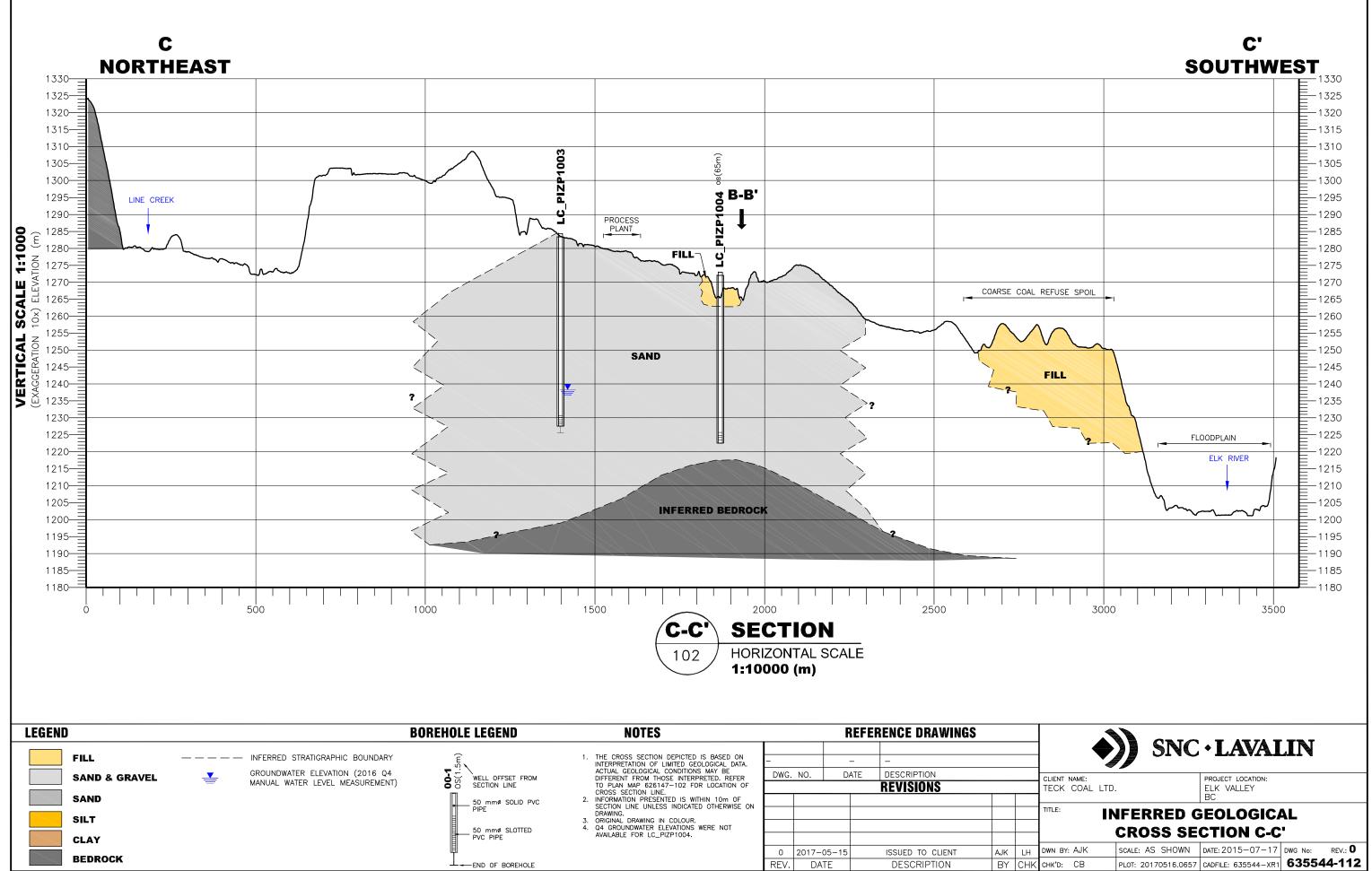

MXD Path: \\Proj_sv\projects\Current Projects\Teck Coal Ltd\SPO\635544\4.0 Execution\4.5 GIS and Drawings\C

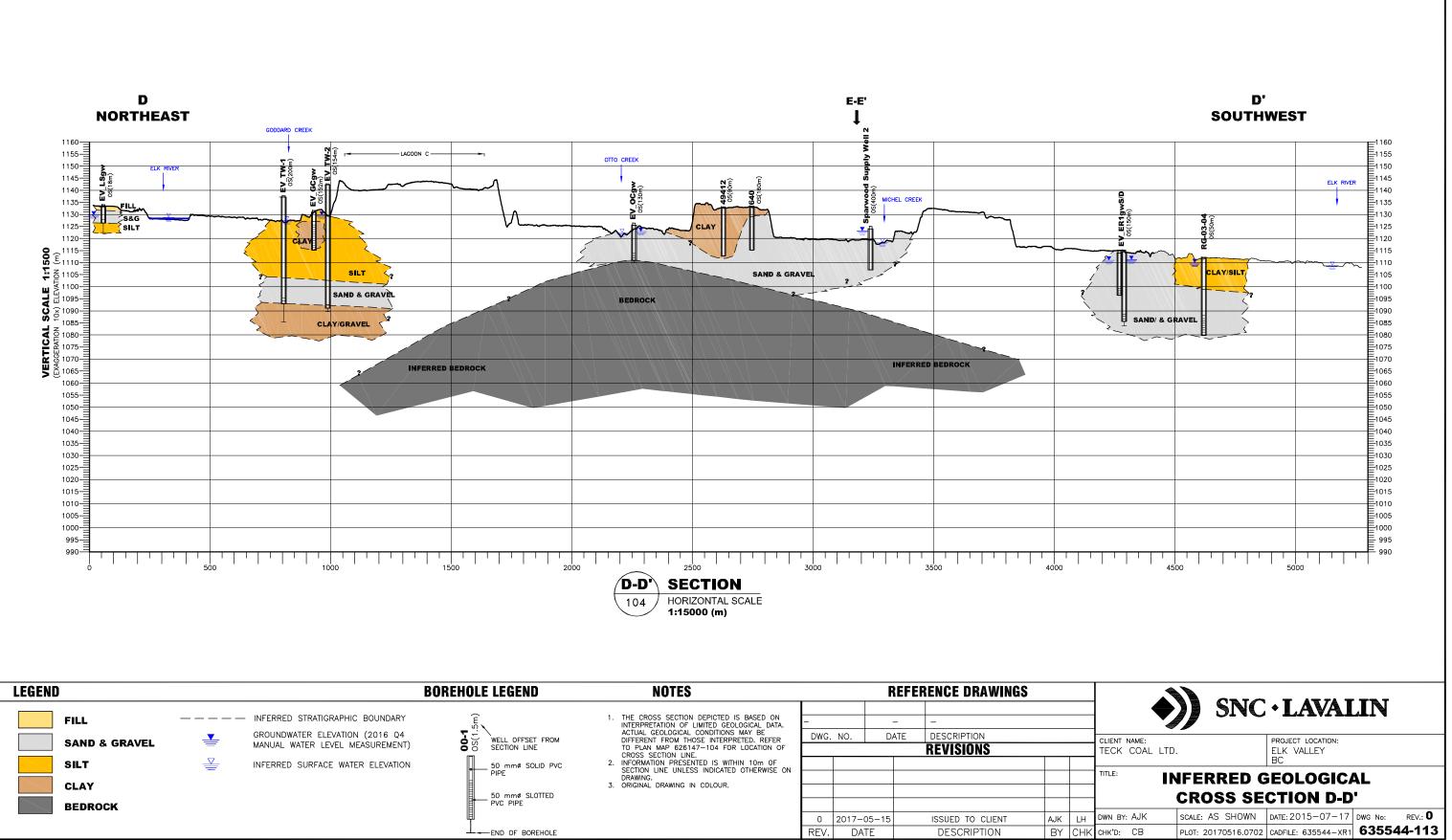

Legend Domestic Well Monitoring Well Water Supply Well —— BC-Alberta Border —— Rails	Key Areas Surficial Unit Anthropogenic Colluvium Fluvial	Notes: 1. Intended for Illustration purposes only. 2. Original in colour. 3. Site location is approximate. References: 1. Service Layer Credits: © Harris Corp, Earthstar Geographics LLC Earthstar Geographics SIO © 2017 Microsoft Corporation © Harris Corp, Earthstar Geographics SIO © 2017 Microsoft Corporation © Joint Corporation	PROJECT LOCATION: Elk Valley, BC CLIENT NAME: Teck Coal Ltd		LAVALIN
Highway Secondary Road Surface Water	Glaciofluvial Glaciolacustrine Rock Outcrop	Revisons: 0 - AO - 2017-04-25 -CHECK PRINT - AO 1 - AO -2017-05-16 - FINAL -LH	Surficial Geolog	gy - North Ha Area	If of Study
Mine Permitted Areas	s Till/Moranial Organic Soil	0 0.75 1.5 3 4.5 6 7.5	CHK'D: LH DATE: 2017/05/16 BY: AO COORD SYS: NAD	SCALE: 1:120,000 1983 UTM Zone 11N	Ref Num: REV: 0 635544-106

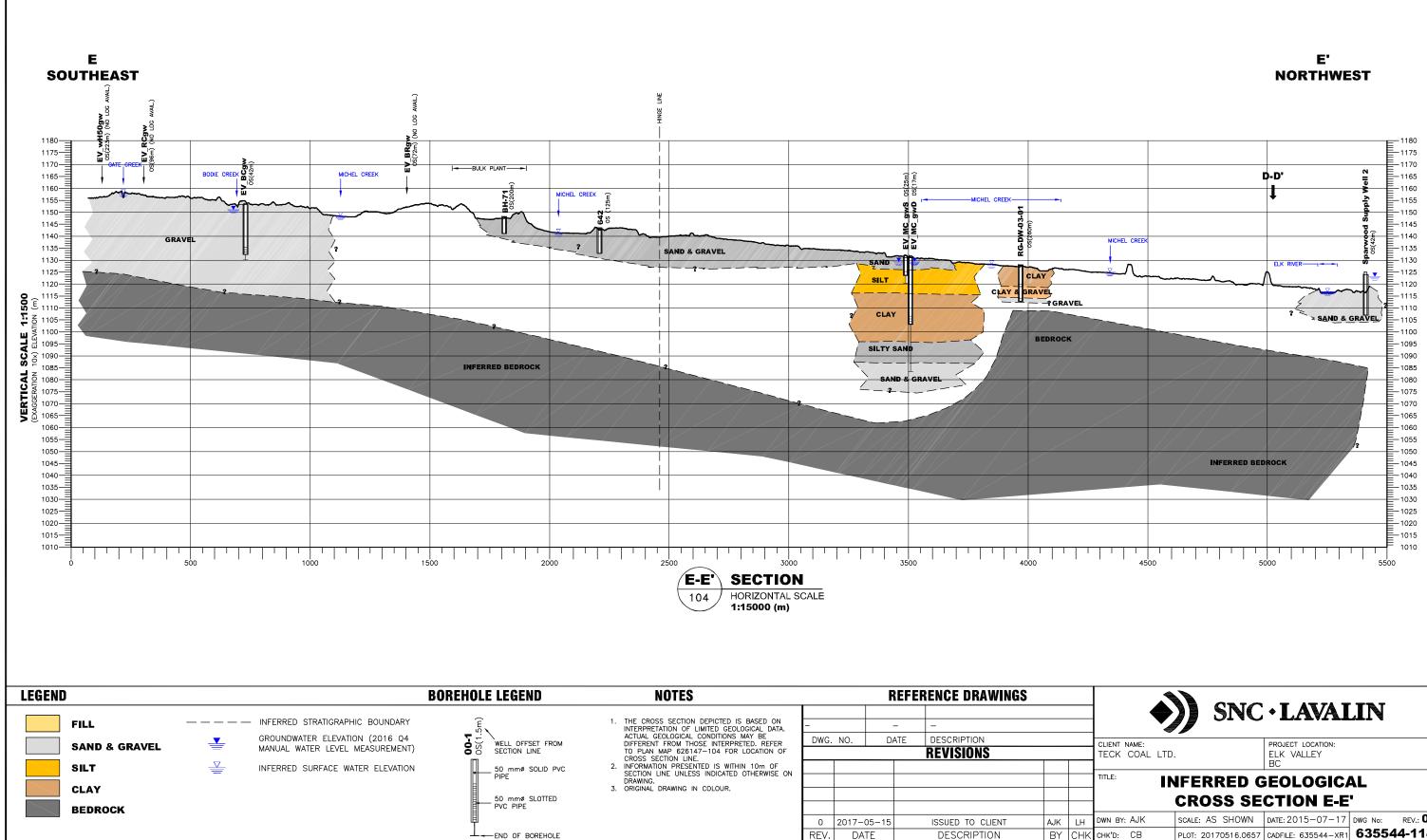
MXD Path: \\Proj_sr\Projects\Current Projects\Teck Coal Ltd\SPO\635544\4.0 Execution\4.5 GIS and Drawings\

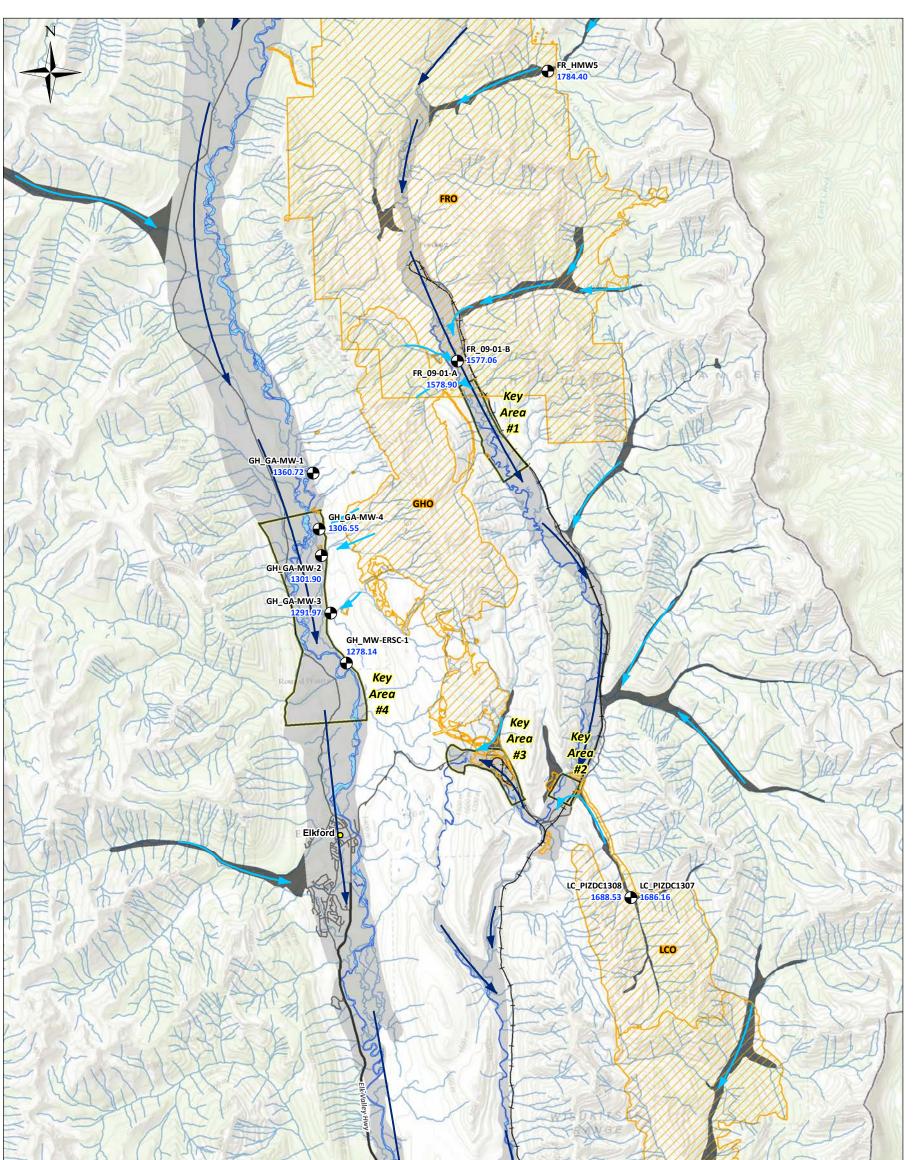


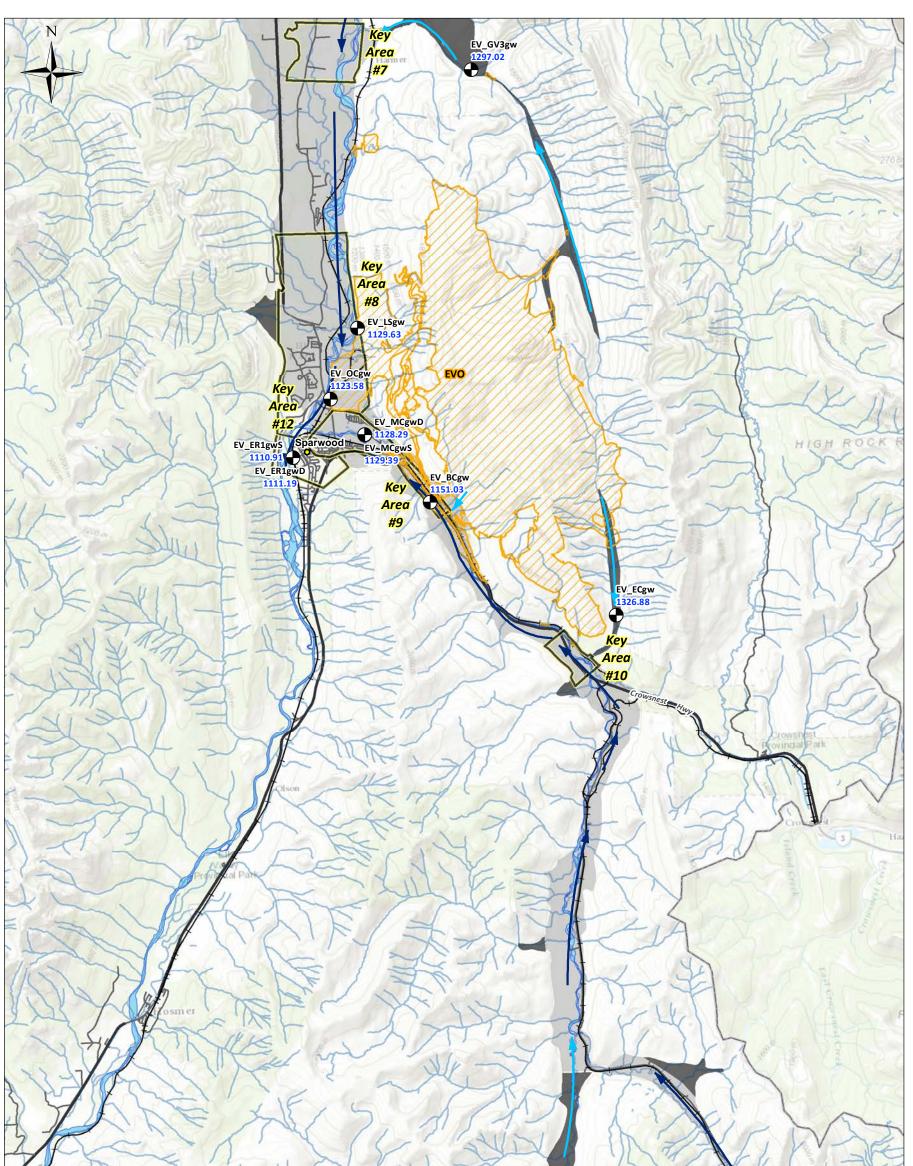



▶ bing	Key Area Ho U	Key Area #5 PIZP1101	
Legend Domestic Well Fault Type Other Fault	Notes: 1. Intended for Illustration purposes only. 2. Original in colour. 3. Site location is approximate.	PROJECT LOCATION: Elk Valley, BC	•))
Monitoring Well Fault Normal fault Normal fault Thrust fault BC-Alberta Border Rails Blairmore Group	References: 1. Service Layer Credits: © Harris Corp, Earthstar Geographics LLC Earthstar Geographics SIO © 2017 Microsoft Corporation © Harris Corp, Earthstar Geographics LLC Earthstar Geographics SIO © 2017 Microsoft Corporation	CLIENT NAME: Teck Coal Ltd	SNC · LAVALIN
Highway Fernie Formation Secondary Road Kootenay Group Surface Water Rocky Mountain Group	Revisons: 0 - AO - 2017-04-25 -CHECK PRINT - AO 1 - AO -2017-05-16 - FINAL -LH	Bedrock Geology	- North Half of Study Area
Key Areas Spray River Group	0 0.75 1.5 3 4.5 6 7.5		SCALE: 1:120,000 Ref Num: REV: 0 983 UTM Zone 11N 635544-108
		BY: AO COORD SYS: NAD 1	983 UTM Zone 11N 030044-108

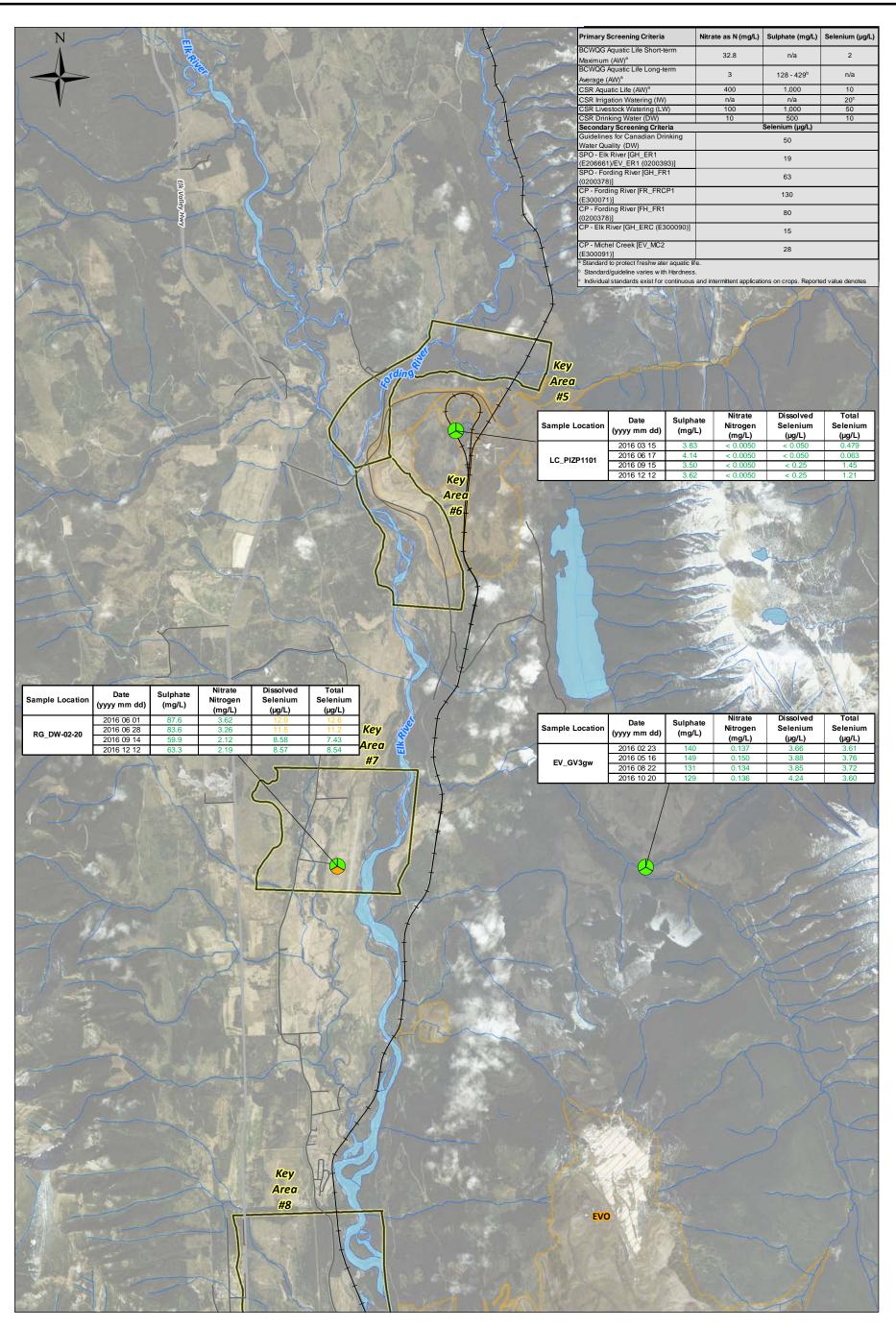



bing			CM_MW1-DF CM_MW1-DF CM_MW1+	Area #11 SHRG-DW-07-01 CMO
Legend Domestic Well Fault Type Other	Notes: 1. Intended for Illustration purposes only. 2. Original in colour. 3. Site location is approximate.	PROJECT LOCATION: Elk Valley, BC		9
Monitoring Well Fault	References:	CLIENT NAME:	- 🗸	7
Water Supply Well Thrust fault BC-Alberta Border Rails Badrock Geology Blairmore Group	1. Service Layer Credits: © Harris Corp, Earthstar Geographics LLC Earthstar Geographics SIO © 2017 Microsoft Corporation © Harris Corp, Earthstar Geographics LLC Earthstar Geographics SIO © 2017 Microsoft Corporation	Teck Coal Ltd	SNC·	LAVALIN
Highway Fernie Formation Secondary Road Kootenay Group Surface Water Rocky Mountain Group	Revisons: 0 - AO - 2017-04-25 -CHECK PRINT - AO 1 - AO -2017-05-16 - FINAL -LH	Bedrock Geology	- South Half	of Study Area
Vine Permitted Areas Rundle Group Key Areas Spray River Group	0 0.75 1.5 3 4.5 6 7.5		SCALE: 1:120,000	Ref Num: REV: 0
			1983 UTM Zone 11N	635544-109





) SNC	• LAVAI	LIN
	CLIENT NAME:		PROJECT LOCATION:	
	TECK COAL LTD.		ELK VALLEY BC	
		IFERRED O	GEOLOGIC	AL
		CROSS SE	CTION E-E	•
I I	DWN BY: AJK	CROSS SE		DWG No: REV.: 0



			Key Area #11 CM_MW1-DP 1497:01 CM_MW1-0B 1497:03 CM
Legend Monitoring Well 1287.77 Groundwater Elevation (masl) measured in 2016 Q4	Notes: 1. Intended for Illustration purposes only.	PROJECT LOCATION: Elk Valley, BC	
Monitoring Well 1287.77 Groundwater Elevation (masl) measured in 2016 Q4	 Original in colour. Site location is approximate. 		
Mine Permitted Areas	References:		• //
Key Areas	1. Service Layer Credits: Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,	CLIENT NAME: Teck Coal Ltd	
	Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong	Teck Coal Liu	SNC · LAVALIN
Highway	Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors, and the		
Secondary Road	GIS User Community Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO,		from OA and Concentral Designed
Surface Water	USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance		from Q4 and Conceptual Regional
Interpreted Tributary Valley-bottom Extent	Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors, and the GIS User Community	Groundwater Flow	v - South Half of Study Area
Interpreted Main Valley-bottom Extent		CHK'D: I H DATE: 2017/05/16	SCALE: 1:120.000 Ref Num: REV: 0
 Inferred Valley-Bottom Flow Direction Inferred Upland or Tributary Valley-bottom Groundwater Flow 	0 0.5 1 2 3 4 5	4 .	
	Project Path: \\sli2606\PRO.JECTS\Current Projects\Tex	BY: AO COORD SYS: NAD 1	

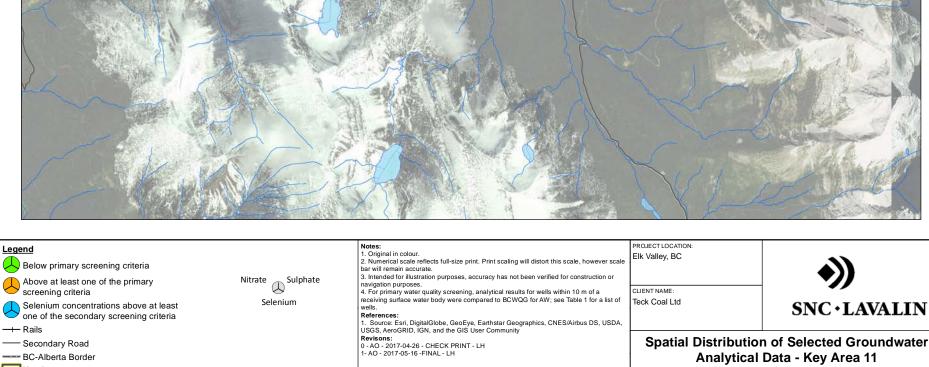
MXD Path: \\Proj_srv/projects\Current Projects\Teck Coal Ltd\SPO\6355444.0 Execution\4.5 GIS and Drawings\G

	Date	Sulphate	Nitrate	Dissolved	Total		nary Screening Criteria Nit	rate as N (mg/L) Sulphate (mg/L)	Selenium (µg/l
Sample Location	(yyyy mm dd) 2016 01 21 2016 05 18	(mg/L) 29.8 41.0	Nitrogen (mg/L) < 0.0050 < 0.0050	Selenium (μg/L) < 0.050 0.054	Selenium (µg/L) < 0.050 < 0.050	Maxi BCM	VQG Aquatic Life Short-term mum (AW) ^a VQG Aquatic Life Long-term	32.8 n/a 3 128 - 429 ^b	2 n/a
FR_HMW5	2016 08 10 2016 11 03	40.0 39.8	< 0.0050 < 0.0050 < 0.0050 Nitrate	 0.054 < 0.050 3.04 Dissolved 	< 0.050 < 0.050 < 0.050 Total	CSR CSR	age (AW) ^a R Aquatic Life (AW) ^a R Irrigation Watering (IW) R Livestock Watering (LW)	400 1,000 n/a n/a 100 1,000	10 20 ^c 50
Sample Location	Date (yyyy mm dd) 2016 01 25	Sulphate (mg/L) 366	Nitrogen (mg/L) 27.1	Selenium (µg/L) 66.1	Selenium (µg/L) 59.5	n CSR Sect Guid	t Drinking Water (DW) ondary Screening Criteria delines for Canadian Drinking er Quality (DW)	10 500 Selenium (μg/L) 50	10
FR_09-01-A	Duplicate 2016 06 14 Duplicate 2016 08 17	374 226 224 242	27.6 32.4 32.1 32.2	66.3 76.1 77.5 85.7	58.3 77.1 77.5 83.7	SPO (E20 SPO	0 - Elk River [GH_ER1 06661)/EV_ER1 (0200393)] 0 - Fording River [GH_FR1	19 63	
× //	2016 08 17 2016 11 24 Date	347 Sulphate	51.7 Nitrate	159 Dissolved	137 Total		0378)] Fording River [FR_FRCP1 0071)] Fording River [FH_FR1	130	
ample Location	(yyyy mm dd) 2016 01 25 2016 06 14	(mg/L) 291 252	Nitrogen (mg/L) 17.6 34.8	Selenium (μg/L) 42.6 79.9	Seleniun (µg/L) 37.8 80.5		0378)] Elk River [GH_ERC (E300090)] Michel Creek [EV_MC2	15	
FR_09-01-B	2016 08 17 2016 11 24	297 351	22.0 39.4	58.9 117	60.2 106	(E30) • Star • Star	00091)] Indard to protect freshwater aquatic life. Indard/guideline varies with Hardness. ividual standards exist for continuous and	28	
ample Location	Date (yyyy mm dd) 2016 01 25	Sulphate (mg/L) 360	Nitrate Nitrogen (mg/L)	Dissolved Selenium (µg/L) 137	Total Seleniun (µg/L)			Contraction of the contraction o	
FR_GHHW	2016 05 18 2016 08 17 2016 10 20	438 252 270	68.4 36.3 39.0	160 91.0 108	123 152 95.4 109		254015	Alberta	- 12
111	Duplicate 2016 10 21	277 269	40.1 38.6 Nitrate	110 108 Dissolved	103 103 Total		Tack.	Border	1
ample Location	Date (yyyy mm dd) 2016 03 22	Sulphate (mg/L) 453	Nitrogen (mg/L)	Selenium (µg/L) 0.306	Seleniun (µg/L) 0.380				
GH_GA-MW-1	2016 06 14 2016 08 16 2016 11 16	715 229 564	0.600 1.77 0.165	0.560 0.296 0.218	1.61 0.335 -	Key -			
AND	113		1-		H	Area #1	tion Date Sulphate (yyyy mm dd) (mg/L)	Nitrate Dissolved Nitrogen Selenium (mg/L) (µg/L)	Total Selenium (μg/L)
2	d.	2	14	YAF	Z	GH_GA-MW-	4 2016 03 22 646 2016 06 14 425 2016 08 16 266 2016 11 14 294	8.02 4.19 5.97 3.66 3.16 3.62 2.41 3.00	3.79 3.00 3.24 3.02
A		1-	Кеу	-50	1/h	Sample Locat	Date Sulphate	Nitrate Dissolved Nitrogen Selenium	Total Seleniun
SNU	A T		Area #4		1	GH_GA-MW-	2016 03 22 158 2016 06 14 160 2016 08 15 157	(mg/L) (μg/L) 3.49 13.5 0.751 5.70 1.63 10.4	(µg/L) 12.5 5.34 9.39
1		S	1		R	GHO Sample Locat	2016 11 14 181 ion Date Sulphate	4.22 17.9 Nitrate Dissolved Nitrogen Selenium	17.9 Total Seleniur
		1 P	1		E,	GH_GA-MW-	(yyyy mm dd) (mg/L) 2016 03 22 117 2016 06 14 37.7	(mg/L) (μg/L) 0.789 11.3 < 0.0050	(µg/L) 7.69 2.05
	KIN		1	Red	2/-	Sample Locat	2016 08 15 33.3 2016 11 14 26.9 Date Sulphate	< 0.0050	< 0.050 < 0.050 Total Selenium
	Lix	E.		=37	R		(yyyy mm dd) (mg/L) 2016 03 22 17.6 2016 06 14 40.9	(mg/L) (μg/L) 0.190 0.847 0.412 3.01	(µg/L) 1.23 3.19
	34	-Eli	1	Colle	ine D	GH_MW-ERSC	C-1 2016 08 15 16.3 2016 11 14 17.2 Duplicate 17.4	0.037 0.815 0.045 0.932 0.045 0.908	0.682 0.889 0.864
ample Location	Date (yyyy mm dd)	Sulphate (mg/L)	Nitrate Nitrogen (mg/L)	Dissolved Selenium (µg/L)	Total Seleniun (µg/L)	n Sample Locat	ion Date Sulphate (yyyy mm dd) (mg/L)	Nitrate Dissolved Nitrogen Selenium	Total Selenium
GH_POTW15	2016 03 07 2016 06 14 2016 08 16 2016 11 17	261 273 254 244	0.041 < 0.025 < 0.025 < 0.0050	0.206 0.207 0.125 < 0.25	0.233 0.233 0.177 < 0.25	Key GH_POTW1		(mg/L) (μg/L) 0.198 5.76 0.345 7.71 0.330 7.98	(μg/L) 5.39 7.66 7.66
ample Location	Date (yyyy mm dd)	Sulphate (mg/L)	Nitrate Nitrogen (mg/L)	Dissolved Selenium (µg/L)	Total Seleniun	n Area	2016 11 17 448 Duplicate 422	0.255 5.41 0.245 5.10	5.20 5.23
GH_POTW10	2016 03 07 2016 06 14 2016 08 16	191 200 186	0.705 0.445 0.391	4.80 3.42 3.02	(μg/L) 4.62 3.35 2.93		Key Area /#2		A.
AULTR	2016 11 17	185	0.478	3.80	3.73		N THE	D'A	
	11 Z	XF }		Elkfo	ord c	Sample Locat	Date (yyyy mm dd) Sulphate (mg/L) 2016 03 07 161	Nitrate Dissolved Nitrogen Selenium (mg/L) (µg/L) < 0.025	Total Selenium (µg/L) 0.689
-701	Date	Sulphate	Nitrate	Dissolved	Total	GH_POTWO	2016 06 14 178	< 0.025 0.705 < 0.025	0.696 0.636 0.749
ample Location	(yyyy mm dd) 2016 06 01 2016 06 29	(mg/L) 49.2 50.7	Nitrogen (mg/L) 0.806 0.833	Selenium (µg/L) 3.43 2.92	Seleniun (µg/L) 3.21 3.27			1263	
RG_DW-01-03	2016 09 14 2016 12 12	53.7 46.5	0.840	3.42 2.77	3.28 2.77		31/-		
ample Location	Date (yyyy mm dd)	Sulphate (mg/L)	Nitrate Nitrogen	Dissolved Selenium	Total Seleniun		LCO	8 8 Q	(Jani
LC_PIZDC1307	2016 03 16 2016 06 10 2016 09 13	< 0.30 < 0.30 < 0.30	(mg/L) < 0.0050 < 0.0050 < 0.0050	(μg/L) < 0.050 < 0.050 < 0.050	(μg/L) < 0.050 < 0.050 < 0.050		RAKE		
and a	2016 09 13	< 0.30	< 0.0050	< 0.25	< 0.25		Date Sulphate	Nitrate Dissolved	Total
ample Location	Date	Sulphate	Nitrate Nitrogen	Dissolved Selenium	Total Seleniun	n Sample Locat	(yyyy mm dd) (mg/L) 2016 03 16 3.23 2016 06 10 5 11	Nitrogen (mg/L) Selenium (μg/L) 0.0082 < 0.050	Seleniun (µg/L) 0.058 0.300
RG_DW-01-07	(yyyy mm dd) 2016 06 01 2016 06 29 2016 09 14	(mg/L) 65.1 61.3 64.2	(mg/L) 0.652 0.612 0.623	(μg/L) 1.69 1.54 1.72	(µg/L) 1.67 1.40 1.45		2016 09 13 4.60 2016 12 13 5.09	0.0326 0.141 0.0432 < 0.25	0.169
LUP	2016 12 12	68.5	0.661	1.72	1.72			1 the	N
	\mathbb{A}				Ż		K		T
1.1		Ren							
1.1					1.0	ites: Original in colour. Numerical scale reflects full-size print. Print scaling will distort this scale, however scale	PROJECT LOCATION: Elk Valley, BC	• •	
elow primary reening criteria		ighway	Nitrate	C) ·	1. (2.) bai 3.) na ^v 4.)	Original in colour. Numerical scale reflects full-size print. Print scaling will distort this scale, however scale will remain accurate. Intended for illustration purposes, accuracy has not been verified for construction or vigation purposes. For primary water quality screening, analytical results for wells within 10 m of a	Elk Valley, BC	•))	
-	e of Se	ighway econdary Rc C-Alberta Bo	oad s	Sulphate elenium	1. 0 2. 1 bai 3. 1 nav 4. 1 rec we Re 1.	Original in colour. Numerical scale reflects full-size print. Print scaling will distort this scale, however scale will remain accurate. Intended for illustration purposes, accuracy has not been verified for construction or vigation purposes.	Elk Valley, BC	SNC·L	AVALI
reening criteria ove at least one e primary scree	e of Se ning Bu Dove St	ighway econdary Ro	oad _{Si} order	\odot	1. 2.1 bai 3.1 nar 4. rec we Re 1. US Re 0 -	Original in colour. Numerical scale reflects full-size print. Print scaling will distort this scale, however scale will remain accurate. Intended for illustration purposes, accuracy has not been verified for construction or vigation purposes. For primary water quality screening, analytical results for wells within 10 m of a seiving surface water body were compared to BCWQG for AW; see Table 1 for a list of lis. ferences: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,	Elk Valley, BC CLIENT NAME: Teck Coal Ltd Spatial Distribu	SNC · L	roundwa

MXD Path: \\Proj_sv\projects\Current Projects\Teck Coal Ltd\SPO\635544\4.0 Execution\4.5 G\S and Drawings\GISMapSeries\2016 Annual Report 635544-117 Selected Groundwater Analytical Data - Key Areas 1 to 4.mxd V: 0

Below primary screening criteria Above at least one of the primary screening criteria Selenium concentrations above at least one of the secondary screening criteria Rails	Notes: 1. Orginal in colour. 2. Numerical scale reflects full-size print. Print scaling will distort this scale, however scale bar will remain accurate. 3. Intended for illustration purposes, accuracy has not been verified for construction or navigation purposes. 4. For primary water quality screening, analytical results for wells within 10 m of a receiving surface water body were compared to BCWQG for AW; see Table 1 for a list of wells. References: 1. Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community Revisons: 0 - AO - 2017-04-26 - CHECK PRINT - LH 1- AO - 2017-05-16 -FINAL - LH	Distribution of Selected halytical Data - Key Area	
Streams Mine Permitted Areas	0 0.2 0.4 0.8 1.2 1.6 2 Kilometers	 DATE: 2017/05/16 SCALE: 1:50000 COORD SYS: NAD 1983 UTM Zone 11N	Ref Num: REV: 0 635544-118

N				-117k-2	And I	and the second s		1	1 412			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N	- 7		4				R	-+	~	- Jus	- Contraction	S. S.
		4s	3411						1		an	AN AN
		+7	SH.		See. 1						- Alerta	
		1	\mathcal{D}			Back - A					man -	
		+ 1	15-			North Contraction	Sample Location	Date	Sulphate	Nitrate Nitrogen	Dissolved Selenium	Total Selenium
X	A STATE OF	FI	J.	1 1 2				(yyyy mm dd) 2016 02 23	(mg/L) 110	(mg/L) < 0.025	(μg/L) 0.413	(μg/L) 0.383
		\btc			A.	State Stat	EV_LSgw	2016 05 17 2016 08 24	101 95	0.048 < 0.025	0.120 0.069	0.107 0.090
-		74	7					2016 10 19	97.9	< 0.025	0.083	0.080
1	7.4						Sample Location	Date (yyyy mm dd)	Sulphate (mg/L)	Nitrate Nitrogen	Dissolved Selenium	Total Selenium
		1+	Ke				-	2016 02 22	(IIIG/L) 56.0	(mg/L) < 0.0050	(μg/L) < 0.050	(μg/L) < 0.050
	L	H	Ar #				EV_OCgw	2016 05 18 2016 08 24	51.7 57.9	< 0.0050 < 0.0050	0.685 < 0.050	< 0.050 < 0.050
		1						2016 10 19 Duplicate	58.7 60.6	< 0.0050 < 0.0050	0.070 0.104	< 0.050 < 0.050
			t II					Date	Sulphate	Nitrate	Dissolved	Total
	De	2.1	1-1				Sample Location	(yyyy mm dd)	(mg/L)	Nitrogen (mg/L)	Selenium (µg/L)	Selenium (µg/L)
- Form			st.		-/		RG_DW-03-01	2016 05 19 2016 09 21	76.9 57.8	< 0.025 0.069	0.106 0.124	0.095 0.138
anges a		Λ	Ţ					2016 12 12	48.5	0.089	0.182	0.178
A state	to	74	_]]	/			Sample Location	Date (yyyy mm dd)	Sulphate (mg/L)	Nitrate Nitrogen	Dissolved Selenium	Total Selenium
Tom	A CONT		4		A f			2016 02 24	107	(mg/L) < 0.025	(μg/L) 0.155	(µg/L) 0.479
		×	10			Part N	EV_MCgwS	2016 05 18 2016 08 23	123 92.2	< 0.025 < 0.025	< 0.050 < 0.050	< 0.050 < 0.050
	T		1	N finit			A Station	2016 10 24	94.1	< 0.025	< 0.050	< 0.050
		Er/	\sim	F		aprese 1	Sample Location	Date (yyyy mm dd)	Sulphate (mg/L)	Nitrate Nitrogen	Dissolved Selenium	Total Selenium
the second	176	- I P	V f	+//	21	T- 19/1 3	1	2016 02 24	52.5	(mg/L) < 0.0050	(μg/L) < 0.050	(µg/L) 0.237
	قرل ا			X	10 - 10		EV_MCgwD	2016 05 18 2016 08 23	116 108	< 0.0050 < 0.025	0.071 0.169	0.083
			S t				A CALL ST ALL	2016 10 24	95.8	< 0.0050	0.119 Dissolved	0.106 Total
1			+//		-/		Sample Location	Date (yyyy mm dd)	Sulphate (mg/L)	Nitrogen (mg/L)	Selenium (µg/L)	Selenium (µg/L)
			Кеу			10-10-00		2016 02 24 2016 05 18	85.2 48.7	2.51	10.1 6.49	10.0
	TBY4		Are		11/	EVO	EV_ER1gwS	Duplicate 2016 08 23	48.8	1.46	6.46 8.39	6.27 7.90
		11	#9		//			Duplicate 2016 10 18	43.7 70.6	1.30 1.99	3.44 9.04	3.07 8.34
Key		11	R				5	Duplicate	44.7	0.08	2.70	2.55
Area #12	MAS	U	L-12				Sample Location	Date	Sulphate	Nitrate	Dissolved Selenium	Total Selenium
~*12	1-1-1	<u> </u>	the second	6	1		Sample Location	(yyyy mm dd) 2016 02 24	(mg/L) 82.2	Nitrogen (mg/L) 2.41	(µg/L) 9.88	(µg/L) 9.29
	Sparwoo	d 1-		5×+			EV_ER1gwD	2016 02 24 2016 05 18 2016 08 23	44.7 55.3	1.25 1.64	5.71 6.86	5.16 6.41
	1 de la	1				The Kill		2016 10 18	57.5	1.51	6.77	6.24
4	4 D	而了			V		Section of the	Date	Sulphate	Nitrate	Dissolved	Total
					100		Sample Locatio	n (yyyy mm dd) (mg/L)	Nitrogen (mg/L)	Selenium (µg/L)	Seleniu (µg/L)
ample Location	Date	Sulphate	Nitrate Nitrogen	Dissolved Selenium	Total Selenium		EV_BRgw	2016 02 25 2016 05 17	320 367	6.64 10.7	30.0 41.9	27.8 37.6
	(yyyy mm dd) 2016 03 09	(mg/L) -	(mg/L) -	(µg/L) -	(μg/L) 11.8			2016 08 25 2016 10 19	358 379	10.6 8.60	44.7 32.5	45.5 31.3
	2016 04 05 2016 05 03	-	-	-	11.6 10.4		Sample Location	Date	Sulphate	Nitrate Nitrogen	Dissolved Selenium	Total Selenium
G_DW-03-04_WP	2016 06 01 2016 07 05	-	-	-	6.75 5.66			(yyyy mm dd) 2016 02 22	(mg/L) 395	(mg/L) 13.3	(μg/L) 53.2	(μg/L) 59.3
o_bii-03-04_iii -	2016 08 03 2016 09 07	-	-	-	6.93 9.04		EV_BCgw	2016 05 16 2016 08 22	350 254	11.2 7.19	45.3 31.9	42.4 31.6
	2016 10 04 2016 11 02	-	-	-	10.7 10.1		A state of the sta	2016 10 18	235	5.96	27.4	25.2
1	2016 12 13	73.2	1.31	6.65	6.21		Sample Location	Date	Sulphate	Nitrate Nitrogen	Dissolved Selenium	Total Selenium
- cal		, ~		1				(yyyy mm dd) 2016 02 25	(mg/L) 1,160	(mg/L) 48.4	(µg/L) 238	(µg/L)
	suest H	3100	- C				EV_RCgw	2016 05 17 2016 08 22	1,220 1,120	50.6 44.2	237 216	224 219
	Crows					m A	84 - 67	2016 10 24	1,120	43.1	208	200
			and a state	st ?	J.			Date	Sulphate	Nitrate	Dissolved	Total
1. 1.			A			A	Sample Location	(yyyy mm dd)	(mg/L)	Nitrogen (mg/L)	Selenium (µg/L)	Selenium (µg/L)
ample Location		Sulphate	Nitrate Nitrogen	Dissolved Selenium	Total Selenium	PL . A .	EV_WH50gw	2016 02 24 2016 05 17 2016 08 25	113 49.9	2.36 0.861	12.2 4.56	11.5 4.65
	(yyyy mm dd) 2016 05 18	(mg/L) 26.9	(mg/L)	(μg/L) 0.180	(μg/L) 0.274			2016 08 25 2016 10 19	115 72.8	2.60 1.18	13.1 7.17	13.3 6.99
EV_ECgw	2016 03 18 2016 08 24 2016 10 19	20.9 27.5 28.7	0.103 0.0473	0.137	0.164		X	14-2463		6		
simon Course in a s		+	1-	71 22 22	1	mar I			X	al l		
rimary Screening Cri CWQG Aquatic Life Sh		ate as N (mg/L			y/L)				1	Store -		
aximum (AW) ^a CWQG Aquatic Life Lo		32.8	128 - 420 ^t	2 0 n/a		1 1		<			Key	
erage (AW) ^a SR Aquatic Life (AW) ^a		400	128 - 429 ^t 1,000	n/a 10	-				16	B	Key Area	45
SR Irrigation Watering		n/a	n/a	20°		Viet I					and the second s	


Average (Avv)										
CSR Aquatic Life (AW) ^a	400	1,000	10							
CSR Irrigation Watering (IW)	n/a	n/a	20 ^c							
CSR Livestock Watering (LW)	100	1,000	50							
CSR Drinking Water (DW)	10	500	10							
Secondary Screening Criteria		Selenium (µg/L)								
Guidelines for Canadian Drinking Water Quality (DW)		50								
SPO - Elk River [GH_ER1 (E206661)/EV_ER1 (0200393)]		19								
SPO - Fording River [GH_FR1 (0200378)]	63									
CP - Fording River [FR_FRCP1 (E300071)]	130									
CP - Fording River [FH_FR1 (0200378)]	80									
CP - Elk River [GH_ERC (E300090)]	15									
CP - Michel Creek [EV_MC2 (E300091)]	28									
Standard to protect freshwater aquatic life. Standard/guideline varies with Hardness.										
c Individual standards exist for continuous	and intermittent application	ons on crops. Reporte	ed value denotes							

Legend Below primary screening criteria		Notes: 1. Original in colour. 2. Numerical scale reflects full-size print. Print scaling will distort this scale, however scale bar will remain accurate.	PROJECT LOCATION: Elk Valley, BC		<i>n</i>	
Above at least one of the primary screening criteria Selenium concentrations above at least one of the secondary screening criteria	Nitrate Sulphate Selenium	 Intended for illustration purposes, accuracy has not been verified for construction or navigation purposes. For primary water quality screening, analytical results for wells within 10 m of a receiving surface water body were compared to BCWQG for AW; see Table 1 for a list of wells. References: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USOS, AeroGRID, IGN, and the GIS User Community 	CLIENT NAME: Teck Coal Ltd	SNC	/) • LAVALIN	ſ
Highway Secondary Road		Revisions: 0 - AO - 2017-04-26 - CHECK PRINT - LH 1- AO - 2017-05-16 -FINAL - LH		Distribution of Selecter rtical Data - Key Areas		r
Streams		0 0.2 0.4 0.8 1.2 1.6 2	CHK'D: LH	DATE: 2017/05/16 SCALE: 1:50000	Ref Num: RE	V: 0
Mine Permitted Areas		Kilometers	BY: AO	COORD SYS: NAD 1983 UTM Zone 11N	635544-119	

the second se	10000							Primary Screening Criteria	Nitrate as N (mg/L)	Sulphate (mg/L)	Selenium (µ
St M	1							BCWQG Aquatic Life Short-term Maximum (AW) ^a	32.8	n/a	2
1 Ale								BCWQG Aquatic Life Long-term Average (AW) ^a	3	128 - 429 ^b	n/a
and the							- 4 10	CSR Aquatic Life (AW) ^a	400	1,000	10
								CSR Livestock Watering (LW)	100	1,000	20° 50
								CSR Drinking Water (DW)	10	500 Selenium (µg/L)	10
	A Res							Guidelines for Canadian Drinking		50	
	AL LOS						mar 1	SPO - Elk River [GH_ER1		19	
	A ME						A BAN	SPO - Fording River [GH_FR1			
	1						Ste Mart	(0200378)] CP - Fording River [FR_FRCP1			
	1						Martin Mar	(E300071)]			
		7					- Alight	(0200378)]		80	
		(- 11			15	
		5						CP - Michel Creek [EV_MC2 (E300091)]		28	
		1-2					wy to what				
Date (yyyy mm dd)	Sulphate	Nitrate Nitrogen (mg/L)	Dissolved Selenium (url.)	Total Selenium (ug/L)							
2016 03 10 2016 06 16 2016 06 22	19.5 25.2 27.2	< 0.025 < 0.0050 0.030	0.080 0.102 0.054	< 0.050 < 0.050 0.257	X				Jung	Arr.	
2016 09 07	21.1	< 0.0050	< 0.050	-							
	1	351.1	and the	A K			1 grant			SI T	1
			Discultured	Total						and the second se	
Date	Sulphate	Nitrate	Dissolved		A Designed of the second se				111	JAN X	1
(yyyy mm dd)	(mg/L)	Nitrogen (mg/L)	Selenium (µg/L)	Selenium (µg/L)	1 3 1 C 3	the second second			still a		
(yyyy mm dd) 2016 03 10	(mg/L) 19.5	Nitrogen (mg/L) < 0.025	Selenium (μg/L) 0.080	Selenium (μg/L) < 0.050							
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22	(mg/L) 19.5 25.2 27.2	Nitrogen (mg/L) < 0.025 < 0.0050 0.030	Selenium (μg/L) 0.080 0.102 0.054	Selenium (μg/L) < 0.050 < 0.050 0.257			A				
(yyyy mm dd) 2016 03 10 2016 06 16	(mg/L) 19.5 25.2	Nitrogen (mg/L) < 0.025 < 0.0050	Selenium (μg/L) 0.080 0.102	Selenium (μg/L) < 0.050 < 0.050			8				
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07	(mg/L) 19.5 25.2 27.2 23.0	Nitrogen (mg/L) < 0.025 < 0.0050 0.030 < 0.0050	Selenium (µg/L) 0.080 0.102 0.054 0.260	Selenium (μg/L) < 0.050		X	3-				
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05	(mg/L) 19.5 25.2 27.2 23.0 21.1	Nitrogen (mg/L) < 0.025 < 0.0050 0.030 < 0.0050 < 0.025	Selenium (µg/L) 0.080 0.102 0.054 0.260 < 0.050	Selenium (µg/L) < 0.050 < 0.050 0.257 < 0.25 -		X					
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05 Date	(mg/L) 19.5 25.2 27.2 23.0 21.1 Sulphate	Nitrogen (mg/L) < 0.025 < 0.0050 0.030 < 0.0050 < 0.025 Nitrate Nitrogen	Selenium (µg/L) 0.080 0.102 0.054 0.260 < 0.050 Dissolved Selenium	Setenium (μg/L) < 0.050							
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05 Date (yyyy mm dd)	(mg/L) 19.5 25.2 27.2 23.0 21.1 Sulphate (mg/L)	Nitrogen (mg/L) < 0.025 < 0.0050 0.030 < 0.0050 < 0.025 Nitrate Nitrogen (mg/L)	Selenium (µg/L) 0.080 0.102 0.054 0.260 < 0.050 Dissolved Selenium (µg/L)	Selenium (μg/L) < 0.050							
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05 Date (yyyy mm dd) 2016 03 10 2016 06 16	(mg/L) 19.5 25.2 27.2 23.0 21.1 Sulphate (mg/L) 291 216	Nitrogen (mg/L) < 0.025 < 0.0050 0.030 < 0.0050 < 0.025 Nitrate Nitrogen (mg/L) 1.95 1.21	Selenium (µg/L) 0.080 0.102 0.054 0.260 < 0.050 Dissolved Selenium (µg/L) 4.10 4.73	Selenium (μg/L) < 0.050							
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05 Date (yyyy mm dd) 2016 03 10 2016 03 10 2016 09 07	(mg/L) 19.5 25.2 27.2 23.0 21.1 Sulphate (mg/L) 291 216 216 174	Nitrogen (mg/L) < 0.025 < 0.0050 < 0.0050 < 0.025 < 0.025 Nitrate Nitrogen (mg/L) 1.95 1.21 1.20 0.820	Selenium (µg/L) 0.080 0.102 0.054 0.260 < 0.050 Dissolved Selenium (µg/L) 4.10 4.73 - 2.36	Selenium (μg/L) < 0.050							
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05 Date (yyyy mm dd) 2016 03 10 2016 06 16 Duplicate 2016 09 07 2016 12 05	(mg/L) 19.5 25.2 27.2 23.0 21.1 Sulphate (mg/L) 291 216 216 216 216 216 174 197	Nitrogen (mg/L) < 0.025 < 0.0050 0.030 < 0.0050 < 0.025 Nitrate Nitrogen (mg/L) 1.95 1.21 1.20 0.820 0.824	Selenium (µg/L) 0.080 0.102 0.260 < 0.050 Dissolved Selenium (µg/L) 4.10 4.73 - 2.36 2.49	Selenium (μg/L) < 0.050							
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05 Date (yyyy mm dd) 2016 03 10 2016 03 10 2016 09 07	(mg/L) 19.5 25.2 27.2 23.0 21.1 Sulphate (mg/L) 291 216 216 174	Nitrogen (mg/L) < 0.025 < 0.0050 0.030 < 0.025 < 0.025 Nitrate Nitrogen (mg/L) 1.95 1.21 1.20 0.820 0.824 0.821	Selenium (µg/L) 0.080 0.102 0.054 0.260 < 0.050 Dissolved Selenium (µg/L) 4.10 4.73 - 2.36	Selenium (μg/L) < 0.050							
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05 Date (yyyy mm dd) 2016 03 10 2016 06 16 Duplicate 2016 09 07 2016 12 05	(mg/L) 19.5 25.2 27.2 23.0 21.1 Sulphate (mg/L) 291 216 216 216 216 174 197 197	Nitrogen (mg/L) < 0.025 < 0.0050 0.030 < 0.0050 < 0.025 Nitrate Nitrogen (mg/L) 1.95 1.21 1.20 0.820 0.824 0.821	Selenium (µg/L) 0.080 0.102 0.054 0.260 < 0.050 Dissolved Selenium (µg/L) 4.10 4.73 - 2.36 2.49 2.49	Selenium (μg/L) < 0.050							
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05 Date (yyyy mm dd) 2016 03 10 2016 03 10 2016 04 16 Duplicate 2016 09 07 2016 12 05 Duplicate Date	(mg/L) 19.5 25.2 27.2 23.0 21.1 Sulphate (mg/L) 291 216 216 216 216 174 197 197 197 197	Nitrogen (mg/L) < 0.025 < 0.0050 < 0.030 < 0.025 Nitrate Nitrogen (mg/L) 1.95 1.21 1.20 0.820 0.824 0.821 Nitrate Nitrogen	Selenium (µg/L) 0.080 0.102 0.260 < 0.050 Dissolved Selenium (µg/L) 4.10 4.73 - 2.36 2.49 2.49 2.49 Dissolved Selenium	Selenium (μg/L) < 0.050							
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05 Date (yyyy mm dd) 2016 03 10 2016 03 10 2016 06 16 Duplicate 2016 09 07 2016 12 05 Duplicate (yyyy mm dd)	(mg/L) 19.5 25.2 27.2 23.0 21.1 Sulphate (mg/L) 291 216 216 216 216 216 216 216 21	Nitrogen (mg/L) < 0.025 < 0.0050 0.030 < 0.025 < 0.025 Nitrate Nitrogen (mg/L) Nitrate Nitrogen (mg/L)	Selenium (µg/L) 0.080 0.102 0.054 0.260 < 0.050 Dissolved Selenium (µg/L) 2.49 2.49 2.49 2.49 2.49 2.49	Selenium (μg/L) < 0.050							
(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07 2016 12 05 Date (yyyy mm dd) 2016 03 10 2016 03 10 2016 04 16 Duplicate 2016 09 07 2016 12 05 Duplicate Date	(mg/L) 19.5 25.2 27.2 23.0 21.1 Sulphate (mg/L) 291 216 216 216 216 174 197 197 197 197	Nitrogen (mg/L) < 0.025 < 0.0050 < 0.030 < 0.025 Nitrate Nitrogen (mg/L) 1.95 1.21 1.20 0.820 0.824 0.821 Nitrate Nitrogen	Selenium (µg/L) 0.080 0.102 0.260 < 0.050 Dissolved Selenium (µg/L) 4.10 4.73 - 2.36 2.49 2.49 2.49 Dissolved Selenium	Selenium (μg/L) < 0.050				CMO			
	(yyyy mm dd) 2016 03 10 2016 06 16 2016 06 22 2016 09 07	(yyyy mm dd) (mg/L) 2016 03 10 19.5 2016 06 16 25.2 2016 06 22 27.2 2016 09 7 23.0 2016 12 05 21.1	Date (yyyy mm dd) Suiphate (mg/L) Nitrogen (mg/L) 2016 03 10 19.5 < 0.025	Date (yyyy mm dd) Sulphate (mg/L) Nitrogen (mg/L) Selenium (µg/L) 2016 03 10 19.5 < 0.025	Date (yyyy mm dd) Supnate (mg/L) Nitrogen (mg/L) Selenium (µg/L) Selenium (µg/L) 2016 03 10 19.5 < 0.025	Date (yyyy mm dd) Sulphate (mg/L) Nitrogen (mg/L) Selenium (µg/L) Selenium (µg/L) 2016 03 10 19.5 < 0.025	Date (yyyy mm dd) Sulphate (mg/L) Nitrogen (mg/L) Selenium (µg/L) Selenium (µg/L) 2016 03 10 19.5 < 0.025	Date (yyyy mm dd) Sulphate (mg/L) Nitrogen (mg/L) Selenium (µg/L) Selenium (µg/L) 2016 03 10 19.5 < 0.025	CBR transactor CBR transactor CBR transactor <td< td=""><td></td><td><u>Vipre nitive view vipre vipre</u></td></td<>		<u>Vipre nitive view vipre vipre</u>

BC-Alberta Border

Key Areas

Streams

Mine Permitted Areas

Spatial Distribution of Selected Groundwater Analytical Data - Key Area 11

DATE: 2017/05/16 SCALE: 1:50000 0 0.2 0.4 0.8 Ref Num: CHK'D: LH REV: 0 1.2 1.6 2 -Kild COORD SYS: NAD 1983 UTM Zone 11N 635544-120 AO BY:

Borehole Logs

FR_09-01AB

PROJECT No.: 09-1324-1039

LOCATION: East of Old Stream Bed Kilmamock Alluvium

RECORD OF MONITORING WELL: 09-01A

BORING DATE: October 14, 2009

SHEET 1 OF 1

DATUM: Local

DA							_												
Γ	щ	Γ	8	SOIL PROFILE			s/	(MP1	ËS	DYNAMIC PENETR RESISTANCE, BLO	ATION WS/0.3m	ì	HYDR	AULIC C k, cm/s	ONDUC"	rivity,	T		PIEZOMETER
	DEPTH SCALE METRES		BORING METHOD											L _{eoi}	ADDITIONAL LAB. TESTING	OR STANDPIPE			
			⊇ ຊິ	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	씸	BLOWS/0.3m	SHEAR STRENGT		- ⊢ q - ●	W	ATER C	ONTENT		I	ĔĔ	INSTALLATION
					₩	DEPTH (m)	j2	IF.	۲٥ ۵	Cu, kPa	rem V. C	9 U-O	w	p I			WL	82	
┢		+	ш		<u>0</u>				[^a	10 20	30	40	11	io : I	20 (1	30	40		Stickup
┝	- 0	\vdash		Ground Surface Silty SAND, trace gravel, loose, dry,	<u>।</u>	1584,1 0.0				 						<u> </u>	+		=0.85 m
F				light brown	Ш	1583.6													
E				Sandy GRAVEL, trace silt, loose, moist, medium brown	60	0.5													
E					Po	1													
F					þ ()	1582.1													Bentonite
F	- 2			Clayey SILT, some sand and gravel, soft, low to medium plasticity, moist,	ĥÙ	2.0								ļ					-
F		Ι.	ġ	soft, low to medium plasticity, moist, \ medium brown	闷	1581.6 2.5													
F		Diameter	vices	Sandy GRAVEL, loose, moist, medium brown	6C														
F		e Dia	al Ser	alowit	0.0	1											}		-
E	- 4	9" Hole	mente		60									İ]		Granular Filter
F	4	Barber Rig - DR-24 - 9"	Beck Drilling and Environmental Services		20	1													·[-]:
E		Ľ,	Б		βÕ	ł													「月」
F		er Rìo	ling a		₿÷								1						
F		Barb	ň		60 60														Slotted Section
-	- 6		â		60														: <u> </u> : -
Ē					0.	i													Oct. 16, 2009 : 남 · · · · · · · · · · · · · · · · · ·
E					60														¥[:⊟·]:
Ŀ						1							1						
F					ρQ														Slough
F	- 8				b C	1575.7						1 I							
E				End of MONITORING WELL.		8.4													
E																			-
F																			
-	- 10														ŀ				-
F															ľ				· · · ·
F												1							-
E																			-
F																			-
F	- 12																		
F																			-
-		l.																	-
F																			-
E	- 14																		
E	14																		
F																			-
ţ																			-
10																			-
111	- 16																		-
Ы													1						-
%.G																			-
GAF						l													-
CAL																			-
GPJ	- 18																		
GS.																			-
٦E																			-
103						1													-
1324	- 20				1														
60																			
BOREHOLE 09-1324-1039 LOGS.GPJ CALGARY.GDT 1/11/16	Dr	-	ты е	CAL E						Gol								1000	GED; EA
μX				CALE						Gol	der						,		
В	1	: 1	υU							Asso	<u>:lates</u>								(ED: MB

DATA ENTRY: KJM

DATA ENTRY: KJM

PROJECT No.: 09-1324-1039

RECORD OF MONITORING WELL: 09-01B

SHEET 1 OF 2

LOCATION: East of Old Stream Bed Kilmarnock Alluvium

BORING DATE: October 14, 2009

DATUM: Local

	R	SOIL PROFILE		SAN	PLES	DYNAMIC I RESISTAN		ÓN W 3m)	HYDRAU	LIC CO	NDUCTIV	ΊΤΥ,	Т	PIEZOMET	ER
DEPTH SCALE METRES	BORING METHOD		۲.		Ĕ	20 20			<u>م</u>	10-6		10 ⁻¹	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIP	
ÎH S ÎETR	W QZ	DESCRIPTION	ELEV.	NUMBER	TYPE BLOWS/0.3m	SHEAR ST		natV. + remV.⊕		LL	1		ERCENT		INSTALLATI	ON
d⊒o	S I		LY DEPTH	2	F S	Cu, kPa		rem V. 🕀	u- 0	WpH		-o ^w		[₫₿		
	m ·		5 (11)	┢╌╟		10	20	30 4	0	10	20	30	40		Stickup	П
o		Ground Surface Silty SAND, trace gravel, loose, dry,	1584.1												=0.76 m	日本 日本
F		light brown	1583.6													
-		Sandy GRAVEL, trace silt, loose, moist, medium brown	0.0 0.0													
F			6.													
E			þQ.]	
2		Clayey SILT, some sand and gravel, soft, low to medium plasticity, moist,	6 2.0]	- A - A
E		soft, low to medium plasticity, moist, medium brown	1581.6 0 2.5				[·									
F		Sandy GRAVEL, loose, moist, medium	60		1	1		:							Bentonite	
E.		brown	0													
-			ė		ł											
- 4			5 C													
F			O.													
E			ŀΩ													
Ł													ł			
L 6			0. ()						-							<u> </u>
F											ł					티티
F			pQ.												Oct 16, 2009	
F			<u>e</u> t-												<u> </u>	
E			Õ													ĦĦ.
E 8			0												-	티타
F	24		0													
-	Diamet															
-	ole D															66
F	H -6 -		0 1574.1													티티
- 10	Barber Rig - DR-24 - 9" Hole Diameter Back Drillion and Emitrogenental Services Ltd	Coarse GRAVEL, trace sand, loose, saturated, grey to medium brown	10.0													
	1 - 6 <u>3</u>														Slough	
F	Barber F															
F	83															H H
- 12	ľ	<i>a</i>													-	88-
F							ł									
Ē		Some silty sand from 12.5 to 13.0 m														HE
E			88													
-																HE.
14 			82													티타
-																HE.
-																
F																
- 16															Bentonite	
- "			60									1			Dontanito	意識
F			ι Ω													
F			60													日
F															Slotted Section	間
- - 18		- Medium to coarse gravel light grow	65													
E		 Medium to coarse gravel, light grey to brown from 18.0 to 23.0 m 														
E			贷													
F			66												Slough	
Ę			陇					. 								
- 20	┝╸┕╴		[**+	F†	1-	+-		†			-†	-	-+-			1. <u></u> 1
<u> </u>	L	· · · · · · · · · · · · · · · · · · ·	I . I									[I	l	I	
DE	PTH	SCALE				P A	Golda							LOG	GED; EA	
1 :	100	I				T A	Golde ssocia	ates						CHEC	KED; MB	

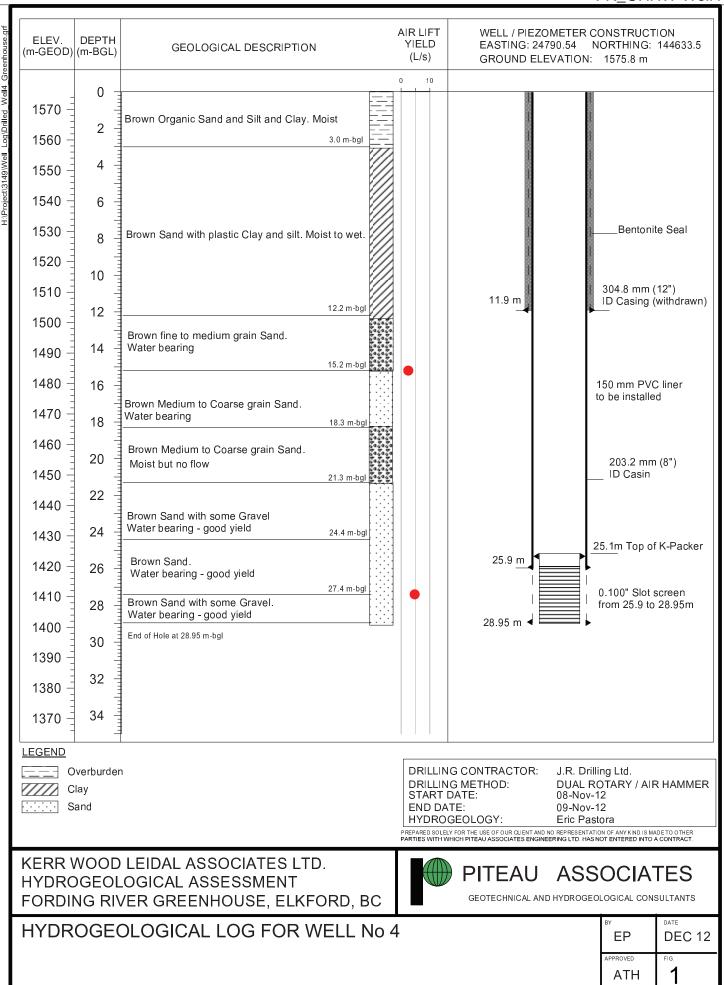
RECORD OF MONITORING WELL: 09-01B

DATA ENTRY: KJM			T No.: 09-1324-1039 DN: East of Old Stream Bed Kilmamock A		ORING WELL: 09-01B	SHEET 2 OF 2 DATUM: Local
ATA EN	20					
ŀ	ALE	DHOD	SOIL PROFILE		PENETRATION HYDRAULIC CONDI	
	DEPTH SCALE METRES	BORING METHOD	. DESCRIPTION	LOA ELEV. DEPTH (m) LOA LYZLS (m) LOA LYZLS LOA LYZLS LOA LYZLS LOA LYZLS LOA LYZLS LOA LYZLS LOA LYZLS LOA LYZLS	40 60 80 10 ⁴ 10 ⁵ RENGTH natV. + Q. ● WATER CONTI rem V. ⊕ U- O 20 30 40 10 20	ENT PERCENT
	Huay 20 22 24 28 30	Barber Rig - DR-224 - 9° Hole Diameter Bock Drifting and Environmental Services Ltd. BOCRING /	DESCRIPTION Coarse GRAVEL, trace sand, loose, saturated, grey to medium brown (continued) Silty sand, saturated, medium brown from 28.5 to 29.0 m End of MONITORING WELL.	LELEV. W L C S SHEAR SI DEPTH (m) Z Z S S S S S S S S S S S S S S S S S	wp C	
1/11/16						
BOREHOLE 09-1324-1039 LOGS.GPJ CALGARY.GDT 1/11/16	- 38 - 40					
BOREHOLE	DE 1	PTH S	SCALE	Ø	Golder	LOGGED; EA CHECKED; MB

FR_GHHW (Well 3)

TABLE A-1 - Detailed Well Record For Well #3

Well Tag Number: 819 Driller: R. J. Drilling Owner: FORDING COAL LTD PUR WELL LOCATION: KOOTENAY Land District District Lot: 6687 Plan: Lot: BCGS Number (NAD 27): 082J006421 Well: 2 WATER QUALITY: Diameter: 6.0 inches Well Depth: 40 feet


GENERAL REMARKS: YIELD: 80 GPM COMMERCIAL & INDUSTRIAL

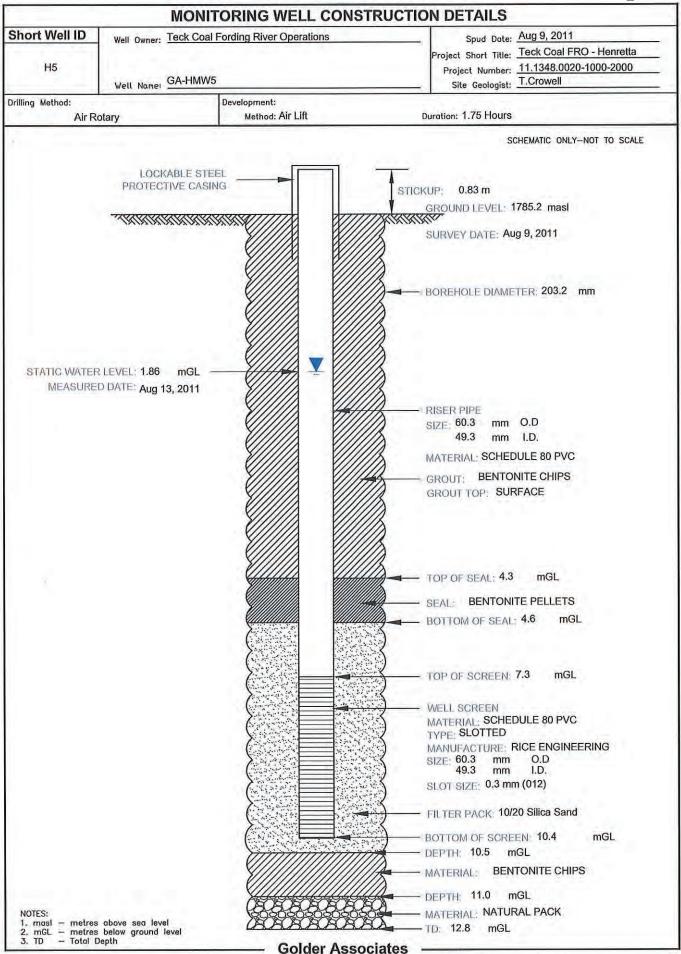
LITHOLOGY INFORMATION:

From 0 to 15 Ft. TILL From 15 to 40 Ft. GRAVEL

H:\Project\3149\Well_Log\[Web_log.xls]819(well#3)

FR_GHHW-Well4

FR_HMW5


ROJECT No.:	11.1348.0020.2000
11000001110	111101010000000000000

.

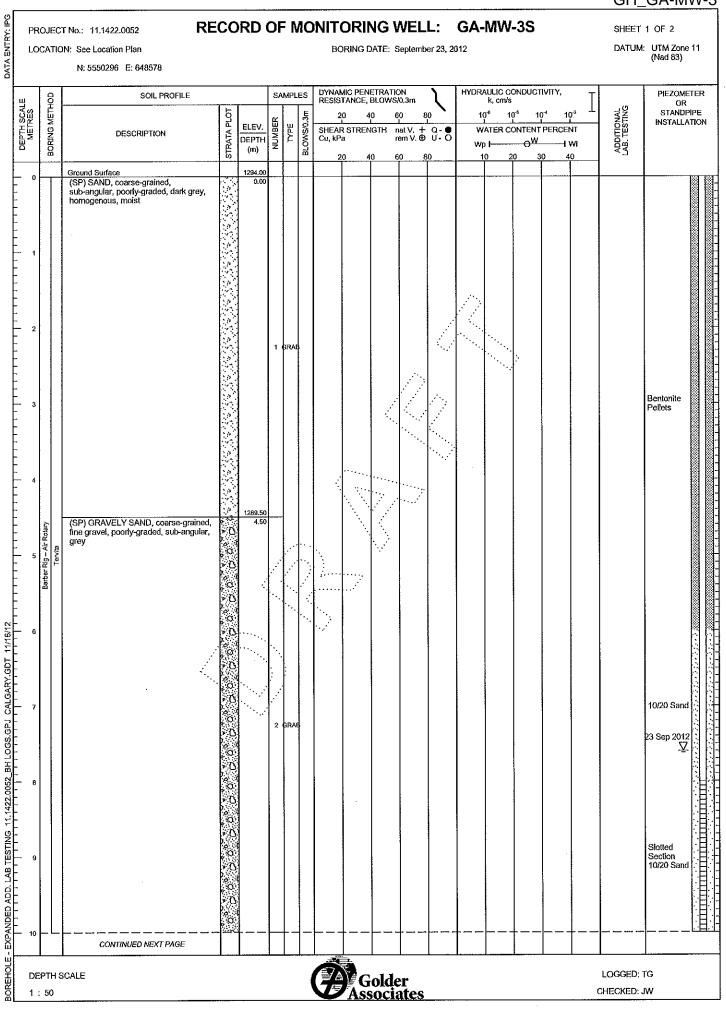
RECORD OF BOREHOLE: GA-HMW5

		T No.: 11.1348.0020.2000 DN: See Location Plan	R	ECC	R	DO	DF						IW5					1 OF 1 1: Geodetic
		N: 655476 E: 5567514																
щ	D Q	SOIL PROFILE			SA	MPLE	s	DYNAMIC PER RESISTANCE,	IETRAT BLOW	ION 5/0.3m	ì	HYDR	AULIC C k, cm/s	ONDUCT	fivity,	T		PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR STRE Cu, kPa	10 I VGTH	60 8 nat V. + rem V. ⊕	10 0-0 10-0	W W	L ATER C p I	NTENT	PERCE	0 ⁻³	ADDITIONAL LAB. TESTING	STANDPIPE
· 0		Ground Surface Very loose, non-plastic, dry, grey to brown, loose grained to cobble size GRAVEL, non-cohesive with some medium grained, angular to subangular, (with little matrix) (ALLUVIUM)		1785,20 0,00		GRAB												
· 2 · 3 · 5 · 6	Air Rottary tential Services Ltd.	Soft, Iow plasticity, damp, non-cohesive, with more grey CLAY				JRAB												13 Aug 2011 ⊻
· 7 · 8	Barber Rig H24 Air Rotary BECK Drilling & Ervironmental Services Ltd	Hard layer, angular fragments, low returns GRAVEL Very loose, low plasticity, damp, grey to brown, loose grained to cobble size GRAVEL, non-cohesive with some medium grained, angular to subangular (with little matrix) (ALLUVIUM)		6.90		GRAD												
- 9 - 10 - 11 - 12 - 13 - 14 - 15 - DE 1		Clay becomes dark brown, damp, cohesive and very dense		1774.50	4	ЭRAB												
· 11 · 12		Very loose fragments (drill cut-up), wet, massive, light to dark grey, angular BEDROCK		10.70		GRAB											,	
- 13		End of BOREHOLE.		1772.40 12.80														
- 14																		
- 15																		
DE 1	: 75	SCALE							old	er ates				•			Logged: Hecked:	

FR_HMW5

	T No.: 11.1422.0052 RI N: See Location Plan N: 5554750 E: 648019	ECOR	D OI	= M		TORIN BORING D				GA-MW-01		SHEET	GA-MW- 1 OF 3 1: UTM Zone 11 (Ned 83)
9	SOIL PROFILE		SA	MPLE	B DYN RES	NAMIC PENE SISTANCE, 1	ETRATIO BLOWS/	N 0,3m	۲	HYDRAULIC CONDUCTIN	иту, Т		PIEZOMETER
BORING METHOD	DESCRIPTION	E DEF	EV. PTH n)	TYPE		20 44 EAR STREN kPa 20 41	0 60 GTH ni re) 8(at V, + em V. ⊕	Q- 0 U- 0	18 ^{,6} 19 ^{,4} 19 ^{,4} WATER CONTENT P Wp		ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION Stick-up
0 1 1 2 3 4 5 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	Ground Surface (SP) SAND, coarse-grained, sub-angular, poorly-graded, dark grey (GP) CLAYEY GRAVEL, coarse-grained, poorly-graded, sub-rounded clay, brown, firm	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	53.00 4.00	GRAB									Bentonite Pellets
	CONTINUED NEXT PAGE												
DEPTH S 1 : 50	CALE				Ø	G ASS	olde ocia	r ites				Logged: Hecked:	

LC	CATIC	T No.: 11.1422.0052 DN: See Location Plan N: 5554750 E: 648019 SOIL PROFILE	REC	DRD				BC	DRING		Septemb	012	ONDUCT	VITY,	т	SHEET DATUM:	2 OF 3 UTM Zone 11 (Nad 83) PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	BER		BLOWS/0.3m	2 SHEAf Cu, kP	R STREI a	40 I NGTH	30 8 ⊥ nat V. + rem V. ⊕	w w	2 ⁻⁵ 10	PERCENT		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
10 11 11 12 13 14 14 16 17 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19	Barber Rig – Air Rotary Texvita	(SP) SAND, coarse-grained, poorly-graded, trace gravel, sub-angular, trace clay, dark grey (continued) (SC) CLAYEY SAND, medium-gra poorly-graded, dark grey	ned, With With With With With With With With	1342.0 1342.0 15.0	00	GRAB											Bentonite Pellets
- 19 		(SP) SAND, coarse-grained, sub-angular, poorly-graded, dark g	rey	1336.0	iÓ	GRAB											Bentonite Pellets
- 20 DE	ртн : 50	CONTINUED NEXT PAGE					-	Â	G	fold	er ates					DGGED: 1 ECKED: J	


$\begin{array}{c c c c c c c c c c c c c c c c c c c $			T No.: 11.1422.0052 RE DN: See Location Plan N: 5554750 E: 648019	CC	ORD	OI	FN	ЛC		RING) NG DATE: 8			GA-MW-01	SHEET DATUM:	3 OF 3 UTM Zone 11 (Nad 83)
29 COPE STATE - course-pointed, each gave pointed, each gav	DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	DEPTH		1	_	20 SHEAR ST Cu, kPa	40 6 IRENGTH r r	0 8 hat V, + em V. ⊕	Q-● U-O	10 ⁴ 10 ⁵ 10 ⁴ 10° WATER CONTENT PERCEN Wp I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
Produce at 226 m 33 ks4.0 7 648 1000000000000000000000000000000000000	- 21					6	GRAR		20			0			Bentonite Pellets
	- 24 - 25 - 26 - 27 - 28 - 29		NOTES: Hit BEDROCK at 22.6 m. Standpipe installed to 18.6 m. Groundwater level measured at at												

	CT No.: 11.1422.0052 RE ION: See Location Plan N: 5552115 E: 648291	CORD	of M		ORING WELL: DRING DATE: September 19,		SHEET 1 OF 3 DATUM: UTM Zone 11 (Nad 83)
BORING METHOD	SOIL PROFILE DESCRIPTION	W)	SAMPLE JAPE	<u>لا الم</u>	RSTRENGTH natV. 井 Q-●	HYDRAULIC CONDUCTIVITY, k, cm/s 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT Wp H OW I WI	PIEZOMETER OR STANDPIPE INSTALLATION EGG GGG GGG
2	Ground Surface (SP) SAND, coarse-grained, trace fine gravel, angular, poorly-graded, grey	b) 1310.00 0.00					Stick-up = 1.02 m
9 C1 k Clary C C Barber Rig – Air Rotary C Tanvita	(GP) GRAVEL, coarse-grained, sub-rounded, brown	1305.00 1305.00 200 200 200 200 200 200 200 200 200	1 GRAS				19 Sep 2012 ✓ Bertanite Pellets
8	(CI) SILTY CLAY, some fine gravel, brown, cohesive, water content is close to plastic limit, very soft	1303.00 7.00	3 GRAB				
	CONTINUED NEXT PAGE	1300.00			Golder Associates	+	

	CATIC	DN: See Location Plan N: 5552115 E: 648291	ECC	ORD	- -	-		BORING	DATE: \$	Septemb					2 OF 3 1: UTM Zone 11 (Nad 83)
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	~	TYPE T	BLOWS/0.3m	DYNAMIC PE RESISTANCE 20 5HEAR STRI CU, kPa 20	40 ENGTH	50 8 hat V. + rem V. ⊕ 50 8	Q. • U- O	HYDRAULIC CO k, cm/s 10 ⁻⁶ 10 ⁻ WATER CO Wp 1	s 10 ⁻¹ 10 ⁻³ ⊥ NTENT PERCENT — O ^W	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
10		(GW) GRAVEL, coarse-grained, sub-angular, well graded, grey		10,00	4	GRAE									
	Barher Rig – Air Rotary Tervita	(CI) SILTY CLAY, with some fine gravel, brown, cohesive, very soft, w~PL		1298.50	5	BRAE									Bentonite Pellets
- 16 - 17 - 17 - 17 - 18 - 18 - 19 		(GW) GRAVEL, coarse-grained, grey		17.20	6 0	SRAE GRAE	F								
DE	PTH S	CONTINUED NEXT PAGE	1						Golde		<u> </u>			LOGGED:	TG

		CT No.: 11.1422.0052 RE ON: See Location Plan N: 5552115 E: 648291	COF	RD (of I	MC			NG N Date: S		GA-M\	V-02			SHEET DATUM:	3 OF 3 UTM Zone 11 (Nad 63)
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	¥ ⊡	ELEV. DEPTH (m)	NUMBER	Ē	2		ETRATIC BLOWS/ IO 6 IGTH n		₩ρ I—	10 ⁻³ 10 CONTENT)" 10 PERCEN	VT MI	ADDITIONAL LAB. TESTING	PIEZOMETER OR Standpipe Installation
20		(GW) GRAVEL, coarse-grained, sub-angular, well graded, grey (continued)	8 800000000000000000000000000000000000		7 GRA			0 4		0		20 3	0 44	0		Bentonite Pellets
23	Barber Rig – Air Rotary Toordin	(ML) SILT, some fine gravel, trace coarse gravel, dark grey, non-cohesive, dry (SP) SAND, coarse-grained, some fine gravel, angular, poorly-graded, dark grey		1287.00 23.00 1286.00 24.00	8 GRA											
227					9.var/	ч										Slotted Section 10/20 Sand
- 29		Bedrock at 28.5 m NOTES: Encountered BEDROCK at 28.5 m. Standpipe installed to 29.0 m. Groundwater level measured at 11.0 mGL on September 19, 2012. (SP) SAND, coarse-grained, coarse gravel, bits of bedrock, sub-angular, poorly-graded, light grey End of MONITORING WELL.		1280.50 29.60	10 GR/	NB										Bentonite Pellets
	ЕРТН : 50	(SP) SAND, coarse-grained, coarse gravel, bits of bedrock, sub-angular, poorly-graded, light grey			10 GR/				olde						LOGGED: T	ſG

GH_GA-MW-3

ĸ			T No.: 11.1422.0052 RE N: See Location Plan N: 5550296 E: 648578	CORE) of	: M		F ORIN BORING D				GA-MW-3S		T 2 OF 2 M: UTM Zone 11 (Nad 83)
DEPTH SCALE	METRES	BORING METHOD	SOIL PROFILE	STRATA PLOT	1 .	MPLE Id		AMIC PENE STANCE, E 20 40 AR STREN Pa	0 6	0 8		HYDRAULIC CONDUCTIVITY, k, cn/s 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ WATER CONTENT PERC Wp I O ^W		PIEZOMETER OR STANDPIPE INSTALLATION
	10	Barber Rig – Air Rotary Terwita	(SP) GRAVELY SAND, coarse-grained, fine gravel, poorly-graded, sub-angular, grey (continued)			GRAB			0 6	<u>a o</u>	0			Slotted Section 10/20 Sand
	14		End of MONITORING WELL. NOTES: Encountered BEDROCK at 14.4 m	* D * D * D * D * D * D * D * D		JRAB								Bentonite Pellets
	17													
	18 19													
XEHOLE - EXI	20 DE 1 :		CALE				G		olde	er			LOGGEE	

GH_GA-MW-4

PROJECT No.: 11.1422.00	52
LOCATION: See Location P	łan

RECORD OF MONITORING WELL: GA-MW-04

BORING DATE: September 20, 2012

DATUM: UTM Zone 11 (Nad 83)

SHEET 1 OF 2

N: 5552963 E: 648217 PIEZOMETER OR STANDPIPE INSTALLATION DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING 10-5 STRATA PLOT 10⁻⁶ 10-1 10-3 20 40 60 80 BLOWS/0.3m NUMBER Щ ELEV. SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH --o^w Wp H H WI (m) 10 20 20 40 60 80 30 40 Stick-up = 0.9 m Ground Surface (SP) GRAVELLY SAND, coarse-grained, fine gravel, sub-angular, poorly-graded, dark grey 1304.0 C 0.00 . 2 3 1 GRA 3arber Rig – Air Bentonite Prvits 5 Pellets ; . . . ' 24 Sep 2012 _____ BOREHOLE - EXPANDED ADD. LAB TESTING 11.1422.0052_BH LOGS.GPJ CALGARY.GDT 11/16/12 6 °. 1295.00 9.00 9 (SM) SILTY SAND, medium to fine-grained, sub-rounded, poorly-graded, brown and dark grey 2 GRAE 1294.00 10 CONTINUED NEXT PAGE DEPTH SCALE LOGGED; TG Golder Associates A 1:50 CHECKED: JW

DATA ENTRY; IPG

PROJECT No.: 11.1422.0052
LOCATION: See Location Plan
N: 5552963 E: 648217

RECORD OF MONITORING WELL: GA-MW-04

DATA ENTRY: IPG	PF	ROJEC	CT No.: 11.1422.0052	ECORE	0	FN	IC	NITOR	NG	WEL	.L:	GA	-MV	/-04			SHEET	2 OF 2
ATA ENT	LC	CAT	DN: See Location Plan N: 5552963 E: 648217					BORING	DATE: 3	Septemb	er 20, 2	012					DATUM	: UTM Zone 11 (Nad 83)
╞	щ	Đ	SOIL PROFILE		SA	MPLE	s	DYNAMIC PE RESISTANCE	NETRATI	ON /0.3m	1	HYDR	AULIC C	ONDUC	rivity,	Т		PIEZOMETER
	DEPTH SCALE METRES	BORING METHOD		LO IL ELEV	/. Ha	ų	:/0.3m	20 SHEAR STRE	40	50 E	30		0 ⁻⁶ 1				ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		BORIN	DESCRIPTION	STRATA PLOT () () () () () () () () () () () () ()		Ц	BLOWS/0.3m	Cu, kPa		natV. + rem V. ⊕ s0 €		w,	p	— 0 ^W		wi	ADDIT LAB. TE	
	- 10 - 11 - 12 - 13 - 14	Barber Rig – Air Rotary Tanrita	(SP) GRAVELLY SAND, coarse-grained, fine gravel, sub-angular, poorly-graded, dark grey (SM) SILTY SAND, medium to fine-grained, sub-rounded, poorly-graded, brown and dark grey (GW) GRAVEL, fine with coarse, sub-angular to sub-rounded, well graded, grey	215 (m) 20 10 20 0		GRAB		20										Bentonite Pellets
BOREHOLE - EXPANDED ADD. LAB TESTING 11.1422.0052 BH LOGS.GPJ CALGARY.GDT 11/16/12	- 16 - 17 - 18 - 19 - 20		(SP) GRAVELLY SAND, coarse-grained, fine gravel, pootly-graded, sub-angular, dark grey End of MONITORING WELL. NOTES: Standpipe installed to 16.7 m. Groundwater present at 6.0 m on September 24, 2012.	1287.	20	BRAE.												Bentonite Pellets
BOREHOL		РТН 9 50	SCALE					P As	olde	r ites							Logged: T Hecked: J	

Log of Monitoring Well: GH_MW-ERSC-1

Project Name/No: Greenhills Ops Elkford BC/577-016.04

Client: Teck Coal Ltd.

Drilling Company: JR Drilling

Drilling Method: Dual air rotary

Logged by: RM

Date Drilled: November 24, 2014

Site Location: Greenhills Operations, BC

Sheet: 1 of 1

SUBSURFACE PROFILE SAMPLE Depth/Elev (m) Analysed Y,N LEL Vapour Sample Type **Backfill details** Sample ID Description Symbol % ppm Depth 250 500 0 50 100 0 ft m -2 Ground Surface 1293.00 0 TOPSOIL Black, dry, loose, organic soil 1 TILL Bentonite 2 Gravelly Till (rounded to subrounded, medium to coarse grain), brown, dry, dense, well graded, lots of 3 rock cuttings. 4 5 6 7. Water level, 26 November, 2014 8 9 10 11 12 Sand 10/20 13 4.27 14 Sandy Till (medium grain) and Gravel (rounded to 1. Filter subrounded, medium to coarse grain), brown, moist, 15 - / dense, well graded, lots of rock cuttings. 16 5 1287.82 5.18 25 17 -Below 5.2 m, a water bearing seam < 0.31 m width. . 1287.51 18 Sandy Till (medium grain) and Gravel (rounded to 9 6 subrounded, medium to coarse grain), brown, moist, 19 dense, well graded, lots of rock cuttings. 6 1286.90 20 BEDROCK TT Siltstone, grey, dry, competent, very hard 21 Ŧ 1286.29 22 TT Between 6.7 m and 7.0 m, fracture zone, moist 1285.99 23 Below 7.2 m material is dry, very hard, uniform size cuttings, dusty drilling conditions 24 25 26 Bentonite 27 28 29 1 1 1283.86 9.14 30 End of Log Well location: 5,548,704 N, 649,081 E Well casing diameter: 2" Depth of well (TOC): 7.924 m Depth to water level (TOC): 5.349 m Well casing material: Sch. 80 PVC Well Elevation (TOC): 1293.75 m Date of water level: 26 November, 2014 Well screen slot size: 010 Ground Elevation: 1293 m Borehole diameter: 0.17 m Well screen interval (bgs): 4.12 m - 7.17 m

CI HEMMERA

Greenhills Well 9 Report 1 - Detailed Well Record

GH_POTW09

·			
Well Tag Number	 85223 		Construction Date: 1992-06-29 00:00:00
Well lag Number	. 03223		Driller:
Ownor, FIK WALL	LEY COAL - GREENHILLS OPER	λ TT ON	
CWHEL. DER VAL	SEI COAL - GREENHILLS OFEN	AIION	Plate Attached By: KIMBERLY RASMUSSEN
Address:			Where Plate Attached: WELL CASING
Area: GREENHILI	LS		PRODUCTION DATA AT TIME OF DRILLING: Well Yield: (Driller's Estimate)
WELL LOCATION:			Development Method:
Land District			Pump Test Info Flag: N
	4588 Plan: 11279 Lot: 1		Artesian Flow: UNKNOWN YIELD
Township: Sect			Artesian Pressure (ft):
	: Meridian: Block:		Static Level:
Quarter:	. Herraran. Brook.		
Island:			WATER OUALITY:
	AD 83): Well: 5		Character:
	,		Colour:
Class of Well:			Odour:
Subclass of Wel	11:		Well Disinfected: N
Orientation of			EMS ID:
Status of Well:	:		Water Chemistry Info Flag: N
Well Use:			Field Chemistry Info Flag:
Observation Wel			Site Info (SEAM): N
Observation Wel	ll Status:		
Construction Me			Water Utility: N
Diameter: 10.75	5 inches		Water Supply System Name: GREENHILLS WATER SUPPLY SYSTEM
Casing drive sh			Water Supply System Well Name: WELL 9
Well Depth: 117			
Elevation:			SURFACE SEAL:
	tick Up: inches		Flag: Y
Well Cap Type:			Material:
Bedrock Depth:			Method:
Lithology Info			Depth (ft): 88 feet
File Info Flag:			Thickness (in):
Sieve Info Flag			WELL CLOSURE INFORMATION:
Screen Info Fla	19: I		Reason For Closure:
Site Info Detai			Method of Closure:
Other Info Flag			Method of Closure: Closure Sealant Material:
Other Info Deta			Closure Backfill Material:
Coner THILD Dece			Details of Closure:
L			
Screen from	to feet	Туре	
88	119		.25
null	null		.12
Casing from	to feet	Diame	ameter Material Drive Shoe
0	88	10.75	
GENERAL REMARKS	· ·		
LITHOLOGY INFOR		0	asthing optomod
	19.7 Ft. GRAVELY CLAY		
From 21 4 +0	21.4 Ft. GRAVELY CLAY	U DO	WIIIM 0 nothing optored
From 43 +0	65 Ft STLTY CLAY - T	ACIISTR	VIUM 0 nothing entered TRINE 0 nothing entered
From 65 to	70 Ft. GRAVEL- DIRTY	- WATE	TER 0 nothing entered
From 70 to 9	70 Ft. GRAVEL- DIRTY 98.43 Ft. CLEANER GRAVEL		0 nothing entered
From 98.43 to	118 Ft. GRAVEL SILTY	. 0 no	nothing entered
From 118.4 to 1	L21.4 Ft. SANDSTONE AND	SHALE	E 0 nothing entered
			· · · · · · · · · · · · · · · · · · ·

• Return to Main

- Return to Search Options
- Return to Search Criteria

Information Disclaimer The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

IF.

Greenhills Well 10 Report 1 - Detailed Well Record

GH_POTW10

	Construction Date: 2001-06-22 00:00:00
Well Tag Number: 85218	
	Driller:
Owner: ELK VALLEY COAL - GREENHILLS OPERATI	ON Well Identification Plate Number: 15805 Plate Attached By:
Address:	Where Plate Attached:
Area: GREENHILLS	PRODUCTION DATA AT TIME OF DRILLING: Well Yield: 50 (Driller's Estimate)
WELL LOCATION:	Development Method:
Land District	Pump Test Info Flag: N
District Lot: 4588 Plan: 11279 Lot: 1	Artesian Flow:
Township: Section: Range:	Artesian Pressure (ft):
Indian Reserve: Meridian: Block:	Static Level:
Quarter:	
Island:	WATER QUALITY:
BCGS Number (NAD 83): Well: 5	Character:
Boob Number (Milb 00). Werr. 5	Colour:
Class of Well:	Odour:
Subclass of Well:	Well Disinfected: N
Orientation of Well:	EMS ID:
Status of Well:	Water Chemistry Info Flag: N
Well Use:	Field Chemistry Info Flag:
Observation Well Number:	Site Info (SEAM): N
Observation Well Status:	
Construction Method:	Water Utility: N
Diameter: 8" inches	Water Supply System Name: GREENHILLS WATER SUPPLY SYSTEM
Casing drive shoe:	Water Supply System Well Name: WELL 10
Well Depth: 176 feet	Water Suppry System Werr Mame. Will 10
Elevation: feet (ASL)	SURFACE SEAL:
Final Casing Stick Up: inches	Flag: N
Well Cap Type:	Material:
Bedrock Depth: feet	Method:
Lithology Info Flag: Y	Depth (ft):
File Info Flag: N	Thickness (in):
Sieve Info Flag: N	Intekness (In).
Screen Info Flag: N	WELL CLOSURE INFORMATION:
bereen into riag. N	Reason For Closure:
Site Info Details:	Method of Closure:
Other Info Flag:	Closure Sealant Material:
Other Info Details:	Closure Backfill Material:
other into becaris.	Details of Closure:
Screen from to feet Ty	ype Slot Size
	iameter Material Drive Shoe
	all Other null
GENERAL REMARKS:	
WATER QUALITY GUARANTEED BY CONTRACTOR	
LITHOLOGY INFORMATION:	
From 0 to 58 Ft. CLAY 0 nothing	entered
From 58 to 78 Ft. GRAVEL AND BOULDE	
From 78 to 110 Ft. CLAY AND GRAVEL	
	0 nothing entered

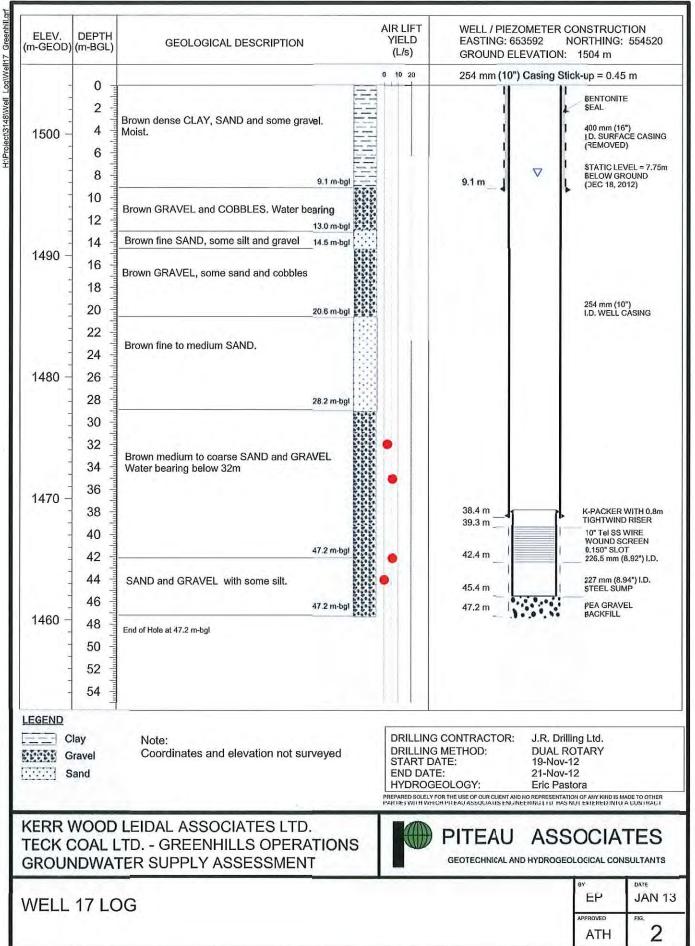
- Return to Main
- Return to Search Options
- Return to Search Criteria

Information Disclaimer

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

Greenhills Well 15 Report 1 - Detailed Well Record

GH_POTW15


	Construction Date: 2001-11-01 00:00:00
Well Tag Number: 85221	
Weil lag Number. 05221	Driller:
OWNERS FIX WALLEY CONT CREENULLIC OPEDATIO	
Owner: ELK VALLEY COAL - GREENHILLS OPERATIC	
	Plate Attached By: KIMBERLY RASMUSSEN
Address:	Where Plate Attached: WELL CASING
Area:	PRODUCTION DATA AT TIME OF DRILLING:
	Well Yield: 100 (Driller's Estimate)
WELL LOCATION:	Development Method:
Land District	Pump Test Info Flag: N
District Lot: 4588 Plan: 11279 Lot: 1	Artesian Flow:
Township: Section: Range:	Artesian Pressure (ft):
Indian Reserve: Meridian: Block:	Static Level: 11 feet
Ouarter:	
Island:	WATER QUALITY:
BCGS Number (NAD 83): Well: 7	Character:
DCGS NUMBEL (NAD CS). WEII. /	Colour:
Class of Well:	Odour:
Subclass of Well:	Well Disinfected: N
Orientation of Well:	EMS ID:
Status of Well:	Water Chemistry Info Flag: N
Well Use:	Field Chemistry Info Flag:
Observation Well Number:	Site Info (SEAM): N
Observation Well Status:	
Construction Method:	Water Utility: N
Diameter: inches	Water Supply System Name: GREENHILLS WATER SUPPLY SYSTEM
Casing drive shoe:	Water Supply System Well Name: WELL 15
Well Depth: 144 feet	
Elevation: feet (ASL)	SURFACE SEAL:
Final Casing Stick Up: inches	Flag: N
Well Cap Type:	Material:
Bedrock Depth: feet	Method:
	Depth (ft):
Lithology Info Flag: Y	
File Info Flag: N	Thickness (in):
Sieve Info Flag: N	
Screen Info Flag: N	WELL CLOSURE INFORMATION:
	Reason For Closure:
Site Info Details:	Method of Closure:
Other Info Flag:	Closure Sealant Material:
Other Info Details:	Closure Backfill Material:
	Details of Closure:
Screen from to feet Tv	be Slot Size
	ameter Material Drive Shoe
0 144 nu	ll Other null
GENERAL REMARKS:	
WATER QUALITY GUARANTEED BY CONTRACTOR	
LITHOLOGY INFORMATION:	
From 0 to 7 Ft. FILL 0 nothing	entered
From 7 to 15 Ft. CLAY AND GRAVEL	
	thing entered
	2
From 125 to 144 Ft. COARSE GRAVEL AND	COBBLE 0 nothing entered
Return to Main	

- Return to Main
- Return to Search Options
- Return to Search Criteria

Information Disclaimer

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

GH_POTW17

٦	Ð	SOIL PROFILE			SA	Mpli	ES	DYNAM RESIS	AC PEN	ETRAT(0N /0.3m	\mathbf{i}	HYDR	AULIC C k, crivs	CONDUC	TMTY,	Т		PJEZOME
MEINES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/D.3m	2	R STREN	io (IGTH	60 (W W	IQ ⁶ VATER C	IO ^S 1 CONTENT	I PERCE	10 ⁻³ L ENT I WI 40	ADDITTONAL LAB. TESTING	OR STANDP/ INSTALLAT
0		Ground Surface SANDV GRAVEL, fine-grained with occasional coarse grains, rounded to sub-rounded, moderately graded, dry, very looso		353.26									 						Slick-up =0,86 m
2		GRAVEL, trace send, fine-grained with occasional coarse grains, rounded to sub-rounded, poorly graded, very loose Moist at 2.1 m		351.74 1.52															12 Nov 2013 文
5	Soric 127 mm (ID) Casing 152.4 mm (OD) . IS Dolline	Sitty SANDY GRAVEL, fine-grained with occasional coarse grains, sub-rounded to sub-angular, poorly graded, wet, very loose		- 347.17 6.10															Bentonile Chips
8		· · · ·		343.51 9.75															
1		CONTINUED NEXT PAGE		[[]		1_1				[1				

TRY: IPG

PROJECT No.: 12.1349,0013

RECORD OF BOREHOLE: EV_BCgw

SHEET 1 OF 3

PROJECT No.:	12.1349.0013

RECORD OF BOREHOLE: EV_BCgw

N: 5509659	E: 655381

DATA ENTRY: IPG			27 No.: 12.1349.0013 DN: See Location Plan N: 5509659 E: 655381	RECORD O	BCgw	SHEET 2 OF 3 DATUM: UTM Zone 11 (Nad 83)	
	ų	8	SOIL PROFILE	SAMPLES	S DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, T	PIEZOMETER
	DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT (i) ad 13 (ii) ad 13 NUMBER NUMBER TYPE		10 ⁶ 10 ³ 10 ⁴ 10 ³ [⊥] WATER CONTENT PERCENT Wp I OW 10 20 30 40	OR STANDPIPE VICE INSTALLATION EE GG GG CG CG
BOREHOLE - EXPANDED ADD. JAB TESTING 12:1343.0013 BH LOGS/GPJ CALGARY/6DT 4/8/14	-10 - 10 -11 -12 -13 -13 -18 -17 -18 -19 -20	Senic 127 mm (ID) Casing 152.4 mm (OD) JR Diffing	GRAVEL, some sand, trace sili, fine-grained, sub-angular to angular, poorly graded, wet, very loose (continued)				Eentonite Chtps
			CONTINUED NEXT PAGE				
BOREHOLI	DE 1	: 50	SCALE		Golder		Logged: Rt Hecked: CD

Ч.,	HOD	N: 5509659 E: 655381 SOL PROFILE			SA	MPL	-	DYNA RESIS	MIC PEN TANCE,	ETRATI	ON 10.3m	1		AULIC C k, cm/s	TMTY,	T		PIEZOM
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	elev, Depth (m)	NUMBER	TYPE	BLOWS/D.3m	SHEA Cu, kF	R STREM	IGTH	natV. + remV.⊕	30 Q- U-O	i.v	VATER C	rperce 1	03 - 1 NT WI 10	ADDITIONAL LAB, TESTING	STANDA (NSTALL/
20 21 22 22 23	Sorie 127 mm (ID) Casing 1524 mm (CD) JR Dritting	GRAVEL, some sand, trace sill, fine-grained, sub-angular to angular, poorty graded, wet, very loose (continued) ' Sandy SILTY GRAVEL, fine-grained, sub-angular to angular, poorly graded, wet, very loose		<u>.331.17</u> 22.10						·								Slotted Section
24 25		End of BOREHOLE. NOTES: Standpipe installed to 20.7 m upon well completion. Groundwater lovel measured at 2.4 mbgs on October 23, 2013. Groundwater level measured at 2.2 mbgs on November 12, 2013.	<u> 19</u> 41	330,10 328,18														
26																		
27								- - -										
28 29																		
30																		

.

RECORD OF BOREHOLE: EV_ECgw

BORING DATE: October 27, 2013

DATA ENTRY: IPG			T No.: 12.1349.0013 N; Soe Location Plan N: 5506384 E: 660795	RE	COF	RD	0	F BORE					w					1 DF 2 : UTM Zone 11 (Nad 83)
õ			SO/L PROFILE		5	AMP	168	DYNAMIC PE RESISTANCE	NETRATI	ON	<u>\</u>	HYDRA		ONDUCI		т		PIEZOMETER
	DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	4	TMBER	T	Ĕ	RESISTANCE 20 SHEAR STRE Cu, kPa 20	40 I INGTH	50 8	0- ● ⊔- 0	10	ATER CO	ONTENT	PERCE		ADDITTIONAL LAB. TESTING	OR STANDPIPE INSTALLATION Stick-up
	- 0		Ground Surface GRAVELLY SAND, medium and coarse-grained sand with occasional fine gravol grains, rounded to sub-rounded, moderately graded, dry, very loose	0, 0, 0, 0, 0, 0	6.30													=0,74 m 16 Nov 2014 V Bentonlie Chips
	- 2		SAND, trace gravel, medium-grained, rounded to sub-rounded, moderately graded, dry, very loose		<u>4.77</u> 1,52													Silica Sand
	-		O AV and CAND modeur optional utility	2	12.49													Slotled Section
Y.GDT 4/8/14	- 4	Sonic 127 mm (HD) C	CLAY and SAND, medium-grained with occasional coarse grains, rounded to sub-rounded, moderately graded, moist, firm SANDY CLAY, medium-grained with occasional coarse grains, rounded to sub-rounded, moderately graded, moist, firm	40 	<u>H.12</u> 5.10													Sllica Sand
BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14	8		CLAY, some sand, medium-grained, rounded to sub-rounded, moderately graded, moist, semi-firm	36	<u>19,44</u> 6.86													Bentonite Pellets
L.EX			CONTINUED NEXT PAGE															<u> </u>
BOREHOLE	D1 1	EPTH S : 50	SCALE				(Ø	Gold Soci	er ates							Logged: Checked:	

		TNo.: 12.1349.0013 N: See Location Plan N: 5506304 E: 660795	F	RECC)R	D (E	BORING	date: (October 2	-	_	gw					2 OF 2 ; UTM Zone 11 (Nad 83)
DEPTH SCALE METRES	BORING METHOD	Soil Profile Description	STRATA PLOT	ELEV. DEPTH (m)			•	AR STRE Pa	40 NGTH	60 € 1 nat V. + rem V. ⊕		1 W W	k, cm/s 0 ⁻⁵ 1 ATER C P		0 ⁴ 1 PERCE	о ³ NT Wi	ADDITTONAL LAB. TESTING	PIEZOMETE OR STANOPIPI INSTALLATIC
- 10 -	រុក បាត់ពីក្មេ	CLAY, some sand, medium-grained, rounded to sub-rounded, moderately graded, molst, seml-firm (continued)		395.33														Bentonite Pellets
- 11 -		End of BOREHOLE. NOTES: Standpipe installed to 4.1 m upon well completion. Groundwater fevel measured at 1.8 mbgs on November 12, 2013.		10.97										•.				
- \$4 - 15																		
16																		
17																		
- 18																		
· 19		• •															·	
- 20						×												

DATA ENTRY: IPG

PROJECT No.: 12.1349.0013 LOCATION: See Location Plan

RECORD OF BOREHOLE: EV_ER1gwD

SHEET 1 OF 4

BORING DATE: 29 and 31 October, 2013

DATUM: UTM Zone 11 (Nad 83)

N: 5510952 E: 651379

╏		-					DVMANIC DENETON		HYDRADI IC COMPLICTIVITY		T
	DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	1	SAM	PLES	DYNAMIC PENETRA RESISTANCE, BLOW		HYDRAULIC CONDUCTIVITY, k, cm/s		PIEZOMETER
	S S S S S S S S S S S S S S S S S S S	E S		LOI ELEV. DEPTH DEPTH (m)	£,	aLOWS/0.3m	20 40	60 60	10 ⁶ 10 ⁵ 10 ⁴ 10 ³	ADDITTONAL LAB. TESTING	STANDPIPE INSTALLATION
	Ε¥	RIN N	DESCRIPTION		NUMBER	OWS/03	SHEAR STRENGTH Cu, kPa	natV. + Q-● rem V. ⊕ U-O	WATER CONTENT PERCENT	Ĕ₽	
	0	8		fr S (m)	z	BL(20 40	60 80	10 20 30 40	22	Stick-up =0.71 m
	- 0	\mathbf{L}	Ground Surface	339.8		_					=0.71 m
ŧ			SILTY SAND, fine-grained with occasional medium grains, rounded to	0.0	1						
Ē		11	occasional medium grains, rounded to sub-rounded, moderately graded, minor organics (roots), dry, very loose								
Ę											
Ę											
Ē	- 1										
ŀ											
F			SAND, medium and coarse-grained,	0. 1.52							
Ê			and fine-grained with some coarse-grained GRAVEL, poorly sorted,	1.63 20 20							
ŀ	- 2		SAND, medium and coarse-grained, and fine-grained with some coarse-grained GRAVEL, poorty sorted, sub-rounded, sub-angular and angular clasts, dry, very loose	; Q							
F				0							
E				:0							
ŧ				0		1					
E	- 3			0							
F				0							
Ę				r.							
E				°0							
F	- 4										
E		ĝ									
ŀ		0) M20									16 Nov 2013 又
Ē		1524									
E	- 5	Sonic 127 mm (ID) Casing 1524 mm (OD) IP hulline									Bentonite
ŧ		<u>ĝ</u>									Chips
Ē		E 23									
F		onic 1:									
Ē	- 6	ŝ									
	·										
ţ.				NO N							
				ŝ							
詐	-			S)							
Ē	- 7			<u>j</u>							
訃				30							
Æ											
j.				6							
E	- 8			ŝ							
ł				.0							
Ē				0							
F				6							
宇	- 9										
۶Ę											
ŧ											
詣				329,95							
$\left \right $	- 10	L.	CONTINUED NEXT PAGE	1927 - 1 929	F+		┠╾┼╍╾┝╸	+	┟╾╼┠╼╼┽╾╼╞╼╼╂╾╼		®
╬						_!				<u> </u>	<u>I</u>
	DE	PTH	SCALE			1	A Gold	e#		LOGGED:	RT
	1 :	50					Associ	ates		CHECKED: (CD

о Ц	Γ
TRY	I
Nii A	
DAT	

PROJECT No.: 12.1349.0013

RECORD OF BOREHOLE: EV_ER1gwD

SHEET 2 OF 4

LOCATION: See Location Plan

BORING DATE: 29 and 31 October, 2013

DATUM: UTM Zone 11 (Nad 83)

.

N:	551	0952	E:	651	379

	ĕ	SOIL PROFILE		SAM	PLES	DYNAMIC PEN RESISTANCE,	ETRATIO	N Y		HYDRAU		ONDUCT	INITY,	Т		PIEZOMETER
DEPTH SCALE METRES	HE		5				0 60			к 10 ⁴				°° T	₹ <mark>8</mark>	OR STANDPIPE INSTALLATION
THS I	M U V	DESCRIPTION	ELEV.	NUMBER	L QQ	SHEAR STREN Cu, kPa		ntV.+Q m.V.⊕U	- •			L	PERCE	l	NOL	INSTALLATION
U U U U U U	0KI		E DEPTH	Sz f	- N				- 0	Wp		0 W		WI	ADDI AB. T	
	" "	·	6			20 4	0 61		-	10	2	0 3	10 4 1	0	L~	
$\frac{d}{d} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	Sonie 127 mm (ID) Casing 152.4 mm (DD) IS Puitton	SANDY GRAVEL, fine-grained with some coarse grains, sub-rounded to sub-angular, poorly sorted, wet, very loose (continued)	플롬 3 Internation 김 분 호								ł	0 W	1		ADDITIONAL	Bentonile Chips
Z - 20	μL		<u> 20</u>	┝╺┾╴											 	
រុ		CONTINUED NEXT PAGE														
	PTH	SCALE				B AG	olde	r				•			LOGGED: F	
<u>}</u> 1	: 50	· · · · · · · · · · · · · · · · · · ·					ocia	tes						0	CHECKED: (

PROJECT No.:	12,1349,0013
--------------	--------------

RECORD OF BOREHOLE: EV_ER1gwD

LOOMIN	ON: See Location Plan						D A	DIMO I		o and a	1 Octobe	ER1(-				ратны	: UTM Zone
	N: 5510952 E: 651379						50		-		. 001000	., 2013					BAIGM.	(Nad 83)
, la	SOIL PROFILE			SA	MPL	ES	DYNAN	AIC PEN	ETRATI	ON	<u>۱</u>	HYOR	AULIC C	ONDUC	imty,	т		PIEZOME
METRES BORING METHOD	DESCRIPTION	STRATA PLOT	elev. Depth	NUMBER	туре	BLOWS/0.3m	2	0	40	60 i		W	0 ⁶ 1 VATER C	0 ⁵ 1 ONTENT 0W.	PERCE		ADDITIONAL LAB, TESTING	OR STANDP INSTALLA
		STR	(m)	ĪŽ	_	BLO	2				90 T	4¥	p 0 : 			WI 10	P B S	
21	SAND, medium to coarse-grained, some fine-grained gravel, angular to sub-angular, moderately sorted, wet, very loose (continued)							•										Bentonite Chips
92 52 Sonio 127 mm (ID) Casing 152.4 mm (OD) J.R. Defiline																		Silica Sand
27 28 29	SILTY SAND, fine to medium-grained, occasional angular gravel, rounded to sub-rounded, moderately graded, dry, very loose (BEDROCK)		<u>311.96</u> 27.09															Slotted Section Silica Sand
30	CONTINUED NEXT PAGE					_	- 											Bentonite Peilets Slaugh

		F No.: 12.1349.0013	RE	ECO	RD	0	F					EV_E		-				
LO	JAHO	N; See Location Plan N: 5510952 E: 651379						BC	жiNG [JAIE: 3	∠9 and 3	i Octobe	er, 2013					
4	донц	SOIL PROFILE		1	SA	MPL	_		IIC PEN TANCE,			7		AULIC C K, cm/s			.]	•
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAF Cu, kPi	R STREM B	igth	natV† remV.€	80 - Q-● 9 U-O 80	w W	/ATER C	ONTEN	I PERCE		-
30	JR Drilling	SILTY SAND, fine to medium-grained, occasional angular gravel, rounded to sub-rounded, moderately graded, dry, very loose (BEDROCK) (continued)		309.07														
31		End of BOREHOLE.		30.78			-											T
32		NOTES: Standpipe installed to 28.9 m upon well completion. Groundwater level measured at '4.6 mbgs on November 16, 2013,																
33											-							
34																		
35												-						
36																		
37							-											
38		,																
39																		
40									G									

BAgolder Associates

SHEET 4 OF 4

DATUM: UTM Zone 11 (Nad 63)

Slough

PIEZOMETER OR STANDPIPE INSTALLATION

LOGGED: RT CHECKED: CD

	-
G	L
<u>o</u> .	L
- S E	L
ĽΥ	
Ξ	
Ш	
1	L
-₩	L
Ó	Ł

PROJECT No.: 12.1349.0013

RECORD OF BOREHOLE: EV_ER1gwS

SHEET 1 OF 2

LOCATION: See Location Plan

BORING DATE: October 30, 2013

DATUM: UTM Zone 11 (Nad 83)

N: 5510955 E: 651374

		8	SOIL PROFILE		5	AMP	LES	DYNAMIC PEN RESISTANCE,	ETRATIC)N 0.3m	1	HYDR	AULIC C k, cm/s	ONDUCI	inity,	Ĩ		PIEZOMETE	R
SCAL	METRES	BORING METHOD		5			33				30 `					°ª ⊤	ADDITTONAL LAB, TESTING	OR STANDPIPE INSTALLATIO	E
E	Nel.	UD U	DESCRIPTION	STRATA PLOT	IN NUMBER		BLOWS/0.3m	SHEAR STREE Cu, kPa	IGTH n	alV. +	0- • 0- 0	W	ATER C					INDIALLATIC	214
卢		BOR		A La)) ²		BLO	ĺ	i0 8		30	[W		O W- 20 3		WI IO	ICAD.	Ctiols up	Π
			Ground Surface				┼─			<u> </u>	10	'						Stick-up =0.96 m	
E	0	Γ	SAND, medium and coarse-grained with some fine grains, rounded to sub-rounded, moderately graded, dry,	5	9,85 0.00			· ····			·	-							8
E			sub-rounded, moderately graded, dry, very loose																
F			Very 10036																
F																			
Ē	1										ŀ								
È																			-
Ē				3															-
F																			-
F	2											ŀ							
Ē															-				
Ę												Ì							-
· 🕇 .				2															
E	3						Ľ												
F				:P -															
Ē																			
þ				10	Ĩ														
Ē	4																		
E				3							1				5				
F		5 E																	
Ē		E 4 3																16 Nov 2013 모	
F		Sonic 127 mm (10) Casing 152,4 mm (00) JR Drilling																Bentonite	-
Ē	5	LD) Casing JR Drilling																Chips	-
E		E																	
F		년 [2]																	-
E	I	ŝ											1						
14	6																		-
4											1								
년 노				30 13 13	3.15														
EAF			SAND, medium to coarse-grained, some fine-grained gravel, sub-rounded,		6,71														-
₹-	7		sub-angular, moderately sorted, dry, very loose										1						
25													1				•		
8																			- -
影											1								
50 50	8																		
349																			
₫Ē			SAND, medium to coarse-grained,	33	1.32 8.53														
NI-			some fine-grained gravel, sub-rounded, sub-angular and angular, moderately	2															
₩Ľ	9		sorted, wel, very loose	3															
₹																			
랆				2															
BE																		· .	
APA-	10	_L		21_		+-		┣╼╉╾╴			⊢	 −−							.@-
BOREHOLE - EXPANDED ADD. LAB TESTING 12.1348.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14			CONTINUED NEXT PAGE									 						l	
뷥	DEF	TH S	CALE						പ്പം	14							LOGGED: I	श	
BORI	1:	50					-		olde ocia	ites					<u> </u>		CHECKED: (.D	

PROJECT No.: 12.1349.0013 LOCATION: See Location Plan K N: 5510955 C N: 5510955	ECORD OF BOREHOLE: BORING DATE: Octo	— –	SHEET 2 OF 2 DATUM: UTM Zone 11 (Nad 83)
	SAMPLES DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3		PIEZÓMETER
SOIL PROFILE SOIL PROFILE SOIL PROFILE SOIL PROFILE DESCRIPTION	e 5 . 20 40 60	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10 SAND, medium to coarse-grained, sub-rounded, sub-angular and angular, moderately sorted, wet, vury tooso (continued) 11 11 11 11 12 13 13 (6) 14 10 15 16 16 16 17 16 18 17 19 17			Bentonite Chips Silice Send
End of BOREHOLE, End of BOREHOLE, End of BOREHOLE, End of BOREHOLE, End of BOREHOLE, Standpipe installed to 17.6 m upon well completion. Groundwater level measured at 8.2 mbgs on October 30, 2013. Groundwater level measured at 4.7 mbgs on November 16, 2013. DEPTH SCALE 1 : 50	17.61		
머니	Golder	, , ; ;es	Logged; RT CHECKED; CD

۳Ľ

____ -----_

		CT No.: 12.1349.0013	R	ECC	RD	O		Rehol				gw					1 OF 3
LC	DCATIO	DN: See Location Plan N: 5522255 E: 656580				÷	BOF	ing date; (October 2	3, 2013						DATUM	UTM Zone 11 (Nad 83)
щ	ę	SOIL PROFILE			SAM	PLES	DYNAMI RESIST/	C PENETRATI	ON /0.3m	1	HYDR/	VULIC CO k, cinvis	толоно	MTY,	T		PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/D.3m	20 SHEAR S Cu, kPa	40 ·	60 8 ⊥ natV.†+ remV.⊕		10 • W2 • Wp	ATER CO	0 ⁵ 10 NTENT	PERCE	0 ³ ⊥ ⊥	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
	-	Ground Surface	ST	400,51	┝╍╌┼╸	8	20	40	60 8	0	1	0 2	0 3	0 4	0	2 م	Stick-up ≓0,91 m
- 0		SANDY GRAVEL, fine-grained, sub-angular to angular, moderately graded, dry, very toose	0.4.0	400,01 0.00													
1				. 398,98													
2		SAND, some gravel, fine to coarse-grained, sub-rounded to sub-angular, moderately graded, dry, vary loose	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1,52												·	
3		SANDY GRAVEL, fine-grained, sub-angular to angular, moderately	2000	<u>397,61</u> 2.90													
		sub-angular to angular, moderately graded, dry, very loose		-										-			
4	152.4 mm (OD)	SAND, some gravel, localized thin	<u>10550</u>	<u>395,94</u> 4.57													
5	mm (ID) Casing JR Dritting	SAND, some gravel, localized thin zones of gravel, fine to coarse-grained, sub-rounded to sub-angular, moderately graded, moist, very loose															Bentonite Chips
6	Soric 127																
7			25,25,25,2														
8																	
9			1. 21. 22.					.									15 Nov 2013
10	ĻL				┝┼				+		 			 	-		15 Nov 2013
		CONTINUED NEXT PAGE			Ш			Gold									l

PROJECT No.	: 12.1349.0013
LOCATION: S	ee Location Plan

RECORD OF BOREHOLE: EV_GV3gw

		T No.: 12.1349.0013 XN: See Location Plan	R	ECC	RD	OF				E: E		GV3	gw					2 OF 3 : UTM Zone 11
20.		N: 5522255 E: 656580									,							(Nad 83)
ц С	аон Н	SOIL PROFILE			SAM			IC PEN			l		k,cm/s			, I		PIEZOMETE - OR
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/D3m	Cu, kPi	STREN	GTH n	at V. + am V. ⊕	0- 0 U- 0	Wρ	TER CO	ONTENT	PERCE		ADDITIONAL LAB. TESTING	STANDPIP INSTALLATIO
10		SAND, some gravel, localized thin zones of gravel, fine to coarse-grained, sub-rounded to sub-angular, moderately graded, moist, very toose (continued)																
13		SILTY GRAVEL, fice-grained, sub-rounded to sub-angular, poorly graded, wot, very loose		<u>387,55</u> 12,95														
15	Sonic 127 mm (ID) Casing 152.4 mm (OD) JR Drilling	GRAVEL, fine-grained, sub-rounded to sub-angular, well graded, moist, very loose		<u>385,89</u> 14.63												- - - - - - - - - - - - - - - - - - -		Bontonite Chips
10 17		SAND, some gravel, fine to coarse-grained, sub-rounded to sub-angular, moderately graded, moist, very loose		384.35 16,15														
18		GRAVEL, some slit, fine-grained, sub-rounded to sub-angular, poorly graded, moist, vary loose	BRBBBBBB	<u>382.98</u> 17.63														
19		SILTY GRAVEL, fine-grained, sub-rounded to sub-angular, poorly graded, wet, very loose		381,46 19.05										-				
20		CONTINUED NEXT PAGE		<u> </u>	FT	1	Γ	[[[

DATA ENTRY: IPG			CT No.: 12,1349.0013 DN: See Location Plan N: 5522255 E: 656580	RECOR	d of	F BOREHOLE: EV BORING DATE: October 23, 20		SHEET 3 OF 3 DATUM: UTM Zone 11 (Nad 83)
+		0	SOIL PROFILE	SA	MPLES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIMITY, T	PIEZOMETER
	DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	NUMBER	L E		$ \begin{array}{c} k, cm/s \\ 10^{5} & 10^{3} & 10^{4} & 10^{3} \\ \hline \\ \bullet \\ WATER CONTENT PERCENT \\ Wp 1 OW - 1 Wt \\ 10 & 20 & 30 & 40 \\ \hline \\ \hline \\ \hline \\ \hline \end{array} $	OR STANDPIPE INSTALLATION EEG BY STANDPIPE INSTALLATION
	- 20		SILTY GRAVEL, fine-grained, sub-rounded to sub-angular, poorly graded, wet, very loose (continued)					
	- 21 - 22	.4 mm (OD)	SILTY GRAVEL, fine and coarse-grained, sub-angular to angular, poorly graded, wel, very loose					Bentonite Chips
<u></u>	• 23	Sonic 127 mm (ID) Casing 152.4 mm (OD) IR Dritton						Silica Sand
	- 24							Silica Sand
	- 25 - 26 - 27		End of BOREHOLE. NOTES: Standpipe installed to 24.4 m upon well completion. Groundwater tevel measured at 9,9 mbgs on November 15, 2013.	25.00				
	- 29 - 30 	HTG	SCALE			Golder		LOGGED: RT

RECORD OF BOREHOLE: EV_LSgw

2	COHU:	SOIL PROFILE				PLES			ETRATIC BLOWS/		$\mathbf{\lambda}_{\mathbf{u}}$	HYDR/	k, cm/s			0 [°] [ور	PIEZOME OR STANDP
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	20 SHEAR Cu, kPa 20	STREN	lGTH n r	atV. 十 em V. ⊕		W. Wp	ATER CO	DNTENT	I PERCEI	I NT	ADDIFFIONAL LAB. TESTING	INSTALLA
1		Ground Surface FiLL - Sand sized particles, medium to coarse-grained, sub-rounded to sub-angular, well graded, dark black carbonaceous, moist, very looso		<u>345,03</u> 0,00														=0.93 m
2		SANDY GRAVEL, some silt, fine-grained, sub-rounded to sub-angular, poorly graded, moist, very loose	<u>૾ૢૼ૽૾ૼ૽૾ૼ૽૾ઌ૽</u> ૿ઌ૽૿ઌ૽૿ૺ	<u>343.51</u> 1.52														Bentonile Chips
3	(4 mm (0D)	GRAVELY SAND, coarse-grained with fine-grained gravel, sub-rounded to sub-angular, poorly graded, moist, very loose	<u>૾૾ૺૼ૱૽ૼઌ૽ૺઌ૽ૺઌ૽</u> ૺૺ	<u>341.22</u> 3,81														14 № 2013 ⊻
δ	Sonic 12/ min (IU) Gasing 15/24 mm (UU) JR Drilling		0,															Silica Sand Slotted Section
8		SANDY SILT, fine to medium-grained, wet, mud		<u>338.16</u> 6.86														Silica Send
9								• <u> </u>										

ц.	
•••	
۶-	1
î۲	ł
с.	я

PROJECT No.: 12.1349.0013

,

RECORD OF BOREHOLE: EV_LSgw

SHEET 2 OF 2

5470 BA 11794 5

.

LOCATION: See Location Pla

PODMIC DATE: Onlobor 24, 2012

	머머	SOIL PROFILE	1		SA	MPL		DYNAMIC F RESISTANC	PENETRA CE, BLOW	10N S/0.3m	l	HYDRAU k				T	. (3	P(EZOMETE OR
METRES	BORING METHOD	, DESCRIPTION	STRATA PLOT	elev, Depth (m)	JUMBER	түре	BLOWS/0.3m	20 SHEAR STI Cu, kPa	40 T RENGTH	1		10 ⁶ WAT Wp 1	ER CON	10 ⁻¹ IENT PE	10 ³ RCENT	г	ADDITIONAL LAB. TESTING	STANDPIP Installati
	×		STI	(m)	-		B	20	40	60 8	10 	10	20	30	40		44 A	
10 -	JR Drilling	SANDY SILT, fine to medium-grained, wet, mud (continued)																Silica Sand
F		End of BOREHOLE.	3131	334.36 10.67														
11		NOTES: Standpipe installed to 6.7 m upon well completion. Groundwater level measured at 3.4 mbgs on November 14, 2013.																
12																		
13																		
14																		
15																		
16																		
17																		
18										-								
																	•	
19																		
20								Ð.										

DATA ENTRY: IPG				"No.: 12,1349,0013	R	ECO	RE	0	F	BORE					wD					1 OF 5
TAEN	LC	CAT	noi	N: See Location Plan						BORING	date: 1	lovembe	er 3, 201	3					Datum	UTM Zone 11 (Nad 83)
A		_		N: 5511616 E: 653475			r													
	Щ			SOIL PROFILE	, T –		SA	MPLE	-	DYNAMIC PE RESISTANCE	VETRATI BLOWS		l		AULIC C k, cm/s			Ī	, .0	PIEZOMETER OR
	DEPTH SCALE METRES	BORING METHOD			STRATA PLOT	ELEV.	ЦЩ	w i	BLOWS/D.3m	20 SHEAR STRE	11	1	30	<u> </u>	L	L .	0 ⁴ 1 PERCE	0 ³	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
	DEPT			DESCRIPTION	TRAT A	DEPTH (m)	NUMBER	TYPE		Cu, kPa		natV. +) remV.⊕		wi) 	0 ₩		WI	ABC HE	
				Ground Surface	0	344.73			в	20	40	<u>60 (</u>	30	1	0 2	<u>:0 :</u>	30 4	10 <u>.</u>	· · ·	Stick-up ≂0.84 m
ŀ	— 0	П		SAND, coarse and medium-grained, and fine-grained GRAVEL, rounded to sub-rounded, moderately graded, wet,	20	0.00														
ŀ				sub-rounded, moderately graded, wet, very loose	2											·				
	-				0															
	1				0															
	-				0															
	-				1.0															
ł	-				Ċ															
	- 2				0															
	-				Ç															
ł	-				Ô															
F	-																			
ļ	- 3				a Ö.	1														15 Nov 2013
ļ	-				بې . بې															⊻
	-			SAND, fine and medium-grained, sub-rounded to sub-angular, well	10	341.07 3.66														
ļ	- 4			sub-rounded to sub-angular, well graded, dry, very loose		1														
	-	<u>(</u>)																		
ł	• .	Įξ																		
	-	rg 152	p																	
	- 5) Cash	H Dulli																	Bentonite Pellets
	-	10) MW	3		1.2															
	-	Sonic 127 mm (ID) Casing 152.4		SiLT, some fine-grained sand, well		339.09 5.64														
	- - - 6	11		graded, very loose Wet at 5.8 m																
4/8/14	- 6																			
100	-																			
AR	-																			
CALG	- 7																			
GP	-																			
Sol	-													· ·						
HE	-				i															
0.0013	8 -			CLAY, some fine-grained sand,		336.65 8,08														
198	-			CLAY, some fine-grained sand, well-sorted, moist, compact																
9	-																			
EST -																				
	-																			
			•																	
	-																			
XPAN	10	\mathbb{H}^{1}				1					·	+					·	+		<u>₿₿</u>
BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14		L		CONTINUED NEXT PAGE								I			I				L	
<u>Б</u> НО	DE	PTF	18	CALE					(ald	27							Logged: I	श
ő	1	: 50							1	TAS	soci	ates							CHECKED: (מכ

- -

1

PROJE
1004

ECT No.: 12.1349.0013

RECORD OF BOREHOLE: EV_MCgwD

BORING DATE: November 3, 2013

N: 5511616	E; 653475
14, 0011010	L, 000710

		T No.: 12.1349.0013 N: See Location Plan	RECORD OF	BOREHOLE: EV_MCgwD BORING DATE: November 3, 2013	SHEET 2 OF 5 DATUM: UTM Zone 11 (Nad 83)
4	8	N: 5511616 E: 653475 SOIL PROFILE	SAMPLES	DYNAMIC PENETRATION RESISTANCE, BLOWSKO3m	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT 3. dd 1.	20 40 60 80 10 ⁶ 10 ¹ 10 ³ 10 ³ SHEAR STRENGTH nai V. + Q. • WATER CONTENT PERCENT Cu, kPa ram V. ⊕ U- O WATER CONTENT PERCENT 20 40 60 80 10 20 30 40	OR STANDPIPE OF USE UNSTALLATIC USE USE USE USE OF USE STANDPIPE INSTALLATIC
10 - 11 12 13		CLAY, some fine-grained sand, well-sorted, moist, compact (continued) SILT, some fine-grained sand, well graded, wel, very toose	333.30		
15	Sonic 127 mm (ID) Casing 152.4 mm (OD) JR Drilling	CLAY, some fine-grained sand, well-sorted, wet, soft CLAY, some fine-grained sand, well-sorted, molst, compact	330.40 14.33 328.86 15.85		Bentonite Pellets
17		CLAY, some fine-grained sand, well-sorted, moist, loose	<u>927.36</u> 17.37		
19 20 -		CONTINUED NEXT PAGE			
DEF 1:		CALE	II	A m F Golder	Logged: RT Checked; CD

.

PROJECT No.:	12.1349.0013
--------------	--------------

RECORD OF BOREHOLE: EV_MCgwD

DATA ENTRY: IPG			27 No.: 12.1349.0013 XY: See Location Plan	R	ECO	R) ()F	BORE					wD	•••••••				3 OF 5 ; UTM Zone 11
DATAE			N: 5511616 E: 653475																(Nad 63)
	Щ	D Q	SOIL PROFILE			SA	MPL	ES	DYNAMIC PER	IETRAT	tON 3/0.3m	l	HYDR	AULIC C k, cm/s	ONDUC	tivity,	Т		PIEZOMETER
	DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV, DEPTH _(m)		TYPE	BLOWS/0.3m	SHEAR STRE Cu, kPa	NGTH	nat V. + rem V. €		W W	ATER C		I I PERCE	wi	ADDITTONAL LAB. TESTING	STANDPIPE INSTALLATION
BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14	- 20 - 21 - 22 - 23 - 24	Senic 127 rm (ID) Casing 152.4 rm (CD) JR Driting	CLAY, some fine-grained sand, well-sorted, moist, loose (continued)															· · ·	Bentonita Pellets
REHOL	DE	PTH S	CALE					(D AS	old	er	•						Logged; f	
ö	1:	50							V Aš	soci	ates						C	HECKED: (D

PROJECT No .:	12.1349.0013
---------------	--------------

RECORD OF BOREHOLE: EV_MCgwD

		T No.: 12.1349.0013 N; See Location Plan N: 5511616 E: 653475	RE	ECO	RC	00			IOLE DATE: N		EV_1 # 3, 201:		wD				4 OF 5 : UTM Zone (Nad 83)	э 11
មូល	ETHOD	SOIL PROFILE	5			MPLES			IETRATI BLOWS		200		k, cm/s		_{0°}]	MG ^L	PIEZOM OF STAND	R Seiei
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BI OWS/N 3m	SHEA Cu, XI	R STRE Pa	Ngth	i⊥ uatV. + remV.⊕	1	W W	ATER C	PERCE	L	ADDITTONAL LAB. TESTING	INSTALL	AT
30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 37 - 38 - 39 - 40 -	Sonic 127 mm (D) Castry 152 4 mm (D) JR Drilling	CLAY, some fine-grained sand, well-sorted, moist, loose (continued) CLAY, some fine-grained sand, well-sorted, wol, soft		<u>314.28</u> 30.45 30.45 <u>30.587</u> 30.58													Slough	
		CONTINUED NEXT PAGE					Ĵ					<u> </u>	L_					

Image: second	PRO	DJEC	T No.: 12.1349.0013	R	ECO	R) (DF	BOR	eho	LE:	EV_	_MC	jwD		SHEET 5 OF 5			
Q SOL FROME PARATOR DPARATCR (ENCORD) INTERACT (ENCORD) INTERACT (ENCORD) INTERACT (ENCORD) INTERACT (ENCORD) INTERACT INTERACT <thinteract< th=""> <thinteract< t<="" th=""><th>L.OC</th><th>ATIO</th><th></th><th></th><th></th><th></th><th></th><th></th><th>BOR</th><th>NG DATE</th><th>: Nove</th><th>mber 3, 20</th><th>13</th><th></th><th></th><th></th><th></th><th>DATUM</th><th>l: UTM Zone (Nad 83)</th></thinteract<></thinteract<>	L.OC	ATIO							BOR	NG DATE	: Nove	mber 3, 20	13					DATUM	l: UTM Zone (Nad 83)
1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>			N: 6511616 E: 653475												·				
Image: Second	3	ĝ	SOIL PROFILE	;	·	S/	MPL	.ES	DYNAMIC	PENETR ICE, BLO	ATION WS/0.3n	, <u>\</u>	HYDE	AULIC C k, cm/s	ONDUC	TIVITY,	T		
Image: Second	METRES	METH		TOT		œ,		J.3m	20	40	60	80		10* 1	10 ⁵ 1	101 1	ю _а Т	TING	STAND
Image: Second	5	RING	DESCRIPTION	ATAF	DEPTH	UMB	ΪĔ	VSWC	SHEAR S Cu, kPa	rength	Inat V rem \	.+ 0€ .⊕ 0C					1	D TES	
Image: Solution of the second seco		BO	·····	STR	(m)	Z		Ä	20	40	60	80	}	-			E	A B A	
CLAVEY SAND, fine guilted, some comes granted gravel, angular, motionide/sected, lecore, wel, very 2000 CLAVEY SAND, fine guilted, some comes granted gravel, angular, motionide/sected, lecore, wel, very 4.04 CRAVEL, fine-grained, aub-rounded, post, well, some some source and the source of the s	40		sub-angular, moderately-sorted, wet, vory loose (continued)		<u>304,34</u> 40,39														
SAND, medium-grained with some fine grains, sub-roundal, poorly graded, mainly black to gray and brown, wet 44.81 7 44.81 8 297,10 7 297,10 8 297,10 9 End of BOREHOLE. 47.85 47.85 9 Storphing mean lo 20,9 m, Storphing mea	1	XI	moderately-sorted, brown, wet, very		<u>302.03</u> 42.67														
7 End of BOREHOLE. 47.65 8 NOTES: Sloughing present to 29.9 m. Steardpio instelled to 27.6 m upon well completion. Groundwater fewel measured at 2.5 mbgs on November 7, 2013. 47.65 9 Image: Complexity of the second	44 45	1987 (UI) RUM 121 DUDA	SAND, medium-grained with some fine grains, sub-rounded, poorly graded,		44.04 299,92														Slaugh
Slouphing present to 29.9 m. Standpipo installed to 27.6 m upon well completion. Groundwater level measured at 2.5 mbgs on November 7, 2013. Groundwater level measured at 3.4 mbgs on November 15, 2013. s	46		End of BOREHOLE.																
	48	-	Slouphing present to 29.9 m, Standpipo installed to 27.6 m upon well completion, Groundwater level measured at 2.5 mbgs on November 7, 2013. Groundwater level measured at																
	50																		
International and a second and										Gol	ler	e							

... F

PROJECT No.: 12.13	349.0013
--------------------	----------

RECORD OF BOREHOLE: EV_MCgwS

		T No.: 12.1349.0013 N: Soe Location Plan	R	ECO	RE) C)F	BORE	HOL 3 DATE: 1				wS					1 OF 2 1: UTM Zone
101	JANU	N: 5511624 E: 653476						DOMIN			0, 201	~					27,100	(Nad 83)
ξ _Ω	донт	SOIL PROFILE	TE			MPLE		DYNAMIC F RESISTANC					k, cm/s	ONDUC 0 ⁵ 1		0 ²]	ې ورې	PIEZOME OR STANDI
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV, DEPTH (m)	NUMBER	크네스니	BLOWS/0.3r	20 SHEAR STF Cu, kPa 20	ENGTIH	nalV. + rem V.⊕	1	w wr	ATER C		r PERCE	NT	ADDITIONAL LAB. TESTING	INSTALLA
٥		Ground Surface SAND, coarse and medium-grained.	6.2	<u>344,73</u> 0.00	_	_												=0.96 m
- - - - - - - - - - - - - 		SAND, coarse and medium-grained, and fine-grained GRAVEL, rounded to sub-rounded, moderately graded, dark brown, damp, very loose		343,81														
1		SAND, fine and medium-grained, sub-rounded to sub-angular, poorly graded, brown, dry, very loose		0.91														15 Nov 2013 ⊻
3													-					Bentonite Pellets
	Sonie 127 mm (ID) Casing 152,4 mm (DD) JR Dr(lling	CLAYEY SILT, some fine-grained send, dark brown to grey, moist, soft to very loose CLAYEY SILT, some fine-grained send, dark brown to grey, wet, very soft, very loose (runny)		<u>340.16</u> 4.57 <u>339.24</u> 5.49														Sillca Sand
6																		Slotted Section
8		CLAY, some fine-grained sand, well-sorted, moist, compact		<u>335.58</u> 9.14														Slough
10	μL	CONTINUED NEXT PAGE		1		╞╶┥	-	┝╼┽┉		╂−−		+	<u> </u>	÷		+		

PROJECT No.: 12.1349.0013

RECORD OF BOREHOLE: EV_MCgwS

SHEET 2 OF 2

LOCATION: See Location Plan

BORING DATE: November 6, 2013

DATUM: UTM Zone 11 (Nad 83)

,

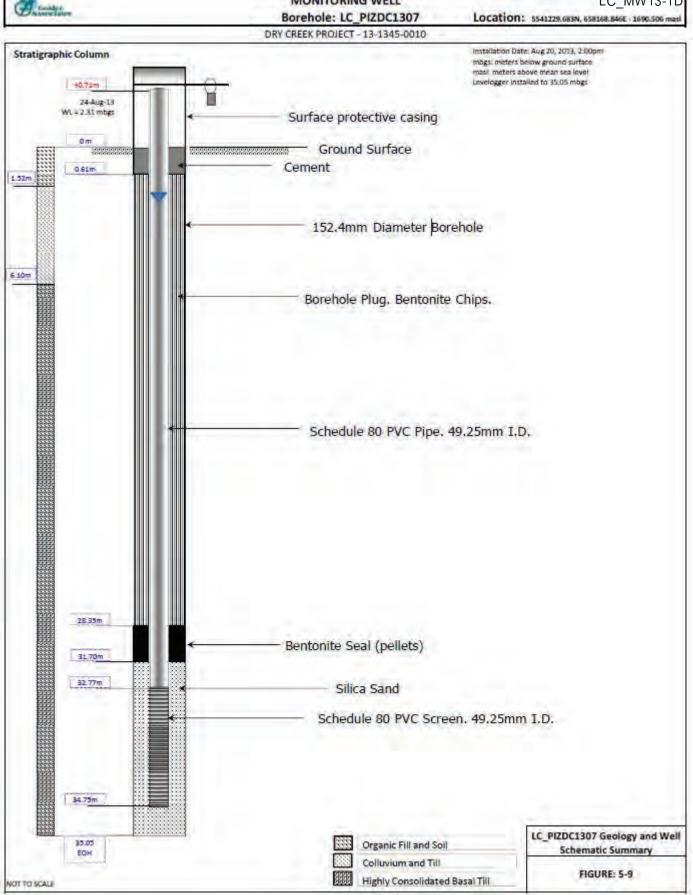
N:	5511624	E: 653476

	uj	B	3	SOIL PROFILE		-	SA	MPL	.ES	DYNAMIC PER RESISTANCE	VETRAT	ON 30.3m	$\overline{\boldsymbol{\lambda}}$	HYDR	AULIC Co k, cm/s	ONDUCT	TIVITY,	T		P/EZO	METER R
	DEPTH SCALE	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/D.3m	20 SHEAR STRE Cu, kPa	40 NGTH	60 € nat V. + rem V. ⊕	0 0-0	1) W	0 ⁶ 10 ATER CO	D ^S 1 DNTENT OW	PERCEI		ADDITIONAL LAB. TESTING	STANI	DPIPE LATION
-	— 10 		JR Ddiling	CLAY, some fine-grained sand, well-sorted, moist, compact (continued)		334.06		-												Slough	
	- - - - - - - - - - - - - - - - - - -			End of BOREHOLE. NOTES: Standpipe installed to 7.32 m upon well completion. Groundwater level measured at 3.8 mbgs on November 7, 2013. Groundwater level measured at 1.1 mbgs on November 15, 2013.		10.67															
	- 13																				
	- - - - - -																				
3/14	— 16 — 16		7												-						
SS.GPJ CALGARY.GDT 4/	- 17																				
NG 12.1349.0013 BH LO(
BOREHOLE - EXPANDED ADD. LAB TESTING 12.1349.0013 BH LOGS.GPJ CALGARY.GDT 4/8/14	- 19 - 20																				
BOREHOLE - E	DE 1:	L ∶PTŀ : 50		CALE	I	<u> </u>	I		(l lold soci	er ates	-	I	<u> </u>			(Logged: I Checked: (

PROJECT No.: 12.13	49.0013
--------------------	---------

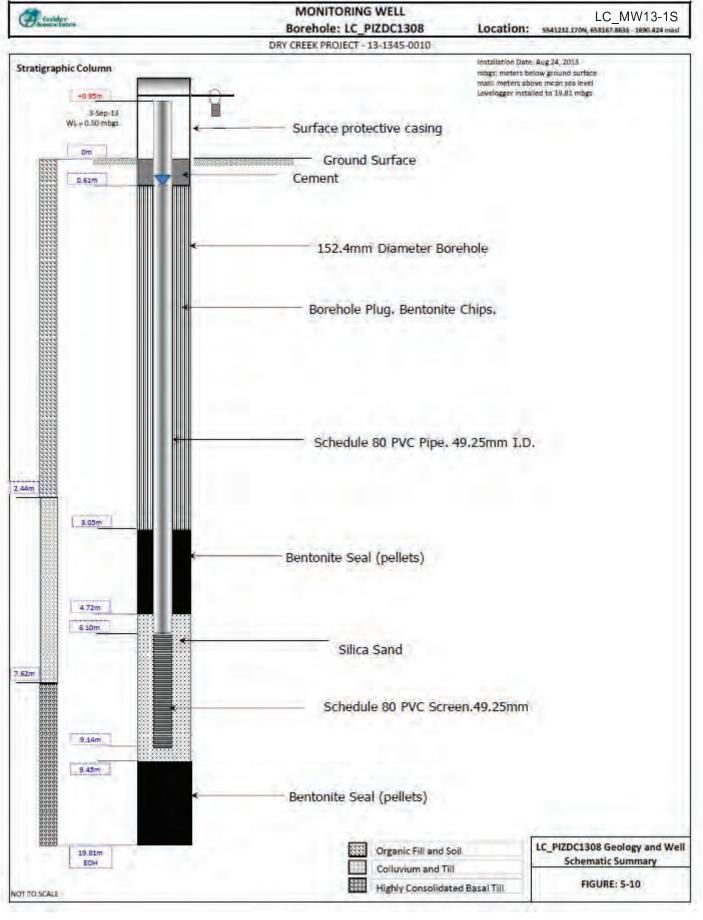
RECORD OF BOREHOLE: EV_OCgw

DATA ENTRY: IPG			T No.: 12.1349.0013 W: See Location Plan	RECORD OF BOREHOLE: EV_OCgw BORING DATE: November 7, 2013	SHEET 1 OF 2 DATUM: UTM Zone 11
DATAL			N: 5512671 E: 652460		(Nad 63)
Ī	ш.	8	SOIL PROFILE	SAMPLES DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m k, cm/s	PIEZOMETER
	DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OR STANDPIPE INSTALLATION
BOREHOLE - EXPANDED ADD. LAB TESTING 12:1349:0013 BH LOGS.GPJ CALGARY.GDT 4/8/14	- 2 - 3	Sonie 127 mm. (ID) Casing 152.4 mm (OD) JR Drilling	DESCRIPTION Ground Surface SANDY GRAVEL, fine-grained with occasional coarse grains, rounded to sub-rounded, dry, very loose SAND and GRAVEL, coarse sand and fine gravel, rounded to sub-rounded, angular, poorly graded, moist, very loose SAND and GRAVEL, coarse sand and fine gravel, rounded to sub-rounded, angular, poorly graded, moist, very loose SAND and GRAVEL, coarse sand and fine gravel, rounded to sub-rounded, angular, poorly graded, moist, very loose SAND and GRAVEL, coarse sand and fine gravel, rounded to sub-rounded to sub-rounded, angular, poorly graded, moist, loose GRAVEL, trace sand, fine to coarse-grained, sub-rounded to rounded, poorly graded, moist, loose SAND, fine to medium-grained with occasional coarse grains, some gravel, fine to coarse-grained, sub-angular to sub-rounded, dry to moist, loose,	ELEW I Bits M Coulting of the structure structure in with do u- 0 and the structure in with do u- 0 and u- 0 and u- 0 and u- 0 and the structure in with	ISTALLATION Stick-up =0.89 m I5 Nov 2013 V Bentonite Chips
(PANDED ADD. LAB	- - - - 				
۱ ۵		İ	CONTINUED NEXT PAGE		
BOREHOLI	DE 1	етін S : 50	SCALE	Golder	Logged: RT Hecked; CD


PROJECT No.:	12.1349.0013

RECORD OF BOREHOLE: EV_OCgw

٩


DATA ENTRY: IPG			T No.: 12.1349.0013 N: See Location Plan N: 5512071 E: 652480	R	ECC	DR	DC		ORE					gw					2 OF 2 : UTM Zone 11 (Nad 83)
DA	Ц	ê	SOIL PROFILE			SA	MPLES	DYN RES	AMIC PE	ETRATI	0N K0.3m	ì	HYDR	AULIC C k, cn√s	ONDUC	TIMITY,	T		PIEZOMETER
	DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV, DEPTH (m)	NUMBER	TYPE PI OWED 3m		20 AR STRE Pa	10 NGTH	50 8 L nal V. + rezn V. (9		w W	0 ⁴ 1 ATER C	ONTENT	PERCE	о ^р Т NT Wi IO	ADDITIONAL LAB, TESTING	STANDPIPE INSTALLATION
	10 11 11	24 mm (OD)	SAND, fine to medium-grained with occasional coarse grains, some gravel, fine to coarse-grained, sub-angular to sub-rounded, dry to moist, toose, (continued)																Bentonile Chips
	- 13 - 14	Soric 127 mm (ID) Casing 1524 mm (OD) JR Dritting	SAND, fine to medium-grained with occasional coarse grains, some fine-grained gravel, sub-angular to sub-rounded, moist, loose to compact	Start Start Start Start	329,79 12,80 328,12														Stotted
	- 15		BEDROCK		14.48 327.06														Silice Sand Tall Pipe
BOREHOLE - EXPANDED ADD. LAB TESTING 12,1349,0013 BH LOGS.GPJ CALGARY.GDT 4/8/14	- 16 - 17 - 18 - 19		End of BOREHOLE. NOTES: Standpipe Installed to 14.6 m upon well completion. Groundwater level measured at 2.1 mbgs on November 15, 2013.		15.64														11.6 1 1.6 1
BOREHO	DE 1:	Р1Н S 50	CALE					Ø	A G	olde	r ites						c	Logged: (Hecked: (

LC_PIZDC1307 LC_MW13-1D

MONITORING WELL

LC_PIZDC1308

LC_PIZP1101 LC_MW11(P)-01

						C_MW11(P)
LIENT: Teck Coal Ltd.		PROJECT: GW Assessm	ent - Effluent Ponds		BOREHOLE NO: M	()
RILLER: JR Drilling		LOCATION: Teck - LCO			PROJECT NO: BX0	
RILL/METHOD: DR-12/ Air R	· ·	BOREHOLE LOCATION:			ELEVATION: 1266.0	
AMPLE TYPE Shell	by Tube No Red		Grab Sample			Core
ACKFILL TYPE Bent	onite Pea G	avel Slough	Grout	Ľ	🗌 Drill Cuttings	Sand
€ GASTECH VAPOUR ◆ 200 400 600 800 ■ STANDARD PEN (N) ■ 20 40 60 80 PLASTIC M.C. LIQUII	L SYMBC	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	OTHER COMME	
20 40 60 80	SAND, silty, s brown, dry	ome gravel, trace clay, loose, con	npact, medium	1 2	Top of casing (TO is 1267.06 mASL	DC) elevation
	-gravelly SILT, sandy, s damp	some cobbles, some gravel, comp	pact, grey brown,	2 3 4 5 6	Stick-up = 1.0 m.	-1 -1 -1
		some gravel, compact, medium b obbles, trace FG sand, firm, medi		7 8		1 1 1 1 1
		,	· · · · · · · · · · · · · · · · · · ·	9		-1 -1 -1
• •				10		1 1 1 1 1 1 1 1
7	-damp		_	12		
	-dry		_	13		
↓ · · · · · · · · · · · · · · · · · · ·				14		
	-damp			15	Depth to groundv 30.81 m from TO November 2011 mASL).	
	gravel)	RAVEL, dense, brown grey, mois me gravel, dense, brown grey, we	`	16 17	150 mm steel ca: from surface to 3	sing installed 1 3.5 m.
3	-wet				 ↓ ↓ /ul>	installed from 1
2 3 4 5	Borehole wet	E AT 41.2 m at completion. Monitoring well ins	stalled.			
amec ⁹	AMEC Enviror Medicine Hat, /	ment & Infrastructure	DGGED BY: RH EVIEWED BY: LH		COMPLETION DEF	

CM_MW1

PROJECT: Ph	CL-Clay	LOCATION: PROJECT NO: DRILLING CONTRACTOR: DRILLING TYPE: LOGGED BY: BORING DATE: Cal Symbol SA-Sand	1CT017.098 AquaPro Drilling Ltd. Air Rotary LC s 8/12/2015 to 8/13/2015 c . SS-Sandstone ST-Siltstone Drilling Notes and	DATUM: GROUND ELEV (masl): COLLAR DIP: EOH ELEV. (masl): TOTAL DEPTH (mbgs): TICKUP HEIGHT (magl): ASING STICKUP (magl): Hydraulic Conductivity (m	 -90 1463.25 37.19 0.85 0.85 AREA: Michel Creek Well Installation Sand Chips
-2	Gravel and sand (GM silt. Very dark brown graded, moist, sub-ro non-plastic, non-coh Gravel (GW); Sandy silt. Grayish brown, v graded, dry, sub-ang non-plastic, non-coh Gravel and sand (GM silt. Very dark grayish well graded, moist, ro non-plastic, non-coh Silt and sand (ML); C Very dark grayish bro graded, wet, sub-rou non-plastic, cohesive Clay (CH); Trace sar dark grayish brown, v high-plasticity, cohes	A); Some , well bunded, esive. , trace vell jular, esive. A); Some h brown, bunded, esive. Gravelly. bwn, well nded, e. d. Very wet, sive.	Additional Comments Very fast drilling (through sand) Hit very wet material, holding for 20 - 30 minutes to determine SWL Very wet, firm clay on drillbit at end of first run drillbit at end of first run second run just wet cla added about 50% of the water observed)	<u>n</u>	

-	srk	consulting		ID: MW-1		COOR	DINATES:	6679	969 E \$	5487521 N	Page: 2 of 3
		consuming		DN: CMO			DATUM:			11	
	-			IO: 1CT017.098	G	ROUND EL			0.44		
		eck	CONTRACTO	NG AquaPro Drilling Ltd.			LLAR DIP: EV. (masl):		3 25		
			DRILLING TYF	E: Air Rotary	Т	OTAL DEPT					
PROJECT:	Phase 1 Gr	oundwater Monitoring	LOGGED E			CKUP HEIG					
CLIENT:	Teck Coal	Ltd CMO	BORING DAT	TE: 8/12/2015 to 8/13/201	5 CAS	SING STICK	UP (magl):	0.85	ARE	A: Michel C	reek
		Lithologi	cal Symbo							Well Inst	allation
- C			SA-Sand	SS-Sandstone		Hy	draulic	2/0)		Sand 🗕	Chips
u) u			GV-Gravel	ST-Siltstone		Conduc	ctivity (m			Screen 🚺	Chips/Backfill
Depth (m)		SI-Silt				1E-8 1E-7 1E 6	1E-5	0.0001		PVC	Backfill
				Drilling Notes ar			= = (Pellets Cave	Casing
		Lithology Descr	ption	Additional Comme	ents				1893 - 1898		
- 14 - -				Same clay all the wa bedrock	ay to						
- 16 - - - 18		Siltstone bedrock; BI	ack, wet.	Bedrock is mix of bl	ack						
- - - 20	- · · · · · · · · · · · · · · · · ·			siltstone, grey fin sandstone, and light sandstone							
- 22											
- 24 - -	· _ · _ · _ · · _ · · _ · · _ · · · · ·			Mix of rock chips - I and dark sandstone siltstone					~ MA. V		
- 26											
- 28	· <u> </u>								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

	srk consulting	HOLEI): MW-1		со	ORDIN	IATES:	667	969 E	5487521 N	Page: 3 of 3
	Sin consulting	LOCATION	I: CMO			D	ATUM:	UTI	VI Zon	e 11	
		PROJECT NO	D: 1CT017.098	G	ROUND	ELEV	(masl):	150	0.44		
	Teck	DRILLIN CONTRACTOR	G AquaPro Drill	ing Ltd.		COLLA					
	ICCI					ELEV.					
			E Air Rotary		OTAL DI						
	Phase 1 Groundwater Monitoring	LOGGED B			CKUP HE					Mahala	N
CLIENT:	Teck Coal Ltd CMO	BORING DATE	E: 8/12/2015 to	8/13/2015 CAS	SING STI	CKUP	(magl):	0.85	D ARI	EA: Michel (Геек
	Litholog	gical Symbol								Well Ins	tallation
Ê	CL-Clay	SA-Sand	SS-Sandstone		Cond	Hydra ducti∿	iulic /ity (n	ı∕s)		Sand	Chips
ц Ц	LO-Loam	GV-Gravel	ST-Siltstone							Screen	Chips/Backfil
Depth (m)	SI-Silt				1E-8 1E-7	1E-6	1E-5	0.0001 0.001			Backfill
			Drillin	g Notes and	~ ~	~	~ (Pellets Cave	Casing
	Lithology Desc	ription		al Comments					1/1	Cave	
	Siltstone bedrock;	Silty	Layer of clay	ev bedrock					• کر	. A	
	Black, wet.		at approxima						[{	$\left[\right]$	\sim
- 30	Siltstone bedrock; I	Black, dry.	I I							· m·	DD-
-	- · · ·		Switch t	o gray							. ~ ~
			sandsto						b		\diamond
	· ·										
-											
- 32											
_	· · · · ·										
	<u> </u>										
-	- · ·										
-	·····										
- 34											
	· — · —										
-	· · · · · ·									8-Aug 15	
-	-··										
-	<u> </u>		Intermittent d	usty zones						5-Aug 45	
20			for las	t 3 m						4-Aug 15	
- 36											
-											
-	·	F									
		Ī	-inished drilli								
	-··		potentially	wet area							
- 38											

Report 1 - Detailed Well Record

RG_01-03 (Elkford Supply Well)

America (1997)	
	Construction Date: 1979-07-01 00:00:00
Well Tag Number: 42698	Duillen.
Owner: VILLAGE OF ELKFORD	Driller:
OWNEL, ATTTYER OL FTVLOKD	Well Identification Plate Number: Plate Attached By:
Address: BOIVIN CK & ELK RIVER	Where Plate Attached:
AUTESS. DOIVIN CV & ETV VIVEV	MIELE FLACE ACCACHEd.
Area:	PRODUCTION DATA AT TIME OF DRILLING:
	Well Yield: 0 (Driller's Estimate)
WELL LOCATION:	Development Method:
Land District	Pump Test Info Flag: Y
District Lot: 12378 Plan: Lot:	Artesian Flow:
Township: Section: Range:	Artesian Pressure (ft):
Indian Reserve: Meridian: Block:	Static Level:
Quarter:	
Island:	WATER QUALITY:
BCGS Number (NAD 83): Well: 5	Character:
	Colour:
Class of Well:	Odour:
Subclass of Well:	Well Disinfected: N
Orientation of Well:	EMS ID:
Status of Well: New	Water Chemistry Info Flag: Y
Well Use:	Field Chemistry Info Flag:
Observation Well Number:	Site Info (SEAM):
Observation Well Status:	
Construction Method:	Water Utility:
Diameter: 0.0 inches	Water Supply System Name:
Casing drive shoe:	Water Supply System Well Name:
Well Depth: 0 feet Elevation: 0 feet (ASL)	CILDEACE CEAL .
Final Casing Stick Up: inches	SURFACE SEAL: Flag:
Well Cap Type:	Material:
Bedrock Depth: feet	Method:
Lithology Info Flag:	Depth (ft):
File Info Flag:	Thickness (in):
Sieve Info Flag:	(111).
Screen Info Flag:	WELL CLOSURE INFORMATION:
- 0 -	Reason For Closure:
Site Info Details:	Method of Closure:
Other Info Flag:	Closure Sealant Material:
Other Info Details:	Closure Backfill Material:
	Details of Closure:
Screen from to feet Type	Slot Size
Casing from to feet Diame	ter Material Drive Shoe
GENERAL REMARKS: YIELD:NO DATA EXPLORATORY & WATER W	ELL
LITHOLOGY INFORMATION: From 0 to 0 Ft. MEASURED I From 0 to 12.2 Ft. DRY MED. F From 0 to 0 Ft. GRAVEL.	N METERS INE SAND SOME SILT TRACE OF

h				
-				DRY GRAVEL SOME SILT & TRACE OF SAND.
From				GRAVEL WELL ROUNDED TO @ 1.5cm
From				DRY GRAVEL SOME BOULDERS & SILT, TRACE
From	0 t	0 0	Ft.	OF SAND.
From	21.3 t	22.9	Ft.	SANDY GRAVEL SOME SILT & CLAY
From	22.9 t	33.5	Ft.	DRY GRAVEL, SOME SAND, TRACE OF SILT &
From	0 t	0 0	Ft.	BROWN CLAY.
From	33.5 t	47.2	Ft.	MOIST STICKY GRAVEL, SOME SAND, TRACE OF
From	0 t	0 0	Ft.	SILT & CLAY.
From	47.2 t	48.8	Ft.	BOULDER, PREDOMINANTLY SHALE
From	48.8 t	57.3	Ft.	GRAVEL SOME SAND, TRACE OF SILT, SUB-
From	0 t	0 0	Ft.	-ROUNDED PEBBLES TO @ 2cm.
From	57.3 t	67.1	Ft.	SANDY GRAVEL WITH SOME COBBLES & TRACE
From	0 t	0 0	Ft.	OF SILT.SAND IS MOSTLY COARSE.GRAVEL
From	0 t	0 0	Ft.	FROM FINE TO COARSE.
From	67.1 t	70.7	Ft.	SANDY GRAVEL & TRACE OF SILT.ABUNDENT
From	0 t	0 0	Ft.	MUD & FINE SAND.
From	70.7 t	0 77.4	Ft.	SANDY GRAVEL WITH SOME COBBLES & TRACE
From	0 t	0 0	Ft.	OF SILT.
From	77.4 t	.0 79.3	Ft.	SANDY GRAVEL WITH SOME FINE SAND & SILT
From	79.3 t	81.4	Ft.	SANDY GRAVEL WITH SOME COBBLES & TRACE
From	0 t	0 0	Ft.	OF SILT.
From	81.4 t	84.4	Ft.	SANDY GRAVEL WITH TRACE COBBLES & SILT.
From	0 t	0 0	Ft.	SUBROUNDED GRAVEL 1-3 cm.
From	84.4 t	0 89.3	Ft.	FINE SANDY GRAVEL TRACE COBBLES & SILT
				SILTY SAND WITH SOME GRAVEL & COBBLES

- Return to Main
- Return to Search Options
- Return to Search Criteria

Information Disclaimer

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments. COLUMBIA

Report 1 - Detailed Well Record

<pre>database wein Record RG_DW-01-0 RG_DW-01-0 tte: 1985-07-22 00:00:00.0 a Drilling Ltd. ttion Plate Number: By: ached: AT TIME OF DRILLING:5 (Driller's Estimate) Gallons per Minute (U.S./Imperial) hod: Flag: rre (ft): 2 feet df N Info Flag: info Flag:): stem Name: stem Well Name:</pre>
<pre>s Drilling Ltd. ttion Plate Number: By: ached: AT TIME OF DRILLING: .5 (Driller's Estimate) Gallons per Minute (U.S./Imperial) hod: Flag: re (ft): 2 feet df N Info Flag: info Flag:): stem Name:</pre>
AT TIME OF DRILLING: 5 (Driller's Estimate) Gallons per Minute (U.S./Imperial) hod: Flag: rre (ft): .2 feet d: N Info Flag: Info Flag:): stem Name:
<pre>.5 (Driller's Estimate) Gallons per Minute (U.S./Imperial) hod: Flag: rre (ft): 2 feet d: N Info Flag: Info Flag:): stem Name:</pre>
eet To: feet FORMATION: ure: re: Material: 1 Material: ure:
Slot Size 0
0
0
0
Material Drive Shoe null null
1 1

Return to Search Options

Return to Search Criteria

Information Disclaimer

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

https://a100.gov.bc.ca/pub/wells/wellsreport1.do;jsessionid=9n... 2014/02/27

Report 1 - Detailed Well Record

RG_DW-02-20

Casing from	to feet 60	Diameter 6	Material Steel	Drive Shoe
	to feet	Туре	Slot Size	
Well Tag Number: 1019 Gwner; ELK VALLEY FLY Address: Area: WELL LOCATION: KOOTENAY Land Distric District Lot: 4144 PI Township: Section: Indian Reserve: Meri Quarter: Island: BCGS Number (NAD 27): Class of Well: Water Subclass of Well: Mater Subclass of Well: Dom Orientation of Well: Status of Well: New Well Use: Private Dom Observation Well Stat Construction Method: Diameter: inches Casing drive shoe: Y Well Depth: 60 feet Elevation: feet Final Casing Stick Up Well Cap Type: Bedrock Depth: feet Lithology Info Flag: N Sizeen Info Flag: N Sizeen Info Details: Other Info Details: Other Info Details:	TING CLUB t an: Lot: Range: dian: Block: 082G086231 Well: 4 supply testic Vertical testic er: us: (ASL) : inches N	Driller: J. R. D. Well Identificat. Plate Attached By Where Plate Attack PRODUCTION DATA A Well Yield: 6 Development Metho Pump Test Infor F Artesian Pressur Static Level: 7 1 WATER QUALITY: Character: Colour: Well Disinfected: EMS ID: Water Chemistry 1 Field Chemistry 1 Site Info (SEAM): Water Supply Syst Water Supply Syst Water Supply Syst Water aupply Syst Water Supply Syst Water Supply Syst Water and (ft): Thickness (in): Liner from WELL CLOSURE INFO Reason For Closur Method of Closure Closure Backfill Details of Closur	<pre>ion Plate Number: y: ched: AT TIME OF DRILLING: 0 (Driller's Estimate) i d: Air lifting lag: N a (ft): feet : nfo Flag: N fnfo Flag: : : mem Name: :em Well Name: : To: feet prMATION: re: : : aterial: Material: 'e:</pre>	U.S. Gallons per Minute

GENERAL REMARKS: MEASUREMENTS: TOP OF CASING. PITLESS UNIT: WELDED. SHOE: BARBER. WATER QUALITY AND QUANTITY NOT GUARANTEED BY CONTRACTOR. THOLOGY INFORMATION.

From	0	ta	47	Ft,	gravel
From	47	to	52	Ft.	clay
From	52	to	60	Ft.	gravel

Return to Main

- Return to Search Options
- · Return to Search Criteria

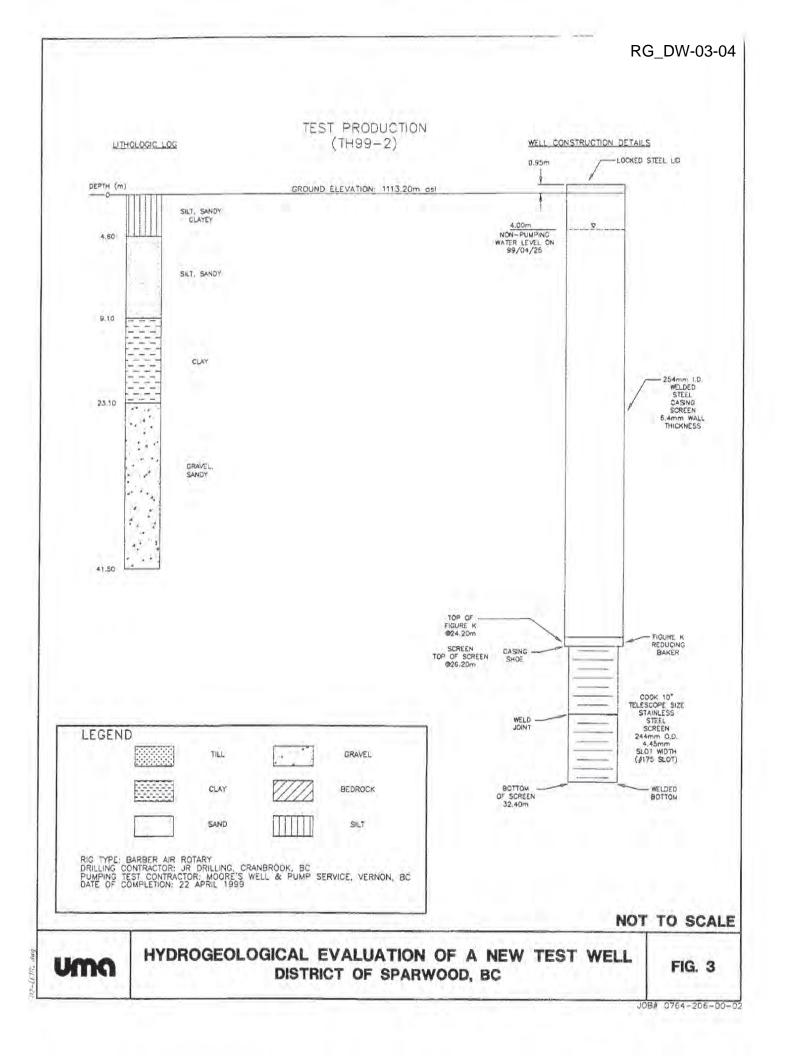
Information Disclaimer

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

Report 1 - Detailed Well Record

RG_DW-03-01

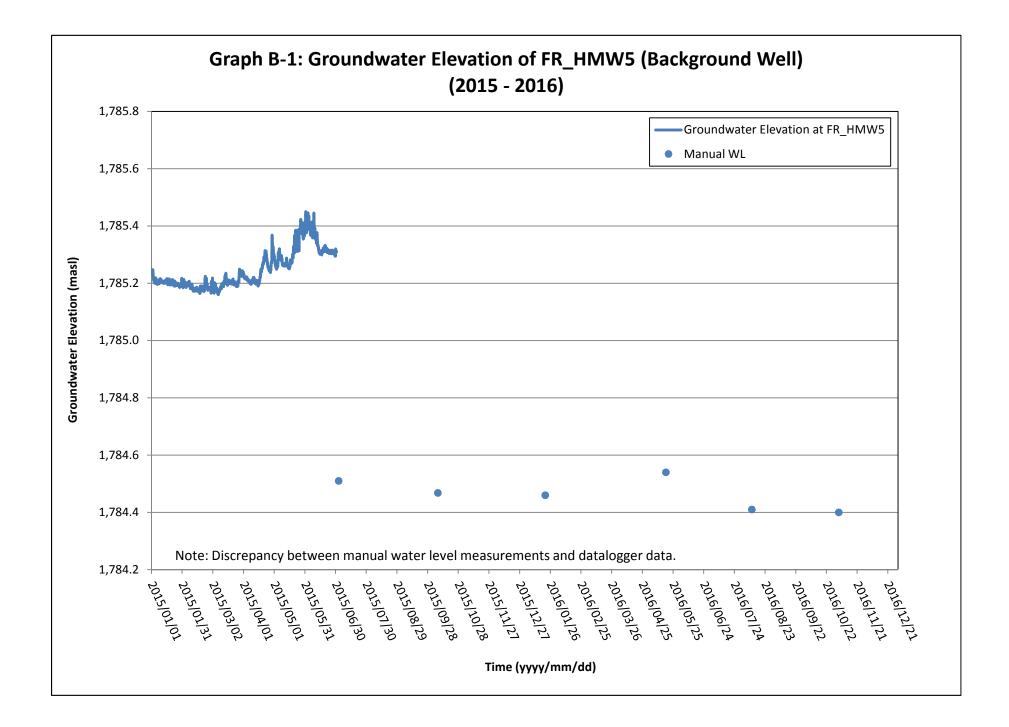
46 50 Casing from to feet Diam 0 46 6	eter Material Drive Shoe Steel Y
Screen from to feet Type	Slot Size 30
	Details of Closure:
Dther Info Details:	Closure Backfill Material:
Other Info Flag:	Closure Sealant Material:
Site Info Details:	Method of Closure:
Screen into riag. 1	Reason For Closure:
Sieve info flag: N Screen Info Flag: Y	WELL CLOSURE INFORMATION:
rile info flag: N Sieve Info Flag: N	DINGLITOW IO. IEEU
Lithology Info Flag: Y File Info Flag: N	Thickness (in): 2 inches Liner from To: feet
Bedrock Depth: feet	Depth (ft): 15 feet Thickness (in): 2 inches
Well Cap Type: BOLT ON	Method: Poured
Final Casing Stick Up: 12 inches	Material: Bentonite clay
Elevation: 3697 feet (ASL)	Flag: Y
Well Depth: 50 feet	SURFACE SEAL:
Casing drive shoe: Y	
Diameter: inches	Water Supply System Well Name:
Construction Method:	Water Supply System Name:
Observation Well Status:	Water Utility:
Observation Well Number:	
Well Use: Water Supply System	Site Info (SEAM):
Licence General Status: UNLICENSED	Field Chemistry Info Flag:
Status of Well: New	Water Chemistry Info Flag: N
Drientation of Well: Vertical	EMS ID:
Subclass of Well: Domestic	Well Disinfected: N
Class of Well: Water supply	Odour:
	Colour:
BCGS Number (NAD 83): 082G076233 Well: 9	Character:
Island:	WATER QUALITY:
Quarter:	
Indian Reserve: Meridian: Block:	Static Level:
Township: Section: Range:	Artesian Pressure (ft):
District Lot: 4588 Plan: 1358 & NEP 64776 Lot: 13 8	Artesian Flow:
KOOTENAY Land District	Pump Test Info Flag: N
WELL LOCATION:	Development Method: Air lifting
	Well Yield: 30 (Driller's Estimate) U.S. Gallons per Minu
Area: SPARWOOD	PRODUCTION DATA AT TIME OF DRILLING:
Address: 100 INDUSTRIAL ROAD #1	Where Plate Attached: TOP OF CASING
	Plate Attached By: MIKE CALDWELL
Owner: SPARDELL MOBILE HOME PARK LTD	Well Identification Plate Number: 26287
	Driller: Owen's Drilling Ltd.
ell Tag Number: 94779	
	Construction Date: 2008-02-28 00:00:00

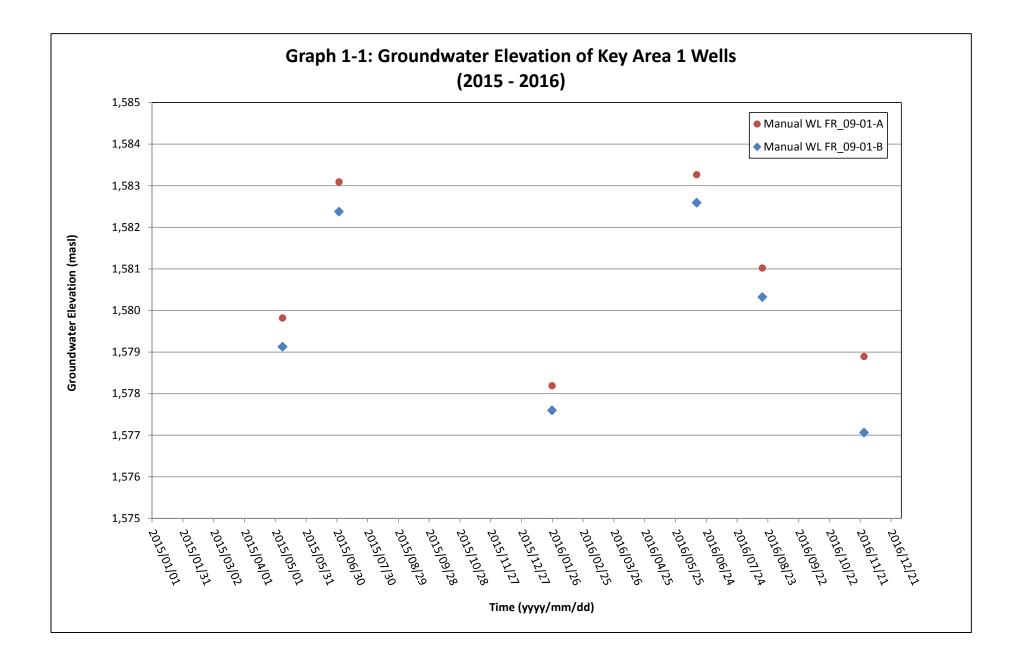

GENERAL	GENERAL REMARKS:								
LITHOLOGY INFORMATION:									
From	0 to	15 Ft.	Medium CLAY & TOP SOIL brown						
From	15 to	30 Ft.	Medium brown						
From	30 to	45 Ft.	Medium CLAY & GRAVEL brown						
From	45 to		Medium 30 U.S. Gallons per Minute	brown					

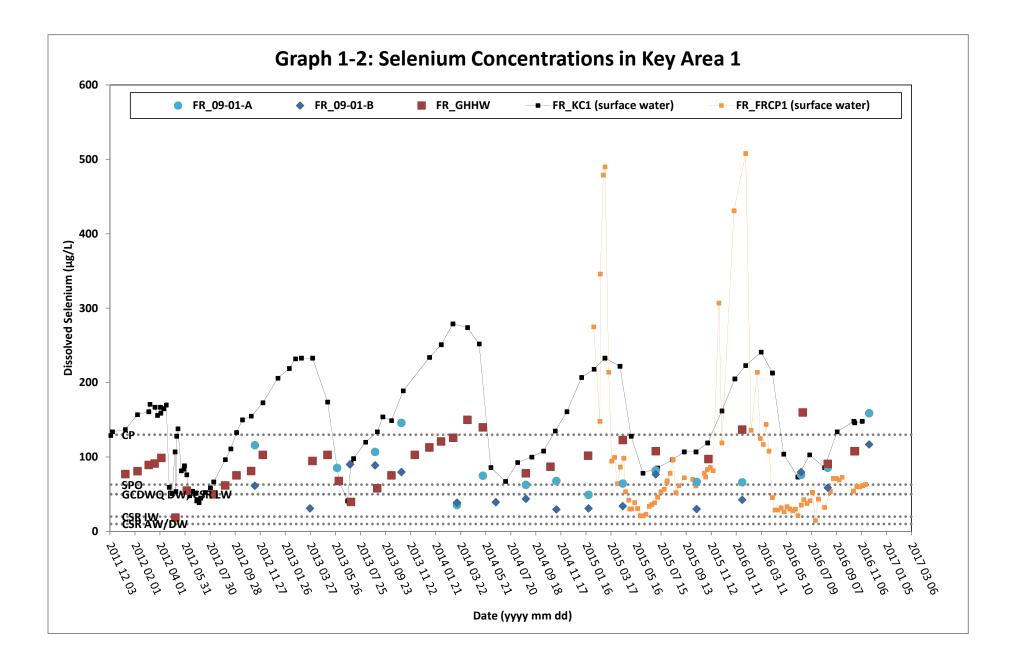
Return to Main

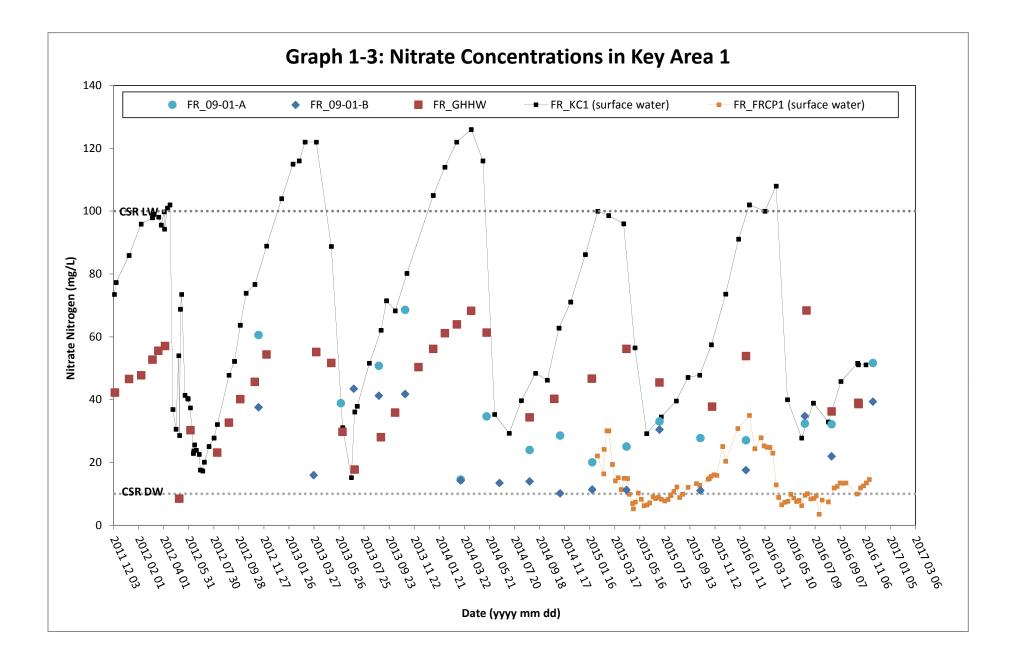
- Return to Search Options
- Return to Search Criteria

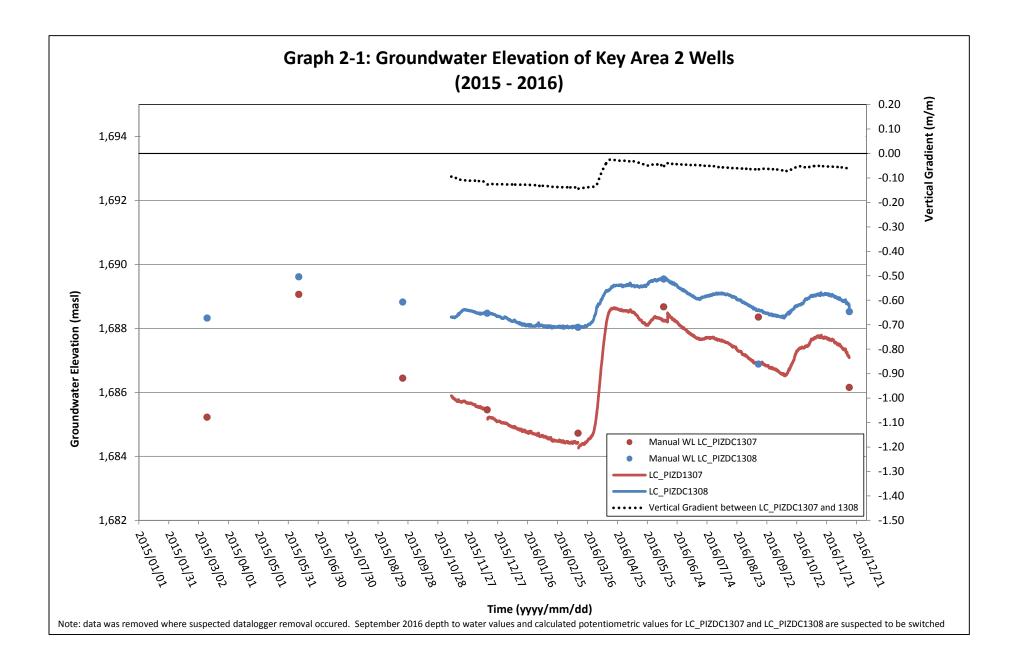
Information Disclaimer

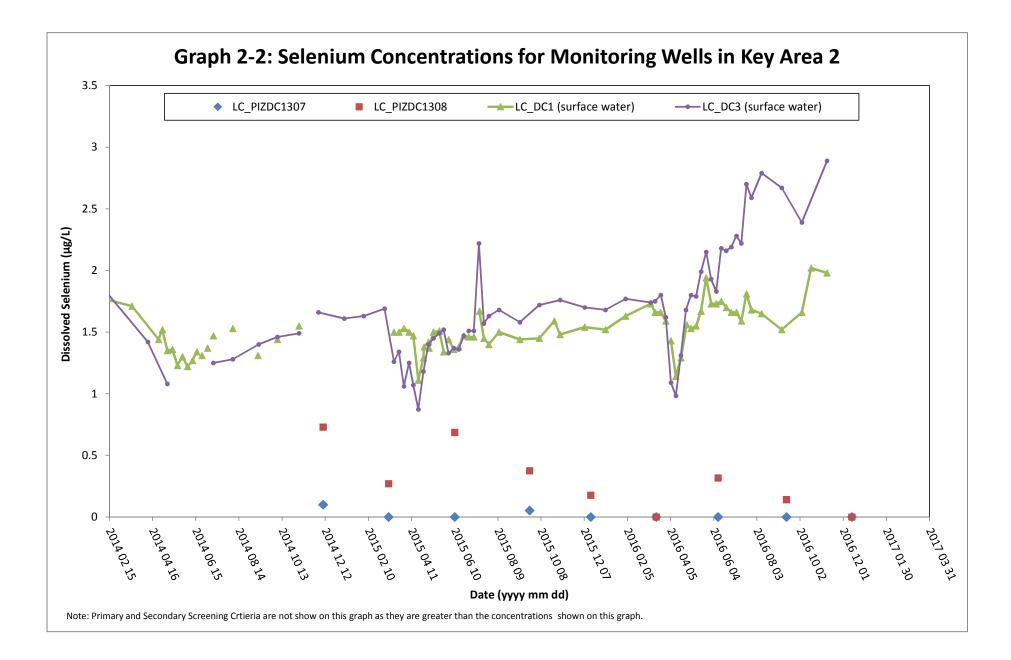

The Province disclaims all responsibility for the accuracy of information provided. Information provided should not be used as a basis for making financial or any other commitments.

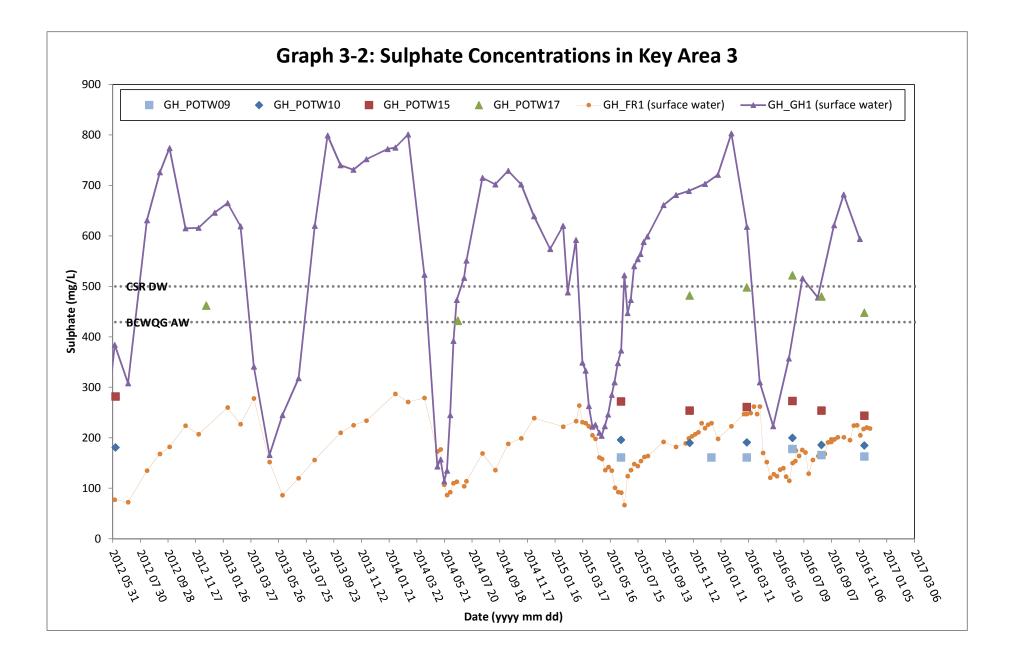


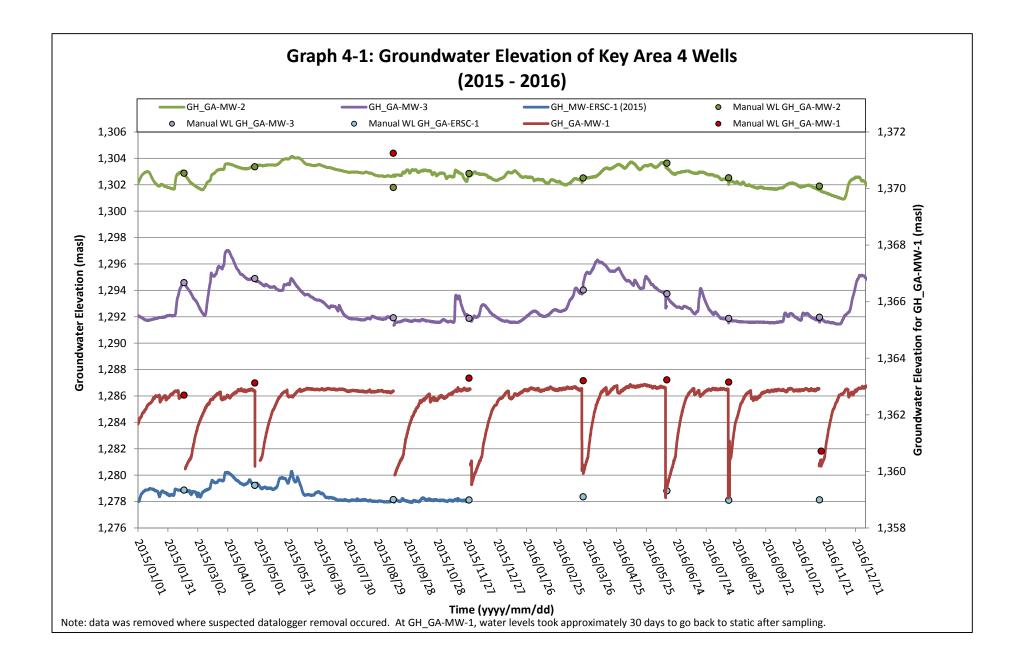

Appendix II

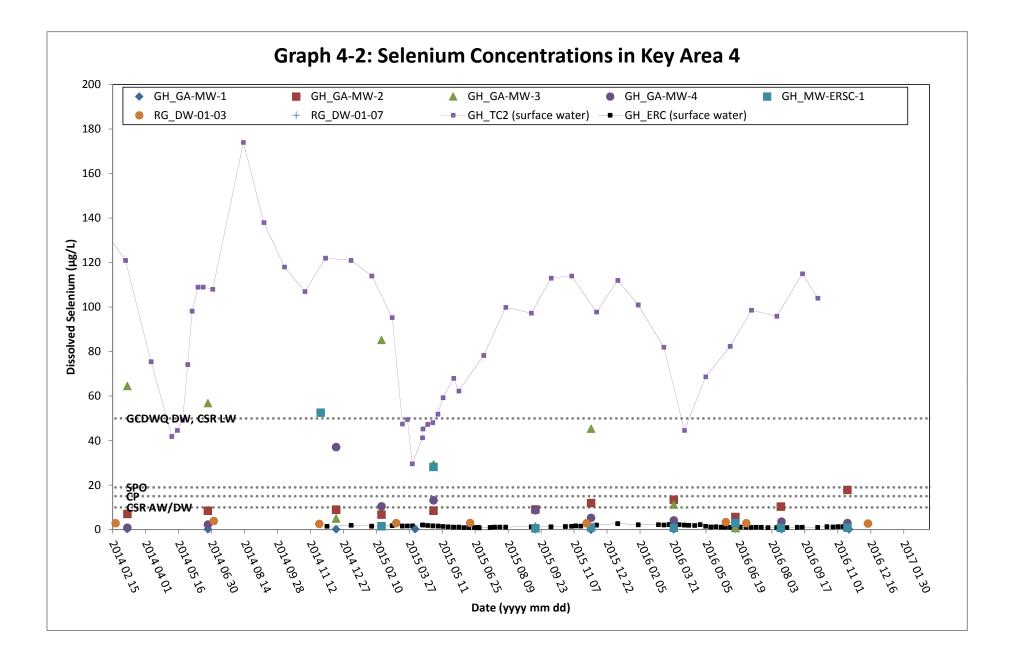

Time-Series Graphs

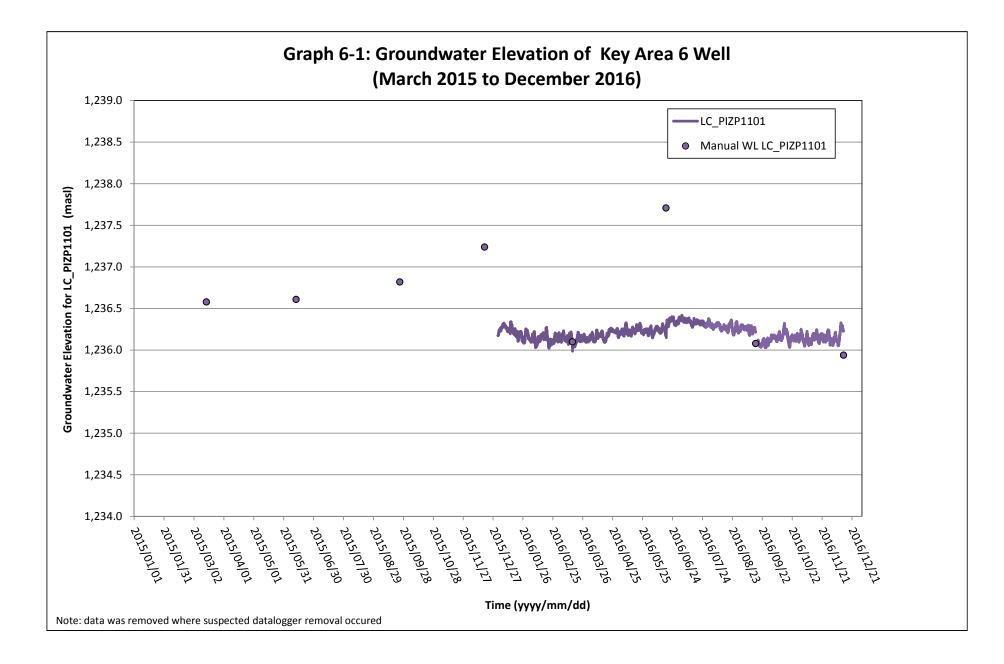

- Graph B-1: Groundwater Elevation of FR_HWM5 (Background Well) (2015 2016)
- Graph 1-1: Groundwater Elevation of Key Area 1 Wells (2015 2016)
- Graph 1-2: Selenium Concentration in Key Area 1
- Graph 1-3: Nitrate Concentrations in Key Area 1
- Graph 2-1: Groundwater Elevation of Key Area 2 Wells (2015 2016)
- Graph 2-2: Selenium Concentrations in Key Area 2
- Graph 3-1: Selenium Concentrations in Key Area 3
- Graph 3-2: Sulphate Concentrations in Key Area 3
- Graph 4-1: Groundwater Elevation of Key Area 4 Wells (2015 2016)
- Graph 4-2: Selenium Concentrations in Key Area 4
- Graph 6-1: Groundwater Elevation of Key Area 6 Well (March 2015 to December 2016)
- Graph 6-2: Selenium Concentration in Key Area 6
- Graph 7-1: Groundwater Elevation of Key Area 7 Well (2015 2016)
- Graph 7-2: Selenium Concentrations in Key Area 7
- Graph 8-1: Groundwater Elevation of Key Area 8 Wells (2015 2016)
- Graph 8-2: Selenium Concentrations in Key Area 8
- Graph 8-3: Sulphate Concentrations in Key Area 8
- Graph 9-1: Groundwater Elevation of Key Area 9 Wells (2015 2016)
- Graph 9-2(1): Selenium Concentrations in Key Area 9
- > Graph 9-2(2): Selenium Concentrations in Key Area 9 (Low concentration)
- Graph 9-3: Nitrate Concentrations in Key Area 9
- Graph 9-4: Sulphate Concentrations in Key Area 9
- Graph 10-1: Groundwater Elevation of Key Area 10 Wells (2015 2016)
- Graph 10-2: Selenium Concentrations in Key Area 10
- Graph 11-1: Groundwater Elevation of Key Area 11 Wells (2015 2016)
- Graph 11-2: Selenium Concentrations in Key Area 11
- Graph 11-3: Sulphate Concentrations in Key Area 11
- Graph 12-1: Groundwater Elevation and Pumping Rate in Key Area 12 (2015 2016)
- Graph 12-2: Selenium Concentrations in Key Area 12 and Elk River Water Level

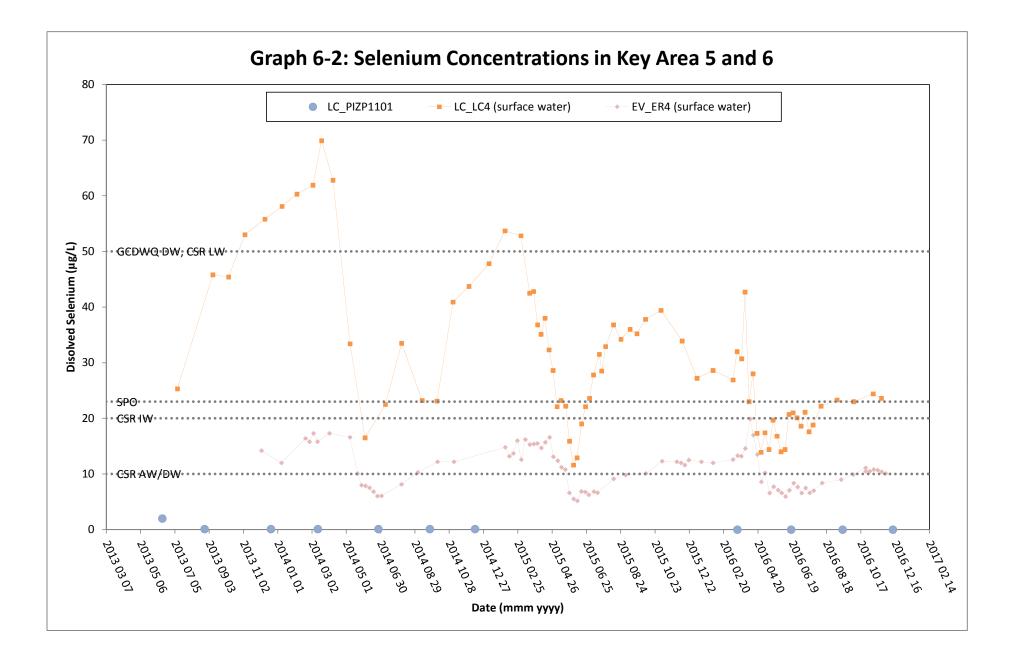


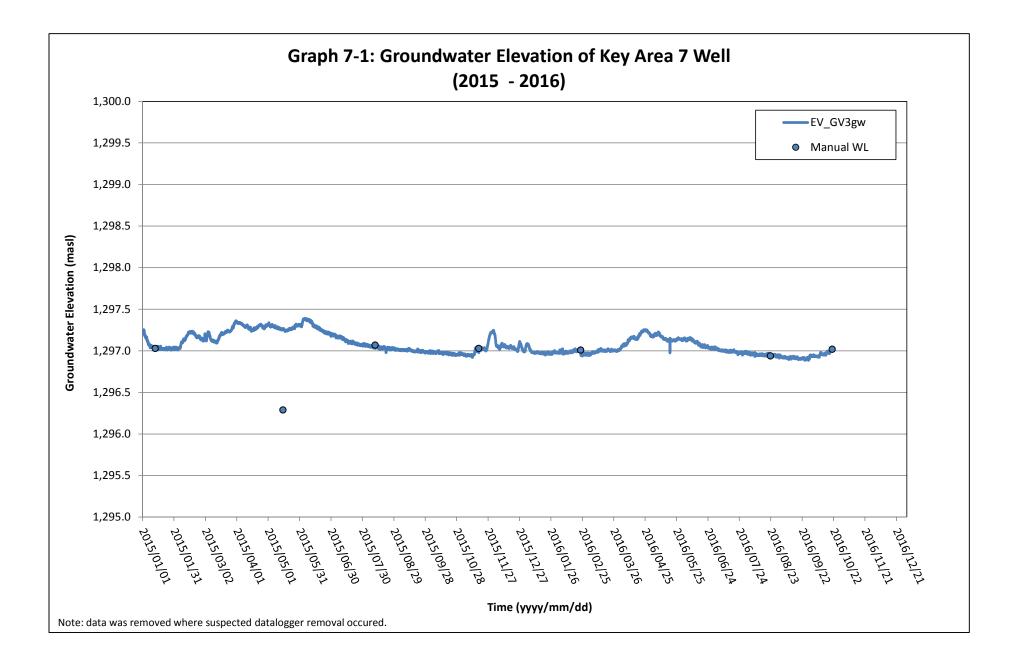


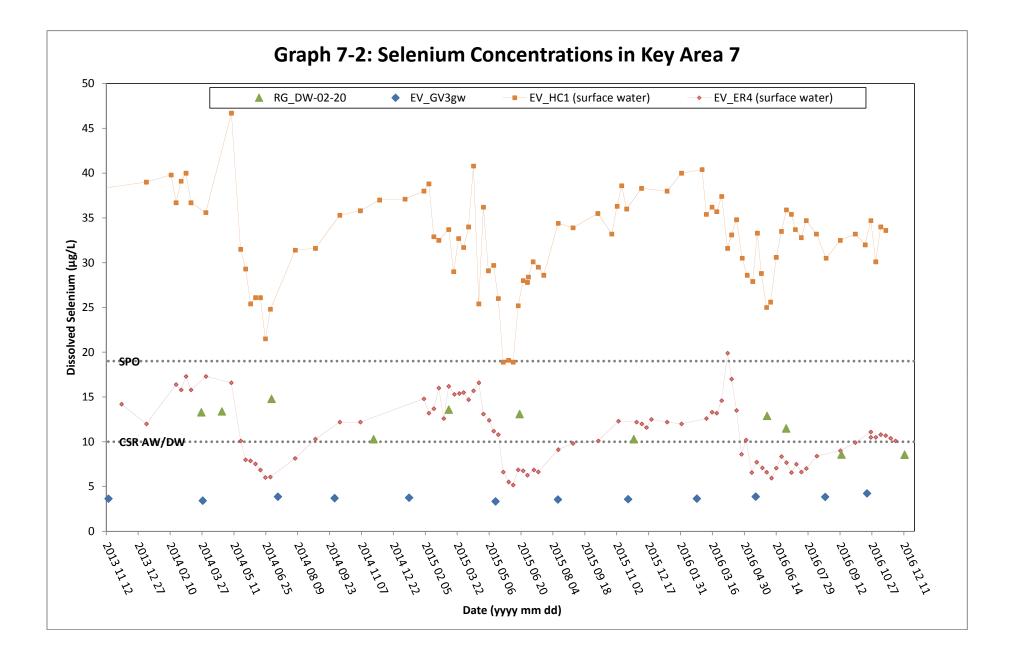


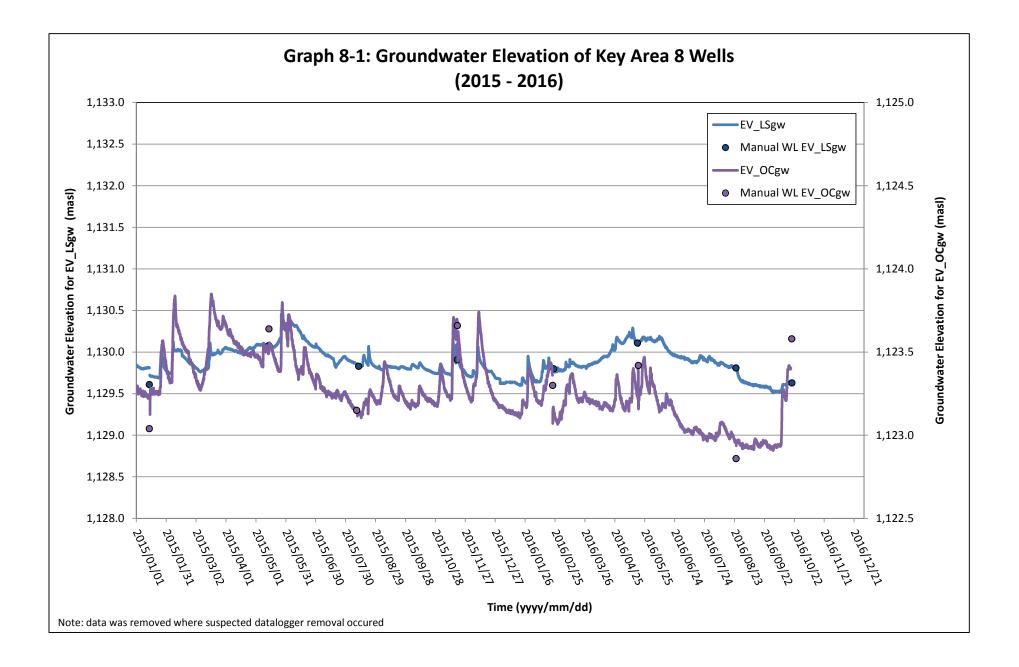


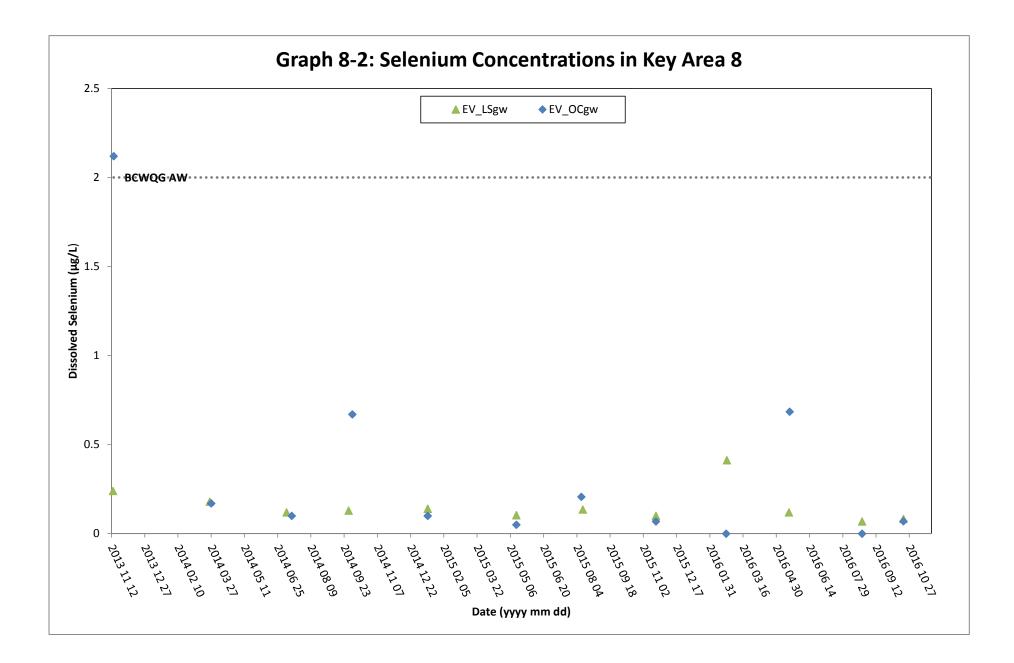


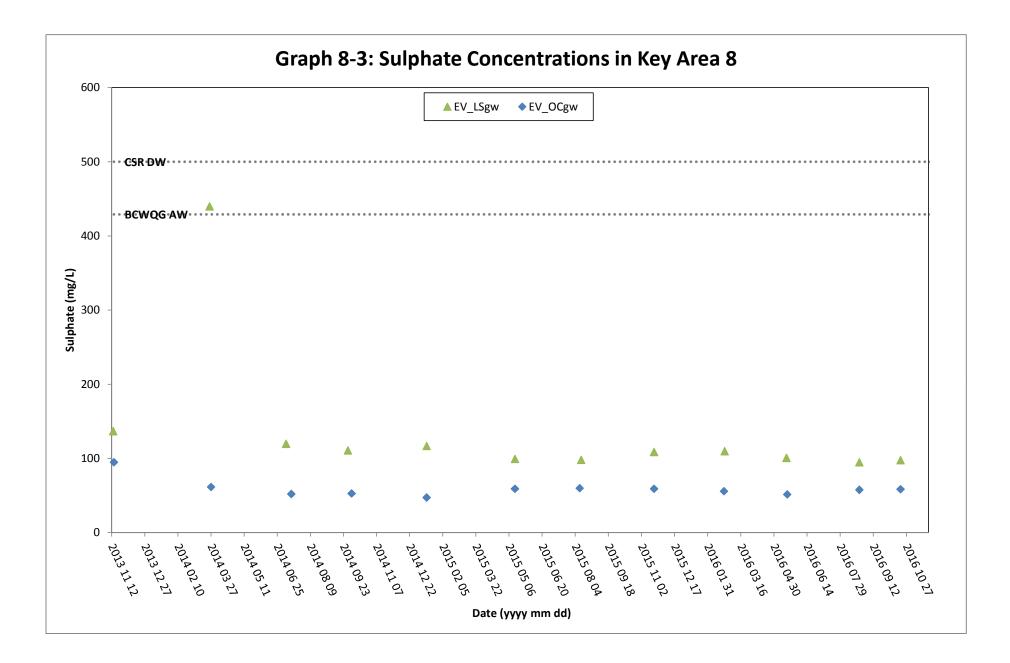


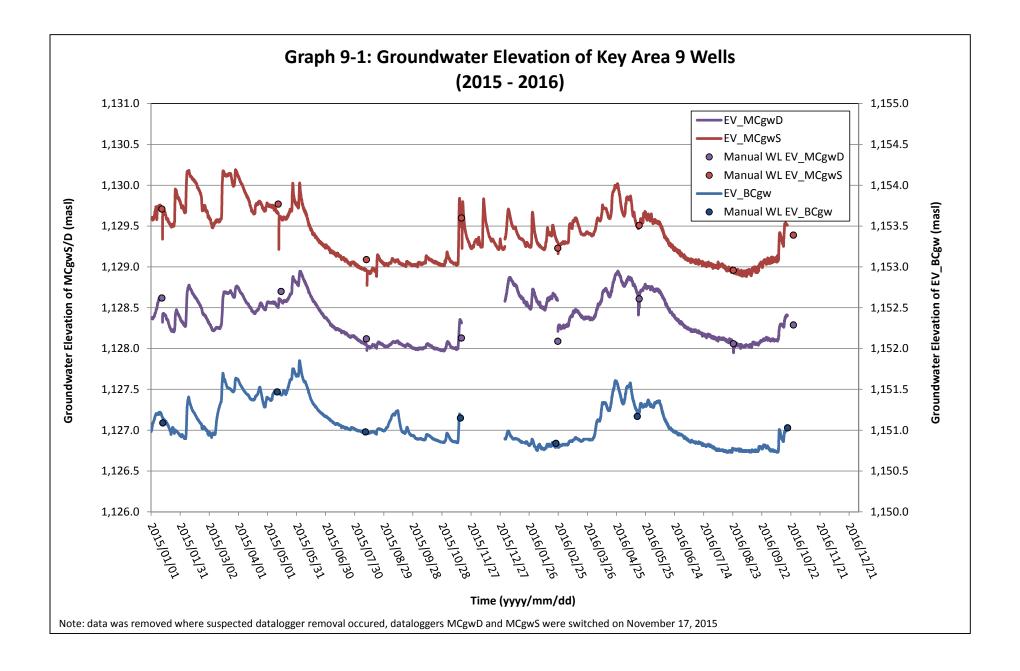


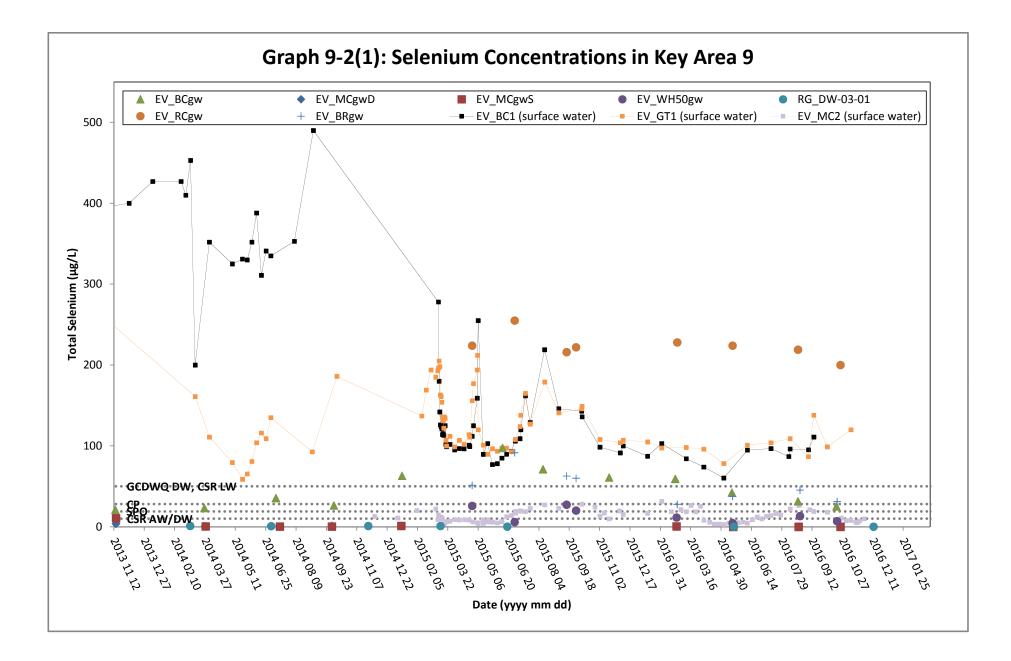


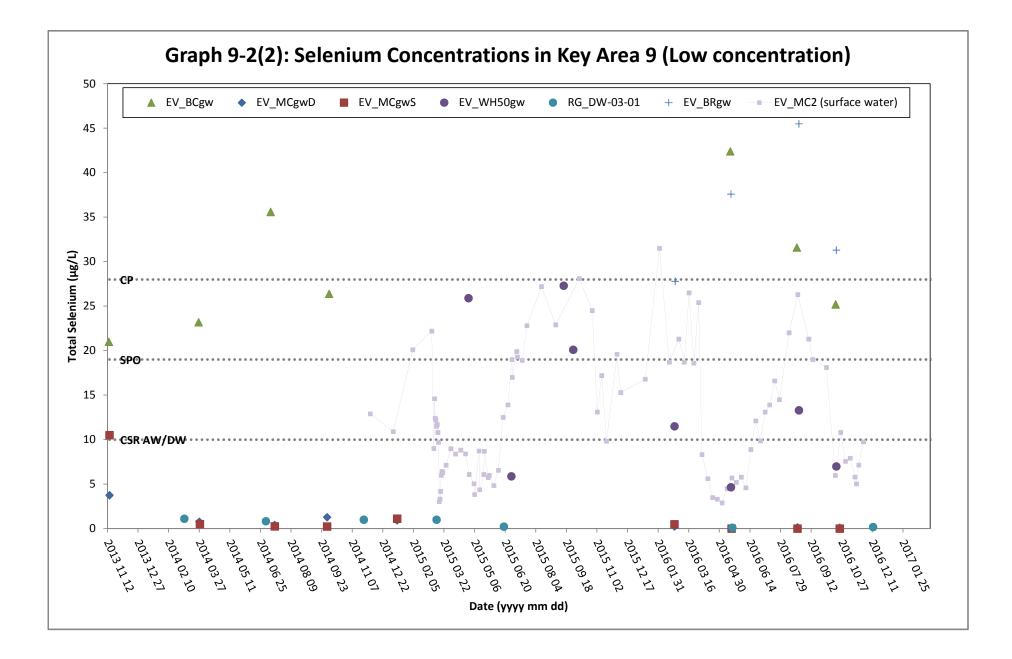


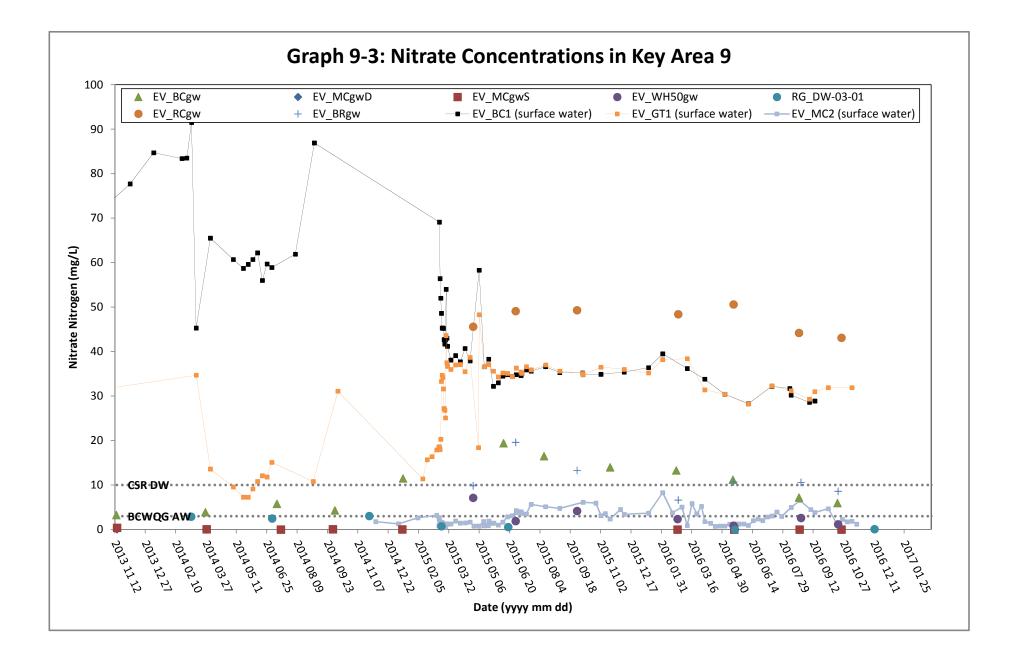


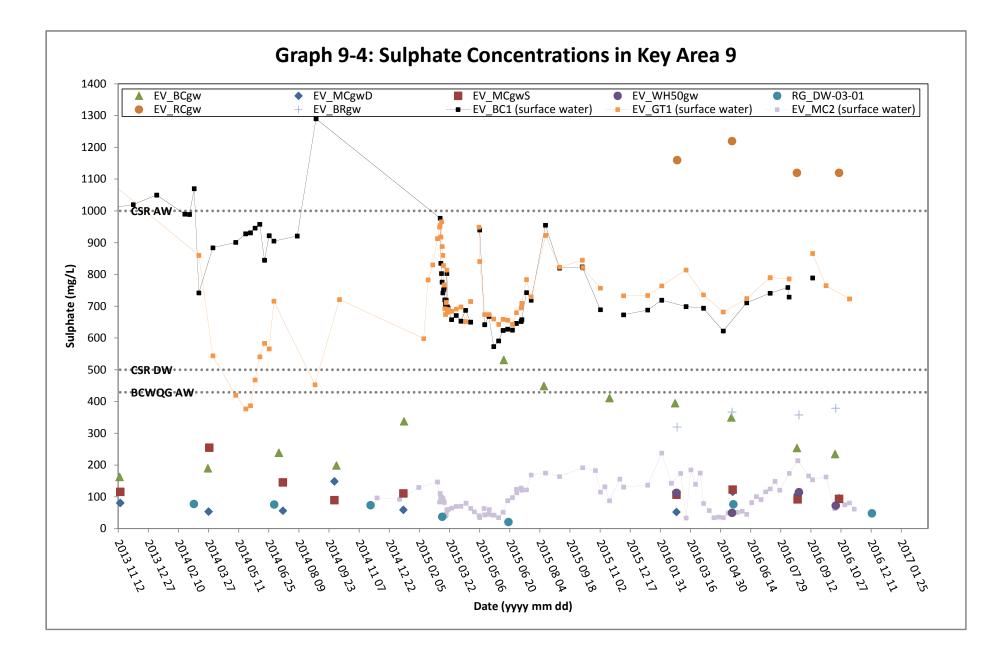


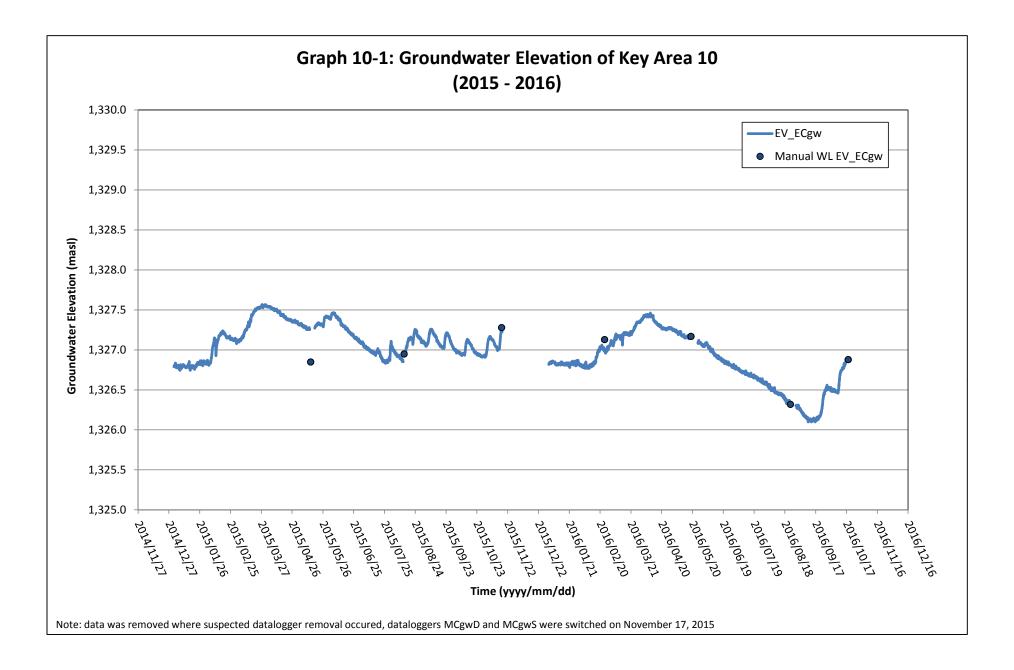


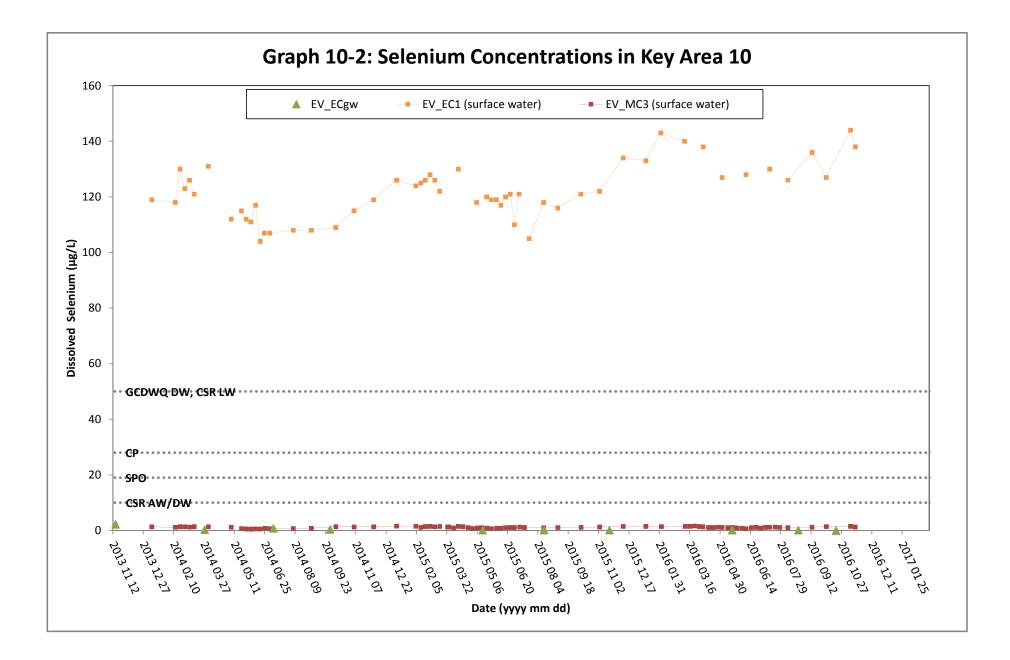


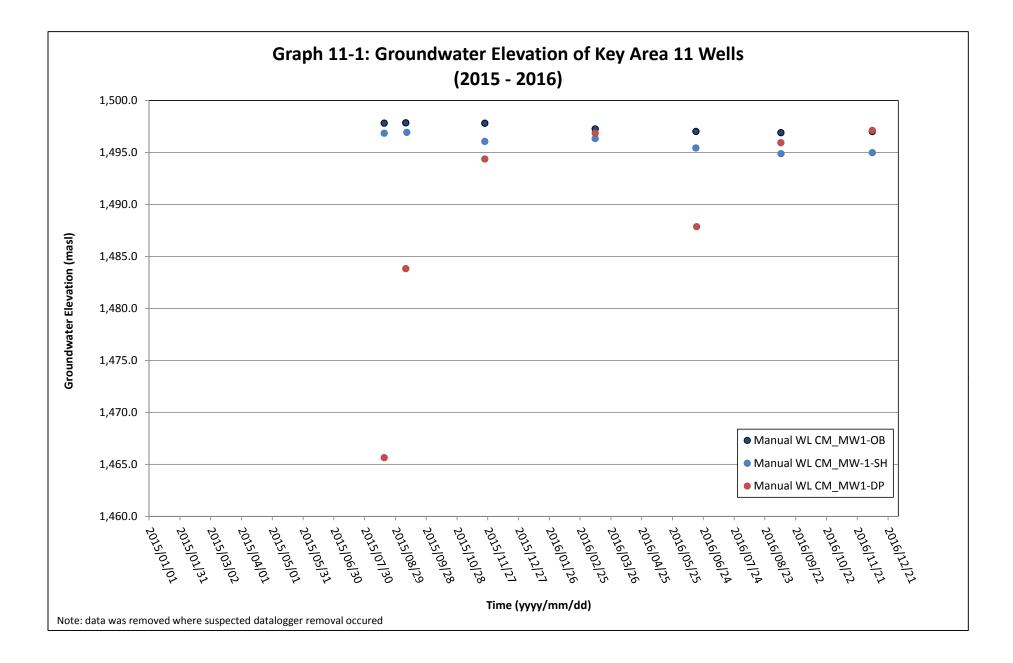


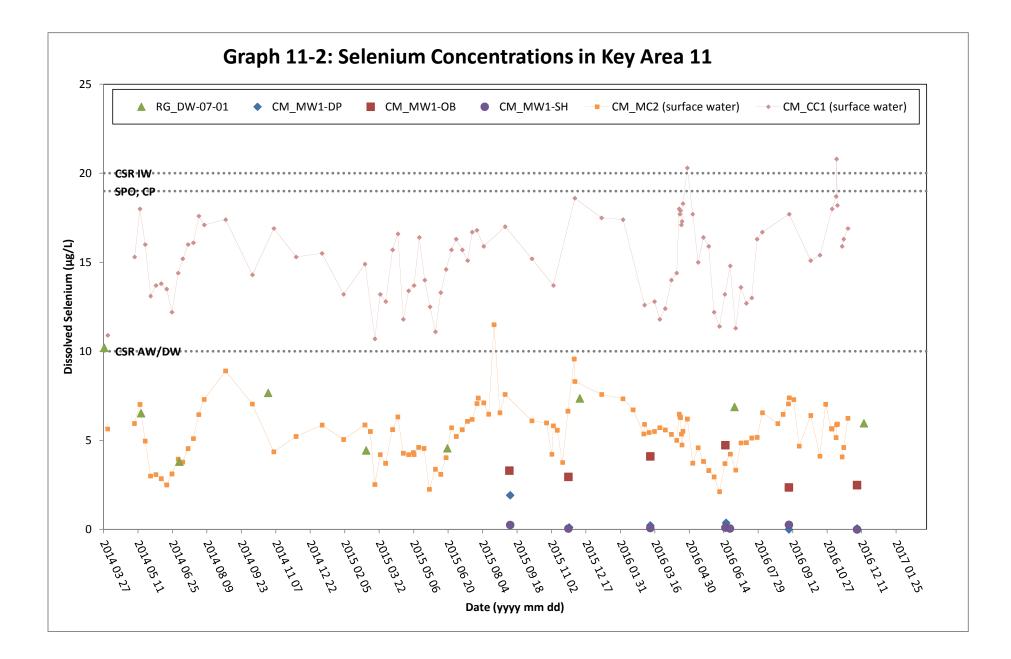


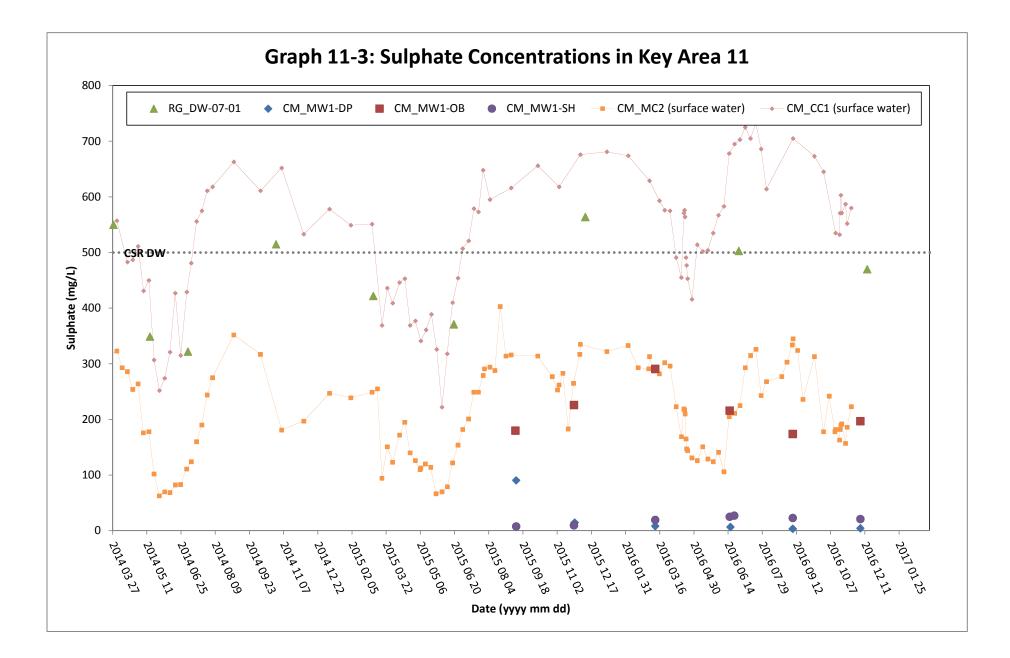


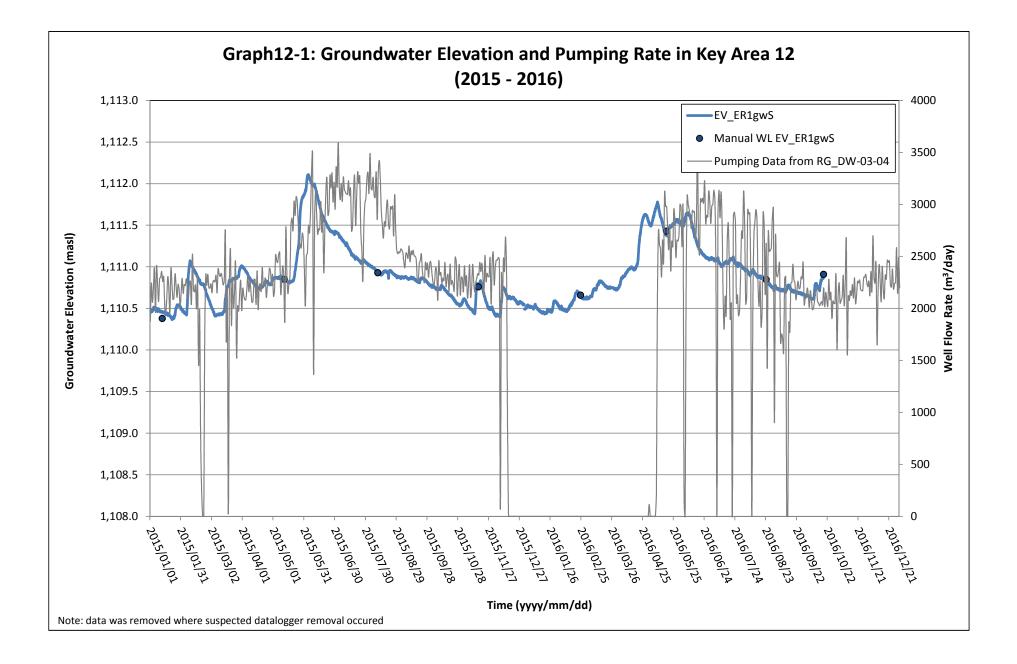


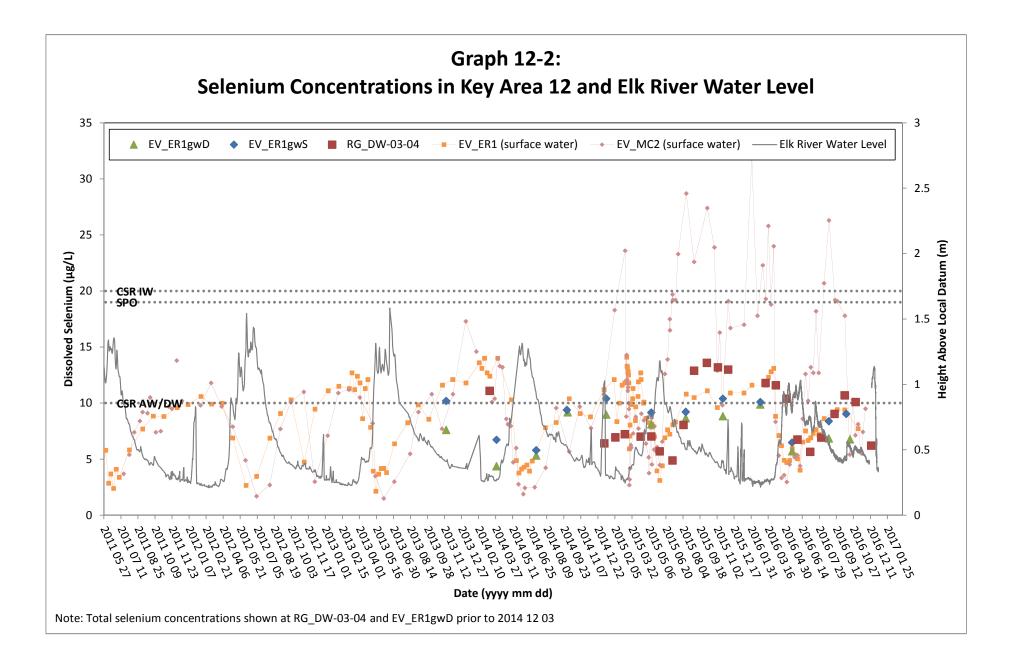






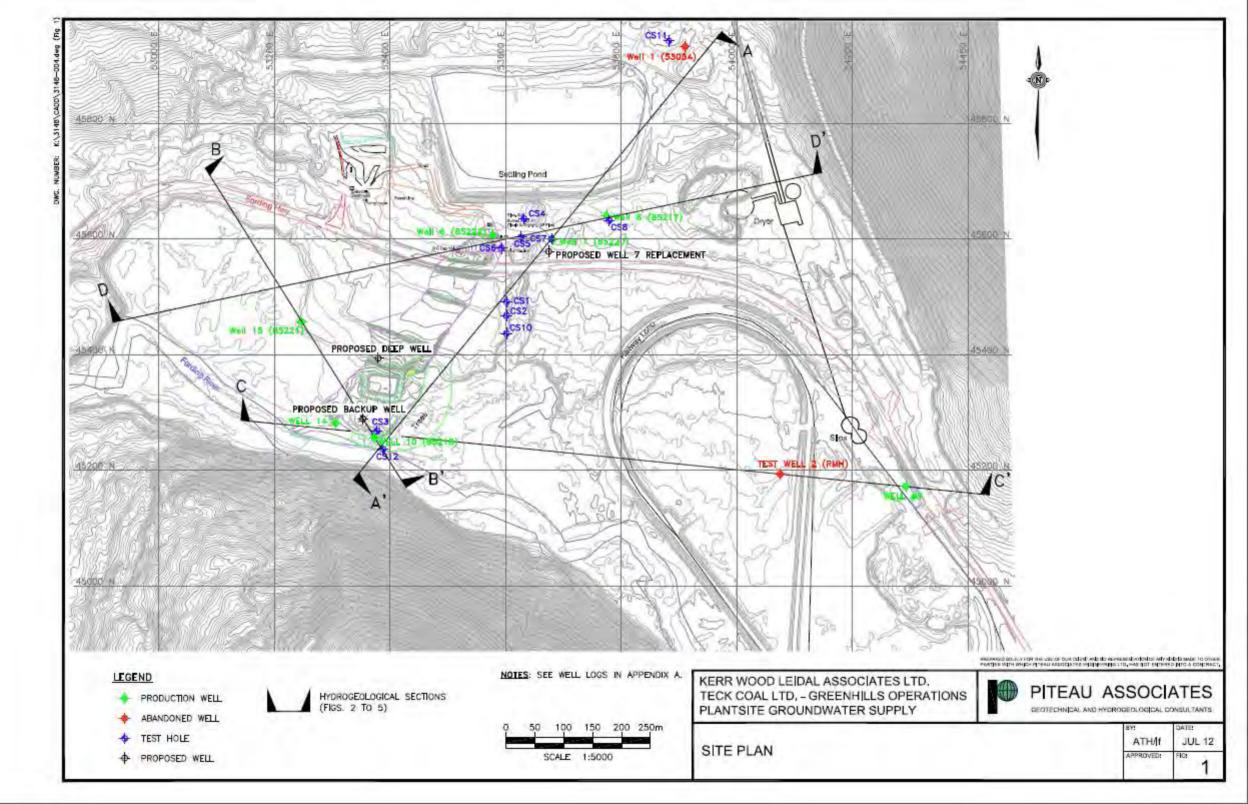


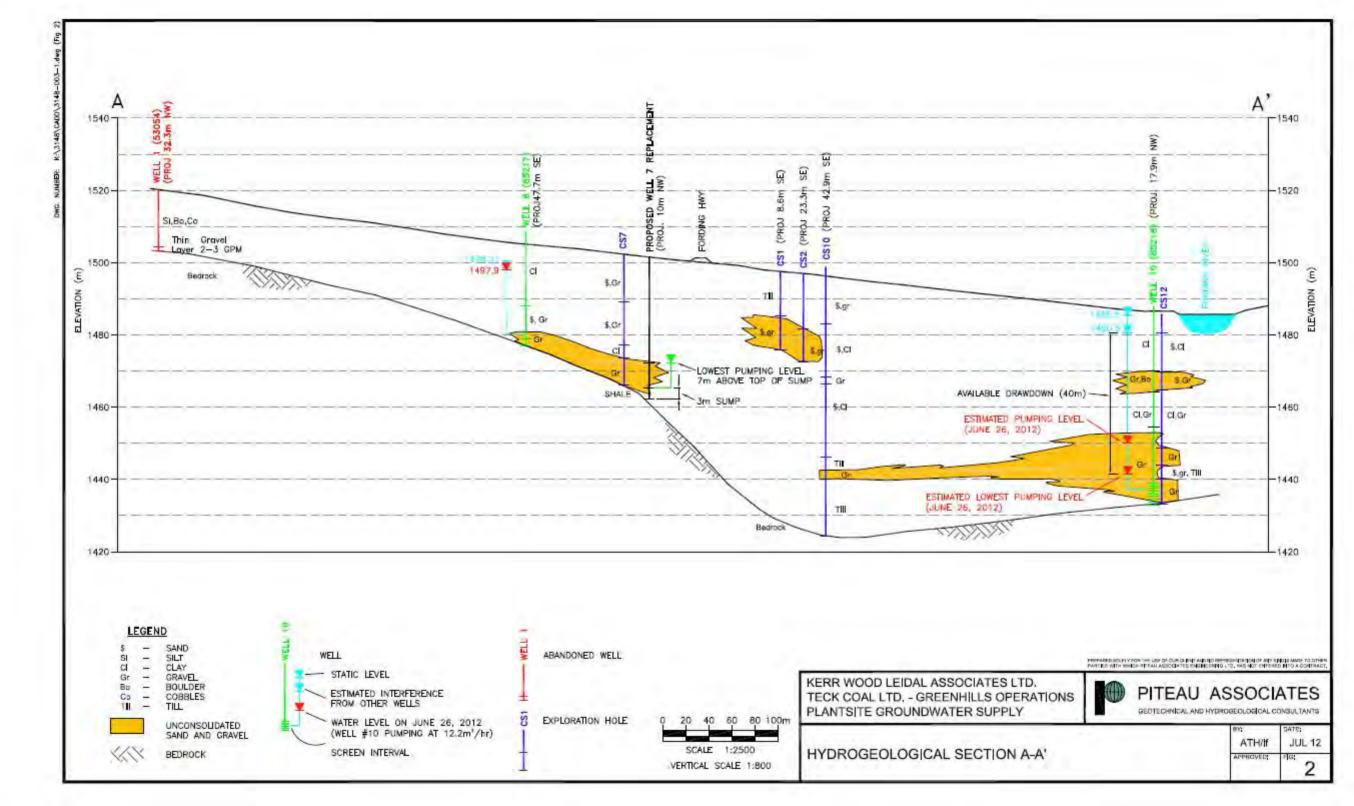


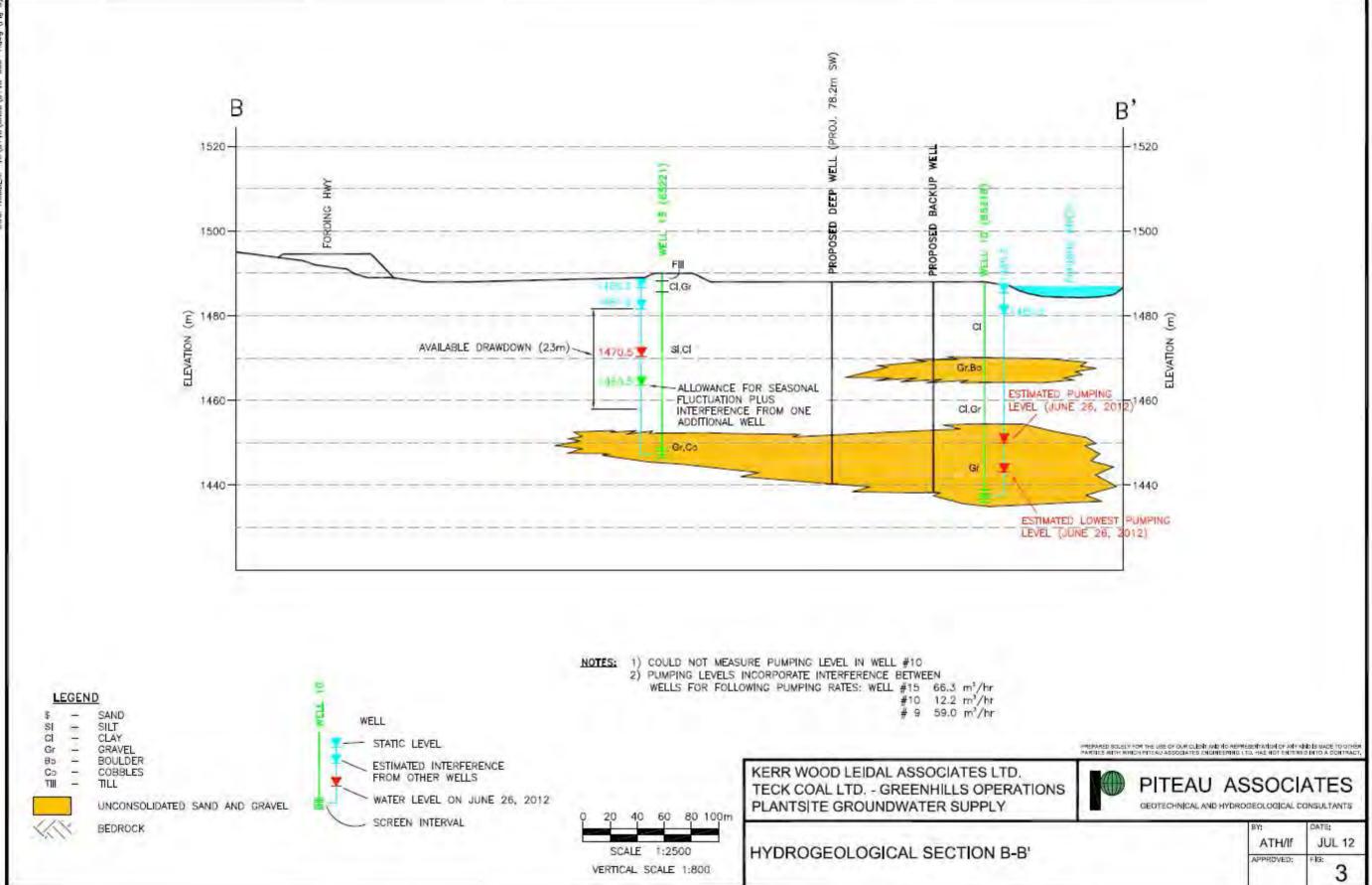


Appendix III

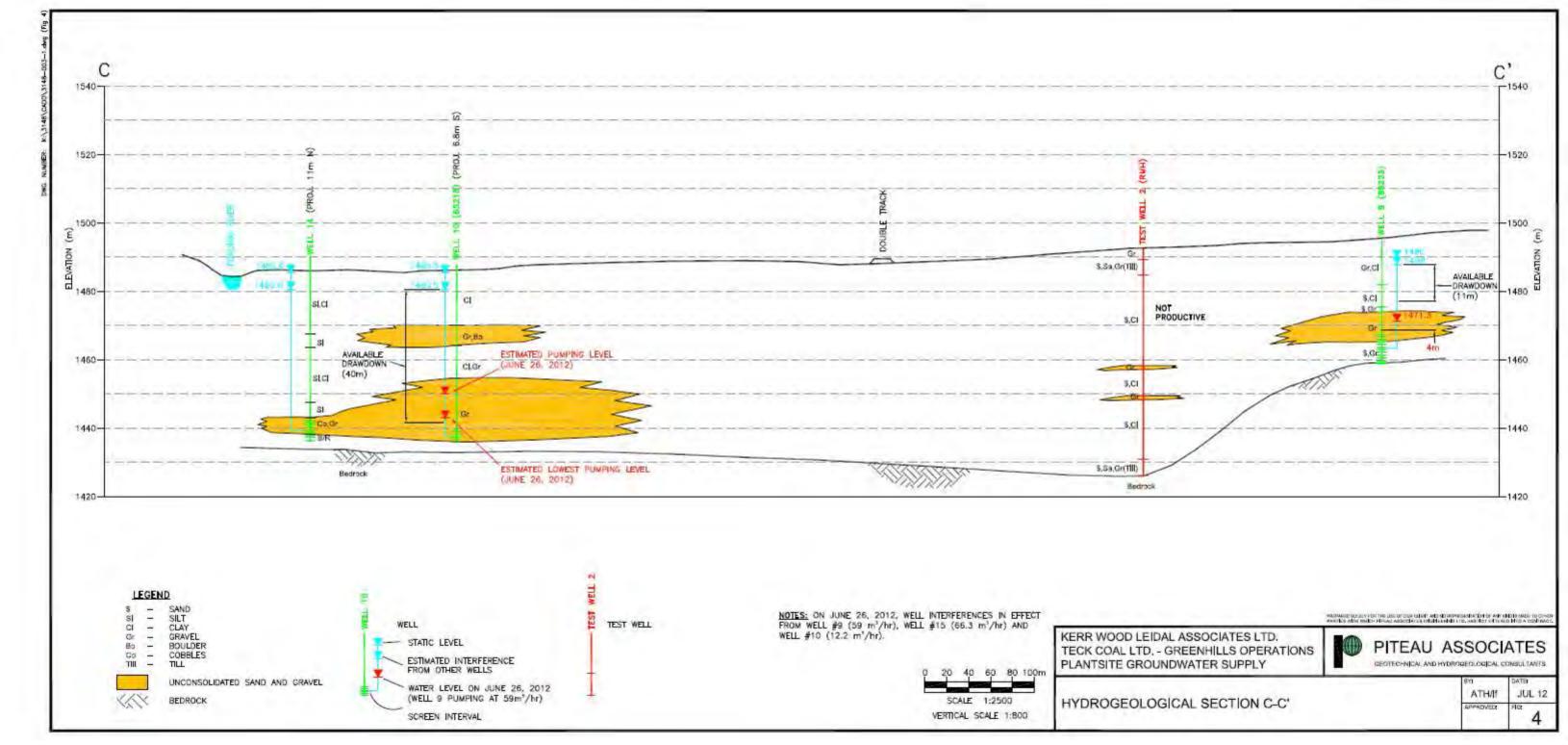
Vertical Hydraulic Gradient Calculation

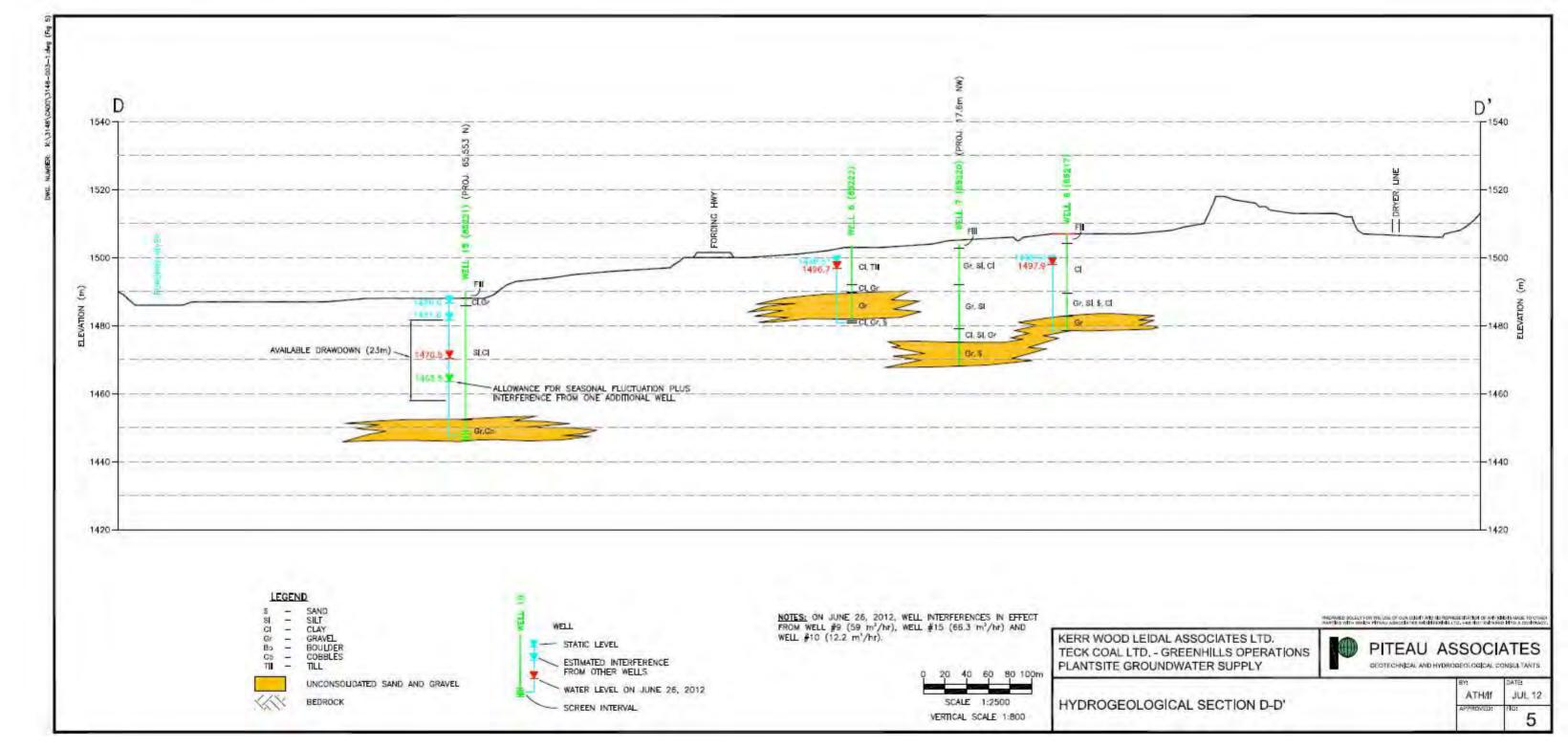

Appendix III: Summary of Vertical Gradient Calculations


Key Area	Well IDs	Date of Static Water Level Measurement (yyyy/mm/dd)	Elevation Difference (m)	Head Difference (m)	Vertical Hydraulic Gradient
1	FR_09-01-A/B	2016/01/25	12.56	-0.59	-0.05
		2016/06/14		-0.67	-0.05
		2016/08/17		-0.70	-0.06
		2016/11/24		-1.83	-0.15
2	LC_PIZDC1308/1307 -	2016/03/16	26.14	-3.31	-0.13
		2016/06/10		-0.87	-0.03
		2016/09/13		-	-
		2016/12/13		-2.37	-0.09
9	EV_MCgwS/D	2016/02/24	19.47	-1.14	-0.06
		2016/05/18		-0.90	-0.05
		2016/08/23		-0.90	-0.05
		2016/10/24		-1.10	-0.06
11	CM_MW1-OB/SH	2016/03/10	18.34	-0.93	-0.05
		2016/06/16		-1.59	-0.09
		2016/09/07		-2.02	-0.11
		2016/12/05		-2.03	-0.11
	CM_MW1-SH/DP	2016/03/10	13.78	0.53	0.04
		2016/06/16		-7.57	-0.55
		2016/09/07		1.06	0.08
		2016/12/05		2.14	0.16
12	EV_ER1gwS/D	2016/02/24	11.26	0.30	0.03
		2016/05/18		0.28	0.02
		2016/08/23		0.30	0.03
		2016/10/18		0.28	0.02


* Vertical gradient values were not calculated between LC_PIZDC1308/1307 in September 2016 as depth to water values and calculated potentiometric elevations are considered suspect based on level logger data (Graph 2-1)

Appendix IV


Cross-Sections for the GHO Rail Loop



NUMBER K-ANARY CADDY 3148-DD1-

SNC-Lavalin Inc. Nelson, British Columbia, Canada V1L 4C6 &250.354.1664 www.snclavalin.com

