LEAD CONCENTRATE
SAFETY DATA SHEET

SECTION 1. IDENTIFICATION

Product Identity: Pend Oreille Lead Concentrate.

Trade Names and Synonyms: Lead Concentrate.

Manufacturer: Teck Washington Incorporated
Pend Oreille Mine
1382 Pend Oreille Mine Road
P.O. Box 7
Metaline Falls, WA 99153
Emergency Telephone: (250) 364-4214

Supplier: Teck Washington Incorporated
Pend Oreille Mine
1382 Pend Oreille Mine Road
P.O. Box 7
Metaline Falls, WA 99153

Preparer: Teck Metals Ltd.
Suite 3300 – 550 Burrard Street
Vancouver, British Columbia
V6C 0B3

Date of Last Review: September 10, 2018.

Date of Last Edit: September 10, 2018.

Product Use: Lead concentrate is used in the production of lead metal and lead alloys.

SECTION 2. HAZARDS IDENTIFICATION

CLASSIFICATION:

<table>
<thead>
<tr>
<th>Health</th>
<th>Physical</th>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Toxicity (Oral, Inhalation)</td>
<td>Does not meet criteria</td>
<td>Does not meet criteria for any Physical Hazard</td>
</tr>
<tr>
<td>Skin Corrosion/Irritation</td>
<td>Does not meet criteria</td>
<td></td>
</tr>
<tr>
<td>Eye Damage/Eye Irritation</td>
<td>Does not meet criteria</td>
<td></td>
</tr>
<tr>
<td>Respiratory or Skin Sensitization</td>
<td>Does not meet criteria</td>
<td></td>
</tr>
<tr>
<td>Mutagenicity</td>
<td>Does not meet criteria</td>
<td></td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>Category 1</td>
<td></td>
</tr>
<tr>
<td>Reproductive Toxicity</td>
<td>Category 1A</td>
<td></td>
</tr>
<tr>
<td>Specific Target Organ Toxicity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Exposure</td>
<td>Does not meet criteria</td>
<td></td>
</tr>
<tr>
<td>Chronic Exposure</td>
<td>Does not meet criteria</td>
<td></td>
</tr>
</tbody>
</table>

LABEL:

Symbols: ![Hazard Symbol Images]

Signal Word: DANGER

Hazard Statements

DANGER!
May damage fertility or the unborn child.
May cause cancer.
Toxic to aquatic life with long lasting effects.

Precautionary Statements:

Obtain special instructions before use. Do not handle until all safety precautions have been read and understood.
Wear protective gloves and protective clothing.
Avoid release to the environment. Collect spillage.
If exposed or concerned: get medical advice/attention.

Emergency Overview: A dark black-grey, heavy, soil-like material that is not flammable or combustible under normal conditions of transport and storage. However, when heated strongly in air it will burn, releasing toxic and irritating sulfur dioxide gas as well as possible lead and zinc oxide fumes. Contact with strong acids will generate flammable and highly toxic hydrogen sulfide gas (H₂S). Possible cancer hazard due to lead and silica content. Possible reproductive hazard due to lead content. SCBA and full protective clothing required for fire emergency response personnel, especially due to the potential for release of highly irritating SO₂ gas in a fire situation.

Potential Health Effects: Caution: The toxicological properties of this material have not been fully investigated. The information contained in this SDS is therefore based on information in the technical and scientific literature about the material’s constituent compounds.
Inhalation or ingestion of large quantities of concentrate dust may result in lead absorption and possible lead intoxication. Symptoms include headache, nausea, vomiting, abdominal spasms, fatigue, sleep disturbances, weight loss, anemia and leg, arm, and joint pain. Prolonged exposure may also cause central nervous system damage (e.g., fatigue, headaches, tremors, hypertension), gastrointestinal disturbances, anemia, kidney dysfunction and possible reproductive effects. Pregnant women should be protected from excessive exposure to prevent lead crossing the placental barrier and causing infant neurological disorders. Lead and lead compounds are listed as an A3 Carcinogen (Confirmed Animal Carcinogen with Unknown Relevance to Humans) by the ACGIH. IARC has listed lead compounds as Group 2A Carcinogens (Probably Carcinogenic to Humans). The NTP has listed lead and lead compounds as Reasonably Anticipated to be a Human Carcinogen. OSHA does not currently list lead as a human carcinogen. Silica is classified as an A2 Carcinogen by the ACGIH and as a Group 1 Carcinogen by IARC (see Toxicological Information, Section 11).

Potential Environmental Effects: Lead concentrate is relatively insoluble in water and its constituent metals have low direct bioavailability. However, extended exposure in aquatic and terrestrial environments can lead to the release of constituent metals in bioavailable forms, which may result in toxicity to organisms in these environments.

SECTION 3. COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>HAZARDOUS COMPONENTS</th>
<th>CAS Registry No.</th>
<th>CONCENTRATION (% wgt/wgt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Sulfide</td>
<td>1314-87-0</td>
<td>23 – 70%</td>
</tr>
<tr>
<td>Zinc Sulfide</td>
<td>1314-98-3</td>
<td>1.5 - 4.5%</td>
</tr>
<tr>
<td>Iron Sulfide</td>
<td>1317-37-9</td>
<td>20 – 90%</td>
</tr>
<tr>
<td>Silica</td>
<td>14808-60-7</td>
<td>0.1 to 0.2%</td>
</tr>
</tbody>
</table>

Note: See Section 8 for Occupational Exposure Guidelines.

SECTION 4. FIRST AID MEASURES

Eye Contact: *Symptoms:* Eye irritation, redness. Gently brush product off face if necessary. Do not rub eye(s). Let the eye(s) water naturally for a few minutes. Look right and left, then up and down. If particle/dust does not dislodge, cautiously rinse eye(s) with lukewarm, gently flowing water for 5 minutes or until particle/dust is removed, while holding eyelid(s) open. If irritation persists, get medical advice/attention. DO NOT attempt to manually remove anything stuck to the eye.

Skin Contact: *Symptoms:* Skin soiling, mild irritation. Wash gently and thoroughly with lukewarm, gently flowing water and non-abrasive soap for 5 minutes, or until product is removed. If skin irritation occurs or you feel unwell, get medical advice/attention.

Inhalation: *Symptoms:* Respiratory irritation. Remove source of exposure or move person to fresh air and keep comfortable for breathing. Seek medical attention if you feel unwell.

Ingestion: *Symptoms:* Stomach upset. If you feel unwell or are concerned, get medical advice/attention.

SECTION 5. FIRE FIGHTING MEASURES

Fire and Explosion Hazards: Product is not considered a fire or explosion hazard. However, concentrate will burn if heated strongly in a fire situation, releasing toxic and irritating sulfur dioxide gas (SO\(_2\)). Contact with strong acids will generate flammable and highly toxic hydrogen sulfide gas (H\(_2\)S). The ignition temperature of lead concentrate is approximately 500 – 600°C.

Extinguishing Media: Use any means of extinction appropriate for surrounding fire conditions such as water spray, carbon dioxide, dry chemical, or foam.

Fire Fighting: Toxic fumes of sulfur dioxide will result from combustion. Fire fighters must be fully trained and wear full protective clothing including an approved, self-contained breathing apparatus which supplies a positive air pressure within a full facepiece mask.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Procedures for Cleanup: Control source of spillage if possible to do so safely. Restrict access to the area until completion of clean-up. Clean up spilled material immediately, observing precautions in Section 8, Personal Protection and using methods that will minimize dust generation (e.g., vacuum solids, dampen material and shovel or wet sweep). Return uncontaminated spilled material to the process if possible. Place contaminated material in suitable labeled containers for recovery or disposal. Treat or dispose of waste material in accordance with all local, regional, and national requirements.

Personal Precautions: Persons responding to an accidental release should wear coveralls or other protective clothing, gloves and a respirator (see also Section 8). Close-fitting safety goggles may be necessary in some circumstances to prevent eye
contact with dust. Workers should wash and change clothing following cleanup of a spill to prevent personal contamination with lead-containing dust.

Environmental Precautions: The handling, shipment, storage and processing of this material requires appropriate controls and care to prevent spillage or gradual accumulation in terrestrial and aquatic environments. Spilled material should be promptly cleaned up.

SECTION 7. HANDLING AND STORAGE

Precautions for Safe Handling: Some sulfide concentrates may slowly oxidize in storage and generate sulfur dioxide as well as deplete the oxygen content of a confined space. The atmosphere within confined spaces containing concentrate must be tested before entry and the area thoroughly ventilated or self-contained breathing apparatus used, if conditions warrant. Avoid excessive heat. Avoid contact with acids, oxidizers and combustible materials. Minimize dust generation and accumulation.

Means of Control: If heating of the concentrate is detected, the material should be sealed from air or oxygen in one of the following ways:

1. Leave the piles totally intact, do not open them up or try to spread them around.
2. Tamp or compact the surface of the piles.
3. Spray the pile with water. Resort to an organic binder only if needed because it can cause formation of hard lumps and subsequent problems for processing. Suggestions for organic binders include Aerospray 70A Binder, Coherex, Igepal CA-720 and lignin sulphonate, a pulp mill by-product.
4. For smaller piles, cover them with a tarp that will prevent exposure of the material to air.
5. If inside a building or ship’s hold, keep all doors closed as much as possible.

SECTION 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Occupational Exposure Guidelines: (Time-Weighted Average (TWA) concentration over 8 hr unless otherwise indicated)

<table>
<thead>
<tr>
<th>Component</th>
<th>ACGIH TLV</th>
<th>OSHA PEL</th>
<th>NIOSH REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Sulfide</td>
<td>0.05 mg Pb/m³</td>
<td>0.05 mg Pb/m³</td>
<td>0.05 mg Pb/m³</td>
</tr>
<tr>
<td>Zinc Sulfide</td>
<td>None Established*</td>
<td>None Established*</td>
<td>None Established*</td>
</tr>
<tr>
<td>Iron Sulfide</td>
<td>None Established*</td>
<td>None Established*</td>
<td>None Established*</td>
</tr>
<tr>
<td>Silica</td>
<td>0.025 mg/m³ Respirable SiO₂</td>
<td>4.5 mg/m³ (respirable dust)**</td>
<td>0.05 mg/m³ (respirable SiO₂)**</td>
</tr>
<tr>
<td></td>
<td>13 mg/m³ (total dust)**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** - The OSHA PEL for silica applies to the total airborne lead concentrate dust concentration and has been calculated based on the maximum percent SiO₂ in the sample using the formulas: Respirable Dust PEL = 10 mg/m³(%SiO₂ + 2); Total Dust PEL = 30 mg/m³(%SiO₂ + 2).

NOTE: The selection of the necessary level of engineering controls and personal protective equipment will vary depending upon the conditions of use and the potential for exposure. The following are therefore only general guidelines that may not fit all circumstances. Control measures to consider include:

Ventilation: Use adequate local or general ventilation to maintain the concentration of lead concentrate dust in the working environment well below the appropriate occupational exposure limit. Supply sufficient replacement air to make up for air removed by the exhaust system.
Protective Clothing: Coveralls or other work clothing and gloves are recommended to prevent prolonged or repeated direct skin contact. Work clothing should be removed immediately if it becomes heavily contaminated and should be changed daily and laundered before reuse if there is reasonable probability that the clothing may be contaminated.

Respirators: Where lead concentrate dust is generated and cannot be controlled to within acceptable levels by engineering means, use appropriate NIOSH-approved respiratory protection equipment (a 42CFR84 Class N, R or P-100 particulate filter cartridge).

General Hygiene Considerations: Avoid breathing dust. Always practice good personal hygiene. Refrain from eating, drinking, or smoking in work areas. Thoroughly wash hands after handling and before eating, drinking, or smoking in appropriate designated areas only.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Dark black-grey, fine powder</td>
</tr>
<tr>
<td>Odour</td>
<td>Weak organic odour from entrained flotation reagents</td>
</tr>
<tr>
<td>Odour Threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH</td>
<td>7.5 to 8.5</td>
</tr>
<tr>
<td>Vapour Pressure</td>
<td>Negligible @ 20°C</td>
</tr>
<tr>
<td>Vapour Density</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Melting Point/Range</td>
<td>Will burn first unless in an inert atmosphere</td>
</tr>
<tr>
<td>Boiling Point/Range</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Relative Density (Water = 1)</td>
<td>3.5 (Bulk Sp. Gr.)</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Coefficient of Water/Oil Distribution</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Solubility</td>
<td>Essentially insoluble</td>
</tr>
<tr>
<td>Flammability</td>
<td>Non-combustible solid.</td>
</tr>
<tr>
<td>Flammable Limits (LEL/UEL)</td>
<td>Not Applicable.</td>
</tr>
<tr>
<td>Auto-ignition Temperature</td>
<td>Not Applicable.</td>
</tr>
<tr>
<td>Decomposition Temperature</td>
<td>Not Available.</td>
</tr>
<tr>
<td>Percent Volatiles</td>
<td>9 – 12% (moisture)</td>
</tr>
</tbody>
</table>

SECTION 10. STABILITY AND REACTIVITY

Stability & Reactivity: Material is stable and not considered reactive under normal temperatures and pressures. Hazardous polymerization or runaway reactions will not occur.

Incompatibilities: Reacts violently with iodine pentachloride. Incompatible with iodine monochloride, hydrogen peroxide, strong oxidizers, and strong acids.

Hazardous Decomposition Products: May release highly toxic and flammable hydrogen sulfide gas on contact with strong acids. This material can decompose at high temperatures forming toxic and irritating sulfur dioxide gas as well as lead and zinc oxides.

SECTION 11. TOXICOLOGICAL INFORMATION

General: In the powder form in which this product is sold, the metals are present as sulfides that are relatively insoluble and poorly absorbed within the body. However, high temperature operations such as oxy-acetylene cutting, electric arc welding or arc-air gouging on dust–contaminated surfaces will generate highly toxic lead oxide fume that also contains some zinc oxide. These oxides are highly soluble in body fluids and the particle size of the metal fumes is largely within the respirable size range, which increases the likelihood of inhalation and deposition of the fume within the body. The primary route of exposure would be through inhalation of metal oxide fumes, composed principally of lead oxide and including some zinc oxide as well.

NOTE: The toxicological properties of this material have not been fully investigated. The information contained in this SDS is therefore based on information in the technical and scientific literature about the material's constituent compounds.

Acute:
Skin/Eye: Contact with dust or fume may cause local irritation but would not cause tissue damage.

Inhalation: Exposure to dust or fume is irritating to the nose, throat and respiratory tract with dryness and irritation of the nose and throat, tightness of the chest, coughing and metallic taste. It may cause headache, as well as gastrointestinal disturbances with nausea, vomiting, abdominal spasms, fatigue, sleep disturbances, weight loss, anemia, and pain in legs, arms, and joints. An intense, short-term exposure to welding/burning fumes could cause congestion and pulmonary edema as well as acute encephalopathy with seizures, coma, and death. However, short-term exposures of this magnitude are unlikely in industry today.
Less intense short-term exposure to such fumes could produce metal fume fever with flu-like symptoms of fever, malaise, perspiration, frontal headache and muscle cramps from the zinc oxide fume. Kidney damage, as well as anemia, can occur from acute exposure.

Ingestion: Symptoms due to ingestion of dust or fume would be similar to those from inhalation. Other health effects such as constipation or bloody diarrhea might also occur.

Chronic: Prolonged exposure to lead concentrate dust may produce many of the symptoms of short-term exposure and may also cause central nervous system damage, gastrointestinal disturbances, kidney dysfunction, anemia, skin rashes or dermatitis and, rarely, wrist drop. Reduced hemoglobin production has been associated with low lead exposures. Symptoms of central nervous system damage due to moderate exposure include fatigue, headaches, tremors and hypertension. Very high exposure can result in lead encephalopathy with symptoms of hallucinations, convulsions, and delirium. Kidney dysfunction and possible injury has also been associated with chronic lead poisoning. Chronic over-exposure to lead has been implicated as a causative agent for the impairment of male and female reproductive capacity. Pregnant women should be protected from excessive exposure as lead can cross the placental barrier and unborn children may suffer neurological damage or developmental problems. Teratogenic and mutagenic effects from exposure to lead have been reported in some studies but not in others. The literature is inconsistent and no firm conclusions can be drawn at this time. Lead and lead compounds are listed as an A3 Carcinogen (Confirmed Animal Carcinogen with Unknown Relevance to Humans) by the ACGIH. IARC has listed lead compounds as Group 2A Carcinogens (Probably Carcinogenic to Humans) while lead metal is listed as Group 2B (Possibly Carcinogenic to Humans). The NTP has listed lead and lead compounds as Reasonably Anticipated to be a Human Carcinogen. OSHA does not currently list lead as a human carcinogen. IARC has classified crystalline silica of respirable particle size as a Group 1 Carcinogen (Carcinogenic to Humans) while ACGIH classifies it as a Suspected Human Carcinogen (A2). The NTP recently reclassified silica as a Known Human Carcinogen. OSHA does not list silica as a carcinogen.

Animal Toxicity:

<table>
<thead>
<tr>
<th>Hazardous Ingredient</th>
<th>Acute Oral Toxicity</th>
<th>Acute Dermal Toxicity</th>
<th>Acute Inhalation Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Sulfide</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>Zinc Sulfide</td>
<td>>2,000 mg/kg†</td>
<td>>2000 mg/kg*</td>
<td>>5.04 mg/L‡</td>
</tr>
<tr>
<td>Iron Sulfide</td>
<td>>2,000 mg/kg*</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>Silica</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
</tbody>
</table>

† LD₅₀, Rat,Oral, * LD₅₀, Rat, Dermal * LD₅₀, Rat, Inhalation, 4 hour

SECTION 12. ECOLOGICAL INFORMATION

Lead concentrate is relatively insoluble in water and its constituent metals have low direct bioavailability. However, extended exposure in aquatic and terrestrial environments can lead to the release of constituent metals in bioavailable forms, which can potentially result in toxicity to organisms in these environments. The mobility of lead and zinc is media-dependent. They can bind with inorganic and organic ligands, reducing their mobility and bioavailability in soil and water. Bioavailability is also regulated by other factors, such as pH and hardness.

Lead: Lead compounds are highly persistent in water. Dissolved lead compounds bioaccumulate in aquatic and terrestrial plants and animals. Lead may occur as sorbed ions or surface coatings on sediment particles, or may be carried in colloidal particles in surface water. Most lead is strongly retained in soil, resulting in relatively little mobility.

Zinc: Zinc can be toxic to aquatic organisms. In aquatic systems, zinc bioaccumulates in both plants and animals. Zinc also bioaccumulates in terrestrial plants, vertebrates, and mammals, with plant uptake from soil dependent on species, soil pH, and soil composition. In general, zinc does not biomagnify through food chains.

SECTION 13. DISPOSAL CONSIDERATIONS

If material cannot be returned to process or salvage, dispose of only in accordance with applicable regulations. Spilled concentrate would meet the criteria for a hazardous waste in most jurisdictions. It is the responsibility of the waste generator to determine the toxicity and physical properties of the material generated in order to determine the proper waste classification and disposal methods.

SECTION 14. TRANSPORT INFORMATION

TRANSPORT CANADA and U.S. DOT CLASSIFICATION Class 9, Packing Group III
PROPER SHIPPING NAME .. Environmentally Hazardous Substance, Solid, n.o.s.

(contains lead sulfide)

U.S. DOT RQ ... Lead sulfide 10 lbs.
SECTION 15. REGULATORY INFORMATION

U.S.

HAZARDOUS UNDER HAZARD COMMUNICATION STANDARD....... Lead Sulfide........Yes
Silica....................Yes

CERCLA SECTION 103 HAZARDOUS SUBSTANCES...................... Lead Sulfide...........RQ: None assigned
Zinc Compounds........Yes ...RQ: None assigned

EPCRA SECTION 302 EXTREMELY HAZARDOUS SUBSTANCE........ None of the ingredients qualify

EPCRA SECTION 311/312 HAZARD CATEGORIES.......................... Delayed (Chronic) Health Hazard - Carcinogen
Delayed (Chronic) Health Hazard – Reproductive Toxin

EPCRA SECTION 313 TOXIC RELEASE INVENTORY:...................... Lead Compounds (Lead Sulfide)
CAS No 1314-87-0
Percent by Weight: 23 to 70%

Zinc Compounds (Zinc Sulphide)
CAS No 1314-98-3
Percent by Weight: 1.5 to 4.5%

SECTION 16. OTHER INFORMATION

Date of Original Issue: January 27, 2004 Version: 01
Date of Latest Revision: September 10, 2018 Version: 09

The information in this Safety Data Sheet is based on the following references:

- American Conference of Governmental Industrial Hygienists, 2004, Documentation of the Threshold Limit Values and Biological Exposure Indices, Seventh Edition plus updates.
- American Conference of Governmental Industrial Hygienists, 2018, Guide to Occupational Exposure Values.
- American Conference of Governmental Industrial Hygienists, Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices - 2018.
- Canadian Centre for Occupational Health and Safety (CCOHS), Hamilton, ON, CHEMINFO Record No. 608 Lead (Rev. 2009-05).
- Canadian Centre for Occupational Health and Safety (CCOHS), Hamilton, ON, CHEMINFO Record No. 548 – Zinc (Rev. 2009-05).
- National Library of Medicine, National Toxicology Information Program, Hazardous Substance Data Bank (HSDB) online.
- U.S. Department of Health and Human Services, National Institute of Environmental Health Sciences, National Toxicology Program (NTP), 14th Report on Carcinogens, November 2016.
Acronyms not spelled out elsewhere in the SDS:

CAS: Chemical Abstract Service
CERCLA: Comprehensive Environmental Response, Compensation, and Liability Act
DOT: Department of Transportation
EPCRA: Emergency Planning and Community Right-to-Know Act
IMO: International Maritime Organization
LD50 LC50: Lethal Dose 50%, Lethal Concentration 50%
TSCA: Toxic Substances Control Act
Wt.: Weight

Notice to Reader
Although reasonable precautions have been taken in the preparation of the data contained herein, it is offered solely for your information, consideration and investigation. Teck Washington Incorporated extends no warranty and assumes no responsibility for the accuracy of the content and expressly disclaims all liability for reliance thereon. This safety data sheet provides guidelines for the safe handling and processing of this product; it does not and cannot advise on all possible situations. Therefore, your specific use of this product should be evaluated to determine if additional precautions are required. Individuals exposed to this product should read and understand this information and be provided pertinent training prior to working with this product.