Teck Coal Limited
Water Quality Management
P.O. Box 1777
421 Pine Avenue +1 250 425 808
Sparwood, B.C. Canada V0B 2G0 www.teck.com

+1 250 425 8086 Tel Technical Report Overview

Report: Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2022

Overview: This report presents the 2022 results of the Local Aquatic Effects Monitoring Program (LAEMP) developed for Teck's Line Creek Operations. The report presents data and evaluation of potential effects of the West Line Creek Active Water Treatment Facility (WLC AWTF) on biological productivity and tissue selenium accumulation downstream of the facility.

This report was prepared for Teck by Minnow Environmental Inc.

For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley.

Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2022

Prepared for: **Teck Coal Limited** Sparwood, British Columbia

Prepared by: **Minnow Environmental Inc.**Victoria, British Columbia

April 2023

Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2022

R. Hodgser

Rhiannon Hodgson, B.Sc., M.Sc.

Project Manager

Katharina Batchelar, M.Sc., R.P.Bio.

Senior Project Advisor

EXECUTIVE SUMMARY

The Line Creek Local Aquatic Effects Monitoring Program (LAEMP) was primarily designed to evaluate changes related to the commissioning of the West Line Creek (WLC) Active Water Treatment Facility (AWTF) at the Line Creek Operation (LCO). The WLC AWTF was recommissioned in 2018 with an Advanced Oxidation Process (AOP) due to elevated aqueous concentrations of selenium in AWTF effluent and benthic invertebrates downstream of the AWTF discharge. The AOP is designed to reverse the shift in selenium species in AWTF effluent from chemically-reduced species (which have greater potential for bioaccumulation than selenate) back to a selenate-dominated condition. The WLC AWTF with AOP has been discharging to the receiving environment since December 30, 2018. There are three main foci to the LCO LAEMP in relation to the operation of the WLC AWTF. This report includes Line Creek monitoring data up to the end of the 2022 calendar year to evaluate these three foci that are expressed as the study questions detailed below.

Study Question #1: Is active water treatment affecting biological productivity downstream in Line Creek? This study question relates to the potential for phosphorus concentrations to increase in Line Creek downstream from the WLC AWTF discharge (due to the fluidized bed reactor) and the potential to cause increased algal growth and changes to the trophic status and biotic community structure. Monitoring results indicate that biological productivity in Line Creek did not appear to be influenced by operational activities of the AWTF with AOP. Operation of the AWTF with AOP has minimized concentrations of nutrients (total phosphorus, orthophosphate, and nitrate) to the receiving environment more than operation of the AWTF without AOP. Periphyton coverage and benthic invertebrate biomass and density downstream of the AWTF discharge showed no significant increases during operation of the AWTF with AOP. Benthic invertebrate community endpoints have indicated no consistent adverse changes in community characteristics related to operation of the AWTF with AOP. Rather, temporal stability in taxon richness and an increased percentage of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera [EPT]) at some areas downstream from the AWTF (i.e., RG LISP24, RG LIDSL, RG LI8 and RG FO23) during the AWTF with AOP operation compared to AWTF operation without AOP suggests stability in benthic invertebrate community structure at these areas.

Study Question #2: Are tissue selenium concentrations reduced downstream from the WLC AWTF? This study question relates to selenium removal from water within the WLC AWTF via microbial uptake, which decreases total selenium loads to Line Creek, but has the potential to biotransform selenium into reduced and more readily available forms of selenium to biota (i.e., non-selenate forms). Concentrations of non-selenate forms of aqueous selenium and selenium in benthic invertebrate tissues were significantly lower in Line Creek during operation of

the AWTF with AOP compared to without AOP. Mean benthic invertebrate selenium concentrations were below the Level 1 Elk Valley Water Quality Plan (EVWQP; 13 mg/kg) at all areas in 2022 and concentrations of aqueous non-selenate species were generally low and reflective of the low bioaccumulation in benthic invertebrates. Westslope cutthroat trout muscle tissue selenium concentrations were also notably lower during AWTF with AOP compared to operations without AOP. Selenium bioaccumulation in benthic invertebrates and fish from areas downstream of the AWTF discharge have largely been within expectations of the selenium bioaccumulation model during AWTF operation with AOP. Combined, the results from the 2018 to 2022 LCO LAEMPs indicate that the recommissioned AWTF with AOP has functioned as intended to decrease the non-selenate species in AWTF effluent, thereby decreasing the bioavailability of selenium.

Study Question #3: Is WLC AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations, or concentrations of treatment-related constituents other than nutrients or selenium? This study question relates to other conditions associated with AWTF operation that could potentially adversely influence the receiving environment. Operation of the AWTF with AOP has not resulted in a change in water temperature or dissolved oxygen concentrations in Line Creek downstream of the AWTF relative to areas upstream of the AWTF. Evaluation of water quality analytes demonstrated no increases in analyte concentrations in 2022 that resulted in concentrations above guidelines or water quality benchmarks due to AWTF with AOP operation. Toxicity results during AWTF operation with AOP, and the absence of consistent temporal pattern of responses, or clear evidence of causal factors associated with AWTF with AOP operation for the observed effects, suggest a lack of influence of the AWTF on toxicity.

Overall, operation of the WLC AWTF with AOP has been functioning as designed to remove aqueous total selenium and nitrate from effluent and did not influence the receiving environment through effects to biological productivity, selenium bioaccumulation, or through potential effects related to factors other than nutrients or selenium. Four years of monitoring results during AWTF with AOP operation have consistently shown the AWTF with AOP is functioning as intended, conditions in Line Creek are stable, and the questions of LCO LAEMP have largely been addressed. Teck intends to submit a revised study design that will refine and focus monitoring efforts within the LCO LAEMP now that the study questions have largely been answered. Future monitoring for LCO LAEMP will continue to evaluate conditions of the aquatic receiving environment and the program will be adjusted as mining and water treatment develops at LCO (including adapting future study questions).

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY	
AC	RONYMS AND ABBREVIATIONS	VI
1	INTRODUCTION	4
	1 Background	
	2 WLC AWTF Background	
	3 Study Questions	
	4 Linkages to Teck's Adaptive Management Plan	
	·	
	METHODS	
	1 Overview	
2	2.2.1 Routine Water Quality	
	2.2.2 Toxicity Testing	
	2.2.3 EVWQP benchmarks and Updated Effects Concentrations	
2	3 Primary and Secondary Productivity and Benthic Community Structure	
_	2.3.1 Primary Productivity	19
	2.3.2 Secondary Productivity and Invertebrate Community Structure (Hess Sampling)	
	2.3.3 Benthic Invertebrate Community Structure (Kick and Sweep Sampling)	
2	4 Tissue Selenium Concentrations	
	2.4.1 Benthic Invertebrates	22
	2.4.2 Fish	24
2	PRODUCTIVITY	26
3		
_	2 Site Performance Objectives and Aqueous Nutrient Concentrations	
	3 Primary Productivity Indicators	
	4 Secondary Productivity Indicators	
	5 Benthic Invertebrate Community Structure	
	6 Summary	
	SELENIUM CONCENTRATIONS	
	1 Overview	
-	Tissue Selenium Concentrations	
4	4.2.1 Composite-Taxa Benthic Invertebrate Samples	
	4.2.2 Fish	
4	3 Aqueous Selenium	
4	_ ·	
4		
	·	
5 5	OTHER POTENTIAL INFLUENCES OF THE WLC AWTF	
_		
	2 Temperature	
5	, ,	
5		
5	J	
6	SUMMARY	77
7	REFERENCES	87

LIST OF FIGURES

Figure 1.1:	Teck's Coal Mine Operations within the Elk River Watershed, Southeast British Columbia	2
Figure 1.2:	Overview of Completed Benthic Invertebrate Tissue Selenium Sampling	
F: 0.4.	Events in Relation to Phases of WLC AWTF Operation, 2014 to 2022	5
Figure 2.1:	Line Creek LAEMP Biological Monitoring Areas and Teck Water Quality Stations, 2022	12
Figure 2.2:	Line Creek LAEMP Monitoring Areas and Teck Water Quality Stations in	
ga. c	Upper Line Creek, 2022	14
Figure 3.1:	Total Phosphorus Concentrations in Water Collected from the Line Creek	
1 19410 0.11	Compliance Point (LC_LCDSSLCC), 2019 to 2022	27
Figure 3.2:	Total Phosphorus at LC LC3 During AWTF Operation Relative to Pre-	'
1 1ga10 0.2.	Operational Baseline Concentrations, 2013 to 2022	28
Figure 3.3:	Orthophosphate at LC LC3 During AWTF Operation Relative to Pre-	20
riguic o.o.	Operational Baseline Concentrations, 2013 to 2022	29
Figure 3.4:	Time Series Plots for Nitrate from Line Creek LAEMP Sampling Areas, 2012	20
riguic o.+.		31
Figure 3.5:	Total Benthic Invertebrate Biomass (Hess Sampling) for RG_LILC3 and	
riguic o.o.		34
Figure 3.6:	Total Benthic Invertebrate Density (Hess Sampling), for RG_LILC3 and	
rigaro o.o.	RG LIDSL, 2014 to 2022	35
Figure 4.1:	Benthic Invertebrate Selenium Concentrations, for A) RG LILC3 and B)	
riguio 4.1.	RG_LIDSL (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24	
	(Reference Areas), 2012 to 2022	42
Figure 4.2:	Selenium Concentrations in Composite-taxa Benthic Invertebrate Samples	72
riguic 4.2.	from Mine-exposed (Blue) and Reference (Green) Areas of Line Creek and	
	Fording River, 2022	11
Figure 4.3:	Benthic Invertebrate Selenium Concentrations, for RG FO23 (Fording River	
riguio 4.0.	Downstream of Line Creek) Relative to RG_FRUL (Fording River Upstream	
	of Line Creek), 2012 to 2022	48
Figure 4.4:	Selenium Concentrations in Muscle and Ovaries of Westslope Cutthroat	10
riguio 4.4.	Trout Sampled From Line Creek, 2001 to 2022	51
Figure 4.5:	Time Series Plots for Aqueous Total Selenium Concentrations from the Line	
riguic 4.5.	Creek LAEMP Sampling Stations, 2012 to 2022	52
Figure 4.6:	Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium	02
riguio 4.0.	at Mine-exposed and Reference Stations in Line Creek, LCO LAEMP, 2019	
		55
Figure 4.7:	Selenium Concentrations in Benthic Invertebrate Composite-taxa Samples	
riguio 4.7.	from Line Creek and Fording River, 2018 to 2022	50
Figure 4.8:	Selenium Concentrations in Benthic Invertebrate Composite–taxa Samples	
riguic 4.0.	from Line Creek at RG LILC3 (LC LC3), 2018 to 2022	60
Figure 4.9:	Observed and Modelled Selenium Concentrations in Benthic Invertebrate	00
rigure 4.5.	Composite Samples Relative to Total Aqueous Selenium Concentrations at	
	Stations Upstream and Downstream of West Line Creek Active Water	
	Treatment Facility, 2012 to 2022	62
Figure 4.10:	Observed and Modelled Selenium Concentrations in Benthic Invertebrate	
1 1gule 4.10.	Composite Samples Relative to Total Aqueous Selenium Concentrations at	
	Stations Upstream and Downstream of West Line Creek Active Water	
	Treatment Facility, 2022	63
	Troutmont radiity, 2022	00

Figure 5.1:	Mean Daily Water Temperature Recorded by Temperature Loggers, Line Creek LAEMP, 202266
Figure 5.2:	Water Temperatures at Monitoring Stations in Line Creek in 2022, Relative to BCMOE (2001b) Guidelines for Maximum (Solid Lines) and Minimum (Dotted Lines) Temperatures for Protection of Fish Species Found in Line
Figure 5.3:	Creek
LIST OF TAB	LES
Table 1.1:	Dates Associated with Phases of WLC AWTF Operation4
Table 2.1:	General Approach for the 2022 Line Creek LAEMP as Presented in the LAEMP Study Design (Minnow 2021b)11
Table 2.2:	Monitoring Areas Associated with Line Creek LAEMP, 2022
Table 2.3: Table 2.4:	Temperature Data Logger Locations, 2022
Table 2.4: Table 2.5:	Primary and Secondary Productivity and Benthic Invertebrate Community Sampling Completed in Line Creek and Fording River in September 2022
Table 2.6:	Compared to the LCO LAEMP Study Design (Minnow 2021a)
Table 3.1:	Geometric Means of Benthic Invertebrate Density for Hess Sampling in Areas of Line Creek, 2014 to 2022
Table 4.1:	Meana Selenium Concentrations (mg/kg dw) in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2006 to 2022
Table 5.1:	Monthly Mean Dissolved Oxygen Concentrations (mg/L) in Line Creek, 2022
Table 5.2:	Summary of Acute Toxicity Test Results for Line Creek Monitoring Stations, 2022 (Teck 2023)
Table 5.3:	Results of Quarterly and Semi-Annual Chronic Toxicity Tests at LC_LCDSSLCC in 2015 to 2021 and LC_LC3 in 2019 and 2021 (Golder 2016, 2017a, 2018, 2019, 2020a, 2021a, WSP 2022)a2
Table 6.1:	Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2022
Table 6.2:	Summary of Findings, Responses and Adjustments Related to the LCO LAEMP in 202283
Table 6.3:	Summary of Biological Trigger Analysis for Percent EPT, Selenium Benthic Invertebrate Tissue (BIT), and Selenium Westslope Cutthroat Trout (WCT) Muscle Tissue, Line Creek LAEMP, 2022
APPENDIX A	METHODS
APPENDIX B	DATA QUALITY REVIEW (DQR)
APPENDIX C	PRODUCTIVITY
APPENDIX D	SELENIUM

APPENDIX E OTHER INFLUENCES

APPENDIX F BIOLOGICAL TRIGGERS

APPENDIX G SUPPORTING INFORMATION

APPENDIX H LABORATORY REPORTS

ACRONYMS AND ABBREVIATIONS

AMP – Adaptive Management Plan

ANOVA - Analysis of Variance

AOP – Advanced Oxidation Process

AWTF - Active Water Treatment Facility

BCWQG – British Columbia Water Quality Guideline

BT – Bull trout

CABIN – Canadian Aquatic Biomonitoring Network

CMm - Coal Mountain Mine

DQR – Data Quality Review

EMC – Environmental Monitoring Committee

ENV – British Columbia Ministry of Environment and Climate Change Strategy

EPT – Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies)

EVFFHC – Elk Valley Fish and Fish Habitat Committee

EVO – Elkview Operation

EVWQP - Elk Valley Water Quality Plan

FRO - Fording River Operation

GHO – Greenhills Operation

LAEMP – Local Aquatic Effects Monitoring Program

LCO – Line Creek Operation

LPL – Lowest Practical Level, referring to taxonomic identification of benthic invertebrates

LRL – Laboratory Reporting Limit

RAEMP – Regional Aquatic Effects Monitoring Program

SPO - Site Performance Objective

WCT – Westslope cutthroat trout

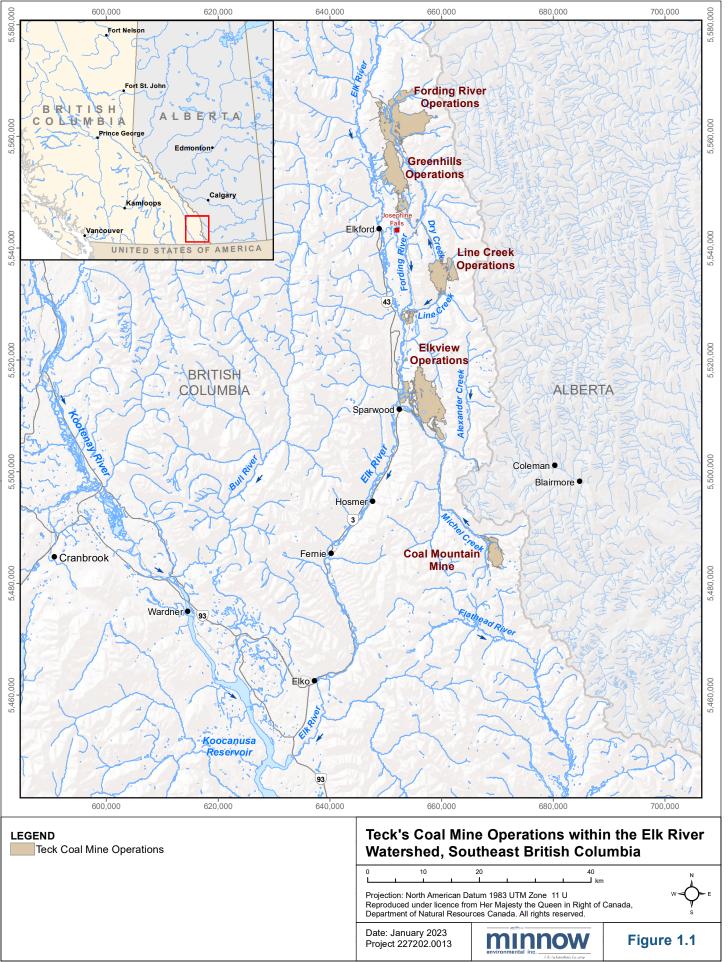
WLC – West Line Creek

1 INTRODUCTION

1.1 Background

Teck Coal Limited (Teck) operates four mines in the Elk River watershed to extract steel-making coal. The four mines are the Fording River Operation (FRO), Greenhills Operation (GHO), Line Creek Operation (LCO), and Elkview Operation (EVO; Figure 1.1). A fifth mine, Coal Mountain Mine (CMm), is also owned by Teck and located in the Elk River watershed; however, it is no longer in operation and has been moved into the care and maintenance designation. Discharges from the mines to the Elk River watershed are authorized by the British Columbia Ministry of Environment and Climate Change Strategy (ENV) through permits that are periodically issued under provisions of the *Environmental Management Act*. Permit 107517 specifies the terms and conditions associated with discharges from Teck's Elk Valley mine operations. The Line Creek Local Aquatic Effects Monitoring Program (LAEMP) aims to assess site-specific conditions at LCO relating to potential effects of discharge on the receiving environment from the commissioning of the West Line Creek (WLC) Active Water Treatment Facility (AWTF) by evaluating the potential effects of the AWTF on aquatic health endpoints: water, periphyton, benthic invertebrates, and fish (westslope cutthroat trout [WCT; Oncorhynchus clarkii lewisii] and bull trout [BT; Salvelinus confluentus]).

Section 8.3.1.1 of Permit 107517 (version January 27, 2023) outlines the requirements for the Line Creek LAEMP as follows:


"The Permittee must develop and implement a Local Aquatic Effects Monitoring program to determine the effects of the Line Creek discharge on the receiving environment. An annual study design for the program must be prepared in consultation with the EMC¹ and submitted to the Director for approval by May 1 each year."

Also, Section 9.5 of Permit 107517 states:

The LAEMP Annual Reports must be reported on in accordance with generally accepted standards of good scientific practice in a written report and submitted to the Director by April 30 of each year following the data collection calendar year.

¹ EMC refers to the Environmental Monitoring Committee, which Teck was required to form under Permit 107517. The EMC consists of representatives from Teck, BC Ministry of Environment and Climate Change, the Ministry of Energy and Mines, Environment Canada, the Ktunaxa Nation Council, Interior Health Authority, and an independent scientist. Environment Canada has agreed to provide input on a case-by-case basis when requested by the other members of the EMC but has not yet been called upon to participate. The EMC reviews submissions and provides technical advice to Teck and the ENV Director regarding monitoring programs.

In addition to monitoring under the LAEMP, Teck's Regional Aquatic Effects Monitoring Program (RAEMP) is a requirement under Permit 107517 and provides comprehensive routine monitoring and assessment of potential mine-related effects on the aquatic environment downstream from Teck's mines in the Elk Valley.

Teck conducts a variety of additional programs to monitor, evaluate, and/or manage the aquatic effects of mining operations within the Elk Valley at local and regional scales, including:

- Water quality monitoring;
- Calcite monitoring;
- Fish and fish habitat management;
- Chronic Toxicity Testing Program;
- Tributary Management Plan; and
- Adaptive Management Plan.

The relevant data from these programs and plans are summarized within the LCO LAEMP report as they relate to conditions in Line Creek and the operation of the AWTF. The goal of the Line Creek LAEMP is to assess site-specific conditions on a more frequent and localized basis than the RAEMP, and the LCO LAEMP approach and study questions may be adapted and adjusted as mining and water treatment plans within LCO develop.

1.2 WLC AWTF Background

Sampling at Line Creek began in September 2012, as part of the RAEMP, prior to initial commissioning of the WLC AWTF in 2014 (Table 1.1, Figure 1.2). The AWTF operated briefly in 2014 but was shut down due to challenges with the performance of the facility, which included increased concentrations of selenium in benthic invertebrates downstream of the AWTF relative to baseline (2012; Minnow 2015). It was recommissioned in October 2015, with the operational phase commencing in February 2016 (Table 1.1, Figure 1.2). Following this, Teck identified challenges in the performance of the WLC AWTF with respect to selenium treatment whereby aqueous concentrations of chemically-reduced selenium species were elevated in AWTF effluent resulting in the elevation of selenium concentrations in benthic invertebrates downstream of the AWTF discharge relative to historical levels (Minnow 2017a, 2018b). Teck then suspended AWTF operations in response to these results (Table 1.1, Figure 1.2).

Table 1.1: Dates Associated with Phases of WLC AWTF Operation

Phase		Start	End	Approximate Flow (m³/day)						
Initial AWTF Commissioning Pha	WTF Commissioning Phase		AWTF Commissioning Phase		NTF Commissioning Phase		Commissioning Phase		26-Aug-14	Variable flow
Initial AWTF Discharge		27-Aug-14	16-Oct-14	Variable flow						
AWTF Shutdown (no flow)		17-Oct-14	26-Oct-15	0						
AWTF Forward Flow During Com	missioning	26-Oct-15	31-Jan-16	Variable flow						
AWTF Operational		1-Feb-16	14-Oct-17	~5,300 to 5,500						
AWTF Flow Reduction		15-Oct-17	8-Mar-18	~2,500						
AWTF Intakes Closed, System D	ewatered	27-Feb-18	8-Mar-18	Variable flow						
AWTF Shutdown (flow ceases)		9-Mar-18	27-Oct-18	0						
AWTF/AOP Recommissioning	No Discharge	30-Aug-18	27-Oct-18	0						
Phase ^a	Forward Flow (Initial Discharge)	28-Oct-18	29-Dec-18 ^a	0 to 5,500						
AWTF/AOP Operational		30-Dec-18	Indefinitely	~7,500						

Notes: WLC = West Line Creek. AWTF = Active Water Treatment Facility. AOP = Advanced Oxidation Process. The terminology used to describe the AWTF operational phase that began on December 30, 2018 (i.e., following the AWTF/AOP recommissioning phase; August 30, 2018 to December 29, 2018) was updated to more accurately reflect AWTF/AOP operations during this time frame. Terminology in the 2019 LCO LAEMP report identified two AWTF operational phases following AWTF/AOP recommissioning; "AWTF Operational Stabilization" and "AWTF/AOP Steady State Operation" (Minnow 2020a). In the current report, the time period following AWTF/AOP recommissioning (December 30, 2018 to present) has been identified as a termed as a single "AWTF with AOP Operational" phase.

^a 120 days after recommissioning date.

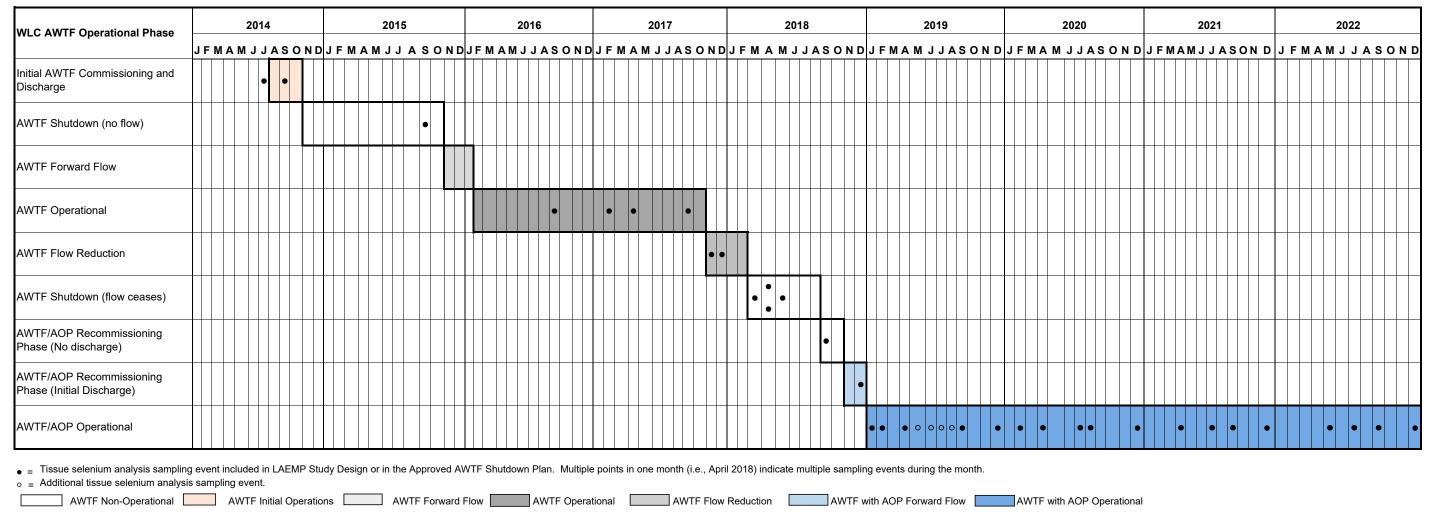


Figure 1.2: Overview of Completed Benthic Invertebrate Tissue Selenium Sampling Events in Relation to Phases of WLC AWTF Operation, 2014 to 2022

Notes: WLC = West Line Creek; AWTF = Active Water Treatment Facility; AOP = Advanced Oxidation Process; LAEMP = Local Aquatic Effects Monitoring Program. The terminology used to describe the AWTF operational phase that began on December 30, 2018 (i.e., following the AWTF/AOP recommissioning phase; August 30, 2018 to December 29, 2018) was updated to more accurately reflect AWTF/AOP operations during this time frame. Terminology in the 2019 LCO LAEMP report identified two AWTF operational phases following AWTF/AOP recommissioning; "AWTF Operational Stabilization" and "AWTF/AOP Steady State Operation" (Minnow 2020a). In the current report, the time period following AWTF/AOP recommissioning (December 30, 2018 to present) has been identified as a termed as a single "AWTF with AOP Operational" phase.

The AWTF remained shut down until recommissioning with an advanced oxidation process (AOP²; August 30, 2018; Table 1.1, Figure 1.2). The AOP is designed to reverse the shift in selenium species in AWTF effluent from chemically-reduced species back to a (chemically-oxidized) selenate-dominated condition thereby decreasing the bioavailability of selenium in Line Creek. Discharge to the receiving environment from the AWTF with AOP began on October 28, 2018, with variable forward flow until December 29, 2018 (Figure 1.2). The AWTF with AOP has been operational since December 30, 2018 ("AWTF with AOP operational phase"; Figure 1.2, Table 1.1).

1.3 Study Questions

Although the broader objective of the Line Creek LAEMP is to assess site-specific conditions at LCO relating to potential effects of discharge on the receiving environment, the LAEMP was designed with the primary focus of monitoring the condition of the aquatic environment and evaluating potential effects related to the commissioning of the WLC AWTF at LCO. The monitoring objectives for the Line Creek LAEMP include three main foci for the assessment of potential adverse effects of WLC AWTF operation to the receiving environment that are expressed as the following study questions:

- 1. Is active water treatment affecting biological productivity downstream in Line Creek? This study question relates to the potential for changes in productivity, trophic status, and biological community structure downstream of the WLC AWTF due to the fluidized bed reactor technology (for selenium and nitrate removal) used at the WLC AWTF which requires the addition of phosphorus to the treatment process. Although the WLC AWTF is managed to minimize the amount of residual phosphorus in treated effluent, there is potential for increased phosphorus concentrations in Line Creek which could potentially cause increased algal growth and changes to trophic status and biological community structure.
- 2. Are tissue selenium concentrations reduced downstream from the WLC AWTF? This study question relates to the potential for a change in the chemical form of selenium released into Line Creek from the WLC AWTF. Selenium in surface waters of the Elk River watershed (including downstream of Teck's mines) is predominantly in the form of selenate, as would be expected in the well-oxygenated, flowing stream habitats that dominate this watershed. At the WLC AWTF, aqueous selenium is removed via uptake into microorganisms within the treatment system where it is transformed to chemically-reduced forms (e.g., selenite and organoselenium species). In aquatic

² AOP refers to the advanced oxidation process and associated AWTF process modifications.

receiving environments, some reduced selenium species are accumulated into the base of the food web more readily than selenate (Ogle et al. 1988; Riedel et al. 1996; Stewart et al. 2010; Golder 2021c). As outlined above (Section 1.2), recommissioning of the WLC AWTF with AOP was completed in 2018 to decrease aqueous non-selenate selenium concentrations and thereby the bioavailability of selenium in the receiving environment.

3. Is WLC AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations, or concentrations of treatment-related constituents other than nutrients or selenium? This study question relates to the potential for other conditions related to active water treatment to adversely influence the receiving environment (e.g., an increase in temperature or a decrease in dissolved oxygen concentrations in treated water being released to Line Creek; discharge of treatment-related constituents; or an increase in other aqueous constituents of concern).

1.4 Linkages to Teck's Adaptive Management Plan

As required in Permit 107517 Section 10, Teck developed an Adaptive Management Plan (AMP) to support implementation of the Elk Valley Water Quality Plan (EVWQP) to achieve water quality targets including calcite targets, ensure that human health and the environment are protected, and where necessary, restored, and to facilitate continuous improvement of water quality in the Elk Valley. The AMP was most recently updated in December 2021 (Teck 2021a). Adaptive management is a systematic, rigorous approach to environmental management that maximizes learning about uncertainties while simultaneously striving to meet multiple management objectives and adapt management actions based on what is learned. The adaptive management cycle comprises six stages: assess, design, implement, monitor, evaluate and adjust. The AMP identifies six Management Questions that are re-evaluated at regular intervals. Evaluating these MQs collectively articulates whether Teck is on track to meet the environmental objectives of the EVWQP.

The LCO LAEMP was designed to monitor conditions in Line Creek with the operation of the WLC AWTF. Each annual LAEMP cycle (results are reported on April 30 of each year for the preceding calendar year) are also used for tracking issues for which a potential need for an adjustment, using the response framework, has been identified, including biological trigger assessments. Biological triggers are intended as a simple and consistent way to flag potential unexpected monitoring results that may require additional investigation and adjustment. In the current report, percent EPT (Ephemeroptera [mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]), composite-taxa benthic invertebrate tissue selenium concentrations, and WCT muscle tissue

selenium concentrations in 2022 were assessed against their respective biological triggers (additional information and methods pertaining to this analysis can be found in Appendix F).

Application of the AMP to the LCO LAEMP has occurred in multiple instances, resulting in adjustments to both AWTF operations and to LCO LAEMP monitoring. Some examples of these adjustments are as follows:

- WLC AWTF shut down: Teck temporarily shut down the WLC AWTF after working with regulators to obtain the necessary authorization. The AWTF shut down was in response to elevated tissue selenium concentrations observed in aquatic biota downstream of the AWTF in 2016 and 2017 (Minnow 2017a, 2018b) that was related to elevated concentrations of chemically-reduced forms of aqueous selenium in AWTF effluent. The AWTF was shut down starting on March 9, 2018 (Table 1.1).
- WLC AWTF investigations: Teck completed investigations and pilot-scale trials that indicated that recommissioning the WLC AWTF with an AOP would reverse the shift in selenium species in AWTF effluent from chemically-reduced species back to a selenate-dominated condition.
- WLC AWTF recommissioning: The AWTF was recommissioned with an AOP and resumed operation with the newly-commissioned AOP process approximately eight months initiation of shut down (October 29, 2018). Forward flow through the AWTF with AOP occurred approximately ten months after initiating shut down (on December 29, 2018; Table 1.1).
- Monitoring adjustments: Benthic invertebrate tissue selenium monitoring frequency and timing were adjusted to capture potential changes related to the shutdown and recommissioning of the AWTF with AOP. This included increased monitoring throughout the shutdown period to evaluate conditions while the AWTF was offline (Minnow 2019a), monitoring just prior to and following ATWF with AOP forward flow (with timing adjustments to accommodate changes in the AWTF with AOP implementation schedule; Minnow 2019a, 2020a), and increased monitoring frequency (monthly; May to August 2019) to better understand AWTF with AOP performance during operation stabilization (Minnow 2020a). Adjustments to monitoring timing were also made (in discussion with the EMC) to better reflect spawning events of WCT (i.e., replacing the February sampling event with a July sampling event) and shifting the May sampling event back to April (to further evaluate the elevated benthic invertebrate tissue noted in April 2019; Minnow 2020a).

In addition to addressing questions specific to the LCO LAEMP on an annual basis, aquatic monitoring data from the LAEMP will contribute to the broader data set assessed every three years within the RAEMP. The RAEMP is designed to evaluate MQ 5: "Does monitoring indicate that mine-related changes in aquatic ecosystem conditions are consistent with expectations?" Data from the LAEMP and RAEMP also contribute to answering MQ 2: "Will aquatic ecosystem health be protected by meeting the long-term site performance objectives (SPOs)?"

Results from this report will also be used to determine whether a biological trigger has been reached. Reaching a trigger may lead to an adjustment (Stage 6: Adjust) using the response framework. This is the main report for conveying biological trigger results under the AMP (Section 6). Implementation of management actions is not constrained to the AMP or LAEMP annual reporting cycles but may be (and have been) triggered at any time during the monitoring and reporting cycle.

Identifying and reducing environmental management uncertainty is a foundational aspect of adaptive management. Therefore, the AMP identifies key uncertainties (KUs) that, as reduced, fill gaps in current understanding to support the achievement of the EVWQP objectives. Aquatic monitoring data assist in reducing KU 5.1: "How will monitoring data be used to identify potentially important mine-related effects on the aquatic ecosystem?" and KU 2.1 "How will the science-based benchmarks be validated and updated?" Progress on reducing these KUs, and associated learnings, are described in annual AMP reports.

Aquatic health monitoring results relevant to MQ 5 and KU 5.1 are discussed in Sections 3 to 5 of the present report.

Please refer to the 2021 AMP Update (Teck 2021a) for more information on the adaptive management framework, including Management Questions, key uncertainties, continuous improvement; linkages between the AMP and other EVWQP programs; and AMP reporting. Progress on gaining new knowledge and reducing KUs is described in annual AMP reports (submitted July 31) and evaluating the answers to MQs are reported in MQ evaluation reports (various submission dates).

2 METHODS

2.1 Overview

The Line Creek LAEMP report (see Table 2.1) is structured as an explanation of the collected data and data evaluation in relation to each of the study questions. This report includes data up to the end of the 2022 calendar year for all parameters. Historical data are also presented where appropriate.

Water quality and biological samples were collected from established monitoring areas in Line Creek and the Fording River (Figure 2.1, Table 2.2). These monitoring areas represent the same locations that have been sampled for the LCO LAEMP since 2014 (Minnow 2015) with the addition of RG LCUT (LC LCUSWLC) in 2016 (Minnow 2017a), and RG LISP24 (WL DCP SP24) and RG LIDCOM (LC LCC) in 2017 (Minnow 2018b). Sampling includes areas both upstream and downstream of the AWTF discharge in Line Creek, as well as associated reference areas (RG LI24 and RG SLINE). Specifically, RG LCUT is situated upstream from the AWTF discharge and mainly reflects water quality influences farther upstream on the main stem of Line Creek (LC LCUSWLC) when the AWTF is operating. When WLC flows are not being diverted to the AWTF for treatment (i.e., during reduction of effluent flow through the AWTF or during AWTF shutdown) water quality at RG LCUT also reflects input from WLC. The monitoring areas RG LILC3, RG LISP24, RG LIDSL, RG LIDCOM, and RG LI8 are downstream from the WLC AWTF, providing spatial resolution of the potential influence of the AWTF treatment in Line Creek. Monitoring areas RG FRUL and RG FO23 are situated off the mine site, in the Fording River upstream and downstream of the Line Creek confluence, respectively (Figure 2.1, Table 2.2). Continuous water temperature is also monitored at six locations (Figure 2.2, Table 2.3).

The methods associated with sample collection, laboratory analysis, and data analyses are described in the following sections and in Appendix A.

2.2 Water Quality

2.2.1 Routine Water Quality

Water quality data assessed as part of the LCO LAEMP included data for routine monitoring managed by Teck (Table 2.4), and water samples collected at the biological monitoring stations concurrently with biological sampling (Figure 2.1, Table 2.2). Routine water quality results were paired with the closest biological monitoring station (Table 2.2). The biological monitoring area RG_LCUT is situated upstream from the AWTF and mainly reflects water quality influences farther upstream on the main stem of Line Creek (LC LCUSWLC) when the AWTF is operating, but also

Table 2.1: General Approach for the 2022 Line Creek LAEMP as Presented in the LAEMP Study Design (Minnow 2021b)

Kay Quantians	Accessment Enduciate		Measur	How Data will be Evaluated to Address Key			
Key Questions	Assessment Endpoints	Water	Sampling Areas	Biological	Sampling Areas	Question ^a	
	Biological productivity downstream from the AWTF discharge post-compared to pre-AWTF commissioning, among AWTF operational phases, and relative to productivity observed upstream from the discharge		LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)	Periphyton coverage, Benthic invertebrate biomass, Benthic invertebrate community structure	Benthic Invertebrate Biomass - RG_LI24, RG_SLINE, RG_LILC3, RG_LIDSL Periphyton coverage and Benthic Invertebrate Community - RG_LI24, RG_SLINE, RG_LCUT, RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, RG_LI8, RG_FRUL, RG_FO23	Determine if there is an increase in periphyton coverage, benthic invertebrate biomass, or shift in community structure that has been demonstrated to correspond with changes in AWTF operational status and changes in parameters associated with productivity (e.g., nutrient concentrations)	
Are tissue selenium concentrations reduced downstream from the	Tissue selenium concentrations downstream from the AWTF discharge post- compared to pre- AWTF commissioning, among AWTF	Total and dissolved selenium concentrations	LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)	Benthic invertebrate tissue selenium	RG_LI24, RG_SLINE, RG_LCUT, RG_LILC3, RG_LISP24, RG_LIDSL,	Determine if there is a change in benthic invertebrate tissue selenium concentrations over time that corresponds to changes in total selenium concentrations or selenium speciation in water.	
AWTF?	operational phases, and relative to concentrations observed upstream from the discharge	Selenium speciation	LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)	(composite-taxa samples)	RG_LIDCOM, RG_LI8, RG_FRUL, RG_FO23	Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream fron the AWTF	
			5 locations in the effluent mixing zone, and 1 location upstream of the AWTF discharge (see Figure 2.2 and Table 2.3)			Temperatures that are above/below the guideline, and dissolved oxygen concentrations that are above the threshold for effects to fish outside of the initial mixing zone, and confirmation that the mixing zone is small,	
biota through thermal effects, effects on dissolved oxygen concentrations	Biological community structure downstream from the AWTF discharge post- compared to pre- AWTF commissioning, among AWTF operational phases, and relative to community structure observed upstream from the discharge	Dissolved oxygen	LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)	Benthic invertebrate RG_community structure RG_	RG_LI24, RG_SLINE, RG_LCUT, RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, RG_LI8, RG_FRUL, RG_FO23 (annually)	will be indicative of effective management of treated water discharge. Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF	
	appension non-alle districtings	Toxicity	LC_SLC, WL_BFWB_OUT_SP21, LC_LC3 LC_LCDSSLCC, LC_LC5 (see Table 2.4 for timing)			Determine if there is a change in benthic invertebrate community endpoints away from the reference condition that does not correspond to observed changes in nutrients or selenium concentrations	

Notes: LAEMP = Local Aquatic Effects Monitoring Program. AWTF = Active Water Treatment Facility.

^a Data evaluation approach presented differs slightly from the evaluation criteria in Table 2.1 of the study design. The data evaluation approach displayed herein is integrated for water and biological endpoints, and these were presented separately in the study design.

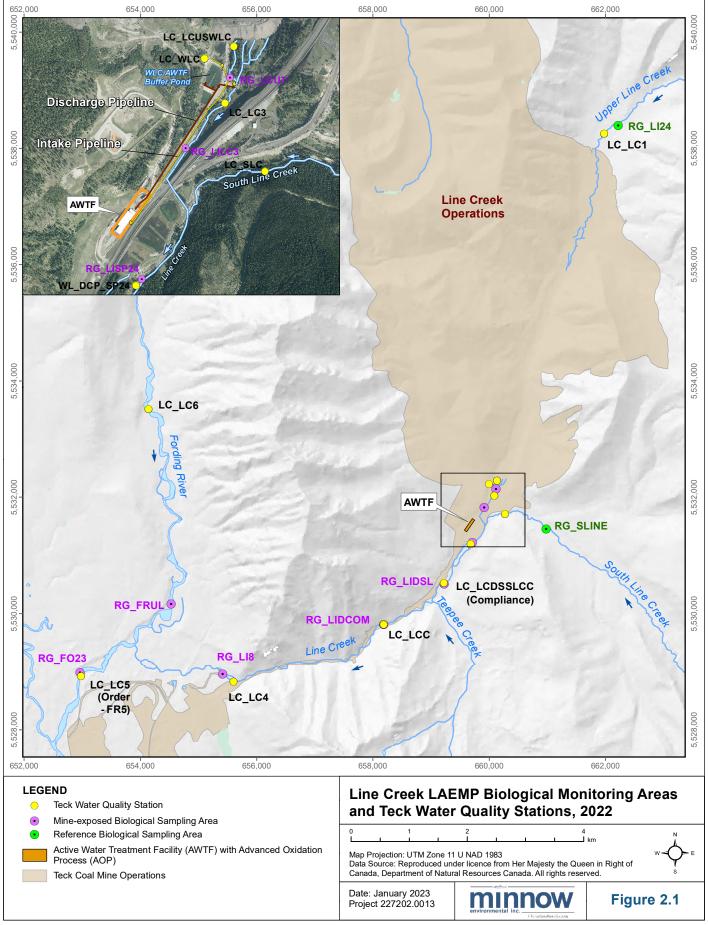
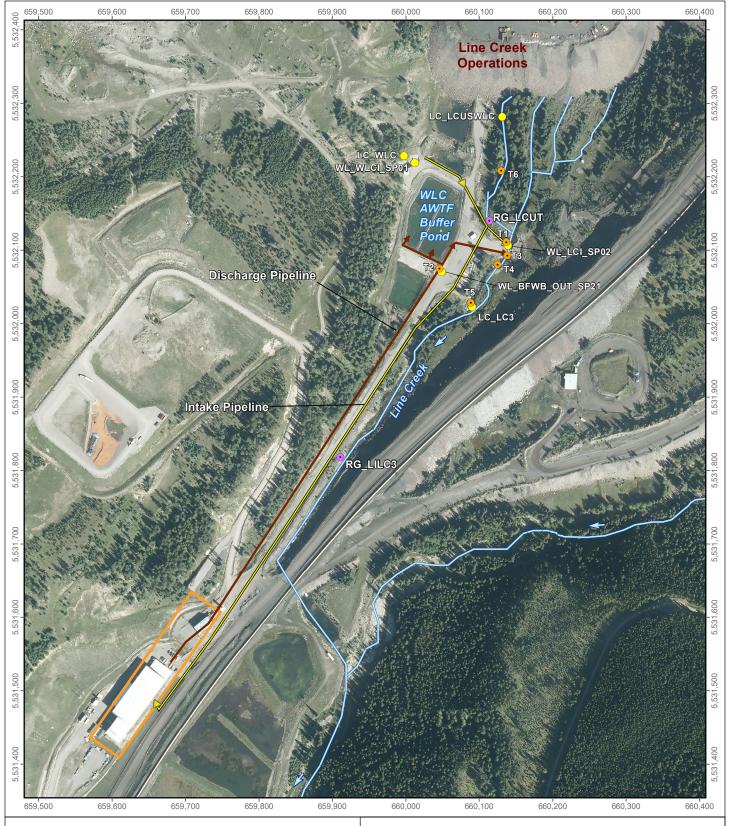



Table 2.2: Monitoring Areas Associated with Line Creek LAEMP, 2022

			Water Quality Sampling Station	Biological Sampling					
Area	Teck Location	EMS	Location Decarintion	UTM (11U)		Station ID	Location Decoviration	UTM (11U)	
	Code	Number	Location Description	Easting	Northing	Station ID	Location Description	Easting	Northing
ence	LC_LC1	E216142	Line Creek upstream of LCO and MSA North Pit	661979	5538254	RG_LI24	South fork of upper Line Creek	662214	5538393
Reference	LC_SLC	E282149	South Line Creek west side of Main Rock Drain, upstream of Line Creek	660271	5531737	1737 RG_SLINE South Line Creek upstream of Line Creek and LCO		661122	5531374
	Line Creek downstream of rock drain, upstream of West Line Creek and AWTF outfall		660114	5532140	RG_LCUT	Line Creek downstream of rock drain, downstream of West Line Creek and upstream of AWTF outfall	660114	5532140	
eek	LC_LC3	0200337	Line Creek downstream of West Line Creek and AWTF outfall	660090	5532023	RG_LILC3	Line Creek downstream of West Line Creek and AWTF outfall	659911	5531818
Mine-exposed Line Creek	WL_DCP_SP24	N/A	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	659684	5531191	RG_LISP24	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	659674	5531168
Mine-exp	LC_LCDSSLCC (compliance)	E297110	Line Creek immediately downstream of South Line Creek confluence	659218	5530522	RG_LIDSL	Line Creek downstream of South Line Creek confluence	659294	5530583
	LC_LCC	N/A	Line Creek downstream of the compliance point	658185	5529820	RG_LIDCOM	Line Creek downstream of the compliance point	658184	5529814
	LC_LC4	020044	Line Creek canyon, upstream of Process Plant	655604	5528824	RG_LI8	Line Creek downstream of the canyon		5528959
posed	LC_LC6	0200338	Fording River downstream of Grace Creek, upstream of Line Creek	654140	5533513	RG_FRUL	FRUL Fording River downstream of Grace Creek, upstream of Line Creek		5530162
Mine-exposed Fording River	LC_LC5 (Order - FR5)	0200028	Fording River downstream of Line Creek	652977	5528919	RG_FO23	Fording River downstream of Line Creek	652808	5528334

Notes: UTM = Universal Transverse Mercator. LCO = Line Creek Operation. AWTF = Active Water Treatment Facility.

LEGEND

- Temperature Data Logger
- Biological Monitoring Area
- Teck Water Quality Station
- Active Water Treatment Facility (AWTF) with Advanced Oxidation Process (AOP)

Line Creek LAEMP Monitoring Areas and Teck Water Quality Stations in Upper Line Creek, 2022

0 85 170 340
Meters
Projection: North American Datum 1983 UTM Zone 11 U
Reproduced under licence from Her Majesty the Queen in Right of Canada,
Department of Natural Resources Canada. All rights reserved.

W - E

Date: January 2023 Project 227202.0013

Figure 2.2

Table 2.3: Temperature Data Logger Locations, 2022

I aggar ID	Location Description	UTM (NAD83, 11U)		
Logger ID	Location Description	Easting	Northing	
T1	Temperature upstream of LC Intake	660137	5532111	
T2	Temperature of Buffer Pond outlet box	660046	5532074	
ТЗ	Temperature in V-Notch Discharge	660140	5532096	
T4	Temperature 5 m downstream of discharge	660130	5532076	
T5	Temperature at LC3 (100 m DS of outfall)	660092	5532030	
Т6	Temperature at LCUT (upstream of LC Intake and T1 data logger)	660126	5532192	

Notes: UTM = Universal Transverse Mercator. LC = Line Creek. Logger T6 failed to record data from December 2021 onward, until it was checked during retrieval in September 2022. The logger was reset concurrently with a second logger to reduce the chance of data loss next year.

Table 2.4: Summary of Water Quality Monitoring for Permit 107517

	Teck Water Station Code		LITM (NA	D83, 11U)			Water Quality Samples		
Location Description	(associated Biological	EMS	5 m (14/250, 110)			Field	All Other Parameters Required	Tox	kicity ^e
·	Station Code in brackets)	Number	Easting	Northing	Area Type	Parameters ^a	Under Mine Permits ^b	Acutef	Chronic ^g
Line Creek upstream of LCO	LC_LC1 (RG_LI24)	E216142	661979	5538254	Reference	М	М	-	-
South Line Creek	LC_SLC (RG_SLINE)	E282149	660271	5531737	Reference	М	М	-	Q/SA
Line Creek upstream of WLC AWTF	LC_LCUSWLC (RG_LCUT)	E293369	660114	5532140	Mine-exposed	М	М	-	-
West Line Creek (WLC)	LC_WLC (RG_LCUT)	E261958	5532227	659998	Mine-exposed	М	М	-	-
Line Creek AWTF Influent	WL_LCI_SP02	E293370	660138	5532109	Mine-exposed	D	M	-	-
West Line Creek AWTF Influent	WL_WLCI_SP01	E293371	660011	5532218	Mine-exposed	D	М	-	-
AWTF Effluent (buffer pond discharge)	WL_BFWB_OUT_SP21	E291569	660050	5532070	Mine-exposed	D	M ^c	Q	-
Line Creek ~200 m downstream of the WLC AWTF	LC_LC3 (RG_LILC3)	0200337	660090	5532023	Mine-exposed	W/M	W/M ^h	-	Q/SA
Line Creek	WL_DCP_SP24 (RG_LISP24)	-	659684	5531191	Mine-exposed	S	S	-	-
Line Creek downstream South Line Creek Confluence	LC_LCDSSLCC (RG_LIDSL)	E297110	659218	5530522	Mine-exposed	W/M	W/M ^{d,h}	-	Q/SA
Line Creek downstream of compliance	LC_LCC (RG_LIDCOM)	-	658185	5529820	Mine-exposed	S	S	-	-
Line Creek upstream of the process plant and ~5,550 m downstream of the WLC AWTF	LC_LC4 (RG_LI8)	0200044	655604	5528824	Mine-exposed	W/M	W/M ⁱ	-	-
Fording River upstream Line Creek	LC_LC6 (RG_FRUL)	0200338	654140	5533513	Mine-exposed	S	S	-	-
Fording River downstream Line Creek	LC_LC5 (RG_FO23)	0200028	652977	5528919	Mine-exposed	W/M	W/M	-	Q/SA

Notes: "-" = Sampling will not be completed at this area; UTM = Universal Transverse Mercator; LCO = Line Creek Operations; AWTF = Active Water Treatment Facility; D = daily; T = twice monthly; W = weekly; W/M = weekly during freshet (March 15 to July 15); Q = quarterly; S = September (once). September sampling at WL DCP SP24, LC LCC, and LC LC6 is not included in Permit 107517. Sampling frequency is currently managed through the permit, and after one year of data collection during sustained operation of the AWTF with AOP sampling frequency may be adjusted.

^a Dissolved oxygen, water temperature, specific conductance, pH (see Table 2.5).

^b Parameters consistent with Permit 107517 (see Table 2.5 for details).

^c Three times weekly for total selenium and 5-day Biochemical Oxygen Demand. Selenium speciation, sulphide, bromate, hydrogen peroxide, and ozone measured at frequency shown (in addition to parameters listed in footnote b).

^d Total phosphorus every two weeks from June 15th to September 30th.

^e Acute and chronic as per Permit 107517 requirements.

 $^{^{\}rm f}$ Q = Quarterly 96-hr rainbow trout LC₅₀; 48-hr *Daphnia* spp. LC₅₀.

⁹ Q = Quarterly 7-day C. dubia growth and survival, 72-hr P. subcapitata growth tests; SA = Semi-annual 28-day H. azteca growth and survival tests in spring and fall, 30-day early life stage rainbow trout tests in spring and fall, 30-day early life stage fathead minnow tests in summer and winter.

^h 5-day Biochemical Oxygen Demand, sulfide, bromate, hydrogen peroxide measured at frequency shown (in addition to parameters listed in footnote b).

ⁱBromate and hydrogen peroxide measured at frequency shown (in addition to parameters listed in footnote b).

reflects input from West Line Creek (LC_WLC) when the AWTF is not operational (and flows are not being diverted to the AWTF for treatment; see Section 2.1). Accordingly, water quality data for RG_LCUT in 2022 (similar to 2019 to 2021) were associated with routine water quality monitoring data from LC_LCUSWLC for data analysis because the AWTF was operational throughout the year (Figure 1.2; Appendix Sections A1.1 to A1.4)³.

2.2.1.1 Laboratory and Data Analysis

Water samples were analyzed by ALS Environmental, Calgary, Alberta, for constituents consistent with Permit 107517 (i.e., conventional parameters, major ions, nutrients, and total and dissolved metals) using standard methods (see Appendix A1.3).

Water samples were analyzed by Brooks Applied Labs, Seattle, Washington for selenium speciation analysis (including concentrations of selenate, selenite, DMSeO, MeSe(IV), methaneselenonic acid, selenocyanate, selenomethionine, selenosulphate, and unknown selenium species).

Water quality data were downloaded from Teck's EQuIS database and included both routine monitoring results collected by Teck and samples collected concurrently with biological sampling. Temperature data was recorded continuously at locations immediately upstream and downstream of the AWTF discharge (using data loggers; Figure 2.2, Table 2.3). Analyses of water quality data were completed using the following approaches (see Appendix A1.4 for detailed methodology):

- Tabular and graphical comparison to applicable benchmarks, concentration effects limits, updated effects concentrations, SPOs, and British Columbia Water Quality Guidelines (BCWQGs);
- Comparison of the ratio of the monthly mean total phosphorus and orthophosphate concentrations to the monthly mean baseline concentrations during the pre-AWTF operation period (97.5th percentile);
- Graphical comparison of temperature and dissolved oxygen concentrations relative to BCWQG; and
- Graphical comparison of temperatures upstream and downstream of the AWTF discharge relative to temperature measurements recorded further upstream at LC_LCUSWLC (recorded using data loggers).

³ The AWTF was shut down for periods of over 24 hours on three occasions in 2022. The AWTF was shut down for annual maintenance on June 7, July 26 and August 30, 2022 (Teck 2023a). As the duration of these events were short, water quality data for RG_LCUT from the brief shut down periods were reported in relation to those from LC_LCUSWLC for data interpretation.

2.2.2 Toxicity Testing

Effluent samples from the WLC AWTF (WL_BFWB_OUT_SP21) were collected for acute toxicity testing on a quarterly basis, as stipulated in Permit 107517 (Table 2.4). The acute toxicity tests were conducted using *Oncorhynchus mykiss* and *Daphnia* spp. (detailed methodology can be found in Appendix A2).

Chronic toxicity tests were also completed on water samples collected quarterly and semiannually in 2022 at two mine-exposed areas of Line Creek (Compliance Point [LC_LCDSSLCC] and LC_LC3) and at one mine-exposed area of the Fording River⁴ (LC_LC5; Figure 2.1, Table 2.4), as per the Permit 107517. The quarterly and semi-annual tests were conducted using *Pseudokirchneriella subcapitata, Ceriodaphnia dubia, Hyalella azteca, Oncorhynchus mykiss,* and *Pimephales promelas* (detailed methodology can be found in Appendix A3). Chronic toxicity tests were also completed on water samples from one reference area (LC_SLC) in 2022 as a within-watershed reference location for Line Creek. Water quality samples were collected during toxicity testing to support evaluation of toxicity results (see Appendix A3 for detailed methods). See Teck 2023a and WSP 2023 for details on acute and chronic toxicity testing, respectively.

2.2.3 EVWQP benchmarks and Updated Effects Concentrations

Preparation of the 2014 Elk Valley Water Quality Plan (EVWQP) required derivation of science-based benchmarks for nitrate, sulphate, cadmium, and selenium. Risks associated with these constituents depend on their concentrations, concentrations of other water chemistry parameters known as exposure and toxicity modifying factors (ETMFs), and the sensitivity of aquatic receptors that could be exposed. The EVWQP benchmarks were derived, using a large body of published and site-specific information available at that time, to represent scientific best estimates of concentrations associated with no effects and defined levels of potential effect on chronic, sublethal endpoints for sensitive aquatic species. Margins of safety were incorporated in benchmark derivation to account for uncertainty and Teck committed to undertaking further study and periodic updates to progressively reduce that uncertainty and improve confidence in the benchmarks.

Studies conducted to progressively reduce uncertainty in benchmarks have included additional chronic toxicity studies of nitrate, sulphate, cadmium, and selenium individually and in mixtures, annual evaluation of water quality under the regional chronic toxicity monitoring program, updates to selenium bioaccumulation models in 2017 and 2022, development of new tools to predict

⁴ Interpretation of chronic toxicity results in the present report was specifically focused on applicable results for monitoring stations located in Line Creek associated with the LCO LAEMP (i.e., excluding Fording River [LC_LC5] results).

bioaccumulation in relation to selenium speciation, and most recently an extensive program of validation and updates to the science-based benchmarks under Teck's Adaptive Management Plan (AMP). This program was undertaken to answer Management Question (MQ) 2 under the AMP: Will the aquatic ecosystem be protected by meeting the long-term site performance objectives? and associated key uncertainty 2.1: How will the science-based benchmarks be validated and updated? The MQ2 program was developed with input from the Elk Valley Environmental Monitoring Committee (EMC) and results have been shared with the EMC on an ongoing basis since the program began.

A key outcome of the MQ2 program was the development of an updated compilation of chronic toxicity information for nitrate, sulphate, and selenium, including information available at the time of the EVWQP and studies conducted after the EVWQP. For nitrate and sulphate, the updated compilation represented a substantial increase in available toxicity information for key test species. This updated compilation was used to validate the EVWQP benchmarks and, where warranted, to derive updated effects concentrations that incorporate this new information (WSP Golder 2022). As in the EVWQP, the objective was to derive scientific best estimates of concentrations associated with no effects or defined levels of potential chronic, sublethal effect to sensitive species and life stages relevant to the Elk Valley. The analysis in WSP Golder (2022) concluded that the updated effects concentrations for nitrate and sulphate are supported by a larger dataset covering a wider range of conditions than was available at the time of the EVWQP, and thereby provide an improved basis for evaluating potential effects of these constituents. Dataset comparisons for the EVWQP and updated effects concentrations (UECs) for nitrate and sulphate are summarized in Appendix Table E.2.

2.3 Primary and Secondary Productivity and Benthic Community Structure

2.3.1 Primary Productivity

Periphyton coverage was visually scored in September 2022 at each sampling area (Figure 2.1, Table 2.5). Periphyton visual scores were collected using the methods described in Appendix A4. Results were evaluated by calculating the mean score and standard deviation for each area and comparing these spatially (upstream and downstream of the AWTF) and temporally (among years for each area) to assess changes in productivity.

2.3.2 Secondary Productivity and Invertebrate Community Structure (Hess Sampling)

Samples for analysis of benthic invertebrate density, biomass, and community structure were collected using Hess methods in September 2022 from two areas in Line Creek downstream from the WLC AWTF (RG_LILC3 and RG_LIDSL), and at two reference areas (RG_SLINE and RG_LI24) in accordance with the 2021 LCO LAEMP study design (Minnow 2021b). Five samples

Table 2.5: Primary and Secondary Productivity and Benthic Invertebrate Community Sampling Completed in Line Creek and Fording River in September 2022 Compared to the LCO LAEMP Study Design (Minnow 2021a)

		Biolo	gical Sampling				
		Periphyton	Benthic Invertebrates				
Area Type	Biological Area Code	Visual Coverage Score	Kick Sampling (Community)	Hess Sampling (Density, Biomass, Community)			
Reference	RG_SLINE	n=5 (√)	n=3 (√)	n=5 (√)			
Refer	RG_LI24	n=5 (√)	n=3 (√)	n=5 (√)			
	RG_LCUT n=5 (√)		n=1 (n=3)a (√)	-			
reek	RG_LILC3	n=5 (√)	n=3 (√)	n=10 (√)			
d Line Cl	RG_LISP24	n=5 (√)	n=1 (√)	-			
Mine-exposed Line Creek	RG_LIDSL	n=5 (√)	n=3 $(n=5)^a ()$	n=10 (√)			
Min	RG_LIDCOM	n=5 (√)	n=1 (√)	-			
	RG_LI8	n=5 (√)	n=3 (√)	-			
Mine-exposed Fording River	RG_FRUL	n=5 (√)	n=1 (n=3)ª (√)	-			
Mine-e Fordin	RG_FO23	n=5 (√)	n=1 (n=5) ^a (√)	-			

Notes: "-" = not sampled; " $\sqrt{}$ " = target sample size was met.

^a Numbers in brackets are replicates required by the RAEMP study design and were utilized for the LCO LAEMP (Minnow 2021a).

were collected at each reference area and 10 at each mine-exposed area (Figure 2.1, Table 2.5; see Appendix A5.3.1 for detailed sample collection methodology).

2.3.2.1 Laboratory and Data Analysis

Benthic invertebrate biomass samples were sent to ZEAS Inc. (lead taxonomist Danuta Zaranko) in Nobleton, ON, for sorting and taxonomic identification to the family-level of taxonomy. Total organism abundance and biomass was reported at the family-level for each sample (see Appendix A5.3.2 for detailed laboratory analysis methods, see Appendix H for raw data).

Prior to data analysis, data were converted to standard area-based measures using the surface area sampled (0.1 m² for each sample). Benthic invertebrate productivity and community structure were evaluated based on total biomass (g/m² wet weight), total density (#/m²), and density of major taxonomic groups (EPT, Ephemeroptera, and Chironomidae). Temporal changes in benthic invertebrate biomass and density were evaluated using an Analysis of Variance (ANOVA) model to compare areas (mine-exposed to reference) and years (different operational periods; see Appendix A5.3.3 for detailed data analysis methods).

2.3.3 Benthic Invertebrate Community Structure (Kick and Sweep Sampling)

Benthic invertebrate community sampling in 2022 was completed in accordance with the 2021 LCO LAEMP study design (Minnow 2021b). Three kick and sweep replicate samples per area were collected in September 2022 from areas downstream of the AWTF outfall that have been monitored consistently over time (RG_LILC3, and RG_LI8) and at each reference area (RG_SLINE, RG_LI24; Figure 2.1, Table 2.5). One sample per area was collected from RG_LISP24 and RG_LIDCOM to provide additional spatial resolution of community characteristics (Table 2.5). RAEMP monitoring requirements included a higher number of replicates at some areas than LCO LAEMP monitoring requirements (see Table 2.5 for details; Minnow 2021c), and as such, the higher required number of sample replicates were collected at these areas in 2022 (at RG_LCUT, RG_LIDSL, RG_FRUL, and RG_FO23).

Replicates were spaced a minimum of 50 m apart, where habitat allowed (i.e., riffle habitat was present). Effort was made to target similar habitats for collection of both benthic invertebrate community and tissue samples within each sampling area. Benthic invertebrate community samples were collected according to the Canadian Aquatic Biomonitoring Network (CABIN) protocol (detailed methodology can be found in Appendix A5.2.1; Environment Canada 2012).

2.3.3.1 Laboratory and Data Analysis

Benthic invertebrate community samples were sent to Cordillera Consulting (lead taxonomist Scott Finlayson), in Summerland, BC, for sorting and taxonomic identification. Total organism

abundance was reported for every distinct taxon identified in each sample (see Appendix H for raw data).

Benthic invertebrate community condition was evaluated based on total abundance, taxonomic richness (to the lowest practicable level of taxonomy), and the abundances and (EPT, proportional abundances (%) of major taxonomic groups Ephemeroptera. and Chironomidae). Analyses of benthic invertebrate community data were plotted to show changes over time relative to regional normal ranges⁵ as well as site-specific normal ranges.⁶ Benthic invertebrate community data collected in September were the focus of data analyses and interpretation and included all replicate samples collected in 2022 (i.e., those collected as requirements for the LCO LAEMP and RAEMP monitoring; see Appendix Sections A5.2.2 to A5.2.4 for detailed methodology).

2.4 Tissue Selenium Concentrations

2.4.1 Benthic Invertebrates

As outlined in Section 2.1, benthic invertebrate tissue selenium sampling in 2022 was completed in accordance with the 2021 LCO LAEMP study design (Minnow 2021b), and included sample collections in early May⁷, July, September, and December 2022 (Table 2.6).

Samples were collected using the kick and sweep method described in Appendix A5.2, except collections were not timed, and kicking continued only until sufficient organisms were collected. All sampling events included collection of a composite sample of a variety of benthic invertebrate taxa (composite-taxa samples; see Appendix A5.4.1 for detailed methodology).

2.4.1.1 Laboratory and Data Analysis

Frozen samples were shipped by courier to TrichAnalytics Inc. in Saanichton, BC for analysis of metals concentrations (including mercury and selenium; see Appendix A5.4.2 for details). Analyses of composite-taxa benthic invertebrate tissue selenium data were completed using the following approaches (see Appendix A5.4.3 for detailed methodology):

⁷ The first sampling event of 2022 that occurred in May was meant to occur in April as the EMC expressed interest in further understanding the increase in benthic invertebrate tissue selenium concentrations that was previously observed during April sampling events (i.e., April 2020; Minnow 2021b) and for more information on the dietary exposure of WCT to selenium. However, the sampling crew was unable to collect data until early May due to illnesses.

⁵ The reference normal range as presented in the RAEMP represents the 2.5th and 97.5th percentiles of the 1996 to 2019 (Minnow 2020b).

⁶ Site-specific normal ranges represent the 2.5th and 97.5th percentile for a given area as determined by habitat predictors for that area in relation to the complete set of Elk Valley monitoring areas. The site-specific normal ranges were estimated using regression modelling as presented in the RAEMP (Minnow 2020b).

Table 2.6: Benthic Invertebrate Composite-Taxa Tissue Selenium Sampling Completed in Line Creek and Fording River in 2022 Compared to the LCO LAEMP Study Design (Minnow 2021a)

Area Type	Biological Area Code	May 2 to 4	Jul 11 to 14	Sept 8 to 19	Nov 29 to Dec 2
Reference	RG_SLINE	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
Kelelelice	RG_LI24	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
	RG_LCUT	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
	RG_LILC3	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
	RG_LISP24	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
Mine-	RG_LIDSL	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
exposed	RG_LIDCOM	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
	RG_LI8	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (X)
	RG_FRUL	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (√)
	RG_FO23	n=5 (√)	n=5 (√)	n=5 (√)	n=5 (X)

Notes: AWTF = Active Water Treatment Facility. AOP = Advanced Oxidation Process. " $\sqrt{}$ " = target sample size was met. "X" = target sample size was not met due to unsafe conditions (ice) in the area.

- Graphical comparison of tissue selenium concentrations relative to applicable benchmarks and the regional normal range;
- Comparison of observed tissue selenium concentrations to those predicted using a selenium bioaccumulation tool;
- Evaluation of changes in tissue selenium concentrations among AWTF operational phases, within the AWTF with AOP operational phase (2019 to 2022), and within sampling events in 2022, at mine-exposed areas relative to reference, and in the Fording River downstream relative to upstream of Line Creek, using a two-way ANOVA;
- Evaluation of differences in tissue selenium concentrations among sampling areas during each sampling event in 2022 using a two-way ANOVA;
- Quantification of changes in benthic invertebrate selenium concentrations at the reference area RG SLINE since 2017 (before and after a change in analytical laboratory in 2020).

2.4.2 Fish

Three species make up the fish community of Line Creek including BT, WCT, and mountain whitefish. WCT and BT are the dominant species, while mountain whitefish are present only in certain reaches of Line Creek and only as adult and at low densities (Zathey 2021). Therefore, data interpretation in relation to only BT and WCT was the focus of this report.

Fish tissue monitoring (which was completed in previous years; Minnow 2018b, 2019a, 2020a) was excluded from the 2020 to 20228 LCO LAEMP in an effort to reduce sampling stress on BT and WCT (Cope 2020) in Line Creek related to LAEMP monitoring activities. However, fish monitoring was conducted at LCO in 2022 as part of confirmatory sampling for the RAEMP and targeted eight WCT from near RG_LIDSL in September. Typically, muscle plug sampling is conducted just prior to spawning, however, a comparison of WCT muscle selenium concentrations from May (i.e., prior to spawning) and late August/September (i.e., post-spawning) in 2015 under the RAEMP showed no differences among seasons for this species (Minnow 2018a). Subsequent WCT sampling efforts targeting non-lethal muscle samples under the RAEMP were therefore planned for early September to avoid capture stress on gravid females (Minnow 2018d, 2021c).

⁸ Although, fish tissue monitoring was included in past LCO LAEMP study designs (2017 to 2019; Minnow 2017c, 2018c, and 2019b), the 2022 LCO LAEMP study design did not include fish tissue selenium monitoring. The initial 2020 LCO LAEMP study design (Minnow 2020c) included fish tissue selenium monitoring, however it was later removed (June 3rd, 2020, Minnow 2020d) as a proactive measure in response to declines in the Upper Fording River WCT population (Cope 2020) and feedback from the EMC and the Elk Valley Fish and Fish Habitat Committee (EVFFHC). The exclusion of fish tissue monitoring from the 2022 and 2021 LCO LAEMP study design is consistent with the revised 2020 LCO LAEMP study design and discussed with the EMC on March 8th, 2021.

Tissue samples were also collected from any incidental fish mortalities that were discovered at LCO in 2022 (subject to the condition mortality), which included one BT sample. Samples were collected using the methods described in Appendix A6.1.

2.4.2.1 Laboratory and Data Analysis

Frozen fish muscle samples were shipped by courier to TrichAnalytics Inc. in Saanichton, BC for analysis of metals concentrations (including mercury and selenium; see Appendix A6.2 for details). Analyses of fish tissue selenium data were completed using the following approaches (see Appendix A6.3 for detailed methodology):

- Estimation of ovary selenium concentrations using muscle selenium results (as described below);
- Tabulation of muscle and estimated ovary selenium concentrations with corresponding meristics data (total weight, length and fork length);
- Graphical comparison of muscle and estimated ovary selenium concentrations to applicable EVWQP tissue benchmarks and to previous data (2001 to 2022);
- Comparison of estimated ovary tissue selenium concentrations to the upper prediction interval calculated using a selenium bioaccumulation tool.

Site-specific benchmarks were derived in the EVWQP based on fish egg/ovary selenium concentrations because measurement of selenium in eggs or ripening ovaries is the most direct way to evaluate potential effects of selenium on fish reproduction (Janz et al. 2010; Golder 2014; USEPA 2016; Golder 2014). Selenium concentrations in fish eggs/ovaries can be estimated from muscle for fish species that exhibit a strong muscle-to-ovary selenium relationship. A strong ovary-to-muscle relationship for selenium concentrations has been characterized for WCT, of about 1.6-times the concentrations in muscle of the same fish, which is utilized as an indirect means of evaluating potential effects of selenium on fish reproduction (and for BT, 3.3-times; Appendix Tables D.11 and D.12; Nautilus and Interior Reforestation 2011).

Although fish tissue monitoring was limited to RG_LIDSL in 2022, benthic invertebrate and fish tissue quality monitoring completed for the LCO LAEMP has demonstrated that changes in fish tissue selenium concentrations between 2017 and 2019 were corroborated by those reported for benthic invertebrates (Minnow 2020c). As such, benthic invertebrate tissue selenium monitoring is expected to be sufficient to evaluate potential effects of AWTF with AOP operation on selenium concentrations in biota in the receiving environment.

3 PRODUCTIVITY

3.1 Overview

Monitoring data were evaluated in this section to address Study Question #1: Is active water treatment affecting biological productivity downstream in Line Creek? To address this study question, primary and secondary productivity monitoring endpoints and aqueous nutrient concentrations were evaluated in relation to the AWTF operational status. The AWTF with AOP was operational throughout 2022 with discharge to the receiving environment occurring throughout the year (see Section 1.2 for details).

3.2 Site Performance Objectives and Aqueous Nutrient Concentrations

As outlined in Section 1.2, the AWTF treatment process requires the addition of phosphorus, giving the potential for increased phosphorus concentrations downstream in Line Creek during AWTF operation. The site performance objectives (SPO) are limits applied and measured at the compliance point (LC_LCDSSLCC) to track daily and monthly exceedances during certain time periods and are applied to total phosphorus and nitrate.

Aqueous total phosphorus concentrations at the Compliance Point were consistently below the SPO of 0.02 mg/L throughout 2022, including the growing season (June 15 to September 30) to which the SPO applies (Figure 3.1). These results align with the previous three years of total phosphorus measured during AWTF with AOP operation (2019 to 2021; Minnow 2020a, 2021a and 2022). Aqueous phosphate and orthophosphate concentrations in 2022 were within the range of results reported prior to AWTF operation (i.e., 2012 to 2015, excluding initial operations in 2014; Figures 3.2 and 3.3; Appendix Figure C.1 and C.2). Total phosphorus and orthophosphate concentrations were evaluated using an approach recommended in the Proposal to Update the Site Performance Objective for Phosphorus in Line Creek (Minnow 2017b9). The purpose was to facilitate the early detection of potential changes in concentrations of these aqueous nutrients downstream of the AWTF. The evaluation involves the comparison of monthly mean concentrations of total phosphorus and orthophosphate to the upper range (97.5th percentile) of concentrations observed in each month during the baseline (pre-AWTF) period at LC LC3 (upper panels in Figures 3.2 and 3.3). Monthly mean concentrations were then expressed as a ratio of the baseline 97.5th percentile for each month (bottom panels in Figures 3.2 and 3.3). In 2022, total phosphorus and orthophosphate concentrations at LC LC3 were below the baseline 97.5th percentiles, with three exceptions (Figures 3.2 and 3.3). Specifically, the mean total phosphorus concentration at LC LC3 was slightly higher than the baseline 97.5th percentile

⁹ Included as Appendix C in Minnow (2017b).

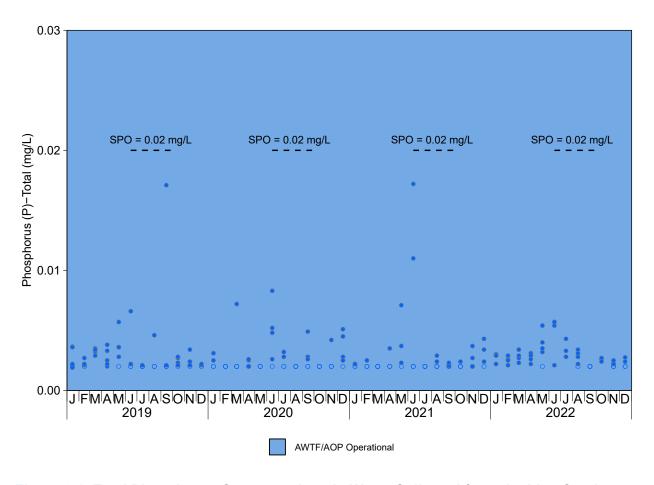


Figure 3.1: Total Phosphorus Concentrations in Water Collected from the Line Creek Compliance Point (LC_LCDSSLCC), 2019 to 2022

Notes: SPO = Site Performance Objective (0.02 mg/L). This pertains to the compliance point (LC_LCDSSLCC) only, as a growing season average calculated from measurements collected every two weeks between June 15th and September 30th, annually. If multiple results existed for a given location and day, the Kaplan–Meier mean of the duplicates was presented. Open symbols represent results below the laboratory reporting limit (LRL).

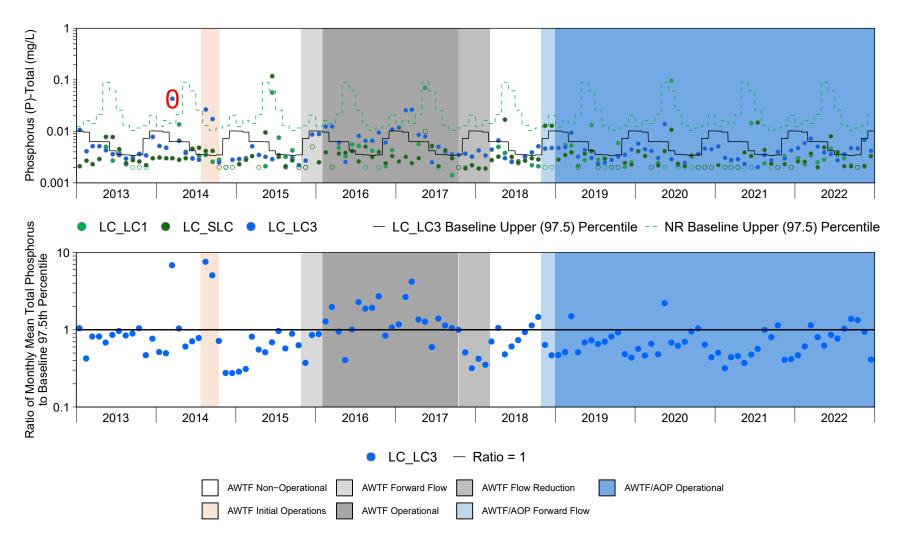


Figure 3.2: Total Phosphorus at LC_LC3 During AWTF Operation Relative to Pre-Operational Baseline Concentrations, 2013 to 2022

Notes: Top panel shows monthly mean concentrations at LC_LC3 and reference stations relative to the monthly percentiles for the baseline period prior to AWTF operation. The data used to define the baseline 97.5th percentile for each month were concentrations for the specified month, the preceding month and the following month for unshaded months prior to 2018 shown in panels. The normal range (NR) was calculated from the 97.5 percentile in the Nutrient Evaluation (Minnow, 2020b). Concentrations less than the laboratory reporting limit (LRL) are shown as open symbols at the LRL. Red circle indicates outlier excluded from the calculation of baseline percentile. Bottom panel presents the ratio of monthly mean concentrations at LC_LC3 relative to the baseline 97.5th percentile for the corresponding month.

Figure 3.3: Orthophosphate at LC_LC3 During AWTF Operation Relative to Pre-Operational Baseline Concentrations, 2013 to 2022

Notes: Top panel shows monthly mean concentrations at LC_LC3 and reference stations relative to the monthly percentiles for the baseline period prior to AWTF operation. The data used to define the baseline 97.5th percentile for each month were concentrations for the specified month, the preceding month and the following month for unshaded months prior to 2018 shown in panels. The normal range (NR) was calculated from the 97.5 percentile in the Nutrient Evaluation (Minnow, 2020b). Concentrations less than the laboratory reporting limit (LRL) are shown as open symbols at the LRL. Bottom panel presents the ratio of monthly mean concentrations at LC_LC3 relative to the baseline 97.5th percentile for the corresponding month.

in April, September, and October 2022 (Figure 3.2). These results are consistent with the 2019 to 2021 LCO LAEMP (i.e., monitoring which also occurred during the AWTF with AOP operational phase). In contrast, the total phosphorus and orthophosphate concentrations during AWTF without AOP operation (in 2016 and 2017) were frequently greater than the baseline 97.5th percentiles at LC_LC3. Overall, operation of the AWTF with AOP has been more successful at minimizing phosphorus and orthophosphate contributions to the receiving environment than operations of the AWTF without AOP.

One function of the AWTF is to decrease nitrate loads to the receiving environment, and the AWTF with AOP removed 35,015 kg of nitrate during operations in 2022 (Teck 2023a), which is similar to 2021 (35,469 kg of nitrate in 2021, Teck 2022a). Aqueous nitrate concentrations at the Compliance Point were below the SPO Daily Maximum Limit of 9 mg/L for most of 2022 (65%; Teck 2023b) but were higher than the daily SPO on 18 occasions as well as the monthly average compliance limit (7 mg/L) in all months except May, June, and July (see Teck 2023 for details). Aqueous nitrate concentrations downstream of the AWTF discharge in 2022 were towards the low end of the range of concentrations reported prior to AWTF operation (i.e., 2012) to 2015, excluding initial operations in 2014; Figure 3.4; Appendix Figure C.3). In 2022, as with previous years, nitrate concentrations in samples from mine-exposed monitoring stations upstream and downstream of the AWTF discharge were above the long-term British Columbia Water Quality Guideline (BCWQG: 95 to 100% of samples in each area: Appendix Figure C.3: Appendix Tables E.1 and E.2). In 2022, nitrate Updated Effects Concentrations (UECs) were established and replaced the previous EVWQP benchmarks. The UECs have been verified as more predictive of and sensitive to the concentration-response relationship for the receptor group than the EVWQP benchmarks (Appendix Table E.1; see Golder 2022b). Nitrate concentrations did not exceed the UECs at any of the areas upstream of the AWTF discharge [reference (RG SLINE and RG LI24) or mine-exposed (RG LCUT) areas] or at most of the areas downstream of the AWTF outfall in 2022. The only UEC exceedances were at LC LC3, the nearest downstream area to the AWTF, where 3% of concentrations exceeded the Level 2 UEC (Appendix Figure C.3 and Appendix Table E.2).

3.3 Primary Productivity Indicators

In 2022, mean periphyton coverage was moderate at eight of the ten study areas (Appendix Figure C.4; Appendix Table C.1), with visual scores between two and three (of a possible range from one [rocks not slippery and no obvious colour] to five [rocks mostly obscured by algae mat]). The two exceptions were RG_LILC3 and RG_FRUL, which had a mean visual score of 3.2 and 1.2, respectively. The moderate visual periphyton scores for 2022 are similar to those from 2021 (change in scores less than 0.6), with the exception of RG_LIDSL which had a

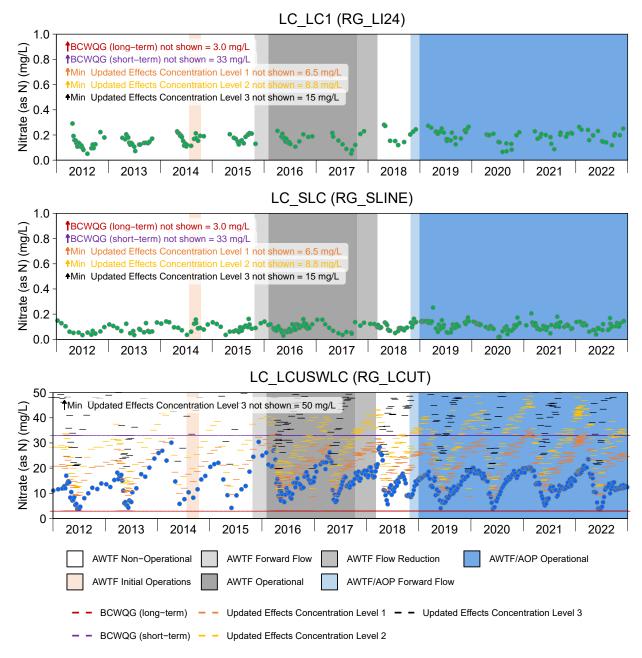


Figure 3.4: Time Series Plots for Nitrate from from Line Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Green data points are used for reference sites and blue data points are used for mine-exposed sites. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and plotted together with the biological monitoring area depicted in parenthesis. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

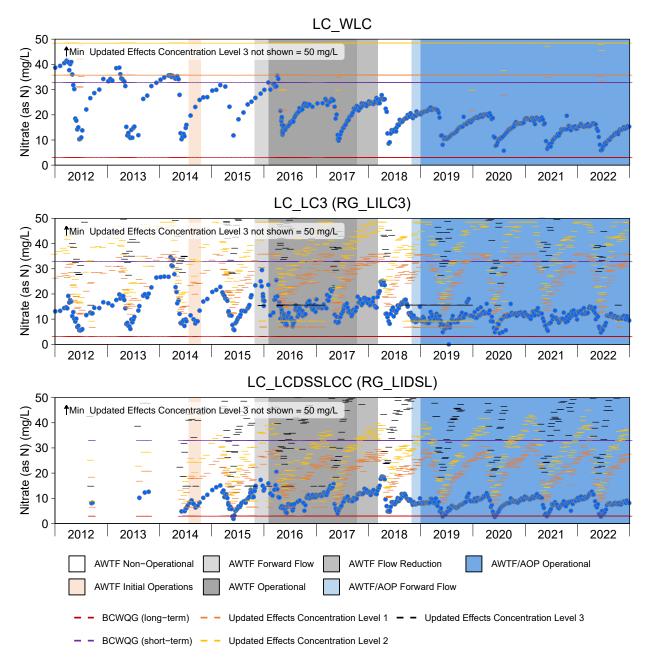


Figure 3.4: Time Series Plots for Nitrate from from Line Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Green data points are used for reference sites and blue data points are used for mine-exposed sites. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and plotted together with the biological monitoring area depicted in parenthesis. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water guality at RG_LCUT has been monitored since Sept 2017.

higher periphyton score in 2020 and 2021 compared to 2022 (mean = 2.2 in 2022; Minnow 2021a, Minnow 2022). The periphyton scores from RG_LILC3 and RG_LIDCOM in 2020 were higher than all other years; scores at these sites in 2022 were more similar to those in 2021 and prior to 2020. As such, it is likely that the increased periphyton coverage in 2020 was an isolated event that may have been related to environmental factors that could have influenced periphyton growth during that year (e.g., lower water depth and flows, and/or increased temperatures).

3.4 Secondary Productivity Indicators

Analyses of the potential changes in benthic invertebrate biomass and density at mine-exposed areas RG LILC3 and RG LIDSL (immediately downstream of the AWTF discharge and the Compliance Point, respectively) relative to changes at the reference areas (RG LI24 and RG SLINE) over the same time period were performed excluding two outlier values for the reference area RG SLINE (Figures 3.5 and 3.6; see Section 2.4 and Appendix A for data ANOVA methods, including outlier removal). Benthic invertebrate biomass at RG LILC3 in 2022 was not significantly different to previous years, with no significant temporal differences noted between 2014 and 2022 when evaluated either for RG LILC3 only or for RG LILC3 relative to reference over time (Figure 3.5; Appendix Tables C.2 and C.3). No significant temporal differences were noted for biomass at RG LIDSL from 2014 to 2022 when evaluated at the mineexposed area only, but subtle temporal differences were noted in 2022 and 2019 where biomass differences between the mine-exposed and reference area were significantly less compared to differences in 2014 (during AWTF initial operations), likely due to an increase in biomass at the reference areas rather than a change at the mine-exposed area. Otherwise, biomass at RG LIDSL has been stable over the four years of AWTF with AOP operation when evaluated alone or relative to reference (Figure 3.5; Appendix Tables C.2 and C.3). Combined, the results at RG LILC3 and RG LIDSL did not indicate an increase in benthic invertebrate biomass associated with AWTF operation with AOP in 2019 to 2022.

Density at RG_LILC3 has been stable from 2014 to 2022 based on the evaluation of temporal changes at RG_LILC3 only (i.e., no significant differences among years; Figure 3.6, Table 3.1; Appendix Table C.3 and C.4). Density at RG_LILC3 relative to reference in 2022 was also similar to prior years (2014 to 2021; Appendix Table C.4). Overall, no increases in density at RG_LILC3 were noted (when compared to either reference area) when comparing years of AWTF with AOP (2019 to 2022) to previous years of evaluation (including pre-AWTF operation). Similarly, density at RG_LIDSL in 2022 showed no significant differences when compared to previous years (2014 to 2021) based on the evaluation of temporal changes at RG_LIDSL only. However, temporal differences were observed when density at RG_LIDSL was evaluated in relation to changes in reference over the same time frame, with the differences dependent on

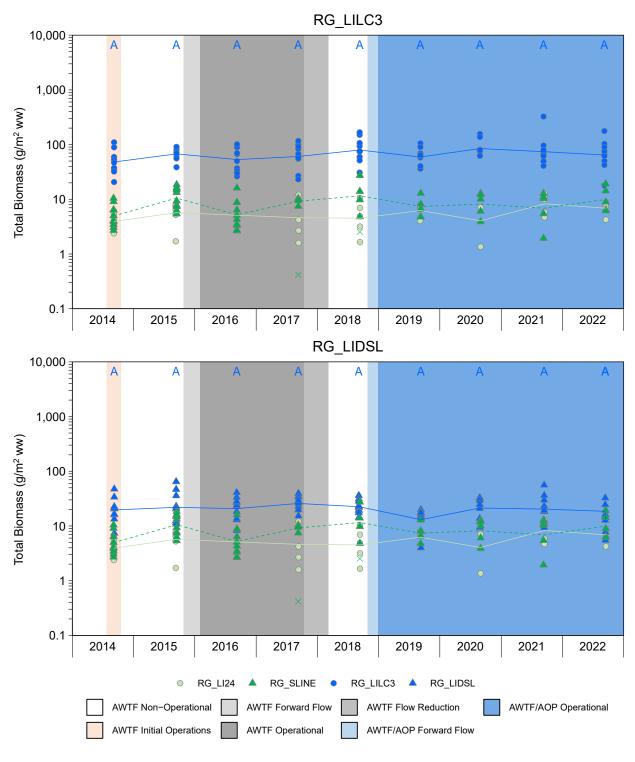


Figure 3.5: Total Benthic Invertebrate Biomass (Hess Sampling) for RG_LILC3 and RG_LIDSL, 2014 to 2022

Notes: Blue symbols represent mine-exposed areas and green symbols represent reference areas. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge. Years that share a letter (e.g., A,B) were not significantly different (P-value > 0.1) in a Tukey HSD post-hoc contrast among years for the respective exposed station. Outliers not used in analysis plotted with an 'X'. Data from RG_LI24 in 2016 are not available.

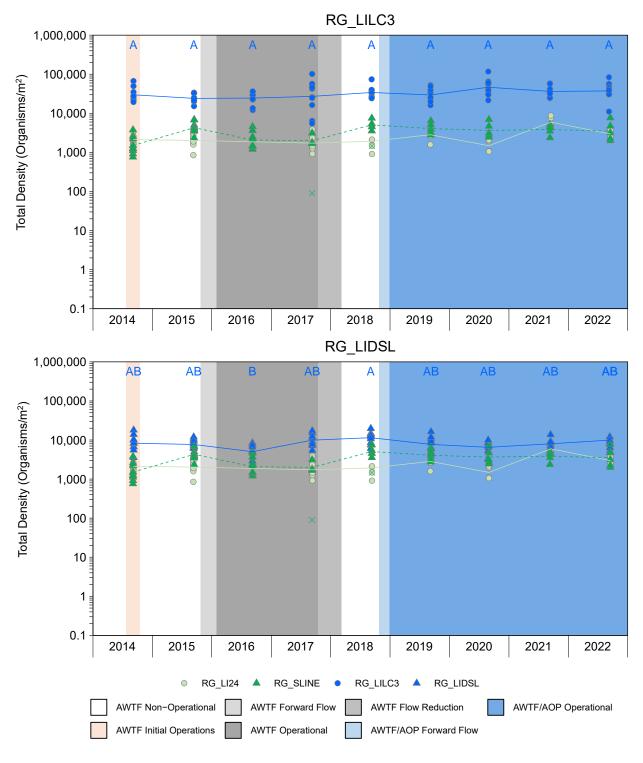


Figure 3.6: Total Benthic Invertebrate Density (Hess Sampling), for RG_LILC3 and RG_LIDSL, 2014 to 2022

Notes: Blue symbols represent mine-exposed areas and green symbols represent reference areas. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge. Years that share a letter (e.g., A,B) were not significantly different (P-value > 0.1) in a Tukey HSD post-hoc contrast among years for the respective exposed station. Outliers not used in analysis plotted with an 'X'. Data from RG_LI24 in 2016 are not available.

Table 3.1: Geometric Means of Benthic Invertebrate Density for Hess Sampling in Areas of Line Creek, 2014 to 2022

A		Benthic Invertebrate Density (# organisms/m²)													
Area	2014	2015	2016	2017	2018	2019	2020	2021	2022						
RG_LI24	2,120	2,028	-	1,723	1,933	2,834	1,482	5,940	2,970						
RG_SLINE	1,508	4,300	2,072	1,072	5,062	4,067	3,659	3,857	3,502						
RG_SLINE ^a	1,508	4,300	2,072	1,993	3,947	4,067	3,659	3,857	3,502						
RG_LILC3	29,805	24,136	24,564	27,162	34,153	29,481	46,510	36,405	37,397						
RG_LIDSL	8,276	7,690	5,024	9,910	11,452	7,718	6,506	7,992	7,733						

Note: "-" = no data/not recorded.

^a One outlier removed in 2017 and 2018.

reference area. Benthic invertebrate density at RG_LIDSL was not significantly different in 2022 when compared to previous years at RG_LI24 but was significantly lower than RG_SLINE in 2014 (Figure 3.6; Appendix Table C.4). Combined, the density results at RG_LILC3 and RG_LIDSL did not indicate an increase in benthic invertebrate density compared to both reference areas that was associated with AWTF operation with AOP in 2022 (which is consistent with results from 2019 to 2022).

Benthic invertebrate abundance in kick and sweep samples from 2022 were mostly within or above the regional and site-specific normal ranges in mine-exposed areas Line Creek (both upstream and downstream of the AWTF discharge) and in the Fording River (Appendix Figure C.5, Appendix Table C.5). Total sample abundance at mine-exposed areas downstream (RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, RG_LI8, and RG_FO23) of the AWTF discharge in 2022 was within the range of previous AWTF operational years (with or without AOP; Appendix Figure C.5). These results are consistent with the benthic invertebrate biomass and density results discussed above.

In summary, monitoring data indicated that secondary productivity in Line Creek was not affected by AWTF with AOP operations in 2022. This is consistent with the similarity in aqueous nutrient concentrations (Section 3.2) and primary productivity results (Section 3.3) in 2022 relative to previous years of AWTF with AOP operation (2019 to 2021) but also those prior to AWTF operation.

3.5 Benthic Invertebrate Community Structure

Endpoints related to benthic invertebrate community structure were evaluated relative to regional normal ranges and site-specific ranges defined in the RAEMP (Minnow 2020b). Community taxa richness [i.e., number of different taxa identified to lowest practical level (LPL) of identification] was within or above the regional normal range and site-specific normal range at mine-exposed and reference sampling areas in 2022 except the mine-exposed area upstream of the AWTF (RG_LCUT; Appendix Figure C.6, Appendix Table C.5). Taxon richness at RG_LILC3 in 2022 was similar to 2021 and 2020 and higher than 2018 and 2019, which suggests taxon richness has stabilized over four years of AWTF with AOP operation (Appendix Figure C.6). Lower taxon richness in 2022, 2019 and 2018 relative to 2020 and 2021 at RG_LCUT (Appendix Figure C.6), which is upstream of the AWTF discharge, suggests that fluctuations are likely due to natural variability or conditions further upstream (Appendix Figure C.6).

In 2022, percent EPT fell below the regional normal and site-specific ranges at mine-exposed areas upstream of the AWTF (RG_LCUT) and at two areas downstream of the AWTF discharge (RG_LILC3 and RG_LIDCOM; Appendix Figure C.7, Appendix Table C.5). At RG_LISP24 and RG_LIDSL (which are located between RG_LILC3 and RG_LIDCOM), percent EPT in 2022 was

within the regional normal range. Percent EPT fell below the site-specific range at RG_LISP24 in 2022 but was higher than in previous years, while percent EPT for most replicates at RG_LIDSL were within the site-specific range (Appendix Figure C.7, Appendix Table C.5). At RG_LIDCOM percent EPT was the lowest since monitoring began in 2017, however, since no decrease was observed in upstream areas the decrease is likely due to natural variation in community composition. At the other areas located downstream of AWTF in Line Creek (RG_LI8 and RG_FO23), EPT percentages were within the regional and site-specific ranges in 2022 (Appendix Figure C.7, Appendix Table C.5) as well as higher than the last three years of evaluation (2019 to 2021).

Percent Ephemeroptera (mayflies) results in 2022 showed a spatial pattern generally consistent with the percent EPT results. Ephemeroptera percentages fell below the regional and site-specific ranges at mine-exposed areas upstream (RG LCUT) of the AWTF and immediately downstream of the AWTF discharge (RG LILC3; Appendix Figure C.8, Appendix Table C.5; Minnow 2022). Percent Ephemeroptera at these sites was lower than those seen in 2021 but more comparable to values seen in 2019 (RG LCUT and RG LILC3) and 2020 (RG LILC3; Appendix Figure C.8). RG LISP24 had the highest percent Ephemeroptera observed since monitoring began in 2017, which is consistent with the change in percent EPT results discussed previously. At areas located further downstream (RG LIDSL, RG LIDCOM, RG LI8, and RG FO23), percent Ephemeroptera in 2022 was within the regional normal range and most results were also within the site-specific normal range, except at RG LIDCOM (similar to the results for % EPT; Appendix Figure C.8, Appendix Table C.5). Results from mine-exposed areas of Line Creek in 2022 were within or higher than the range of previous years, and higher than the range prior to the commissioning of Higher percent Ephemeroptera at areas further downstream from the AWTF, the AOP. specifically RG LISP24, RG LIDSL, RG LI8, and RG FO23 have been observed during AWTF with AOP operation (2019 to 2022) compared to results observed when the AWTF did not have AOP (Appendix Figure C.7). It should be noted that decreases in percent Ephemeroptera as well as percent EPT in 2022 relative to 2021 were also noted at RG LCUT (upstream of the AWTF discharge), and thus decreases in these endpoints at RG LILC3 between 2021 and 2022 may be attributed to the influences other than those related to the AWTF with AOP operation. Regardless, increases or stability in these indices (percent EPT and percent Ephemeroptera) during the AWTF with AOP period (when compared to AWTF without AOP) at further downstream areas of the AWTF discharge (i.e., RG LISP24, RG LIDSL, RG LIDCOM, RG LI8, and RG FO23) is suggestive of an improvement or stabilization in benthic invertebrate community structure.

Percent Chironomidae in 2022 was above or within the reference normal range at areas immediately upstream (RG LCUT) and at all areas downstream from the AWTF (RG LILC3 and

RG_LIDCOM above, RG_LISP24, RG_LIDSL, RG_LI8 and RG_FO23 within; Appendix Figure C.9, Appendix Table C.5). The percentage of Chironomidae at RG_LISP24 was lower than previous years, with percent Chironomidae being slightly below the reference normal range (Appendix Figure C.9). Percent Chironomidae at RG_LISP24 has decreased from 2019 which coincides with the increase in percent EPT during this same time frame; additionally, percent Chironomidae at RG_LIDCOM has increased in 2022 which aligns the concurrent decrease in percent EPT (Appendix Figures C.7 and C.9).

Percent EPT was also assessed against the biological trigger established for this endpoint (information pertaining to the determination of the biological trigger value can be found in Appendix F). This was completed for LCO LAEMP monitoring areas with available water quality predictions (i.e., five mine-exposed areas [RG_LCUT, RG_LILC3, RG_LIDSL, RG_LI8, and RG_FO23] and the two reference areas [RG_SLINE and RG_LI24]). In 2022, four of the five mine exposed areas evaluated had percent EPT replicates that corresponded to a biological trigger (i.e., percent EPT was below the biological trigger), including RG_LCUT (the area upstream of the AWTF discharge), RG_LILC3 (the area in closest proximity to the AWTF discharge), RG_LIDSL (compliance point) and RG_FO23 (area at the confluence of the Fording River and Line Creek). In contrast, percent EPT in 2021 at RG_LIDSL did not have any replicates meet the biological trigger (Minnow 2022), however in 2020 all five mine-exposed sites had at least one replicate correspond to a biological trigger (Minnow 2021a). Percent EPT at these areas has previously been flagged for further investigation in the RAEMP based on benthic invertebrate community results (Minnow 2020b). Further information regarding the percent EPT biological trigger as it pertains to the LCO LAEMP can be found in Appendix F.

3.6 Summary

Total phosphorus concentrations at the Compliance Point (LC_LCDSSLCC) were below the SPO of 0.02 mg/L during the 2022 growing season (June 15 to September 30), consistent with previous years. Aqueous nutrient concentrations (total phosphorus, orthophosphate, and nitrate) in 2022 were generally within the range observed prior to AWTF operation. In addition, results suggest that operation of the AWTF with AOP from 2019 to 2022 was more successful at minimizing phosphorus and orthophosphate contributions to the receiving environment than during the AWTF operational phase without AOP (in 2016 and 2017).

Periphyton coverage at all mine-exposed areas (as well as reference) was moderate in 2022, (based on the CABIN visual assessment, see Section 2.3) and was consistent with results from previous years. Areas RG_LILC3 and RG_LIDCOM showed lower periphyton coverage in 2022 compared to 2020 but were similar to results in 2021 and from 2017 to 2019 suggesting that the

increased scores in 2020 were an isolated event likely associated with variability in environmental factors. Benthic invertebrate biomass and density at mine-exposed areas of Line Creek showed no significant increases in 2022 when compared to previous years that could be related to operation of the AWTF with AOP and has been stable during the AWTF with AOP period (2019 to 2022).

Benthic invertebrate total abundance (measured by kick and sweep) in all mine-exposed areas in 2022 were similar to results from 2019 to 2021), and although higher in some cases than pre-AWTF conditions (2012 to 2015), were still within the regional normal range. The absence of an increase in abundance at the closest area to the AWTF discharge (RG LILC3) during AWTF with AOP operations (2019 to 2022) compared to pre-AWTF conditions, suggests that marginal increases in abundance over this period further downstream were likely unrelated to the AWTF with AOP (consistent with the biomass and density results). Benthic invertebrate community endpoints indicated no adverse change in community characteristics related to AWTF with AOP operations in 2022. Rather, an increase or stability in the percentage of sensitive taxa (as measured through evaluations of percent EPT and percent Ephemeroptera) in 2019 to 2022 at some downstream areas of Line Creek relative to prior to AOP operation is suggestive of an improvement or stabilization in benthic invertebrate community structure. Overall, biological productivity downstream from the WLC AWTF does not appear to be affected by AWTF with AOP operations throughout 2022, which is consistent with past evaluations during this operational period (2019 to 2021).

4 SELENIUM CONCENTRATIONS

4.1 Overview

Monitoring data were evaluated in this section to address Study Question #2: Are tissue selenium concentrations reduced downstream from the WLC AWTF? To address this study question, selenium concentrations in benthic invertebrate tissue were evaluated in relation to the AWTF operational status. The AWTF with AOP was operational throughout 2022 with discharge to the receiving environment occurring throughout the year (see Section 1.3 for details).

4.2 Tissue Selenium Concentrations

4.2.1 Composite-Taxa Benthic Invertebrate Samples

Benthic invertebrate tissue selenium concentrations at mine-exposed areas downstream of the AWTF (RG LILC3 and RG LIDSL) throughout 2022 were significantly lower than during AWTF without AOP (2016 and 2017) and significantly lower than or similar to before AWTF operation (2012), when compared to changes at the reference areas over the same time frame (Figure 4.1; Appendix Figures D.1 and D.2, Appendix Tables D.1, D.2 and D.3). Changes in benthic invertebrate selenium concentrations at each RG LILC3 and RG LIDSL were compared to changes at the reference areas within 2022, to evaluate AWTF with AOP performance and better understand how seasonality influences benthic invertebrate tissue selenium concentrations (Appendix Tables D.4 and D.5). There were no significant differences among sampling months at RG LILC3 in 2022; at RG LIDSL, significantly lower tissue selenium concentrations were observed in May compared to those collected in other months (Figure 4.1; Appendix Tables D.4 and D.5). Taxa composition of benthic invertebrate samples was also largely consistent throughout the year among monitoring areas (Appendix Table D.1). Changes in benthic invertebrate tissue selenium concentrations at each area were also evaluated, throughout the AWTF with AOP operational phase (i.e., January 2019 to December 2022) by comparing the same month in 2019 to 2020, 2021 and 2022 (Appendix Tables D.6 and D.7). From 2020 to 2022, RG LILC3 and RG LIDSL had significantly lower or not significantly different benthic invertebrate tissue selenium concentrations than the first year of AOP operation (2019; Appendix Table D.6 and D.7). Therefore, benthic invertebrate tissue selenium concentrations in Line Creek (downstream of the AWTF outfall; RG LILC3 and RG LIDSL) have not increased above concentrations measured in 2019 (AWTF with AOP) and are lower than those measured during AWTF without AOP, suggesting that the AWTF with AOP is functioned as expected in 2022 and that benthic invertebrate tissue concentrations in the area are stable. Mean selenium concentrations in benthic invertebrates collected from five of the six areas downstream of the AWTF discharge in Line Creek (RG LISP24, RG LIDSL, RG LIDCOM, RG LI8 and

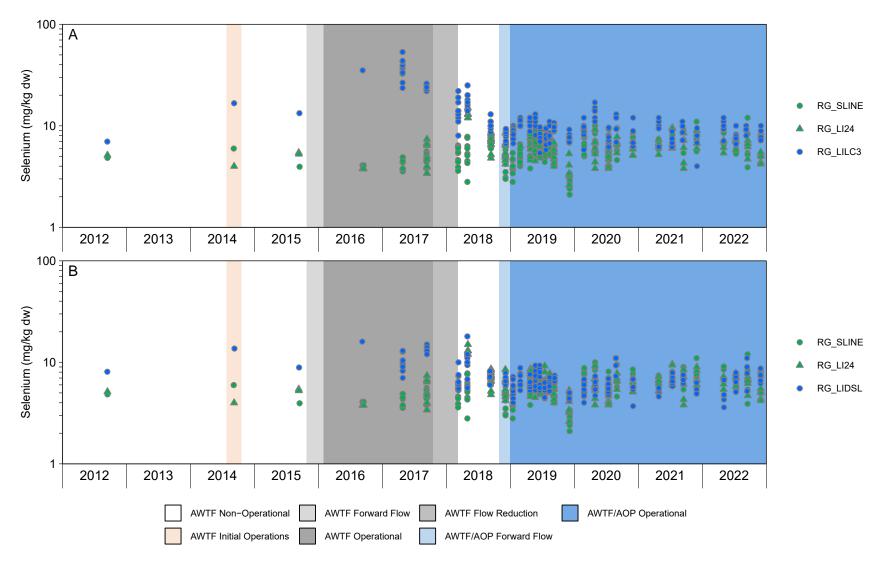


Figure 4.1: Benthic Invertebrate Selenium Concentrations, for A) RG_LILC3 and B) RG_LIDSL (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2022

Notes: Blue symbols represent mine-exposed areas and green symbols represent reference areas. Due to a brief period of exposure to less-than-capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of AWTF operation, but also not representative of a no-discharge condition. These data were therefore excluded from analyses and are displayed in plots for context only. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

RG_FO23¹⁰) were similar to or lower than reference and/or upstream of the discharge (RG_LCUT) throughout the 2022 sampling period (Figure 4.2, Table 4.1, Appendix Figure D.2). In addition, mean benthic invertebrate selenium concentrations at areas downstream of the AWTF in 2022 were within the regional normal range and below the Level 1 EVWQP Benchmark for effects to invertebrates (13 mg/kg dw), except concentrations at RG_LILC3 in May and September which were higher than the regional normal range (Figure 4.2, Table 4.1). The benthic invertebrate selenium concentrations at RG_LILC3 in 2022 (as well as 2019 to 2021) represent a substantial improvement relative to 2016 and 2017 (AWTF operational phase without AOP) when tissue selenium concentrations exceeded the EVWQP Level 2 and 3 benchmarks for effects to benthic invertebrates (Table 4.1; Minnow 2017a, 2018b). Results from 2022 continued to indicate (like 2019 to 2021; Minnow 2020a, 2021a, 2022) that the benthic invertebrate selenium concentrations were substantially decreased compared to AWTF operation without AOP (e.g., Minnow 2018b) and where mean concentrations were above the regional normal range (i.e., RG_LILC3 in May and Sept 2022) it was only in the area immediately downstream of the AWTF.

Selenium concentrations in benthic invertebrates from the Fording River downstream of Line Creek (RG FO23) were similar to the Fording River upstream of Line Creek (RG FRUL; Figure 4.3, Table 4.1). Mean benthic invertebrate selenium concentrations at RG FRUL in July and December were higher than the regional normal range. Mean selenium concentrations in Fording River were slightly lower downstream (RG FO23) compared to upstream of Line Creek (RG FRUL; Figure 4.3; Appendix Table D.1). In addition, the difference in benthic invertebrate selenium concentrations between RG FO23 and RG FRUL in 2022 (AWTF with AOP operational phase) was similar to baseline and AWTF without AOP (Figure 4.3). One "annelid only" sample from RG FRUL (n=5) in September 2022, measured higher (65 mg/kg dw) than the range of the composite taxa samples (Appendix Table D.1)¹¹. However, analysis focuses on composite-taxa benthic invertebrate results as they better represent the area. Consistent with previous findings, the lower mean benthic invertebrate tissue selenium concentrations in the Fording River downstream of Line Creek compared to upstream. indicate there was no influence of the AWTF with AOP on benthic invertebrate tissue selenium concentrations in the Fording River in 2022 (Minnow 2018b, 2019a, 2020d, 2021a, 2022). A slight but significant increase in benthic invertebrate selenium concentrations at the South Line Creek reference area (RG SLINE) was noted between 2017 and 2022 (Figure 4.1).

¹¹ Annelids were only included in the composite-taxa tissue sample if the proportion of annelids was >5% of the total biomass sample. An additional 'annelids only' sample was also evaluated. Previous assessments have suggested that the presence of annelids in composite-taxa benthic invertebrate tissue sample may bias the results high (Golder 2021b).

¹⁰ Sampling at RG LI8 and RG FO23 was not completed during December monitoring due to safety concerns.

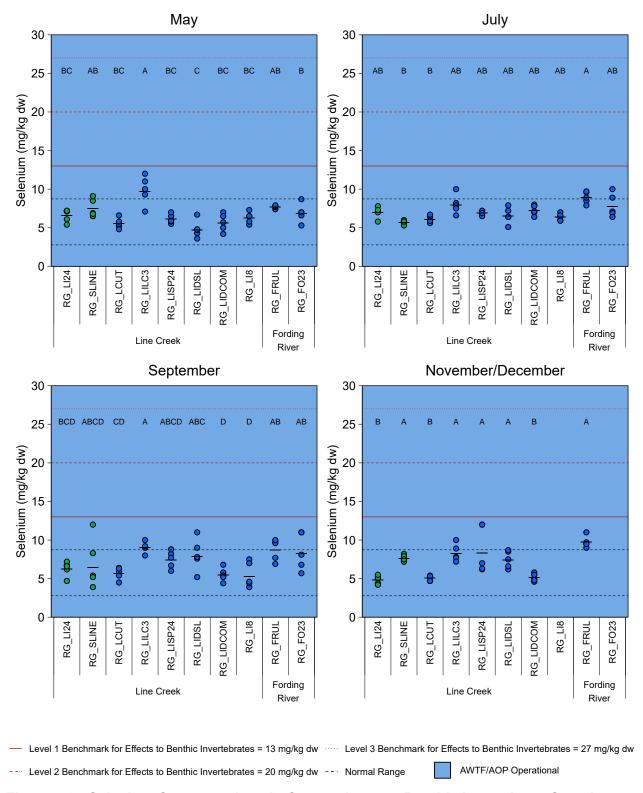


Figure 4.2: Selenium Concentrations in Composite-taxa Benthic Invertebrate Samples from Mine-exposed (Blue) and Reference (Green) Areas of Line Creek and Fording River, 2022

Notes: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine–exposed monitoring areas downstream of the AWTF discharge. Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 1996 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). Areas that do not share a letter (e.g. a,b,c) are significantly different (a = 0.05) in a Tukey's HSD test following a two–way ANOVA by area with Selenium log10 transformed.

Table 4.1: Mean^a Selenium Concentrations (mg/kg dw) in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2006 to 2022

				Prior to AWTF Operation							Initial AWTF Operation (July 24 to Oct 16, 2014	AWTF Operation (Feb 1, 2016 to Oct 14, 2017)				AWTF Flow Reduction (Oct 15, 2017 to Mar 8, 2018)		AWTF Operation Suspended (Mar 9, 2018 to Oct 27, 2018)							
Area		Biological Area Code	Biological Area Description		2009 (May/ June)	2009 (August/ September)	2010 (May)	2010 (August)	2011 (August)	2012 (September)	2013 (July)	2014 (July)	2014 (September)	2015 (September)	2016 (September)	2017 (February/ March)	2017 (April)	2017 (September)	2017 (November)	2017 (December)	2018 (March)	2018 (April)	2018 (April/May)	2018 (May)	2018 (September)
			Sample Size (n)	1	1	4	3	3	1	1	1	1	1	1	1	5	10	10	10	10	10	10	10	10	10
	Reference	RG_LI24	South fork of upper Line Creek upstream of LCO and Teck water station LC_LC1	1.4	4.4	-	-	-	-	5.1	-	-	4.0	5.3	3.8	-	-	5.2	-	-	(frozen)	-	13	-	7.0
	Refer	RG_SLINE	South Line Creek upstream of Line Creek and LCO	1	-	-	-	-	-	4.8	-	-	6.0	3.9	4.1	1	4.1	4.8	-	-	5.2	-	5.7	-	6.6
		RG_LCUT	Line Creek downstream of rock drain, downstream of West Line Creek and upstream of AWTF outfall	-	-	-	-	-	-	-	-	-	-	-	6.2	5.0	6.4	5.9	6.7	6.9	6.3	7.0	7.6	7.5	7.9
Line Creek	75	RG_LILC3	Line Creek downstream of West Line Creek and AWTF outfall	-	-	-	-	-	-	7.0	-	-	17	13	35	27	37	24	26	27	14	19	18	15	10
Lin	Mine-exposed	RG_LISP24	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16	14	13	7.4	11	10	8.9	8.2
	Mi	RG_LIDSL	Line Creek downstream of South Line Creek confluence	-	-	-	-	-	-	8.1	-	5.6	14	8.9	16	12	10	14	12	11	6.6	9.3	10	9.3	7.2
		RG_LIDCOM	Line Creek downstream of the compliance point	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9.6	7.4	9.4	7.7	9.3	9.1	9.4	7.7
		RG_LI8	Line Creek downstream of the canyon	7.8	11	9.0	-	6.3 ^d	8.4	7.8	4.3	-	8.4	9.3	12	8.9	8.6	11	8.3	8.9	6.9	10	12	8.6	9.0
Fording River	Mine-exposed	RG_FRUL	Fording River downstream of Grace Creek, upstream of Line Creek	-	-	-	-	-	-	7.9	-	-	-	7.5	-	-	7.0	8.1	-	-	6.9	-	8.1	-	11
Fordin	Mine-e	RG_FO23	Fording River downstream of Line Creek	10	5.8	8.83	5.0	5.9	8.8	7.5	11	8.8	-	6.4	6.7	-	6.6	8.9	-	-	6.4	7.9	8.7	7.6	9.4

Notes: "-" = no data. FRUL=FOUL prior to 2016. Calculation of the mean for RG_LI24 in Sept 2018 included results from both RG_LI24 and RG_DSLI24, RG_DSLI24 was sampled in Sept 2018 to investigate anomalous results at RG_LI24 reported in May 2018, but results from both areas were similar in Sept 2018, therefore data were pooled (Minnow 2019a).

^a Means are only presented where the number of samples > 1, all other data are individual values.

^b Sample size n = 9.

^c Sample size n = 5.

^d Sample size n = 1.

^e Sample size n = 4.

f Sample size n = 6.

Table 4.1: Mean^a Selenium Concentrations (mg/kg dw) in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2006 to 2022

				AWTF/ AOP Forward Flow (Oct 28 to Dec 29, 2018)	AWTF/AOP Operational (December 29, 2018 to Present)													
Area		Biological Area Code	Biological Area Description	2018 (December)	2019 (January)	2019 (February/March)	2019 (April)	2019 (May)	2019 (June)	2019 (July)	2019 (August)	2019 (September)	2019 (December)	2020 (February)	2020 (April)	2020 (July)	2020 (August/September)	2020 (November/December)
			Sample Size (n)	10	10	10	10	10	10	10	10	10	10	10	10	10	5	5
	Reference	RG_LI24	South fork of upper Line Creek upstream of LCO and Teck water station LC_LC1	5.6	(frozen)	6.3 ^d	6.8	6.7	5.4	6.6	6.8	5.4	3.7 ^f	(frozen)	6.1	4.9	6.6	5.9
	Refe	RG_SLINE	South Line Creek upstream of Line Creek and LCO	4.3	4.0	4.9	5.9	5.9	6.1	5.7	6.0	5.1	2.7	7.0	7.7	6.2	6.5	7.2
		RG_LCUT	Line Creek downstream of rock drain, downstream of West Line Creek and upstream of AWTF outfall	6.5	6.1 ^b	(frozen)	8.7 ^c	4.0 ^b	4.2	3.3	5.5	7.8	4.6	7.4	8.2	3.9	7.2	5.8
Line Creek	_	RG_LILC3	Line Creek downstream of West Line Creek and AWTF outfall	8.2	8.5	11	11	10	7.8	7.2	8.1	9.7	7.6	9.2	14	7.4	11	9
Lin	Mine-exposed	RG_LISP24	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	6.7	6.2	7.1	7.4	-	-	-	-	6.6	5.9	6.5	6.8	5.7	9.2	7.9
	Σ	RG_LIDSL	Line Creek downstream of South Line Creek confluence	6.7	5.7	6.6	6.0	7.1	6.8	5.4	6.0	7.0	4.7	5.5	5.9	5.8	9.9	5.5
		RG_LIDCOM	Line Creek downstream of the compliance point	7.4	7.0	7.7	8.0	-	-	-	-	6.5	5.3	5.7	6.6	5.2	6.4	5.5
		RG_LI8	Line Creek downstream of the canyon	7.2	5.8	6.6	7.4	6.1	6.7	6.4	6.7	6.5	4.2	5.1	6.7	5.3	10	8
Fording River	Mine-exposed	RG_FRUL	Fording River downstream of Grace Creek, upstream of Line Creek	10	7.5°	6.9	8.1	-	-	-	-	10	8.5	7.8	6.9	11	11	10
Fordin	Mine-e	RG_FO23	Fording River downstream of Line Creek	9.8	7.3	5.7 ^e	7.6	-	-	-	-	8.5	6.7	5.1	8.0	7.8	7.5	7.2

Notes: "-" = no data. FRUL=FOUL prior to 2016. Calculation of the mean for RG_LI24 in Sept 2018 to investigate anomalous results at RG_LI24 reported in May 2018, but results from both areas were similar in Sept 2018, therefore data were pooled (Minnow 2019a).

^a Means are only presented where the number of samples > 1, all other data are individual values.

^b Sample size n = 9.

^c Sample size n = 5.

^d Sample size n = 1.

^e Sample size n = 4.

f Sample size n = 6.

Table 4.1: Mean^a Selenium Concentrations (mg/kg dw) in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2006 to 2022

				AWTF/AOP Operational (December 29, 2018 to Present)										
Ai	rea	Biological Area Code	Biological Area Description	2021 (April)	2021 (July)	2021 (September)	2021 (November/December)	2022 (May)	2022 (July)	2022 (September)	2022 (November/December)			
		Sam	nple Size (n)	5	5	5	5	5	5	5	5			
	Reference	RG_LI24	LI24 South fork of upper Line Creek upstream of LCO and Teck water station LC_LC1		7.5	6.0	7.4	6.6	7.0	6.3	4.9			
	Refe	RG_SLINE	South Line Creek upstream of Line Creek and LCO	6.5	7.0	7.2	7.8	7.6	5.7	7.0	7.6			
		RG_LCUT	Line Creek downstream of rock drain, downstream of West Line Creek and upstream of AWTF outfall		4.2	6.3	3.7	5.6	6.1	5.7	5.1			
Line Creek	7	RG_LILC3	Line Creek downstream of West Line Creek and AWTF outfall	9.7	7.1	9.3	7.3	9.9	8.0	9.1	8.3			
Lin	Mine-exposed	RG_LISP24	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	7.5	6.3	7.5	5.7	6.1	6.9	7.5	8.7			
	Μ	RG_LIDSL	Line Creek downstream of South Line Creek confluence	5.2	6.7	7.0	5.6	4.8	6.6	8.1	7.5			
		RG_LIDCOM	Line Creek downstream of the compliance point	6.5	5.7	6.9	5.2	5.7	7.3	5.5	5.1			
		RG_LI8	Line Creek downstream of the canyon	6.9	7.0	8.0	6.0	6.3	6.4	5.5	-			
Fording River	Mine-exposed	RG_FRUL	Fording River downstream of Grace Creek, upstream of Line Creek	6.8	9.4	9.6	7.9	7.7	8.9	8.8	9.7			
Fording	Mine-e	RG_FO23	Fording River downstream of Line Creek	6.3	8.4	7.0	7.1	6.9	7.9	8.5	-			

Notes: "-" = no data. FRUL=FOUL prior to 2016. Calculation of the mean for RG_LI24 in Sept 2018 included results from both RG_LI24 and RG_DSLI24, RG_DSLI24 was sampled in Sept 2018 to investigate anomalous results at RG_LI24 reported in May 2018, but results from both areas were similar in Sept 2018, therefore data were pooled (Minnow 2019a).

^a Means are only presented where the number of samples > 1, all other data are individual values.

^b Sample size n = 9.

^c Sample size n = 5.

^d Sample size n = 1.

^e Sample size n = 4.

^f Sample size n = 6.

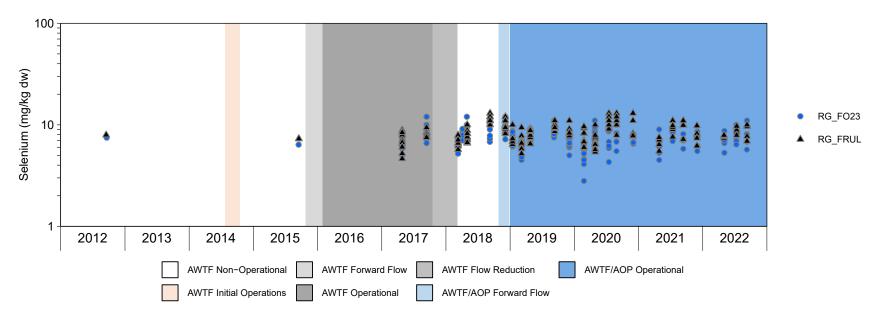


Figure 4.3: Benthic Invertebrate Selenium Concentrations, for RG_FO23 (Fording River Downstream of Line Creek) Relative to RG_FRUL (Fording River Upstream of Line Creek), 2012 to 2022

Notes: Due to a brief period of exposure to less-than-capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of AWTF operation, but also not representative of a no-discharge condition. These data were therefore excluded from analyses, and are displayed in plots for context only. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

However, selenium concentrations at RG SLINE in 2022 remained below the EVWQP benchmarks for effects to benthic invertebrates and largely within the normal range (Figure 4.2). Statistical evaluation indicated that the change was unlikely an artefact of a laboratory change that occurred in 2020 (see Minnow 2022 for more details) since increases were noted prior to the laboratory change (Appendix Table D.8). Additionally, the Data Quality Review (DQR) report (Appendix B) concluded excellent detectability, appropriate Laboratory Reporting Limits (LRLs), and excellent laboratory precision and accuracy for benthic invertebrate selenium measurements, all which were within the standards set out in the British Columbia Environmental Laboratory Manual (BCMOECCS 2020). There has not been mine-related operational activity in the vicinity of RG SLINE, and stable aqueous selenium concentrations (which were below the long-term BCWQG) combined with consistently non detectable non-selenate selenium species and very low selenite (< 0.05 µg/g dw) concentrations (as discussed further in Section 4.3) at this area indicate that the increase is unlikely related to mining activities. Temporal changes in estimated dominant taxa and biomass results were not evident from 2018 to 2022 (Appendix Table D.9 and D.10), suggesting that changes in sample composition were not due to a change community structure and relative taxon biomass, but rather potentially related to variability in field sampling. Without more information it remains unclear whether temporal variability in sample composition may be related to the observed increase in benthic invertebrate selenium concentrations. Despite this, mean concentrations remain within the regional normal range and continued monitoring will continue to track further changes over time.

Selenium concentrations in benthic invertebrate tissue were also assessed against the biological trigger established for this endpoint (Appendix F). This was completed for each replicate from LCO LAEMP monitoring areas with available water quality predictions (i.e., five mine-exposed areas [RG_LCUT, RG_LILC3, RG_LIDSL, RG_LI8, and RG_FO23] and both reference areas [RG_SLINE and RG_LI24]; see Appendix F for details). Aside from one replicate at RG_SLINE (reference), replicate samples from mine-exposed and reference areas of Line Creek had selenium concentrations that were below the biological trigger. An evaluation of possible causes of the RG_SLINE results is outlined above. Further information regarding the benthic invertebrate tissue selenium biological trigger as it pertains to the LCO LAEMP can be found in Appendix F.

4.2.2 Fish

Fish tissue sampling was conducted as part of the RAEMP three-year sampling plan in 2021 (Minnow 2021c), with confirmatory sampling completed in 2022 in Line Creek. Eight WCT were caught near RG LIDSL in September 2022.

Selenium concentrations in muscle tissue of individuals caught from RG LIDSL in 2022 ranged from 5.2 to 18 mg/kg dw (mean of 8.3 ± 4.1 mg/kg dw), and estimated selenium concentrations in ovary tissue ranged from 8.0 to 29 mg/kg dw. Selenium concentrations exceeded the site-specific muscle benchmark and the EVWQP Level 2 benchmark for ovary tissue (15.5 mg/kg dw; Nautilus Environmental and Interior Reforestation 2011) in a single sample in 2022 (Figure 4.4; Appendix Table D.11). However, mean tissue concentrations reported for RG LIDSL in 2022 (muscle and ovary [as estimated from muscle concentrations]) were lower than in 2021, and much lower than in 2017 (during AWTF operation without AOP; Figure 4.4; Appendix Table D.11; Golder 2014). It should be noted that resident and migratory life forms of WCT are known to exist in the Elk Valley with home ranges that can vary dramatically; individual home ranges for WCT documented near the Fording River Operation ranged from 0.7 to 31.6 km (Cope et al. 2016). As such, the selenium tissue concentrations in WCT reported for some individuals (muscle or estimated ovary) caught near RG LIDSL could represent dietary selenium exposure from a larger area. Further information regarding fish abundance, density, and spawning as well as supporting fish habitat information for Line Creek can be found in the Lower Line Creek Fish Monitoring Program Report (Brooks et al. 2023).

Selenium concentrations in WCT muscle tissue were assessed against the biological trigger established for this endpoint (Appendix F). This was completed for each replicate from the LCO LAEMP monitoring areas with available fish tissue quality data and water quality predictions (RG_LIDSL; see Appendix F for details). One of the eight replicates at RG_LIDSL exceeded the biological trigger. Further information regarding the selenium concentrations in WCT muscle tissue biological trigger at RG_LIDSL can be found in Appendix F.

In 2022, one incidental BT mortality was sampled in the upper Line Creek area. Selenium concentrations in muscle (5.2 mg/kg dw) and in ovary (estimated concentration: 17 mg/kg dw) of this individual did not exceed site-specific benchmarks (Appendix Table D.12).

4.3 Aqueous Selenium

The AWTF with AOP was effective throughout 2022 in decreasing the aqueous total selenium concentrations downstream in Line Creek, removing a similar amount of selenium from WLC influent in 2022 (595 kg, Teck 2023) as 2021 (536 kg, Teck 2022a), 2020 (540 kg, Teck 2021b) but more than 2019 (475 kg; Teck 2020b). The decrease in aqueous total selenium concentrations in 2022 (similar to results in 2019 to 2021; Minnow 2020a, 2021a, 2022) was particularly evident at LC_LC3 during AWTF with AOP operation compared to when the AWTF was not operational (2012 to 2015 and 2018; Figure 4.5; Appendix Figure D.1). Aqueous concentrations of total selenium at the compliance point, LC_LCDSSLCC, exceeded permit limits (50 µg/L) on three instances in 2022 (Teck 2023). In 2022, aqueous total selenium

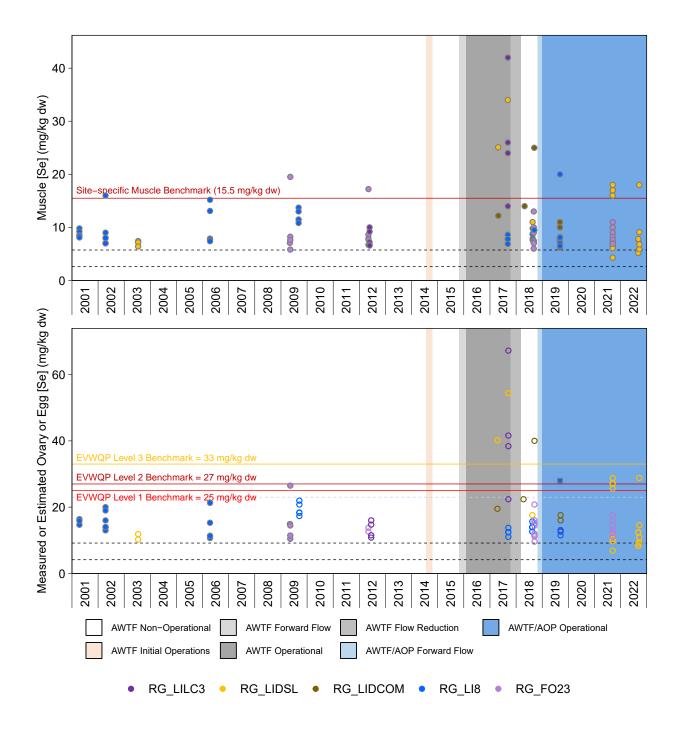


Figure 4.4: Selenium Concentrations in Muscle and Ovaries of Westslope Cutthroat Trout Sampled From Line Creek, 2001 to 2022

Notes: Measured muscle and ovary selenium concentrations are plotted as solid circles. Selenium was measured in ripe eggs collected non-lethally from one adult female in 2019, and this is plotted as a solid square. Ovary concentrations that were estimated from muscle selenium concentrations (based on the ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation 2011) are plotted with open circles. Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female). Dashed black lines represent the muscle normal range defined as the 2.5th and 97.5th percentiles of the 1998 to 2019 reference area muscle data from the Regional Aquatic Environmental Monitoring Program (RAEMP). Ovary normal range was estimated from the muscle values multiplied by the 1.6:1 conversion presented by Nautilus and Interior Reforestation 2011. The dashed blue line represents the most conservative upper prediction limit from the bioaccumulation model.

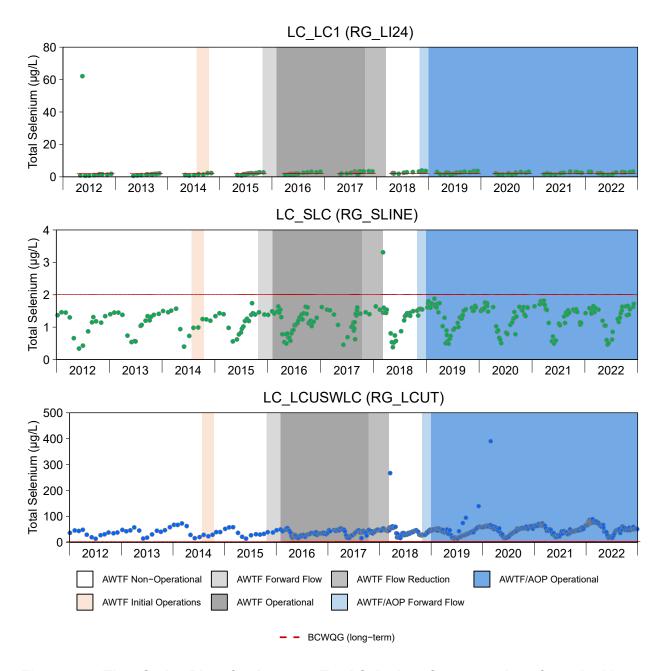


Figure 4.5: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2022

Notes: Green data points are used for reference sites and blue data points are used for mine-exposed sites. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and plotted together with the biological monitoring area depicted in parenthesis. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

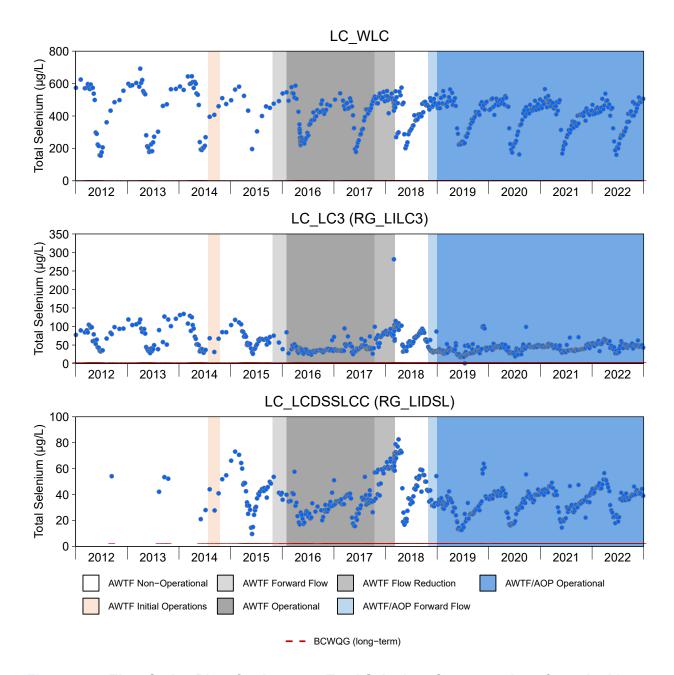


Figure 4.5: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2022

Notes: Green data points are used for reference sites and blue data points are used for mine–exposed sites. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and plotted together with the biological monitoring area depicted in parenthesis. Effluent from West Line Creek was diverted to the WLC AWTF when the AWTF was operational. Therefore, water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT during these operational periods. Water quality results from LC_LCUSWLC and RG_LCUT were combined during these periods for data interpretation. For periods when the AWTF was not operational, water quality results from LC_WLC and RG_LCUT were combined. Water quality at RG_LCUT has been monitored since Sept 2017.

concentrations at mine-exposed areas were above the long-term BCWQG (2 μ g/L; 100% of exposed sites) and less so at the reference areas (LC_LC1, 71% and LC_SLC, 0%; Appendix Figure D.1, Appendix Table E.2). In 2022, potential risks to aquatic life associated with selenium were assessed by evaluation of tissue selenium results in biota as compared to primarily using EVWQP benchmarks for aqueous selenium (see Section 4.2 for selenium in benthic and fish tissue discussion).

As outlined in Section 1.3, the AWTF was recommissioned with an AOP in 2018 in response to increased concentrations of chemically-reduced forms of aqueous selenium in AWTF effluent. The purpose of the recommissioning of the AWTF with an AOP was to reverse the shift in selenium species back to a selenate-dominated condition (Section 1.3). In 2022, aqueous selenium in all study areas was primarily in the oxidized form selenate (Figure 4.6; Appendix Tables D.14 and D.15). Aqueous selenium in chemically-reduced forms such as selenite or organoselenium species (i.e. dimethylseleneoxide, methaneselenonic acid, and methylseleninic acid) were present at much lower concentrations than selenate or non-detectable (Appendix Tables D.14 and D.15). Some non-selenate selenium species are known to be more readily accumulated by aquatic biota than selenate (Ogle et al. 1988; Riedel et al. 1996; Stewart et al. 2010). However, the combined total of non-selenate selenium species represents <1% of the agueous total selenium in waters from upstream of the AWTF discharge in Line Creek (Appendix Tables D.14 and D.15). Concentrations of non-selenate species at LC LC3 in 2022. (Figure 4.6, Appendix Figure D.2) were similar to past years of AWTF with AOP operation (2021, 2020 and 2019; Minnow 2020a, 2021a, 2022), and substantially lower than during AWTF operation without AOP in 2017 (Minnow 2018b). These results were corroborated by selenium concentrations in benthic invertebrates from downstream of the AWTF discharge in Line Creek, which were significantly lower during AWTF with AOP operation than during AWTF operation without AOP, relative to reference (see Section 4.2.1).

The Selenium Bioaccumulation Tool (B-Tool), which was developed to predict benthic invertebrate selenium tissue concentrations from aqueous selenium speciation concentration, has been used to calculate the concentrations of the combination of MeSe (IV) and DMSeO that would cause a detectable increase in benthic invertebrate tissue selenium concentrations (de Bruyn and Luoma 2021). This information was then used to develop screening levels for the sum of MeSeIV and DMSeO; Level 1 (<0.025 μ g/L) where organoselenium is unlikely to cause a discernible shift in benthic invertebrate selenium concentrations, Level 2 (0.025 to 0.05 μ g/L) is likely to cause a discernible increase in bioaccumulation, and Level 3 (< 0.05 μ g/L) is likely to cause a discernible increase in bioaccumulation and is likely to cause exceedance of 11 mg/kg in benthic invertebrate tissue Se concentrations.

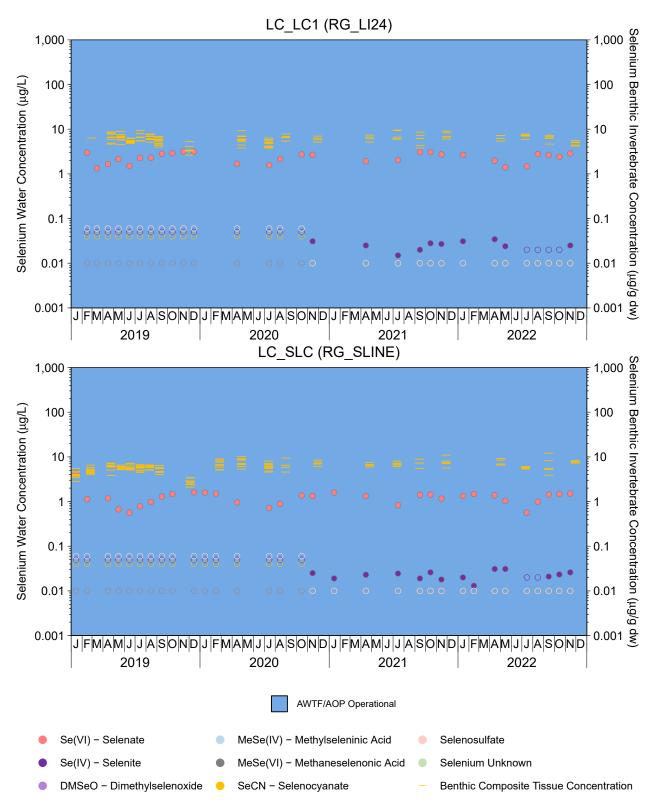


Figure 4.6: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-exposed and Reference Stations in Line Creek, LCO LAEMP, 2019 to 2022

Notes: Samples at the laboratory reporting limit (LRL) are plotted with an open symbol. Selenium species with all values at the laboratory reporting limit are excluded from the plot.

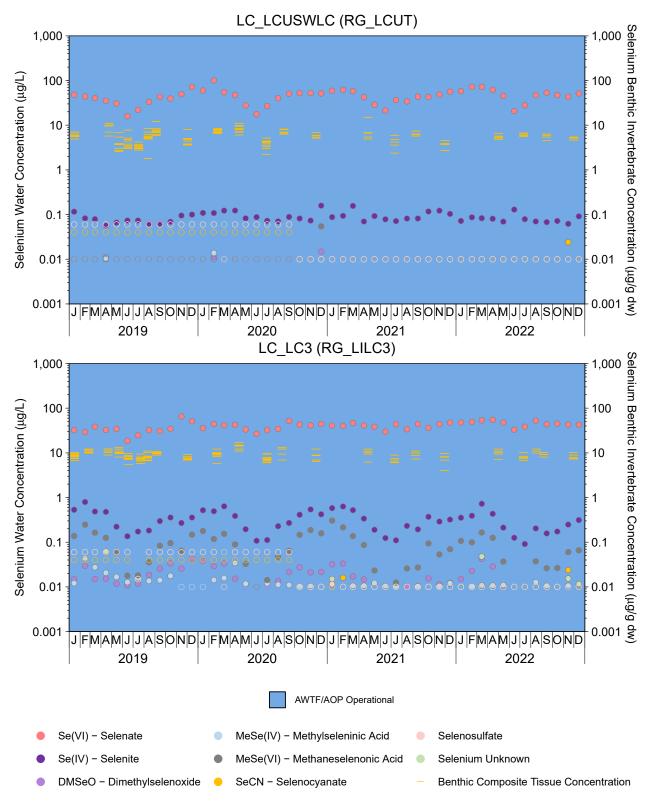


Figure 4.6: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-exposed and Reference Stations in Line Creek, LCO LAEMP, 2019 to 2022

Notes: Samples at the laboratory reporting limit (LRL) are plotted with an open symbol. Selenium species with all values at the laboratory reporting limit are excluded from the plot.

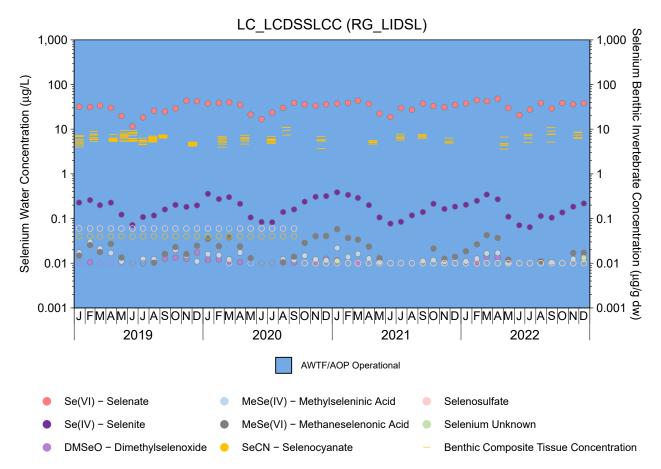


Figure 4.6: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-exposed and Reference Stations in Line Creek, LCO LAEMP, 2019 to 2022

Notes: Samples at the laboratory reporting limit (LRL) are plotted with an open symbol. Selenium species with all values at the laboratory reporting limit are excluded from the plot.

The sum of methylseleninic acid (MeSe (IV)) and dimethyl selenoxide (DMSeO) concentrations in 2022 were often above the level 2 screening value and occasionally above the level 3 screening value at RG LIDSL and RG LILC3 in March and early April (see Appendix Table D.15). These organoselenium concentrations at RG LILC3 could cause exceedance of the 11 mg/kg dw EVWQP benchmark for benthic invertebrate tissue Se concentrations. The peaks in non-selenate species and organoselenium at RG LILC3 that were observed in winter (in January to March) were followed by benthic invertebrate selenium concentrations in early May that were elevated in comparison to other sampling events in 2022 (Figures 4.7 and 4.8; see Section 4.2.1 for details). This suggests that the seasonal increase in non-selenate species observed in the winter or early spring of 2022 (and previous years) may be linked to an increase in benthic invertebrate tissue selenium at this area. The pattern of higher aqueous concentrations in winter months has also been observed for analytes that include total dissolved solids and sulphate (Appendix Figures E.1 and E.3), suggesting that the observed seasonal increases may be related to decreased baseflow in Line Creek over the winter. Regardless, benthic invertebrate tissue selenium concentrations at RG LILC3 in early May 2022 remained similar to the South Line Creek reference area (RG SLINE; Figure 4.2), significantly lower than during AWTF without AOP operation (relative to reference; see Section 4.2.1 for details), and lower than those observed in 2018 immediately following shutdown of the ATWF without AOP (although not tested statistically; Figure 4.8, Table 4.1).

As noted earlier, mean benthic invertebrate tissue selenium concentrations in May and September at RG_LILC3 were higher than the regional normal range. The elevated concentrations in May were associated with increased concentrations of non-selenate species in winter 2022 (January to March) as described above. However, elevated benthic tissue selenium concentrations in September 2022 did not show a similar association with elevated aqueous selenium speciation concentrations in the prior months (Figure 4.2). Despite benthic invertebrate tissue selenium concentrations higher than the normal range in May and September at RG_LILC3, mean benthic invertebrate tissue selenium concentrations at mine-exposed areas in Line Creek in 2022 (May, July, September, or December) were similar to or lower than the reference area (RG_SLINE) or were below the benchmarks for effects to benthic invertebrates (Figure 4.2). This suggests that this slight increase in mean benthic invertebrate tissue selenium concentrations over the regional normal range at RG_LILC3 in May and September 2022 may be due to natural variability. Overall, the results from 2022 continued to indicate that the AWTF with AOP functioned as intended to limit selenium accumulation by aquatic biota downstream (compared to AWTF operation without AOP).

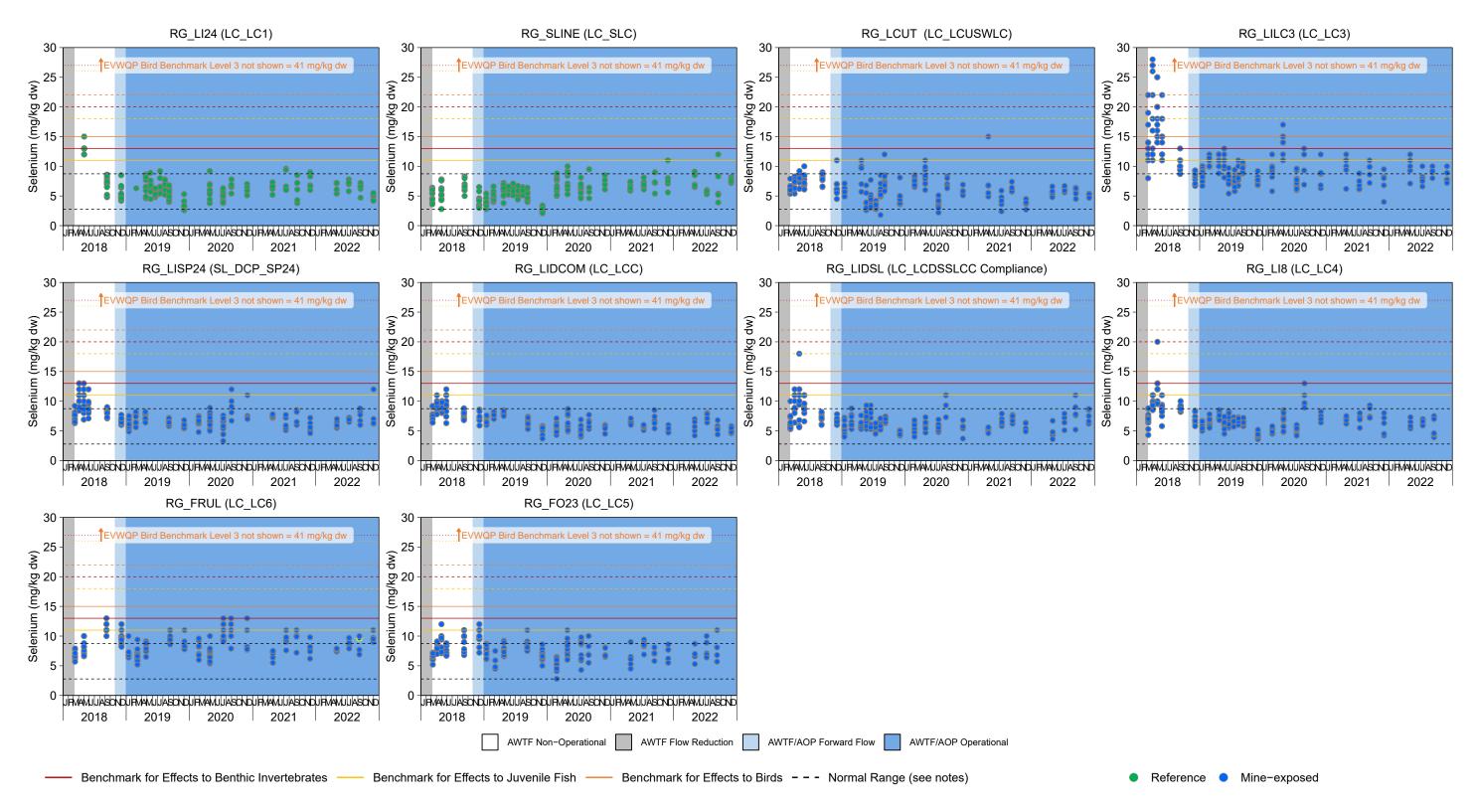


Figure 4.7: Selenium Concentrations in Benthic Invertebrate Composite-taxa Samples from Line Creek and Fording River, 2018 to 2022

Notes: Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). Level 1 benchmarks are shown with a solid line, Level 2 benchmarks are shown with a dashed line, and Level 3 benchmarks are shown with a dotted line. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine exposed monitoring areas downstream of the AWTF discharge. Samples after 2021 with an oligochaete are outlined in yellow.

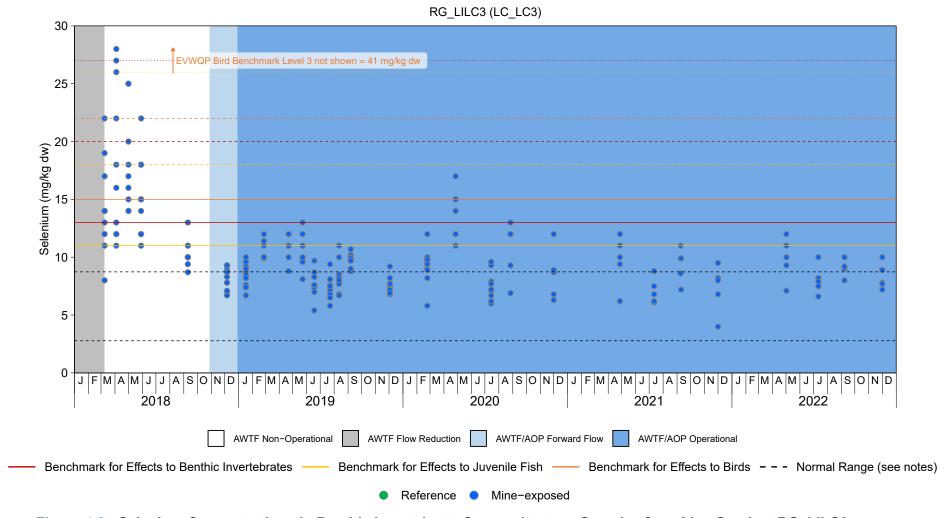


Figure 4.8: Selenium Concentrations in Benthic Invertebrate Composite-taxa Samples from Line Creek at RG_LILC3 (LC_LC3), 2018 to 2022

Notes: Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). Level 1 benchmarks are shown with a solid line, Level 2 benchmarks are shown with a dashed line, and Level 3 benchmarks are shown with a dotted line. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge. Samples after 2021 with an oligochaete are outlined in yellow.

4.4 Bioaccumulation

Benthic invertebrate tissue selenium results from 2012 to 2022 were plotted relative to the one-step water-to-invertebrate lotic selenium accumulation (Figure 4.9: Golder 2020c). The model is based on observed relationships between aqueous and benthic invertebrate tissue selenium values from samples collected previously in Line Creek and in other areas of the Elk River watershed (Golder 2020c). Plotted values in areas downstream of the AWTF discharge were within or below the 95% prediction limits of the model in 2022 (Figures 4.9 and 4.10), which is similar to the previous years of AWTF with AOP operation. This is consistent with past observations, as most plotted values have been within the model predictions, except for samples collected nearest the AWTF in 2016 and 2017 during AWTF operation without AOP (e.g., RG LILC3 in Figure 4.10). Complete oxidation of non-selenate selenium species is not expected with the addition of AOP, however, lower selenium bioaccumulation was evident during all years of AWTF operation with AOP (2019 to 2022). Therefore, selenium accumulation in Line Creek during AWTF operation without AOP was related to higher-than-normal concentrations of non-selenate forms of selenium, and the AWTF with AOP has been functioning to decrease non-selenate forms and associated accumulation in aquatic biota.

WCT ovary tissue selenium results from 2001 to 2022¹² (measured or estimated from muscle) were plotted relative to the upper prediction interval of the regional two-step water-to-invertebrate-to-fish egg/ovary selenium bioaccumulation model (Golder 2018a). As noted earlier, fish sampling was completed at RG_LIDSL in 2022 with eight WCT muscle samples collected (Section 4.2.2). One of eight estimated ovary selenium concentrations from these samples in 2022 fell slightly above the 95% prediction limits of the selenium bioaccumulation model (the upper prediction interval of the model is shown as a blue dashed line on Figure 4.4). The majority of replicates also fell within the prediction limits in previous years of AWTF with AOP operation (except four replicates in 2021 and one replicate at RG_LI8 in 2019; Minnow 2022, 2020a). In contrast, modelled mean WCT ovary selenium concentrations in 2017 (AWTF without AOP) and 2018 (AWTF non-operational) were substantially above (up to 2.4-times) the 95% prediction limits of the model. Selenium concentration in WCT tissue at RG_LIDSL will be further evaluated spatially and temporally in the larger context of the Elk Valley as part of the RAEMP. Overall, the selenium bioaccumulation results during AWTF with AOP operation relative to the

¹² Seven fish were excluded as concurrent aqueous selenium concentrations were not available: 2001 (n=3; RG_LI8), 2003 (n=2, RG_LIDSL), 2017 (n=1; RG_LIDCOM), and 2018 [n=1; RG_LIDCOM] with concentrations ranging from 14.7 to 22.4 mg/kg dw (Figure 4.4).

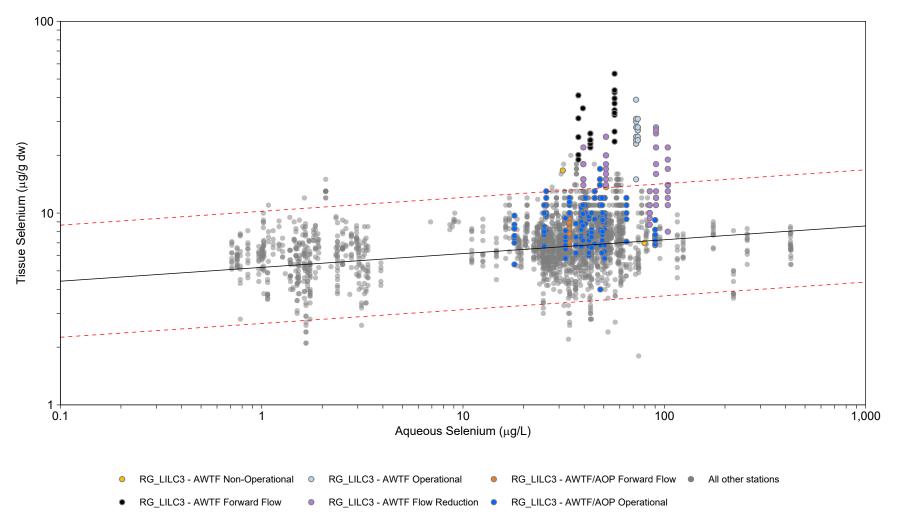


Figure 4.9: Observed and Modelled Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Total Aqueous Selenium Concentrations at Stations Upstream and Downstream of West Line Creek Active Water Treatment Facility, 2012 to 2022

Notes: Mean benthic invertebrate selenium concentrations (solid black line) were estimated using a one-step water to benthic invertebrate selenium accumulation model: $\log_{10}[Se]$ benthic invertebrate=0.717+0.072 x $\log_{10}[Se]_{aq}$ (Golder 2020c). The 95% prediction limits for a single value from the one-step water to benthic invertebrate selenium accumulation model are plotted as dashed red lines. One data point for station FO23 on September 16th, 2015 is the average of two duplicate measurements.

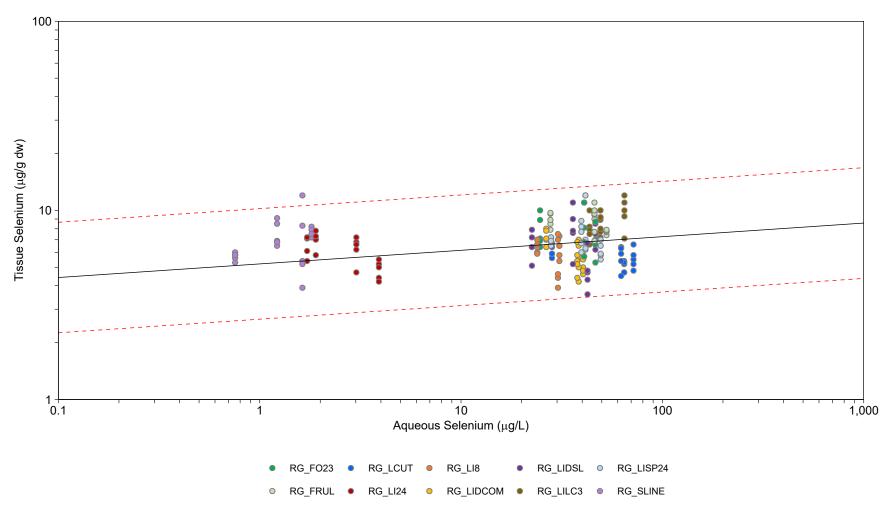


Figure 4.10: Observed and Modelled Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Total Aqueous Selenium Concentrations at Stations Upstream and Downstream of West Line Creek Active Water Treatment Facility, 2022

Notes: Mean benthic invertebrate selenium concentrations (solid black line) were estimated using a one-step water to benthic invertebrate selenium accumulation model: $\log_{10}[\text{Se}]$ benthic invertebrate=0.717+0.072 x $\log_{10}[\text{Se}]_{\text{aq}}$ (Golder 2020c). The 95% prediction limits for a single value from the one-step water to benthic invertebrate selenium accumulation model are plotted as dashed red lines. One data point for station FO23 on September 16th, 2015 is the average of two duplicate measurements.

AWTF operation without AOP clearly indicate that the AWTF with AOP functioned as intended throughout 2022 to limit selenium accumulation by aquatic biota.

4.5 Summary

Concentrations of non-selenate forms of aqueous selenium in Line Creek were lower during operation of the AWTF with AOP in 2022, compared to AWTF operation without AOP (2016 and 2017) and non-operational phases (2018), which is consistent with past results from AWTF with AOP operation (2019 to 2021). Benthic invertebrate tissue monitoring in Line Creek identified lower selenium concentrations in 2022 during AWTF with AOP operations (similar to other years of AWTF with AOP operation; 2019 to 2021) compared to concentrations that were observed during AWTF without AOP operation (2016 and 2017) and non-operational AWTF phases (2018). Mean benthic invertebrate selenium concentrations were below the EVWQP Level 1 benchmark at all areas downstream of the AWTF discharge in 2022, which is similar to other years of AWTF with AOP operation. Mean benthic invertebrate selenium concentrations in areas downstream of the AWTF discharge were largely within the regional normal range (excluding two sampling events at RG LILC3 in May and September) and all had concentrations that were similar to or lower than the South Line Creek reference area. Comparison of benthic invertebrate selenium concentrations to the selenium bioaccumulation model in areas downstream of the ATWF discharge indicated that selenium bioaccumulation in 2022 was within expectations of the model. This is similar to past results of these areas during AWTF with AOP operation (2019 to 2021). Mean tissue selenium concentrations in WCT from RG LIDSL were mostly below the site-specific benchmarks for muscle and ovary, with one of eight fish exceeding the benchmarks. Similarly, most estimated ovary concentrations (as predicted from muscle concentrations) for WCT from RG LIDSL in 2022 were within the prediction intervals of the ovary bioaccumulation model, except for one individual. Furthermore, WCT selenium concentrations at RG LIDSL in 2022 (during AWTF with AOP operation) were substantially lower than those observed in 2017 (during AWTF without AOP operation). Combined, the aqueous selenium speciation and benthic invertebrate tissue selenium monitoring results all indicated that the recommissioned AWTF with AOP has been functioning as intended to shift selenium speciation in AWTF effluent from chemically-reduced species back to a selenate-dominated condition since 2019, thereby decreasing the bioavailability of selenium in Line Creek and decreasing tissue selenium concentrations downstream of the AWTF.

5 OTHER POTENTIAL INFLUENCES OF THE WLC AWTF

5.1 Overview

Monitoring data were evaluated in this section to address Study Question #3: Is WLC AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations, or concentrations of treatment-related constituents other than nutrients or selenium? To address this study question, water temperature and dissolved oxygen results in 2022 were evaluated upstream and downstream of the AWTF, and water quality and toxicity testing results were evaluated in relation to changes in AWTF operational status. The AWTF with AOP was operational throughout 2022 with discharge to the receiving environment occurring throughout the year (see Section 1.3 for details).

5.2 Temperature

Water temperatures were measured by continuous loggers at six locations in Line Creek in 2022. continuous loggers were located upstream (LC Intake Pond [Data logger T1]) and downstream (LC Mixing Zone Discharge [Data logger T4], LC3 Downstream [Data logger T5]) of the AWTF, with discrete measures also documented upstream of the AWTF intake (at LC LCUSWLC13; Figures 2.2 and 5.1). Water temperatures in the AWTF discharge mixing zone (downstream of the AWTF; Data logger T4) were similar to those in the AWTF intake (upstream of AWTF; Data logger T1) with the exception of slightly higher temperatures from January to April downstream of the AWTF (Figure 5.1). The AWTF intake is in a ponded area. therefore water temperatures downstream of the AWTF were also compared to a free-flowing lotic area located upstream of the AWTF intake (i.e., LC LCUSWLC). The water temperatures in the AWTF discharge mixing zone (Data logger T4, where canopy cover is absent) were slightly higher in 2022 compared to the upstream lotic location (LC LCUSWLC, where canopy cover is present), but the differences were not large enough to be biologically relevant and likely attributable to differences in canopy cover. Overall, the relative similarity of water temperatures measured immediately upstream and downstream of the AWTF discharge indicates that AWTF with AOP operation in 2022 did not influence water temperatures downstream (Figure 5.1).

British Columbia guidelines for water temperature are defined as a maximum ± 1° C change from the optimum temperature range for different fish life stages (BCMOE 2001). Line Creek water temperatures throughout 2022 were within, or lower than, the optimum temperature ranges specified for different life stages of BT and except for one temperature measurement at LC_LC3

¹³Temperature recordings at LC_LCUSWLC (Data logger T6) are spot measurements in 2022 as the data logger malfunctioned shortly after deployment in 2021.

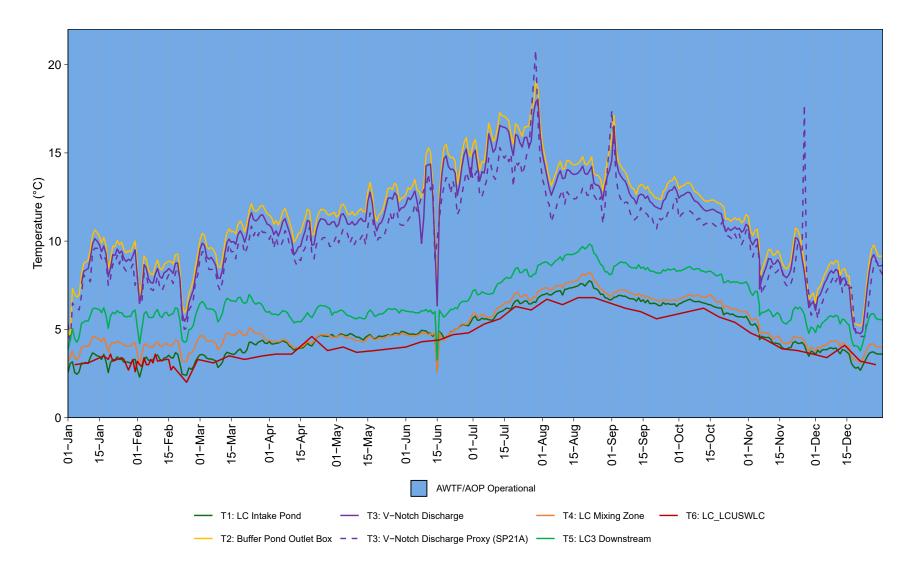


Figure 5.1: Mean Daily Water Temperature Recorded by Temperature Loggers, Line Creek LAEMP, 2022

Notes: Blue background shading indicates AWTF/AOP Restart. Values for T6: LC_LCUSWLC are spot measurements rather than daily averages due to temperature logger malfunction in early December.

in August, which exceeded the 15°C guideline for BT alevin and rearing (Figure 5.2). It is important to note that the temperatures recorded in Figure 5.2 are from spot YSI measurements, likely in shallower riffle areas, compared to the temperature data logger measurements which are typically installed in the thalweg of the stream. Temperature data logger measurements in August at LC_LC3 did not exceed 10°C (Figure 5.1). However, juvenile BT prefer pools and deep side channels (McPhail 2007), and the elevated temperature was limited to one riffle habitat area for one monitoring event so ultimately, the high temperature recorded at LC_LC3 in August is likely minimally affecting the amount of rearing/alevin habitat available with respect to temperature guidelines.

5.3 Dissolved Oxygen

Dissolved oxygen concentrations measured in 2022 upstream and downstream of the AWTF discharge were above most applicable guidelines (Figure 5.3; BCMOE 1997) but were occasionally below the 30-day mean criterion for the most sensitive fish life stages (buried embryo/alevin: 11 mg/L; Table 5.1). Monthly mean dissolved oxygen concentrations below this criterion (11 mg/L) occurred most frequently upstream of the AWTF discharge (LC_LCUSWLC) compared to downstream, indicating that the occurrence of dissolved oxygen concentrations below this criterion at locations downstream of the AWTF in 2022 was not related to AWTF operation.

5.4 Water Quality Analytes

Analytes with early warning triggers under the AMP and those with BCWQG, updated effects concentrations and/or water quality benchmarks were evaluated at Line Creek LAEMP monitoring stations (see Section 2.2.1; Appendix Figures E.1 to E.14, D.1 and D.2, Appendix Tables E.1 and E.2). Although some analytes had concentrations higher than applicable screening criteria (BCWQG, UECs, and/or benchmarks), exceedances of these screening criteria in 2022 were less AWTF frequent downstream of the discharge compared to upstream (LC LCUSWLC and LC WLC), except for nitrate. Nitrate concentrations at LC LC3 (the area in closest proximity downstream of the AWTF outfall) exceeded the Level 2 UEC14 in 3% of samples in 2022 whereas the Level 1 UEC was not exceeded at areas upstream of the AWTF discharge (LC LCUSWLC and LC WLC; see Section 3.2 for the influence of nitrate on productivity; Figure 3.4; Appendix Figure C.3, Appendix Table E.2). However, mean nitrate concentrations downstream of the AWTF (11 mg/L; LC LC3) were lower than those upstream (15 mg/L; LC LCUSWLC; Appendix Table E.2) indicating the AWTF in 2022 functioned as

¹⁴ Exceedance of the Level 2 UEC an effect concentration could indicate reduction to a toxicological endpoint (e.g., growth rate, reproductive output) of approximately 20% (Golder 2022b).

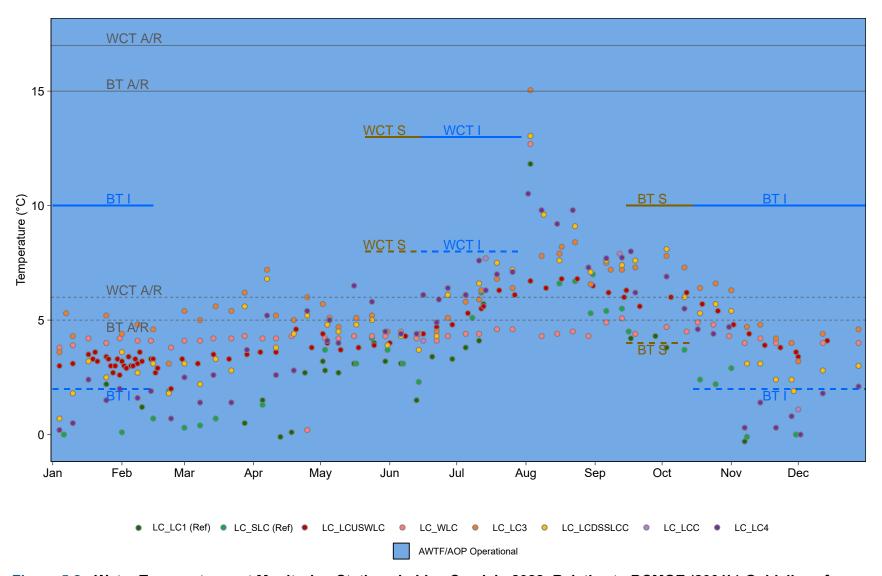


Figure 5.2: Water Temperatures at Monitoring Stations in Line Creek in 2022, Relative to BCMOE (2001b) Guidelines for Maximum (Solid Lines) and Minimum (Dotted Lines) Temperatures for Protection of Fish Species Found in Line Creek

Notes: BT = bull trout; WCT = westslope cutthroat trout; S = spawning; I = incubation; A/R = alevin/rearing. The timing of fish life history stages was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007).

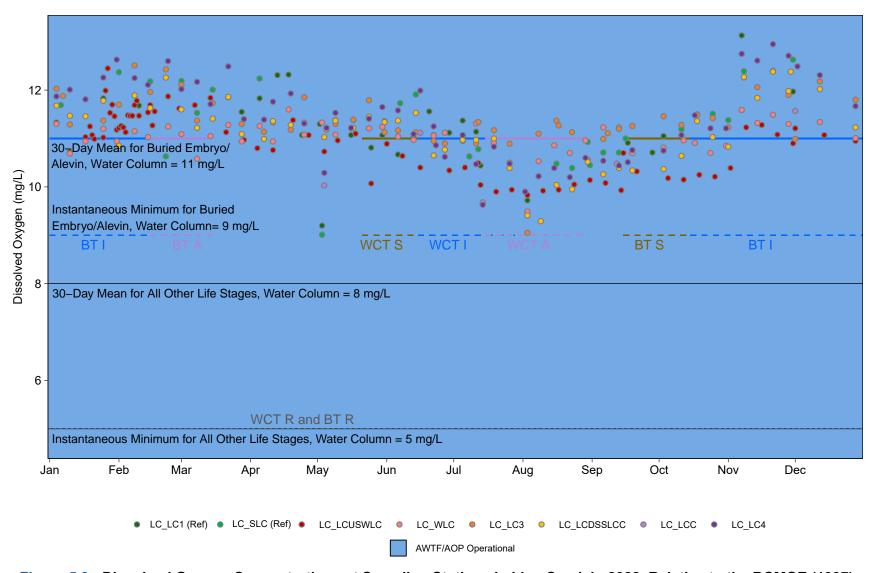


Figure 5.3: Dissolved Oxygen Concentrations at Sampling Stations in Line Creek in 2022, Relative to the BCMOE (1997) Criteria for the Protection of Fish Species Found in Line Creek

Notes: BT = bull trout; WCT = westslope cutthroat trout; S = spawning; I = incubation; A/R = alevin/rearing. The timing of fish life history stages was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007). Spawning, incubation, and alevin stages were included in application of buried embryo/alevin guideline values.

Table 5.1: Monthly Mean Dissolved Oxygen Concentrations (mg/L) in Line Creek, 2022

Month	LC_LC1	LC_SLC	LC_LCUSWLC	LC_WLC	LC_LC3	LC_LCDSSLCC	LC_LCC	LC_LC4
January	11.8	11.7	11.4	11.0	11.6	11.6	-	12.1
February	11.7	11.7	11.5	11.1	12.2	11.7	-	12.3
March	11.6	11.9	11.4	11.0	11.7	11.4	-	12.0
April	11.9	12.2	11.0	11.2	11.4	11.2	-	11.6
May	10.8	10.8	10.7	11.2	11.4	11.3	10.0	11.2
June	11.1	11.8	10.7	11.0	11.0	11.1	11.1	11.2
July	11.0	10.7	10.2	10.9	11.1	10.8	9.7	10.5
August	9.7	10.6	10.0	10.5	10.7	9.8	-	10.3
September	10.8	10.8	10.3	11.1	11.1	10.3	10.5	10.6
October	11.1	11.4	10.2	10.8	11.4	10.9	11.2	11.1
November	12.6	12.1	11.0	11.4	12.0	11.9	-	12.8
December	-	-	11.1	11.2	11.7	11.6	11.6	12.2

Less than 30-day water column mean criterion of 11 mg/L for buried embryo/alevin life stages (guideline was applied to all months except April, see notes for details).

Notes: "-" = no data/not recorded. Spawning, incubation, and alevin stages for bull trout and westslope cutthroat trout were included in the application of buried embryo/ alevin guideline values, and were applicable to at least some portion of each month except April. The timing of life history stages for these species was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007). See Figure 5.3 for graphical display of these life history stages.

intended to decrease concentrations of nitrate downstream. Evaluation of selenium is discussed in detail in Section 4.3 and is therefore excluded here.

Three analytes (dissolved cobalt, total manganese, and total molybdenum) were previously identified (i.e., in 2021; Minnow 2022) as having higher concentrations during years of AWTF with AOP operation when compared AWTF operation without AOP or pre-AWTF. In 2022, aqueous concentrations of these three constituents at LC_LC3 were similar to or lower than in 2021 (Appendix Figures E.8, E.10, E.11) indicating that concentrations of these analytes did not continue to increase. Although mean concentrations of these three analytes in 2022 were higher downstream (at LC_LC3) than upstream of the AWTF (LC_LCUSWLC and LC_WLC), concentrations were well below the applicable long-term BCWQG (total manganese and total molybdenum; Appendix Figures E.10 and E.11, Appendix Table E.2) or within the range of pre-AWTF results (i.e., 2014 and earlier for dissolved cobalt; Appendix Figure E.8, Appendix Table E.2). The observed increase in molybdenum during AWTF with AOP operation could be related to the use of antiscalant (which contains molybdenum) which started in 2018 (pers. Comm. Traverse 2021).

5.5 Toxicity Results

Acute toxicity testing with was conducted with 28 effluent samples from WL_BFWB_OUT_SP21 using the water flea (*Daphnia magna*) and rainbow trout in 2022 (Teck 2023a). No samples failed the test criteria for acute toxicity (i.e., did not cause > 50% mortality to either organism) although one sampling event caused 10% mortality to rainbow trout and three sampling events causing 3% mortality to water flea (Table 5.2; Appendix Table E.3).

Chronic toxicity testing was performed quarterly on samples collected at LC_LC3 and the Compliance Point (LC_LCDSSLCC) to evaluate potential effects to *C. dubia* and *P. subcapitata*, while semi-annual chronic toxicity tests were conducted to evaluate potential effects to *H. azteca*, fathead minnow, and rainbow trout. Most chronic toxicity test results in 2022 were below threshold for categorization or were categorized as exhibiting no adverse response, and there was no evident pattern of multiple species exhibiting adverse responses for a given quarter and station (Table 5.3). Chronic toxicity test results in 2022 that were categorized by WSP (2023) as 'possible' or 'likely' adverse responses, and the possible causal factors of these responses, are briefly outlined below; see WSP (2023) for complete results.

Effects to reproduction of *C. dubia* (water flea) in Q3 and dry weight of *H. azteca* in Q2 were both categorized as 'possible adverse responses' at LC_LC3 (Table 5.3; WSP 2023). WSP (2023) indicated that "nickel was identified as potentially contributing to these observed effects in these tests." Dissolved nickel concentrations exceeded the Proposed Level 3 Benchmark more frequently upstream (LC_LCUSWLC; 50%) than downstream of the AWTF in 2022

Table 5.2: Summary of Acute Toxicity Test Results for Line Creek Monitoring Stations, 2022 (Teck 2023)

Water S	Station		Water (Daphnia		Rainbow Trout (Oncorhynchus mykiss)		
Teck Code	Description	Year	# Tests > 50% Mortality	Total # tests	# Tests > 50% Mortality	Total # tests	
WL_BFWB_OUT_SP21	West Line Creek AWTF effluent outfall	2022	0	28	0	28	

Acute toxicity test failure(s) (> 50% test mortality).

Table 5.3: Results of Quarterly and Semi-Annual Chronic Toxicity Tests at LC_LCDSSLCC in 2015 to 2021 and LC_LC3 in 2019 and 2021 (Golder 2016, 2017a, 2018, 2019, 2020a, 2021a, 2022a, WSP 2023)^a

			Wate (Ceriodaph		•	hipod azteca) ^c	Green Alga (Pseudokirchneriella subcapitata)			w Trout hus mykiss)				Fathead Minnov nephales prome	· -	
Area	Quarter		Survival (% control- normalized)	Reproduction (% control- normalized; Protocol- specified)	Survival (% control- normalized)	Dry Weight (% control- normalized)	Cell Yield (x10 ⁴ cells/ml)	Survival (% control- normalized)	Viability (% control- normalized)	Length (% control- normalized)	Wet Weight (% control- normalized)	Hatch (% control- normalized)	Survival (% control- normalized)	Biomass (% control- normalized)	Length (% control- normalized)	Normal Development (% control- normalized)
		Q1	100 ± 0	98 ± 14	-	-	117 ± 2.2	-	-	-	-	-	-	-	-	-
	2045	Q2	100 ± 0	82 ± 12	-	-	69.2 ± 5.7	102 ± 3	101 ± 6	101 ± 4	101 ± 5	-	-	-	-	-
	2015	Q3	100 ± 0	107 ± 20	-	-	83 ± 21	-	-	-	-	-	-	-	-	-
		Q4	100 ± 0	80 ± 24	-	-	94 ± 18	88 ± 9	87 ± 9	98 ± 4	103 ± 4	-	-	-	-	-
		Q1	100 ± 0	109 ± 16	-	-	129.5 ± 5.3	-	-	-	-	-	-	-	-	-
	2016	Q2	100 ± 0	67 ± 39	-	-	91.0 ± 4.8	78 ± 6	88 ± 16	104 ± 2	97 ± 12	-	-	-	-	-
	2010	Q3	100 ± 0	83 ± 21	-	-	119.5 ± 5.5	-	-	-	-	-	-	-	-	-
		Q4	100 ± 0	94 ± 18	-	-	156.0 ± 4.5	70 ± 10	69 ± 8	104 ± 1	116 ± 11	-	-	-	-	-
		Q1	100 ± 0	92 ± 38	-	-	211.8 ± 15.4	-	-	-	-	-	-	-	-	-
	2017	Q2	100 ± 0	124 ± 11	-	-	134.0 ± 4.2	99 ± 8	93 ± 18	107 ± 6	125 ± 10	-	-	-	-	-
	2017	Q3	100 ± 0	104 ± 25	-	-	146.8 ± 10.1	-	-	-	-	-	-	-	-	-
		Q4	100 ± 0	127 ± 15	-	-	103.5 ± 4.4	41 ± 44	41 ± 44	109 ± 3	119 ± 5	-	-	-	-	-
		Q1	100 ± 0	75 ± 19	-	-	164.3 ± 10.3	-	-	-	-	-	-	-	-	-
္ပ	2018	Q2	100 ± 0	<u>40 ± 12</u>	96 ± 15	108 ± 35	147.5 ± 4.8	102 ± 3	103 ± 2	104 ± 5	109 ± 16	-	-	-	-	-
),	2010	Q3	100 ± 0	106 ± 18	109 ± 10	150 ± 30	97.0 ± 12.2	-	-	-	-	-	-	-	-	-
CDSSCCC		Q4	100 ± 35	<u>63 ± 23</u>	74 ± 30	35 ± 20	87.7 ± 8.2	100 ± 9	103 ± 11	106 ± 1	110 ± 4	-	-	-	-	-
5.		Q1	100 ± 0	92 ± 21	-	-	81.5 ± 4.5	-	-	-	-	100 ± 0	89 ± 14	87 ± 6	90 ± 3	98 ± 5
	2019	Q2	100 ± 0	81 ± 6	-	-	110.8 ± 2.6	101 ± 11	101 ± 15	104 ± 3	115 ± 5	-	-	-	-	-
<u>၂</u>	2019	Q3	80 ± 42	92 ± 23	90 ± 17	51 ± 26	29.8 ± 3.3	-	-	-	-	100 ± 0	64 ± 12	71 ± 8	104 ± 5	96 ± 7
		Q4	100 ± 0	88 ± 17	73 ± 35	84 ± 51	104.0 ± 10.0	90 ± 6	86 ± 4	103 ± 2	107 ± 3	-	-	-	-	-
		Q1	111 ± 0	93 ± 9	-	-	<u>74 ± 5.3</u>	-	-	-	-	98 ± 3	<u>39 ± 29</u>	<u>52 ± 35</u>	117 ± 7	112 ± 0
	2020	Q2	90 ± 32	86 ± 34	107 ± 5	92 ± 18	111 ± 5.6	113 ± 18	109 ± 24	100 ± 7	103 ± 16	-	-	-	-	-
	2020	Q3	90 ± 32	<u>70 ± 22</u>	-	-	105 ± 9.0	-	-	-	-	100 ± 0	96 ± 10	87 ± 6	90 ± 6	100 ± 0
		Q4	100 ± 0	<u>74 ± 15</u>	88 ± 17	63 ± 30	119 ± 4.4	89 ± 8	87 ± 10	102 ± 0	111 ± 8	-	-	-	-	-
		Q1	100 ± 0	91 ± 27	-	-	<u>86 ± 3.4</u>	-	-	-	-	105 ± 0	104 ± 8	90 ± 9	96 ± 2	100 ± 4
	2021	Q2	90 ± 32	87 ± 29	104 ± 5	_e	<u>55 ± 2.2</u>	100 ± 2	106 ± 2	106 ± 0.4	135 ± 16	-	-	-	-	-
	2021	Q3	90 ± 32	91 ± 30	98 ± 9	61 ± 8	85.8 ± 5.0	-	-	-	-	102 ± 4	76 ± 18	87 ± 15	93 ± 3	104 ± 5
		Q4	100 ± 0	93 ± 21	107 ± 5	115 ± 19	<u>61.5 ± 7.6</u>	101 ± 12	100 ± 14	108 ± 5	107 ± 12	-	-	-	-	-
		Q1	111 ± 0	80 ± 25	-	-	81.5 ± 5.4	-	-	-	-	100 ± 7	84 ± 8	97 ± 8	97 ± 1	100 ± 0
	2022	Q2	100 ± 0	106 ± 30	90 ± 16	200 ± 33	<u>80.5 ± 5.4</u>	97 ± 20 ^M	106 ± 28 ^M	100 ± 5 ^M	98 ± 12 ^M	-	-	-	-	-
	2022	Q3	100 ± 0	91 ± 22	-	-	111.0 ± 6.2	-	-	-	-	102 ± 0	73 ± 49	70 ± 47	98 ± 5	100 ± 0
		Q4	100 ± 0	103 ± 38	92 ± 8	81 ± 13	54.2 ± 4.2 ^f	96 ± 12	96 ± 16	98 ± 3	101 ± 14	-	-	-	-	-

result significantly lower than at least one reference area.

result significantly lower than Fording River reference (FR UFR1). <u>Underline</u> result significantly lower than Elk River reference (GH_ER2).

result significantly lower than Michel Creek reference (CM_MC1).

result significantly lower than South Line Creek reference (LC SLC).

Notes: Q_x = Calendar year quarters. "-" = no data available. Anomalously high results were observed for Q2 *H. azteca* dry weight in all reference tests. In order to adopt a conservative approach, these reference tests were excluded from normal range calculations. The reference results were included in pooled batch calculations. Q2 samples for O. mykiss were amended with copper concentrations of 20 µg/L for all site controls and test sites.

^a Results presented as percent survival or endpoint ± standard deviation. Chronic toxicity testing at LC LC3 was initiated in 2019.

b Two test lengths were used to evaluate potential effects on Ceriodaphnia dubia reproduction in 2019. These included: 1) a protocol-specified test length (i.e., reproduction was measured when ≥60 % of controls produced three or more broods; as per Environment Canada [2007c]); and 2) an 8-day test duration (Golder 2020). These two test lengths were used in 2019 to evaluate potential brood effect. Prior to 2019, the protocol-specified test length was used. Only the protocol-specified test length is presented here, see Minnow 2020a for 8-day test results.

^c Based on the Permit 107517 and 106970 Chronic Toxicity Program integration amendment (ENV 2019), chronic toxicity testing of Hyalella azteca (28-day test) is required on a semi-annual basis (spring and fall; see Section 2.2.2). Collection of toxicity test samples in early 2019 (Q1) began before the amendment was issued. Therefore, toxicity testing of H. azteca in Q1 2019 was completed according to the previous requirements (Permit 107517). H. azteca testing was completed in Q3 and Q4 in 2019.

^d Fathead minnow chronic toxicity testing (30-day early life stage test) at LC_LCDSSLC and LC_LC3 was initiated in 2019.

e H. azteca 2021 Q2 test organisms were disposed of prior to measuring dry weight due to a lab technician error, and therefore the initial Q2 tests have only survival data. In response to this, tests were repeated in Q3 for all stations (Minnow 2022).

f Follow-up testing was conducted in Q4 (P. subcapitata) to evaluate repeatability of original test result: 72.3 +/- 8.3; no adverse response (possible adverse response in original test).

⁹ Follow-up testing was conducted in Q4 (P. subcapitata) to evaluate repeatability of original test result: 53.6+/-6.5; possible adverse response (likely adverse response in original test).

Table 5.3: Results of Quarterly and Semi-Annual Chronic Toxicity Tests at LC_LCDSSLCC in 2015 to 2021 and LC_LC3 in 2019 and 2021 (Golder 2016, 2017a, 2018, 2019, 2020a, 2021a, 2022a, WSP 2023)^a

		Water Flea (Ceriodaphnia dubia) ^b			-	Amphipod Green Alga (Hyalella azteca) ^c (Pseudokirchneriella subcapitata)			Rainbow Trout (<i>Oncorhynchus myki</i> ss)			Fathead Minnow (<i>Pimephales promelas</i>) ^d				
Area			Survival (% control- normalized)	Reproduction (% control- normalized; Protocol- specified)	Survival (% control- normalized)	Dry Weight (% control- normalized)	Cell Yield (x10 ⁴ cells/ml)	Survival (% control- normalized)	Viability (% control- normalized)	Length (% control- normalized)	Wet Weight (% control- normalized)	Hatch (% control- normalized)	Survival (% control- normalized)	Biomass (% control- normalized)	Length (% control- normalized)	Normal Development (% control- normalized)
		Q1	100 ± 0	86 ± 12	-	-	79.5 ± 8.0	-	-	-	-	100 ± 0	86 ± 4	89 ± 4	96 ± 1	100 ± 0
	2019	Q2	100 ± 0	85 ± 12	-	-	113.8 ± 11.4	92 ± 14	94 ± 13	104 ± 2	118 ± 8	-	-	-	-	-
	2010	Q3	100 ± 0	105 ± 20	75 ± 17	67 ± 26	27.0 ± 3.6		-	-	-	100 ± 0	95 ± 13	92 ± 5	105 ± 2	100 ± 0
		Q4	90 ± 32	<u>76 ± 22</u>	<u>67 ± 45</u>	153 ± 25	122.8 ± 8.5	90 ± 5	83 ± 17	101 ± 3	104 ± 10	-	-	-	-	-
		Q1	111 ± 0	88 ± 20	-	-	<u>75 ± 3.8</u>	-	-	-	-	100 ± 0	96 ± 7	<u>84 ± 4</u>	96 ± 2	100 ± 0
	2020	Q2	100 ± 0	87 ± 18	<u>76 ± 46</u>	75 ± 29	120 ± 3.9	96 ± 29	91 ± 33	99 ± 8	116 ± 22	-	-	-	-	-
က	2020	Q3	100 ± 0	82 ± 18	-	-	<u>83 ± 7.4</u>	-	-	-	-	92 ± 6	73 ± 12	98 ± 7	104 ± 5	94 ± 13
LC.		Q4	100 ± 0	78 ± 18	96 ± 9	49 ± 19	114 ± 5.5	90 ± 2	91 ± 2	101 ± 1	106 ± 12	-	-	-	-	-
ان ا		Q1	90 ± 32	93 ± 40	-	-	<u>74.5 ± 9</u>	-	-	-	-	105 ± 0	104 ± 10	89 ± 6	96 ± 4	98 ± 4
-	2021	Q2	100 ± 0	99 ± 20	104 ± 5	_e	47.2 ± 2.4	98 ± 3	101 ± 6	105 ± 1	122 ± 21	-	-	-	-	-
	2021	Q3	100 ± 0	91 ± 11	100 ± 6	59 ± 7	<u>80.8 ± 5.6</u>	-	-	-	-	105 ± 0	91 ± 15	102 ± 8	93 ± 7	102 ± 5
		Q4	90 ± 32	<u>75 ± 28</u>	102 ± 10	122 ± 9	<u>75 ± 3.4</u>	113 ± 4	110 ± 5	106 ± 4	104 ± 9	-	-	-	-	-
		Q1	111 ± 0	86 ± 16	-	-	<u>51.8 ± 2.2</u>	-	-	-	-	95 ± 13	94 ± 8	95 ± 8	98 ± 4	100 ± 0
	2022	Q2	100 ± 0	98 ± 32	100 ± 6	<u>129 ± 18</u>	63.0 ± 5.3	98 ± 6	110 ± 9	99 ± 4	96 ± 13	-	-	-	-	-
	2022	Q3	100 ± 0	83 ± 29	-	-	97.3 ± 8.5	1	-	-	-	100 ± 4	88 ± 12	90 ± 15	102 ± 6	100 ± 0
		Q4	90 ± 32	106 ± 18	98 ± 4	77 ± 10	50.0 ± 6.1 ^g	93 ± 12	94 ± 14	95 ± 2	95 ± 4	-	-	-	-	-

result significantly lower than at least one reference area.

result significantly lower than Fording River reference (FR_UFR1). <u>Underline</u> result significantly lower than Elk River reference (GH ER2).

result significantly lower than Michel Creek reference (CM MC1). result significantly lower than South Line Creek reference (LC SLC).

Notes: Q_x = Calendar year quarters. "-" = no data available. Anomalously high results were observed for Q2 H. azteca dry weight in all reference tests. In order to adopt a conservative approach, these reference tests were excluded from normal range calculations. The reference results were included in pooled batch calculations. Q2 samples for O. mykiss were amended with copper concentrations of 20 µg/L for all site controls and test sites.

^a Results presented as percent survival or endpoint ± standard deviation. Chronic toxicity testing at LC_LC3 was initiated in 2019.

b Two test lengths were used to evaluate potential effects on Ceriodaphnia dubia reproduction in 2019. These included: 1) a protocol-specified test length (i.e., reproduction was measured when ≥60 % of controls produced three or more broods; as per Environment Canada [2007c]); and 2) an 8-day test duration (Golder 2020). These two test lengths were used in 2019 to evaluate potential brood effect. Prior to 2019, the protocol-specified test length was used. Only the protocol-specified test length is presented here, see Minnow 2020a for 8-day test results.

^c Based on the Permit 107517 and 106970 Chronic Toxicity Program integration amendment (ENV 2019), chronic toxicity testing of Hyalella azteca (28-day test) is required on a semi-annual basis (spring and fall; see Section 2.2.2). Collection of toxicity test samples in early 2019 (Q1) began before the amendment was issued. Therefore, toxicity testing of H. azteca in Q1 2019 was completed according to the previous requirements (Permit 107517). H. azteca testing was completed in Q3 and Q4 in 2019.

^d Fathead minnow chronic toxicity testing (30-day early life stage test) at LC LCDSSLC and LC LC3 was initiated in 2019.

e H. azteca 2021 Q2 test organisms were disposed of prior to measuring dry weight due to a lab technician error, and therefore the initial Q2 tests have only survival data. In response to this, tests were repeated in Q3 for all stations (Minnow 2022).

f Follow-up testing was conducted in Q4 (P. subcapitata) to evaluate repeatability of original test result: 72.3 +/- 8.3; no adverse response (possible adverse response in original test).

⁹ Follow-up testing was conducted in Q4 (P. subcapitata) to evaluate repeatability of original test result: 53.6+/-6.5; possible adverse response (likely adverse response in original test).

(LC_LC3; 17%; Appendix Figure E.14, Appendix Table E.2), indicating that the observed 'possible adverse responses' for *C. dubia* and *H. azteca* were likely not AWTF-related. The frequency of possible *C. dubia* and *H. azteca* responses in 2022 was not higher than in prior years (2019 to 2021; WSP 2023). In addition, WSP (2023) indicated that chronic toxicity results for LC_LC3 have "shown low frequency of adverse responses over time, and those that are observed that can only rarely be attributed to mine influence. In invertebrate tests, adverse responses have sporadically been observed, with nickel being the only constituent identified as a potential cause of responses in sublethal endpoints."

Effects to cell yield for *P. subcapitata* at LC_LC3 in Q1 and Q4 were categorized as 'likely adverse responses', and in Q2 as a 'possible adverse response'. In Q4, cell yield originally produced effects that were categorized as a 'likely adverse response', but resampling results were categorized as a 'possible adverse response' (Table 5.3; WSP 2023). Effects to cell yield at LC_LCDSSLCC in Q4 were categorized as a 'possible adverse response' and were subsequently reevaluated (similar to those from LC_LC3) and categorized as 'no adverse response' (WSP 2023). The potential cause of effect to cell yields for *P. subcapitata* at either sampling area in 2022 was unknown. The frequency of possible *P. subcapitata* responses at LC_LC3 in 2022 was slightly higher than in prior years (2019 to 2021), however the effects observed in 2019 (Q3) and 2021 (Q1 and Q4) of 2021 were either considered anomalous or were associated with elevated uncertainty (WSP 2023), limiting the applicability of temporal comparisons.

Fathead minnow (Q1 and Q3; via evaluation of hatch, survival, biomass, length, and normal development) and rainbow trout (Q2 and Q4; survival, viability, length, and wet weight) results in 2022 did not differ from reference (WSP 2023; Table 5.3).

Combined, these results indicated the toxicity responses observed in 2022 were likely not related to AWTF with AOP operation and the frequency of responses in 2022 were similar to prior years with the exception *P. subcapitata* (for which temporal comparability is limited due to test uncertainty¹⁵).

5.6 Summary

Operation of the AWTF with AOP in 2022 did not significantly change water temperature or dissolved oxygen concentrations downstream in Line Creek. Evaluation of water quality analytes demonstrated no increases in analyte concentrations that resulted in concentrations above guidelines or water quality benchmarks due to AWTF with AOP operation in 2022. Additionally, chronic toxicity testing at LC_LCDSSLCC and LC_LC3 suggested toxicity was

¹⁵ The *P. subcapitata* chronic toxicity test is currently under review for potential removal from the chronic toxicity testing program due to variability and uncertainty associated with this bioassay.

similar to previous years for most endpoints. Overall, there did not appear to be influences on aquatic biota associated with the WLC AWTF with AOP operations in 2022 that were not addressed through monitoring related to Study Questions #1 (productivity) and #2 (tissue selenium accumulation), which is consistent with past evaluations during this operational period (2019 to 2021).

6 SUMMARY

Potential effects to the aquatic environment related to the commissioning of the WLC AWTF were evaluated by addressing three study questions, which focus on: 1) potential effects to biological productivity; 2) selenium concentrations in biota; and 3) potential effects related to factors other than nutrients or selenium.

Evaluation of Study Question #1 (potential influences on biological productivity) indicated that aqueous total phosphorus concentrations at the Compliance Point (LC_LCDSSLCC) were consistently below the SPO of 0.02 mg/L during 2022. In 2022, concentrations of nutrients (total phosphorus, orthophosphate, and nitrate) were generally in the ranges of concentrations observed in previous years. Additionally, the results suggested that the operation of the AWTF with AOP (2019 to 2022) was more successful at minimizing phosphorus and orthophosphate contributions to the receiving environment than operation of the AWTF without AOP (in 2016 and 2017).

Periphyton coverage at all mine-exposed and reference areas was moderate in 2022 (based on visual assessment) and was consistent with past results. Periphyton coverage at RG LILC3 and RG LIDCOM was moderate in 2022 (similar to results from 2017 to 2019 and 2021), and decreased from 2020, suggesting results from 2020 were an isolated event. Benthic invertebrate biomass and density at RG LIDSL and RG LILC3 (the two downstream areas in closest proximity to the AWTF discharge) showed no significant increase in 2022 related to operation of the AWTF with AOP. Benthic invertebrate total abundances (measured by kick and sweep) were within regional normal ranges and were largely similar to previous years (2017 to 2021) at mine-exposed areas in 2022. Benthic invertebrate community endpoints, as determined from kick and sweep sample collection, indicated no consistent adverse changes in community characteristics related to operation stabilization of the AWTF with AOP in 2022. Rather, an increased or stable percentage of sensitive taxa (Ephemeroptera and EPT) at some areas of Line Creek downstream from the AWTF (i.e., RG LISP24, RG LIDSL, RG LI8 and RG FO23) during the AWTF with AOP period (2019 to 2022) when compared to AWTF operational with no AOP (2016 and 2017) was suggestive of stability or improvement in benthic invertebrate community structure at these areas (Table 6.1).

Overall, assessment of Study Question #1 indicated that biological productivity downstream from the AWTF has not been affected by the operation of the AWTF with AOP (2019 to 2022) relative to previous years of operation.

Table 6.1: Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2022

			Wa	ter			Biolog	ical
Study Question	Endpoint	Indicator	Analysis/Evaluation	Result	Measurement Endpoint	Indicator	Analysis/Evaluation	Result
					Periphyton productivity	Visual Coverage Scores	0 0 1	Coverage scored as moderate at all mine-exposed areas and mild-moderate at reference stations, which was similar to results in 2021 for most areas.
	of 2022 (65% of sampling events) Nitrate 2) Concentrations > RCWOG at all mine		Nitrate was below the SPO during a majority of 2022 (65% of sampling events) Concentrations > BCWQG at all mine-		Biomass	ANOVA analysis among years = 2014 to 2022 Areas: Ref = RG_SLINE, RG_LI24; Exp = RG_LILC3, RG_LIDSL	No adverse effect associated with AWTF with AOP operation in 2022. No significant differences in biomass at RG_LILC3 or RG_LIDSL in 2022 when compared to previous years (or when compared to previous years relative to reference).	
			BCWQG and Water Quality Updated Effects Concentrations (UECs)	exposed areas. Concentrations < UEC for all areas downstream of discharge, except two events at LC_LC3 > Level 2 UEC.	Benthic invertebrate productivity	Density	ANOVA analysis among years = 2014 to 2022 Areas: Ref = RG_SLINE, RG_LI24; Evp = RG_LI_C3_RG_LIDSI	No adverse effect associated with AWTF with AOP operation in 2022. Density at RG_LIDSL in 2022 was not significantly different than previous years or when compared to previous years relative to RG_LI24, however the difference in density at RG_LIDSL relative to the reference RG_SLINE was significantly lower in 2022 than 2014. Density at RG_LILC3 in 2022 was not significantly different than previous years or when compared to previous years relative to RG_SLINE or RG_LI24.
Is active water treatment affecting biological	Nutrient concen	Total	1) Comparison to SPO	Phosphorus did not exceed SPO in 2022. Concentrations in 2022 were below the		Abundance	Comparison to past observations and reference normal range (NR) and site-specific normal range (SNR)	No evidence of adverse effect on secondary productivity associated with AWTF with AOP operation in 2022. Organism abundance at Exp areas in 2022 were within NR, within SNR at most areas, and within range of previous AWTF operational years.
productivity downstream in Line Creek?	-trations	Phosphorus	2) Comparison to the LC_LC3 baseline 97.5th percentile	LC_LC3 baseline with the exception of three samples (one in each of April, September and October).		Richness	Comparison to past observations and reference normal	No evidence of adverse effect associated with AWTF with AOP operation in 2022. Taxon richness at all mine-exposed areas downstream of the AWTF with AOP were within or above both NR and SNR and the range of previous AWTF operational years.
		Orthophos -phate	Comparison to the LC_LC3 baseline 97.5th percentile	Concentrations in 2022 were below the LC_LC3 baseline.	Benthic invertebrate community structure	%EPT, %Ephemeroptera (%E), %Chironomidae (%C)	Comparison to past observations and reference normal range (NR) and site-specific normal range (SNR)	No evidence of adverse effect associated with AWTF with AOP operation in 2022. %EPT was within NR and SNR at RG_LIDSL and RG_LI8 but below NR and/or SNR at remaining areas downstream of AWTF discharge in Line Creek. %EPT was within or above range of previous years except at RG_LIDCOM. %EPT at RG_LIDCOM was the lowest since monitoring began in 2017 but the spatial pattern (i.e., %EPT within NR at areas closer to the AWTF discharge) is not consistent with an AWTF-related effect. %E in 2022 was within or above the range of previous years (2019 and 2021) at all areas. %E at Line Creek areas downstream of the AWTF were within NR in 2022 except for RG_LILC3 and within SNR except for RG_LILC3 and RG_LIDCOM. % E increased temporally at RG_LISP24 and RG_LIDSL during AWTF with AOP phase. %C downstream of AWTF discharge were within range of previous years or showed decreases in composition, except at RG_LIDCOM where %C increased.

Notes: AWTF = Active Water Treatment Facility; AOP = Advanced Oxidation Process; Ref = Reference sampling station/area; SPO = Site Performance Objective; BCWQG = British Columbia Water Quality Guideline; UEC = Updated Effects Concentration; NR and SNR = Regional normal range and site-specific normal range of reference area data, respectively from the RAEMP (see Minnow 2020b for details); Water quality benchmarks are those outlined in Teck (2014). It should be noted that the terminology used to describe the AWTF operational phase initiated on December 30, 2018 has been updated in the present report. Terminology in the 2019 LCO LAEMP report identified two AWTF operational Stabilization" and "AWTF/AOP Steady State Operation" (Minnow 2020a). In the current report, after December 30, 2018 has been termed as a single "AWTF with AOP Operational" phase (see Section 1.2 for more details).

Table 6.1: Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2022

			Wa	ter			Biolog	gical
Study Question	Endpoint	Indicator	Analysis/Evaluation	Result	Measurement Endpoint	Indicator	Analysis/Evaluation	Result
	Total and dis selenium cor		Visual inspection of data	Lower total [Se] downstream of the AWTF discharge during AWTF with AOP operation in 2022 compared to upstream of the AWTF and compared to AWTF operation without AOP.	Composite-taxa samples	a selenium tissue	AWTF without AOP = 2016 to 2017; Shutdown = Mar to Aug 2018; AWTF with AOP Restart = Oct 2018 to Dec 2018;	2) Tissue [Se] downstream of AWTF discharge were similar to reference and/or upstream of AWTF (RG_LCUT) throughout 2022. 3) Mean tissue [Se] results at Exp areas of Line Creek downstream of the AWTF were within or only slightly higher than NR except for two sampling event at RG_LILC3 in May and
Are tissue selenium concentrations reduced downstream from the AWTF?	Selenium sp	eciation	Comparison downstream relative to upstream from the AWTF, and of Line Creek input to Fording River	Lower concentrations of selenite and other non-selenate species in Line Creek downstream of the AWTF discharge during AWTF with AOP relative to concentrations during operation without AOP. Concentrations of non-selenate concentrations in Line Creek downstream of the AWTF in 2022 were higher in winter (January to March) and lowest during summer (May to July). Organoselenium concentrations were above Screening Level 2 (for sum of DMSeO and MeSe(IV)) in February to early April at RG_LILC3 and March to early April at RG_LIDSL, and occasionally above Screening Level 3 in March and early April at RG_LILC3.		tissue samples d RG_FO23 Only)	1) Comparison to site-specific benchmarks for muscle and estimated ovary concentrations 2) Comparison to reference normal range (NR) 3) Visual inspection of 2001 to 2022 data	1) Mean WCT muscle selenium tissue and estimated ovary selenium tissue concentrations from RG_LIDSL in 2022 were below their respective benchmarks. Of the 8 replicates collected from RG_LIDSL, 1 result exceeded their benchmarks. 2) Mean WCT muscle selenium tissue and estimated ovary selenium tissue concentrations were above the NR 3) Mean WCT muscle selenium concentrations in 2022 (in the AWTF with AOP Period) were lower than in 2021, and were substantially lower when compared to 2017 (AWTF without AOP period).
			Comparison of composite-taxa benthic tissue selenium results to one-step water-to-invertebrate model	Tissue selenium concentrations reported during 2022 AWTF with AOP fall within the model prediction intervals with the exception of one replicate from the South Line Creek reference area (RG_SLINE).		Abundance	Comparison to past observations and reference normal range (NR) and site-specific normal range (SNR)	No evidence of adverse effect on secondary productivity associated with AWTF with AOP operation in 2022. Organism abundance at Exp areas in 2022 were within NR, within SNR at most areas, and within range of previous AWTF operational years.
						Richness	Comparison to past observations and reference normal range (NR) and site-specific normal range (SNR)	No evidence of adverse effect associated with AWTF with AOP operation in 2022. Taxon richness at all mine-exposed areas downstream of the AWTF with AOP were within or above both NR and SNR and the range of previous AWTF operational years.
	Selenium bioaccumulation model (RG_LIDSL and RG_FO23 Only)		Comparison of WCT tissue selenium results to two-step water-to-invertebrate-to-fish model	Mean WCT tissue selenium concentrations reported during 2022 at RG_LIDSL fall within the model prediction intervals except 1 of 8 replicates at RG_LIDSL. WCT tissue selenium concentrations at RG_LIDSL in 2022 (during AWTF with AOP) were lower than in 2021, and substantially lower than in 2017 (during AWTF without AOP).	Benthic invertebrate community structure	%EPT, %Ephemeroptera (%E), %Chironomidae (%C)	Comparison to past observations and reference normal range (NR) and site-specific normal range (SNR)	No evidence of adverse effect associated with AWTF with AOP operation in 2022. %EPT was within NR and SNR at RG_LIDSL and RG_LI8 but below NR and/or SNR at remaining areas downstream of AWTF discharge in Line Creek. %EPT was within or above range of previous years except at RG_LIDCOM. %EPT at RG_LIDCOM was the lowest since monitoring began in 2017 but the spatial pattern (i.e., %EPT within NR at areas closer to the AWTF discharge) is not consistent with an AWTF-related effect. %E in 2022 was within or above the range of previous years (2019 and 2021) at all areas. %E at Line Creek areas downstream of the AWTF were within NR in 2022 except for RG_LILC3 and within SNR except for RG_LILC3 and RG_LIDCOM. % E increased temporally at RG_LISP24 and RG_LIDSL during AWTF with AOP phase. %C downstream of AWTF discharge were within range of previous years or showed decreases in composition, except at RG_LIDCOM where %C increased.

Notes: AWTF = Active Water Treatment Facility; AOP = Advanced Oxidation Process; Ref = Reference sampling station/area; Exp = Mine-exposed sampling station/area; SPO = Site Performance Objective; BCWQG = British Columbia Water Quality Guideline; UEC = Updated Effects Concentration; NR and SNR = Regional normal range and site-specific normal range of reference area data, respectively from the RAEMP (see Minnow 2020b for details); Water quality benchmarks are those outlined in Teck (2014). It should be noted that the terminology used to describe the AWTF operational phase initiated on December 30, 2018 has been updated in the present report. Terminology in the 2019 LCO LAEMP report identified two AWTF operational phases after December 30, 2018: "AWTF Operational Stabilization" and "AWTF/AOP Steady State Operation" (Minnow 2020a). In the current report, after December 30, 2018 has been termed as a single "AWTF with AOP Operational" phase (see Section 1.2 for more details).

Table 6.1: Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2022

		Wa	ater			Biolo	ogical
Study Question	Endpoint Indicator	Analysis/Evaluation	Result	Measurement Endpoint	Indicator	Analysis/Evaluation	Result
	Data loggers	Comparison downstream relative to upstream of the AWTF	No evidence that AWTF with AOP operation increased downstream temperature in 2022 when compared to upstream data loggers in similar habitat.			Comparison to past observations and reference normal	No evidence of adverse effect on secondary productivity associated with AWTF with AOP
	-ture Routine monitoring	Comparison to BCWQG	Temperatures were within or below guideline temperature ranges for both bull trout and westslope cutthroat trout except for one measurement in August which exceeded the guideline for bull trout alevin and rearing.		Abundance	range (NR) and site-specific normal range (SNR)	operation in 2022. Organism abundance at Exp areas in 2022 were within NR, within SNR at most areas, and within range of previous AWTF operational years.
	Dissolved oxygen	Comparison to BCWQG	DO concentrations in 2022 > instantaneous minimum criterion and > 30-day average for all other life stages but < 30-day criterion for sensitive life stages (namely during summer months [July - September]). Similar trends were noted in areas both upstream and downstream of AWTF as well as reference, suggesting this was not due to AWTF with AOP operation.				
Is AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations or concentrations of treatment-related constituents other than nutrients or selenium?	Analytes with Early Warning Triggers	1) Comparison to past results 2) Comparison to BCWQG 3) Comparison to Water Quality Benchmarks	1) No obvious temporal increases in analyte concentrations associated with AWTF with AOP operation in 2022. Concentrations of dissolved cobalt, total manganese, total molybdenum which were identified in the 2020 and 2021 reports, were still well below benchmark values [Mn and Mo] or within the pre-AWTF range [Co]) and did not continue to increase in 2022. 2) Analyte concentations were above BCWQG less frequently downstream of the AWTF discharge than upstream, indicating no influence of AWTF with AOP operation on BCWQG exceedances. 3) EVWQP benchmarks were exceeded less frequently downstream of the AWTF discharge than upstream, indicating no influence of AWTF with AOP operation on BCWQ exceedances.	Benthic invertebrate community structure	Richness	Comparison to past observations and reference normal range (NR) and site-specific normal range (SNR)	No evidence of adverse effect associated with AWTF with AOP operation in 2022. Taxon richness at all mine-exposed areas downstream of the AWTF with AOP were within or above both NR and SNR and the range of previous AWTF operational years.
	Toxicity	Comparison of acute and chronic toxicity test results to reference, and past results	No acute toxicity failed the criterion in 2022 (< 50% mortality). Majority of chronic toxicity testing results were categorized as "no adverse response" and similar to previous years. No evidence of AWTF affecting toxicity.		%EPT, %Ephemeroptera (%E), %Chironomidae (%C)	Comparison to past observations and reference normal range (NR) and site-specific normal range (SNR)	No evidence of adverse effect associated with AWTF with AOP operation in 2022. %EPT was within NR and SNR at RG_LIDSL and RG_LI8 but below NR and/or SNR at remaining areas downstream of AWTF discharge in Line Creek. %EPT was within or above range of previous years except at RG_LIDCOM. %EPT at RG_LIDCOM was the lowest since monitoring began in 2017 but the spatial pattern (i.e., %EPT within NR at areas closer to the AWTF discharge) is not consistent with an AWTF-related effect. %E in 2022 was within or above the range of previous years (2019 and 2021) at all areas. %E at Line Creek areas downstream of the AWTF were within NR in 2022 except for RG_LILC3 and within SNR except for RG_LILC3 and RG_LIDCOM. %E increased temporally at RG_LISP24 and RG_LIDSL during AWTF with AOP phase. %C downstream of AWTF discharge were within range of previous years or showed decreases in composition, except at RG_LIDCOM where %C increased.

Notes: AWTF = Active Water Treatment Facility; AOP = Advanced Oxidation Process; Ref = Reference sampling station/area; Exp = Mine-exposed sampling station/area; SPO = Site Performance Objective; BCWQG = British Columbia Water Quality Guideline; UEC = Updated Effects Concentration; NR and SNR = Regional normal range and site-specific normal range of reference area data, respectively from the RAEMP (see Minnow 2020b for details); Water quality benchmarks are those outlined in Teck (2014). It should be noted that the terminology used to describe the AWTF operational phase initiated on December 30, 2018 has been updated in the present report. Terminology in the 2019 LCO LAEMP report identified two AWTF operational phases after December 30, 2018: "AWTF Operational Stabilization" and "AWTF/AOP Steady State Operational" phase (see Section 1.2 for more details).

Evaluation of Study Question #2 (assessment of selenium concentrations) focused on aqueous selenium concentrations and selenium concentrations in biota. Aqueous selenium throughout Line Creek is primarily in the oxidized form, selenate, and chemically-reduced forms of aqueous selenium (such as selenite or organoselenium species) are present at much lower concentrations (typically <1% of the aqueous total selenium). Although the WLC AWTF without AOP successfully decreased concentrations of total selenium in Line Creek, the effluent contained higher proportions of chemically-reduced selenium species, some of which are known to be more readily accumulated than selenate by aquatic biota. The AWTF was recommissioned in 2018 with an AOP, which is designed to reverse the shift in selenium species in AWTF effluent from chemically-reduced species back to a selenate-dominated condition, thereby reducing the bioavailability of selenium in Line Creek.

Benthic invertebrate tissue monitoring in Line Creek identified substantially lower selenium concentrations throughout the operational phase with AOP (2019 to 2022) compared to concentrations during the operational phase of AWTF without AOP at all mine-exposed areas downstream of the AWTF discharge. In 2022, mean benthic invertebrate selenium concentrations were below the EVWQP Level 1 benchmark at all areas downstream of the AWTF discharge, and were largely within the regional normal range of the Elk Valley (excluding results from May and September at RG LILC3 which were slightly higher than the normal range). Comparison of benthic invertebrate selenium concentrations to the selenium bioaccumulation model indicated that bioaccumulation in 2022 at mine-exposed areas was within model limits. This suggests that bioaccumulation was occurring as "expected" which is similar to results from other years of AWTF with AOP operation (2019 and 2021, with the exception of three samples in 2020) and is in contrast to results collected during ATWF operation without AOP. Mean selenium concentrations in WCT muscle tissue from RG LIDSL in 2022 were below site-specific benchmarks and estimated ovary concentrations were below prediction limits of the bioaccumulation model, except one of eight replicates. Fish muscle and estimated ovary selenium concentrations at RG LIDSL were notably lower in 2022 (during AWTF with AOP) when compared to 2017 (during operations without AOP).

Overall, assessment of Study Question #2 in 2022 (similar to other years of AWTF with AOP operation [2019 to 2021]) indicated that aqueous selenium speciation and benthic invertebrate tissue selenium monitoring results support the conclusion that the recommissioned AWTF with AOP is functioning as intended to decrease the concentrations of non-selenate species in AWTF effluent resulting in reduced selenium bioaccumulation in Line Creek.

Evaluation of Study Question #3 (potential effects related to factors other than nutrients or selenium) indicated that the operation of the AWTF with AOP in 2022 did not significantly

change water temperature or dissolved oxygen concentrations downstream in Line Creek. Evaluation of water quality analytes also demonstrated no increases in concentrations in 2022 that resulted in concentrations above guidelines or water quality benchmarks due to AWTF with AOP operation. AWTF effluent samples showed no acute toxicity test failures in 2022. Most chronic toxicity tests for LC_LCDSSLCC and at LC_LC3 resulted in no adverse responses and results were largely similar to previous years (except green algae toxicity, for which temporal comparability is limited due to test uncertainty). Adverse responses observed during chronic toxicity testing were not attributed to the WLC AWTF with AOP operation due to the absence of consistent temporal pattern of responses and/or lack of clear evidence of causal factors for observed effects that were related to AWTF operation. Overall, there did not appear to be influences on aquatic biota associated with the WLC AWTF operations throughout the AWTF with AOP operational period (2019 to 2022) that were not already being addressed through monitoring related to Study Questions #1 (productivity) and #2 (tissue selenium accumulation; Table 6.1).

The results from the Line Creek LAEMP provide information that supports Teck's Adaptive Management Plan (Teck 2021a) and Table 6.2 summarizes material presented in this report that is relevant to the AMP. Biological triggers help identify unexpected monitoring results that may lead to responses under the AMP response framework, and these indicated that four of the five mine-exposed areas evaluated had %EPT replicates which corresponded to a biological trigger (Table 6.3). Uncertainty remains around the cause of change in %EPT and this trigger will continue to be monitored as part of the RAEMP. Additionally, other efforts are also currently underway, namely predictive modeling, to resolve uncertainty around effects of minerelated stressors on benthic invertebrate community endpoints. Benthic invertebrate tissue selenium samples from mine-exposed and reference areas of Line Creek had selenium concentrations that were mostly below the biological trigger (based on projected water quality), indicating results were as expected. Selenium concentrations in WCT muscle tissue was assessed against the biological trigger for RG LIDSL (which were sampled as part of the RAEMP), muscle tissue selenium concentrations for one of the eight replicates at RG_LIDSL exceeded the biological trigger. The selenium concentrations in WCT muscle tissue from this confirmatory investigation will be further evaluated in the larger context of the Elk Valley as part of the RAEMP to better understand both spatial and temporal trends for this biological trigger. Further information regarding the selenium concentrations in benthic invertebrate tissue and WCT muscle tissue biological trigger as it pertains to the LCO LAEMP can be found in Appendix F. Given that current biological triggers were sufficient to identify monitoring areas where biological responses are occurring, no additional triggers are recommended at this time.

Table 6.2: Summary of Findings, Responses and Adjustments Related to the LCO LAEMP in 2022

Key Question(s)	Data Evaluation Process	Outcome(s)	Responses & Adjustments in 2022	EMC Engagement
Is active water treatment affecting biological productivity downstream in Line Creek?	Determine if there is an increase in benthic invertebrate biomass, or shift in community structure that has been demonstrated to correspond with changes in AWTF operational status and changes in parameters associated with productivity (e.g., nutrient concentrations)	No evidence of effect on productivity associated with WLC AWTF with AOP operation in 2022.	None.	Proposed 2023 LCO LAEMP Study Design discussed by tele-conference March 15, 2023. 2023 Study Design submitted to ENV/EMC May 1, 2023. Draft data package of 2022 results and outline of proposal to transition the LCO LAEMP to the RAEMP submitted to EMC March 8, 2023, and discussed by tele-conference March 15, 2023. Written input from EMC on March draft data package and proposal to transition LCO LAEMP into the RAEMP received on March 30, 2023.
Are tissue selenium concentrations reduced downstream from the WLC AWTF?	2. Determine if there is a change in benthic invertebrate and fish tissue selenium concentrations over time that corresponds to changes in total selenium concentrations or selenium speciation in water. Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF.	The WLC AWTF was recommissioned with an AOP in late 2018 in response to significantly increased concentrations of chemically-reduced aqueous selenium species and increase selenium concentrations in tissues of aquatic biota downstream of the AWTF outfall in Line Creek in 2016 and 2017. Monitoring results from 2022 indicated the recommissioned AWTF with AOP is functioning as intended to decrease aqueous concentrations of non-selenate species in AWTF effluent and reduce selenium bioaccumulation in Line Creek.	WLC AWTF was re-commissioned in August 2018 with AOP to modify chemically reduced selenium species in effluent back to a selenate-dominated condition having lower selenium bioavailability. The AWTF with AOP was operational throughout 2022 with few exceptions.	

Notes: WLC = West Line Creek; ATWF = Active Water Treatment Facility; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

Table 6.2: Summary of Findings, Responses and Adjustments Related to the LCO LAEMP in 2022

Key Question(s)	Data Evaluation Process	Outcome(s)	Responses & Adjustments in 2022	EMC Engagement
Is AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations or concentrations of treatment-related constituents other than nutrients or selenium?	3a. Temperatures that are above/below the guideline, and dissolved oxygen concentrations that are above the threshold for effects to fish outside of the initial mixing zone, and confirmation that the mixing zone is small, will be indicative of effective management of treated water discharge. Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF. 3b. Determine if there is a change in benthic invertebrate community endpoints away from the reference condition that does not correspond to observed changes in nutrients or selenium concentrations. 3c. Determine if there is a change in acute or chronic toxicity testing results that corresponds with a change in WLC AWTF operational status.	AWTF operations did not significantly influence water temperature or dissolved oxygen concentrations. Evaluation of most water quality parameters, including treatment-related constituents, demonstrated no obvious increases in concentrations during AWTF with AOP operation with a few exceptions. Dissolved cobalt, total manganese, and total molybdenum increased in relation to initiation of AWTF with AOP operations but remained well below guidelines (manganese and molybdenum) or within the range of per-AWTF conditions (dissolved cobalt) and did not continue to increase in 2022 (i.e., were lower or within the range of measurements in 2019 to 2021). Ongoing monitoring of these analytes will provide further information regarding the nature of these increases. Effluent samples showed no acute toxicity. Chronic toxicity at LC_LC3 or LCLCDSSLCC for most species was either not-significantly different from reference areas or was similar to prior years, with the exception of algae results.	None.	

Notes: WLC = West Line Creek; ATWF = Active Water Treatment Facility; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

Table 6.3: Summary of Biological Trigger Analysis for Percent EPT, Selenium Benthic Invertebrate Tissue (BIT), and Selenium Westslope Cutthroat Trout (WCT) Muscle Tissue, Line Creek LAEMP, 2022

			Q	% EPT ^a	Sel	enium BIT ^b	Selenium W	CT Muscle Tissue ^a
Waterbody A		Area	Number Replicates Evaluated	Number of Replicates Reaching Biological Trigger ^c	Number Replicates Evaluated	Number of Replicates Reaching Biological Trigger ^d	Number Replicates Evaluated	Number of Replicates Reaching Biological Trigger ^e
	RG_SLINE	Reference	3	0	20	0	-	-
	RG_LI24	Reference	3	0	20	1	-	-
Line	RG_LCUT		3	3	20	0	-	-
Creek	RG_LILC3	NA:	3	3	20	0	-	-
	RG_LIDSL	Mine-exposed	5	3	20	0	8	1
	RG_LI8		3	0	15	0	-	-
Fording River	RG_FO23	Mine-exposed	5	3	15	0	-	-

Notes: "-" = not evaluated; % EPT = Percent EPT (Ephemeroptera ([mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]); Selenium BIT = Selenium concentrations in benthic invertebrate tissue (mg/kg dw); WCT = Westslope Cutthroat Trout.

^a Biological Trigger analysis for %EPT and selenium WCT muscle tissue was for the September sampling event.

^b Biological Trigger analysis for Selenium BIT was for the April, July, September, and November/December sampling events.

^c Number of Replicates Reaching Biological Trigger for % EPT refers to those replicates which were below both triggering steps (i.e., below the lower 2.5th percentile of the habitat-adjusted normal range and expectations [as based on predicted ADIT Scores]). See Section F.2.2 for more details.

d Number of Replicates Reaching Biological Trigger for Selenium BIT refers to those replicates which were above both triggering steps (i.e., above the upper 97.5th percentile prediction limit of the regional normal range and expectations [as based on the predicted 95% percentile from the water to benthic invertebrate selenium bioaccumulation model]). See section F.2.3 for more details.

^e Number of Replicates Reaching Biological Trigger for Selenium WCT Muscle Tissue refers to those replicates which were above triggering steps (i.e., above the upper 97.5th percentile prediction limit of the regional normal range and expectations [as based on the predicted 95% percentile from the 2-step bioaccumulation model - water to benthic invertebrates, invertebrates to fish]). See section F.2.4 for more details.

Four years of monitoring during the AWTF with AOP period have consistently shown that selenium concentrations in aquatic biota have decreased (compared to AWTF without AOP operation) and the receiving environment has not been influenced through effects to biological productivity or through potential effects related to factors other than nutrients or selenium. Collectively, these results have shown the AWTF with AOP is functioning as intended, conditions in Line Creek are stable, and the questions of LCO LAEMP have largely been addressed. As such, the scope of LCO LAEMP monitoring in 2023 has been adjusted in consultation with the EMC (Minnow 2023) and the monitoring program may be further adjusted as mining and water treatment develops at LCO (including adapting future study questions).

7 REFERENCES

- Azimuth (Azimuth Consulting Group Partnership). 2018. Proposed Water Quality Triggers for the Elk Valley Adaptive Management Plan. Prepared for Teck Resources Limited, Vancouver, BC. June 2018.
- Azimuth. 2019. Evaluation of water quality data mercury and methyl mercury in the Elk Valley. Technical Memorandum. March 5th, 2019.
- BCMOE (British Columbia Ministry of Environment). 1997. Ambient Water Quality Criteria for Dissolved Oxygen. February 1997.
- BCMOE. 2001. Water Quality Guidelines for Temperature. August 2001.
- BCMOE. 2014. Ambient Water Quality Guidelines for Selenium Technical Report Update. Prepared by: J.M Beatty and G.A. Russo, Environmental Protection Division, Victoria, British Columbia. April 2014.
- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2021a. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Prov. B.C., Victoria B.C.
- BCMOECCS. 2020. British Columbia Environmental Laboratory Manual. Analysis, Reporting and Knowledge Services, Knowledge Management Branch, B.C. Ministry of Environment and Climate Change Strategy, Victoria, BC.
- BCMOECCS. 2021b. Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WQG-08. Prov. B.C., Victoria B.C.
- Brooks, J.L, Dalgarno, S., Thorley, J.L., Penman, R., and M.D. Robinson. 2023. Lower Line Creek Fish Monitoring Program (2022). Prepared for Teck Coal Ltd. Mountain View Office Water Strategy Group. Prepared by Lotic Environmental Ltd and Poisson Consulting. (Draft)
- Cope, S. 2020. Proprietor, Westslope Fisheries Ltd. Email conversation with Cait Good (Teck). January 7, 2020.
- Cope, S. Schwarz, C.J., Prince, A., Bisset, J. 2016. Upper Fording River Westslope Cutthroat Trout Population Assessment and Telemetry Project: Final Report. Report Prepared for Teck Coal Limited, Sparwood, BC. Report Prepared by Westslope Fisheries Ltd., Cranbrook, BC. 266 p.
- de Bruyn, A. and S.N. Luoma. 2021. Selenium Species Bioaccumulation Tool Draft Version 2.0. Prepared for Mariah Arnold, Teck Coal Limited, Sparwood, BC. February. Project 19133414/MQ2 Task 4.
- Environment Canada. 2007. Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*. Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report EPS 1/RM/21. Second Edition. February 2007.
- Environment Canada. 2012. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN). Government of Canada.
- Environment Canada. 2014. Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Canadian Aquatic Biomonitoring Network (CABIN). May.

- ENV. 2019. Re: Approval of the Request to Integrate the Chronic Toxicity Test Requirements of Permit 107517 Section 9.8 (ii) and Permit 106970. March 4, 2019.
- Golder (Golder Associates Ltd.). 2005. Elk Valley Selenium Lotic Monitoring Study (2001-2003). Submitted to the Elk Valley Mines Environmental Management Committee. April.
- Golder. 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2016. 2015 Chronic Toxicity Testing Program Interpretive Report. Submitted to Teck Coal Ltd. March.
- Golder. 2017a. Chronic Toxicity Testing Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. March.
- Golder. 2017b. Coal Mountain Operations Aquatic Health Assessment Report. Submitted to Teck Coal Ltd. December.
- Golder. 2018a. Elk Valley Selenium Bioaccumulation Model Update. Submitted to Teck Coal Ltd. January.
- Golder. 2018b. 2017 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April.
- Golder. 2019. 2018 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April.
- Golder. 2020a. 2019 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements: Interpretive Report. Submitted to Teck Coal Ltd. April.
- Golder. 2020b. Interlaboratory Tissue Analysis Validation Study. Submitted to Teck Coal Limited. Vancouver, British Columbia, 15 December 2020.
- Golder. 2020c. Technical memorandum Updates to the Lotic and Lentic Statistical Bioaccumulation Models for Selenium in the Elk Valley. Prepared for Teck Coal Limited. November 2020.
- Golder. 2021a. 2020 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April 2021.
- Golder. 2021b. Preliminary Annelid Bioaccumulation Analysis. Prepared for Teck Coal Limited. June 2021.
- Golder. 2021c. Elk Valley Selenium Speciation Program: State of the Science Report. Submitted to Teck Coal Ltd. March 2021.
- Golder. 2022a. 2021 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April 2022.
- Golder. 2022b. Task 1: Elk Valley Water Quality Plan Benchmark Validation; Nitrate, Sulphate, and Selenium. Submitted to Teck Coal Ltd. December 2022.
- Janz, D.M., D.K. Deforest, J.L. Brooks, P.M. Chapman, G. Gilron, D. Hoff, A. Hopkins, D.O. McIntyre, C.A. Mebane, V.P. Palace, J.P. Skorupa, and M. Wayland. 2010. Selenium Toxicity to Aquatic Organisms. In: p. 141-231, P.M. Chapman et al. (Eds.), Ecological Assessment of Selenium in the Aquatic Environment. CRC Press, Boca Raton, London, New York.
- McPhail, J.D. 2007. The Freshwater Fishes of British Columbia, University of Alberta Press, Edmonton, AB.

- Minnow (Minnow Environmental Inc.). 2004. Selenium Uptake in Biota Inhabiting Lentic and Lotic Areas of the Elk River Watershed Technical Memorandum Prepared for Elk Valley Selenium Task Force. November 2004. Project 2073.
- Minnow Environmental Inc., Interior Reforestation Co. Ltd., and Paine, Ledge and Associates. 2007. Selenium Monitoring in the Elk River Watershed, BC (2006). Report Prepared for Elk Valley Selenium Task Force. December 2007. Project 2160.
- Minnow Environmental Inc., Interior Reforestation Co. Ltd., and Paine, Ledge, and Associates. 2011. Selenium monitoring in the Elk River Watershed, BC (2009). Report Elk Valley Selenium Task Force, Elk Valley, British Columbia, Canada. February 2011. Project 2275.
- Minnow. 2014. 2012 Biological Monitoring Program for Coal Mines in the Elk River Valley, B.C. Report Prepared for Teck Coal Limited. March. Project 2456.
- Minnow. 2015. Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2014. Report Prepared for Teck Coal Limited. May. Project 2516.
- Minnow. 2017a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2016. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 167202.0074.
- Minnow. 2017b. Proposal to Update the Site Performance Objectives for Phosphorus Management in Line Creek. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 167202.0074.
- Minnow. 2017c. Study Design for the 2017 Line Creek Local Aquatic Effects Monitoring Program (LAEMP). May. Project 167202.0074.
- Minnow. 2018a. Elk River Watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2015-2016. Prepared for Teck Coal Limited, Sparwood, BC. January. Project 2561.
- Minnow. 2018b. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2017. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 17202.0023.
- Minnow. 2018d. Study Design for the Regional Aquatic Effects Monitoring Program, 2018 to 2020. Prepared for Teck Coal Limited, Sparwood, BC. March. Project 177202.0053.
- Minnow. 2019a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2018. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 187202.0026.
- Minnow. 2020a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2019. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 197202.0006.
- Minnow. 2020b. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Limited, Sparwood, BC. November. Project 187202.0011.
- Minnow. 2020c. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2020. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 197202.0006.
- Minnow. 2020d. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Revised Study Design, 2020. Prepared for Teck Coal Limited, Sparwood, BC. June. Project 207202.0015.
- Minnow. 2021a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2020. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 207202.0015.

- Minnow. 2021b. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2021. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 207202.0015.
- Minnow. 2021c. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. March. Project 207202.0006.
- Minnow. 2022. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2021. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 217202.0036.
- Minnow. 2023. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2023. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 237202.0020.
- Nautilus and Interior Reforestation. 2011. Evaluation of the Effects of Selenium on Early Life Stage Development of Westslope Cutthroat Trout from the Elk Valley, BC. Prepared for the Elk Valley Selenium Task Force. November 2011.
- Ogle, R.S., K.J. Maier, P. Kiffney, M.J. Williams, A. Brasher, L.A. Melton, and A.W. Knight. 1988. Bioaccumulation of selenium in aquatic ecosystems. Lake Reservoir Manage. 4: 165-173.
- R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org
- Riedel, G.F., Sanders, J.G., Gilmour, C.C. 1996. Uptake, Transformation, and Impact of Selenium in Freshwater Phytoplankton and Bacterioplankton Communities. Aquat. Microbial. Ecol., 11: 43-51.
- Stewart, R., M. Grosell, D. Buchwalter, N. Fisher, S. Luoma, T. Mathews, P. Orr, and W.-X. Wang. 2010. Bioaccumulation and Trophic Transfer of Selenium. In: P.M. Chapman et al. (Eds.), pp. 93-139, Ecological Assessment of Selenium in the Aquatic Environment. CRC Press, Boca Raton, London, New York.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2020a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2019 Annual Report. Prepared by Teck Coal Limited. July 31, 2020.
- Teck. 2020b. Annual Water Treatment Performance Report 2019. Prepared by Teck Coal Limited. March 31, 2020.
- Teck. 2021a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. Prepared by Teck Coal Limited. December 15, 2021.
- Teck. 2021b. Annual Water Treatment Performance Report 2020. Prepared by Teck Coal Limited. March 31, 2021.
- Teck. 2022a. Annual Water Treatment Performance Report 2021. Prepared by Teck Coal Limited. March 31, 2022.
- Teck. 2022b. Annual Water Quality Report 2021. Prepared by Teck Coal Limited. March 31, 2022.
- Teck. 2022c. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Annual Report. Prepared by Teck Coal Limited. July 31, 2022.
- Teck. 2023a. Annual Water Treatment Performance Report 2022. Prepared by Teck Coal Limited. March 31, 2023.

- Teck. 2023b. Surface Water Quality Monitoring 2022 Annual Report 2022. Prepared by Teck Coal Limited. March 31, 2023. Therneau, T.M. 2017. Survival analysis. Package "survival" for R. April 4, 2017. https://cran.r-project.org/web/packages/survival/survival.pdf
- Traverse, J. 2021. Lead Water Compliance, Teck Coal Limited. Email conversation with Tyler Mehler (Minnow). April 28, 2021.
- USEPA (United States Environmental Protection Agency). 1996. Ecological Effects Test Guidelines. OPPTS 850.1400 Fish Early-Life Stage Toxicity Test. EPA-712-C-96-121, Public Draft.
- USEPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates. 2nd Edition. EPA/600/R-99/064. Office of Water, Washington, DC, USA.
- USEPA. 2016. Aquatic Life Ambient Water Quality Criterion for Selenium –Freshwater 2016. EPA 822-R-16-006. United States
- Whitmore, G.A. 1986. Prediction Limits for a Univariate Normal Observation. The American Statistician, 40: 141-143.
- WSP Canada Inc. (WSP). 2023. 2022 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April 2023. Zathey, N., Brooks, J., and Robinson, M.D. 2021. 2020 Line Creek Aquatic Monitoring Program. Prepared for Teck Coal Limited. December 2021.

APPENDIX A METHODS

METHODS APPENDIX A

A 1	WATER QUALITY	1
	Overview	
	Sample Collection	
	Laboratory Analysis	
A1.4	Data Analysis	
A2	ACUTE TOXICITY TESTING	6
А3	CHRONIC TOXICITY TESTING	7
Α4	PERIPHYTON	8
	Overview	
	Sample Collection	
A 5	BENTHIC INVERTEBRATES	q
_	Overview	
	Community Structure	
	.2.1 Sample Collection	
	.2.2 Laboratory Analysis	
A5.	.2.3 Supporting Measures	10
A5.	2.4 Data Analysis	10
	Productivity	
	.3.1 Sample Collection	
	3.2 Laboratory Analysis	
	3.3 Data Analysis	
	Benthic Invertebrate Tissue	
	4.1 Sample Collection	
	4.2 Laboratory Analysis	
AS.	.4.3 Data Analysis	
A6	FISH	
	Sample Collection	
	Laboratory Analysis	
A6.3	Data Analysis	20
A 7	CALCITE	
	Sample Collection	
A7.2	Data Analysis	22
Δ8	REFERENCES	23

A1 WATER QUALITY

A1.1 Overview

Permit 107517 requires that Teck prepare annual reports that summarize monitoring data collected during the preceding calendar year at all locations specified in the permit. Observed concentrations were compared to Compliance Limits and Site Performance Objectives specified in Permit 107517, Elk Valley Water Quality Plan (EVWQP) benchmarks, and to BC water quality guidelines for protection of aquatic life (BCWQG). Data were also plotted to identify increasing or decreasing trends over time. Routine water monitoring occurs at or near at all the lotic sampling areas for the Line Creek Operations (LCO) Local Aquatic Effects Monitoring Program (LAEMP) that are situated within the Elk River watershed. Regardless, a water sample was collected at all areas concurrently with biological sampling. Methods are described as follows.

A1.2 Sample Collection

One water sample per area was collected concurrently with biological monitoring and included analysis of parameters stipulated in Permit 107517, as well as selenium speciation where applicable (Table A.1). Sample collection procedures were consistent with those outlined in the British Columbia Field Sampling Manual (Province of British Columbia 2013). In situ measurements of temperature, dissolved oxygen (DO), pH, and specific conductance were recorded concurrently with biological monitoring. The water quality meter used to collect in situ measurements was calibrated regularly and maintained according to manufacturer instructions.

Water samples were collected far enough upstream or downstream of confluences (tributaries, discharges) to avoid areas of incomplete mixing (lateral, vertical), and upstream from bridges or other structures to avoid the potential for associated contamination.

Water samples were collected by wading into a mid-channel area (unless it is not practical or safe to do so), moving from downstream to upstream, so as not to collect water downstream of disturbed substrates. Samples were collected from mid-depth by inverting sample bottles below the surface of the water. Samples were taken to shore prior to adding applicable preservatives. Water samples being analyzed for dissolved constituents were filtered in the field using a clean syringe affixed with a 0.45-µm membrane. Once filtered, the sample was preserved immediately in the manner specified by the analytical laboratory. Station location (i.e., GPS coordinates) and sample date, time, and identifier were recorded on field sheets.

Table A.1: Water Quality Parameters Required Under Permit 107517^a

Category	Parameters
Field Parameters	temperature, specific conductance, dissolved oxygen (DO), pH
Conventional Parameters	specific conductance, total dissolved solids (TDS), total suspended solids (TSS), hardness, alkalinity, dissolved organic carbon (DOC), total organic carbon (TOC), turbidity
Major Ions	bromide, fluoride, calcium, chloride, magnesium, potassium, sodium, sulphate
Nutrients	ammonia, nitrate, nitrite, total Kjeldahl nitrogen (TKN), orthophosphate, total phosphorus
Total and Dissolved Metals	aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium, uranium, vanadium, zinc

^a Parameters are consistent with those outlined in Table 24, Appendix 3 of Permit 107517.

Samples were kept cold until analysis. Samples were shipped to the analytical laboratory daily or every other day to achieve compliance with recommended analytical hold times.

Quality assurance and quality control (QA/QC) samples were collected in the field concurrent with water samples. One water chemistry duplicate was collected at a minimum of 10 % of samples. Equipment and travel blanks represented approximately 10% of the water chemistry samples submitted to the analytical laboratory.

A1.3 Laboratory Analysis

Laboratory analytical methods were consistent with the British Columbia Environmental Laboratory Manual (Province of British Columbia 2016), where applicable.

Water samples were analyzed by ALS Environmental (ALS; Calgary, AB) for constituents consistent with Permit 107517 (i.e., conventional parameters, major ions, nutrients, and total and dissolved metals) using the following methods indicated in parentheses:

- total organic carbon (TOC) and dissolved organic carbon (DOC) (combustion method; American Public Health Association [APHA] 5310 for TOC);
- total suspended solids (TSS) and total dissolved solids (TDS; gravimetric method; APHA 2540 D and C for TSS and TDS, respectively);
- alkalinity (potentiometric titration; APHA 2320);
- turbidity (nephelometric method; APHA 2130 Turbidity);
- hardness, as CaCO₃ (by calculation; APHA 2340 B);
- total and dissolved metals, (collision cell inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrophotometry; APHA 3030 B&E/ Environmental Protection Agency [EPA] SW-846 6020A, and EPA 3005A/6010B, respectively);
- bromide, chloride, fluoride, and sulphate (ion chromatography; APHA 4110 B);
- ammonia, as N (fluorescence; J. Env. Monit., 2005, 7:37-42);
- nitrate and nitrite, as N (ion chromatography; EPA 300.0);
- total Kjeldahl nitrogen (TKN) (fluorescence; APHA 4500-NORG D.);

• orthophosphate and total phosphorus (colourimetric method; APHA 4500-P Phosphorus); and

Water samples were analysed by Brooks Applied Labs (Bothell, Washington) for selenium speciation analysis using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS). Analytes included selenate, selenite, dimethylselenoxide, methylseleninic acid, methaneselenonic acid, selenocyanate, selenomethionine, selenosulphate, and unknown selenium species. Selenium species were first separated on an ion exchange column and then detected using ICP-CRC-MS. The applied method was optimized to provide interference free quantitation of individual selenium species at part-pertrillion (ppt) levels. Total and dissolved selenium analyses were also performed by Brooks Applied Labs using inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). Water samples were collected into borosilicate glass containers and preserved to a pH < 2 with nitric acid. An aliquot of each preserved sample was further digested with nitric and hydrochloric acids in a closed vessel (bomb) prior to analysis. The applied sample collection, preservation, digestion, and analytical procedures are designed to accurately quantify selenium in the presence of potential interferences (e.g., chloride and bromide) and regardless of the chemical form of selenium present in solution (e.g., ionic, particulate, or volatile molecular forms).

Laboratory QA/QC associated with routine water sampling was described by Teck in the annual water quality report submitted under Permit 107517 (Teck 2023). Laboratory QA/QC associated with water samples collected concurrently with biological samples were evaluated in Appendix B.

A1.4 Data Analysis

Water quality data assessed included data for routine monitoring managed by Teck, and water samples collected at the biological monitoring stations concurrently with biological sampling. Routine water quality results were paired with the closest biological monitoring station for analysis. The location of routine water quality and biological monitoring stations differed slightly for some areas, therefore samples collected concurrently with biological sampling were named according to the biological monitoring location. For instance, the biological monitoring area RG_LCUT is situated upstream from the AWTF and mainly reflects water quality influences farther upstream on the main stem of Line Creek (LC_LCUSWLC) when the AWTF is operating, but also reflects input from West Line Creek (LC_WLC) when the AWTF is not operational (and flows are not being diverted to the AWTF for treatment). Accordingly, water quality data for RG_LCUT in 2022 (similar to 2019 to 2021) were associated with routine water

quality monitoring data from LC_LCUSWLC for data analysis because the AWTF was operational throughout the year¹.

Water quality data were downloaded from Teck's EQuIS database, including:

- Nutrient concentrations (i.e., nitrate, nitrite, ammonia, total phosphorus, and orthophosphate); total and dissolved metals, selenium concentrations (i.e., total and dissolved selenium concentrations, and selenium speciation results including concentrations of selenate, selenite, dimethylselenoxide, methylseleninic acid, selenocyanate, selenomethionine, methaneselenonic acid, selenosulphate, and unknown selenium species);
- Concentrations of analytes with early warning triggers under the AMP (i.e., total dissolved solids, sulphate, total concentrations of antimony, barium, boron, lithium, manganese, molybdenum, nickel, selenium, uranium, and zinc, and dissolved concentrations of cadmium and cobalt);
- Concentrations of analytes with British Columbia Water Quality Guidelines (BCWQGs; BCMOECCS 2021a,b) and/or water quality benchmarks (Teck 2014, Golder 2017); and
- In situ water quality data (i.e., temperature, pH, specific conductivity, and DO).

Data extracted from Teck's EQuIS database were screened for text values and converted to a common unit (all metal concentrations were converted to mg/L, except for total and dissolved cadmium, dissolved cobalt, total nickel, total selenium which were stored as µg/L).

Routine water quality monitoring results were screened against BCWQG (BCMOECCS 2021a,b) as part of Teck's Annual Water Quality Monitoring Report (Teck 2023) under Permit 107517. In addition, further screening against BCWQG, EVWQP level 1, level 2 and/or level 3 benchmarks, proposed benchmarks, or updated effects concentrations (Golder 2014a, 2014b, 2017; see Appendix Table E.1 for screening values) was completed for select analytes during the 2022 calendar year. Order Constituents, constituents with early warning triggers under the AMP, constituents with an SPO, and nutrients (TKN, phosphorus and orthophosphate) were plotted using available data from 2012 to 2022 for each monitoring area

¹ The AWTF was shut down for periods of over 24 hours on three occasions in 2022. The AWTF was shut down for annual maintenance on June 7, July 26 and August 30, 2022 (Teck 2023a). As the duration of these events were short, water quality data for RG_LCUT from the brief shut down periods were reported in relation to those from LC LCUSWLC for data interpretation.

individually relative to BCWQGs, EVWQP benchmarks, and proposed benchmarks, and updated effects concentrations (where applicable). Monthly mean aqueous selenium speciation results were plotted with benthic invertebrate tissue selenium concentrations for each monitoring area.

If replicate sample results were available for a given day, the Kaplan-Meier (K-M) mean of the replicates was used. Monthly and annual means were also calculated using the K-M method. Annual means of water quality data were computed by first taking a mean of results within months and then averaging monthly means. The K-M method is non-parametric and can accommodate multiple Laboratory Reporting Limits (LRLs). This method involved transforming the left censored (i.e., < value) dataset to a right censored (i.e., > value) dataset, and then using the K-M estimator (used to estimate the mean survival time in survival analysis) to estimate the mean. The calculation was conducted using the survfit() function in the *survival* package (Therneau 2017) in R software (R Core Team 2022).

The method described in Minnow (2017) was used to visually explore temporal changes in total phosphorus and orthophosphate concentrations during AWTF operation. The method involves two steps. First, the monthly upper limits of total phosphorus and orthophosphate concentrations (97.5th percentile) were computed for the baseline (pre-AWTF operation) period at LC_LC3. Second, the monthly concentrations were plotted as a ratio of the monthly baseline 97.5th percentile concentrations (i.e., monthly mean concentration: monthly baseline 97.5th percentile concentration). These trend plots help visualize deviations from the pre-AWTF range. Total phosphorus concentrations at the Compliance Point (LC_LCDSSLCC [RG_LIDSL]) between June 15th and September 30th were also plotted relative to the phosphorus Site Performance Objective (≤ 0.02 mg/L) outlined in Permit 107517.

Temperature and dissolved oxygen concentrations in Line Creek were graphically evaluated relative to BCWQG. British Columbia water temperature guidelines for bull trout and westslope cutthroat trout² specify a maximum ± 1 °C change from the optimum temperature range for different life stages of these species (spawning, incubation, and rearing; BCMOE 2001). Dissolved oxygen guidelines are also specific to life stage (buried embryo/alevin and all other life stages; BCMOE 1997). Guidelines for both these parameters were applied to periods of the year relevant to the specific life stage of each of the two species, with the time periods approximated from available literature (McPhail 2007; COSEWIC 2016).

² Three species make up the fish community of Line Creek including bull trout, westslope cutthroat trout, and mountain whitefish. Westslope cutthroat trout and bull trout are the dominant species, while mountain whitefish are present only of in certain reaches of Line Creek and only as adult and at low densities (Zathey 2021). Therefore, data interpretation in relation to only bull trout and westslope cutthroat trout was the focus of this report.

A2 ACUTE TOXICITY TESTING

Aqueous chronic toxicity was monitored, analyzed, and interpreted under the Annual Water Quality Monitoring Program (Teck 2023). Two acute toxicity tests were conducted on a quarterly basis as part of the Annual Water Quality Monitoring Program (as per Permit 107517):

- Single concentration acute toxicity test (96-hour LC50) using rainbow trout (Oncorhynchus mykiss); universal method: EPS 1/RM/9 (Environment Canada 2007a); and
- Single concentration acute toxicity test (48-hour LC50) using Daphnia spp.; universal method: EPS 1/RM/11 (Environment Canada 1996).

A3 CHRONIC TOXICITY TESTING

The following chronic toxicity tests were completed quarterly or semi-annually for water samples collected at mine-exposed and reference sites, as per the Permit 107517 Chronic Toxicity Program:

- 72-hour growth/inhibition test using a freshwater alga (*Pseudokirchneriella subcapitata*) conducted quarterly using method: EPS1/RM/25; Environment Canada 2007b;
- 7-day test of reproduction and survival using the cladoceran, *Ceriodaphnia dubia* conducted quarterly using method: EPS1/RM/21; Environment Canada 2007c;
- 28-day water-only test of growth and survival using the amphipod, *Hyalella azteca* conducted semi-annually (in Q2 and Q4) using methods adapted from USEPA (2000);
- 30-day early life stage toxicity tests using rainbow trout, *Oncorhynchus mykiss* conducted semi-annually (in Q2 and Q4) using method: EPS 1/RM/28- 1E; Environment Canada 1998; and
- 28-day early life stage toxicity test using fathead minnow, *Pimephales promelas* conducted semi-annually (in Q1 and Q3) using methods: EPA-712-C-96-121; USEPA 1998; and E1241-05; ASTM 2013.

Toxicity tests and associated QA/QC measures were completed by a qualified third-party biological testing laboratory. Water quality samples were collected at the same time to support evaluation of toxicity test results. Results were reported quarterly and summarized annually by Teck in accordance with Permit 107517 requirements.

A4 PERIPHYTON

A4.1 Overview

Periphyton consists of assemblages of algae, bacteria, moulds, and fungi that live on bottom substrates (e.g., rocks). Some are autotrophs and others are decomposers. Periphyton represents an important source of food for benthic invertebrates, both during the active growing season and the non-growing season when dead tissue and non-photosynthetic components of periphyton will continue to be a food source. Periphyton abundance is influenced by many environmental factors, such as photoperiod, light intensity, water temperature, aqueous nutrient concentrations, and water flow. Exposure of periphyton to mine-related constituents occurs primarily through the water column (Trapp et al. 1990).

A4.2 Sample Collection

Periphyton productivity samples for visual assessment were collected from riffle habitat with water depth of at least 5 cm. When a sampling station with such characteristics was identified, five rocks were selected (excluding those that are too small, highly angular, or uncharacteristic in surface texture) and taken to shore. Each replicate station was spaced a minimum of 5 m apart, and five replicate stations were assessed per area.

The visual assessment of periphyton described above was completed prior to initiation of other sampling activities to avoid disturbance of the periphyton cover within the sampling area, and was based on the categories stipulated by the CABIN protocol (Environment Canada 2012):

- Rocks not slippery, no obvious colour (<0.5 mm thick);
- Rocks slightly slippery, yellow-brown to light green colour (0.5 to 1 mm thick);
- Rocks have noticeable slippery feel, patches of thicker green to brown algae (1 to 5 mm thick);
- Rocks are very slippery, numerous clumps (5 to 20 mm thick); and
- Rocks mostly obscured by algae mat, may have long strands (>20 mm thick).

The collection of periphyton coverage data from five replicate stations per area allowed for a more representative evaluation of periphyton in the area to support spatial and temporal comparisons. Photos were also be taken to document current conditions of not only periphyton conditions but also bryophytes.

A5 BENTHIC INVERTEBRATES

A5.1 Overview

Benthic invertebrates are an important component of the aquatic ecosystem of the Elk River watershed. In addition to having intrinsic value, benthic invertebrate communities in lotic habitats can be used as indicators of localized food availability (based on abundance) and habitat quality (based on richness, % Ephemeroptera, Plecoptera and Trichoptera [EPT], and % Ephemeroptera, as well as abundance of EPT and Ephemeroptera, Plecoptera, and Trichoptera individually) for receptors at higher trophic levels.

Benthic invertebrate monitoring consisted of community sampling and composite-taxa tissue chemistry sampling. Supporting measures, including habitat characterization, were also collected concurrent with benthic invertebrate samples, as described below.

Benthic invertebrate samples were collected to address study questions related to community structure (as determined via CABIN sampling), productivity (as determined via Hess sampling), and invertebrate tissue accumulation of selenium. Consistent with other LAEMPs and the RAEMP (Minnow 2021a,b and Minnow and Lotic 2021), benthic invertebrate sampling was completed in September. Individual water samples for routine water quality analysis and selenium speciation analysis were collected from each monitoring area during the sampling event, concurrently with the collection of biological samples.

A5.2 Community Structure

A5.2.1 Sample Collection

Benthic invertebrate community sampling followed the Canadian Aquatic Biomonitoring Network (CABIN) protocol, which involved a 3-minute travelling kick into a net with a triangular aperture measuring 36 cm per side and a mesh having 400-µm openings (Environment Canada 2012). During sampling, the field technician moved across the stream channel (from bank to bank, depending on stream depth and width) in an upstream direction. With the net being held immediately downstream of the technician's feet, the detritus and invertebrates disturbed from the substrate were passively collected in the kick-net by the stream current. After three minutes of sampling time, the sampler returned to the stream bank with the sample. The kick-net was rinsed with water to move debris and invertebrates into the collection cup at the bottom of the net. The collection cup was then removed, and the contents poured into a labelled plastic jar and preserved to a concentration of 10% buffered formalin solution in ambient water.

A5.2.2 Laboratory Analysis

Benthic invertebrate community samples were sent to Cordillera Consulting (lead taxonomist Scott Finlayson), in Summerland BC, for sorting and taxonomic identification. Taxonomists at Cordillera have achieved certification for Group 1 (general Arthropods West), 2 (EPT East and West), and 3 (Chironomids West) benthic organisms in the Taxonomic Certification Program of the Society for Freshwater Science. Organisms were identified to the lowest practical level (LPL) (typically genus or species). Following identification, representative specimens of each new taxon were placed in separate vials and added to the reference collection for the project (initiated in 2012).

At the beginning of the sorting process, each sample was examined and evaluated for estimation of total invertebrate numbers. If the total number was estimated to be greater than 300, then the laboratory's sub-sampling protocol was followed. Sorting efficiency and sub-sampling accuracy and precision was quantified using methods specified by Environment Canada (2014).

A5.2.3 Supporting Measures

Consistent with the requirements of the Canadian Aquatic Biomonitoring Network (CABIN) sampling protocol, supporting habitat information (i.e., water velocity and depth, *in situ* water quality [temperature, dissolved oxygen [DO], conductivity, pH], and substrate characteristics [Wolman 100-pebble count and substrate embeddedness]) were collected concurrently with benthic invertebrate community sampling (Environment Canada 2012). Periphyton scores were also ascribed to each biological monitoring area during September sampling, and according to CABIN sampling protocol (see Section A4; Environment Canada 2012).

A5.2.4 Data Analysis

Community endpoints that were evaluated included total abundance, taxonomic richness (to the lowest practicable level of taxonomy), and the abundances and proportional abundances (%) of major taxonomic groups, including the combined orders of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), collectively known as EPT,

Ephemeroptera alone, and Chironomidae (midges). Community data were plotted to show changes over time relative to regional normal ranges³ as well as site-specific normal ranges.⁴

A5.3 Productivity

A5.3.1 Sample Collection

Samples for analysis of benthic invertebrate density, biomass, and community structure were collected in September 2022 from exposed and reference sites. The samples were collected using a Hess sampler (0.1 m² sampling area) with 500 µm mesh. Stations were located a minimum of 5 m apart to represent the overall area.

A single sample was collected at each station by carefully inserting the base of the Hess sampler into the substrate to a depth of approximately 5 to 10 cm. Gravel or cobble enclosed within the Hess sampler was carefully washed while allowing the current to carry dislodged organisms into the mesh collection net. Organisms collected into the net were rinsed into the bottom of the net, and then into a labelled wide-mouth plastic jar. Samples were preserved to a nominal concentration of 10% buffered formalin in ambient water within approximately 6 hours of collection, so biomass was not lost through predation or decomposition of tissues before the samples were sorted at the laboratory.

A5.3.2 Laboratory Analysis

Benthic invertebrate biomass samples were sent to ZEAS Inc. (lead taxonomist Danuta Zaranko) in Nobleton, ON, for sorting and taxonomic identification. At the laboratory, preserved organisms in each sample were sorted from the sample debris, identified, and weighed at the family-level of taxonomy. Each family group of organisms was placed onto a fine cloth to drain excess surface moisture before being weighed to the nearest 0.1 mg. Total and family-level density and biomass were reported for each sample.

A5.3.3 Data Analysis

Benthic invertebrate community endpoints that were evaluated included total biomass, total density, family richness, and the density of major taxonomic groups, including the combined

³ The reference normal range as presented in the RAEMP represents the 2.5th and 97.5th percentiles of the 1996 to 2019 (Minnow 2020b).

⁴ Site-specific normal ranges represent the 2.5th and 97.5th percentile for a given area as determined by habitat predictors for that area in relation to the complete set of Elk Valley monitoring areas. The site-specific normal ranges were estimated using regression modelling as presented in the RAEMP (Minnow 2021a).

orders of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), collectively known as EPT, Ephemeroptera alone, and Chironomidae (midges).

The potential effects of AWTF operation on benthic invertebrate biomass and density were analyzed among areas and years using an Analysis of Variance (ANOVA) model. The model was used to assess changes in the difference in benthic invertebrate biomass or density between mine-exposed and reference areas among years. Data were included for the two mine-exposed areas (RG LIDSL and RG LILC3) and two reference areas (RG SLINE and RG LI24) sampled in 2022 and included all available results from 2014 to 2022. As recommended by the EMC, the analyses were completed by separately evaluating changes at each mine-exposed area relative to the two reference areas. Outliers with studentized residuals with magnitude greater than four were removed from the analysis, and one sample from RG SLINE in 2018 was excluded due to issues with sample preservation identified by the laboratory.

The ANOVA model that was fit to the data for each mine-exposed area (and both reference areas) was:

$$Y = CI + Year + Area(CI) + Year \times CI + Year \times Area(CI) + \epsilon$$

where:

- Y = response variable;
- CI = a fixed factor for area type with two levels (control [reference] and impact [mine-exposed]);
- Year = a fixed factor for year (2014 to 2022);
- Area(CI) = a fixed factor for area because there are two reference areas (nested in CI because each area can only be assigned to one level of CI);
- $Year \times CI$ = the interaction between Year and CI with a significant effect suggesting the difference between mine-exposed and reference areas varies among years;
- Year × Area(CI) = the interaction between Year and Area with a significant effect suggesting the difference between mine-exposed and reference results depends on which reference area the mine-exposed area is being compared to; and
- ϵ = the error term.

The ANOVA model was used to test for CI effects (i.e., changes in the difference between mine-exposed and reference areas among years). These changes were assessed by testing

the significance of the interaction terms containing the Year and CI terms. An α of 0.1 was used to test the significance of the interaction terms.

Interpretation of the ANOVA table began by assessing the significance of the interaction between Area(CI) and Year. If the interaction term was significant, then the differences among areas changed over time, but it depended on which years and areas were compared. In that case, separate ANOVA models were run for each reference area with factors for Area (one mine-exposed and one reference), Year and $Year \times Area$. If there was a significant interaction, contrasts were conducted (with Bonferroni correction for the number of tests) to test for significant changes between the mine-exposed area and reference area among years.

If the interaction term between Area(CI) and Year was not significant, then the interpretation of the ANOVA table continued by assessing the significance of the interaction between CI and Year. This term in the model assessed whether the relative differences among area types depended on year. If this interaction term was significant, then contrasts were conducted to determine the changes between the mine-exposed area and the pooled reference areas among years.

Testing the significance of the interaction terms is the key hypothesis of interest in the ANOVA model as it tests for changes in the relative differences among areas over time. If all interaction terms are not significant, then it can be concluded that there are no Year effects that can be compared to AWTF operation schedules. Data were log_{10} -transformed prior to analysis.

Temporal differences in benthic invertebrate biomass and density at mine-exposed areas (RG_LILC3 and RG_LIDSL) were also assessed over the same time period (2014 to 2022) using an ANOVA for each area and endpoint. Prior to analysis, data were \log_{10} transformed to better meet the assumptions of the analysis. When the overall ANOVA was significant (α < 0.1), a Tukey's Honestly Significant Difference *post hoc* test was conducted for all pairwise comparisons.

The ANOVA models and contrasts as well as plots for visualizing the ANOVA results were conducted in R (R Core Team 2022) using customized scripts, and data were presented on log₁₀-transformed y-axes for consistency with the statistical approach. Letters were used on the plots to indicate which years differed significantly from one another based on the results of the ANOVA model for temporal evaluation of biomass and density at each mine-exposed areas.

A5.4 Benthic Invertebrate Tissue

A5.4.1 Sample Collection

Benthic invertebrate samples were collected for tissue chemistry using the kick and sweep sampling method described in Section A5.2.1, except that sample collection was not timed. Samples were a composite of representative benthic invertebrate taxa in each sampling area and were collected at a similar location to those for benthic invertebrate community sampling (Section A5.2.1). If more tissue samples than community samples were collected within a monitoring area, the benthic invertebrate tissue replicate samples were collected from locations spaced a minimum of 5 m apart within the area. For each sample, clean tweezers were used to pick invertebrates from the debris until about 1 to 2 g wet weight (ww) was obtained. A photo was taken of each sample, and the dominant taxa added to the sample was recorded. Once sufficient tissue was picked from the debris, the sample was placed in a labelled vial and stored in a cooler with ice packs until it could be transferred to a freezer at the end of the day. Tissue samples were stored in a freezer and shipped frozen.

All sampling events included collection of a composite sample of a variety of benthic invertebrate taxa (composite-taxa samples). These samples are useful for comparison to baseline data, and as an estimate of dietary selenium exposure for consumer organisms (e.g., fish, birds). Field crews paid particular attention to proportions of annelids in kick and sweep collections, as these organisms have been known to hyperaccumulate some metals resulting in potentially biased results (Golder 2021). If annelids occurred at a proportion greater than 5% of the total sample biomass at a given replicate station, then these organisms were included in the composite sample (at that same proportion). Additionally in this scenario, a separate 'annelid only' sample was collected for analysis from the replicate station. If the proportion of annelids represented less than 5% of the sample biomass for a given station, these organisms were not included in the composite-taxa sample.

A5.4.2 Laboratory Analysis

Tissue samples were kept in a freezer until they were transported by courier in coolers with ice packs to TrichAnalytics Inc. in Saanichton, BC. Samples were dehydrated (<60°C) upon receipt by the laboratory and analyzed using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (ICP-MS). QA/QC measures associated with the tissue chemistry analyses included evaluation of laboratory duplicates and certified refence materials, discussed in greater detail in the Data Quality Review (DQR) in Appendix B. Results for selenium and other constituents were reported on a dry weight basis along with moisture content to allow conversion to wet weight values, as required (see Appendix H for laboratory reports).

A5.4.3 Data Analysis

Selenium concentrations measured in composite-taxa benthic invertebrate tissues were plotted over time relative to corresponding site-specific effect benchmarks (Table A.2) and relative to the regional normal range⁵. Potential effects of AWTF operation on tissue selenium concentrations were evaluated for composite-taxa benthic invertebrate samples from each of the eight mine-exposed sampling areas using an ANOVA model. As recommended by the EMC, the analyses were completed by separately evaluating changes at each mine-exposed area relative to the two reference areas. Results reported for RG LI24 on May 3, 2018 were excluded from analyses because these were identified as anomalous and likely the result of a field error (see Minnow 2019). Commissioning-phase discharge from the AWTF began August 27, 2014, and the facility was shut down on October 17, 2014, and recommissioned with forward flow occurring on October 26, 2015. Composite-taxa benthic invertebrate tissue selenium monitoring was completed in September 2015. Due to the brief period of exposure to less-than-capacity AWTF effluent, benthic invertebrate tissue selenium data from September 2015 are not considered representative of the AWTF operational phase but also do not represent a no-discharge condition. They were therefore excluded from ANOVA analyses but are displayed in plots for context.

The ANOVA model that was fit to the data for each mine-exposed area (and both reference areas⁶) was:

$$Y = CI + Period + Time(Period) + Period \times CI + Time(Period) \times CI + \epsilon$$

where:

- Y = response variable;
- *CI* = a fixed factor for area type with two levels (control [reference] and impact [mine-exposed]);
- Period = a fixed factor for time with up to six levels (Before [September 2012], Initial AWTF Operational Phase [August to October 2014], AWTF Operational [February 2016 to October 2017], Shutdown [October 2014 to October 2015, March to October

⁵ The reference normal range as presented in the RAEMP represents the 2.5th and 97.5th percentiles of reference area data from 1996 to 2019 (Minnow 2021a).

⁶ Benthic invertebrate selenium concentration data from both reference areas (RG_LI24 and RG_SLINE) were used in the ANOVA model, if available. If data from both reference areas were not available for a given sampling event, data from a single reference area were used. Results reported for RG_LI24 on May 3, 2018 were excluded from analyses because these were identified as anomalous and likely the result of a field error (see Minnow 2019).

2018]⁷, Restart of AWTF with AOP [October 2018 to December 2018], and AWTF with AOP Operational Phase [December 2018 to December 2022]) depending on data availability, where each period included between one to eighteen individual sampling events and reflected the operational status of the WLC AWTF;

- Period × CI = the interaction between Period and CI with a significant effect suggesting the difference between mine-exposed and reference areas varies among periods;
- $Time(Period) \times CI$ = the interaction between Time(Period) and CI with a significant effect suggesting the difference between mine-exposed and reference areas varies among periods, but it depends on which sampling months are being compared; and
- ϵ = the error term.

Only one data-point was collected for a given area in some years (i.e., no replicate sampling). Individual data points were used in the analyses rather than means (where n > 1 at an area), thus variation was assumed to be consistent across years. Because replicates within areas were not available for all years, an $Area(CI) \times Year$ interaction could not be tested, and this term was excluded from the model.

Interpretation of the ANOVA table began by assessing the significance of the interaction between Time(Period) and CI. If the interaction was significant, then the differences among mine-exposed and reference areas varied among periods, but this difference could be dependent on which sample months were compared. In that case, contrasts were conducted to determine differences between periods for each sampling event using an $\alpha = 0.1$, with a Bonferroni correction for the number of tests. Contrasts were limited to those between the "AWTF with AOP Operational Phase" period (2022) relative to the "Before" and "AWTF Operational Phase" periods (contrasts to the "Initial Operations" and "Shutdown" periods were excluded), because these were the most relevant contrasts for evaluating AWTF performance during the "AWTF with AOP Operational Phase". Differences among sampling events within a given period were not statistically contrasted, except for data from within the "AWTF with AOP Operational" period. The differences within the "AWTF with AOP Operational" period were completed using two approaches: 1) contrasts within 2022 to

⁷ Commissioning-phase discharge from the AWTF began August 27, 2014, and the facility was shut down on October 17, 2014, and recommissioned with forward flow occurring on October 26, 2015. Composite-taxa benthic invertebrate tissue selenium monitoring was completed in September 2015. Due to the brief period of exposure to less-than-capacity AWTF effluent, benthic invertebrate tissue selenium data from September 2015 are not considered representative of the AWTF operational phase but also do not represent a no-discharge condition. They were therefore excluded from ANOVA analyses, but are displayed in plots for context.

evaluate of AWTF with AOP performance in 2022 (the focus of the 2022 LCO LAEMP)⁸; and 2) contrasts of similar sampling events (e.g. April 2019 to April 2020 to April 2021 to May 2022) within the entire "AWTF with AOP Operational" period (i.e., January 2019 to December 2022) to better understand the stability of conditions throughout this operational period.

The magnitude of difference for a significant contrast was expressed in terms of the number of standard deviations as follows:

Magnitude of Difference =
$$\frac{(\bar{X}_1 - \bar{X}_2)}{S_r}$$

where:

- \bar{X}_1 = difference between the $\log_{10}(\text{mean})$ for the mine-exposed and the $\log_{10}(\text{mean})$ for the reference areas in Sampling Event 1;
- \bar{X}_2 = difference between the $\log_{10}(\text{mean})$ for the mine-exposed and the $\log_{10}(\text{mean})$ for the reference areas in Sampling Event 2, and
- S_r = the standard deviation of the residuals in the ANOVA.

If the interaction term between Time(Period) and CI was not significant, then the interpretation of the ANOVA table continued by assessing the significance of the interaction between Period and CI. This term in the model assessed whether the relative differences between mine-exposed and reference area depended on period and if significant, contrasts (with Bonferroni correction) were used to compare among all time periods.

The magnitude of difference for a significant contrast was expressed in terms of the number of standard deviations using the equation above, where:

- \bar{X}_1 = difference between the $\log_{10}(\text{mean})$ for the mine-exposed and the $\log_{10}(\text{mean})$ for the reference areas in Time Period 1;
- \bar{X}_2 = difference between the \log_{10} (mean) for the mine-exposed and the \log_{10} (mean) for the reference areas in Time Period 2; and
- S_r = the standard deviation of the residuals in the ANOVA.

⁸ The terminology used to describe the AWTF with AOP operational phase initiated on December 30, 2018 in the present report is consistent with the 2020 LCO LAEMP (Minnow 2021a), but differs from terminology in the 2019 LCO LAEMP report, which identified two AWTF operational phases after December 30, 2018: "AWTF Operational Stabilization" and "AWTF/AOP Steady State Operation" (Minnow 2020a). In the 2020 and the current LCO LAEMP report, after December 30, 2018 has been termed as a single "AWTF with AOP Operational" phase (see Section 1.3 for more details).

The ANOVA model outlined above was also used to evaluate changes in the difference of tissue selenium concentrations between sampling areas located upstream (RG_FRUL) and downstream (RG_FO23) of Line Creek on the Fording River. Data were log₁₀-transformed prior to analysis using ANOVA. The ANOVA models and contrasts as well as plots for visualizing those results were conducted in R (R Core Team 2022), and data were presented on log₁₀-transformed y-axes for consistency with the statistical approach.

Spatial differences in tissue selenium concentrations among areas during each sampling event in 2022 were tested using an ANOVA. Prior to analysis, data were \log_{10} transformed to better meet the assumptions of the analysis. When the overall ANOVA was significant (α < 0.05), a Tukey's Honestly Significant Difference *post hoc* test was conducted for all pairwise comparisons. The ANOVA models and contrasts as well as graphical plots were conducted in R (R Core Team 2022) using customized scripts, with letters used to indicate which years differed significantly from one another.

Composite-taxa benthic invertebrate tissue selenium results from September 2012 to December 2022 were plotted relative to total selenium concentrations measured in water samples collected at or near the same time (within approximately three days) and location as the tissue samples. A line representing the regional one-step water-to-invertebrate selenium bioaccumulation model was also presented on the plot (Golder 2020). Prediction intervals (95% percentile) for the model were calculated using the formula below (as described in Whitmore 1986):

$$\hat{Y} \pm t_{\frac{\alpha}{2},n-2} S_r \sqrt{(1+\frac{1}{n}+\frac{(x-\bar{x})^2}{(n-1)S_x^2})}$$

where:

- \hat{Y} = the fitted regression value at X
- S_r = the root mean square deviation of the fitted regression model (= 0.148; log_{10} transformed)
- n = sample size (= 530)
- \bar{X} = mean of the sample X_i values (= 0.817)
- S_x^2 = variance of the sample X_i values (= 0.866).

A possible increase in benthic invertebrate selenium concentrations at the reference area RG_SLINE since 2017 was noted and flagged by the EMC for further investigation. To better understand this trend, temporal changes in benthic invertebrate tissue concentrations at

RG SLINE were quantified using an ANOVA with factors Year and Month and their interaction. When the interaction the interaction between Year and Month was significant, it indicated that the differences among years varied among the months. Post-hoc comparisons were then conducted to test for differences among years for each month using a Tukey's Honestly Significant Difference post hoc test. Magnitudes of difference were calculated as a percent difference from the base year of monitoring

$$MOD = \frac{MCT_{Yeari} - MCT_{baseyear}}{MCT_{baseyear}} \times 100\%$$

Where the measures of central tendency (MCT) were the estimated marginal means from the ANOVA model. The ANOVA model and contrasts were conducted in R (R Core Team 2022).

A6 FISH

A6.1 Sample Collection

Eight mature westslope cutthroat trout (WCT) were collected by angling from RG_LIDSL in September 2022. Upon capture, fish were anesthetized using clove oil prior to processing. Measures of body weight were collected using appropriately sized spring scales (e.g., 100 g, 500 g, 1,000 g), and total and fork lengths were recorded using a measuring board equipped with a metre stick (± 1 mm). All fish were inspected for any deformities, erosions (fin and gill), lesions, tumors, or parasites during processing and representative photographs were collected. A biopsy punch was used to collect a non-lethal muscle sample from each fish, and VetbondTM tissue adhesive was used to seal the wound and prevent infection. Skin was removed from each muscle sample using a scalpel and the remaining tissue was placed into a sterile microcentrifuge tube. Samples were stored on ice in the field and transferred to a freezer later in the day. Tissue samples were kept in a freezer until they were transported overnight in coolers with ice packs to an accredited laboratory.

A6.2 Laboratory Analysis

See section A5.4.2 for laboratory methods.

A6.3 Data Analysis

Fish tissue data⁹ collected from Line Creek as part of the RAEMP (Minnow 2021a) were incorporated into this report to continue the evaluation of fish tissue quality monitoring included in prior years of the LCO LAEMP (Minnow 2017, 2018, 2019). Selenium concentrations in WCT muscle were plotted in comparison to the applicable site-specific muscle benchmark (15.5 mg/kg dw; Table A.2). Ovary selenium concentrations of WCT from these areas were estimated from the muscle tissue concentrations based on the ovary-to-muscle concentration relationship of 1.6:1 (Nautilus and Interior Reforestation 2011) and plotted in comparison to site-specific effect benchmarks (Teck 2014; Table A.2). Data from 2022 were plotted relative to WCT tissue selenium concentrations in areas of Line Creek and the Fording River from previous years (2001 to 2022).

Estimated WCT ovary tissue selenium results from 2001 to 2022 were plotted relative to the upper prediction interval (95% percentile) of the regional two-step model from

⁹ The DQR for the fish tissue chemistry collected at RG_LIDSL will be presented in the 2020-2022 RAEMP report.

Table A.2: Selenium Benchmarks for Benthic Invertebrate and Westslope Cutthroat Trout Tissues in the Elk Valley

Endpoint	Tissue Type	Value (µg/g dw)		Description	Source	
	Whole body	4ª	BC guideline	Interim guideline for aquatic dietary tissue based on weight of evidence of lowest published toxicity thresholds and no uncertainty factor applied	BCMOE (2014)	
	Whole body	13	Site-specific benchmark	Level 1 (~10% effect) benchmark for growth, reproduction and survival of invertebrates	Teck (2014)	
Benthic Invertebrate Tissue	Whole body	20	Site-specific benchmark	Level 2 (~20% effect) benchmark for growth, reproduction and survival of invertebrates	Teck (2014)	
	Whole body	27	Site-specific benchmark	Level 3 (~50% effect) benchmark for growth, reproduction and survival of invertebrates	Golder (2014)	
	Whole body	11 ^b	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile fish (growth)	Teck (2014)	
	Whole body	18	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile fish (growth)	Teck (2014)	
	Whole body	26	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile fish (growth)	Golder (2014)	
	Whole body	15	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile birds	Teck (2014)	
	Whole body	22	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile birds	Teck (2014)	
	Whole body	41	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile birds	Golder (2014)	
	Egg/ovary	25	Site-specific benchmark	Level 1 (~10% effect) benchmark for westslope cutthroat trout reproduction	Teck (2014)	
Westslope	Egg/ovary	27	Site-specific benchmark	Level 2 (~20% effect) benchmark for westslope cutthroat trout reproduction	Teck (2014)	
Cutthroat Trout	Egg/ovary	33	Site-specific benchmark	Level 3 (~50% effect) benchmark for westslope cutthroat trout reproduction	Teck (2014)	
	Muscle/muscle plug	15.5	Site-specific benchmark	Muscle equivalent to the 25 mg/kg dw ovary benchmark, based on the relationship observed between selenium in muscle and ovary in westslope cutthroat trout	Nautilus Environmental and Interior Reforestation (2011)	

Notes: µg/g = microgram per gram. dw = dry weight. BC = British Columbia. BCMOE = British Columbia Ministry of the Environment.

^a BC guidelines were not used in assessment of benthic invertebrate tissue selenium concentrations. Assessment was completed relative to site-specific benchmarks only.

^b Site-specific benchmark is not applicable to effects to juvenile westslope cutthroat trout because studies with Yellowstone cutthroat trout have reported no effects at the Level 1 benchmark (see Teck [2014], Annex E, Appendix D [Elk Valley Water Quality Plan – Selenium Toxicity Literature Review]).

water-to-invertebrates-to-fish egg/ovary selenium bioaccumulation model¹⁰ (Golder 2018). Prediction intervals (95% percentile) for the model were calculated using total selenium concentrations measured in water samples collected at or near the same location and time as WCT tissue collection and the same formula used for the benthic invertebrate model, but using the following parameters:

- S_r = 0.161; \log_{10} transformed
- n = 112
- $\bar{X} = 0.867$
- $S_x^2 = 0.580$.

¹⁰ A two-step model from water-to-invertebrates-to-fish muscle selenium bioaccumulation model is not available as a focus has been on eggs of various organisms including fish, birds, and amphibians (Golder 2018).

A7 CALCITE

A7.1 Sample Collection

In addition to the CABIN requirements, measurements of calcite presence and concretion were conducted on 100 particles (pebbles) at each biological sampling location concurrent with (and using the same particles as) the 100-pebble count. Calcite presence (Cp) has historically been a binary assessment (i.e., presence [score = 1] or absence [score = 0]; Teck 2016, Lotic 2021). In 2021, an additional method for assessing calcite presence in lotic environments was included (Cp', Lotic 2021, Zathey 2021, Robinson et al. 2022) that scored the percent of the particle surface area covered by calcite as a decimal to the nearest 10th percentile (0.1, 0.2, 0.3, etc.; see Appendix G)¹¹. The degree of concretion (Cc) was assessed by determining if the particle was removed with negligible resistance (not concreted; score = 0), noticeable resistance but removable (partially concreted; score = 1), or immovable (fully concreted; score = 2). If distinct particles were not visible due to heavy calcification, values of 1 (for presence) and 2 (for concretion) were recorded. If fines were encountered and calcite presence could not be visually confirmed, values of 0 (for presence) and 0 (for concretion) were recorded. If rocks were visible under fine material, the rock was selected for calcite measurements.

A7.2 Data Analysis

The results for the 100 particles was expressed as a Calcite Index (CI and CI') based on the following equations (Lotic 2021, Zathey et al. 2021a, Robinson et al. 2022):

$$CI = C_p + C_c$$
 or $CI = C_p' + C_c$

Where:

$$CI \ or \ CI' = Calcite \ Index^{12}$$

$$C_p = Calcite \ Presence \ Score = \frac{Number \ of \ particles \ with \ calcite}{100 \ (binary \ score)}$$

$$C_p' = Calcite \ Presence \ Score = \frac{Number \ of \ particles \ with \ calcite}{100 \ (proportional \ score)}$$

$$C_c = Calcite \ Concretion \ Score = \frac{Sum \ of \ particle \ concretion \ scores}{100 \ (proportional \ scores)}$$

¹¹ The new calcite assessment method was developed under the Regional Calcite Monitoring Program as a means to better describe the degree, extent, and trends of calcite deposition (Zathey 2021)

¹² CI refers to the binary assessment of Cp and Cl' refers to the proportional assessment of Cp'.

A8 REFERENCES

- APHA (American Public Health Association), American Water Works Association and Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. L.S. Clesceri, A.E. Greenberg and A.D. Eaton (Eds). APHA. Washington, D.C. Minnow. 2014. 2012 Biological Monitoring Program for Coal Mines in the Elk River Valley, B.C. Report Prepared for Teck Coal Limited, Sparwood, BC. March. Project #2456
- ASTM (American Society for Testing and Materials). 2013. Standard Guide for Conducting Early Life-Stage Toxicity Tests with Fishes. E1241-05, 29 p.
- BCMOE (British Columbia Ministry of Environment). 1997. Ambient Water Quality Criteria for Dissolved Oxygen. February 1997
- BCMOE. 2001. Water Quality Guidelines for Temperature. August 2001.
- BCMOE. 2014. Ambient Water Quality Guidelines for Selenium Technical Report Update. Prepared by: J.M Beatty and G.A. Russo, Environmental Protection Division, Victoria, British Columbia. April 2014.
- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2021a. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Prov. B.C., Victoria B.C.
- BCMOECCS. 2021b. Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WQG-08. Prov. B.C., Victoria B.C.
- Environment Canada. 1996. Biological Test Method: Acute Lethality Test Using *Daphnia* spp. Environmental Protections Series. Method Development and Applications Section. Environmental Technology Centre. May 1996.
- Environment Canada. 1998. Biological Test Method: Toxicity Tests Using Early Life Stages of Salmonid Fish (Rainbow Trout). Report EPS 1/RM/28, Second Edition. July.
- Environment Canada. 2007a. Biological Test Method: Acute Lethality Test Using Rainbow Trout. Environmental Protections Series. Method Development and Applications Section. Environmental Technology Centre. May 2007.
- Environment Canada. 2007b. Biological Test Method: Growth Inhibition Test Using a Freshwater Alga. Report EPS 1/RM/25. Second Edition. March.
- Environment Canada. 2007c. Biological Test Method: Test of Reproduction and Survival using the Cladoceran Ceriodaphnia dubia. Report EPS 1/RM/21 Second Edition. February.
- Environment Canada. 2012. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN).
- Environment Canada. 2014. Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Canadian Aquatic Biomonitoring Network (CABIN). May.

- Golder. 2014a. Benchmark Derivation Report for Nitrate and Sulphate. Elk Valley Water Quality Plan. Report Number 13-1349-0006. July.
- Golder. 2014b. Benchmark Derivation Report for Selenium. Elk Valley Water Quality Plan. Report Number 13-1349-0006. July.
- Golder. 2017. Coal Mountain Operations Aquatic Health Assessment Report. Submitted to Teck Coal Ltd. December.
- Golder. 2018. Elk Valley Selenium Bioaccumulation Model Update. Submitted to Teck Coal Ltd. January.
- Golder. 2020. Technical memorandum Updates to the Lotic and Lentic Statistical Bioaccumulation Models for Selenium in the Elk Valley. Prepared for Teck Coal Limited. November 2020.
- Golder. 2021. Preliminary Annelid Bioaccumulation Analysis. Prepared for Teck Coal Limited. June 2021.
- Golder. 2022. 2021 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April 2022.
- Lotic (Lotic Environment Ltd.). 2021. Regional Calcite Monitoring Plan: Field Manual. Prepared for Teck Coal Limited by Lotic Environmental Ltd. May 2021.
- McPhail, J.D. 2007. The Freshwater Fishes of British Columbia, University of Alberta Press, Edmonton, AB.
- Minnow. 2017. Study Design for the 2017 Line Creek Local Aquatic Effects Monitoring Program (LAEMP). May. Project 167202.0074.
- Minnow. 2018. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2018. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 177202.0023.
- Minnow. 2019. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2019. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 187202.0026
- Minnow. 2020a. Elk River Watershed Regional Aquatic Effects Monitoring Program (RAEMP) Final Report, 2017 to 2019. Prepared for Teck Coal Limited, Sparwood, British Columbia. November. Project #187202.0011.
- Minnow. 2020b. Lentic Area Supporting Study Report, 2018 to 2020. Prepared for Teck Coal Limited, Sparwood, British Columbia. November. Project #207202.0016.
- Minnow. 2021a. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. February. Project 207202.0006.
- Minnow. 2021b. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2021. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 207202.0015.

- Minnow and Lotic. 2021. Study Design for Fording River Local Aquatic Effects Monitoring Program (LAEMP), 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 217202.0011.
- Nautilus and Interior Reforestation. 2011. Evaluation of the Effects of Selenium on Early Life Stage Development of Westslope Cutthroat Trout from the Elk Valley, BC. Prepared for the Elk Valley Selenium Task Force. November 2011.
- Province of British Columbia. 2013. British Columbia Field Sampling Manual (complete). Available from <a href="https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-field-sampling-manual?keyword=field&keyword=sampling&keyword=manual. Accessed December 15, 2017.
- Province of British Columbia. 2016. British Columbia Environmental Laboratory Manual. Available https://www2.gov.bc.ca/gov/content/environmental-laboratory-manual. Accessed March 16, 2018.
- R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org
- Robinson, M.D., Gordon, S., Otto, M. 2022. Teck Coal Ltd. 2021 Calcite Monitoring Program Annual Report. Prepared for Teck Coal Ltd. by Lotic Environmental Ltd. April 2022.
- Trapp, S., M. Matthies, I. Scheunert, and E.M. Topp. 1990. Modeling the bioconcentration of organic chemicals in plants. *Environmental Science and Technology*. 24:1246-1252.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2016. Water Quality Adaptive Management Plan (AMP) for Teck Coal Operations in the Elk Valley. July 2016.
- Teck. 2023. Annual Water Quality Report 2022. Prepared by Teck Coal Limited. March 31, 2022.
- USEPA (United States Environmental Protection Agency). 1996. Ecological Effects Test Guidelines. OPPTS 850.1400 Fish Early-Life Stage Toxicity Test. EPA-712-C-96-121, Public Draft.
- USEPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates. 2nd Edition. EPA/600/R-99/064. Office of Water, Washington, DC, USA.
- Zathey, N., Brooks, J., and Robinson, M.D. 2021. 2020 Line Creek Aquatic Monitoring Program. Prepared for Teck Coal Limited. December 2021.

APPENDIX B DATA QUALITY REVIEW (DQR)

APPENDIX B DATA QUALITY REVIEW

B1	INTRODUCTION	1
B1.1	Background	
B1.2	Quality Control Samples	
B2	WATER CHEMISTRY	4
B2.1	Laboratory Reporting Limits	
B2.2	Laboratory and Field Blanks	
B2.3	Data Precision	5
B2.4	Data Accuracy	6
B2.5	Hold Times	6
B2.6	Other Concerns	7
B2.7	Data Quality Statement	7
B3	BENTHIC INVERTEBRATE COMMUNITY	8
B3.1	Sub-Sampling Proportions, Precision, and Accuracy	
B3.2	Organism Sorting Efficiency	
B3.3	Taxonomic Identification Accuracy	8
B3.4	Data Quality Statement	8
B4	BENTHIC INVERTEBRATE TISSUE CHEMISTRY	10
B4.1	Laboratory Reporting Limits	
B4.2	Data Accuracy and Precision	
B4.3	Data Quality Statement	
B5	DATA QUALITY REVIEW SUMMARY	11
B6	REFERENCES	12

B1 INTRODUCTION

B1.1 Background

A variety of factors can influence the physical, chemical, and biological measurements made in an environmental study and thus affect the accuracy and/or precision of the data. Depending on their magnitude, inaccuracy, or imprecision have the potential to affect the reliability of conclusions made from data. Therefore, it is important to ensure that programs incorporate appropriate steps to control non-natural sources of data variability (i.e., minimize variability that does not reflect authentic spatial and temporal variability in the environment) and thus assure the quality of the data. Data quality as a concept is meaningful only when it relates to the intended use of the data. That is, one must know the context in which the data will be interpreted in order to establish a relevant basis for judging whether or not the data set is adequate. A data quality review (DQR) involves the comparison of field and laboratory measurement performance to Data Quality Objectives (DQOs) established for a particular study, such as evaluation of Laboratory Reporting Limits (LRL), blank sample data, data precision (based on field and laboratory duplicate samples), and data accuracy (based on matrix spike recoveries and/or analysis of standards or certified reference materials). Trusted analytical laboratories certified by Canadian Association for National Laboratory Accreditation (CALA) or the Environmental Laboratory Accreditation Program (NELAP) with a rigorous internal quality assurance program were selected to ensure the highest possible data quality. DQOs were established a priori to reflect reasonable and achievable performance expectations (Table B.1). Programs involving many samples and analytes usually yield some results that exceed DQOs. This is particularly so for multi-element scans, as the analytical conditions are not necessarily optimal for every element included in the scan. Generally, scan results may be considered acceptable if no more than 20% of the parameters fail to meet DQOs. Overall, the intent of a DQR is not to reject any measurement that did not meet a DQO, but to ensure that any questionable data received more scrutiny to determine what effect, if any, this had on interpretation of results within the context of the project.

B1.2 Quality Control Samples

A Data Quality Review (DQR) was conducted on all laboratory data collected as part of the 2022 Line Creek Local Aquatic Effects Monitoring Program (LAEMP). The objective of a DQR is to define the overall quality of the data presented in the report, and, by extension, the confidence with which the data can be used to derive conclusions.

Table B.1: Laboratory Data Quality Objectives for the Line Creek LAEMP, 2022

0	Overlite Comment Comment	Study Component								
Quality Control Measure	Quality Control Sample Type/Check	Water Chemistry	Sediment Chemistry	Selenium Speciation	Benthic Invertebrate Community	Benthic Invertebrate Tissue Chemistry				
		ALS Envi	ronmental	Brooks Applied Labs	Cordillera Consulting	TrichAnalytics				
Analytical Laboratory LRLs	Comparison of actual LRL versus target LRL	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	LRL for each parameter should be at least as low as applicable guidelines and benchmarks	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	-	LRL for each parameter should be at least as low as applicable guidelines and benchmarks				
Blank Analysis	Field, Trip, or Laboratory Blank	Concentrations measured in blank samples should be < LRL	Concentrations measured in blank samples should be < LRL	Concentrations measured in blank samples should be < LRL	-	-				
Laboratory Precision	Laboratory Duplicates	< 4% (pH) <10% (conductivity) ≤15% RPD or <2x LRL (ORP, turbidity) ≤20% RPD or <2x LRL (all remaining analytes)	≤ 5% RPD (pH 1:2soil:water) ≤20% RPD (inorganic carbon, moisture) ≤30% RPD, 40% RPD or diff < 2x LOR (total metals) ≤ 50% RPD, 60-130% RPD or diff < 2xLOR RPD (PAHs) ≤ 5% RPD (selenium species) ≤20% RPD (total selenium)		-	≤60% RPD (calcium and strontium) ≤40% RPD (all remaining analytes)				
	Organism Sorting Efficiency	-	-	-	≥95%	-				
	Organism Sub-Sampling Precision and Accuracy	-	-	-	<20% between subsamples	-				
	Recovery of Blank Spike	-	-	75 to 125% (methylseleninic acid, selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-				
	Recovery of Matrix Spike	70 to 130% (TKN, orthophosphate, phosphorus, TOC, DOC, total and dissolved metals) 75 to 125% (ammonia, bromide, chloride, fluoride, nitrate, nitrite, sulphate)	-	75 to 125% (selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-				
	Matrix Spike Duplicate	-	-	75 to 125% (selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-				
Accuracy	Recovery of Certified Reference Material	-	40 - 160 % (boron, thalium) 70 130 % (all other analytes) 80 - 120 % (inorganic cabon, total carbon) 96 - 104 % (pH)	75 to 125% (total selenium)	-	60 to 140% (antimony, barium, boron, silver, tin, titanium) 90 to 110% (selenium) 70 to 130% (all remaining analytes)				
	Laboratory Control Sample	75 to 125% (TKN) 80 to 120% (orthophosphate, phosphorus, DOC, TOC, total and dissolved metals) 85 to 115% (acidity, alkalinity, ammonia, bromide, TDS, TSS, turbidity) 90 to 110% (conductivity, chloride, fluoride, nitrate, nitrite, sulphate) 98.6-101% (pH) 95.4 to 104% (ORP)	50 - 130% (naphthalene, naphthalene-d8) 60 - 130% (PAHs) 80 - 120% (all other analytes) 90 - 110% (inorganic carbon, moisture) 97 - 103% (pH 1:2 soil:water)	-	-	-				
	Taxonomic Accuracy	-	-	-	<5% TIR	-				

Notes: LRL = Laboratory Reporting Limit; "-" = not applicable; < = less than; <= less than or equal to; % = percent; RPD = Relative Percent Difference; ORP = oxidation-reduction potential; TKN = Total Kjeldahl Nitrogen; TOC = total organic carbon; DOC = dissolved organic carbon; TSS = total suspended solids; TDS = total dissolved solids; mg/kg dw = milligrams per kilogram dry weight; TIR = total identification error rate.

A DQR involves the examination of analytical results associated with several types of Quality Control (QC) samples collected or prepared in the field and laboratory. General QC samples collected for this project include the following:

- Blanks are samples of de-ionized water and/or appropriate reagent(s) that are handled
 and analyzed in the same way as regular samples. These samples will reflect any
 contamination of samples occurring in the field (in the case of field or travel blanks)
 or in the laboratory (in the case of laboratory or method blanks). Analyte concentrations
 should be below detection.
- Laboratory Duplicates are replicate sub-samples created in the laboratory from randomly selected field samples which are sub-sampled and then analyzed independently using identical analytical methods. The laboratory duplicate sample results reflect any variability introduced during laboratory sample handling and analysis and thus provide a measure of laboratory precision.
- Field Duplicates are samples collected from a randomly selected field station that are homogenized to the extent possible, split and analyzed separately in the laboratory.
 The duplicate samples are handled and analyzed in an identical manner in the laboratory.
- Spike Recovery Samples are created in the laboratory by adding a known amount/concentration of a given analyte (or mixture of analytes) to a randomly selected test sample previously divided to create two sub-samples. The spiked and regular sub-samples are then analyzed in an identical manner. The spike recovery represents the difference between the measured spike amount (total amount in the spiked sample minus the amount in the original sample) relative to the known spike amount (as a percentage). Two types of spike recovery samples are commonly analyzed: spiked blanks (or blank spikes) are created using laboratory control materials whereas matrix spikes (MS) are created using field-collected samples and are sometimes further tested in duplicate (matrix spike duplicates, MSD). The analysis of spiked samples provides an indication of the accuracy of analytical results.
- Certified Reference Materials (CRM) or Reference Materials (RM) are commercially prepared (or commercially homogenized) samples containing known chemical concentrations that are processed and analyzed along with batches of environmental samples. The sample results are then compared to the known concentrations to provide a measure of analytical accuracy. The results are reported as the percent of the known concentration that was recovered in the analysis.

- Laboratory Control Samples are created in the laboratory to have a known analyte
 concentration in a matrix free of interferences, such as deionized water or
 reference sand. The sample results are compared to the target results to confirm that
 the analytical method is accurate in a purified reference sample. The results are
 reported as the percent of the known concentration that was recovered in the analysis.
- Laboratory Sorting Efficiency are randomly selected grabs of the initially sorted community material. These samples are recounted and the number of invertebrates that were not recovered during the initial sort was determined. In order to reduce bias, recounting is conducted by an analyst uninvolved in the initial sample processing. This check is performed on 10% of samples and determines the accuracy through assessment of recovery (sorting) efficiency and quantifies any under-estimation of organism enumeration.
- Taxonomic Quality Control Samples are a randomly selected portion of a benthic invertebrate community field sample to be assessed by the laboratory using an internal quality control audit. A blind re-enumeration and re-identification of random samples is performed by an analyst uninvolved in the original sample processing. This assessment quantifies taxonomic misidentification among laboratory analysts and ensures accurate organism identities are reported.
- Laboratory Subsamples are community samples prepared by the laboratory to
 ensure that the fraction of the total sample examined was an accurate representation
 of the total number of organisms. By comparing the amount recovered between at
 least two sub-samples, one can assess the analytical precision. In addition,
 comparisons of the sub-samples from the whole community sample allows for an
 evaluation of sub-sampling accuracy.

B2 WATER CHEMISTRY

B2.1 Laboratory Reporting Limits

The analytical reports for water chemistry from ALS Environmental (ALS; CG2205126, CG2205191, CG2205354, CG2209065, CG2209232, CG2209323, CG2209155, CG2212408, CG2212276, CG2212561, CG2212665, CG2212821, CG2216667, CG2216689, CG2216739, and CG2216778; Appendix H) and Brooks Applied Labs (BAL; 2205163, 2207261, 2209188, 2209288, and 2212177; Appendix H) were examined to assess LRLs relative to analyte concentrations and applicable guidelines (Tables B.2 and B.3). Water quality data from 2022 were entered directly into Teck's EQuIS database, and thus were assessed as part of Teck's annual water quality reporting in 2022. The LRLs for water quality analytes were assessed relative to British Columbia Water Quality Guidelines (BC WQG; BCMOECCS 2021a,b) for the protection of freshwater aquatic life, Elk Valley Water Quality Plan (EVWQP; Teck 2014) screening values for water quality (Teck 2020), benchmarks, and relevant site-specific benchmarks. Several analytes were reported at concentrations below the LRL in 100% of samples (Tables B.2 and B.3). For those analytes with one or more result(s) below the LRL, achieved LRLs were consistently lower than the BCWQG, EVWQP benchmarks, and screening values for water quality (as applicable). Only one analyte, total mercury, had results that were frequently below the LRL, and which had an LRL (i.e., 0.000005 mg/L) that was higher than the BCWQG of 0.00000125 mg/L; however, past studies have shown that mercury inputs (total and methyl) in the Elk Valley Area are not related to mining activities (Azimuth 2019). Therefore, the achieved LRLs were appropriate for this study.

B2.2 Laboratory and Field Blanks

A total of 283 method blank (MB) samples were analyzed in the ALS laboratory reports (Appendix H). Of the 1,488 reported method blank individual analyte results, only five results were above detection, including one result each for total arsenic and vanadium, one result for dissolved silicon, and two results for total aluminum (see laboratory reports CG2209065, CG2205354, and CG2212561 in Appendix H). As these exceedances only represent 0.34% of MB results and do not include any primary analytes, these laboratory flags had a negligible impact on ALS water chemistry data reliability.

A total of 40 MB samples were analyzed in the BAL laboratory reports (Appendix H). Of the 200 reported method blank results, only one result was above the LRL (0.5% of results; see laboratory reports 2205163 in Appendix H) and so did not meet the DQO. As 99.5% of MB results met the DQO, laboratory contamination was not considered to be of concern.

Table B.2: Evaluation of Water Chemistry Laboratory Reporting Limits, LCO LAEMP, 2022

		BCWQG ^a		EVWQP Level 1 Benchmarks/		No. Sample	No. LRLs >	
Parameter	Units	Long-term	Short- term	Relevant Screening Values ^b	Range of LRLs	Results < LRL	Guideline ^c	
Physical Tests								
Acidity (as CaCO ₃)	mg/L	-	-	-	2	31 (91.2%)	-	
Alkalinity, Carbonate (as CaCO ₃)	mg/L	_	-	_	1	11 (32.4%)	-	
Alkalinity, Carbonate (as CO ₃)	mg/L	_	-	_	1	11 (32.4%)	-	
Alkalinity, Hydroxide (as CaCO ₃)	mg/L	_	-	_	1	34 (100%)	_	
Alkalinity, Hydroxide (as OH)	mg/L	_	-	_	1	34 (100%)	-	
Total Suspended Solids	mg/L	_	-	_	0.1 to 1.5	14 (41.2%)	-	
Anions And Nutrients	J					,		
Bromide	mg/L	-	-	-	0.05 to 0.25	34 (100%)	_	
Ammonia, Total (as N)	mg/L	0.305	1.59	_	0.005	31 (91.2%)	0	
Nitrite (as N)	mg/L	0.02	0.06	_	0.001	11 (32.4%)	0	
Total Kjeldahl Nitrogen	mg/L	-	-	_	0.005 to 0.5	11 (32.4%)	-	
Orthophosphate	mg/L	-	_	_	0.001	24 (70.6%)	_	
Total Phosphorus	mg/L	_	-	_	0.002	2 (5.88%)	-	
Organic/Inorganic Carbon					0.302	_ (0.0070)		
Dissolved Organic Carbon	mg/L	-	-	-	0.5	20 (58.8%)	-	
Total Organic Carbon	mg/L	_	-	_	0.5	20 (58.8%)	-	
Total Metals					3.0			
Aluminum	mg/L	Variable	-	_	0.003	3 (8.82%)	-	
Antimony	mg/L	0.009	-	_	0.0001	7 (20.6%)	0	
Arsenic	mg/L	-	0.005	_	0.0001	3 (8.82%)	0	
Beryllium	mg/L	0.00013	-	_	0.00002	34 (100%)	0	
Bismuth	mg/L	-	-	_	0.00005	34 (100%)	-	
Boron	mg/L	1.2	-	_	0.01	13 (38.2%)	0	
Copper	mg/L	-	_	_	0.0005	34 (100%)	-	
Iron	mg/L	_	1	-	0.01	20 (58.8%)	0	
Lead	mg/L	0.00728	0.102	_	0.00005	30 (88.2%)	0	
Manganese	mg/L	1.1286	1.85	_	0.0001	2 (5.88%)	0	
Mercury	mg/L	0.00000125	-	_	0.0000005	29 (85.3%)	27 (79.4%)	
Nickel	mg/L	0.109	_	_	0.0005	5 (14.7%)	0	
Silver	mg/L	0.0015	0.003	_	0.00001	34 (100%)	0	
Thallium	mg/L	0.0008	-	_	0.00001	28 (82.4%)	0	
Tin	mg/L	-	-	_	0.0001	34 (100%)	-	
Titanium	mg/L	_	-	_	0.0003	30 (88.2%)	-	
Vanadium	mg/L	_	-	_	0.0005	29 (85.3%)	_	
Zinc	mg/L	0.03	0.055	_	0.003	12 (35.3%)	0	
Dissolved Metals	g, <u>_</u>	0.00	0.000		0.000	12 (66.676)	J	
Aluminum	mg/L	0.05	0.1	_	0.001	16 (47.1%)	0	
Antimony	mg/L	-	-	_	0.0001	8 (23.5%)	-	
Arsenic	mg/L	_	-	-	0.0001	9 (26.5%)	-	
Beryllium	mg/L	-		-	0.00002	34 (100%)	-	
Bismuth	mg/L	-	<u> </u>	-	0.00002	34 (100%)	-	
Boron	mg/L	-	_	_	0.000	12 (35.3%)	-	
Cadmium	mg/L	0.000240	0.0007	0.000156	0.000005	1 (2.94%)	0	
Chromium	mg/L	-	-	-	0.0001	4 (11.8%)	-	
Cobalt	mg/L	_		-	0.0001	34 (100%)	-	
Copper	mg/L	-	-	-	0.0001	14 (41.2%)	-	
Iron	mg/L	-	0.35	-	0.002	34 (100%)	0	
Lead	mg/L	-	-	<u> </u>	0.0005	34 (100%)	-	
Manganese	mg/L	-		-	0.0003	6 (17.6%)	-	
Mercury	mg/L	-	-		0.00005	34 (100%)	-	
Nickel	mg/L	-	-	0.00263	0.0005	6 (17.6%)	0	
Silver	mg/L	-	-	0.00203	0.0003	34 (100%)	-	
Thallium	mg/L		-	<u> </u>	0.00001	25 (73.5%)		
Tin	mg/L	-	-	<u> </u>	0.0001	34 (100%)	-	
Titanium	mg/L				0.0001	34 (100%)		
Vanadium		-	-	-	0.0003	34 (100%)	-	
	mg/L	-	-	-		, ,	-	
Zinc	mg/L	-	-	-	0.001	5 (14.7%)	-	

Notes: Only analytes with at least one result < Laboratory Reporting Limit (LRL) or LRL were above guidelines were displayed. The total number of samples in 2022 (n) was 34. EVWQP = Elk Valley Water Quality Plan; "-" = no applicable guideline exists.

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (BCMOECCS 2021a,b).

^b Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

^c The LRLs for all analytes were consistently less than the applicable EVWQP Level 1 benchmarks (Teck 2014) or screening values (Golder 2014; Teck 2020).

Table B.3: Evaluation of Selenium Speciation Laboratory Reporting Limits, LCO LAEMP, 2022

Parameter	Units	Range of LRLs	No. Sample Results < LRL
DMSeO - Dimethylselenoxide	mg/L	0.01	37 (100%)
MeSe(IV) - Methylseleninic Acid	mg/L	0.01	30 (81.1%)
MeSe(VI) - Methaneselenonic Acid	mg/L	0.01	31 (83.8%)
Se(IV) - Selenite	mg/L	0.01 to 0.02	3 (8.11%)
SeCN - Selenocyanate	mg/L	0.01	37 (100%)
SeMe - Selenomethionine	mg/L	0.01	37 (100%)
Selenosulfate	mg/L	0.01	37 (100%)
Selenium Unknown	mg/L	0.01	37 (100%)

Notes: Only analytes with at least one result < Laboratory Reporting Limit (LRL) or LRL were above guidelines were displayed. No guidelines exist for any analyte that has at least one result below the LRL. The total number of samples in 2022 (n) was 37.

Four field blank samples and four trip blank samples were submitted to ALS for water chemistry analyses to assess the potential for field sampling contamination (see laboratory reports CG2205126, CG2205354, CG2209065, CG2216667, and CG2212821 in Appendix H). The same DQOs that were used for laboratory blanks were also used for field blanks (i.e., concentrations should be below the LRL). Of the 372 individual analyte results measured in the field blanks, only four (1.08% of results; one result each for total barium, total molybdenum, dissolved beryllium, and dissolved sodium) were above the LRL and so did not meet the laboratory DQO (Table B.4). Of the 326 individual analyte results for trip blank samples, only four results (1.23% of results; one result each for acidity as CaCO₃, total ammonia, total barium, and dissolved molybdenum) were above the LRL and did not meet the laboratory DQO (Table B.4). All of the analytes that were above detection in field or trip blank samples are generally analytes of low concern in the LCO LAEMP. Additionally, as relatively few results were above detection (~ 1% in both field and trip blanks), field and laboratory contamination of water samples was considered of little to no concern.

Four field blank samples were submitted to BAL for aqueous selenium speciation analyses to assess potential field sampling contamination. Selenate was detectable in two samples (50% of results for selenate; Table B.5). While these results only represent 3.64% of all field blank results, this potential field contamination will be taken into account during data interpretation.

B2.3 Data Precision

A total of 26 laboratory duplicate samples were used to evaluate precision within the ALS laboratory reports (Appendix H). All of the 1,494 individual analyte results met the laboratory DQO, and so ALS laboratory analytical precision was considered excellent. A total of 14 laboratory duplicate samples were used to evaluate precision within the BAL laboratory reports (Appendix H). Of the 46 individual analyte results, two did not meet the laboratory DQO (dimethylselenoxide and selenosulfate, see laboratory report 2205163 in Appendix H). As these results only represent 4.35% of laboratory duplicate results, BAL laboratory analytical precision was overall considered good.

Four sets of field duplicate samples were collected to assess field sampling precision for water chemistry analyzed by ALS (Table B.6). Several relative percent differences (RPDs) could not be calculated as both analyte concentrations were below the LRL. Of the 245 RPDs that could be calculated, 20 RPDs were greater than 30% (8.16% of comparisons), including one RPD each for total dissolved solids, turbidity, total ammonia, nitrite, orthophosphate, total phosphorous, dissolved organic carbon, total organic carbon, total aluminum and chromium, and dissolved chromium, copper, and zinc, two RPDs each for dissolved aluminum and total

Table B.4: Field Blank and Trip Blank Evaluation for Water Chemistry Analyses, LCO LAEMP, 2022

Parameter	Units	No. Sample Results < LRL	No. Trip Blank Results < LRL
Physical Tests Acidity (as CaCO ₃)	ma/l	4 (100%)	2 /759/ \
Alkalinity, Bicarbonate (as CaCO ₃)	mg/L mg/L	4 (100%) 4 (100%)	3 (75%) 4 (100%)
Alkalinity, Bicarbonate (as HCO ₃) Alkalinity, Carbonate (as CaCO ₃)	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Alkalinity, Carbonate (as CO ₃)	mg/L	4 (100%)	4 (100%)
Alkalinity, Hydroxide (as CaCO ₃) Alkalinity, Hydroxide (as OH)	mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Alkalinity (as CaCO ₃)	mg/L mg/L	4 (100%)	4 (100%)
Conductivity Hardness (as CaCO ₃), Dissolved	μS/cm	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Hardness (as CaCO ₃)	mg/L mg/L	4 (100%)	4 (100%)
Total Dissolved Solids Total Suspended Solids	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Anions And Nutrients	IIIg/L	4 (100 %)	4 (100 %)
Bromide Chloride	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Fluoride	mg/L	4 (100%)	4 (100%)
Ammonia, Total (as N) Nitrate (as N)	mg/L mg/L	4 (100%) 4 (100%)	3 (75%) 4 (100%)
Nitrite (as N)	mg/L	4 (100%)	4 (100%)
Total Kjeldahl Nitrogen Orthophosphate	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Total Phosphorus	mg/L	4 (100%)	4 (100%)
Sulphate Ion Balance	mg/L	4 (100%)	4 (100%)
Anion Sum	meq/L	4 (100%)	4 (100%)
Cation Sum	meq/L	4 (100%)	4 (100%)
Organic / Inorganic Carbon Dissolved Organic Carbon	mg/L	4 (100%)	<u> </u>
Total Organic Carbon	mg/L	4 (100%)	4 (100%)
Total Metals Aluminum	mg/L	4 (100%)	4 (100%)
Antimony	mg/L	4 (100%)	4 (100%)
Arsenic Barium	mg/L mg/L	4 (100%) 3 (75%)	4 (100%) 3 (75%)
Beryllium	mg/L	4 (100%)	4 (100%)
Bismuth Boron	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Cadmium	mg/L	4 (100%)	4 (100%)
Calcium Chromium	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Cobalt	mg/L	4 (100%)	4 (100%)
Copper Iron	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Lead	mg/L	4 (100%)	4 (100%)
Lithium Magnesium	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Manganese	mg/L	4 (100%)	4 (100%)
Mercury Molybdenum	mg/L mg/L	4 (100%) 3 (75%)	- 4 (100%)
Nickel	mg/L	4 (100%)	4 (100%)
Potassium Selenium	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Silicon	mg/L	4 (100%)	4 (100%)
Silver Sodium	mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Strontium	mg/L mg/L	4 (100%)	4 (100%)
Sulphur Thallium	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Tin	mg/L	4 (100%)	4 (100%)
Titanium Uranium	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 4 (100%)
Vanadium	mg/L	4 (100%)	4 (100%)
Zinc	mg/L	4 (100%)	4 (100%)
Dissolved Metals Aluminum	mg/L	4 (100%)	3 (100%)
Antimony	mg/L	4 (100%)	3 (100%)
Arsenic Barium	mg/L mg/L	4 (100%) 3 (75%)	3 (100%) 3 (100%)
Beryllium Piomyth	mg/L	4 (100%)	3 (100%)
Bismuth Boron	mg/L mg/L	4 (100%) 4 (100%)	3 (100%) 3 (100%)
Cadmium	mg/L	4 (100%)	-
Calcium Chromium	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 3 (100%)
Cobalt	mg/L	4 (100%)	3 (100%)
Copper Iron	mg/L mg/L	4 (100%) 4 (100%)	3 (100%) 3 (100%)
Lead	mg/L	4 (100%)	3 (100%)
Lithium Magnesium	mg/L mg/L	4 (100%) 4 (100%)	3 (100%) 4 (100%)
Manganese	mg/L	4 (100%)	3 (100%)
Mercury Molybdenum	mg/L mg/L	4 (100%) 4 (100%)	2 (66.7%)
Nickel	mg/L	4 (100%)	3 (100%)
Potassium Selenium	mg/L mg/L	4 (100%) 4 (100%)	4 (100%) 3 (100%)
Silicon	mg/L	4 (100%)	3 (100%)
Silver Sodium	mg/L mg/L	4 (100%) 3 (75%)	3 (100%) 4 (100%)
Strontium	mg/L	4 (100%)	3 (100%)
Sulphur Thallium	mg/L	4 (100%)	3 (100%)
Thallium Tin	mg/L mg/L	4 (100%) 4 (100%)	3 (100%) 3 (100%)
Titanium	mg/L	4 (100%)	3 (100%)
Uranium Vanadium	mg/L mg/L	4 (100%) 4 (100%)	3 (100%) 3 (100%)
vanadium	IIIG/L		3 (100 /01

Notes: Only analytes with at least one result > Laboratory Reporting Limit (LRL) were displayed. Four field blank and four trip blank samples were collected in 2022. "-" = no data available.

Table B.5: Field Blank Evaluation for Selenium Speciation Analyses, LCO LAEMP, 2022

Parameter	Units	Range of LRLs	No. Field Blank Results > LRL
Se(VI) - Selenate	mg/L	0.01	2 (50%)

Notes: LRL = Laboratory Reporting Limit. Four field blank samples were collected in 2022. Only analytes with at least one blank results > LRL were displayed.

 Table B.6: Comparisons of Water Chemistry Duplicates, LCO LAEMP, 2022

Parameter	Unit	RG_LISP24_WS_LAEM P_LCO_2022-12_N	RG_RIVER_WS_LAEM P_LCO_2022-12_N	RPD (%)	RG_LCUT_WS_LAEMP _LCO_2022-09_N	RG_RIVER_WS_LAEM P_LCO_2022-09_N	RPD (%)	RG_LILC3_WS_LAEMP _LCO_2022-07_N	RG_RIVER_WS_LAEM P_LCO_2022-07_NP	RPD (%)	RG_SLINE_WS_LAEMP _LCO_2022-04_NP	RG_RIVER_WS_LAEM P_LCO_2022-04_NP	RPD (%)
Physical Tests					•								
Conductivity	μS/cm	930	927	0.323	990	986	0.405	665	668	0.450	324	325	0.308
Acidity (as CaCO ₃)	mg/L	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0	<2.0	<2.0	0
Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	189	184	2.68	225	231	2.63	184	182	1.09	138	135	2.20
Alkalinity, Bicarbonate (as HCO ₃)	mg/L	231	225	2.63	274	282	2.88	224	222	0.897	168	165	1.80
Alkalinity, Carbonate (as CO ₃)	mg/L	8	8.5	6.06	<1.0	<1.0	0	<1.0	<1.0	0	3.2	3.4	6.06
Alkalinity, Carbonate (as CaCO ₃)	mg/L	13.4	14.2	5.80	<1.0	<1.0	0	<1.0	<1.0	0	5.4	5.6	3.64
Alkalinity, Hydroxide (as CaCO ₃)	mg/L	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0
Alkalinity, Hydroxide (as OH)	mg/L	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0	<1.0	<1.0	0
Alkalinity, Total (as CaCO ₃)	mg/L	203	199	1.99	225	231	2.63	184	182	1.09	143	141	1.41
Hardness (as CaCO ₃), Dissolved	mg/L	508	531	4.43	540	535	0.930	375	370	1.34	183	182	0.548
Oxidation-Reduction Potential (ORP)	mV	413	416	0.724	283	281	0.709	446	386	14.4	358	348	2.83
pH	pH units	8.41	8.41	0	8.22	8.21	0.122	8.04	8.04	0	201	194	3.54
Solids, Total Dissolved (TDS)	mg/L	678	672	0.889	761	743	2.39	496	488	1.63	3.2	8.9	94.2
Solids, Total Suspended (TSS)	mg/L	<1.0	<1.0	0	5.4	<1.0	138	<1.0	<1.0	0	2.96	5.4	58.4
Turbidity	NTU	0.18	0.17	5.71	0.22	0.19	14.6	0.14	0.22	44.4	8.46	8.47	0.118
Anions And Nutrients													
Total Kjeldahl Nitrogen (TKN)	mg/L	1.48	0.863	52.7	1.34	<0.500	91.3	1.24	0.629	65.4	<0.0050	<0.0050	0
Ammonia, Total (as N)	mg/L	<0.0050	<0.0050	0	<0.0050	<0.0050	0	<0.0050	0.023	129	<0.050	<0.050	0
Bromide	mg/L	<0.050	<0.250	133	<0.250	<0.250	0	<0.050	<0.050	0	0.26	0.24	8.00
Chloride	mg/L	15.2	15.4	1.31	9.26	9.33	0.753	5.24	5.12	2.32	0.293	0.296	1.02
Fluoride	mg/L	0.198	0.201	1.50	0.21	0.218	3.74	0.183	0.176	3.90	0.087	0.068	24.5
Nitrate (as N)	mg/L	8.5	8.7	2.33	14.2	14.3	0.702	7.51	7.47	0.534	0.0742	0.0658	12.0
Nitrite (as N)	mg/L	0.0021	<0.0050	81.7	<0.0050	<0.0050	0	0.0022	0.0025	12.8	0.0011	<0.0010	9.52
Orthophosphate, Dissolved (as P)	mg/L	0.0022	0.0022	0	0.0023	0.0032	32.7	<0.0010	<0.0010	0	<0.0010	<0.0010	0
Phosphorus, Total	mg/L	0.0031	0.0021	38.5	0.0028	0.0022	24.0	0.0024	0.0023	4.26	0.0095	0.0088	7.65
Sulfate (as SO ₄)	mg/L	296	305	3.00	308	307	0.325	170	168	1.18	37	37.2	0.539
Organic / Inorganic Carbon													
Carbon, Dissolved Organic (DOC)	mg/L	<0.50	<0.50	0	<0.50	<0.50	0	<0.50	<0.50	0	1.98	1.09	58.0
Carbon, Total Organic (TOC)	mg/L	<0.50	<0.50	0	<0.50	<0.50	0	<0.50	<0.50	0	1.92	0.95	67.6

Value did not meet the data quality objective of ≤ 30% Relative Percent Difference (RPD).

Notes: LRL = Laboratory Reporting Limit. If one result in a duplicate pair was below the LRL, RPD was not calculated using the LRL in place of the value below detection results. RPD was not calculated if both results were < LRL. "-" indicates that the RPD was not calculated.

 Table B.6: Comparisons of Water Chemistry Duplicates, LCO LAEMP, 2022

Parameter	Unit	RG_LISP24_WS_LAEM P_LCO_2022-12_N	RG_RIVER_WS_LAEM P_LCO_2022-12_N	RPD (%)	RG_LCUT_WS_LAEMP _LCO_2022-09_N	RG_RIVER_WS_LAEM P_LCO_2022-09_N	RPD (%)	RG_LILC3_WS_LAEMP _LCO_2022-07_N	RG_RIVER_WS_LAEM P_LCO_2022-07_NP	RPD (%)	RG_SLINE_WS_LAEMP _LCO_2022-04_NP	RG_RIVER_WS_LAEM P_LCO_2022-04_NP	RPD (%)
Total Metals							T	1	T		T	T	ı
Aluminum	mg/L	0.0042	0.003	33.3	0.0044	0.005	12.8	0.0038	0.0046	19.0	0.0443	0.0528	17.5
Antimony	mg/L	0.00026	0.00026	0	0.00033	0.00034	2.99	0.00028	0.0003	6.90	<0.00010	<0.00010	0
Arsenic	mg/L	0.00013	0.00012	8.00	0.00013	0.00017	26.7	0.00013	0.00014	7.41	0.00016	0.00017	6.06
Barium	mg/L	0.0569	0.0552	3.03	0.0542	0.055	1.47	0.0338	0.0328	3.00	0.0392	0.0408	4.00
Beryllium	μg/L	<0.020	<0.020	0	<0.020	<0.020	0	<0.020	<0.020	0	<0.020	<0.020	0
Bismuth	mg/L	<0.000050	<0.000050	0	<0.000050	<0.000050	0	<0.000050	<0.000050	0	<0.000050	<0.000050	0
Boron	mg/L	0.015	0.015	0	0.02	0.021	4.88	0.013	0.013	0	<0.010	<0.010	0
Cadmium	μg/L	0.171	0.16	6.65	0.514	0.508	1.17	0.485	0.46	5.29	0.021	0.0199	5.38
Calcium	mg/L	121	120	0.830	114	114	0	81.5	84.3	3.38	49.1	48.5	1.23
Chromium	mg/L	0.00015	0.00012	22.2	0.0002	0.00011	58.1	0.00014	0.00014	0	0.00022	0.00023	4.44
Cobalt	μg/L	<0.10	<0.10	0	<0.10	<0.10	0	<0.10	<0.10	0	<0.10	<0.10	0
Copper	mg/L	<0.00050	<0.00050	0	<0.00050	<0.00050	0	<0.00050	<0.00050	0	<0.00050	<0.00050	0
Iron	mg/L	0.016	0.017	6.06	<0.010	<0.010	0	<0.010	<0.010	0	0.045	0.052	14.4
Lead	mg/L	<0.000050	<0.000050	0	<0.000050	<0.000050	0	<0.000050	<0.000050	0	0.000052	0.000057	9.17
Lithium	mg/L	0.0504	0.0499	0.997	0.0734	0.0717	2.34	0.0369	0.0379	2.67	0.0039	0.0038	2.60
Magnesium	mg/L	62.2	61.7	0.807	57.6	58.2	1.04	37	38	2.67	14.8	15.3	3.32
Manganese	mg/L	0.00875	0.00933	6.42	0.0002	0.00015	28.6	0.00254	0.00243	4.43	0.00236	0.00258	8.91
Mercury	mg/L	<0.0000050	<0.000050	0	<0.0000050	<0.000050	0	<0.0000050	<0.000050	0	0.00078	0.00086	9.76
Molybdenum	mg/L	0.00302	0.00311	2.94	0.00176	0.00171	2.88	0.00172	0.00165	4.15	0.000954	0.000984	3.10
Nickel	mg/L	0.00642	0.00647	0.776	0.0125	0.0125	0	0.00898	0.0087	3.17	<0.00050	<0.00050	0
Potassium	mg/L	1.72	1.7	1.17	1.83	1.83	0	1.5	1.47	2.02	0.402	0.413	2.70
Selenium	μg/L	41.5	42.6	2.62	62.4	62.7	0.480	43.5	42.6	2.09	1.22	1.27	4.02
Silicon	mg/L	2.32	2.24	3.51	2.24	2.26	0.889	2.18	2.04	6.64	2.18	2.27	4.04
Silver	mg/L	<0.000010	<0.000010	0	<0.000010	<0.000010	0	<0.000010	<0.000010	0	<0.000010	<0.000010	0
Sodium	mg/L	9.41	9.47	0.636	10.1	10	0.995	5.56	5.66	1.78	0.817	0.819	0.244
Strontium	mg/L	0.212	0.222	4.61	0.244	0.24	1.65	0.182	0.174	4.49	0.159	0.162	1.87
Sulfur	mg/L	118	116	1.71	112	111	0.897	65	65.4	0.613	14	14.4	2.82
Thallium	mg/L	<0.000010	<0.000010	0	0.000018	0.000019	5.41	0.000013	0.000014	7.41	<0.000010	<0.000010	0
Tin	mg/L	<0.00010	<0.00010	0	<0.00010	<0.00010	0	<0.00010	<0.00010	0	<0.00010	<0.00010	0
Titanium	mg/L	<0.00030	<0.00030	0	<0.00030	<0.00030	0	<0.00030	<0.00030	0	<0.00090	0.00094	0.805
Uranium	mg/L	0.00433	0.00426	1.63	0.00391	0.00401	2.53	0.00307	0.003	2.31	0.00144	0.00147	2.06
Vanadium	mg/L	<0.00050	<0.00050	0	<0.00050	<0.00050	0	<0.00050	<0.00050	0	<0.00050	<0.00050	0
Zinc	mg/L	0.0053	0.006	12.4	0.0204	0.0206	0.976	0.0209	0.0193	7.96	0.0034	0.0039	13.7

Value did not meet the data quality objective of ≤ 30% Relative Percent Difference (RPD).

Notes: LRL = Laboratory Reporting Limit. If one result in a duplicate pair was below the LRL, RPD was not calculated using the LRL in place of the value below detection results. RPD was not calculated if both results were < LRL. "-" indicates that the RPD was not calculated.

 Table B.6: Comparisons of Water Chemistry Duplicates, LCO LAEMP, 2022

Parameter	Unit	RG_LISP24_WS_LAEM P_LCO_2022-12_N	RG_RIVER_WS_LAEM P_LCO_2022-12_N	RPD (%)	RG_LCUT_WS_LAEMP _LCO_2022-09_N	RG_RIVER_WS_LAEM P_LCO_2022-09_N	RPD (%)	RG_LILC3_WS_LAEMP _LCO_2022-07_N	RG_RIVER_WS_LAEM P_LCO_2022-07_NP	RPD (%)	RG_SLINE_WS_LAEMP _LCO_2022-04_NP	RG_RIVER_WS_LAEM P_LCO_2022-04_NP	RPD (%)
Dissolved Metals		_											
Aluminum	mg/L	<0.0010	<0.0010	0	<0.0010	<0.0010	0	0.0025	0.0011	77.8	0.0021	0.0014	40.0
Antimony	mg/L	0.00025	0.00025	0	0.00036	0.00035	2.82	0.00028	0.00028	0	<0.00010	<0.00010	0
Arsenic	mg/L	0.00013	<0.00010	26.1	<0.00010	<0.00010	0	0.00011	0.00011	0	0.00012	0.00011	8.70
Barium	mg/L	0.0528	0.0574	8.35	0.0573	0.0578	0.869	0.031	0.0315	1.60	0.0386	0.0379	1.83
Beryllium	μg/L	<0.020	<0.020	0	<0.020	<0.020	0	<0.020	<0.020	0	<0.020	<0.020	0
Bismuth	mg/L	<0.000050	<0.000050	0	<0.000050	<0.000050	0	<0.000050	<0.000050	0	<0.000050	<0.000050	0
Boron	mg/L	0.015	0.015	0	0.019	0.02	5.13	0.013	0.013	0	<0.010	<0.010	0
Cadmium	μg/L	0.168	0.159	5.50	0.53	0.554	4.43	0.474	0.476	0.421	0.0138	0.0137	0.727
Calcium	mg/L	112	115	2.64	118	117	0.851	85.4	84.5	1.06	49.1	49	0.204
Chromium	mg/L	<0.00010	0.00016	46.2	0.00012	0.00012	0	0.00012	0.00012	0	0.00016	0.00016	0
Cobalt	μg/L	<0.10	<0.10	0	<0.10	<0.10	0	<0.10	<0.10	0	<0.10	<0.10	0
Copper	mg/L	0.00021	0.0002	4.88	0.00034	0.0004	16.2	0.00055	0.00048	13.6	0.00043	<0.00020	73.0
Iron	mg/L	<0.010	<0.010	0	<0.010	<0.010	0	<0.010	<0.010	0	<0.010	<0.010	0
Lead	mg/L	<0.000050	<0.000050	0	<0.000050	<0.000050	0	<0.000050	<0.000050	0	<0.000050	<0.000050	0
Lithium	mg/L	0.0482	0.0498	3.27	0.0712	0.0724	1.67	0.0378	0.0389	2.87	0.0039	0.0038	2.60
Magnesium	mg/L	55.5	59.2	6.45	59.5	59	0.844	39.2	38.5	1.80	14.6	14.5	0.687
Manganese	mg/L	0.00627	0.0068	8.11	0.00012	0.00013	8.00	0.00209	0.00207	0.962	0.00013	0.00011	16.7
Mercury	mg/L	<0.0000050	<0.000050	0	<0.0000050	<0.0000050	0	<0.0000050	<0.000050	0	<0.000050	<0.0000050	0
Molybdenum	mg/L	0.00305	0.00308	0.979	0.00184	0.00181	1.64	0.00171	0.00171	0	0.00116	0.00104	10.9
Nickel	mg/L	0.00566	0.00604	6.50	0.0121	0.0124	2.45	0.0086	0.00879	2.19	<0.00050	<0.00050	0
Potassium	mg/L	1.54	1.69	9.29	1.84	1.81	1.64	1.41	1.4	0.712	0.394	0.383	2.83
Selenium	μg/L	49.2	49	0.407	72.8	71.9	1.24	41.3	40.9	0.973	1.19	1.16	2.55
Silicon	mg/L	2.26	2.31	2.19	2.29	2.2	4.01	1.93	1.92	0.519	2.02	2.09	3.41
Silver	mg/L	<0.000010	<0.000010	0	<0.00010	<0.000010	0	<0.000010	<0.000010	0	<0.000010	<0.000010	0
Sodium	mg/L	8.56	9.27	7.96	9.78	9.83	0.510	5.65	5.45	3.60	0.793	0.78	1.65
Strontium	mg/L	0.208	0.216	3.77	0.254	0.249	1.99	0.174	0.174	0	0.156	0.157	0.639
Sulfur	mg/L	134	127	5.36	110	106	3.70	58.7	58	1.20	13.5	13.7	1.47
Thallium	mg/L	<0.000010	<0.000010	0	0.00002	0.000021	4.88	0.000014	0.000013	7.41	<0.000010	<0.000010	0
Tin	mg/L	<0.00010	<0.00010	0	<0.00010	<0.00010	0	<0.00010	<0.00010	0	<0.00010	<0.00010	0
Titanium	mg/L	<0.00030	<0.00030	0	<0.00030	<0.00030	0	<0.00030	<0.00030	0	<0.00030	<0.00030	0
Uranium	mg/L	0.00413	0.00419	1.44	0.00413	0.00412	0.242	0.00296	0.00291	1.70	0.00136	0.00137	0.733
Vanadium	mg/L	<0.00050	<0.00050	0	<0.00050	<0.00050	0	<0.00050	<0.00050	0	<0.00050	<0.00050	0
Zinc	mg/L	0.0052	0.0055	5.61	0.022	0.0214	2.76	0.0192	0.0198	3.08	0.0036	0.002	57.1

Value did not meet the data quality objective of ≤ 30% Relative Percent Difference (RPD).

Notes: LRL = Laboratory Reporting Limit. If one result in a duplicate pair was below the LRL, RPD was not calculated using the LRL in place of the value below detection results. RPD was not calculated if both results were < LRL. "-" indicates that the RPD was not calculated.

suspended solids, and three RPDs for total Kjeldahl nitrogen (Table B.6). Of the above RPDs, several resulted from one concentration in the pair being below the LRL, where greater variability is expected. As a relatively low percentage of RPDs were greater than 30% and most of those analytes were of low concern in regard to data interpretation, field sampling precision was considered good.

Four sets of field duplicate samples were collected to assess field sampling precision for selenium speciation (Table B.7). RPDs could not be calculated for several selenium speciation duplicate samples as the analyte concentrations in both samples were below the LRL. Of the comparisons that could be calculated, did three not meet DQO of 30% (methylseleninic acid; Table B.7). Greater variability was expected with this comparison since one sample concentration in one duplicate sample set was below the LRL. As these results only represent 15.0% of field duplicate comparisons, field sampling precision was overall considered good. However, as these results represent 75.0% of comparisons for methylseleninic acid, variation in sampling will be taken into account during data interpretation for methylseleninic acid.

Overall, as very few calculable RPDs exceeded the DQO of 30%, laboratory and field precision were considered acceptable.

B2.4 Data Accuracy

Data accuracy within the ALS laboratory reports was evaluated based on results of 335 Laboratory Control Samples (LCS) and 42 Matrix Spike (MS) samples (Appendix H). All 1,470 LCS analyte results and 1,283 MS analyte results met the laboratory DQO. Recovery could not be calculated in several MS samples as background levels were greater than or equal to the initial spike concentration. However, as several other QC tests were successful and matrix spike issues due to high background presence is not uncommon, MS recovery not being calculable in several MS samples was not of great concern. Overall, the accuracy achieved by the laboratory in this study was considered good.

Data accuracy within the BAL laboratory reports was evaluated based on results of 19 LCS, 14 MS samples, 14 Matrix Spike Duplicate (MSD) samples, and 14 Reference Material (RM) samples (Appendix H). All 39 LCS, 26 MS, 26 MSD, and 14 RM individual analyte results met the laboratory DQO. Therefore, the accuracy achieved by the laboratory in this study was considered excellent.

B2.5 Hold Times

 Table B.7: Comparisons of Selenium Speciation Duplicates, LCO LAEMP, 2022

Parameter	Unit	RG_SLINE_WS_ LAEMP_LCO_2022- 04_NP	RG_RIVER_WS_LAEM P_LCO_2022-04_NP	RPD (%)	RG_LILC3_WS_LAEM P_LCO_2022- 07_NP_NAL	RG_RIVER_WS_LAEM P_LCO_2022- 07_NP_NAL	RPD (%)	RG_LCUT_WS_LAEM P_LCO_2022-09_N	RG_RIVER_WS_LAEM P_LCO_2022-09_NP	RPD (%)	RG_LISP24_WS_LCO_ 2022-12_N_	RG_RIVER_WS_LCO_ 2022-12_NP	RPD (%)
Total Selenium	μg/L	1.19	1.37	14.1	34.5	35.8	3.7	60.8	61.2	0.7	31.9	34.2	6.96
Dissolved Selenium	μg/L	1.14	1.18	3.45	35.2	35.1	0.28	61.2	64.5	5.25	33	33.3	0.905
Dimethylselenoxide	μg/L	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0
MeSe(IV) - Methylseleninic Acid	μg/L	<0.01	<0.01	0	0.004	0.006	40.0	0.007	<0.01	35.3	0.007	0.01	35.3
Methaneselenonic Acid	μg/L	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0	0.016	0.016	0
Se(IV) - Selenite	μg/L	0.031	0.028	10.2	0.068	0.079	15.0	0.083	0.077	7.5	0.193	0.202	4.56
Se(VI) - Selenate	μg/L	1.03	1.01	1.96	30.5	33.2	8.48	63	56.7	10.5	28.7	31.8	10.2
SeCN - Selenocyanate	μg/L	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0
SeMe - Selenomethionine	μg/L	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0
Selenosulfate	μg/L	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0
Unknown Selenium Species	μg/L	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0

Value did not meet the data quality objective of ≤ 30% Relative Percent Difference (RPD).

Notes: LRL = Laboratory Reporting Limit. If one result in a duplicate pair was below the LRL, RPD was not calculated using the LRL in place of the value below detection results. RPD was not calculated if both results were < LRL. "-" indicates that the RPD was not calculated.

The recommended hold times for pH and oxidation-reduction potential (ORP) analyses (0.25 hrs) were exceeded in all samples collected. As *in situ* pH was used for data interpretation, these pH exceedances had no impact on data interpretability. Additionally, ORP is not used a great extent in any analyses. The hold time for turbidity was exceeded by one day in one sample and by two days in five samples. Hold times for dissolved orthophosphate and nitrite were exceeded by one day in one and two samples, respectively, and by two days in five samples. The hold time for nitrate was exceeded by one day in two samples, by two days in seven samples, and by one day in three samples. None of the above hold time exceedances are expected to impact conclusions derived from the data but will still be taken into consideration during data interpretation. All hold times were met for selenium speciation samples. Overall, few samples exceeded hold times, and thus hold time exceedances are expected to have little effect on the interpretation of results.

B2.6 Other Concerns

Total Kjeldahl nitrogen (TKN) concentrations in several water samples may have been biased low due to high nitrate concentrations (see laboratory reports CG2212276, CG2212408, CG2212665, and CG2212821 in Appendix H). As a result of this, 12 TKN results were below the LRL, which impacted the RPD calculated between two of the field duplicate sample pairs (Table B.6). Overall, lowered and undetectable TKN concentrations are expected to have little effect on the overall interpretation of TKN or other water chemistry results.

B2.7 Data Quality Statement

Water chemistry data collected for the 2022 Line Creek LAEMP were of acceptable quality as characterized by good detectability, appropriate LRLs, minimal evidence of laboratory or field contamination, good laboratory and field precision and accuracy, and few hold time exceedances. Some TKN samples were biased low due to high concentration of nitrate, and this will be considered during data interpretation. Overall, the associated data from ALS and BAL can be used with a high level of confidence in the derivation of conclusions.

B3 BENTHIC INVERTEBRATE COMMUNITY

B3.1 Sub-Sampling Proportions, Precision, and Accuracy

The analytical Cordillera Consulting reports from Inc. (benthic invertebrate community structure; Appendix H) were examined to assess sub-sampling accuracy. For all samples, Canadian Aquatic Biomonitoring Network (CABIN) protocols were followed for subsampling (i.e., identification of a minimum 300 invertebrates), with a minimum of 5% of a sample being assessed. All 30 benthic invertebrate community structure samples were subsampled (Table B.8). The proportion of sub-sampled material ranged from 5 to 20% of the total sample material. Both the precision and accuracy of the sub-samples randomly chosen for sub-sample assessment (n = 3) met the DQO in all sub-samples (20%; Table B.9). Thus, the precision and accuracy for sub-sampling of the benthic invertebrate community samples was considered excellent.

B3.2 Organism Sorting Efficiency

To measure the effectiveness of the sorters, at least 10% of samples were selected at random for resorting analysis by a different sorter (n = 3). Sorting efficiency (i.e., percent recovery) of benthic invertebrate samples was excellent, achieving an average of 100% for the three community structure samples evaluated (Table B.10). Recovery in quality control samples was above the laboratory's DQO (95%), and thus organism sorting efficiency was considered excellent.

B3.3 Taxonomic Identification Accuracy

Cordillera Consulting Inc. performed an internal audit of taxonomic identification for at least 10% of all community structure samples (n = 3; Table B.11). The analysts reported a total identification error rate (TIR) of 0 to 0.270%, a percent difference in enumeration (PDE) of 0 to 0.321%, a percent taxonomic disagreement (PTD) of 0.270 to 0.639%, and a Bray Curtis Dissimilarity Index (BCDI [which is a measure of the differences in identifications between different analysts] of 0.003 to 0.005). The laboratory DQO was based on TIR as per CABIN laboratory methods (< 5% TIR; Environment Canada 2014). As TIR was below 5% for all samples examined, the taxonomic accuracy of the analysis was considered excellent.

B3.4 Data Quality Statement

Benthic invertebrate community data collected for the present study were of excellent quality as characterized by excellent sorting efficiency and excellent taxonomic identification accuracy. Therefore, the associated data can be used with a high level of

Table B.8: Percent of Sample Sorted and the Total Number of Benthic Invertebrates Recovered from the Sampled Fraction, LCO LAEMP, 2022

Sample ID	Laboratory ID	% Sampled	# Invertebrates
RG_FO23_BIC-1_2022-09-09_N	CC231107	5	317
RG_FO23_BIC-2_2022-09-09_N	CC231108	20	471
RG_FO23_BIC-3_2022-09-09_N	CC231109	7	327
RG_FO23_BIC-4_2022-09-09_N	CC231110	10	318
RG_FO23_BIC-5_2022-09-10_N	CC231111	5	326
RG_FRUL_BIC-1_2022-09-10_N	CC231112	6	352
RG_FRUL_BIC-2_2022-09-10_N	CC231113	8	329
RG_FRUL_BIC-3_2022-09-10_N	CC231114	8	334
RG_LCUT_BIC-1_2022-09-15_N	CC231115	5	425
RG_LCUT_BIC-2_2022-09-15_N	CC231116	5	451
RG_LCUT_BIC-3_2022-09-15_N	CC231117	5	370
RG_LIDCOM_BIC-1_2022-09-12_N	CC231118	5	1,113
RG_LIDSL_BIC-1_2022-09-13_N	CC231119	5	560
RG_LIDSL_BIC-2_2022-09-13_N	CC231120	5	351
RG_LIDSL_BIC-3_2022-09-13_N	CC231121	6	331
RG_LIDSL_BIC-4_2022-09-14_N	CC231122	6	329
RG_LIDSL_BIC-5_2022-09-14_N	CC231123	5	364
RG_LILC3_BIC-1_2022-09-08_N	CC231124	5	1,125
RG_LILC3_BIC-2_2022-09-08_N	CC231125	5	743
RG_LILC3_BIC-3_2022-09-08_N	CC231126	10	1,158
RG_SLINE_BIC-1_2022-09-16_N	CC231127	20	351
RG_SLINE_BIC-2_2022-09-16_N	CC231128	5	394
RG_SLINE_BIC-3_2022-09-16_N	CC231129	14	349
RG_LI24_BIC-1_2022-09-17_N	CC231130	9	353
RG_LI24_BIC-2_2022-09-17_N	CC231131	5	313
RG_LI24_BIC-3_2022-09-17_N	CC231132	9	364
RG_LI8_BIC-1_2022-09-17_N	CC231133	5	447
RG_LI8_BIC-2_2022-09-17_N	CC231134	10	338
RG_LI8_BIC-3_2022-09-17_N	CC231135	5	408
RG_LISP24_BIC-1_2022-09-14_N	CC231136	5	348

 Table B.9: Benthic Invertebrate Community Sub-sampling Precision and Accuracy, LCO LAEMP, 2022

Station ID			Organisı	ns in Su	bsample	ı		Precision Error		Accuracy Error	
Samula ID	Laboratory						Total	Min	Max	Min	Max
Sample ID	ID	1	2	3	4	5		(%)	(%)	(%)	(%)
RG_SLINE_BIC-1_2022-09-16_N	CC231127	355	322	313	353	311	1,654	0.6	12.4	2.7	7.3
RG_LISP24_BIC-1_2022-09-14_N	CC231136	349	340	310	335	304	1,638	1.5	12.9	2.3	7.2
RG_FO23_BIC-2_2022-09-09_N	CC231108	469	448	478	547	451	2,393	0.7	18.1	0.1	14.3
								0.90	14.5	1.68	9.60

Table B.10: Benthic Invertebrate Community Sorting Efficiency, LCO LAEMP, 2022

Sample ID	Laboratory ID	Number of Organisms Recovered (Initial Sort)	Number of Organisms in Re-sort	Sorting Efficiency
RG_FO23_BIC-1_2022-09-09_N	CC231107	317	0	100%
RG_LIDSL_BIC-3_2022-09-13_N	CC231121	331	1	100%
RG_SLINE_BIC-3_2022-09-16_N	CC231129	349	4	99%
			Average	100%

Table B.11: Percent Benthic Invertebrate Community Organism Recovery^a, LCO LAEMP, 2022

Sample ID	Laboratory ID	Percent Sampled (%)	Taxa Identified	TIR (%)	PDE (%)	PTD (%)	BCDI
RG_FO23_BIC-3_2022-09-09_N	CC231109	7	328	0	0.153	0.610	0.005
RG_LCUT_BIC-3_2022-09-15_N	CC231117	5	370	0.27	0	0.270	0.003
RG_LI24_BIC-2_2022-09-17_N	CC231131	5	311	0	0.321	0.639	0.003

Notes: TIR = Total Identification Error Rate, PDE = Percent Difference in Enumeration, PTD = Percent Taxonomic Disagreement, BCDI = Bray Curtis Dissimilarity Index to quantify differences in identifications.

^a For error rationale and calculations, refer to Cordillera laboratory report (Appendix H).

confidence in the derivation of conclusions. Quality control procedures were not conducted on benthic invertebrate community structure and density data analyzed by Zeas.

B4 BENTHIC INVERTEBRATE TISSUE CHEMISTRY

B4.1 Laboratory Reporting Limits

Analytical reports of benthic invertebrate tissue metal concentrations from TrichAnalytics (see laboratory reports 2022-331, 2022-364, 2022-401, and 2022-453; Appendix H) were examined to provide an inventory of analyte results below the LRL and to compare the LRLs for these analytes to available benchmarks (Table B.12). All analyte concentrations were consistently above detection limits including selenium, which was the only analyte with an applicable guideline. Therefore, the achieved LRLs were appropriate for this study.

B4.2 Data Accuracy and Precision

Data accuracy and precision were evaluated based on the analysis of 13 CRM samples. All the 377 CRM results met the laboratory DQO. There were 13 titanium results that could not be calculated as the certified concentrations were too close to the reportable detection limit (see laboratory reports in Appendix H). The laboratory accuracy and precision as determined by CRM analyses was considered excellent.

Laboratory precision was also evaluated by duplicate analysis of 20 benthic invertebrate tissue samples (see laboratory reports in Appendix H). All the 498 duplicate results met the laboratory DQO. There were 81 results that were not calculated due to values below the detection limit. Therefore, laboratory precision as determined by duplicate analyses was considered excellent.

B4.3 Data Quality Statement

Benthic invertebrate tissue data collected for the 2022 LCO LAEMP were of good quality as characterized by excellent detectability, appropriate LRLs, and excellent laboratory precision and accuracy. Therefore, the associated data can be used with a good level of confidence in the derivation of conclusions for this study.

Table B.12: Evaluation of Benthic Invertebrate Tissue Laboratory Reporting Limits, LCO LAEMP, 2022

Parameter	Parameter Units		No. Sample Results < LRL		
Arsenic	mg/kg dw	0.355 to 0.545	8 (5.71%)		
Silver	mg/kg dw	0.001	1 (0.71%)		

Notes: Only analytes with at least one result < Laboratory Reporting Limit (LRL) or LRL were above guidelines were displayed. No guidelines exist for any analyte that had at least one result below the LRL. The total number of samples in 2022 (n) was 191. mg/kg dw = milligrams per kilogram dry weight.

B5 DATA QUALITY REVIEW SUMMARY

Overall, the quality of the data collected for this project was considered acceptable for the derivation of conclusions associated with the objectives of the 2022 Line Creek LAEMP.

B6 REFERENCES

- Azimuth. 2019. Evaluation of water quality data mercury and methyl mercury in the Elk Valley. Technical Memorandum. March 5th, 2019.
- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2021a. Working Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Water Quality Guideline Series, WQG-08. Water Protection and Sustainability Branch, Province of British Columbia, Victoria, B.C.
- BCMOECCS. 2021b. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Water Protection and Sustainability Branch, Province of British Columbia, Victoria, B.C.
- B.C. Ministry of Water, Land, and Resource, Stewardship, 2023. Aluminum Water Quality Guidelines – Freshwater Aquatic Life. Water Quality Guideline Series, WQG-09-1. Prov. B.C., Victoria B.C.
- Environment Canada. 2014. CABIN (Canadian Aquatic Biomonitoring Network) Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Environment Canada. May 2014.
- Golder. 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July 2014.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2020. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2019 Annual Report. Prepared by Teck Coal Limited. July 31, 2020.

APPENDIX C PRODUCTIVITY

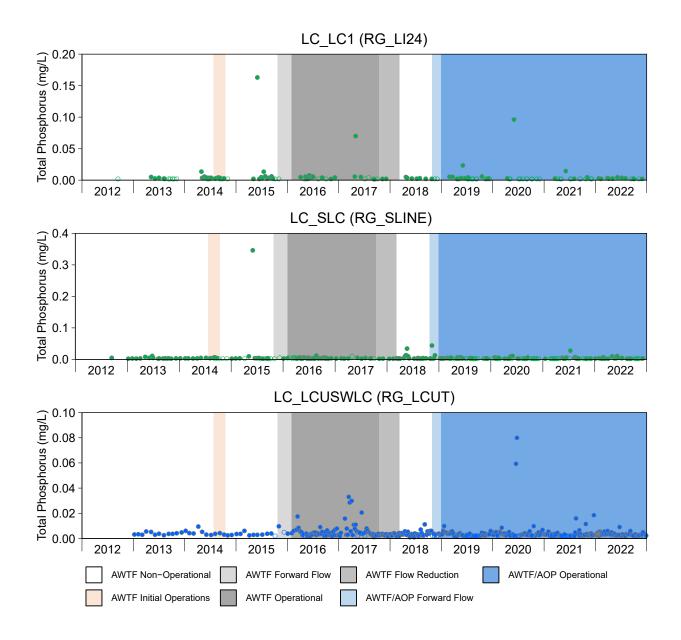


Figure C.1: Time Series Plots for Total Phosphorus from from Line Creek LAEMP Sampling Areas, 2012 to 2022

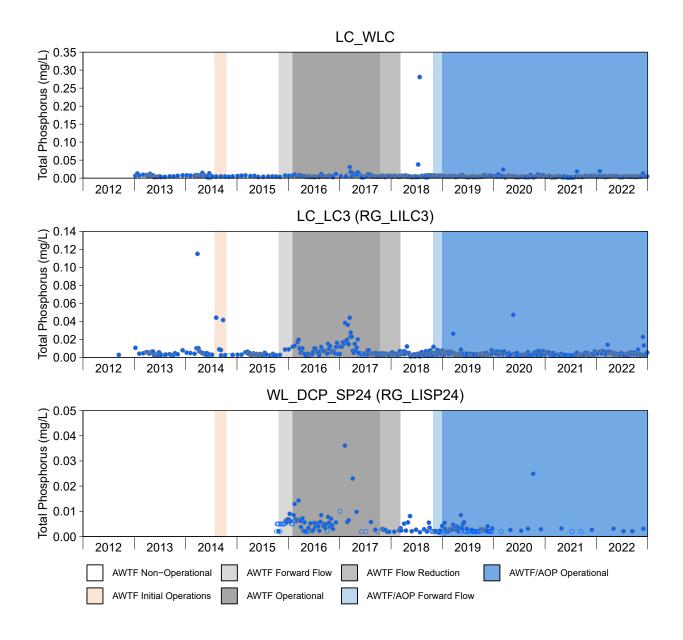


Figure C.1: Time Series Plots for Total Phosphorus from from Line Creek LAEMP Sampling Areas, 2012 to 2022

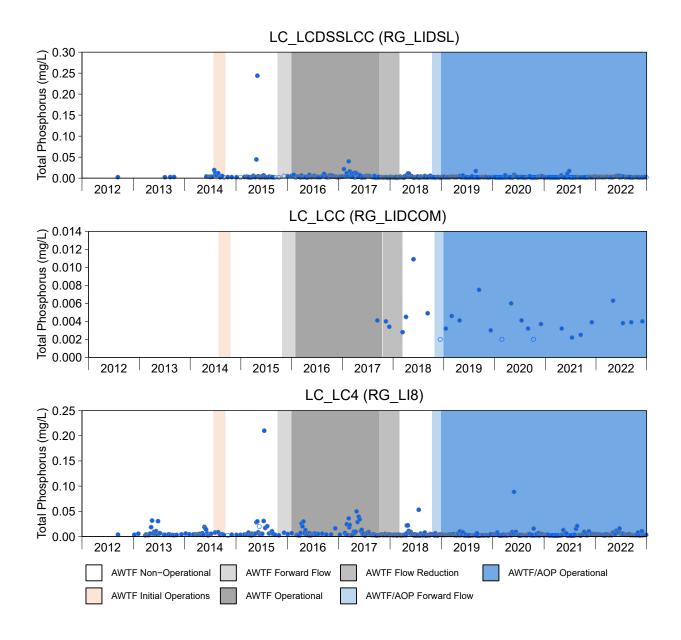


Figure C.1: Time Series Plots for Total Phosphorus from Line Creek LAEMP Sampling Areas, 2012 to 2022

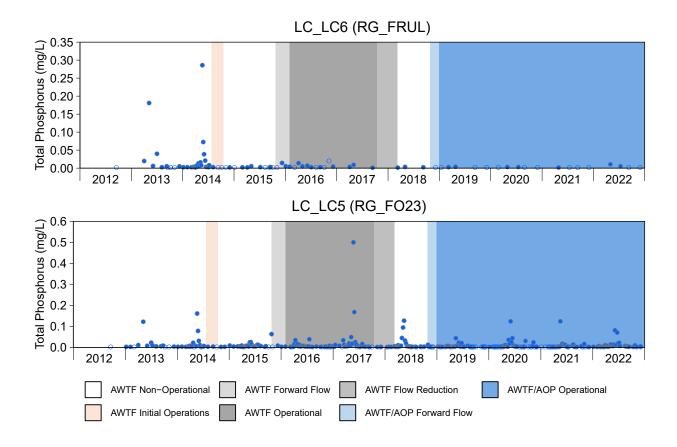


Figure C.1: Time Series Plots for Total Phosphorus from from Line Creek LAEMP Sampling Areas, 2012 to 2022

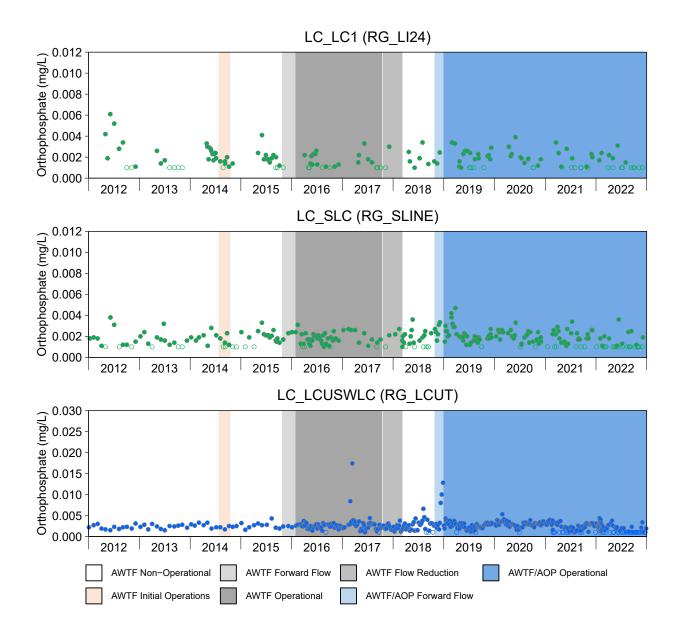


Figure C.2: Time Series Plots for Orthophosphate from from Line Creek LAEMP Sampling Areas, 2012 to 2022

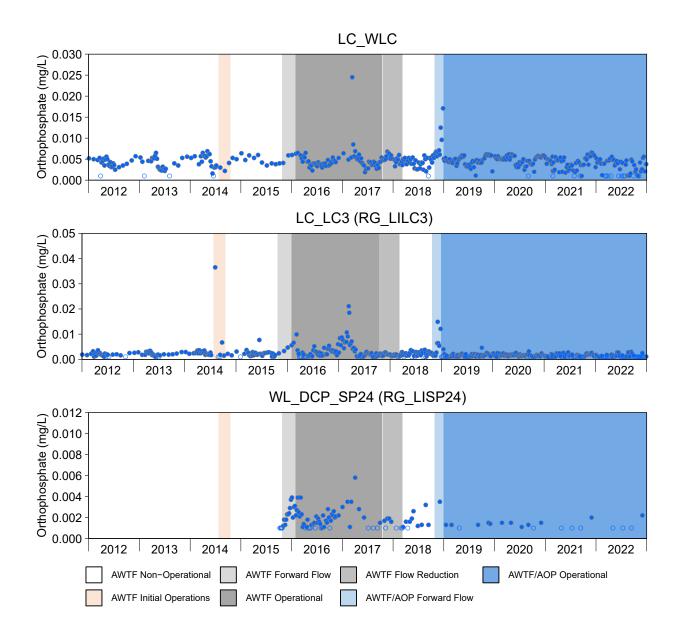


Figure C.2: Time Series Plots for Orthophosphate from from Line Creek LAEMP Sampling Areas, 2012 to 2022



Figure C.2: Time Series Plots for Orthophosphate from from Line Creek LAEMP Sampling Areas, 2012 to 2022

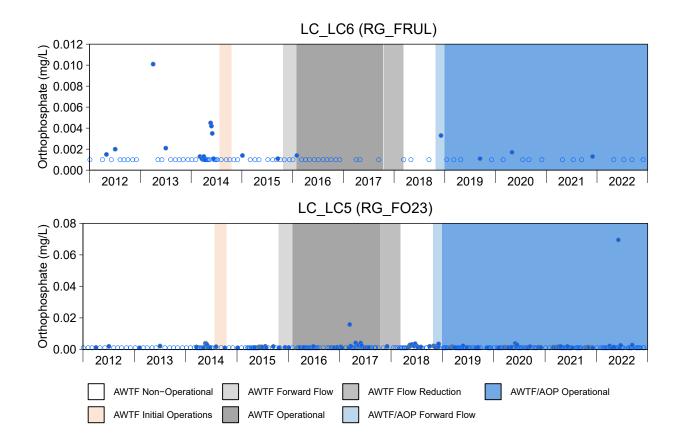


Figure C.2: Time Series Plots for Orthophosphate from from Line Creek LAEMP Sampling Areas, 2012 to 2022

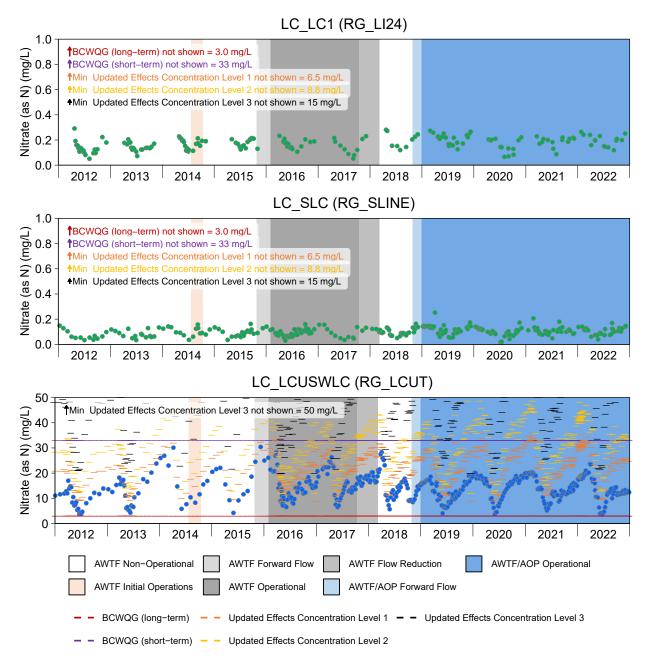


Figure C.3: Time Series Plots for Nitrate from from Line Creek LAEMP Sampling Areas, 2012 to 2022

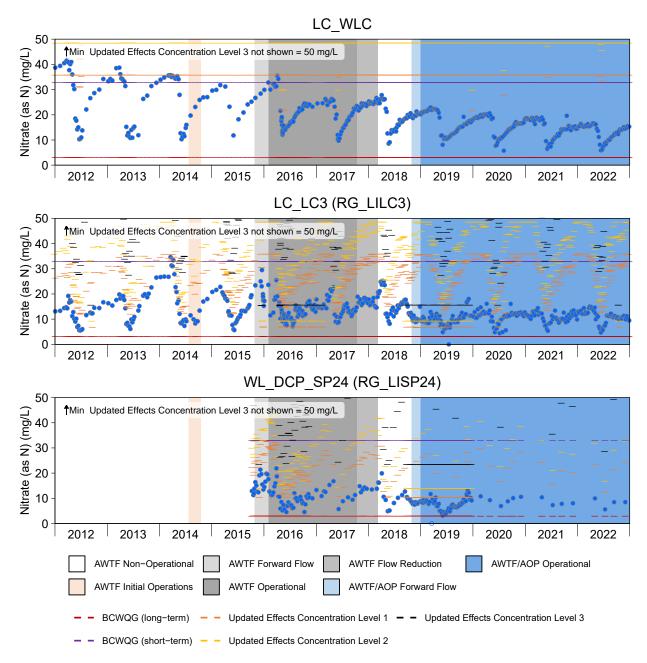


Figure C.3: Time Series Plots for Nitrate from from Line Creek LAEMP Sampling Areas, 2012 to 2022

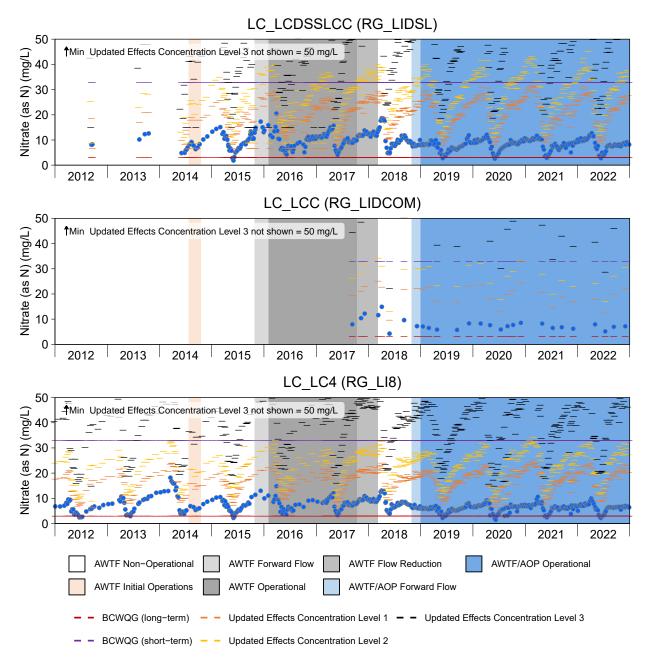


Figure C.3: Time Series Plots for Nitrate from from Line Creek LAEMP Sampling Areas, 2012 to 2022

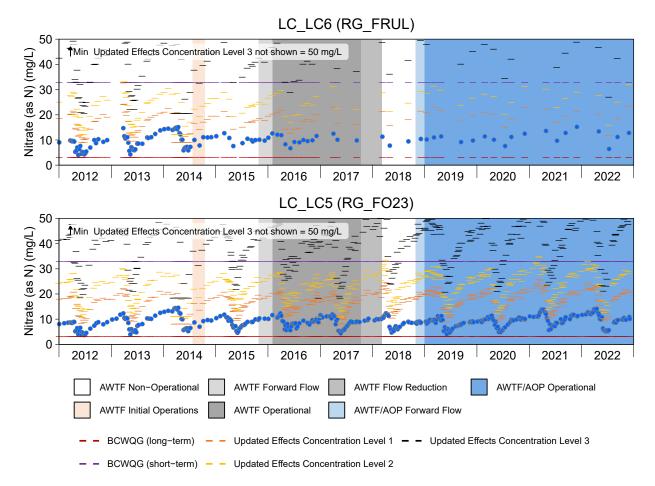


Figure C.3: Time Series Plots for Nitrate from from Line Creek LAEMP Sampling Areas, 2012 to 2022

Figure C.4: Periphyton Coverage and Site Photograph at RG_LI24 (Reference), September 2022

Figure C.4: Periphyton Coverage and Site Photograph at RG_SLINE (Reference), September 2022



Figure C.4: Periphyton Coverage and Site Photograph at RG_LCUT (Exposed), September 2022

Figure C.4: Periphyton Coverage and Site Photograph at RG_LILC3 (Exposed), September 2022

Figure C.4: Periphyton Coverage and Site Photograph at RG_LISP24 (Exposed), September 2022

Figure C.4: Periphyton Coverage and Site Photograph at RG_LIDSL (Exposed), September 2022

Figure C.4: Periphyton Coverage and Site Photograph at RG_LIDCOM (Exposed), September 2022

Figure C.4: Periphyton Coverage and Site Photograph at RG_LI8 (Exposed), September 2022

Figure C.4: Periphyton Coverage and Site Photograph at RG_FRUL (Exposed), September 2022

Figure C.4: Periphyton Coverage and Site Photograph at RG_FO23 (Exposed), September 2022

Note: Site photo was taken looking upstream

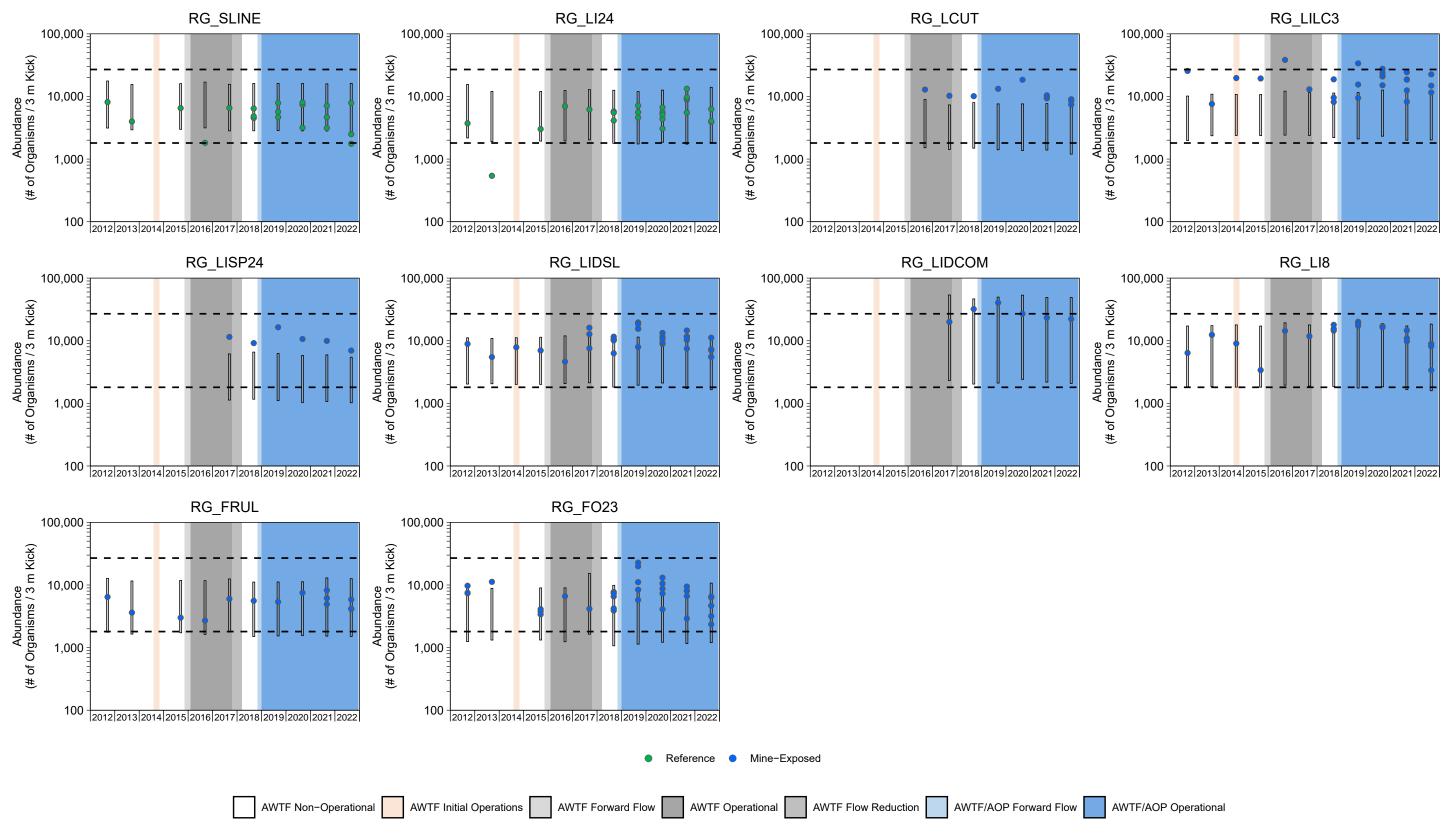


Figure C.5: Benthic Invertebrate Community Abundance (3-minute Kick and Sweep Sampling) from Line Creek LAEMP Sampling Areas, 2012 to 2022

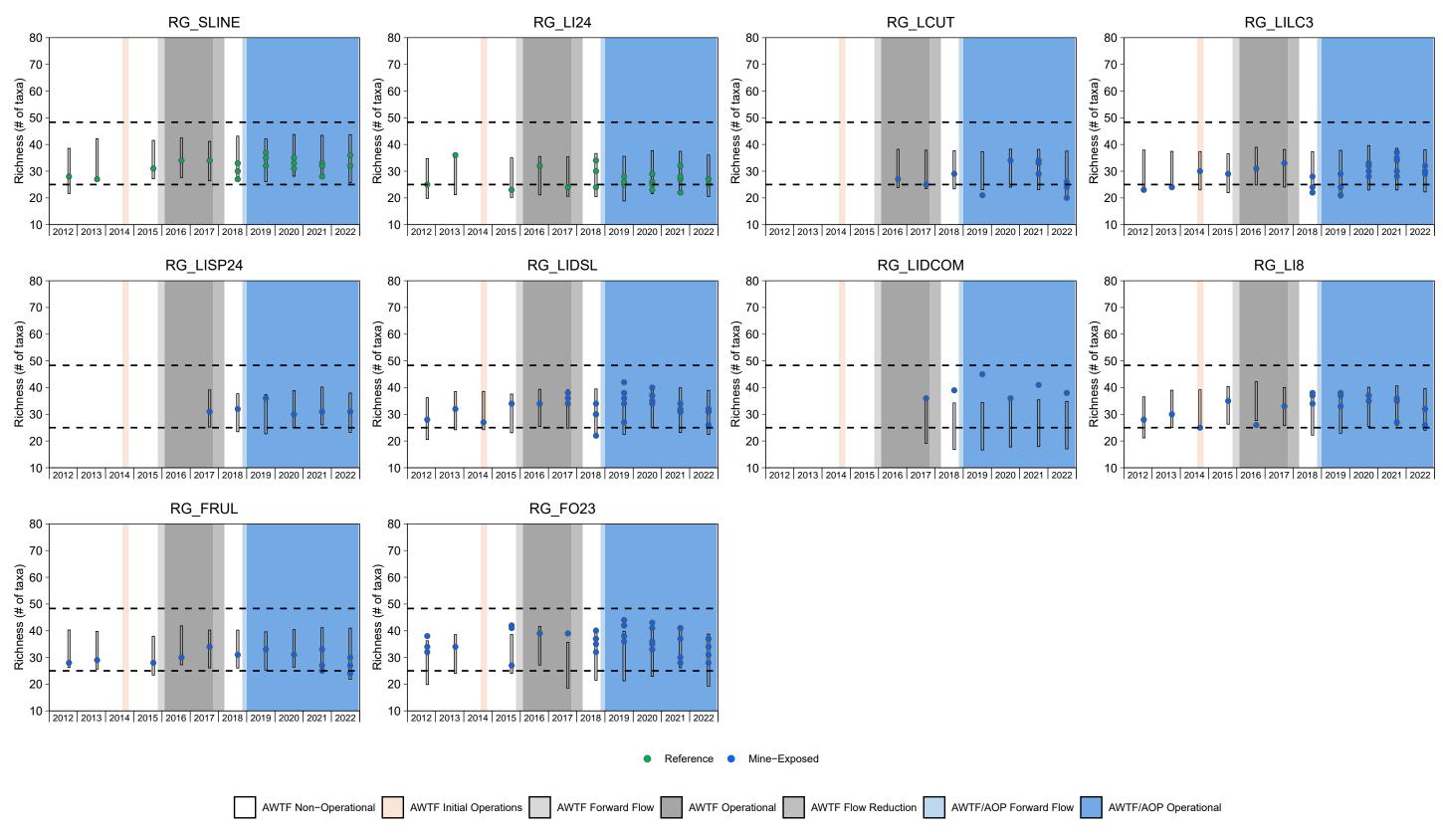


Figure C.6: Benthic Invertebrate Community Richness (Lowest Practical Level; 3-minute Kick and Sweep Sampling) from Line Creek LAEMP Sampling Areas, 2012 to 2022

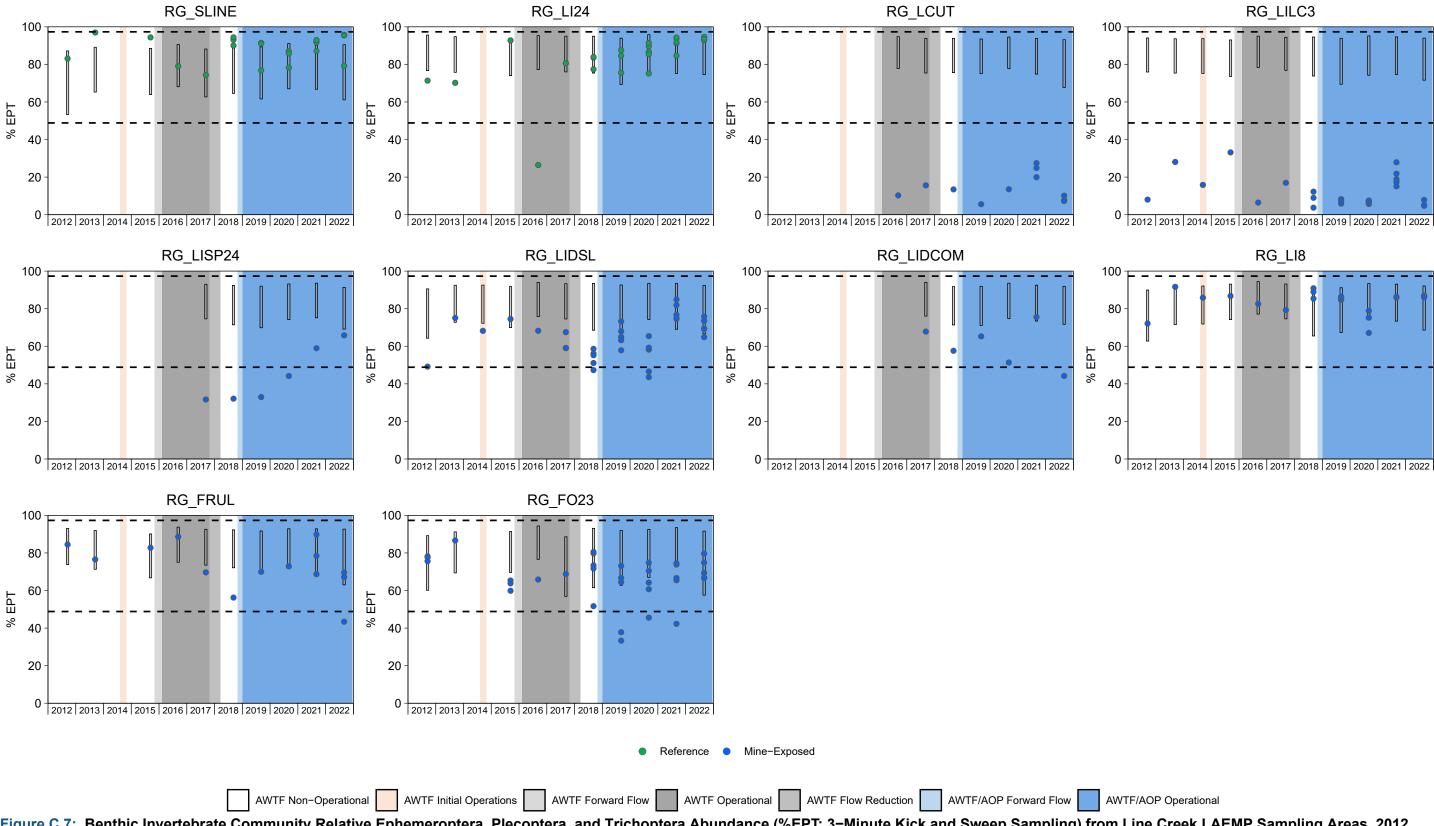


Figure C.7: Benthic Invertebrate Community Relative Ephemeroptera, Plecoptera, and Trichoptera Abundance (%EPT; 3-Minute Kick and Sweep Sampling) from Line Creek LAEMP Sampling Areas, 2012 to 2022

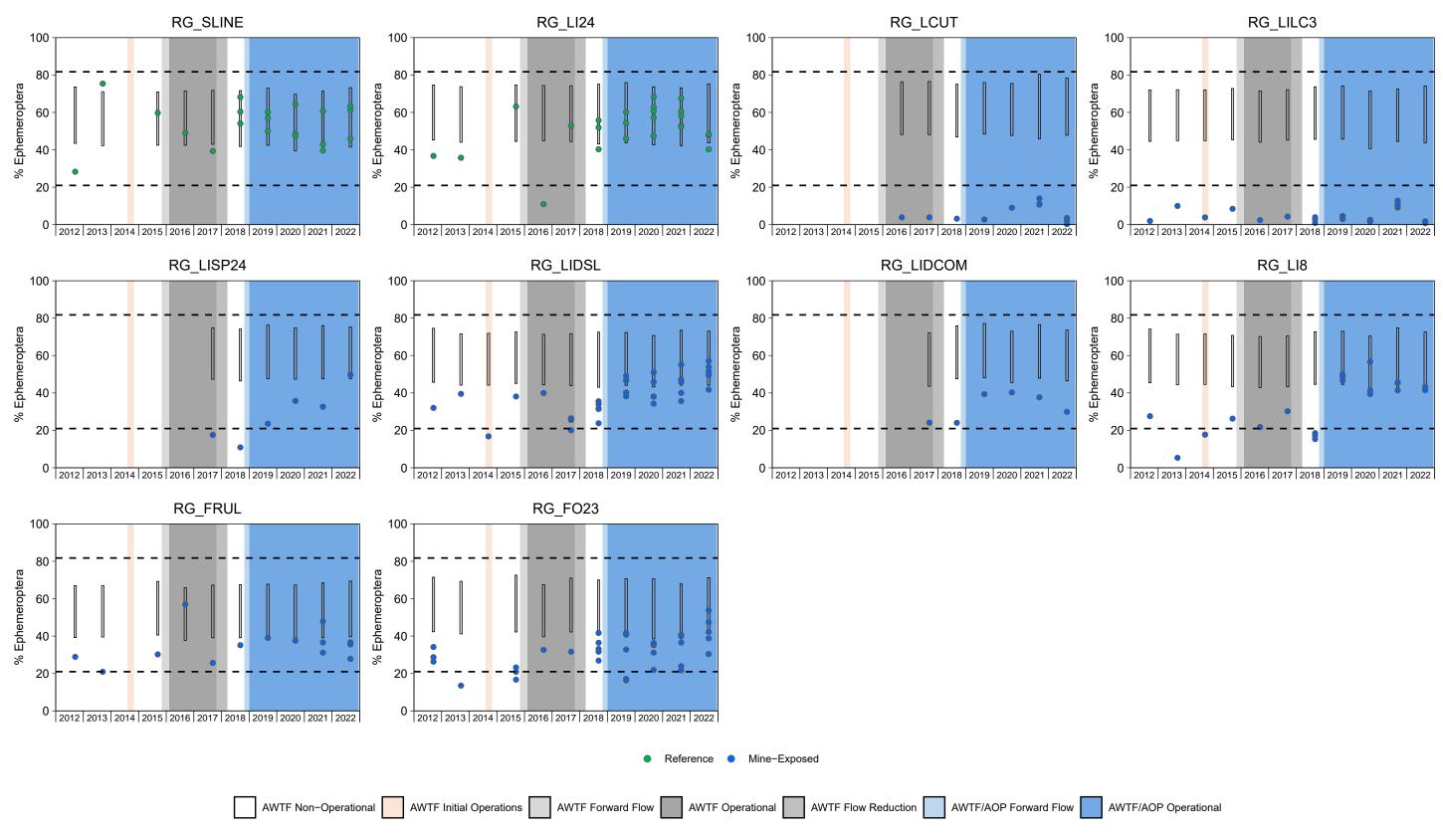


Figure C.8: Benthic Invertebrate Community Relative Ephemeroptera Abundance (%Ephemeroptera; 3-Minute Kick and Sweep Sampling) from Line Creek LAEMP Sampling Areas, 2012 to 2022

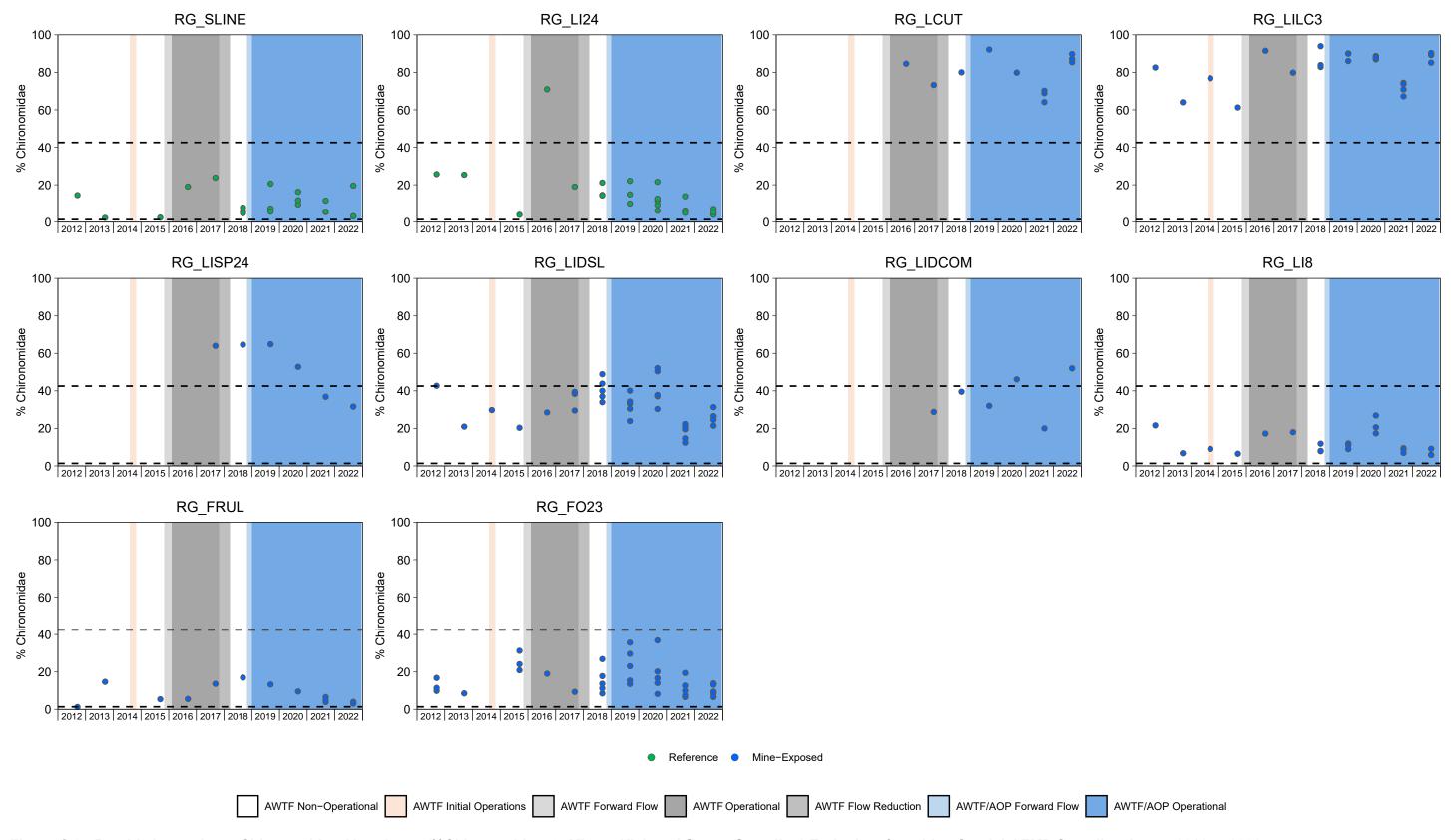


Figure C.9: Benthic Invertebrate Chironomidae Abundance (%Chironomidae; 3-Minute Kick and Sweep Sampling) Endpoints from Line Creek LAEMP Sampling Areas, 2012 to 2022

Notes: Regional normal ranges using percentiles of reference areas from 2012 to 2019 are shown as dashed horizontal lines.

Table C.1: Visual Periphyton Coverage Scores from Line Creek and Fording River, September 2022

Area Type	Biological			Station			Mean	Standard
Area Type	Area	1	2	3	4	5	Wieaii	Deviation
Reference	RG_LI24	2	2	2	2	2	2.0	0.0
Reference	RG_SLINE	2	2	2	2	2	2.0	0.0
	RG_LCUT	3	3	3	2	3	2.8	0.4
	RG_LILC3	3	3	3	3	4	3.2	0.4
	RG_LISP24	2	2	3	3	3	2.6	0.5
Mina Eynaad	RG_LIDSL	2	2	3	2	2	2.2	0.4
Mine-Exposed	RG_LIDCOM	3	3	3	3	3	3.0	0.0
	RG_LI8	3	2	2	2	2	2.2	0.4
	RG_FRUL	1	1	2	1	1	1.2	0.4
	RG_FO23	2	2	2	2	2	2.0	0.0

Notes: Periphyton Coverage Scores (Environment Canada, 2012b):

- 1 = Rocks not slippery, no obvious colour (<0.5mm thick)
- 2 = Rocks slightly slippery, yellow-brown to light green colour (0.5-1mm thick)
- 3 = Rocks have noticeable slippery feel, patches of thicker green to brown algae (1-5mm thick)
- 4 = Rocks are very slippery, numerous clumps (5-20mm thick)
- 5 = Rocks mostly obscured by algae mat, may have long strands (>20mm thick)

Table C.2: Statistical Comparisons of Total Benthic Invertebrate Biomass (Hess Samples) Over Time and Relative to Reference (RG_SLINE and RG_LI24) for RG_LIDSL and RG_LILC3, 2014 to 2022

Area	Comparison	Term	DF	F-Statistic	D value				Comparis	sons Amo	ong Years	;		
Alea	Companison	161111	DI	r-Statistic	r-value	2014	2015	2016	2017	2018	2019	2020	2021	2022
		RG_LILC3 over	time			Α	Α	Α	Α	Α	Α	Α	Α	Α
		Year	8	3.70	<0.001									
	DC LILC2 va	CI	1	1,024	<0.001									
RG_LILC3	RG_LILC3 vs RG_SLINE and RG_LI24	Area(CI)	1	17.8	<0.001									
	over time	Cl×Year	8	0.797	0.606	Α	Α	Α	Α	Α	Α	Α	Α	Α
		Area(CI)×Year	7	1.40	0.210		•			•				
		Error	172	-	-									
		RG_LIDSL over	time			Α	Α	Α	Α	Α	Α	Α	Α	Α
		Year	8	2.27	0.025									
	DO LIDOL va	CI	1	240	<0.001									
RG_LIDSL	RG_LIDSL vs RG_SLINE and RG_LI24	Area(CI)	1	17.7	<0.001									
	over time	Cl×Year	8	2.70	0.008	Α	AB	AB	AB	AB	В	AB	AB	В
	Over unie	Area(CI)×Year	7	1.39	0.214									
		Error	172	-	-									

Relevant p-value < 0.1.

Notes: "-' no data. Years that share a letter (e.g., A,B) are not significantly different (p-value=0.1). Letters assigned such that the year with the highest mean value (for the Year term) or highest difference between mine-exposed and reference (for the Area×Year term) is assigned the letter A. The p-value used to determine differences were adjusted using Tukey's honestly significant differences method. One outlier removed in 2017 and 2018.

Table C.3: Summary Metrics for Benthic Invertebrate Endpoints Collected by Hess Sampler at Line Creek, September 2022

Area	Biological Area Code	Sample Code	Total Density (org/m²) ^a	Biomass (g/m² ww) ^a	EPT Density (org/m²)	Ephemeroptera Density (org/m²)	Chironomidae Density (org/m²)
		RG_LI24_HESS-1	2,090	4.2	1,960	1,400	50
		RG_LI24_HESS-2	3,580	6.6	3,210	2,040	100
	RG_LI24	RG_LI24_HESS-3	3,410	8.9	2,730	1,730	310
8		RG_LI24_HESS-4	3,670	7.5	3,100	1,780	370
Reference		RG_LI24_HESS-5	2,470	8.3	2,280	1,270	110
afer		RG_SLINE_HESS-1	4,740	14	3,910	2,090	370
Ř		RG_SLINE_HESS-2	2,000	8.9	1,330	680	310
	RG_SLINE	RG_SLINE_HESS-3	7,680	19	4,760	2,540	2,480
		RG_SLINE_HESS-4	3,200	6.4	2,480	1,490	320
		RG_SLINE_HESS-5	2,260	6.2	1,900	1,320	200
		RG_LILC3_HESS-1	56,750	103	1,790	560	46,560
		RG_LILC3_HESS-2	43,520	50	1,440	880	35,040
	RG_LILC3	RG_LILC3_HESS-3	83,840	177	3,760	1,040	59,120
		RG_LILC3_HESS-4	30,440	66	1,310	400	23,040
		RG_LILC3_HESS-5	33,610	76	1,290	400	22,480
		RG_LILC3_HESS-6	39,520	42	400	160	29,520
		RG_LILC3_HESS-7	30,890	90	1,290	320	25,520
-		RG_LILC3_HESS-8	39,120	62	1,760	320	28,400
Se		RG_LILC3_HESS-9	11,090	18	490	120	9,000
Mine-exposed		RG_LILC3_HESS-10	47,690	65	1,130	160	38,320
φ		RG_LIDSL_HESS-1	8,010	15	3,510	2,440	3,300
Ji.		RG_LIDSL_HESS-2	8,680	13	2,870	2,110	4,690
_		RG_LIDSL_HESS-3	12,000	15	4,400	3,230	4,660
		RG_LIDSL_HESS-4	11,960	24	5,020	3,780	4,710
	RG LIDSL	RG_LIDSL_HESS-5	9,770	33	6,910	5,680	1,640
	KO_LIDOL	RG_LIDSL_HESS-6	7,730	19	5,050	4,210	1,820
		RG_LIDSL_HESS-7	4,830	5.5	2,700	1,400	660
		RG_LIDSL_HESS-8	6,310	7.7	3,360	2,330	680
		RG_LIDSL_HESS-9	5,180	16	3,560	2,560	1,020
		RG_LIDSL_HESS-10	6,430	15	4,860	3,820	670

Notes: org = organism; ww = wet weight; EPT = Ephemeroptera, Plecoptera, Trichoptera

^a Total density and biomass are reported for all organisms in the sample.

Table C.4: Statistical Comparisons of Total Benthic Invertebrate Density (Hess Samples) Over Time and Relative to Reference (RG_SLINE and RG_LI24) for RG_LIDSL and RG_LIC3, 2014 to 2022

A	Commonicom	T	DE	E Ctatiatia	Division			С	omparis	ons Am	ong Yea	rs		
Area	Comparison	Term	DF	F-Statistic	P-value	2014	2015	2016	2017	2018	2019	2020	2021	2022
		RG_LILC3 ov	er time			Α	Α	Α	Α	Α	Α	Α	Α	Α
		Year	8	6.10	<0.001									
	DC 111 C2	CI	1	1,457	<0.001									
	RG_LILC3 vs RG_SLINE and RG_LI24	Area(CI)	1	9.71	0.002									
	over time	Cl×Year	8	2.91	0.005									
	Over time	Area(CI)×Year	7	4.56	<0.001			Cl	Year eff	ect depe	nds on A	rea		
		Error	172	-	-									
RG_LILC3		Area	1	860	<0.001									
	RG_LILC3 vs	Year	8	4.95	<0.001									
	RG_SLINE over time	Area×Year	8	3.14	0.003	Α	В	AB	AB	В	В	AB	AB	AB
		Error	130	-	-									
		Area	1	978	<0.001									
	RG_LILC3 vs RG_LI24	Year	8	3.39	0.002									
	over time	Area×Year	7	3.33	0.003	ABC	ABC	-	ABC	AB	AC	В	С	ABC
		Error	123	-	-									
		RG_LIDSL over time					AB	В	AB	Α	AB	AB	AB	AB
		Year	8	7.18	<0.001									
	RG LIDSL vs	CI	1	343	<0.001									
	RG_LIDSL VS RG_SLINE and RG_LI24	Area(CI)	1	11.9	<0.001									
	over time	Cl×Year	8	4.37	<0.001									
	Ovor time	Area(CI)×Year	7	5.59	<0.001			CI	≺Year eff	ect depe	nds on A	rea		
		Error	172	-	-									
RG_LIDSL		Area	1	179	<0.001									
	RG_LIDSL vs	Year	8	6.53	<0.001									
	RG_SLINE over time	Area×Year	8	4.38	<0.001	Α	В	ВС	AC	BC	В	В	BC	BC
		Error	130	-	-									
		Area	1	303	<0.001									
	RG_LIDSL vs RG_LI24	Year	8	4.40	<0.001									
	over time	Area×Year	7	5.15	<0.001	Α	Α	1	Α	Α	AB	Α	В	AB
		Error	123	-	-									

Relevant p-value < 0.1.

Notes: "-' no data. Years that share a letter (e.g., A,B) are not significantly different (p-value=0.1). Letters assigned such that the year with the highest mean value (for the Year term) or highest difference between mine-exposed and reference (for the Area×Year term) is assigned the letter A. The p-value used to determine differences were adjusted using Tukey's honestly significant differences method. One outlier removed in 2017 and 2018.

Table C.5: Summary of Benthic Invertebrate Endpoints Collected by 3-Minute Kick and Sweep Sampling at Line Creek and Fording River, September 2022

			Abundance			EP	PT	Ephem	eroptera	Chiron	omidae
Area	Biological Area	Sample Code	(# org/ 3-min	LPL Richness	Family	Abundance	Relative	Abundance	Relative	Abundance	Relative
Alea	Code	Sample Code	kick)	(# of taxa)	Richness	(# org/ 3-min kick)	Abundance (%)	(# org/ 3-min kick)	Abundance (%)	(# org/ 3-min kick)	Abundance (%)
		RG_SLINE-01	1,755	36	20	1,680	96	1,075	61	55	3.1
9	RG_SLINE	RG_SLINE-02	7,880	32	18	6,240	79	3,620	46	1,540	20
Reference		RG_SLINE-03	2,493	32	19	2,379	95	1,579	63	79	3.2
afer		RG_LI24-01	3,922	25	17	3,711	95	1,878	48	156	4.0
8	RG_LI24	RG_LI24-02	6,260	27	13	5,820	93	2,520	40	440	7.0
		RG_LI24-03	4,033	27	16	3,767	93	1,956	48	211	5.2
		RG_LCUT-01	8,500	24	14	860	10	300	3.5	7,260	85
	RG_LCUT	RG_LCUT-02	9,020	26	13	700	7.8	180	2.0	7,860	87
		RG_LCUT-03	7,400	20	10	540	7.3	20	0.27	6,640	90
		RG_LILC3-01	22,500	30	16	1,200	5.3	400	1.8	20,080	89
	RG_LILC3	RG_LILC3-02	14,860	29	17	700	4.7	120	0.81	13,420	90
		RG_LILC3-03	11,580	32	15	910	7.9	180	1.6	9,860	85
	RG_LISP24	RG_LISP24-01	6,960	31	17	4,580	66	3,460	50	2,200	32
		RG_LIDSL-01	11,200	31	18	7,780	70	5,760	51	2,960	26
		RG_LIDSL-02	7,020	31	16	4,860	69	3,780	54	1,860	26
-	RG_LIDSL	RG_LIDSL-03	5,517	32	16	4,183	76	3,150	57	1,183	22
Mine-exposed		RG_LIDSL-04	5,483	26	15	4,033	74	2,717	50	1,350	25
ĝ		RG_LIDSL-05	7,280	32	18	4,720	65	3,040	42	2,280	31
õ	RG_LIDCOM	RG_LIDCOM-01	22,260	38	21	9,840	44	6,660	30	11,580	52
<u>ji</u>		RG_LI8-01	8,940	32	17	7,780	87	3,720	42	820	9.2
_	RG_LI8	RG_LI8-02	3,380	26	17	2,930	87	1,460	43	200	5.9
		RG_LI8-03	8,160	32	18	7,020	86	3,380	41	480	5.9
		RG_FRUL-01	5,867	24	19	4,083	70	2,150	37	233	4.0
	RG_FRUL	RG_FRUL-02	4,112	30	20	2,762	67	1,462	36	125	3.0
		RG_FRUL-03	4,175	27	19	1,812	43	1,162	28	150	3.6
		RG_F023-01	6,340	37	24	4,400	69	2,460	39	880	14
		RG_FO23-02	2,355	34	22	1,875	80	1,265	54	200	8.5
	RG_FO23	RG_FO23-03	4,671	37	24	3,129	67	1,971	42	443	9.5
		RG_FO23-04	3,180	28	20	2,380	75	1,510	48	210	6.6
		RG_FO23-05	6,520	31	21	4,340	67	1,980	30	860	13

Notes: LPL= Lowest Practical Level; EPT= Ephemeroptera, Plecoptera, and Trichoptera.

APPENDIX D SELENIUM

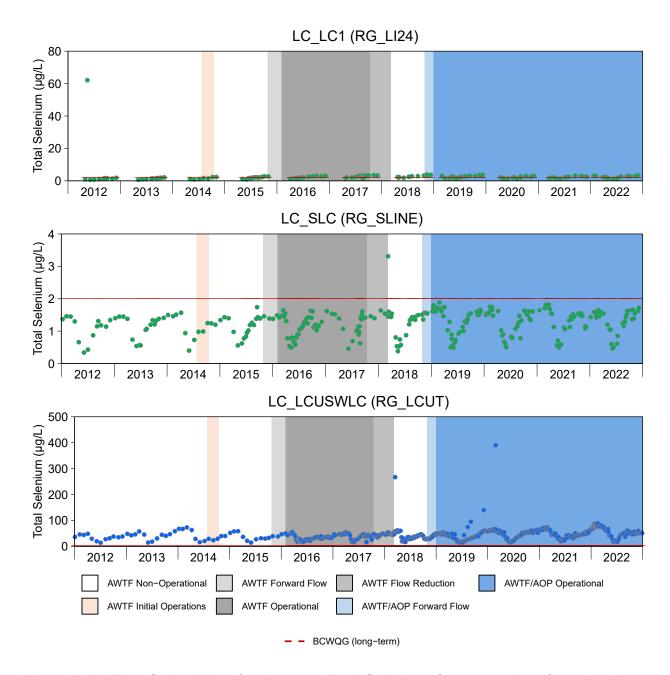


Figure D.1: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2022

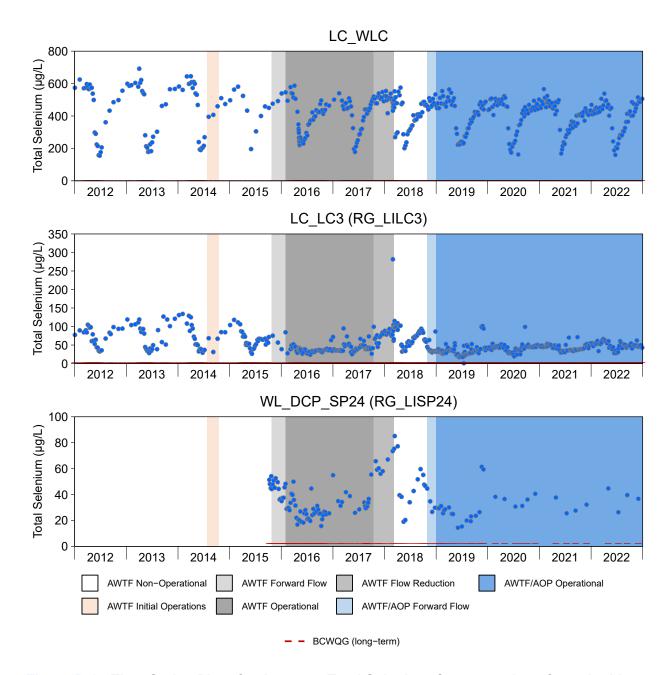


Figure D.1: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2022

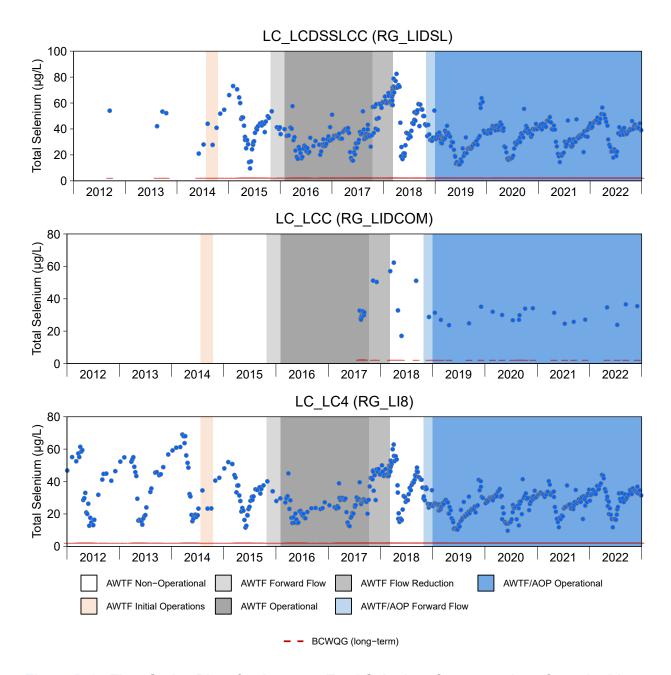


Figure D.1: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2022

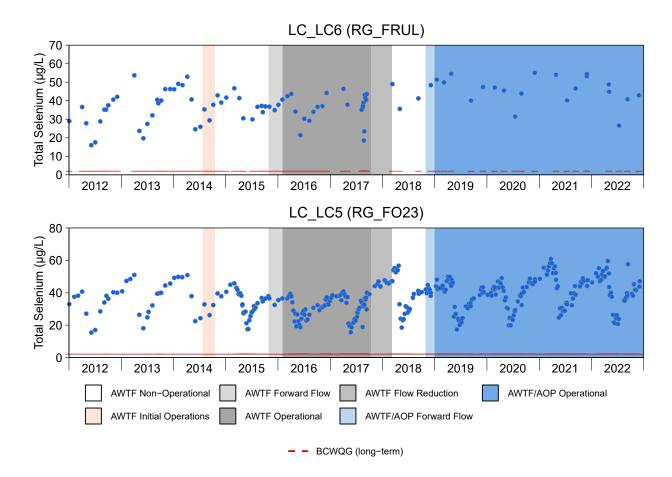


Figure D.1: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2022

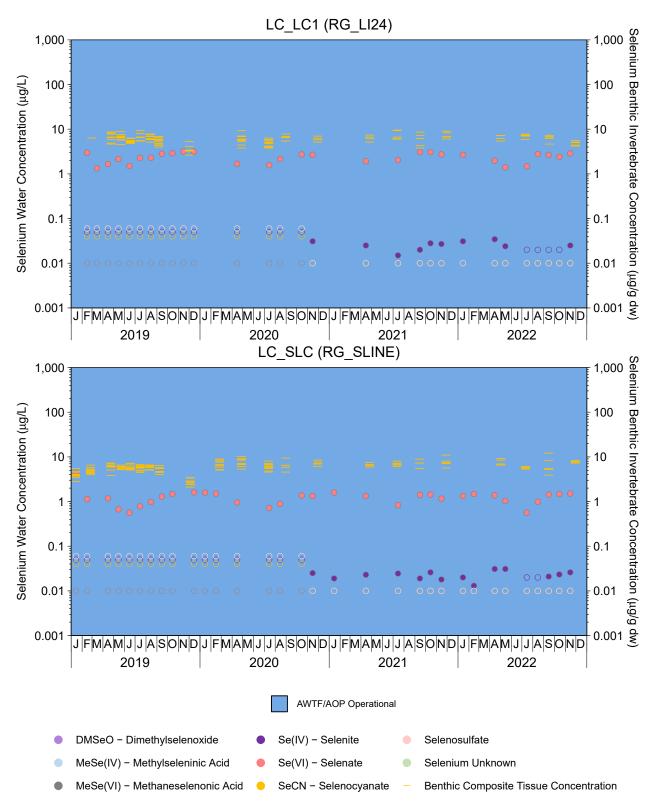


Figure D.2: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-exposed and Reference Stations in Line Creek, LCO LAEMP, 2019 to 2022

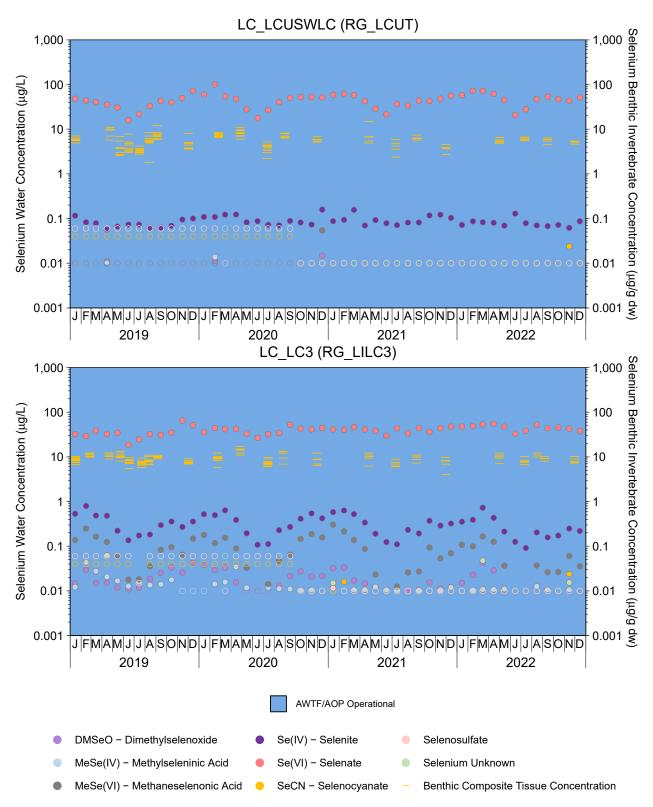


Figure D.2: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-exposed and Reference Stations in Line Creek, LCO LAEMP, 2019 to 2022

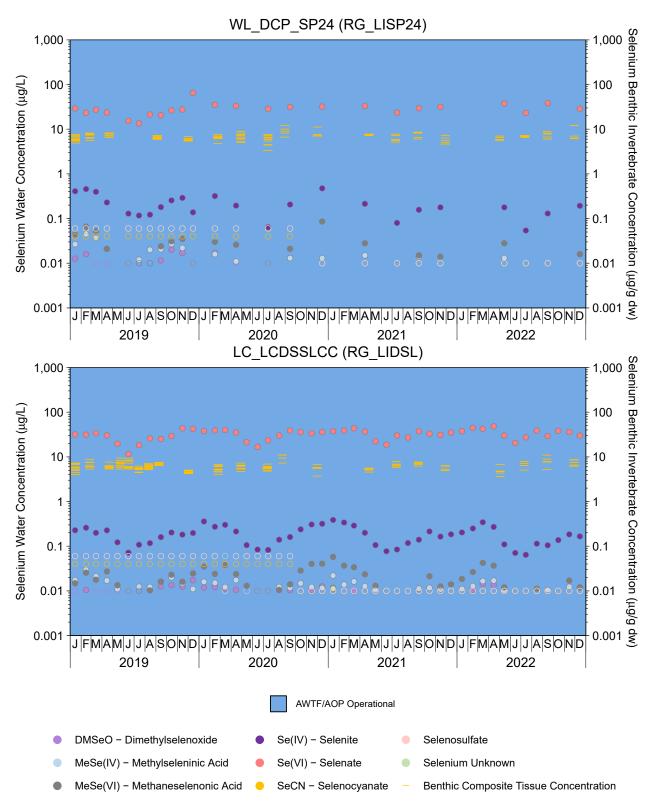


Figure D.2: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-exposed and Reference Stations in Line Creek, LCO LAEMP, 2019 to 2022

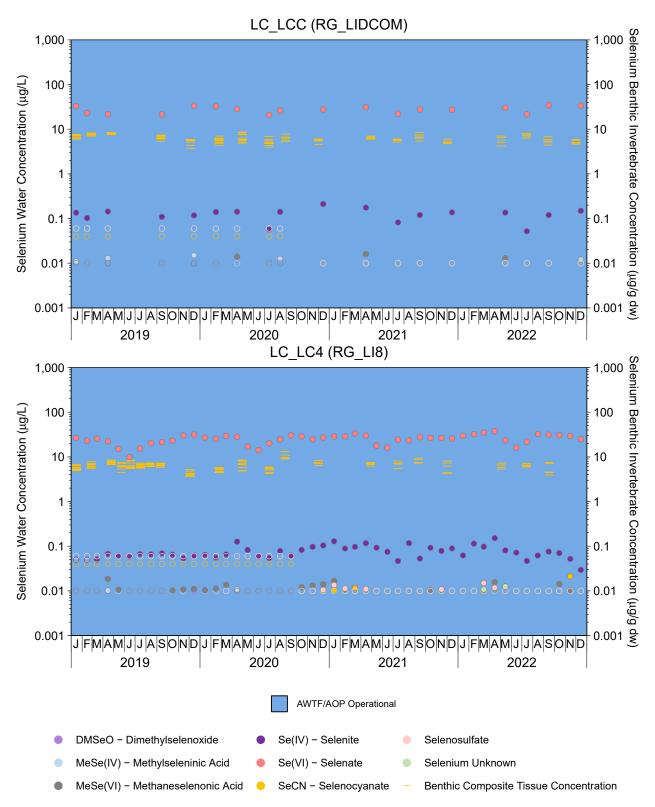


Figure D.2: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-exposed and Reference Stations in Line Creek, LCO LAEMP, 2019 to 2022

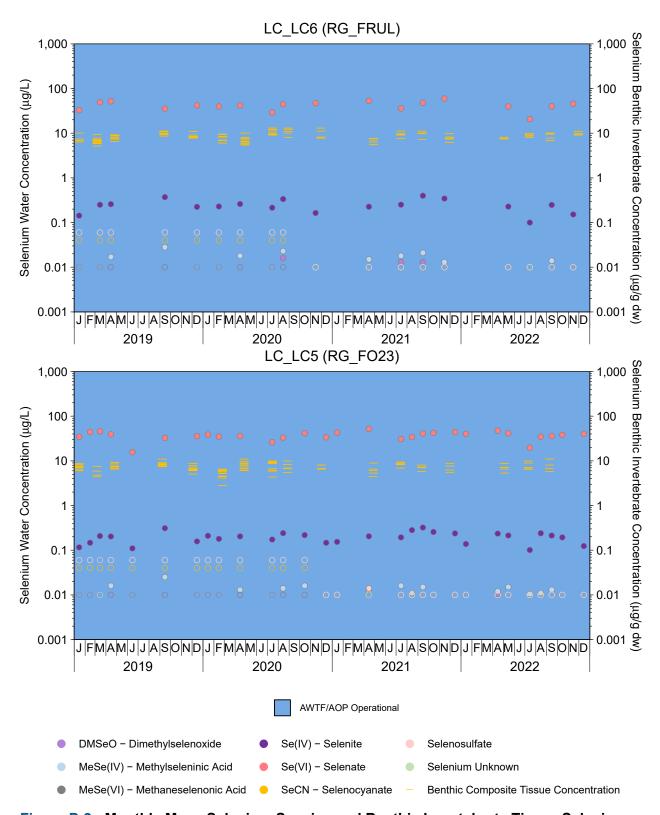


Figure D.2: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-exposed and Reference Stations in Line Creek, LCO LAEMP, 2019 to 2022

Table D.1: Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2022

						Seler	nium Concen	tration (mg/k	g dw)	
Waterbod	Biological Area Code	Sample Code	Sample Date	Dominant Taxa	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation
		RG_LI24_INV-1	2-May-22	Ephem, Plec, Trich	5.4					
		RG_LI24_INV-2 RG_LI24_INV-3	2-May-22 2-May-22	Ephem, Plec, Trich Ephem, Plec	7.2 7.1	7.1	5.4	7.2	6.6	0.8
		RG_LI24_INV-4	2-May-22	Ephem, Plec	6.1					
		RG_LI24_INV-5 RG_LI24_INV-1	2-May-22 11-Jul-22	Plec, Ephem Ephem, Plec, Trich	7.2 7.1					
		RG_LI24_INV-2	11-Jul-22	Ephem, Plec, Trich	5.8					
		RG_LI24_INV-3	11-Jul-22	Ephem, Plec, Rhyac	7.8	7.1	5.8	7.8	7.0	0.7
	RG_LI24	RG_LI24_INV-4 RG_LI24_INV-5	11-Jul-22 11-Jul-22	Ephem, Plec, Chiron Ephem, Plec, Rhyac	7.0 7.3					
	9 7	RG_LI24_INV-1	17-Sep-22	Plec, Ephem, Trich	6.8					
	<u>«</u>	RG_LI24_INV-2	17-Sep-22	Ephem, Plec, Rhyac	6.2	6.6	4.7	7.0	6.2	1.0
		RG_LI24_INV-3 RG_LI24_INV-4	17-Sep-22 17-Sep-22	Plec, Hydro, Ephem, Rhyac Ephem, Plec, Hydro	7.2 6.6	6.6	4.7	7.2	6.3	1.0
		RG_LI24_INV-5	17-Sep-22	Plec, Ephem, Hydro, Chiron	4.7					
		RG_LI24_INV-1	30-Nov-22	Ephem, Plec Plec, Ephem, Rhyac	5.2					
		RG_LI24_INV-2 RG_LI24_INV-3	30-Nov-22 30-Nov-22	Plec, Ephem, Para	5.0 4.4	5.0	4.2	5.5	4.9	0.5
ge		RG_LI24_INV-4	30-Nov-22	Plec, Ephem, Rhyac	5.5					
Reference		RG_LI24_INV-5 RG_SLINE_INV-1	30-Nov-22	Plec, Ephem Ephem, Plec	4.2 8.5					
Refe		RG_SLINE_INV-1	3-May-22 3-May-22	Plec, Ephem	6.9					
		RG_SLINE_INV-3	3-May-22	Ephem, Plec	9.1	6.9	6.5	9.1	7.6	1.2
		RG_SLINE_INV-4 RG_SLINE_INV-5	3-May-22 3-May-22	Ephem, Plec, Para Ephem, Plec, Rhyac	6.5 6.8					
		RG_SLINE_INV-5	12-Jul-22	Ephem, Plec, Rhyac Ephem, Plec, Rhyac	5.8					
		RG_SLINE_INV-2	12-Jul-22	Ephem, Plec, Para	5.6					
	ш	RG_SLINE_INV-3	12-Jul-22	Ephem, Plec, Rhyac Plec, Ephem, Para	6.0	5.8	5.3	6.0	5.7	0.3
	RG_SLINE	RG_SLINE_INV-4 RG_SLINE_INV-5	12-Jul-22 12-Jul-22	Ephem, Plec, Rhyac	5.3 5.8					
	S	RG_SLINE_INV-1	16-Sep-22	Ephem, Hydro, Plec	8.3					
	R	RG_SLINE_INV-2	16-Sep-22	Plec, Rhyac, Hydro, Ephem	3.9	5.4	3.9	12.0	7.0	3.2
		RG_SLINE_INV-3 RG_SLINE_INV-4	16-Sep-22 16-Sep-22	Ephem, Rhyac, Hydro, Plec Plec, Ephem, Rhyac	5.4 12.0	5.4	3.9	12.0	7.0	3.2
		RG_SLINE_INV-5	16-Sep-22	Plec, Ephem, Rhyac	5.2					
		RG_SLINE_INV-1	30-Nov-22 30-Nov-22	Ephem, Plec, Para Ephem, Plec, Para	7.2					
		RG_SLINE_INV-2 RG_SLINE_INV-3	30-Nov-22	Ephem, Plec, Para	7.2 8.2	7.5	7.2	8.2	7.6	0.4
		RG_SLINE_INV-4	30-Nov-22	Ephem, Plec, Rhyac	7.9					
		RG_SLINE_INV-5	30-Nov-22	Plec, Ephem, Rhyac	7.5					
		RG_LCUT_INV-1 RG_LCUT_INV-2	2-May-22 2-May-22	Para, Rhyac, Plec Plec, Rhyac, Para	5.2 4.8					
		RG_LCUT_INV-3	2-May-22	Para, Plec, Rhyac	5.5	5.5	4.8	6.6	5.6	0.7
		RG_LCUT_INV-4	2-May-22	Para, Plec, Rhyac	5.8					
		RG_LCUT_INV-5 RG_LCUT_INV-1	2-May-22 12-Jul-22	Para, Plec, Rhyac Para, Plec, Chiron	6.6 5.6					
		RG_LCUT_INV-2	12-Jul-22	Plec, Para, Chiron	6.4					
_	_	RG_LCUT_INV-3	12-Jul-22	Plec, Rhyac, Chiron	5.9	5.9	5.6	6.7	6.1	0.4
Creek	RG_LCUT	RG_LCUT_INV-4 RG_LCUT_INV-5	12-Jul-22 12-Jul-22	Chiron, Para, Plec Rhyac, Chiron, Plec	5.9 6.7					
<u>a</u>	, , , , , , , , , , , , , , , , , , ,	RG_LCUT_INV-1	15-Sep-22	Hydro, Plec	5.9					
Line	<u>~</u>	RG_LCUT_INV-2	15-Sep-22	Hydro, Plec, Chiron	5.4	5.0	4.5	0.4	F 7	0.0
		RG_LCUT_INV-3 RG_LCUT_INV-4	15-Sep-22 15-Sep-22	Hydro, Chiron, Plec, Ephem Hydro, Plec, Chiron	4.5 6.4	5.9	4.5	6.4	5.7	0.8
		RG_LCUT_INV-5	15-Sep-22	Hydro, Rhyac, Plec, Chiron	6.3					
		RG_LCUT_INV-1	1-Dec-22	Para, Chiron, Plec Plec, Para, Rhyac	5.2					
		RG_LCUT_INV-2 RG_LCUT_INV-3	1-Dec-22 1-Dec-22	Plec, Para, Knyac Plec, Para, Chiron	4.7 5.4	5.2	4.7	5.4	5.1	0.3
		RG_LCUT_INV-4	1-Dec-22	Para, Plec, Ephem	5.3					
		RG_LCUT_INV-5 RG_LILC3_INV-1	1-Dec-22 2-May-22	Plec, Chiron, Para Para, Plec, Ephem	4.7 7.1					
		RG_LILC3_INV-1	2-May-22	Plec, Rhyac, Para	11.0					
		RG_LILC3_INV-3	2-May-22	Para, Plec, Chiron	9.3	10.0	7.1	12.0	9.9	1.9
		RG_LILC3_INV-4	2-May-22	Para, Plec, Ephem	12.0					
		RG_LILC3_INV-5 RG_LILC3_INV-1	2-May-22 12-Jul-22	Plec, Para, Ephem Rhyac, Para, Chiron	10.0 10.0					
		RG_LILC3_INV-2	12-Jul-22	Plec, Para, Rhyac	8.2					
ěd	8	RG_LILC3_INV-3 RG_LILC3_INV-4	12-Jul-22 12-Jul-22	Plec, Rhyac, Para Para, Plec, Rhyac	6.6 7.9	7.9	6.6	10.0	8.0	1.3
Mine-exposed	RG_LILC3	RG_LILC3_INV-5	12-Jul-22 12-Jul-22	Para, Plec, Rhyac	7.5					
- 6- 9-	J_6	RG_LILC3_INV-1	8-Sep-22	Hydro, Chiron, Ephem	9.2					
M Ti	Œ	RG_LILC3_INV-2 RG_LILC3_INV-3	8-Sep-22 8-Sep-22	hydro, Chiron, Plec hydro, Plec, Chiron	8.0 10.0	9.2	8.0	10.0	9.1	0.7
		RG_LILC3_INV-4	8-Sep-22	hydro, Chiron, Plec	9.0	J.2	3.0	13.0	J. 1	3.7
		RG_LILC3_INV-5	8-Sep-22	hydro, Chiron, Plec	9.2					
		RG_LILC3_INV-1 RG_LILC3_INV-2	1-Dec-22 1-Dec-22	Para, Chiron, Plec Para, Chiron, Plec	8.9 7.8					
		RG_LILC3_INV-3	1-Dec-22	Para, Chiron, Plec	7.7	7.8	7.2	10.0	8.3	1.1
		RG_LILC3_INV-4	1-Dec-22	Chiron, Para, Plec	7.2					
		RG_LILC3_INV-5 RG_LISP24_INV-1	1-Dec-22 3-May-22	Chiron, Para, Plec Para, Rhyac, Plec	10.0 5.5					
		RG_LISP24_INV-2	3-May-22	Ephem, Para, Plec	6.5					
		RG_LISP24_INV-3	3-May-22	Para, Rhyac, Ephem	7.0	5.9	5.5	7.0	6.1	0.6
		RG_LISP24_INV-4 RG_LISP24_INV-5	3-May-22 3-May-22	Ephem, Para, Rhyac Para, Ephem, Rhyac	5.8 5.9					
		RG_LISP24_INV-5 RG_LISP24_INV-1	13-Jul-22	Plec, Ephem, Trich	7.2					
		RG_LISP24_INV-2	13-Jul-22	Plec, Ephem, Para	7.2				a -	
	42	RG_LISP24_INV-3	13-Jul-22 13-Jul-22	Ephem, Plec, Para Plec, Ephem, Trich	6.8 6.5	6.9	6.5	7.2	6.9	0.3
	LISP24	RG_LISP24_INV-4 RG_LISP24_INV-5	13-Jul-22 13-Jul-22	Ephem, Plec, Para	6.9					
	, i	RG_LISP24_INV-1	15-Sep-22	Hydro, Rhyac, Plec	8.2					
	RG_	RG_LISP24_INV-2	14-Sep-22	Hydro, Rhyac, Ephem, Plec	8.8	77	60	0 0	7 5	1 1
		RG_LISP24_INV-3 RG_LISP24_INV-4	15-Sep-22 15-Sep-22	Hydro, Plec, Ephem Hydro, Rhyac, Plec	6.7 7.7	7.7	6.0	8.8	7.5	1.1
		RG_LISP24_INV-5	15-Sep-22	Plec, Hydro, Ephem	6.0	<u></u>	<u>L_</u> _			<u> </u>
		RG_LISP24_INV-1	1-Dec-22	Plec, Para, Rhyac	12.0				_	
		RG_LISP24_INV-2 RG_LISP24_INV-3	1-Dec-22 1-Dec-22	Plec, Rhyac, Para Para, Rhyac, Ephem	7.0 6.2	7.0	6.2	12.0	8.7	3.0
		RG_LISP24_INV-4	1-Dec-22 1-Dec-22	Plec, Para, Ephem	6.3	7.0	0.2	12.0	0.1	3.0
		RG_LISP24_INV-5	1-Dec-22	Rhyac, Para, Plec	12.0					

Notes: Abbreviation of taxa was used. Plec = Plecoptera (stonefly). Ephem = Ephemeroptera (mayfly). Trich = Trichoptera (caddisfly). Dipt = Diptera (true flies). Oligo = Oligo (worms). Chiron = Chironomidae (non-biting midge). Tipul = Tipulidae (crane fly). Rhyac = Rhyacophilidae. Para = Parapsyche. Nema = Nematoda. Hydro = Hydropsychidae. Oligo Only = annelids only samples (which is not included in the analysis of composite-taxa and were collected based on annelids at >5% of the total biomass sample [Golder 2021b]).

Table D.1: Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2022

							Seler	ium Concen	tration (mg/kg	g dw)	
Water	body	Biological Area Code	Sample Code	Sample Date	Dominant Taxa	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation
			RG_LIDSL_INV-1	4-May-22	Para, Ephem, Plec	4.3					
			RG_LIDSL_INV-2 RG_LIDSL_INV-3	4-May-22 4-May-22	Plec, Para, Ephem Para, Ephem, Plec	4.7 4.8	4.7	3.6	6.7	4.8	1.2
			RG_LIDSL_INV-4	4-May-22	Para, Ephem, Plec	3.6	4.1	3.0	0.7	4.0	1.2
			RG_LIDSL_INV-5	4-May-22	Para, Ephem, Plec	6.7					
			RG_LIDSL_INV-1	11-Jul-22	Ephem, Para, Plec	6.4					
			RG_LIDSL_INV-2 RG_LIDSL_INV-3	11-Jul-22 11-Jul-22	Ephem, Plec, Para Ephem, Plec, Para	5.1 7.2	6.4	5.1	7.9	6.6	1.0
		75	RG_LIDSL_INV-3	11-Jul-22 11-Jul-22	Ephem, Plec, Para	6.4	0.4	3.1	7.9	0.0	1.0
		RG_LIDSI	RG_LIDSL_INV-5	11-Jul-22	Ephem, Plec, Para	7.9					
		ר. בי	RG_LIDSL_INV-1	13-Sep-22	Rhyac, Ephem, Plec	11.0					
		Ř	RG_LIDSL_INV-2	13-Sep-22	Hydro, Ephem, Rhyac, Plec	9.0	7.8	5.2	11.0	8.1	2.1
			RG_LIDSL_INV-3 RG_LIDSL_INV-4	13-Sep-22 14-Sep-22	Hydro, Tipul, Ephem Hydro, Plec, Ephem	5.2 7.6	7.8	5.2	11.0	0.1	2.1
			RG_LIDSL_INV-5	14-Sep-22	Hydro, Ephem, Rhyac, Plec	7.8					
			RG_LIDSL_INV-1	29-Nov-22	Plec, Rhyac, Ephem	8.5					
			RG_LIDSL_INV-2	29-Nov-22	Plec, Rhyac, Ephem	7.5	7.5	6.0	0.7	7.5	1.1
			RG_LIDSL_INV-3 RG_LIDSL_INV-4	29-Nov-22 29-Nov-22	Plec, Para, Ephem Plec, Ephem, Para	6.2 8.7	7.5	6.2	8.7	7.5	1.1
			RG LIDSL INV-5	29-Nov-22	Para, Plec, Rhyac	6.6					
			RG_LIDCOM_INV-1	3-May-22	Para, Ephem, Rhyac	4.2					
			RG_LIDCOM_INV-2	3-May-22	Para, Ephem, Rhyac	5.0		4.0			
			RG_LIDCOM_INV-3 RG_LIDCOM_INV-4	3-May-22 3-May-22	Para, Rhyac, Ephem	7.0 6.5	5.7	4.2	7.0	5.7	1.1
			RG_LIDCOM_INV-4	3-May-22	Para, Ephem, Plec Ephem, Para, Plec	5.7					
~	eq		RG_LIDCOM_INV-1	14-Jul-22	Ephem, Plec, Para	7.0					
ē	sod		RG_LIDCOM_INV-2	14-Jul-22	Ephem, Para, Plec	8.0					
Line Creek	, ex	Σ	RG_LIDCOM_INV-3	14-Jul-22	Ephem, Para, Plec	7.8	7.1	6.4	8.0	7.3	0.6
Ë	Mine-exposed	S	RG_LIDCOM_INV-4 RG_LIDCOM_INV-5	14-Jul-22 14-Jul-22	Ephem, Plec, Para Ephem, Trich, Rhyac	6.4 7.1					
	2	RG_LIDCOM	RG_LIDCOM_INV-5 RG_LIDCOM_INV-1	14-Jul-22 12-Sep-22	Hydro, Plec, Ephem	5.8					
		o ^l	RG_LIDCOM_INV-2	12-Sep-22	Hydro, Plec, Ephem	5.4					
		Œ	RG_LIDCOM_INV-3	12-Sep-22	Hydro, Rhyac, Plec, Ephem	5.2	5.4	4.4	6.8	5.5	0.9
			RG_LIDCOM_INV-4	13-Sep-22	Hydro, Plec, Ephem	4.4					
			RG_LIDCOM_INV-5 RG_LIDCOM_INV-1	13-Sep-22 1-Dec-22	Hydro, Plec, Ephem, Rhyac Plec, Para, Rhyac	6.8 4.6					
			RG_LIDCOM_INV-1	1-Dec-22	Para, Rhyac, Plec	5.8					
			RG_LIDCOM_INV-3	1-Dec-22	Para, Plec, Rhyac	5.0	5.0	4.6	5.8	5.1	0.5
			RG_LIDCOM_INV-4	1-Dec-22	Para, Plec, Rhyac	4.8					
			RG_LIDCOM_INV-5	1-Dec-22	Plec, Ephem, Para	5.5					
			RG_LI8_INV-1 RG_LI8_INV-2	4-May-22 4-May-22	Plec, Rhyac, Ephem Ephem, Para, Rhyac	6.5 5.4					
			RG LI8 INV-3	4-May-22	Ephem, Para, Rhyac	6.5	6.5	5.4	7.3	6.3	0.7
			RG_LI8_INV-4	4-May-22	Plec, Rhyac, Ephem	5.8					
			RG_LI8_INV-5	4-May-22	Para, Rhyac, Ephem	7.3					
		m	RG_LI8_INV-1	14-Jul-22	Ephem, Trich, Plec	6.0					
		RG_LI8	RG_LI8_INV-2 RG_LI8_INV-3	14-Jul-22 14-Jul-22	Ephem, Plec, Trich Ephem, Trich, Plec	7.0 6.4	6.4	5.9	7.0	6.4	0.4
		RG	RG_LI8_INV-4	14-Jul-22	Ephem, Trich, Para	5.9	0.1	0.0	7.0	0.1	0.1
			RG_LI8_INV-5	14-Jul-22	Ephem, Trich, Plec	6.6					
			RG_LI8_INV-1	17-Sep-22	hydropsy, Plec, Ephem, Rhyac	3.9					
			RG_LI8_INV-2 RG_LI8_INV-3	17-Sep-22 17-Sep-22	hydropsy, Plec, Rhyac, Ephem Hydro, Plec, Ephem, Rhyac	4.4 7.5	4.6	3.9	7.5	5.5	1.6
			RG_LI8_INV-4	17-Sep-22	hydropsy, Plec, Rhyac, Ephem, Tipul	7.0	4.0	0.5	7.5	0.0	1.0
			RG_LI8_INV-5	17-Sep-22	Hydro, Plec, Rhyac, Ephem, Trich	4.6					
			RG_FRUL_INV-1	2-May-22	Plec, Ephem, Dipt	7.8					
			RG_FRUL_INV-2 RG_FRUL_INV-3	2-May-22 2-May-22	Plec, Ephem, Para Plec, Ephem, Dipt	7.4 7.7	7.8	7.4	7.9	7.7	0.2
			RG_FRUL_INV-3	2-May-22	Plec, Ephem, Dipt	7.8	1.0	7.4	7.9	1.1	0.2
			RG_FRUL_INV-5	2-May-22	Plec, Ephem, Rhyac	7.9					
			RG_FRUL_INV-1	13-Jul-22	Plec, Ephem, Rhyac	8.5					
			RG_FRUL_INV-2	13-Jul-22 13-Jul-22	Plec, Ephem, Rhyac	9.6 8.9	8.9	7.9	9.7	8.9	0.8
			RG_FRUL_INV-3 RG_FRUL_INV-4	13-Jul-22 13-Jul-22	Ephem, Plec, Dipt Ephem, Plec, Rhyac	7.9	ს. შ	r.8	9.1	0.9	0.0
		RG_FRUL	RG_FRUL_INV-5	13-Jul-22	Ephem, Plec, Rhyac	9.7					
		齿	RG_FRUL_INV-1	10-Sep-22	Ephem, Plec	7.7					
		RG	RG_FRUL_INV-2	10-Sep-22	Plec, Ephem	9.8	0.6	6.0	10.0	0 0	1.4
			RG_FRUL_INV-3 RG_FRUL_COMPOLI-4	10-Sep-22 10-Sep-22	Plec, Ephem Tipul Plec, Ephem, Oligo	6.9 9.6	9.6	6.9	10.0	8.8	1.4
			RG_FRUL_INV-5	10-Sep-22 10-Sep-22	Plec, Ephem, Tipul	10					
<u></u>	Ď		RG_FRUL_INVOLI	10-Sep-22	Oligo	65	NA	NA	NA	NA	NA
Fording River	Mine-exposed		RG_FRUL_INV-1	29-Nov-22	Plec, Ephem	9.7					
ng F	exb		RG_FRUL_INV-2 RG_FRUL_INV-3	29-Nov-22 29-Nov-22	Plec, Ephem	9 9.5	9.5	9.0	11.0	9.7	0.8
rdi	ne-		RG_FRUL_INV-3 RG_FRUL_INV-4	29-Nov-22 29-Nov-22	Plec, Ephem, Tipul Ephem, Plec, Tipul	9.5	9.0	9.0	11.0	3.1	0.0
Ä	Σ		RG_FRUL_INV-5	29-Nov-22	Plec, Ephem, Tipul	9.5					
			RG_FO23_INV-1	4-May-22	Plec, Ephem, Rhyac	7.0					
			RG_FO23_INV-2	4-May-22	Plec, Ephem, Dipt	5.3	7.0	E 0	0.7	6.0	4.0
			RG_FO23_INV-3 RG_FO23_INV-4	4-May-22 4-May-22	Plec, Ephem, Dipt Ephem, Plec	6.6 7.0	7.0	5.3	8.7	6.9	1.2
			RG_FO23_INV-4	4-May-22	Plec, Ephem	8.7					
		8	RG_FO23_INV-1	11-Jul-22	Ephem, Plec, Rhyac	7.1					
		02;	RG_FO23_INV-2	11-Jul-22	Plec, Ephem, Rhyac	10.0			40 -		
		RG-F023	RG_FO23_INV-3	11-Jul-22	Ephem, Plec, Trich	8.9	7.1	6.4	10.0	7.9	1.5
		R	RG_FO23_INV-4 RG_FO23_INV-5	11-Jul-22 11-Jul-22	Plec, Ephem, Para Plec, Ephem, Rhyac	6.9 6.4					
			RG_FO23_INV-5	9-Sep-22	Plec, Ephem, Dipt	8.1					
			RG_FO23_INV-2	9-Sep-22	Plec, Ephem	5.7					
			RG_FO23_INV-3	9-Sep-22	Plec, Ephem	6.8	8.1	5.7	11.0	8.5	2.4
			RG_FO23_INV-4 RG_FO23_INV-5	9-Sep-22 10-Sep-22	Plec, Ephem, Tipul Plec, Ephem	11.0 11.0					
		<u> </u>	NG_FUZ3_INV-5	10-0 0 p-22	гіес, српеш	11.0			1		

Notes: Abbreviation of taxa was used. Plec = Plecoptera (stonefly). Ephem = Ephemeroptera (mayfly). Trich = Trichoptera (caddisfly). Dipt = Diptera (true flies). Oligo = Oligo (worms). Chiron = Chironomidae (non-biting midge). Tipul = Tipulidae (crane fly). Rhyac = Rhyacophilidae. Para = Parapsyche. Nema = Nematoda. Oligo Only = annelids only samples (which is not included in the analysis of composite-taxa and were collected based on annelids at >5% of the total biomass sample [Golder 2021b]). NA = not applicable. "-" = no data.

Table D.2: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations During Each Operational Period^a at RG_LILC3 Area Relative to the Reference Areas (RG_LI24 and RG_SLINE)

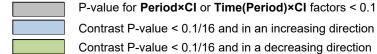
		ANOVA M	odel			
7	Геrm	DF	SS ^b	MS ^c	F-Ratio	P-Value
F	Period	5	1.5	0.29	44	<0.001
	CI	1	10	10	1,444	<0.001
Pei	riod×CI	5	4.7	0.94	143	<0.001
Time	e(Period)	24	2.2	0.090	14	<0.001
Time(I	Time(Period)×CI		1.8	0.075	11	<0.001
1	Error				-	
	Contrasts (P-val	lue and Mag	nitude of D	ifference) ^d		
Period 1	Period 2				P-value	MOD
	AOP (2022_5)				ns	-
В	AOP (2022_7)				ns	-
	AOP (2022_9)				ns	-
	AOP (2022_12)				ns	-
	AOP (2022_5)				<0.001	-10.0 SD
AWTF (2016 9)	AOP (2022_7)				<0.001	-10.5 SD
AVVIF (2010_9)	AOP (2022_9)				<0.001	-9.80 SD
	AOP (2022_12)				<0.001	-10.1 SD
	AOP (2022_5)				<0.001	-9.99 SD
AWTF (2017_4)	AOP (2022_7)				<0.001	-10.5 SD
AVVIF (2017_4)	AOP (2022_9)				<0.001	-9.83 SD
	AOP (2022_12)				<0.001	-10.1 SD
	AOP (2022_5)				<0.001	-6.73 SD
AWTF (2017_9)	AOP (2022_7)				<0.001	-7.23 SD
AVVII (2017_9)	AOP (2022_9)				<0.001	-6.56 SD
	AOP (2022_12)				<0.001	-6.82 SD

P-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast P-value < 0.1/16 and in an increasing direction

Contrast P-value < 0.1/16 and in a decreasing direction

^a Operational periods include: the Before (B), AWTF Operational (AWTF), Initial Operation (IO), Shut Down (SD), Restart (RS), and AWTF with AOP Operational (AOP) Periods.


^b SS = sum of squares of ANOVA model.

^c MS = mean sum of squares of ANOVA model.

^d Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table D.3: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations During Each Operational Period^a at RG_LIDSL Area Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA M	odel			
T	erm	DF	SS ^b	MS ^c	F-Ratio	P-Value
Р	eriod	5	0.38	0.08	12	<0.001
	CI	1	0.79	0.79	120	<0.001
Per	riod×CI	5	2.1	0.42	64	<0.001
Time	Time(Period)		2.2	0.097	15	<0.001
Time(Period)×CI		23	1.1	0.049	7.4	<0.001
E	554			-		
	Contrasts (P-va	lue and Mag	nitude of D	ifference) ^d		
Period 1	Period 2				P-value	MOD
	AOP (2022_5)				<0.001	-4.7 SD
В	AOP (2022_7)				ns	-
D	AOP (2022_9)				ns	-
	AOP (2022_12)				ns	-
	AOP (2022_5)				<0.001	-9.6 SD
AWTF (2016_9)	AOP (2022_7)				<0.001	-7.3 SD
AVVIF (2010_9)	AOP (2022_9)				<0.001	-6.3 SD
	AOP (2022_12)				<0.001	-6.4 SD
	AOP (2022_5)				<0.001	-6.9 SD
Λ\Λ/TE (2017 4\	AOP (2022_7)				<0.001	-4.6 SD
AVVIF (2017_4)	AOP (2022_9)				<0.001	-3.6 SD
	AOP (2022_12)				<0.001	-3.7 SD
	AOP (2022_5)				<0.001	-7.6 SD
ANA/TE (2017 O)	AOP (2022_7)				<0.001	-5.3 SD
AVVIF (2017_9)	AOP (2022_9)				<0.001	-4.3 SD
AWTF (2017_4) AWTF (2017_9)	AOP (2022 12)	1			<0.001	-4 4 SD

^a Operational periods include: the Before (B), AWTF Operational (AWTF), Initial Operation (IO), Shut Down (SD), Restart (RS), and AWTF with AOP Operational (AOP) Periods.

^b SS = sum of squares of ANOVA model.

^c MS = mean sum of squares of ANOVA model.

^d Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table D.4: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LILC3 Within 2022 Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA I	Model			
To	erm	DF	SSª	MS ^b	F-Ratio	P-Value
Pe	eriod	5	1.5	0.29	44	<0.001
	CI	1	10	10	1,444	<0.001
Peri	od×Cl	5	4.7	0.94	143	<0.001
Time(Period)	24	2.2	0.090	14	<0.001
Time(P	eriod)×CI	24	1.8	0.075	11	<0.001
Е	rror	563			-	
	Contrasts (P-v	alue and Ma	gnitude of	Difference) ^c		
Period 1	Period 2				P-value	MOD
	2022_7				ns	-
2022_5	2022_9				ns	-
	2022_12				ns	-
2022_7	2022_9				ns	-
2022_1	2022_12				ns	-
2022_9	2022_12		_	_	ns	-

	P-value for Period×CI or Time(Period)×CI factors < 0.1
	Contrast P-value < 0.1/6 and in an increasing direction
	Contrast P-value < 0.1/6 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table D.5: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LIDSL Within 2022 Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA I	Model			
To	erm	DF	SSª	MS ^b	F-Ratio	P-Value
Pe	eriod	5	0.38	0.077	12	<0.001
	CI	1	0.79	0.79	120	<0.001
Peri	od×CI	5	2.1	0.42	64	<0.001
Time(Period)	23	2.2	0.097	15	<0.001
Time(P	eriod)×CI	23	1.1	0.049	7.4	<0.001
Е	rror	554			-	
	Contrasts (P-v	alue and Ma	gnitude of	Difference) ^c		
Period 1	Period 2				P-value	MOD
	2022_7				0.003	2.31 SD
2022_5	2022_9				<0.001	3.29 SD
	2022_12				<0.001	3.21 SD
2022_7	2022_9				ns	-
2022_1	2022_12				ns	-
2022_9	2022_12			_	ns	-

	P-value for Period×CI or Time(Period)×CI factors < 0.1
	Contrast P-value < 0.1/6 and in an increasing direction
	Contrast P-value < 0.1/6 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table D.6: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LILC3 Within the AWTF with AOP Operational Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA I	Model			
Т	erm	DF	SSª	MS ^b	F-Ratio	P-Value
Р	eriod	5	1.5	0.29	44	<0.001
	CI	1	10	10	1,444	<0.001
Per	iod×CI	5	4.7	0.94	143	<0.001
Time	(Period)	24	2.2	0.090	14	<0.001
Time(F	Period)×CI	24	1.8	0.075	11	<0.001
E	rror	563			-	
	Contrasts (P-va	alue and Ma	gnitude of	Difference) ^c		
Period 1	Period 2				P-value	MOD
	2020_4				ns	-
2019_4	2021_4				ns	-
	2022_5				ns	-
	2020_7				ns	-
2019_7	2021_7				ns	-
	2022_7				ns	-
	2020_9				ns	-
2019_9	2021_9				ns	-
	2021_9				ns	-
	2020_12				<0.001	-3.74 SD
2019_12	2021_12				<0.001	-5.38 SD
	2022_12				<0.001	-3.39 SD

P-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast P-value < 0.1/12 and in an increasing direction

Contrast P-value < 0.1/12 and in a decreasing direction

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

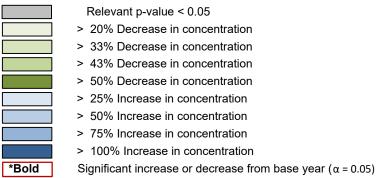
Table D.7: Results Table for the Asymmetric 2-way ANOVA Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LIDSL Within the AWTF with AOP Operational Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOVA I	Model			
Т	erm	DF	SSª	MS ^b	F-Ratio	P-Value
P	eriod	5	0.38	12	<0.001	
	CI	1	0.79	0.79	120	<0.001
Per	iod×CI	5	2.1	0.42	64	<0.001
Time	(Period)	23	2.2	0.097	15	<0.001
Time(P	eriod)×CI	23	1.1	0.049	7.4	<0.001
E	rror	554		,	-	
	Contrasts (P-va	alue and Ma	gnitude of l	Difference) ^c		
Period 1	Period 2				P-value	MOD
	2020_4				ns	2.31 SD
2019_4	2021_4				ns	-
	2022_5				0.006	-1.87 SD
	2020_7				ns	-
2019_7	2021_7				ns	-
	2022_7				ns	-
	2020_9				ns	-
2019_9	2021_9				ns	-
	2021_9				ns	-
	2020_12				<0.001	-3.43 SD
2019_12	2021_12				<0.001	-3.98 SD
	2022_12				ns	_

P-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast P-value < 0.1/12 and in an increasing direction

Contrast P-value < 0.1/12 and in a decreasing direction


^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

^c Magnitude of difference (MOD) was calculated as the difference in period 2 - difference in period 1/pooled standard deviation (SD).

Table D.8: ANOVA Comparison of Benthic Invertebrate Tissue Concentrations at Among Years Before and After Lab Change At RG_SLINE, 2017 to 2022

				Magnitude	e of Differer	nces from E	Base Year ^a		Differences Among Years ^b									
ANOV	A	Month		Before			After			Before		After						
			2017	2018	2019	2020	2021	2022	2017	2018	2019	2020	2021	2022				
Term	P-value	April	Base Year	38	46	90	61	87	O	В	В	Α	АВ	АВ				
Year	<0.001	July	-	-	Base Year	7.8	24	1.0	-	-	А	Α	Α	А				
Month	<0.001	September	Base Year	44	12	40	58	42	С	AB	ВС	AB	Α	AB				
Year x Month	<0.001	December	-	Base Year	-36	73	84	83	1	В	С	Α	Α	А				

Notes: "-" = no data, BIT = Benthic invertebrate tissue.

^a Magnitude of difference calculated as (Year_i - Base Year)/Base Year x 100% with the significance of the comparison determined using a Tukey's Honestly Significant Difference (HSD) test.

^b Years that do not share a letter were identified as being significantly different in a Tukey's HSD test ($\alpha = 0.05$).

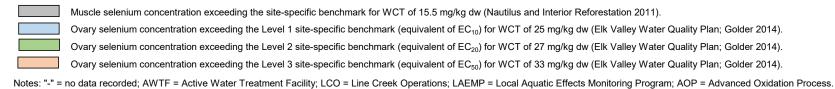
Table D.9: Geometric Means of Benthic Invertebrate Biomass for Major Taxonomic Groups Over Time at RG SLINE, 2014 to 2022

	Epheme	eroptera	Pleco	optera	Tricho	optera	Diptera				
Year	Biomass	% of Total	Biomass	% of Total	Biomass	% of Total	Biomass	% of Total			
	(g/m²)	Biomass	(g/m²)	Biomass	(g/m²)	Biomass	(g/m²)	Biomass			
2014	2.03	41.0	1.18	23.8	0.599	12.1	0.411	8.31			
2015	3.07	29.1	4.02	38.1	1.53	14.5	0.709	6.73			
2016	1.53	29.3	1.08	20.8	1.25	24.0	0.512	9.85			
2017	1.44	29.1	0.825	16.6	0.729	14.7	0.785	8.52			
2018	0.850	9.94	1.46	17.1	2.27	26.6	0.520	6.09			
2019	2.69	36.5	1.80	24.4	1.41	19.2	0.612	8.30			
2020	2.78	34.0	1.74	21.2	2.36	28.8	0.558	6.81			
2021	1.70	24.8	2.76	40.2	0.994	14.5	0.506	7.36			
2022	1.90	1.90 19.2 2.16		21.7	2.27	22.9	0.629	6.34			

Note: Biomass samples were taken in September

Table D.10: Dominant Taxa in Composite-Taxa Tissue Samples Collected at RG_SLINE, 2014 to 2022^a

Year	April	July	September ^b	December
2014	-	-	-	-
2015	-	-	-	-
2016	-	-	-	-
2017	-	-	-	-
2018	-	-	Trichoptera, Plecoptera	Plecoptera, Trichoptera
2019	Plecoptera, Trichoptera, Ephemeroptera	-	Trichoptera, Plecoptera	-
2020	Plecoptera, Trichoptera, Ephemeroptera	-	Trichoptera, Ephemeroptera, Plecoptera	Plecoptera, Ephemeroptera, Trichoptera
2021	Ephemeroptera, Plecoptera, Trichoptera	Ephemeroptera, Trichoptera, Plecoptera	Plecoptera, Ephemeroptera, Trichoptera	Plecoptera, Trichoptera, Ephemeroptera
2022	Ephemeroptera, Plecoptera	Ephemeroptera, Plecoptera, Trichoptera	Plecoptera, Ephemeroptera, Trichoptera	Ephemeroptera, Plecoptera, Trichoptera


Note: "-" indicates no data available. April sampling was conducted in early May in 2022.

^a Dominant taxa were assessed using visual estimates of biomass. Taxa in table represent a summary of taxa dominance across stations.

^b September sampling for composite-taxa tissue was sampled concurrently with Hess sampling (see Table D.14).

Table D.11: Physical Measures and Tissue Selenium Concentrations for Westslope Cutthroat Trout Sampled from Line Creek, 2001 to 2022

AWTF Operation W	Waterbody	Area	Year	Ū	Location TM 33, 11U)	Study	Processing	Fish ID	Total Length	Fork Length	Body Weight	Sex ^a	Age			Seleniu /kg dw)	m	Recorded Deformities
Phase				,	Northing	•	Date		(cm)	(cm)	(g)			Muscle	Ovary	Egg ^b	Estimated Ovary ^c	(DELT) ^d
		RG_LI8	2001	654480	5529034		Apr-2001	L1-1	-	34.0	530	М	5	9.2	-	-	-	-
		RG_LI8	2001	654480	5529034		Apr-2001	L1-2	-	32.0	475	М	3	8.1	-	-	-	-
		RG_LI8	2001	654480	5529034		Apr-2001	L1-4	-	34.6	680	М	4	8.5	-	-	-	-
		RG_LI8	2001	654480	5529034		Apr-2001	L1-3	-	36.1	725	F	4	8.4	15	-	-	-
		RG_LI8	2001	654480	5529034		Apr-2001	L1-5	-	32.9	550	F	4	9.8	16	-	-	-
		RG_LI8	2001	654480	5529034		Apr-2001	L1-6	-	32.5	500	F	5	8.5	16	-	-	-
		RG_LI8	2002	654480	5529034	Golder 2005	Apr-2002	LN-1	-	38.5	780	М	7	8.0	-	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-2	-	39.0	750	F	7	16	20	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-3	-	34.7	615	F	5	7.0	14	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-4	-	32.5	480	F	6	8.0	19	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-5	-	34.5	550	F	7	7.0	14	-	-	-
Prior to AWTF Li	ine Creek	RG_LI8	2002	654480	5529034		Apr-2002	LN-6	-	37.8	785	F	6	7.0	14	-	-	-
Operation LI	ine Creek	RG_LI8	2002	654480	5529034		Apr-2002	LN-7	-	38.5	850	F	7	9.0	16	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-8	-	33.6	525	F	6	7.0	13	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-9	-	30.1	400	F	5	7.0	14	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-10	-	37.8	675	F	6	8.0	14	-	-	-
		RG_LIDSL	2003	659281	5530548		Jul-2003	LC-CT1	-	39.1	800	М	6	7.2	-	-	-	-
		RG_LIDSL	2003	659281	5530548	Minnow 2004	Jul-2003	LC-CT2	-	34.8	700	F	4	6.4	-	-	10	-
		RG_LIDSL	2003	659281	5530548		Jul-2003	LC-CT3	-	31.5	470	F	4	7.4	-	-	12	-
		RG_LI8	2006	657406	5529218		Apr-2006	LI8001	-	30.6	435	F	5	7.9	11	-	-	-
		RG_LI8	2006	657406	5529218	Minney at -1	Apr-2006	LI8002	-	31.7	427	F	5	7.7	11	-	-	-
		RG_LI8	2006	657406	5529218	Minnow et al. 2007	Apr-2006	LI8003	-	27.4	288	F	5	7.4	21	-	-	-
		RG_LI8	2006	657406	5529218		Apr-2006	LI8004	-	21.4	132	F	6	15	11	-	-	-
		RG_LI8	2006	657406	5529218		Apr-2006	LI8005	-	20.5	117	F	5	13	15	-	-	-

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics).

b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight).

^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation (2011). Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female) or if sex was unknown.

d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

Table D.11: Physical Measures and Tissue Selenium Concentrations for Westslope Cutthroat Trout Sampled from Line Creek, 2001 to 2022

AWTF Operation	Waterbody	Area	Year	· u	Location TM 33, 11U)	Study	Processing	Fish ID	Total Length	Fork Length	Body Weight	Sexª	Age			Seleniu /kg dw)	m	Recorded Deformities
Phase				,	Northing	,	Date		(cm)	(cm)	(g)			Muscle	Ovary	Egg ^b	Estimated Ovary ^c	(DELT) ^d
		RG_LI8	2009	657406	5529218		Sep-2009	LI8a	_	30.5	435	F	5	12	-	-	18	-
	=	RG_LI8	2009	657406	5529218		Sep-2009	LI8b	-	28.8	327	F	6	11	-	-	17	-
		RG_LI8	2009	657406	5529218	Minnow et al. 2011	Sep-2009	LI8c	-	22.1	184	F	6	11	-	-	18	-
	=	RG_LI8	2009	657406	5529218	2011	Sep-2009	LI8d	-	21.2	112	F	4	14	-	-	22	-
Prior to AWTF	Line Creek	RG_LI8	2009	657406	5529218		Sep-2009	LI8e	-	21.3	132	F	4	13	-	-	21	-
Operation	Line Creek	RG_LILC3	2012	660085	5532021		24-May-12	LILC3-WCT1	-	21.1	135	F	-	10	-	-	16	-
		RG_LILC3	2012	660085	5532021		24-May-12	LILC3-WCT2	-	18.2	63	U	-	7.2	-	-	12	-
		RG_LILC3	2012	660085	5532021	Minnow 2014	24-May-12	LILC3-WCT3	-	18.0	58	U	-	9.2	-	-	15	-
		RG_LILC3	2012	660085	5532021		24-May-12	LILC3-WCT4	-	17.7	57	U	-	6.8	-	-	11	-
		RG_LILC3	2012	660085	5532021		1-Jun-12	LILC3-WCT5	-	20.0	79	М	-	6.6	-	-	-	-
		RG_LI8	2017	655320	5529059		7-Sep-17	LI8-WCT-01	36.7	35.1	645	U	-	6.9	-	-	11	None
		RG_LI8	2017	655320	5529059		7-Sep-17	LI8-WCT-02	44.6	42.8	1,005	U	-	7.8	-	-	12	Slight jaw malformation
		RG_LI8	2017	655320	5529059		7-Sep-17	LI8-WCT-03	32.1	30.4	382	U	-	7.8	-	-	12	None
		RG_LI8	2017	655320	5529059		8-Sep-17	LI8-WCT-04	40.1	38.7	750	U	-	7.8	-	-	12	Bite on stomach from another fish
AWTF		RG_LI8	2017	655320	5529059	2017 LCO	8-Sep-17	LI8-WCT-05	31.7	30.5	355	U	-	8.6	-	-	14	None
Steady	Line Creek	RG_LIDCOM	2017	658185	5529820	LAEMP	28-Apr-17	LIDCOM-WCT-01	36.5	35.5	570	U	-	12	-	-	20	None
State	Lille Oleek	RG_LIDSL	2017	659293	5530590	(Minnow 2018d)	26-Apr-17	LIDSL-WCT-01	27.0	26.5	220	U	-	25	-	-	40	None
Operation	_	RG_LIDSL	2017	659293	5530590	2010u)	8-Sep-17	LIDSL-WCT-01	41.4	39.8	885	U	-	34	-	-	54	None
		RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-WCT-02	30.7	29.4	345	U	-	26	-	-	42	Bite marks from another fish
		RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-WCT-03	26.2	25.3	230	U	-	14	-	-	22	None
		RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-WCT-04	27.4	26.2	230	U	-	24	-	-	38	None
		RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-WCT-05	23.4	22.2	122	U	-	42	-	-	67	None

Muscle selenium concentration exceeding the site-specific benchmark for WCT of 15.5 mg/kg dw (Nautilus and Interior Reforestation 2011).

Ovary selenium concentration exceeding the Level 1 site-specific benchmark (equivalent of EC₁₀) for WCT of 25 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 2 site-specific benchmark (equivalent of EC₂₀) for WCT of 27 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 3 site-specific benchmark (equivalent of EC₅₀) for WCT of 33 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics).

b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight).

^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation (2011). Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female) or if sex was unknown.

d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

Table D.11: Physical Measures and Tissue Selenium Concentrations for Westslope Cutthroat Trout Sampled from Line Creek, 2001 to 2022

AWTF Operation	Waterbody	Area	Year	Ū.	Location TM 33. 11U)	Study	Processing	Fish ID	Total Length	Fork Length	Body Weight	Sexª	Age			Seleniu /kg dw)	m	Recorded Deformities
Phase					Northing		Date		(cm)	(cm)	(g)			Muscle	Ovary	Egg ^b	Estimated Ovary ^c	(DELT) ^d
		RG LIDCOM	2018	658135	5529841		30-Apr-18	LIDCOM-WCT-01	35.2	34.6	450	U	-	14	-	_	22	-
	-	RG LIDSL	2018	659232	5530500		20-Aug-18	RG LIDSL WCT-2-M 20180820	-	17.8	83	U	-	11	-	-	18	None
		Mid-Canyon	2018	656825	5529140		21-Aug-18	RG LI8 WCT-2-M 20180821	-	19.5	99	U	-	7.9	-	-	13	None
		Mid-Canyon	2018	656825	5529140		21-Aug-18	RG_LI8_WCT-3-M_20180821	-	30.3	315	U	-	8.7	-	-	14	None
	Line Creek	Mid-Canyon	2018	656825	5529140		21-Aug-18	RG LI8 WCT-4-M 20180821	-	32.0	414	U	-	9.8	-	-	16	None
		Mid-Canyon	2018	656825	5529140		21-Aug-18	RG LI8 WCT-5-M 20180821	-	24.6	182	U	-	8.8	-	-	14	None
		RG LIDCOM	2018	658185	5529798	2018 LCO	12-Sep-18	RG LIDCOM WCT-1-M 20180912	30.4	29.1	345	U	-	25	-	-	40	None
AWTF		RG LI8	2018	654584	5529020	LAEMP	12-Sep-18	RG LI8 WCT-1-M 20180912	26.2	24.9	210	U	-	9.5	-	-	15	None
Shutdown		RG FO23	2018	652956	5528903	(Minnow	05-Sep-18	RG FO23 WCT-1-M 20180905	40.0	38.5	710	U	-	10	-	-	16	None
		RG FO23	2018	652956	5528903	2019a)	05-Sep-18	RG FO23 WCT-2-M 20180905	41.4	38.8	730	U	-	7.2	-	-	12	Angling scarring around mouth
		RG FO23	2018	652956	5528903		05-Sep-18	RG FO23 WCT-3-M 20180905	34.9	33.4	455	U	-	7.0	-	-	11	None
	Fording	RG FO23	2018	652956	5528903		05-Sep-18	RG FO23 WCT-4-M 20180905	32.4	30.3	310	U	-	9.5	-	-	15	None
	River	RG FO23	2018	652956	5528903		05-Sep-18	RG FO23 WCT-5-M 20180905	22.7	21.5	121	U	-	7.5	-	-	12	None
	=	RG FO23	2018	652874	5528402		05-Sep-18	RG FO23 WCT-6-M 20180905	42.0	40.2	750	U	-	9.0	-	-	14	None
	=	RG FO23	2018	652874	5528402		05-Sep-18	RG FO23 WCT-7-M 20180905	33.2	31.4	385	U	-	6.0	-	-	10	Scarring around mouth
	=	RG FO23	2018	652874	5528402		05-Sep-18	RG_FO23_WCT-8-M_20180905	30.8	29.2	315	U	-	13	-	-	21	None
		RG LILC3	2019	659870	5531576		05-Sep-19	RG LILC3 WCT-01	20.7	19.7	98	F	SA	7.9	-	-	13	None
	=	RG LILC3	2019	659870	5531576		06-Sep-19	RG LILC3 WCT-04	41.7	39.2	945	М	Α	10	-	-	16	None
	=	RG LIDCOM	2019	658185	5529820		05-Sep-19	RG LIDCOM WCT-02	37.5	35.5	625	F	Α	11	-	-	18	None
	=	RG LIDCOM	2019	658185	5529820		05-Sep-19	RG LIDCOM WCT-03	40.7	39.0	840	М	Α	6.2	-	-	10	None
		RG LIDCOM	2019	658185	5529820		06-Sep-19	RG LIDCOM WCT-05	32.2	30.7	420	М	Α	7.6	-	-	12	None
		RG_LIDCOM	2019	658185	5529820		06-Sep-19	RG_LIDCOM_WCT-06	38.1	36.5	840	М	Α	7.4		-	12	None
After		RG_LIDCOM	2019	658185	5529820	2019 LCO	06-Sep-19	RG_LIDCOM_WCT-07	34.3	32.9	545	М	Α	7.9		-	13	None
AWTF/AOP	Line Creek	RG_LIDCOM	2019	658185	5529820	LAEMP (Minnow	06-Sep-19	RG_LIDCOM_WCT-08	29.9	28.7	360	F	Α	10		-	16	None
Operations Stabilize		RG_LI8	2019	655378	5529048	(Minnow 2020a)	06-Sep-19	RG_LI8_WCT-01	48.5	46.8	1,140	М	Α	7.7	-	-	12	None
		RG_LI8	2019	655378	5529048	,	06-Sep-19	RG_LI8_WCT-02	33.2	32.0	410	F	Α	7.2	-	-	12	None
		RG_LI8	2019	654671	5529013		07-Sep-19	RG_LI8_WCT-03	36.3	35.0	515	F	Α	8.1	-	-	13	None
		RG_LI8	2019	654671	5529013		07-Sep-19	RG_LI8_WCT-04	25.6	24.5	195	М	Α	6.5	-	-	10	None
		RG_LI8	2019	654671	5529013		07-Sep-19	RG_LI8_WCT-05	44.7	43.3	900	F	Α	20	-	28	-	None
		RG_LI8	2019	655378	5529048		07-Sep-19	RG_LI8_WCT-06	45.2	43.4	980	F	Α	8.2	-	-	13	None
		RG_LI8	2019	655378	5529048		07-Sep-19	RG_LI8_WCT-07	40.6	39	760	М	Α	7.0	-	-	11	None

Muscle selenium concentration exceeding the site-specific benchmark for WCT of 15.5 mg/kg dw (Nautilus and Interior Reforestation 2011).

Ovary selenium concentration exceeding the Level 1 site-specific benchmark (equivalent of EC₁₀) for WCT of 25 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 2 site-specific benchmark (equivalent of EC₂₀) for WCT of 27 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 3 site-specific benchmark (equivalent of EC50) for WCT of 33 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics).

b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight).

^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation (2011). Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if

d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

Table D.11: Physical Measures and Tissue Selenium Concentrations for Westslope Cutthroat Trout Sampled from Line Creek, 2001 to 2022

AWTF Operation	Waterbody	Area	Year	. n.	Location TM 3, 11U)	Study	Processing	Fish ID	Total Length	Fork Length	Body Weight	Sexª	Age			Seleniu /kg dw)	m	Recorded Deformities
Phase				`	Northing	-	Date	_	(cm)	(cm)	(g)			Muscle	Ovary	Egg ^b	Estimated Ovary ^c	(DELT) ^d
		RG LIDSL	2021	659876	5531584		13-Sep-21	RG LIDSL WCT-01 M 2021-09-13	22.7	21.6	124.5	_	_	16		_	26	None
		RG LIDSL	2021	659876	5531584		13-Sep-21	RG LIDSL WCT-02 M 2021-09-13	27.2	26.1	216		_	6.1		_	10	None
		RG LIDSL	2021	659876	5531584		13-Sep-21	RG LIDSL WCT-03 M 2021-09-13	31.4	29.9	395	-	_	18		_	29	None
		RG LIDSL	2021	659876	5531584		13-Sep-21	RG LIDSL WCT-04 M 2021-09-13	29.4	28.2	315	-	-	17	-	-	27	None
	Line Creek	RG LIDSL	2021	659876	5531584		13-Sep-21	RG LIDSL WCT-05 M 2021-09-13	32.7	31.4	440	-	-	17	-	-	27	None
		RG LIDSL	2021	658119	5529814		13-Sep-21	RG LIDSL WCT-06 M 2021-09-13	27.4	26.5	256	-	-	7.1	-	-	11	None
		RG LIDSL	2021	658119	5529814		13-Sep-21	RG LIDSL WCT-07 M 2021-09-13	44.5	42.4	1075	-	-	4.3	-	-	7	None
		RG_LIDSL	2021	658119	5529814	2021 RAEMP	13-Sep-21	RG_LIDSL_WCT-08_M_2021-09-13	29.9	28.7	355	-	-	6.5	-	-	10	None
		RG_FO23	2021	652808	5528334		13-Sep-21	RG_F023_WCT-01_M_2021-09-13	27.9	26.4	255	-	-	9	-	-	14	None
		RG_FO23	2021	652808	5528334		13-Sep-21	RG_FO23_WCT-02_M_2021-09-13	38.4	36.6	595	-	-	8.2	-	-	13	None
		RG_FO23	2021	652808	5528334		14-Sep-21	RG_FO23_WCT-03_M_2021-09-14	45.8	43.7	1110	-	-	11	-	-	18	None
After	Fording	RG_FO23	2021	652808	5528334		14-Sep-21	RG_FO23_WCT-04_M_2021-09-14	34.9	33.2	490	-	-	7.6	-	-	12	None
AWTF/AOP Operations	River	RG_FO23	2021	652808	5528334		14-Sep-21	RG_FO23_WCT-05_M_2021-09-14	32.1	30.9	395	-	-	10	-	-	16	None
Stabilize		RG_FO23	2021	652808	5528334		14-Sep-21	RG_FO23_WCT-06_M_2021-09-14	38.5	32.7	455	-	-	7	-	-	11	None
		RG_FO23	2021	652808	5528334		14-Sep-21	RG_FO23_WCT-07_M_2021-09-14	29.9	28.3	305	-	-	6.9	-	-	11	None
		RG_FO23	2021	652808	5528334		14-Sep-21	RG_FO23_WCT-08_M_2021-09-14	31.4	29.9	340	-	-	10	-	-	16	None
		RG_LIDSL	2022	659242	5530509		06-Sep-22	RG_LIDSL_WCT-M-1_2022-09-06	32	31	410		-	5.6	-	-	9	Upper jaw erosion
		RG_LIDSL	2022	659242	5530509		06-Sep-22	RG_LIDSL_WCT-M-2_2022-09-06	43	42	860	-	-	7.7	-	-	12	None
		RG_LIDSL	2022	659242	5530509		06-Sep-22	RG_LIDSL_WCT-M-3_2022-09-06	31	30	360	-	-	5.2	-	-	8	Jaw lesion
		RG_LIDSL	2022	659242	5530509		06-Sep-22	RG_LIDSL_WCT-M-4_2022-09-06	41	40	800	-	-	7.8	-	-	12	None
	Line Creek	RG_LIDSL	2022	658831	5530074	2022 RAEMP	19-Sep-22	RG_LIDSL_WCT-M-5_2022-09-19	34.8	33	420	-	-	18	-	-	29	Snout erosion, caudal fin and left pectoral fin lesions
		RG_LIDSL	2022	659909	5531548		20-Sep-22	RG_LIDSL_WCT-M-6_2022-09-20	37.8	36.8	680	-	-	9.1	-	-	15	Split dorsal fin, lower caudal lobe erosion
		RG_LIDSL	2022	659909	5531548		20-Sep-22	RG_LIDSL_WCT-M-7_2022-09-20	26.4	25.5	190	-	-	5.9	-	-	9	None
		RG_LIDSL	2022	659909	5531548		20-Sep-22	RG_LIDSL_WCT-M-8_2022-09-20	33.8	32.5	480	-	-	6.8	-	-	11	None

Muscle selenium concentration exceeding the site-specific benchmark for WCT of 15.5 mg/kg dw (Nautilus and Interior Reforestation 2011).

Ovary selenium concentration exceeding the Level 1 site-specific benchmark (equivalent of EC₁₀) for WCT of 25 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 2 site-specific benchmark (equivalent of EC20) for WCT of 27 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 3 site-specific benchmark (equivalent of EC₅₀) for WCT of 33 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process; u/s = upstream.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics).

b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight).

^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation (2011). Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female) or if sex was unknown.

d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

Table D.12: Physical Measures and Tissue Selenium Concentrations for Bull Trout Sampled from Line Creek, 2006 to 2022

AWTF	Area Y	Vace		cation UTM 3, 11U)	Chudu	Processing	Fish ID	Total Length	Fork Length	Body Weight	O. a	Life	A ===			enium Concentr mg/kg dw)	ation	Recorded Deformities	
Operation Phase	Area	Year	Easting	Northing	Study	Date	Fish ID	(cm)	(cm)	(g)	Sexª	Stage ^b	Age	Muscle	Ovary	Ovary (Estimated ^c)	Liver	(DELT) ^d	
Duisanta	RG_LI8	2006	656892	5529139		23-Aug-06	LI8101	-	74.0	4,309	М	Α	-	4.7	-	-	-	-	
Prior to AWTF	RG_LI8	2006	656892	5529139	Minnow et al.	23-Aug-06	LI8102	-	63.3	2,948	F	Α	-	4.0	-	13	-	-	
Operation	RG_LI8	2006	656892	5529139	2007	23-Aug-06	LI8103	-	63.5	2,722	F	Α	-	3.1	-	10	-	-	
Operation	RG_LI8	2006	656892	5529139		23-Aug-06	LI8104	-	23.3	162	U	J	-	4.4	-	-	-	-	
	RG_LILC3	2017	659887	5531590		27-Apr-17	LILC3-BT-01	40.0	38.5	550	-	J	-	26	-	-	-	none	
	RG_LIDCOM	2017	658185	5529820		10-Sep-17	LIDCOM-BT-07	77.6	75.2	4,220	М	Α	10	5.6	-	-	30	none	
	RG_LIDCOM	2017	658185	5529820		11-Sep-17	LIDCOM-BT-11	65.9	63.2	2,660	F	Α	-	4.8	16	-	-	none	
	RG_LIDCOM	2017	658185	5529820		11-Sep-17	LIDCOM-BT-12	73.6	68.5	3,160	F	Α	-	4.4	16	-	-	cut on tail due to tagging	
414/75	RG_LILC3	2017	659892	5531560	2017 LCO	10-Sep-17	LILC3-BT-06	63.1	60.5	2,260	F	Α	8	4.8	12	-	16	none	
AWTF Steady State	RG_LILC3	2017	659892	5531560	LAEMP	11-Sep-17	LILC3-BT-08	61.8	60.0	2,080	F	Α	-	3.9	14	-	-	none	
Operation	RG_LILC3	2017	659892	5531560	(Minnow	11-Sep-17	LILC3-BT-10	63.2	61.9	1,840	F	Α	-	4.5	15	-	-	none	
Operation	RG_LILC3	2017	659892	5531560	2018d)	8-Sep-17	LILC3-BT-01	25.5	24.2	146	М	YM	3	21	-	-	58	none	
	RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-BT-02	27.9	26.6	210	М	YM	3	19	-	-	65	none	
	RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-BT-03	27.8	26.1	199	М	YM	3	28	-	-	61	abrasion on back	
	RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-BT-04	28.0	26.6	209	М	YM	3	20	-	-	63	none	
	RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-BT-05	32.3	30.9	342	М	YM	4	27	-	-	100	none	
	RG_LILC3	2018	659880	5531582		30-Apr-18	LILC3-BT-01	45.9	44.1	800	М	YM	-	21	-	-	-	none	
1	RG_LILC3	2018	659880	5531582	2018 LCO	2-May-18	LILC3-BT-02	44.0	42.0	939	М	YM	-	45	-	-	-	none	
AWTF Shutdown	RG_LILC3	2018	659880	5531582	LAEMP (Minnow	2-May-18	LILC3-BT-03	26.6	25.5	155	U	J	-	37	-	-	-	none	
Silutdowii	RG_LILC3	2018	659880	5531582	2019a)	3-May-18	LILC3-BT-04	39.3	37.7	669	U	J	-	46	-	-	-	none	
	Mid-Canyon	2018	656825	5529140	20100)	21-Aug-18	RG_LI8_BT-1-M_20180821	-	20.2	87	U	J	-	7.6	-	-	-	none	
	RG_LILC3	2019	659870	5531576		4-Sep-19	LILC3_BT-01	28.5	27.1	245	F	YF	-	14	-	-	-	none	
	RG_LILC3	2019	659870	5531576		4-Sep-19	LILC3_BT-02	27.7	26.4	210	F	YF	-	16	-	-	-	none	
	RG_LILC3	2019	659870	5531576		4-Sep-19	LILC3_BT-03	26.0	24.4	160	М	YM	-	6.4	-	-	-	none	
	RG_LILC3	2019	659870	5531576		5-Sep-19	LILC3_BT-04	27.8	26.5	112	М	YM	-	11	-	-	-	none	
	RG_LILC3	2019	659870	5531576		5-Sep-19	LILC3_BT-05	28.6	27.4	205	F	YF	-	7.2	-	-	-	none	
After	RG_LILC3	2019	659870	5531576	0040100	5-Sep-19	LILC3_BT-06	68.7	66.6	3,150	F	Α	-	5.8	-	19	-	none	
AWTF/AOP	RG_LILC3	2019	659870	5531576	2019 LCO LAEMP	5-Sep-19	LILC3_BT-07	26.9	25.5	164	М	YM	-	11	-	-	-	none	
Operations	RG_LILC3	2019	659870	5531576	LACIVIE	5-Sep-19	LILC3_BT-08	25.7	24.3	142	М	YM	-	12	-	-	-	none	
Stabilize	RG_LILC3	2019	659870	5531576		5-Sep-19	LILC3_BT-09	59.2	57.0	1,900	М	Α	-	4.9	-	-	-	none	
	RG_LI8	2019	655378	5529048	1	6-Sep-19	LI8_BT-01	75.0	72.5	3,950	F	Α	-	5.6	-	18	-	none	
	RG_LI8	2019	655378	5529048	1	6-Sep-19	LI8_BT-02	65.5	63.3	2,460	М	Α	-	4.5	-	-	-	none	
	RG_LI8	2019	654671	5529013	1	7-Sep-19	LI8_BT-03	70.6	67.5	3,200	М	Α	-	4.7	-	-	-	none	
	RG_LI8	2019	654671	5529013		7-Sep-19	LI8_BT-04	72.2	69.3	3,350	F	Α	-	4.5	-	15	-	none	
	Upper Line Creek, u/s LC2	2022	661775	5537040	Incidental	22-Aug-22			38.6	674	F	Α	-	5.2	-	17	-	none	

Ovary selenium concentration exceeding the Level 1 site-specific benchmark for "other fish" of 18 mg/kg dw (Elk Valley Water Quality Plan; Teck 2014).

Ovary selenium concentration exceeding the US EPA Effect Concentration (EC10) of 56.2 mg/kg dw for Dolly Varden trout (USEPA 2016).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process; u/s = upstream.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics).

^b A = adult; J = juvenile; YM = young male; YF = young female.

^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 3.3:1 (Minnow 2018d). Ovary selenium was estimated only for adult individuals lacking measured ovary concentrations (if female) or if sex of an adult individual was unknown.

^d DELT = Deformities, erosions, lesions, tumors. DELT observations were initiated in 2017 following the start of AWTF operation.

Table D.13: Mean and Predicted Westslope Cutthroat Trout Ovary Selenium Tissue Concentrations, LCO LAEMP 2001 to 2022

Area	Date	Ovary Tissue Selenium		Prediction Interval (mg/kg dw)							
Alea	Date	(mg/kg dw)	Lower (2.5%)	Mean	Upper (97.5%)						
	Jun-12	13.3	5.24	11.0	23.1						
RG_LILC3	Sep-17	42.4	5.26	11.1	23.3						
RG_LIDSL	Sep-19	12.6	5.24	11.0	23.1						
	Apr-17	40.2	5.23	11.0	23.1						
	Sep-17	54.4	5.23	11.0	23.1						
	Aug-18	17.6	5.32	11.2	23.6						
	Sep-21	18.4	5.24	11.0	23.1						
	Sep-22	13.2	5.24	11.0	23.1						
RG_LIDCOM	Sep-18	40.0	5.33	11.2	23.7						
KG_LIDCOW	Sep-19	16.8	5.24	11.0	23.1						
	Apr-02	15.3	5.25	11.0	23.0						
	Apr-06	14.0	5.24	11.0	23.2						
	Sep-09	19.4	5.24	11.0	23.1						
RG_LI8	Sep-17	12.4	5.24	11.0	23.1						
	Aug-18	14.1	5.23	11.0	23.1						
	Sep-18	15.2	5.30	11.2	23.5						
	Sep-19	16.4	5.24	11.0	23.1						
	May-09	15.6	5.24	11.0	23.1						
PC EO22	May-12	13.2	5.24	11.0	23.1						
RG_FO23	Sep-18	13.8	5.25	11.0	23.2						
	Sep-21	13.9	5.23	11.0	23.1						

Mean Concentration exceeds upper predicted limit.

Mean Concentration is below lower predicted limit.

Notes: WCT ovary tissue selenium concentrations for seven individual replicates are not shown as concurrent water samples were not available. mg/kg dw = milligrams per kilogram dry weight. Mean egg and ovary selenium concentrations (solid black line) were estimated using a two-step water to fish egg selenium accumulation model: step 1 - log10[Se]benthic invertebrate = 0.717 0.072 x log10[Se]aq and step 2 - log10[Se]fish = 1.02 + 0.026 x log10[Se]inv when [Se]inv < 6.8 and log10[Se]fish = 1.26 + 1.10 x log10[Se]inv when [Se]inv >= 6.8 (Golder 2018).

Table D.14: Concentrations of Selenium Species Measured at Biological Monitoring Stations from LCO, May to December, LAEMP, 2022

Water	Body	Biological Monitoring Area	Sample Date	Selenate (μg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Methaneselenonic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Unknown Species (µg/L)	Sum of Species (µg/L)	Organoselenium (µg/L) ^a		
	e .		3-May-2022	1.03	0.031	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.1	<0.01		
	outh Lin Creek	RG_SLINE	12-Jul-2022	0.64	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.6	<0.01		
e	South Line Creek	110_0212	16-Sep-2022	1.43	0.021	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.5	<0.01		
Reference	Ñ		30-Nov-2022	1.51	0.026	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.5	<0.01		
efe			3-May-2022	1.40	0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.4	<0.01		
<u>~</u>		RG LI24	11-Jul-2022	1.70	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.7	<0.01		
		-	17-Sep-2022	2.80	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.8	<0.01		
			30-Nov-2022	2.87	0.025	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.9	<0.01		
			2-May-2022	55.00	0.065	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	55.1	<0.01		
		RG_LCUT	12-Jul-2022	21.90	0.069	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	22.0	<0.01		
			15-Sep-2022	63.00	0.083	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	63.1	<0.01		
			1-Dec-2022	51.60	0.087	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	51.7	<0.01		
			2-May-2022	57.10	0.263	<0.01	0.015	0.046	<0.01	<0.01	<0.01	<0.01	57.4	0.015		
		RG_LILC3	12-Jul-2022	30.50	0.068	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	30.6	<0.01		
			8-Sep-2022	43.40	0.122	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	43.5	<0.01		
	<i>-</i>		1-Dec-2022	46.80	0.249	<0.01	<0.01	0.033	<0.01	<0.01	<0.01	<0.01	47.1	<0.01		
	Line Creek	RG_LISP24	RG_LISP24		3-May-2022	37.70 23.20	0.178 0.054	<0.01	0.013 <0.01	0.028 <0.01	<0.01	<0.01	<0.01	<0.01	37.9 23.3	0.013
	ပ်			13-Jul-2022 14-Sep-2022	38.40	0.034	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	38.5	<0.01	
	-ine		1-Dec-2022	28.70	0.193	<0.01	<0.01	0.016	<0.01	<0.01	<0.01	<0.01	28.9	<0.01		
	_		4-May-2022	41.20	0.193	<0.01	0.01	0.010	<0.01	<0.01	<0.01	<0.01	41.4	0.011		
			11-Jul-2022	21.50	0.06	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	<0.01	21.6	<0.01		
eq		RG_LIDSL	13-Sep-2022	37.40	0.00	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	37.5	<0.01		
sod			29-Nov-2022	39.60	0.181	<0.01	<0.01	0.014	<0.01	<0.01	<0.01	<0.01	39.8	<0.01		
Mine-Exposed			4-May-2022	30.20	0.136	<0.01	<0.01	0.013	<0.01	<0.01	<0.01	<0.01	30.3	<0.01		
i.			14-Jul-2022	21.70	0.052	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	21.8	<0.01		
Σ		RG_LIDCOM	12-Sep-2022	34.40	0.120	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	34.5	<0.01		
			1-Dec-2022	33.70	0.149	<0.01	0.012	<0.01	<0.01	<0.01	<0.01	<0.01	33.9	0.012		
			4-May-2022	27.50	0.106	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	27.6	<0.01		
		50.110	14-Jul-2022	20.00	0.048	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	20.0	<0.01		
		RG_LI8	17-Sep-2022	31.80	0.087	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	31.9	<0.01		
			2-Dec-2022	27.80	0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	27.8	<0.01		
			4-May-2022	39.70	0.228	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	39.9	<0.01		
		RG_FRUL	13-Jul-2022	20.70	0.100	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	20.8	<0.01		
	Fording River	KG_FKUL	10-Sep-2022	40.10	0.248	<0.01	0.014	<0.01	<0.01	<0.01	<0.01	<0.01	40.4	0.014		
	3 2		29-Nov-2022	45.70	0.152	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	45.9	<0.01		
	dinç		4-May-2022	41.40	0.214	<0.01	0.015	<0.01	<0.01	<0.01	<0.01	<0.01	41.6	0.015		
	Con	RG_FO23	11-Jul-2022	19.50	0.100	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	19.6	0.011		
	F.	NG_F023	9-Sep-2022	36.50	0.197	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	36.7	0.011		
			2-Dec-2022	40.20	0.124	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40.3	<0.01		

Level 2: Sum of MeSe(IV) and DMSeO \geq 0.025 μ g/L Level 3: Sum of MeSe(IV) and DMSeO > 0.050 μ g/L

Table D.15: Concentrations of Selenium Species Measured in Water Samples from Line Creek and Fording River, 2022

				-				÷									
Waterbody		Teck Water Station Code	Biological Monitoring Area	Sample Date	Selenate (µg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Methaneselenonic Acid (µg/L)	Unknown Species (µg/L)	Sum of Species (µg/L)	Organoselenium (µg/L) ^a		
				25-Jan-22	2.67	0.031	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.70	<0.01		
				5-Apr-22	1.83	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.88	<0.01		
				18-Apr-22 3-May-22	2.11 1.4	0.019 0.024	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	2.13 1.42	<0.01		
				5-May-22 5-Jul-22	1.25	0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.42	<0.01		
		LC_LC1	RG_LI24	11-Jul-22	1.7	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.72	<0.01		
				3-Aug-22	2.77 2.51	0.02	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	2.79 2.53	<0.01		
				12-Sep-22 17-Sep-22	2.51	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.53	<0.01		
				3-Oct-22	2.41	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.43	<0.01		
D (30-Nov-22	2.87	0.025	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.90	<0.01		
Reference	Line Creek			6-Jan-22 14-Feb-22	1.33 1.48	0.02 0.013	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	1.35 1.49	<0.01		
				5-Apr-22	1.38	0.031	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.41	<0.01		
				3-May-22	1.03	0.031	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.06	<0.01		
				8-Jul-22	0.494	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.51	<0.01		
		LC_SLC	RG_SLINE	12-Jul-22 16-Aug-22	0.636 0.991	0.02	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	0.66 1.01	<0.01		
				16-Aug-22	1.43	0.021	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.45	<0.01		
				11-Oct-22	1.5	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.53	<0.01		
				18-Oct-22	1.36 1.56	0.02	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	1.38 1.58	<0.01		
				25-Oct-22 30-Nov-22	1.56	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.58	<0.01		
				27-Jun-22	137	0.138	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	137.14	<0.01		
		LC_WLC		26-Sep-22	360	0.094	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	360.09	<0.01		
			1	12-Dec-22 4-Jan-22	413 35.6	0.128 0.043	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	413.13 35.64	<0.01		
				10-Jan-22	69.1	0.045	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	69.18	<0.01		
				17-Jan-22	66.6	0.085	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	66.69	<0.01		
				21-Jan-22	47.2 70.8	0.066	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	47.27 70.89	<0.01		
				25-Jan-22 2-Feb-22	70.8	0.091	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	70.89	<0.01		
				7-Feb-22	71	0.093	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	71.09	<0.01		
				14-Feb-22	74.6	0.088	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	74.69	<0.01		
				23-Feb-22	71.7	0.089	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	71.79	<0.01		
				28-Feb-22 7-Mar-22	73.3 74.6	0.096	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	73.40 74.69	<0.01		
				14-Mar-22	71.1	0.087	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	71.19	<0.01		
				21-Mar-22	71.7	0.068	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	71.77	<0.01		
				29-Mar-22	71.25 62.7	0.0855 0.096	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	71.34 62.80	<0.01		
				11-Apr-22 20-Apr-22	60.9	0.096	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	62.80	<0.01		
						27-Apr-22	61.9	0.072	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	61.97	<0.01
				2-May-22	55	0.065	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	55.07	<0.01		
				4-May-22	54.3	0.072	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	54.37	<0.01		
				10-May-22 18-May-22	39.8 40.4	0.073 0.066	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	39.87 40.47	<0.01		
				25-May-22	37.1	0.071	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	37.17	<0.01		
				1-Jun-22	25.8	0.066	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	25.87	<0.01		
				8-Jun-22	19.9 17.6	0.149 0.134	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	20.05 17.73	<0.01		
				16-Jun-22 22-Jun-22	24.3	0.134	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	24.43	<0.01		
				27-Jun-22	19.7	0.17	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	19.87	<0.01		
Mine-exposed	Line Creek		RG_LCUT	29-Jun-22	16.7	0.123	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	16.82	<0.01		
F-204	2	LC_LCUSWLC		6-Jul-22 12-Jul-22	16.9 21.9	0.08	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	16.98 21.97	<0.01		
				12-Jul-22 13-Jul-22	26.4	0.083	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	26.48	<0.01		
				20-Jul-22	38.6	0.095	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	38.70	<0.01		
				27-Jul-22	36	0.067	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	36.07	<0.01		
				3-Aug-22 10-Aug-22	49.2 44.9	0.08	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	49.28 44.97	<0.01		
				10-Aug-22 17-Aug-22	49.1	0.000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	49.18	<0.01		
				24-Aug-22	51.3	0.065	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	51.37	<0.01		
				31-Aug-22	40.5	0.061	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40.56	<0.01		
				7-Sep-22 14-Sep-22	42.4 50.6	0.061	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	42.46 50.66	<0.01		
				15-Sep-22	63	0.083	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	63.08	<0.01		
				21-Sep-22	54	0.066	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	54.07	<0.01		
				26-Sep-22	56.3 53.7	0.058	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	56.36 53.78	<0.01		
				28-Sep-22 5-Oct-22	42.8	0.077	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	42.87	<0.01		
				12-Oct-22	49.9	0.075	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	49.98	<0.01		
				19-Oct-22	44.9	0.064	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	44.96	<0.01		
				26-Oct-22	50.4 35.9	0.075 0.054	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	50.48 35.95	<0.01		
				2-Nov-22 9-Nov-22	35.9 40.6	0.054	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40.66	<0.01		
				16-Nov-22	48.2	0.045	<0.01	<0.01	0.08	<0.01	<0.01	<0.01	<0.01	48.33	<0.01		
				23-Nov-22	49.3	0.077	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	49.38	<0.01		
				30-Nov-22	42.3	0.072	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	42.37	<0.01		
				1-Dec-22 6-Dec-22	51.6 48	0.087	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	51.69 48.08	<0.01		
				12-Dec-22	54.1	0.076	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	54.18	<0.01		
				14-Dec-22	46.6	0.092	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	46.69	<0.01		
•				21-Dec-22	54.3	0.104	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	54.40	<0.01		
				28-Dec-22	53.1	0.111	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	53.21	<0.01		

Level 2: Sum of MeSe(IV) and DMSeO ≥ 0.025 µg/L
Level 3: Sum of MeSe(IV) and DMSeO > 0.050 µg/L

Table D.15: Concentrations of Selenium Species Measured in Water Samples from Line Creek and Fording River, 2022

		Π					_	_										
Water	Waterbody Teck Water Station Code		Biological Monitoring Area	Sample Date	Selenate (μg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Methaneselenonic Acid (µg/L)	Unknown Species (µg/L)	Sum of Species (µg/L)	Organoselenium (µg/L)ª			
				4-Jan-22	47.8	0.327	0.018	<0.01	<0.01	<0.01	<0.01	0.104	<0.01	48.27	0.018			
				10-Jan-22	49.5	0.363	0.013	<0.01	<0.01	<0.01	<0.01	0.11	<0.01	50.00	0.013			
				17-Jan-22	46.5 47.3	0.348	0.019 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	0.108 0.107	<0.01	46.99 47.78	0.019			
				25-Jan-22 1-Feb-22	48.7	0.376	0.026	<0.01	<0.01	<0.01	<0.01	0.107	<0.01	49.27	<0.01			
				8-Feb-22	49.2	0.469	0.028	<0.01	<0.01	<0.01	<0.01	0.113	<0.01	49.84	0.028			
				15-Feb-22	59.4	0.43	0.021	<0.01	<0.01	<0.01	<0.01	0.098	<0.01	59.97	0.021			
				22-Feb-22 23-Feb-22	54.3 34.1	0.644 0.051	0.029 <0.01	0.011 <0.01	<0.01 <0.01	<0.01	<0.01	0.121 <0.01	<0.01 <0.01	55.15 34.15	<0.040			
				1-Mar-22	50.6	0.62	0.029	<0.01	<0.01	<0.01	<0.01	0.141	<0.01	51.42	0.029			
				8-Mar-22	52.7	0.739	0.035	<0.01	<0.01	<0.01	<0.01	0.188	<0.01	53.70	0.035			
				15-Mar-22 22-Mar-22	45.7 54.9	0.914	0.054 0.043	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	0.26 <0.01	<0.01 0.199	46.98 55.80	0.054			
				28-Mar-22	62.6	0.746	0.051	0.014	<0.01	<0.01	<0.01	0.228	<0.01	63.70	0.045			
				7-Apr-22	55.2	0.6	0.04	0.013	<0.01	<0.01	<0.01	0.193	<0.01	56.10	0.053			
				11-Apr-22	54.2 57	0.384	0.031	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01	0.102 0.094	<0.01	54.75 57.47	0.031			
				19-Apr-22 25-Apr-22	53.4	0.336	0.021	<0.01	<0.01	<0.01	<0.01	0.094	<0.01	53.97	0.021			
				2-May-22	57.1	0.263	<0.01	0.015	<0.01	<0.01	<0.01	0.046	<0.01	57.44	0.015			
				5-May-22	56	0.266	0.011	<0.01	<0.01	<0.01	<0.01	0.062	<0.01	56.35	0.011			
				9-May-22	42.5 45.5	0.19 0.213	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	0.029 0.032	<0.01	42.72 45.75	<0.01			
				17-May-22 24-May-22	36.6	0.1295	<0.01	<0.01	<0.01	<0.01	<0.01	0.015	<0.01	36.74	<0.01			
				6-Jun-22	43	0.099	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	43.10	<0.01			
				14-Jun-22 22-Jun-22	28.2 35.1	0.131 0.134	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	28.33 35.23	<0.01			
				27-Jun-22	25.7	0.139	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	25.84	<0.01			
				5-Jul-22	27.7	0.08	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	27.78	<0.01			
		LC_LC3	RG_LILC3	11-Jul-22	27.8	0.088	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	27.89	<0.01			
				12-Jul-22 19-Jul-22	30.5 54.3	0.068 0.142	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	30.57 54.44	<0.01			
				26-Jul-22	51.9	0.078	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	51.98	<0.01			
				3-Aug-22	54.4	0.128	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	54.53	<0.01			
				8-Aug-22	51.6 48.6	0.162 0.237	<0.01 <0.01	<0.01 0.017	<0.01 <0.01	<0.01 <0.01	<0.01	0.012 0.057	<0.01	51.77 48.93	<0.01			
				16-Aug-22 17-Aug-22	45.9	0.237	<0.01	0.017	<0.01	<0.01	<0.01	0.037	<0.01	46.40	0.017			
				23-Aug-22	49.9	0.225	<0.01	0.013	<0.01	<0.01	<0.01	0.029	<0.01	50.18	0.013			
				30-Aug-22	64.8	0.11	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	64.91	<0.01			
				6-Sep-22 8-Sep-22	42.3 43.4	0.126 0.122	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	0.032 <0.01	<0.01 <0.01	42.46 43.52	<0.01			
				13-Sep-22	48.4	0.122	<0.01	0.013	<0.01	<0.01	<0.01	0.031	<0.01	48.66	0.013			
				19-Sep-22	43.2	0.164	<0.01	<0.01	<0.01	<0.01	<0.01	0.028	<0.01	43.39	<0.01			
Mine-exposed	Line Creek						29-Sep-22	41.9	0.174	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	<0.01	42.10	<0.01
				3-Oct-22 11-Oct-22	41.4 52.7	0.161 0.171	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.021 0.017	<0.01	41.58 52.89	<0.01			
				18-Oct-22	40.9	0.149	<0.01	<0.01	<0.01	<0.01	<0.01	0.026	<0.01	41.08	<0.01			
				25-Oct-22	45.9	0.213	<0.01	<0.01	<0.01	<0.01	<0.01	0.042	<0.01	46.16	<0.01			
				1-Nov-22 8-Nov-22	27 39.1	0.317 0.284	<0.01 <0.01	0.013 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	0.111 0.085	<0.01	27.45 39.47	0.013 <0.01			
				14-Nov-22	39.2	0.22	<0.01	<0.01	<0.01	<0.01	<0.01	0.039	<0.01	39.46	<0.01			
				21-Nov-22	62.2	0.193	<0.01	<0.01	0.079	<0.01	<0.01	<0.01	0.037	62.51	<0.01			
				28-Nov-22	45.6 46.8	0.227 0.249	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.056 0.033	<0.01	45.88 47.08	<0.01			
				1-Dec-22 5-Dec-22	28.9	0.249	<0.01	<0.01	<0.01	<0.01	<0.01	0.033	<0.01	29.13	<0.01			
				12-Dec-22	42.9	0.281	<0.01	0.018	<0.01	<0.01	<0.01	0.044	<0.01	43.26	0.018			
				19-Dec-22	47	0.276	<0.01	<0.01	<0.01	<0.01	<0.01	0.049	0.018	47.34	<0.01			
				28-Dec-22 3-May-22	46.8 37.7	0.571 0.178	<0.01	<0.01 0.013	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.166 0.028	<0.01 <0.01	47.54 37.93	<0.01			
		WL_DCP_SP24	RG_LISP24	13-Jul-22	23.2	0.054	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	23.25	<0.013			
		**L_DOF_3P24	. NO_LIGF 24	14-Sep-22	38.4	0.13	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	38.53	<0.01			
				1-Dec-22 4-Jan-22	28.7 27.6	0.193 0.127	<0.01 <0.01	<0.01	<0.01	<0.01 <0.01	<0.01	0.016 <0.01	<0.01 <0.01	28.91 27.73	<0.01			
				4-Jan-22 10-Jan-22	42.2	0.127	<0.01	0.011	<0.01	<0.01	<0.01	0.025	<0.01	42.47	0.011			
				17-Jan-22	39.5	0.233	<0.01	<0.01	<0.01	<0.01	<0.01	0.021	<0.01	39.75	<0.01			
				25-Jan-22	40.8	0.229	<0.01	0.013 0.012	<0.01 <0.01	<0.01 <0.01	<0.01	0.018 0.034	<0.01	41.07	0.013			
				1-Feb-22 8-Feb-22	41.3 41.1	0.199 0.238	<0.01	0.012	<0.01	<0.01	<0.01	0.034	<0.01	41.56 41.38	0.012			
				15-Feb-22	45.1	0.264	<0.01	0.012	<0.01	<0.01	<0.01	0.022	<0.01	45.41	0.012			
				22-Feb-22	50.7	0.298	0.012	0.015	<0.01	<0.01	<0.01	0.028	<0.01	51.08	0.027			
				1-Mar-22 8-Mar-22	43.1 44.4	0.272 0.374	0.012	0.015 0.015	<0.01	<0.01 <0.01	<0.01	0.024 0.037	<0.01	43.45 44.86	0.027			
				15-Mar-22	43.5	0.415	0.018	0.023	<0.01	<0.01	<0.01	0.06	<0.01	44.06	0.020			
		LC LCDSSLCC	RG_LIDSL	22-Mar-22	30.5	0.255	<0.01	<0.01	<0.01	<0.01	<0.01	0.027	<0.01	30.78	0.000			
				28-Mar-22	51.4 50.1	0.405 0.356	0.02 0.016	0.02 0.019	<0.01 <0.01	<0.01 <0.01	<0.01	0.064 0.06	<0.01 <0.01	51.95 50.59	0.040			
				7-Apr-22 11-Apr-22	50.1 47.4	0.356	0.016	0.019	<0.01	<0.01	<0.01	0.06	<0.01	47.77	0.035			
				19-Apr-22	49.6	0.228	0.012	0.014	<0.01	<0.01	<0.01	0.03	<0.01	49.91	0.026			
				25-Apr-22	45.7	0.227	<0.01	0.015	<0.01	<0.01	<0.01	0.028	<0.01	45.99	0.015			
				4-May-22 9-May-22	41.2 30.8	0.155 0.112	<0.01 <0.01	0.011 <0.01	<0.01	<0.01 <0.01	<0.01	0.018 <0.01	<0.01	41.40 30.91	0.011 <0.01			
				9-May-22 17-May-22	27.5	0.112	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	27.60	<0.01			
				24-May-22	20.55	0.073	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	20.62	<0.01			
				6-Jun-22	22.2	0.051	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	22.25	<0.01			
				22-Jun-22 27-Jun-22	20.4 19.2	0.076 0.085	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	20.48 19.29	<0.01			
		<u> </u>	<u>I</u>	∠1-Ju∩-22	19.2	U.Uწნ	\U.UT	~ U.U1	\U.U1	\U.U1	\U.U1	\U.UT	\U.U1	19.29	\U.U 1			

Level 2: Sum of MeSe(IV) and DMSeO ≥ 0.025 μg/L

Level 3: Sum of MeSe(IV) and DMSeO > 0.050 µg/L

Table D.15: Concentrations of Selenium Species Measured in Water Samples from Line Creek and Fording River, 2022

			1				_	÷				1						
Waterbody		Teck Water Station Code	Biological Monitoring Area	Sample Date	Selenate (µg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Methaneselenonic Acid (µg/L)	Unknown Species (µg/L)	Sum of Species (µg/L)	Organoselenium (µg/L)ª			
				5-Jul-22	18.3	0.053	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	18.35	<0.01			
				11-Jul-22	21.5	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	21.56	<0.01			
				19-Jul-22 26-Jul-22	36.3 33.5	0.088	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	36.39 33.56	<0.01			
				3-Aug-22	40.5	0.102	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40.60	<0.01			
				9-Aug-22	34.6	0.093	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	34.69	<0.01			
				16-Aug-22	37.6	0.144	<0.01	<0.01	<0.01	<0.01	<0.01	0.016	<0.01	37.76	<0.01			
				22-Aug-22 30-Aug-22	36.9 43.3	0.141	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	37.04 43.39	<0.01			
				6-Sep-22	33.5	0.097	<0.01	0.012	<0.01	<0.01	<0.01	<0.01	<0.01	33.62	0.012			
				12-Sep-22	7.95	0.066	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	8.02	<0.01			
				13-Sep-22	37.4 37.7	0.123 0.133	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	37.52 37.83	<0.01			
		LC_LCDSSLCC	RG_LIDSL	19-Sep-22 3-Oct-22	36	0.133	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	36.11	<0.01			
		_	_	11-Oct-22	40.1	0.159	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40.26	<0.01			
				18-Oct-22	37.3	0.135	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	37.44	<0.01			
				25-Oct-22	40 31.4	0.143 0.249	<0.01 <0.01	<0.01 0.018	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 0.039	<0.01 <0.01	40.14 31.72	<0.01			
				1-Nov-22 8-Nov-22	34.4	0.249	<0.01	0.018	<0.01	<0.01	<0.01	0.039	<0.01	34.65	0.018			
				14-Nov-22	35.1	0.152	<0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.01	35.26	<0.01			
				21-Nov-22	36.1	0.144	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	36.24	<0.01			
				28-Nov-22	39.9	0.174	<0.01	0.012	<0.01	<0.01	<0.01	0.011	<0.01	40.11	0.012			
				29-Nov-22 5-Dec-22	39.6 30	0.181 0.166	<0.01	<0.01 0.012	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.014 0.012	<0.01 <0.01	39.80 30.20	<0.01			
				12-Dec-22	38.2	0.179	<0.01	<0.012	<0.01	<0.01	<0.01	<0.012	<0.01	38.38	<0.012			
				19-Dec-22	41.4	0.222	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.023	41.65	<0.01			
				28-Dec-22	43.1	0.304	<0.01	0.015	<0.01	<0.01	<0.01	0.037	<0.01	43.47	0.015			
				4-May-22	30.2 21.7	0.136 0.052	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.013 <0.01	<0.01 <0.01	30.35 21.75	<0.01			
		LC_LCC	RG_LIDCOM	14-Jul-22 12-Sep-22	34.4	0.032	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	34.52	<0.01			
				1-Dec-22	33.7	0.149	<0.01	0.012	<0.01	<0.01	<0.01	<0.01	<0.01	33.87	0.012			
				4-Jan-22	22.7	0.037	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	22.74	<0.01			
				10-Jan-22	32.8 30.3	0.059 0.066	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	32.86 30.37	<0.01			
				17-Jan-22 25-Jan-22	31.2	0.062	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	31.26	<0.01			
				31-Jan-22	31.8	0.087	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	31.89	<0.01			
				8-Feb-22	31.7	0.057	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	31.76	<0.01			
				14-Feb-22 1-Mar-22	32.7 32.6	0.172 0.065	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	32.87 32.67	<0.01			
				8-Mar-22	33.8	0.067	<0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.01	33.88	<0.01			
				14-Mar-22	33	0.155	<0.01	<0.01	<0.01	<0.01	<0.01	0.017	<0.01	33.17	<0.01			
				22-Mar-22	34.3	0.075	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.014	34.39	<0.01			
Mine-exposed	Line Creek						29-Mar-22	40.3	0.124	<0.01	<0.01	<0.01	<0.01	0.035	0.028	<0.01	40.49	<0.01
				7-Apr-22 11-Apr-22	40 38.9	0.247 0.18	<0.01 <0.01	0.011	<0.01 <0.01	<0.01 <0.01	<0.01 0.017	0.024 0.014	<0.01 <0.01	40.29 39.14	0.011			
				19-Apr-22	37.7	0.08	<0.01	<0.01	0.016	<0.01	<0.01	0.012	<0.01	37.81	<0.01			
				25-Apr-22	33.8	0.101	<0.01	<0.01	<0.01	<0.01	<0.01	0.013	<0.01	33.91	<0.01			
				4-May-22	27.5	0.106	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01	27.61 29.87	<0.01			
				5-May-22 9-May-22	29.8 25.3	0.073 0.091	<0.01	<0.01	<0.01	<0.01 <0.01	<0.01	<0.01	<0.01	25.39	<0.01			
				17-May-22	21	0.079	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	21.08	<0.01			
				24-May-22	20.5	0.072	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.025	20.60	<0.01			
				30-May-22	17.4 17.5	0.064 0.048	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	17.46 17.55	<0.01			
				6-Jun-22 13-Jun-22	17.5	0.048	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	14.00	<0.01 <0.01			
				22-Jun-22	16.9	0.066	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	16.97	<0.01			
				27-Jun-22	16.1 15.4	0.073	<0.01	<0.01	<0.01 <0.01	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01	16.17	<0.01			
		LC_LC4	RG_LI8	5-Jul-22 11-Jul-22	15.4	0.05	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	15.45 18.25	<0.01			
				14-Jul-22	20	0.048	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	20.05	<0.01			
				19-Jul-22	27.8	0.054	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	27.85	<0.01			
				26-Jul-22	27.5 33.6	0.032 0.055	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01	27.53 33.66	<0.01			
				2-Aug-22 8-Aug-22	33.6	0.055	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	33.36	<0.01			
				15-Aug-22	29.2	0.089	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	29.29	<0.01			
				22-Aug-22	30	0.064	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	30.06	<0.01			
				29-Aug-22	36.3 27.5	0.041	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	36.34 27.56	<0.01			
				6-Sep-22 13-Sep-22	30	0.058	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	30.06	<0.01			
				17-Sep-22	31.8	0.087	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	31.89	<0.01			
				19-Sep-22	31.3	0.052	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	31.35	<0.01			
				29-Sep-22	36.4 29.4	0.121 0.028	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	36.52 29.43	<0.01			
				3-Oct-22 17-Oct-22	32.1	0.028	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	32.13	<0.01			
				24-Oct-22	30	0.037	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	30.04	<0.01			
				31-Oct-22	30.1	0.183	<0.01	<0.01	<0.01	<0.01	<0.01	0.027	<0.01	30.31	<0.01			
				7-Nov-22	25.3	0.061	<0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.01	25.37	<0.01			
				14-Nov-22 21-Nov-22	27.6 32.7	0.037 0.044	<0.01 <0.01	<0.01 <0.01	<0.01 0.055	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01	27.64 32.80	<0.01			
					~=··	3.3.7	0.01	U.U.	2.500		U.U.		0.01	2=.00				
				28-Nov-22	31.4	0.066	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	31.47	<0.01			
				28-Nov-22 2-Dec-22	27.8	0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	27.82	<0.01			
				28-Nov-22 2-Dec-22 5-Dec-22	27.8 22.3	0.024 0.035	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	27.82 22.34	<0.01			
				28-Nov-22 2-Dec-22	27.8	0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	27.82	<0.01			

Level 2: Sum of MeSe(IV) and DMSeO ≥ 0.025 μg/L

Level 3: Sum of MeSe(IV) and DMSeO > 0.050 μ g/L

Table D.15: Concentrations of Selenium Species Measured in Water Samples from Line Creek and Fording River, 2022

Waterbody		Teck Water Station Code	Biological Monitoring Area	Sample Date	Selenate (µg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Methaneselenonic Acid (µg/L)	Unknown Species (µg/L)	Sum of Species (µg/L)	Organoselenium (µg/L) ^a
				6-Jan-22	40.3	0.138	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40.44	<0.01
				5-Apr-22	46.4	0.258	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	46.68	0.011
			RG_FO23	18-Apr-22	48.6	0.213	0.011	0.013	<0.01	<0.01	<0.01	<0.01	<0.01	48.86	0.024
				4-May-22	41.4	0.214	<0.01	0.015	<0.01	<0.01	<0.01	<0.01	<0.01	41.64	0.015
				5-Jul-22	19.9	0.102	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	20.00	<0.01
		LC_LC5		11-Jul-22	19.5	0.1	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	19.62	0.011
				16-Aug-22	34.7	0.24	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	34.96	0.011
				6-Sep-22	35.1	0.229	<0.01	0.015	<0.01	<0.01	<0.01	<0.01	<0.01	35.36	0.015
Mine-exposed	Fording River			9-Sep-22	36.5	0.197	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	36.72	0.011
				11-Oct-22	39.2	0.203	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	39.40	<0.01
				18-Oct-22	37.2	0.185	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	37.39	<0.01
				2-Dec-22	40.2	0.124	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	40.32	<0.01
				2-May-22	39.7	0.228	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	39.93	<0.01
				4-May-22	39.7	0.228	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	39.93	<0.01
		LC_LC6	RG_FRUL	13-Jul-22	20.7	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	20.80	<0.01
				10-Sep-22	40.1	0.248	<0.01	0.014	<0.01	<0.01	<0.01	<0.01	<0.01	40.38	0.014
				29-Nov-22	45.7	0.152	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	45.85	<0.01

Level 2: Sum of MeSe(IV) and DMSeO \geq 0.025 μ g/L

Level 3: Sum of MeSe(IV) and DMSeO > 0.050 μg/L

Notes: ^a For the calculation of organoselenium, if both dimethylselenoxide and methylseleninic acid were non-detect values the result is reported as <0.01

APPENDIX E OTHER INFLUENCES

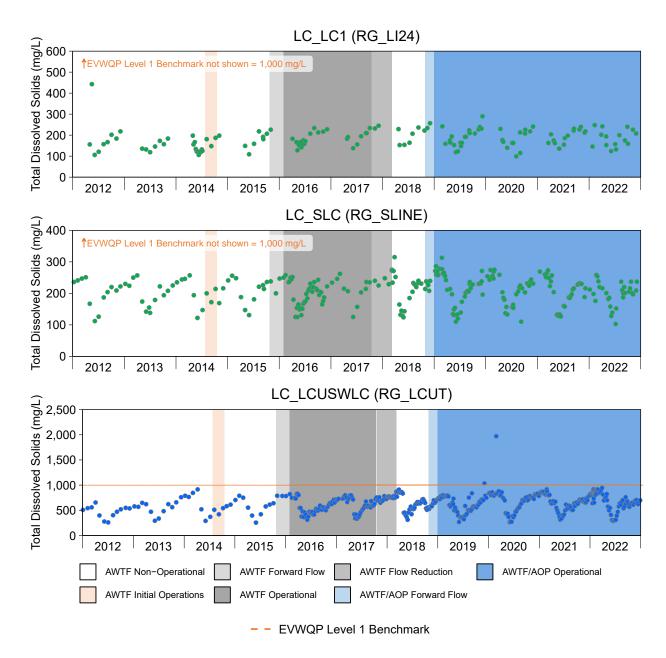


Figure E.1: Time Series Plots for Total Dissolved Solids Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

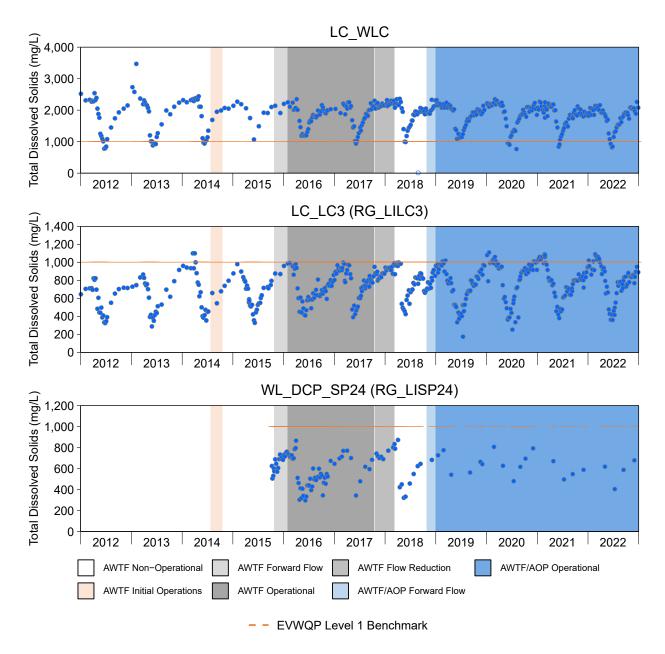


Figure E.1: Time Series Plots for Total Dissolved Solids Concentrations from LineCreek LAEMP Sampling Areas, 2012 to 2022

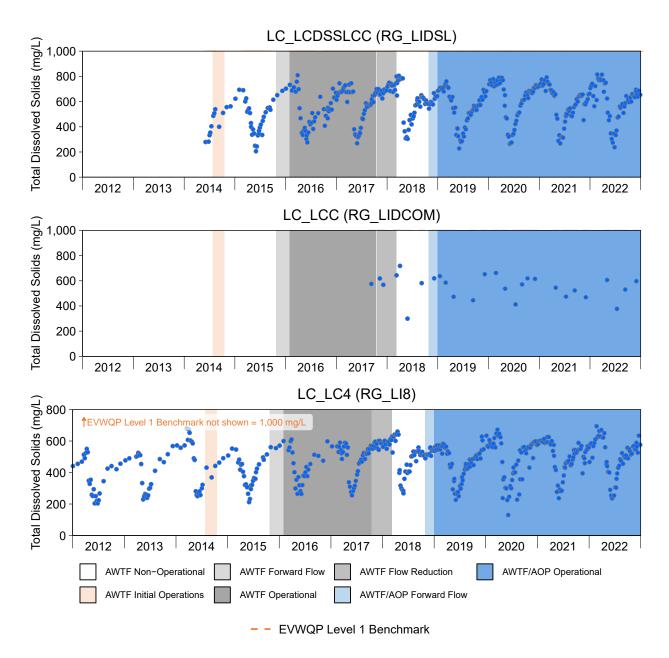


Figure E.1: Time Series Plots for Total Dissolved Solids Concentrations from LineCreek LAEMP Sampling Areas, 2012 to 2022

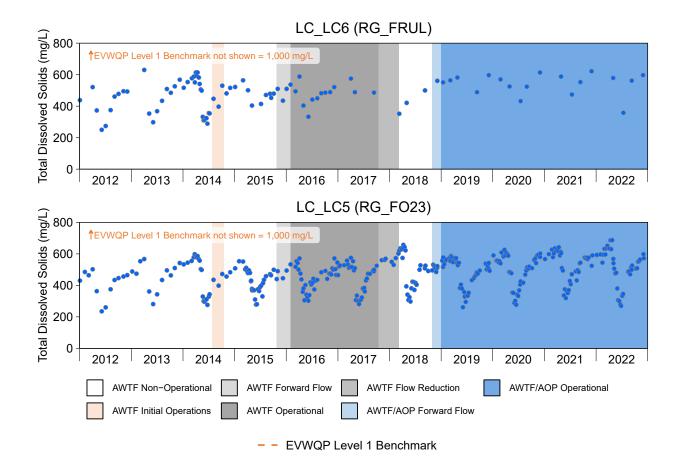


Figure E.1: Time Series Plots for Total Dissolved Solids Concentrations from LineCreek LAEMP Sampling Areas, 2012 to 2022

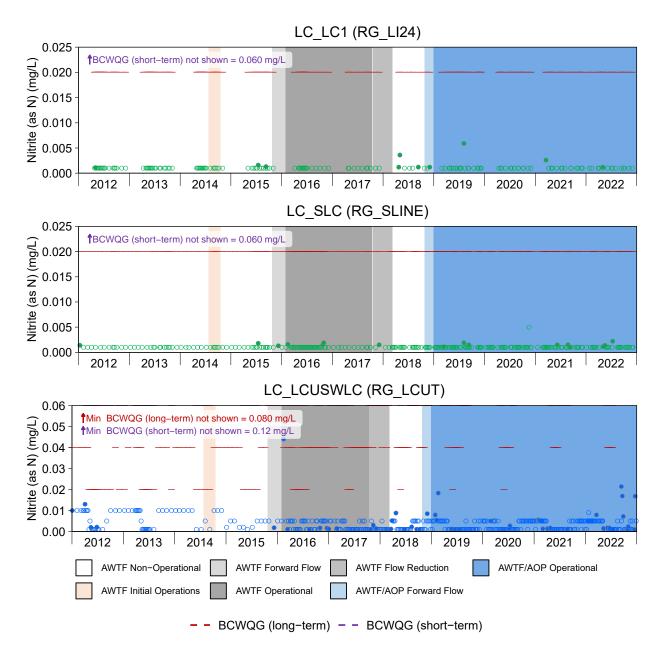


Figure E.2: Time Series Plots for Nitrite (as N) Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022



Figure E.2: Time Series Plots for Nitrite (as N) Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

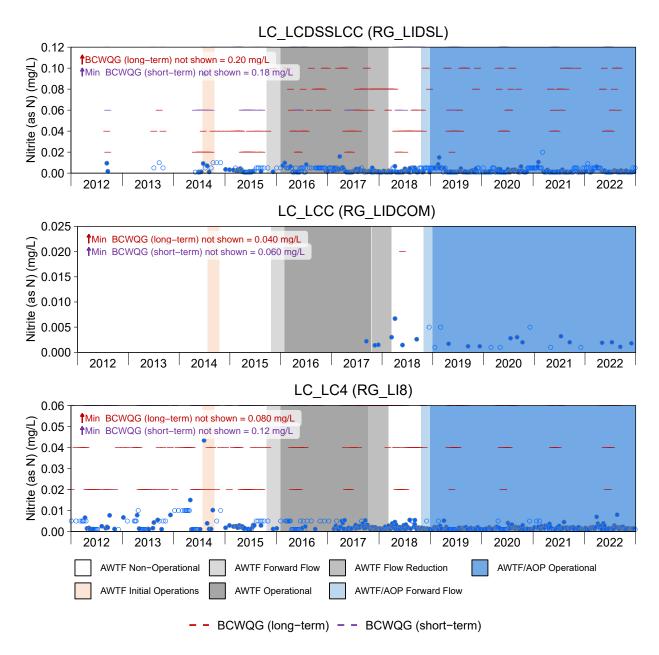


Figure E.2: Time Series Plots for Nitrite (as N) Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

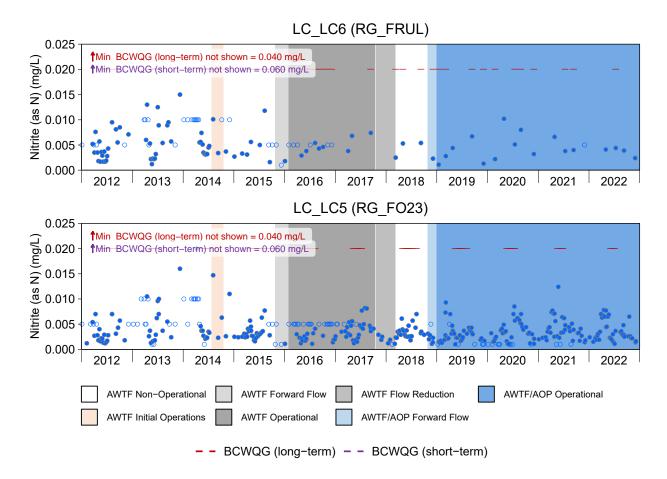


Figure E.2: Time Series Plots for Nitrite (as N) Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

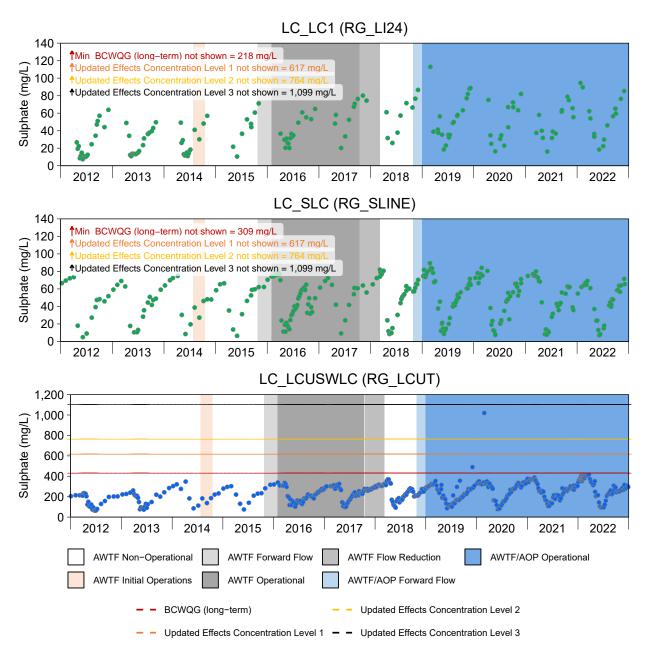


Figure E.3: Time Series Plots for Sulphate Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

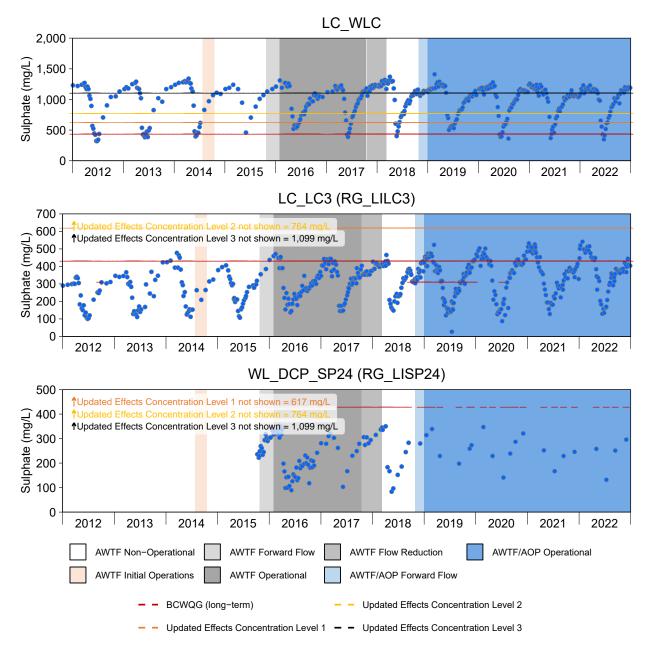


Figure E.3: Time Series Plots for Sulphate Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

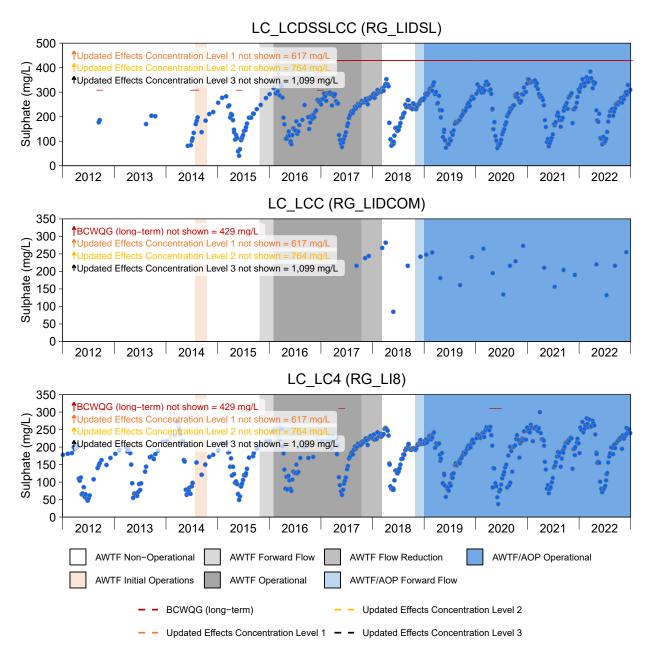


Figure E.3: Time Series Plots for Sulphate Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

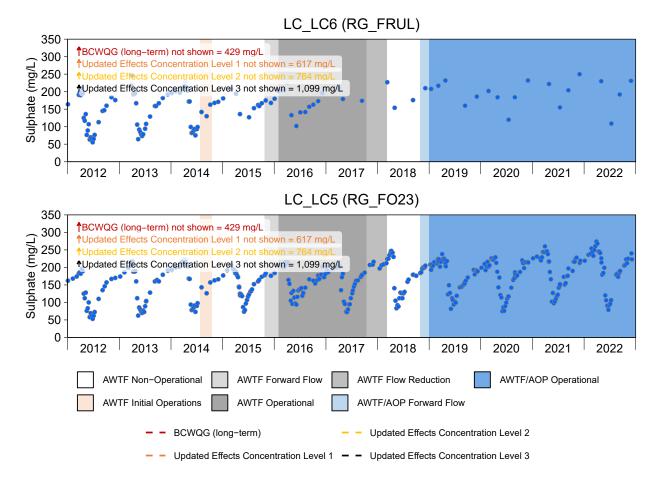


Figure E.3: Time Series Plots for Sulphate Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

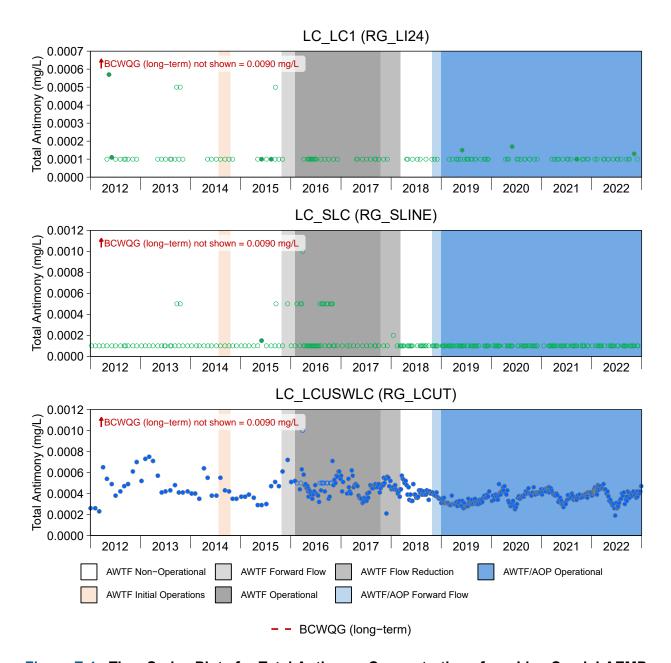


Figure E.4: Time Series Plots for Total Antimony Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

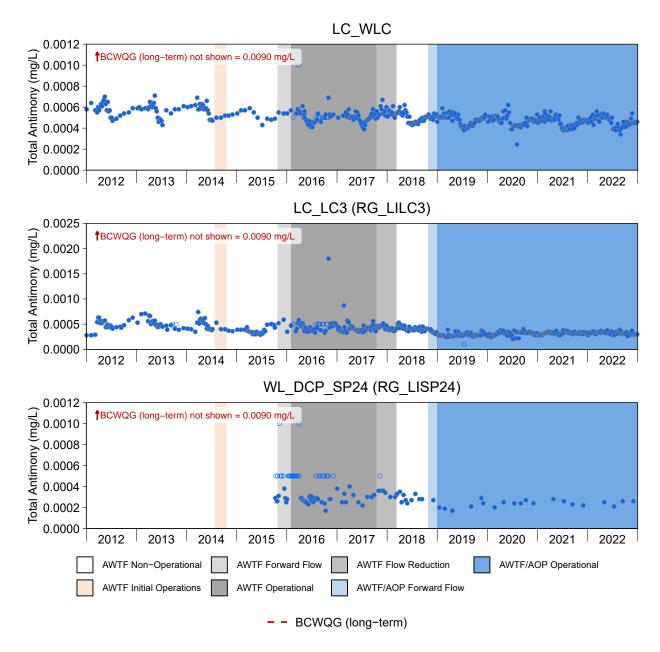


Figure E.4: Time Series Plots for Total Antimony Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

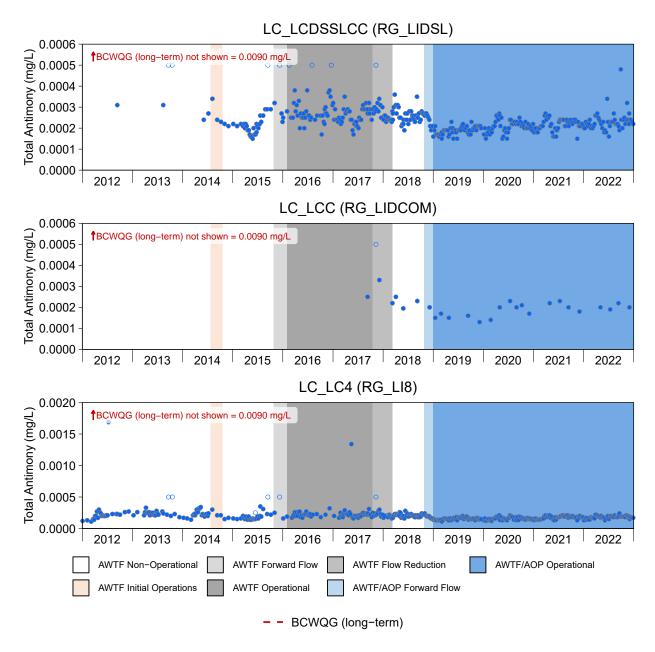


Figure E.4: Time Series Plots for Total Antimony Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

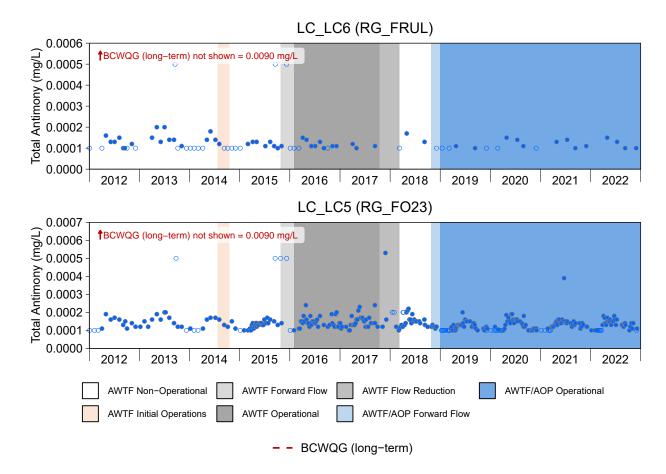


Figure E.4: Time Series Plots for Total Antimony Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

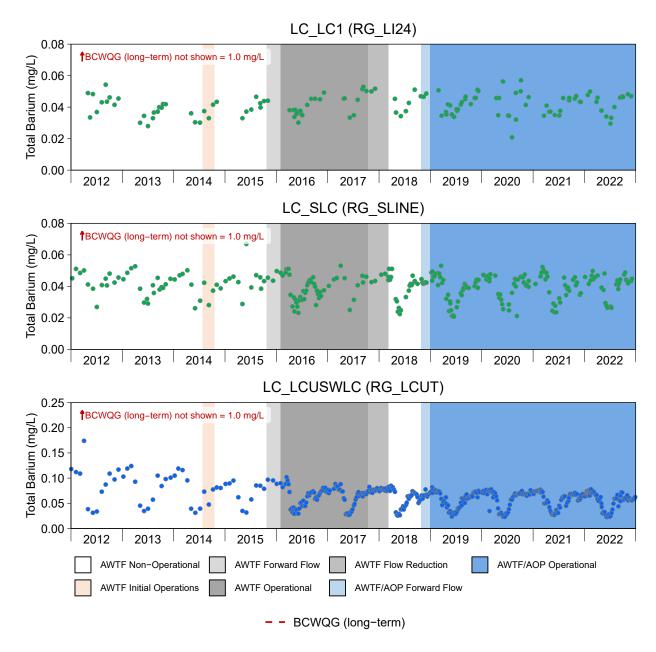


Figure E.5: Time Series Plots for Total Barium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

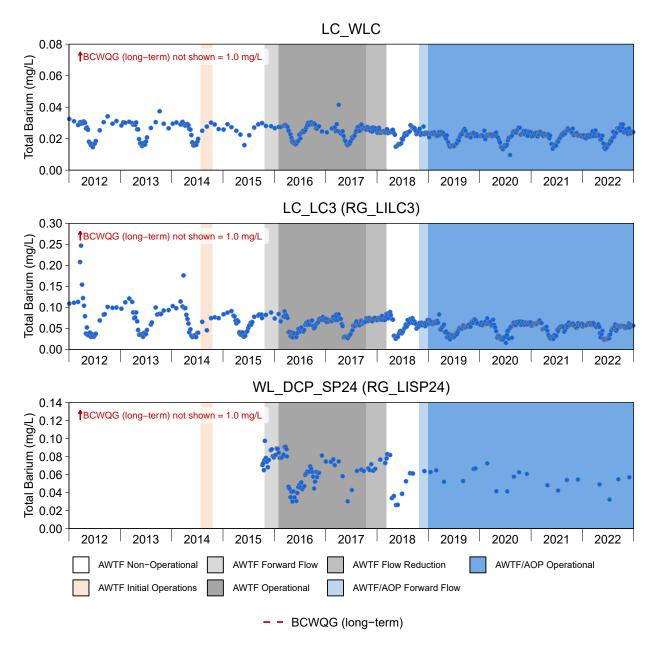


Figure E.5: Time Series Plots for Total Barium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

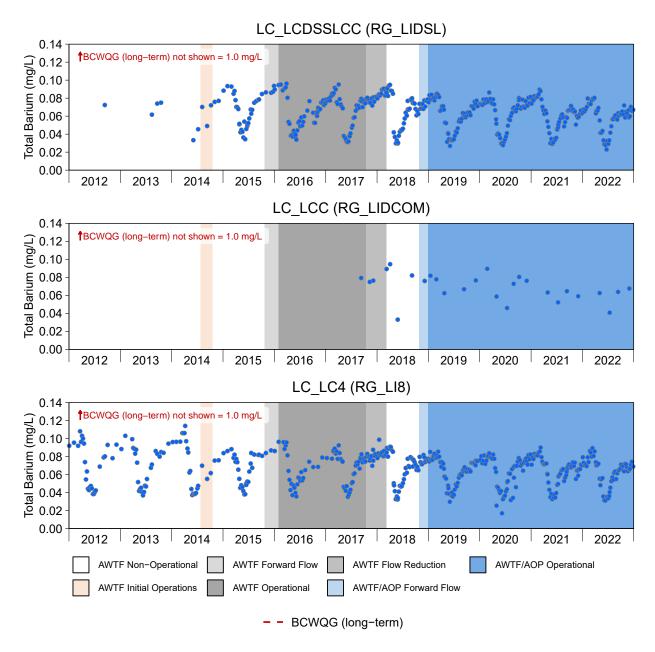


Figure E.5: Time Series Plots for Total Barium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

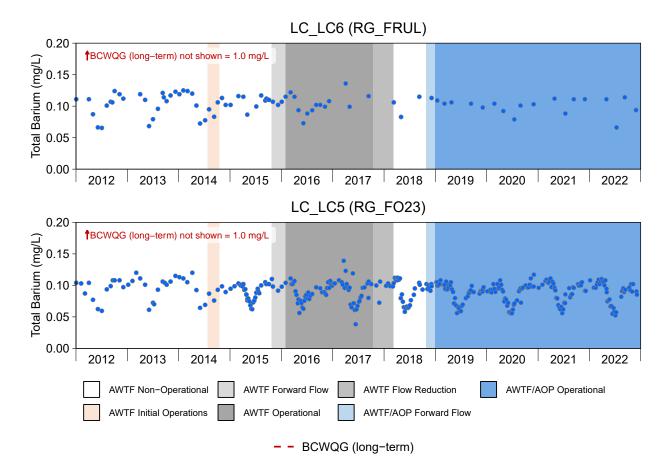


Figure E.5: Time Series Plots for Total Barium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

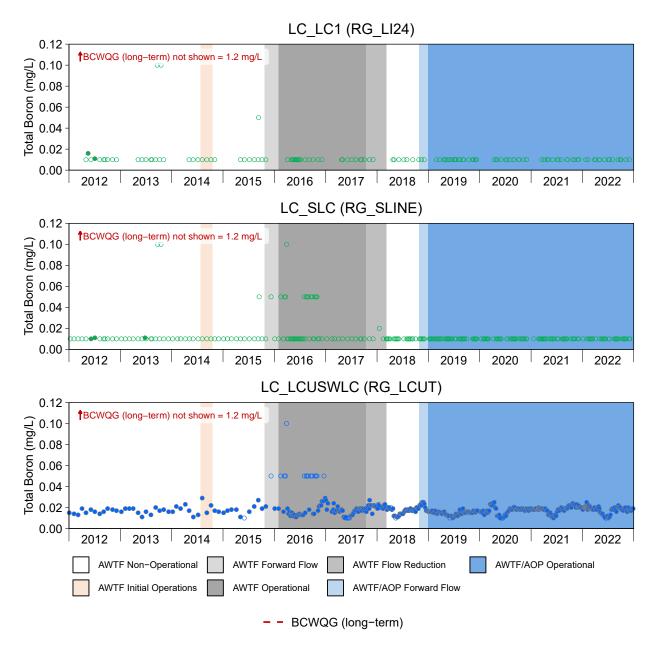


Figure E.6: Time Series Plots for Total Boron Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

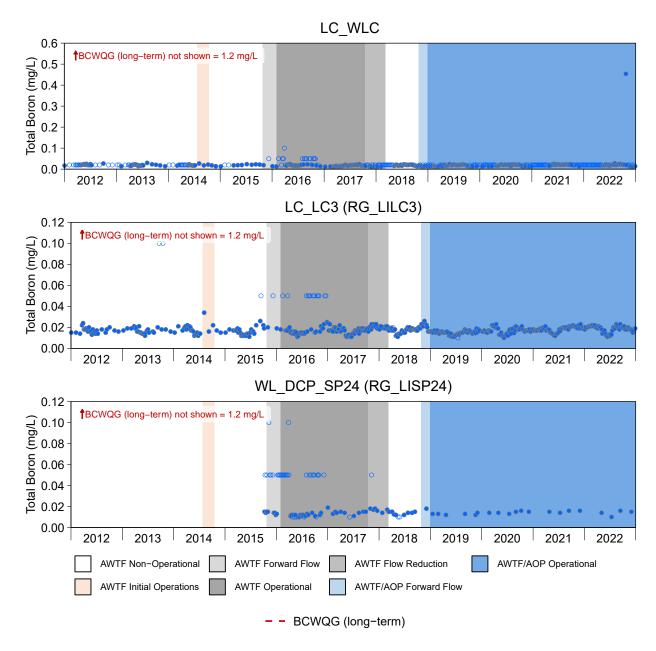


Figure E.6: Time Series Plots for Total Boron Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

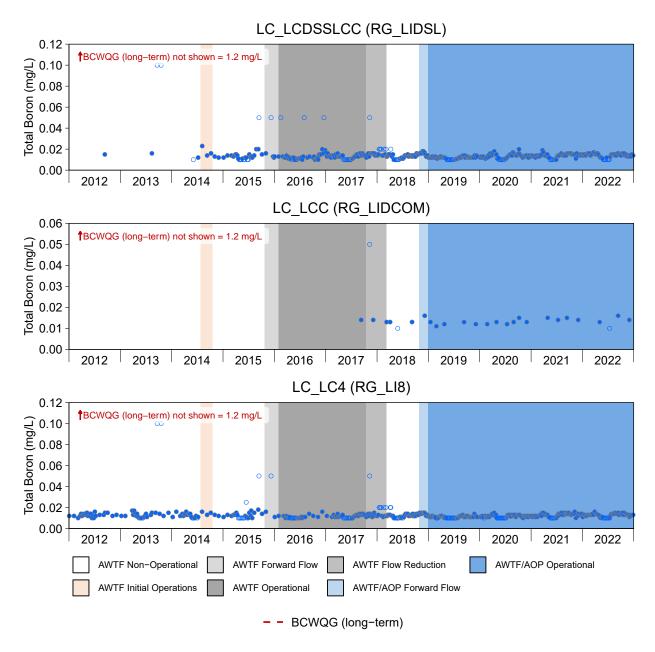


Figure E.6: Time Series Plots for Total Boron Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

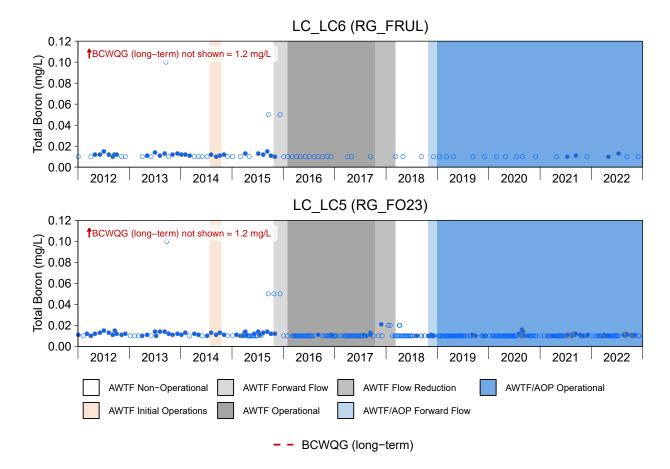


Figure E.6: Time Series Plots for Total Boron Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

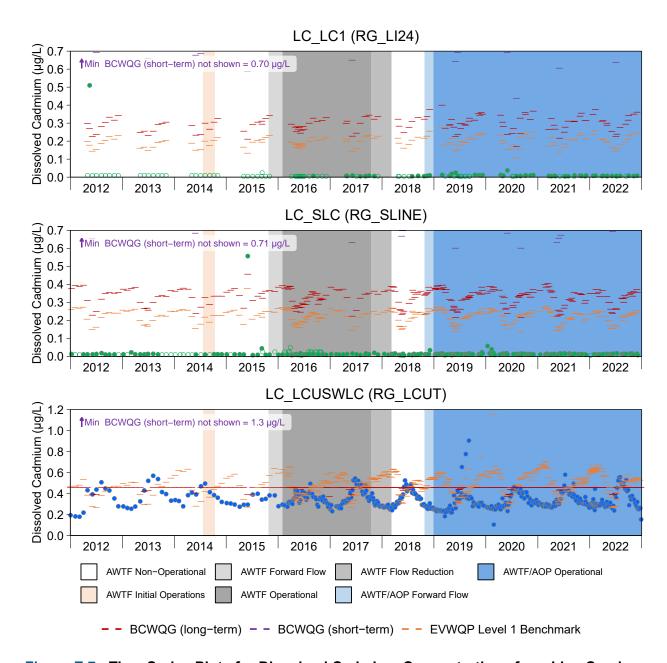


Figure E.7: Time Series Plots for Dissolved Cadmium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

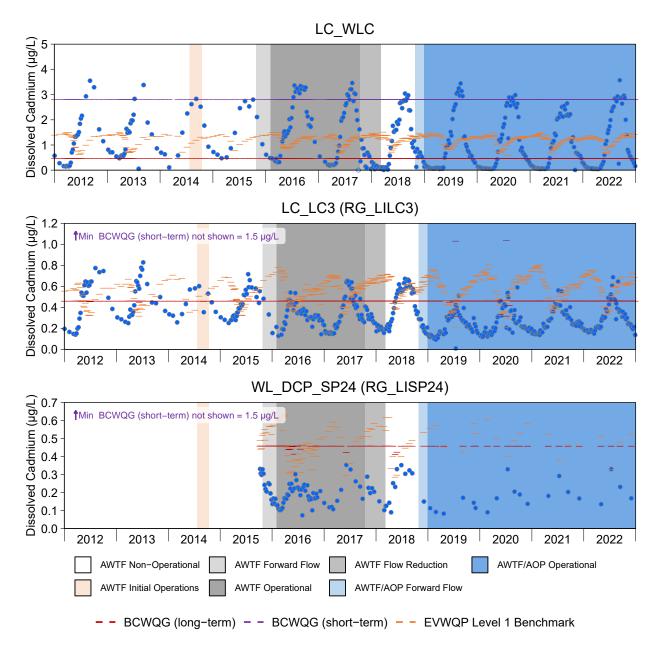


Figure E.7: Time Series Plots for Dissolved Cadmium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

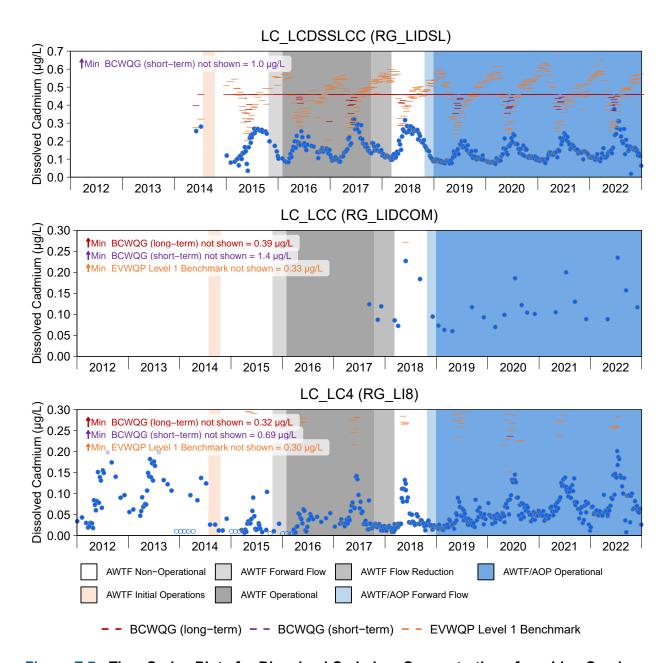


Figure E.7: Time Series Plots for Dissolved Cadmium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

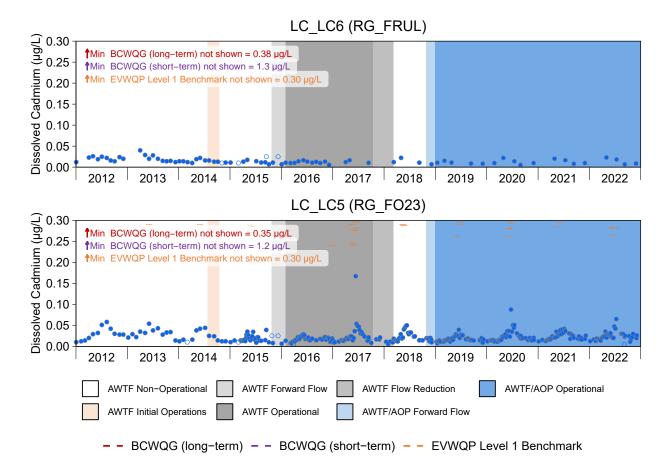


Figure E.7: Time Series Plots for Dissolved Cadmium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

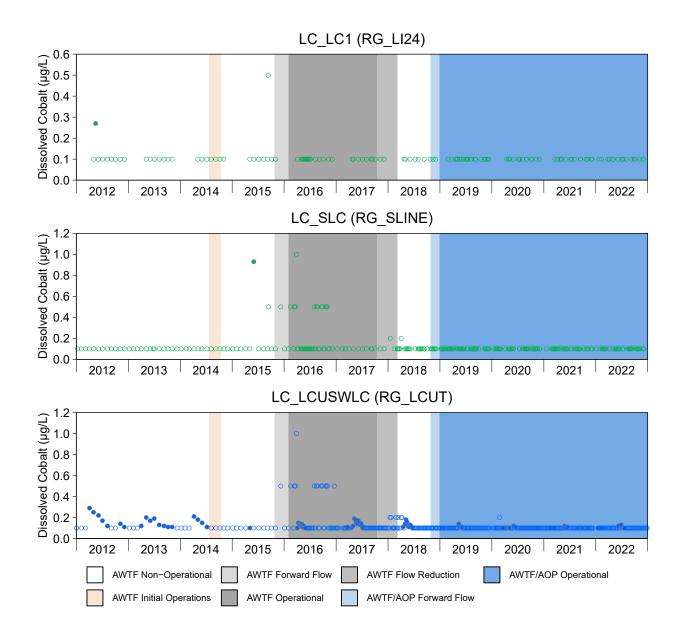


Figure E.8: Time Series Plots for Dissolved Cobalt Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

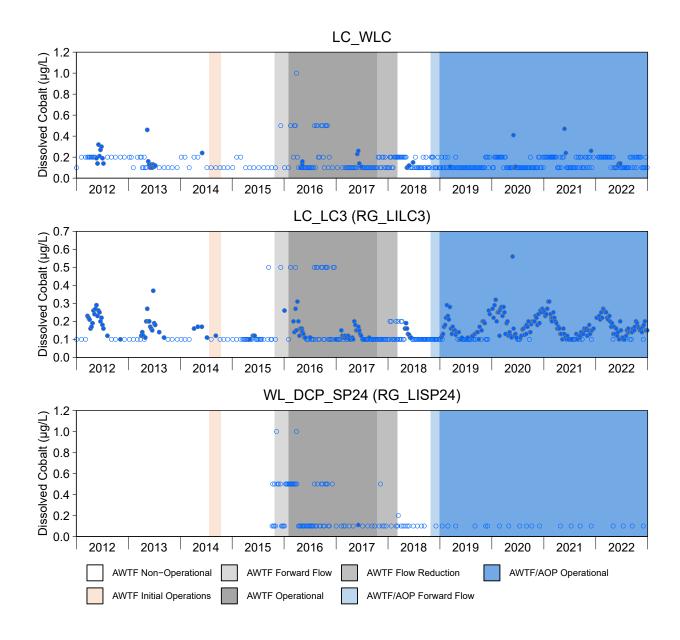


Figure E.8: Time Series Plots for Dissolved Cobalt Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

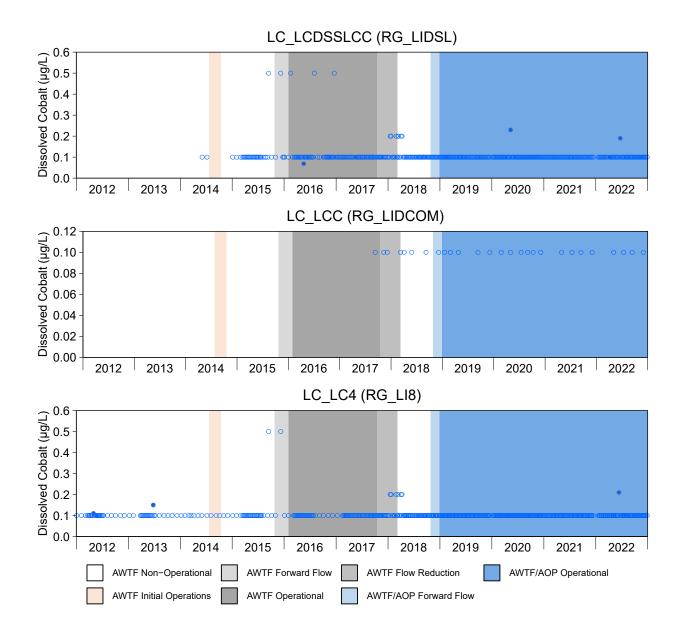


Figure E.8: Time Series Plots for Dissolved Cobalt Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

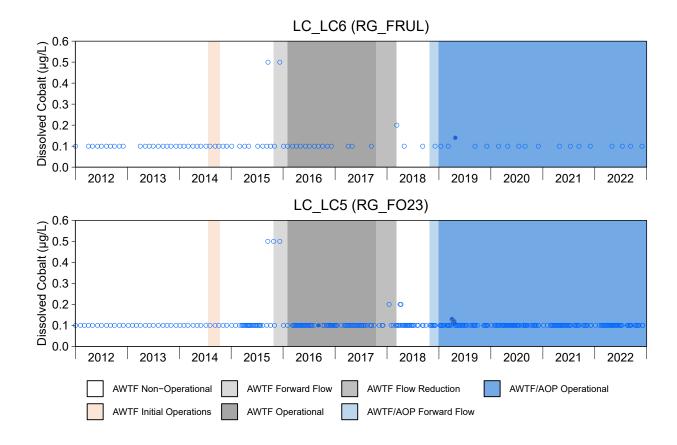


Figure E.8: Time Series Plots for Dissolved Cobalt Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

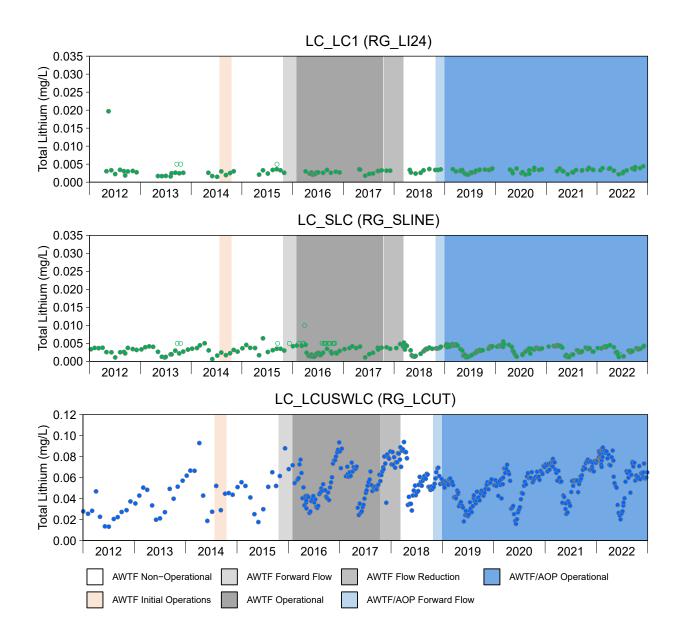


Figure E.9: Time Series Plots for Total Lithium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

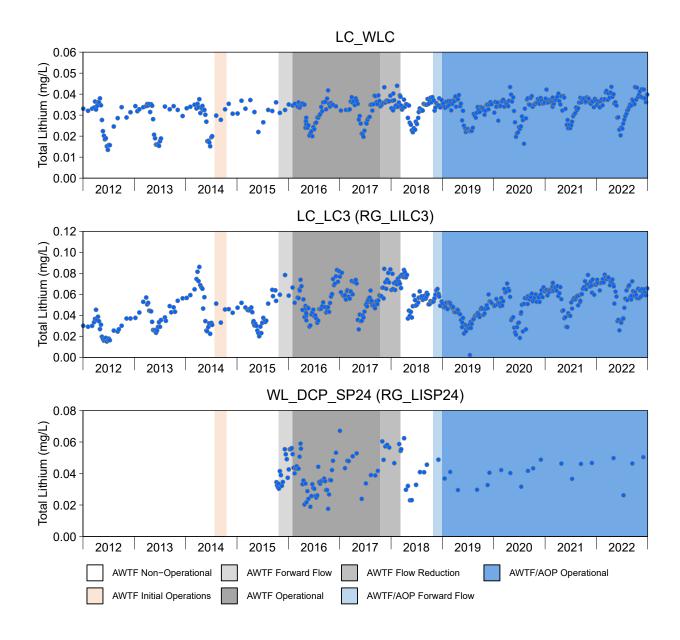


Figure E.9: Time Series Plots for Total Lithium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

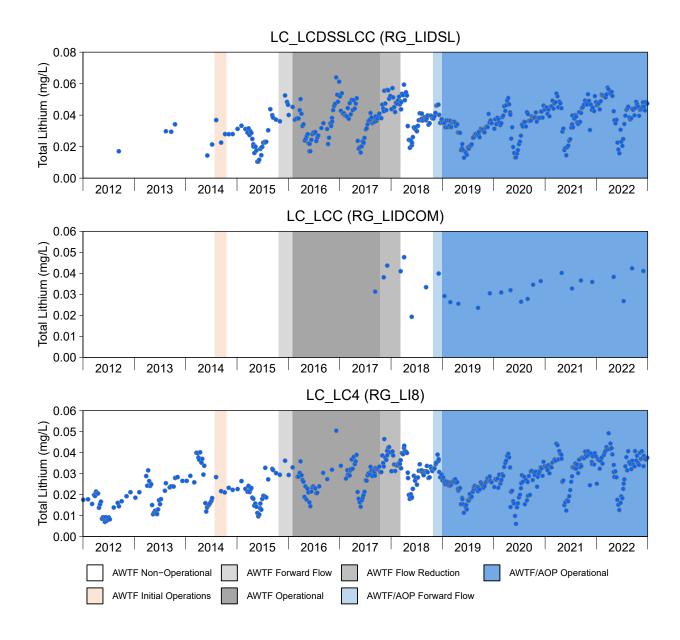


Figure E.9: Time Series Plots for Total Lithium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

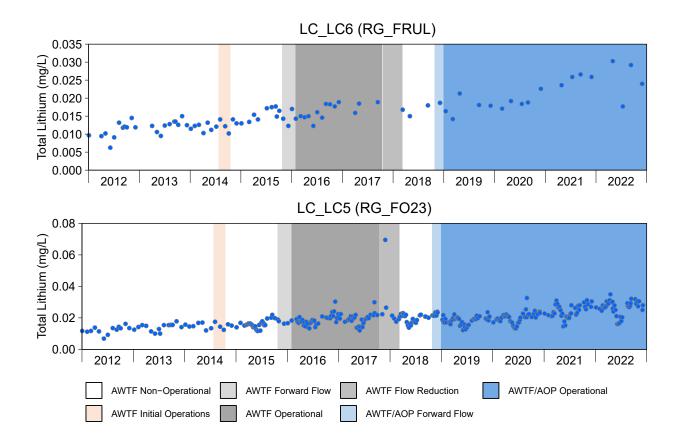


Figure E.9: Time Series Plots for Total Lithium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

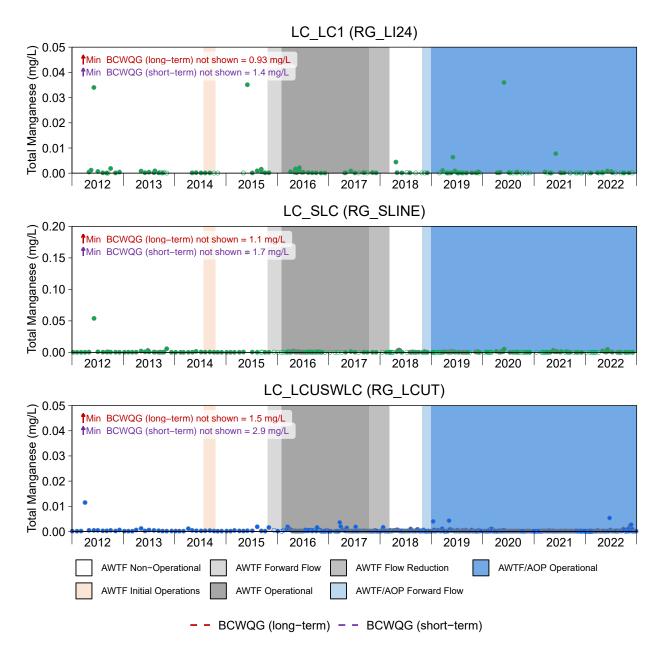


Figure E.10: Time Series Plots for Total Manganese Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

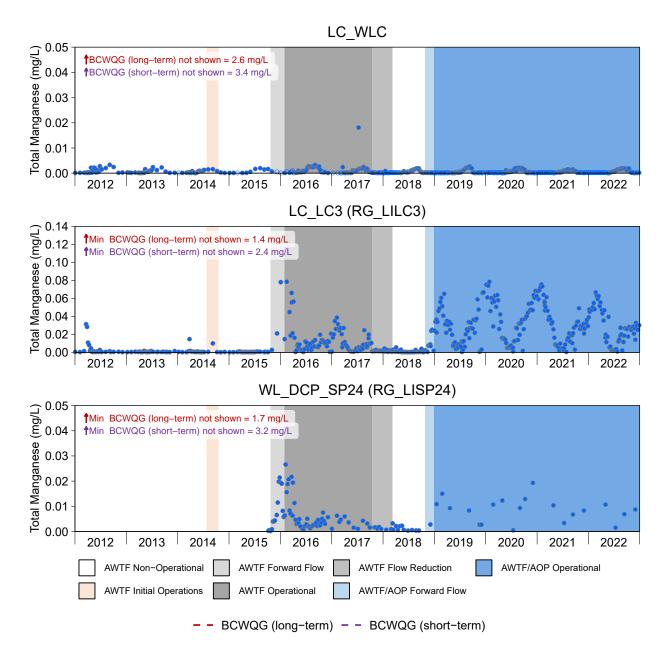


Figure E.10: Time Series Plots for Total Manganese Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

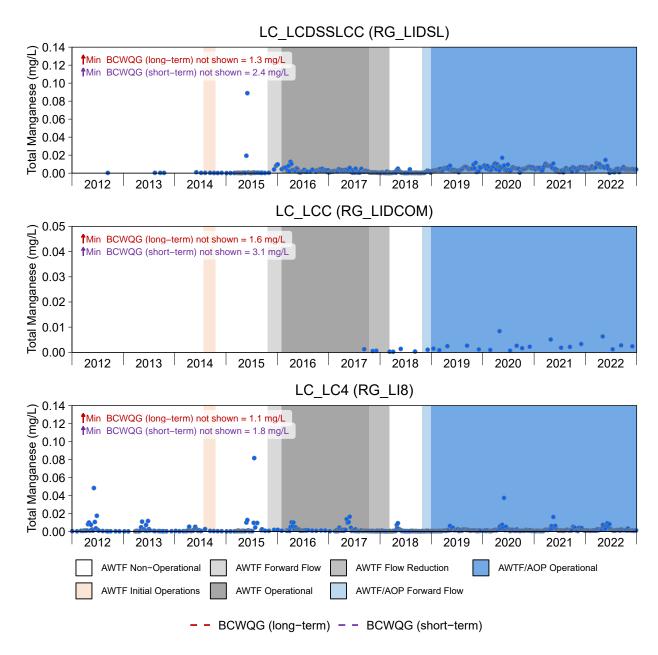


Figure E.10: Time Series Plots for Total Manganese Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

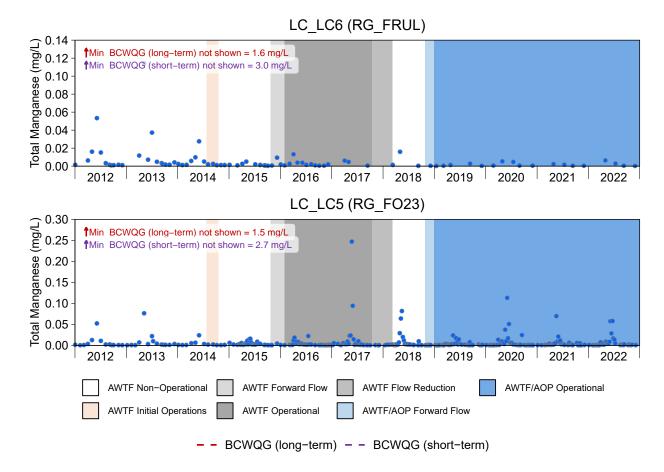


Figure E.10: Time Series Plots for Total Manganese Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

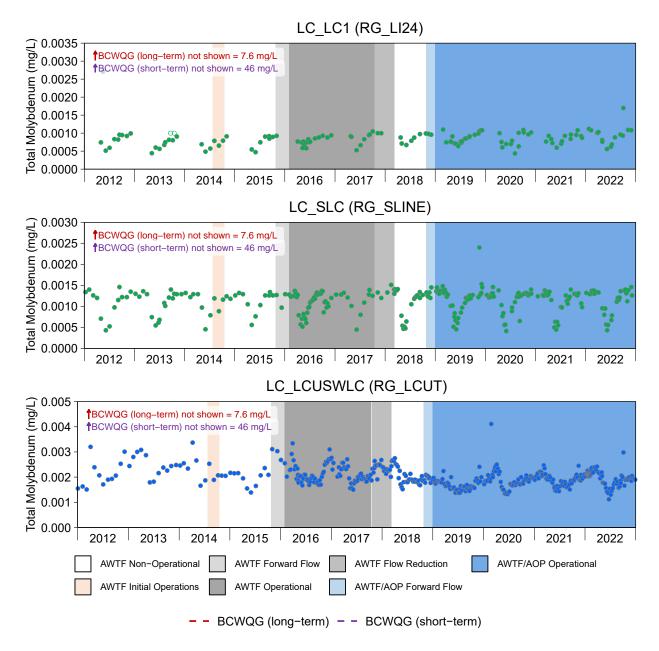


Figure E.11: Time Series Plots for Total Molybdenum Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

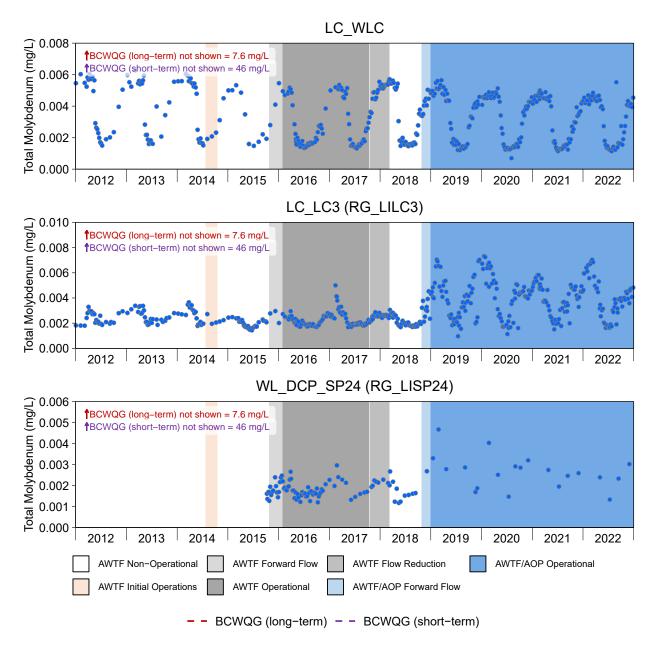


Figure E.11: Time Series Plots for Total Molybdenum Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

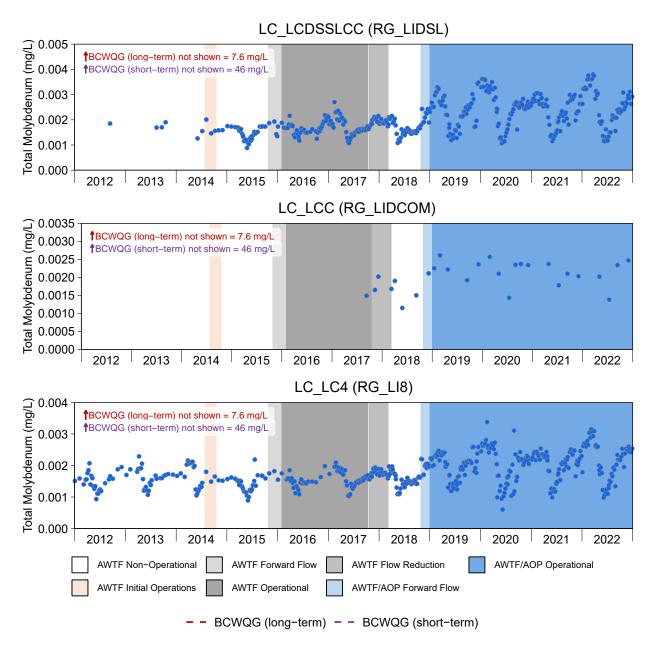


Figure E.11: Time Series Plots for Total Molybdenum Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

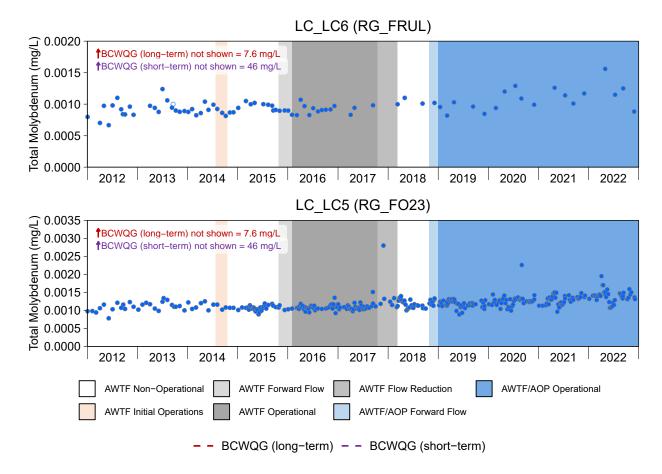


Figure E.11: Time Series Plots for Total Molybdenum Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

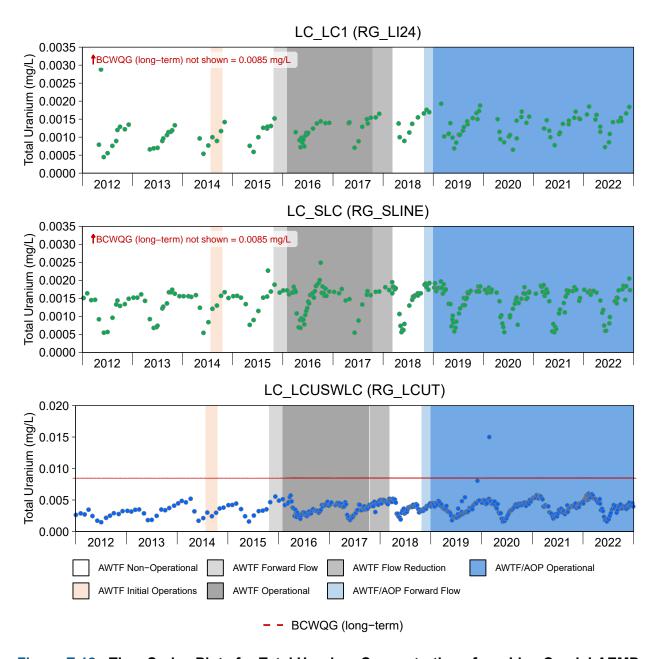


Figure E.12: Time Series Plots for Total Uranium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

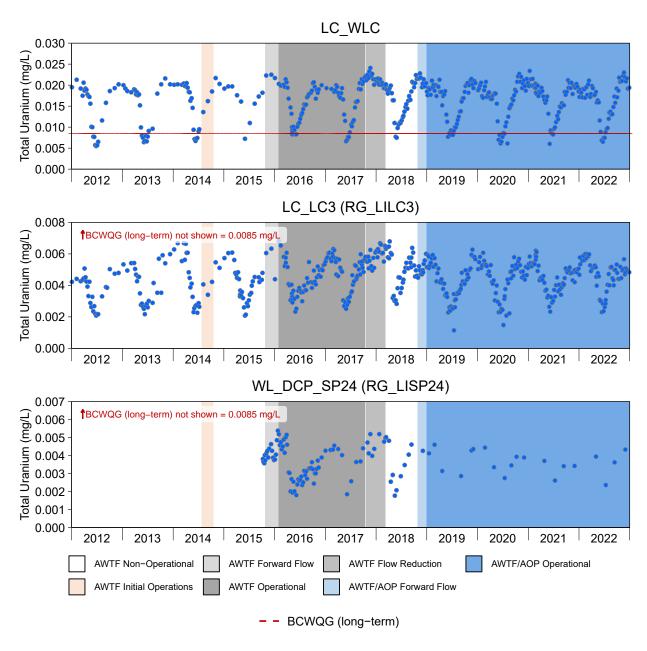


Figure E.12: Time Series Plots for Total Uranium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

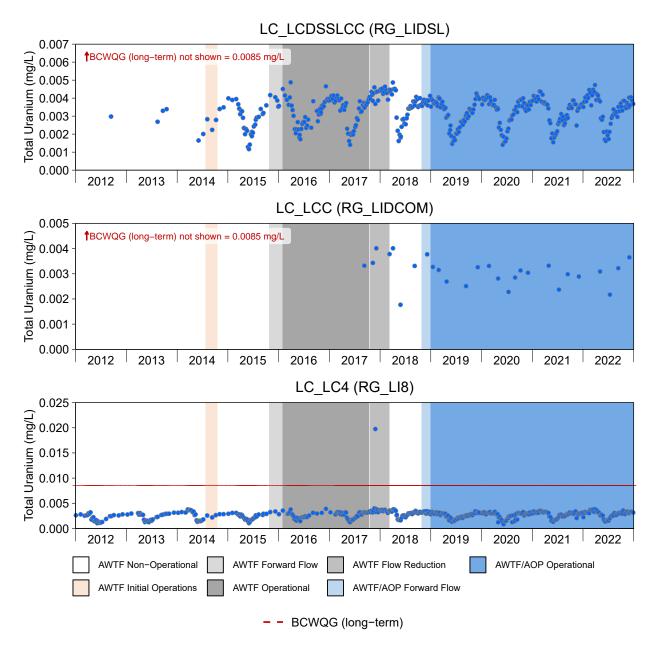


Figure E.12: Time Series Plots for Total Uranium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

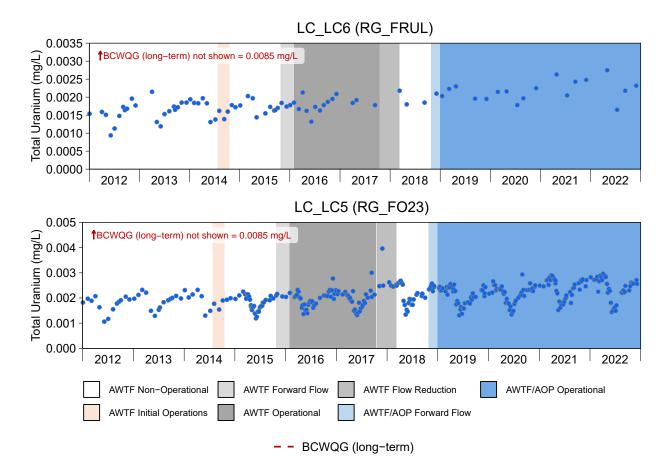


Figure E.12: Time Series Plots for Total Uranium Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

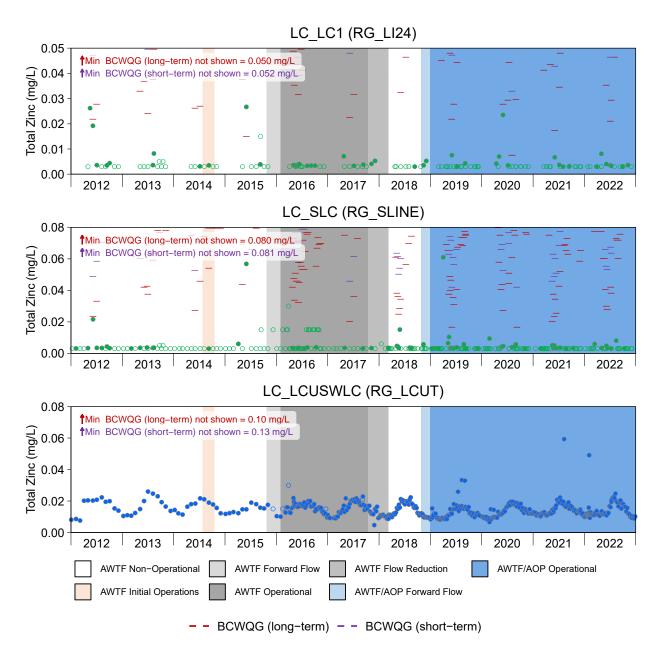


Figure E.13: Time Series Plots for Total Zinc Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

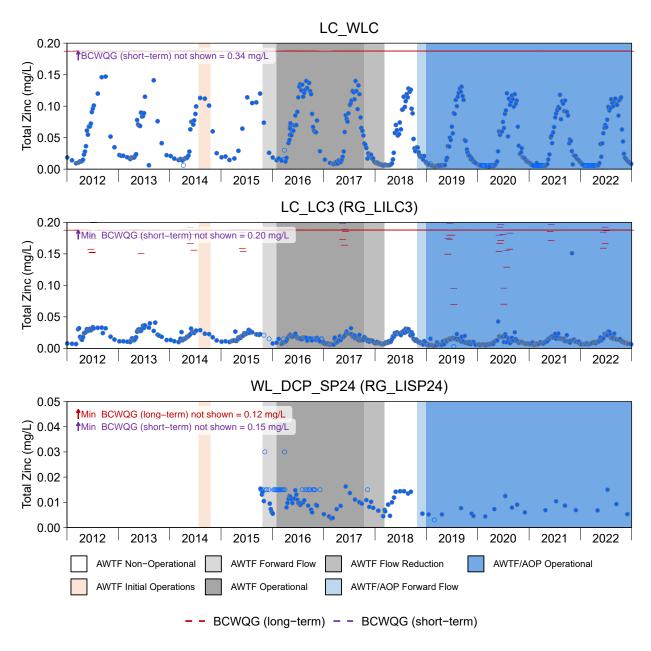


Figure E.13: Time Series Plots for Total Zinc Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

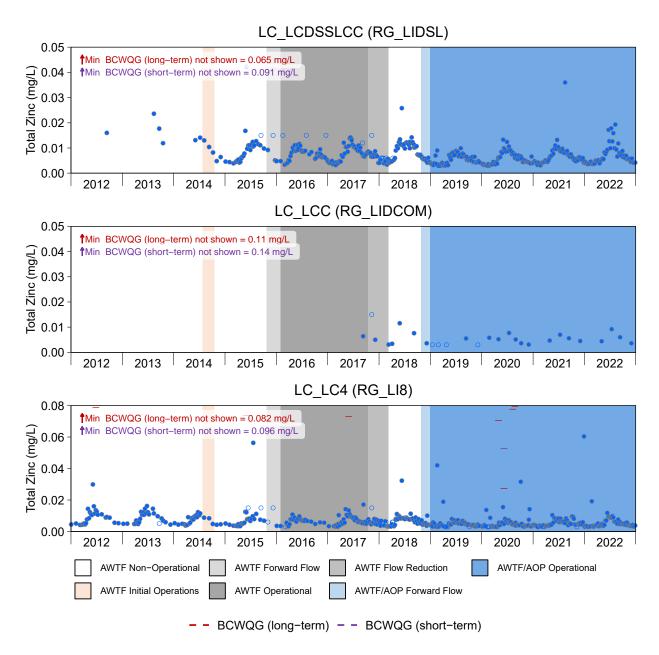


Figure E.13: Time Series Plots for Total Zinc Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

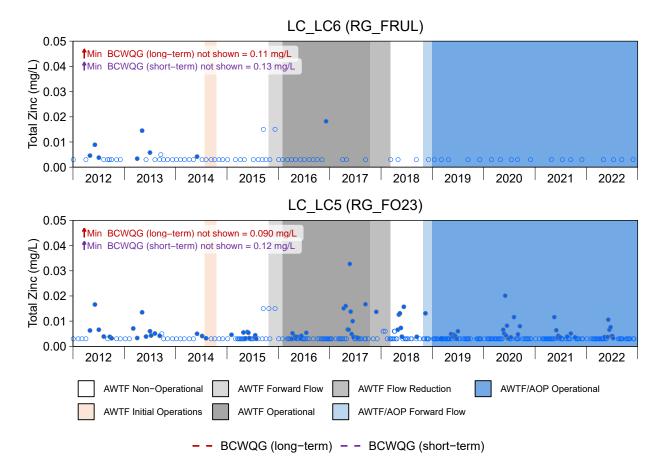


Figure E.13: Time Series Plots for Total Zinc Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

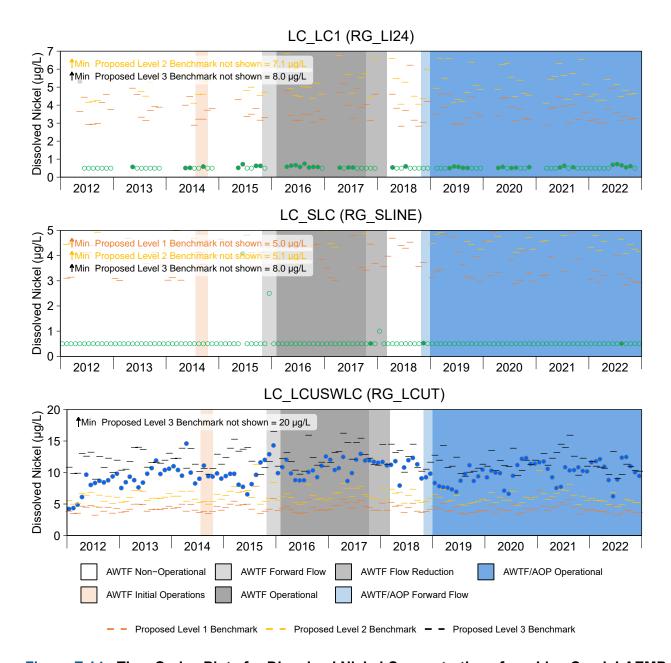


Figure E.14: Time Series Plots for Dissolved Nickel Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

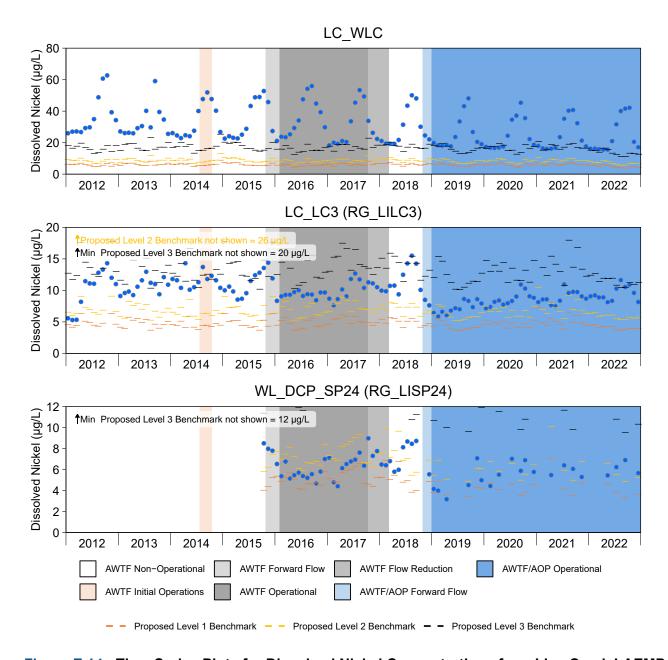


Figure E.14: Time Series Plots for Dissolved Nickel Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

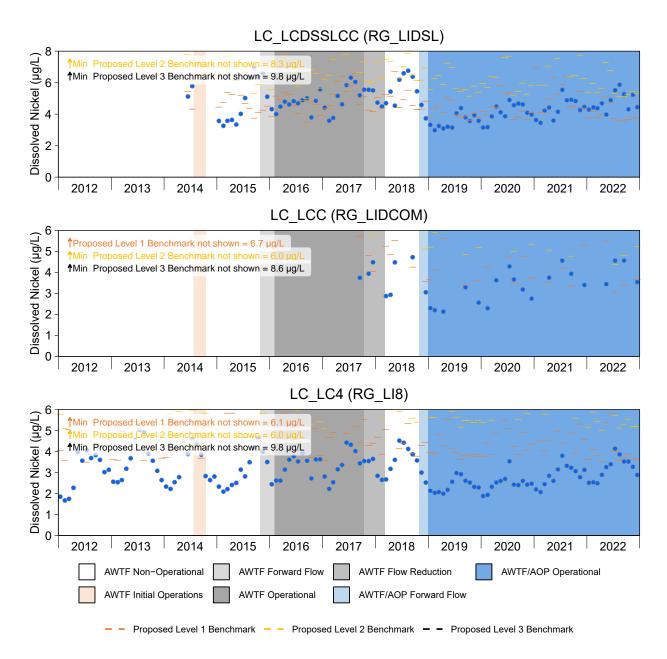


Figure E.14: Time Series Plots for Dissolved Nickel Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

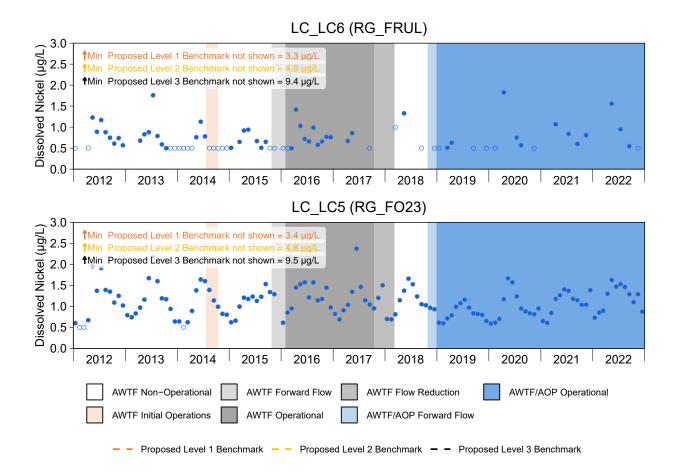


Figure E.14: Time Series Plots for Dissolved Nickel Concentrations from Line Creek LAEMP Sampling Areas, 2012 to 2022

Table E.1: British Columbia Water Quality Guidelines (BCWQG), Site-Specific Elk Valley Water Quality Plan (EVWQP) Benchmarks, and Interim Screening Values for Parameters Assessed in Line Creek LAEMP, 2022

	Variable	limit-	British Colum	nbia Water Quality Guidelines ^a			Oite Oursitis D. J. h
	Variable	Units	Long-term Average	Short-term Maximum	Year	Status	Site-Specific Benchmark ^b
	Total Alkalinity	mg/L	For dissolved calcium = < 4mg/L, BCWQG = <10 For dissolved calcium = 4 to 8 mg/L, BCWQG = 10 to 20 For dissolved calcium = > 8 mg/L, BCWQG = > 20	-	2015	Working	-
	Unionized Ammonia ^c	mg/L	pH and Temperature dependent (tabular)	pH and Temperature dependent (tabular)	2009	Approved	-
	Chloride	mg/L	150 -	600 For hardness ≤ 10 mg/L, BCWQG = 0.4 For hardness > 10 mg/L, BCWQG = [-51.73 + 92.57 × log10(hardness)]×0.01		Approved Approved	-
Non-Metals	Nitrate-N	mg/L	3	Maximum applicable hardness = 385 mg/L 33	2009	Approved	Updated Effects Concentrations: Level 1 = 10 ^[(log10(9)/(-2.64))-(1.45-1.18(log10(hardness)))] Level 2 = 10 ^[(log10(4)/(-2.64))-(1.45-1.18(log10(hardness)))] Level 3 = 10 ^[(log10(1)/(-2.64))-(1.45-1.18(log10(hardness)))]
_	Nitrite-N ^d	mg/L	0.02 to 0.20	0.06 to 0.60	2009	Approved	-
	Dissolved oxygen ^e	mg/L	For buried embryo/alevin life stages, BCWQG (water column) = 11 BCWQG (interstitial) = 8; for other life stages, BCWQG (water column) = 8	For buried embryo/alevin life stages, BCWQG (water column) = 9 BCWQG (interstitial) = 6 For other life stages, BCWQG (water column) = 5	1997	Approved	-
	pH ^f	pН		6.5 - 9.0	1991	Approved	-
	Sulphate ^g	units mg/L	128 to 429 Maximum applicable hardness = 250 mg/L	-		Approved	Updated Effects Concentrations: Level 1 = 617 Level 2 = 764 Level 3 = 1099
	Total Dissolved Solids	mg/L	-	-	-	-	Screening Level 1 Benchmark = 1,000
	Aluminum	μg/L	Biotic Ligand Model	-	2023	Approved	-
	Antimony (III)	mg/L	0.009	0.005	2015	Working	-
	Arsenic Barium	mg/L mg/L	<u>-</u> 1	-	2002	Approved Working	- -
	Beryllium	mg/L	0.00013	-	2015	Working	-
	Boron	mg/L	1.2	-	2003	Approved	<u>-</u>
	Chromium ^h	mg/L	For Cr(VI), BCWQG = 0.001 For Cr(III), BCWQG = 0.0089	-	2015	Working	-
	Cobalt Iron	μg/L mg/L	4	110 1	2004 2008	Approved Approved	<u>-</u>
	Lead ^g	mg/L	For hardness ≤ 8 mg/L, none proposed For hardness 8 to 360 mg/L, BCWQG = 0.001×{3.31+ exp[1.273 × ln(hardness) - 4.704]} No more than 20% of samples in a 30-d period should be >1.5X the guideline. Maximum applicable hardness = 360 mg/L	For hardness ≤ 8 mg/L, BCWQG ≤ 0.003 For hardness 8 to 360 mg/L, BCWQG = 0.001×{exp[1.273 × In(hardness) - 1.460]} Maximum applicable hardness = 360 mg/L		Approved	-
Metalloids tal	Manganese ^g	mg/L	For hardness 37 to 450 mg/L, BCWQG ≤ 0.004 × hardness + 0.605 Maximum applicable hardness = 450 mg/L	For hardness 25 to 259 mg/L, BCWQG ≤ 0.01102 × hardness + 0.54 Maximum applicable hardness = 259 mg/L	2001	Approved	-
Metals and Metalloids Total	Mercury ⁱ	mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125	-	2001	Approved	-
	Molybdenum	mg/L	7.6	46	2021	Approved	=
	Selenium	μg/L	2		2014	Approved	-
	Silver ^f	mg/L	For hardness ≤ 100 mg/L, BCWQG = 0.00005 For hardness > 100 mg/L, BCWQG = 0.0015	For hardness ≤ 100 mg/L, BCWQG = 0.0001 For hardness > 100 mg/L, BCWQG = 0.003	1996	Approved	-
	Thallium	mg/L mg/L	0.0008 0.0085	-	1997	Working	-
	Uranium	mg/L	0.0085	-	2011	Working	
	Zinc ^g	mg/L	For hardness ≤ 90 mg/L, BCWQG = 0.0075 For hardness 90 to 330 mg/L, CWQG = [7.5 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 330 mg/L	For hardness ≤ 90 mg/L, BCWQG = 0.033 For hardness 90 to 500 mg/L, BCWQG = [33 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 500 mg/L	1999	Approved	-

Note: "-" = no data available.

^a British Columbia Working (BCMOECCS 2021a) or Accepted (BCMOECCS 2021b) Water Quality Guidelines for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness), guidelines were screened using concurrent values.

b When appropriate, site-specific Elk Valley Water Quality Plan Benchmarks (EVWQP; Teck 2014) or interim screening values were applied in addition to or instead of BC water quality guidelines. Interim screening values are displayed for nickel (Golder 2017b). Updated effects concentrations are displated for sulphate and nitrate (Golder, 2022).

 $^{^{\}mathrm{c}}$ Temperature and pH dependent; range of minimum and maximum values.

^d Dependent on concurrent chloride, range of values reported (BCMOECCS 2021b).

^e Dissolved oxygen guidelines represent a minimum value, and so exceedances were quantified below this guideline.

^f Unrestricted change permitted within this pH range.

⁹ For hardness-based guidelines, concurrent hardness values were used for calculating guidelines. If hardness values exceeding the maximum applicable hardness, then guidelines were determined using the maximum applicable hardness. If hardness values is lower than the minimum hardness, then guidelines were determined using the minimum hardness.

^h Chromium(VI) is the dominant oxidation state in oxygenated environments, and so its guideline was applied.

ⁱ The most conservative guideline (0.00000125 mg/L) was applied.

Table E.1: British Columbia Water Quality Guidelines (BCWQG), Site-Specific Elk Valley Water Quality Plan (EVWQP) Benchmarks, and Interim Screening Values for Parameters Assessed in Line Creek LAEMP, 2022

		Variable	Units	British Colum	ibia Water Quality Guidelines ^a			Site-Specific Benchmark ^b
		Variable	Omio	Long-term Average	Short-term Maximum	Year	Status	Site-opecinic Benchmark
Js.		Cadmium ^g	μg/L	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	For hardness = 7 to 455 mg/L, BCWQG = {exp[1.03×ln(hardness)-5.274]} Maximum applicable hardness = 455 mg/L	2015	Approved	Level 1 EVWQP Benchmark = 10 ^{0.83(log(hardness))} -2.53 Maximum applicable hardness = 285 mg/L
lloi		Copper	mg/L	Biotic Ligand Model	Biotic Ligand Model	2019	Approved	-
eta	eq	Iron	mg/L	-	BCWQG = 0.35 mg/L	2008	Approved	-
Metals and Metalloids	Dissolved	Nickel	mg/L	-	-	2023	Proposed	Proposed Level 1 Benchmark = log(Benchmark) = 0.547 x (log(DOC)) + 0.411 x (log(Hardness)) - 0.520 x (log(Bicarbonate)) + 0.856 Proposed Level 2 Benchmark = log(Benchmark) = 0.547 x (log(DOC)) + 0.411 x (log(Hardness)) - 0.520 x (log(Bicarbonate))) + 1.011 Proposed Level 3 Benchmark = log(Benchmark) = 0.547 x (log(DOC)) + 0.411 x (log(Hardness)) - 0.520 x (log(Bicarbonate)) + 1.304

Note: "-" = no data available

^a British Columbia Working (BCMOECCS 2021a) or Accepted (BCMOECCS 2021b) Water Quality Guidelines for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness), guidelines were screened using concurrent values.

^b When appropriate, site-specific Elk Valley Water Quality Plan Benchmarks (EVWQP; Teck 2014) or interim screening values were applied in addition to or instead of BC water quality guidelines. Interim screening values are displayed for nickel (Golder 2017b). Updated effects concentrations are displated for sulphate and nitrate (Golder, 2022).

 $^{^{\}mbox{\scriptsize c}}$ Temperature and pH dependent; range of minimum and maximum values.

^d Dependent on concurrent chloride, range of values reported (BCMOECCS 2021b).

^e Dissolved oxygen guidelines represent a minimum value, and so exceedances were quantified below this guideline.

^f Unrestricted change permitted within this pH range.

⁹ For hardness-based guidelines, concurrent hardness values were used for calculating guidelines. If hardness values exceeding the maximum applicable hardness, then guidelines were determined using the maximum applicable hardness values is lower than the minimum hardness, then guidelines were determined using the minimum hardness.

^h Chromium(VI) is the dominant oxidation state in oxygenated environments, and so its guideline was applied.

ⁱ The most conservative guideline (0.00000125 mg/L) was applied.

Table E.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2022

Station	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Aluminum (mg/L)	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)
	n	15	15	26	51	15	15	15	15	15	15	15	15	15	15	15	15
	Annual Minimum	124	7.9	7.5	9.7	101	0.12	<0.001	<0.005	18	0.15	0.21	< 0.003	<0.0001	0.00012	0.03	<0.00002
	Annual Maximum	248	8.4	8.4	89	131	0.26	0.0012	0.006	95	0.35	0.42	0.026	0.00013	0.00021	0.05	<0.00002
	Annual Mean	187	8.2	8.1	46	119	0.2	0.001	0.0051	55	0.25	0.32	0.0064	0.0001	0.00018	0.042	<0.00002
	Annual Median	194	8.2	8.2	13	120	0.2	0.001	0.005	57	0.25	0.35	0.0042	0.0001	0.00018	0.046	<0.00002
LC LC1 (RG LI24)	% < LRL	0%	0%	0%	0%	0%	0%	93%	93%	0%	0%	0%	20%	93%	0%	0%	100%
_ ` - '	% > BCWQG ^a	=	-	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	0%	-	0%	0%
	% > BCWQG ^b	-	-	_	0%	_	0%	0%	0%	-	0%	0%	_	_	0%	_	_
	% > Level 1 Benchmark/UEC	0%		_	-	_	0%	-	-	0%	-	-	_	-	-	_	_
	% > Level 2 Benchmark/UEC	-	-	_	_	-	0%	_	_	0%	_	_	_	-	_	-	_
l	% > Level 3 Benchmark/UEC	_	-	_	-	_	0%	_	_	0%	_	_	_	_	_	_	_
	n	29	29	30	58	29	29	29	29	29	29	29	29	29	29	29	29
	Annual Minimum	103	7.9	7.3	9	113	0.039	<0.001	<0.005	7	0.11	0.13	<0.003	<0.0001	<0.0001	0.026	<0.00002
 	Annual Maximum	258	8.5	8.4	88	158	0.17	0.0022	0.0084	71	0.87	0.37	0.047	<0.0001	0.00028	0.05	<0.00002
 	Annual Mean	199	8.2	8.1	46	141	0.11	0.0011	0.0051	47	0.35	0.28	0.01	<0.0001	0.00014	0.041	<0.00002
 	Annual Median	201	8.3	8.2	13	145	0.11	0.001	0.005	55	0.32	0.3	0.0032	<0.0001	0.00011	0.044	<0.00002
LC_SLC (RG_SLINE)	% < LRL	0%	0%	0%	0%	0%	0%	90%	97%	0%	0%	0%	41%	100%	7%	0%	100%
_3_020 (IXO_02II4E)	% > BCWQG ^a	-	-	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	0%	-	0%	0%
	% > BCWQG ^b				0%		0%		0%	0 70	0%	0%		0 70	_		
		- 0%	-	-	_	-	0%	0%	- 0%	0%	_		-	-	0%	-	-
-	% > Level 1 Benchmark/UEC		=	-	-	-		-			-	-	-		-		-
-	% > Level 2 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	-	- 70	-	- 405	- 70	0%	- 70	- 70	0%	- 70	- 70	-	-	- 70	- 70	-
	n A Lagra	76	76	75	135	76	76	76	76	76	76	76	76	76	76	76	76
	Annual Minimum	290	7.8	6.2	9.8	143	3.5	<0.001	<0.005	92	2.3	0.14	<0.003	0.00019	0.0001	0.023	<0.00002
	Annual Maximum	945	8.3	9.1	93	256	24	0.021	0.041	417	15	0.31	0.067	0.00049	0.00032	0.078	<0.00002
	Annual Mean	701	8.1	7.8	44	216	15	0.002	0.0071	300	9.4	0.19	0.0058	0.00039	0.00015	0.059	<0.00002
LC_LCUSWLC	Annual Median	701	8.1	7.8	12	222	15	0.005	0.005	314	9.9	0.19	0.0039	0.00041	0.00015	0.063	<0.00002
(RG_LCUT)	% < LRL	0%	0%	0%	0%	0%	0.0%	84%	78%	0%	0%	1%	21%	0%	0%	0%	100%
(,	% > BCWQG ^a	-	-	3%	0%	0%	100%	0%	0%	0%	0%	-	0%	0%	-	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	-	0%	-	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-
	n	52	52	51	89	52	52	52	51	52	52	52	52	52	52	52	52
	Annual Minimum	819	7.9	7.1	9.5	313	5.9	<0.001	<0.005	349	0.81	0.1	<0.003	0.00034	0.00012	0.013	<0.00002
	Annual Maximum	2260	8.4	8.8	90	449	17	0.013	0.0088	1230	7.2	0.3	0.0067	0.00056	0.00037	0.029	0.000098
	Annual Mean	1775	8.2	7.8	43	364	13	0.0013	0.0051	1000	3.8	0.17	0.0033	0.00046	0.00024	0.022	0.000022
	Annual Median	1885	8.2	7.9	11	350	14	0.005	0.005	1105	3.9	0.16	0.006	0.00046	0.00025	0.022	0.00004
LC_WLC	% < LRL	0%	0%	0%	0%	0%	0.0%	96%	98%	0%	0%	2%	81%	0%	6%	0%	98%
ĺ	% > BCWQG ^a	-	-	0%	0%	0%	100%	0%	0%	94%	0%	-	0%	0%	-	0%	0%
	% > BCWQG ^b	-	=	-	0%	-	0%	0%	0%	-	0%	0%	-	=	0%	-	-
	% > Level 1 Benchmark/UEC	94%	-	-	-	-	0%	-	-	88%	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	0%	-	-	81%	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	=	=	-	-	-	0%	-	-	54%	-	-	-	-	-	-	-
	n	58	58	56	95	58	60	58	57	58	60	58	58	58	58	58	58
	Annual Minimum	360	7.7	7	9	166	4.7	<0.001	<0.005	129	3.8	0.15	<0.003	0.00026	<0.0001	0.023	<0.00002
	Annual Maximum	1090	8.4	9.5	98	257	15	0.0052	0.0092	541	44	0.32	0.019	0.00039	0.00023	0.063	<0.00002
	Annual Mean	792	8.1	7.7	44	222	11	0.0014	0.0052	365	21	0.2	0.005	0.00033	0.00014	0.05	<0.00002
	Annual Median	836	8.1	7.7	12	226	11	0.001	0.005	372	20	0.2	0.004	0.00032	0.00013	0.054	<0.00002
LC_LC3 (RG_LILC3)	% < LRL	0%	0%	0%	0%	0%	0%	86%	84%	0%	0%	2%	21%	0%	14%	0%	100%
()	% > BCWQG ^a	-	-	2%	0%	0%	100%	0%	0%	31%	0%		0%	0%		0%	0%
 	% > BCWQG ^b	-			0%		0%	0%	0%		0%	0%			0%		
 	% > BCWQG" % > Level 1 Benchmark/UEC	12%	-	-	- 0%	-	3%		U%	0%	- 0%	- 0%	-	-	U%	-	-
	% > Level 1 Benchmark/UEC % > Level 2 Benchmark/UEC		-	-		=		-	-				-	-	-	-	-
		-	=	-	-	-	3%	-	-	0%	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	-	i -	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.
> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table E.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2022

Station	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Aluminum (mg/L)	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)
	n	4	4	4	8	4	4	4	4	4	4	4	4	4	4	4	4
	Annual Minimum	404	7.7	8.2	9.7	189	5.6	0.0015	<0.005	132	3.9	0.2	0.003	0.00021	0.00012	0.032	<0.00002
	Annual Maximum	678	8.4	8.4	88	219	10	0.0034	0.005	296	15	0.24	0.0042	0.00026	0.00015	0.057	<0.00002
	Annual Mean	572	8.2	8.3	47	203	8.1	0.0023	0.005	234	11	0.22	0.0034	0.00024	0.00014	0.048	<0.00002
WI DCD CD24	Annual Median	602	8.3	8.3	42	202	8.5	0.0021	0.005	254	12	0.22	0.0033	0.00026	0.00014	0.052	<0.00002
WL_DCP_SP24 (RG_LISP24)	% < LRL	0%	0%	0%	0%	0%	0.0%	0%	75%	0%	0%	0%	0%	0%	0%	0%	100%
(RG_LISP24)	% > BCWQG ^a	-	-	0%	0%	0%	100%	0%	0%	0%	0%	-	0%	0%	-	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	-	0%	-	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	=	-	=	=	-	-	-
	% > Level 3 Benchmark/UEC	-	=	-	=	-	0%	ı	-	0%	ı	-	-	=	-	=	-
	n	53	53	52	90	53	53	53	52	53	53	53	53	53	53	53	53
	Annual Minimum	237	7	7.3	9.3	142	2.8	<0.001	<0.005	88	2.5	0.16	< 0.003	0.00016	<0.0001	0.023	<0.00002
	Annual Maximum	815	8.4	8.4	1202	248	13	0.0063	0.014	384	26	0.32	0.033	0.00048	0.00027	0.08	0.00012
 	Annual Mean	600	8.2	8.1	56	202	8.3	0.0015	0.0053	257	13	0.21	0.0066	0.00023	0.00013	0.059	0.000022
I C I CDSSI CC	Annual Median	632	8.3	8.1	12	208	8.2	0.0013	0.005	271	13	0.22	0.0042	0.00023	0.00013	0.062	0.00002
LC_LCDSSLCC	% < LRL	0%	0%	0%	0%	0%	0.0%	47%	87%	0%	0%	2%	26%	0%	17%	0%	98%
(RG_LIDSL)	% > BCWQG ^a	-	-	0%	0%	0%	98%	0%	0%	0%	0%	-	0%	0%	-	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	=	0%	0%	=	=	0%	-	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	-	0%	-	-	0%		-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	-	-	=	=	-	=	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-
	n	4	4	6	12	4	4	4	4	4	4	4	4	4	4	4	4
	Annual Minimum	377	8.3	8.2	9.7	188	5.1	0.0011	< 0.005	132	3.8	0.2	0.0032	0.00019	0.0001	0.041	< 0.00002
	Annual Maximum	606	8.4	8.6	88	212	7.9	0.002	< 0.005	255	12	0.24	0.024	0.00022	0.00014	0.068	< 0.00002
	Annual Mean	528	8.4	8.4	47	199	6.8	0.0017	<0.005	206	8.9	0.22	0.0098	0.0002	0.00012	0.059	<0.00002
	Annual Median	564	8.4	8.4	44	198	7.1	0.0018	<0.005	218	9.6	0.22	0.0068	0.0002	0.00013	0.063	<0.00002
LC LCC (RG LIDCOM)	% < LRL	0%	0%	0%	0%	0%	0.0%	0%	100%	0%	0%	0%	25%	0%	25%	0%	100%
l - ` - ´ [% > BCWQG ^a	-	-	0%	0%	0%	100%	0%	0%	0%	0%	-	0%	0%	-	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	_	_	0%	-	_
	% > Level 1 Benchmark/UEC	0%	-	_	-	-	0%	-	-	0%	-	-	-	_	-	-	_
	% > Level 2 Benchmark/UEC	-	-	_	_	-	0%	_	-	0%	-	_	-	_	_	-	_
	% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-
	n	55	55	57	100	55	55	55	54	55	55	55	55	55	55	55	55
	Annual Minimum	236	7.9	7.8	9.6	131	2.2	<0.001	< 0.005	71	1.9	0.15	< 0.003	0.00013	<0.0001	0.031	< 0.00002
	Annual Maximum	694	8.6	8.6	92	953	10	0.008	0.01	282	19	0.28	0.061	0.00024	0.00032	0.089	<0.00002
	Annual Mean	503	8.4	8.3	44	199	6.3	0.0018	0.0053	204	10	0.24	0.012	0.00018	0.00015	0.063	< 0.00002
	Annual Median	523	8.4	8.3	13	191	6.5	0.0015	0.005	223	10	0.24	0.0047	0.00018	0.00014	0.066	<0.00002
LC_LC4 (RG_LI8)	% < LRL	0%	0%	0%	0%	0%	0.0%	20%	89%	0%	0%	0%	11%	0%	2%	0%	100%
	% > BCWQG ^a	-	-	0%	0%	0%	95%	0%	0%	0%	0%	-	0%	0%	-	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	=	0%	0%	=	=	0%	-	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	_
	% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-
	n	4	4	5	6	4	4	4	4	4	4	4	4	4	4	4	4
	Annual Minimum	358	7.8	8.1	9.1	185	6.4	0.0024	<0.005	109	1.5	0.14	0.003	0.0001	<0.0001	0.066	<0.00002
	Annual Maximum	597	8.4	8.5	88	204	13	0.0044	<0.005	231	4.7	0.2	0.054	0.00015	0.00018	0.11	<0.00002
	Annual Mean	524	8.2	8.3	48	195	11	0.0037	<0.005	190	3	0.18	0.018	0.00012	0.00013	0.096	<0.00002
	Annual Median	570	8.4	8.2	45	196	12	0.004	<0.005	211	2.9	0.18	0.007	0.00012	0.00012	0.1	<0.00002
LC_LC6 (RG_FRUL)	% < LRL	0%	0%	0%	0%	0%	0.0%	0%	100%	0%	0%	0%	0%	0%	25%	0%	100%
_ ' (' ' ' ' ' ' ' ' ' ' - ' ' - ' ' ' - ' ' ' - ' ' ' - ' ' ' ' - '	% > BCWQG ^a	-	-	0%	0%	0%	100%	0%	0%	0%	0%	-	0%	0%	-	0%	0%
	% > BCWQG ^b	-	_	-	0%	-	0%	0%	0%	-	0%	0%	-	-	0%	-	-
	% > Level 1 Benchmark/UEC	0%		_	-	-	0%	-	-	0%	-	-	-		-		_
	% > Level 2 Benchmark/UEC	-		_		-	0%	-	-	0%	-	<u>-</u>	-	<u> </u>	-	-	-
	% > Level 3 Benchmark/UEC	-	-	_	_	_	0%	-	_	0%	_	_	-		_	_	_
		l L		1		ı	- / 0		I	- / •		I			1		

> 5% of samples exceed the guideline or benchmark.
> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table E.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2022

Station	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Aluminum (mg/L)	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)
	n	38	38	38	75	38	38	38	38	38	38	38	38	38	38	38	38
	Annual Minimum	269	8.1	7.7	9.4	149	5.2	0.0011	< 0.005	79	1.4	0.14	< 0.003	0.0001	<0.0001	0.052	<0.00002
	Annual Maximum	687	8.5	8.7	93	233	14	0.0078	0.036	274	7.8	0.22	0.45	0.00018	0.00048	0.11	0.000042
	Annual Mean	519	8.3	8.2	49	194	10	0.0036	0.0059	198	4.9	0.18	0.048	0.00013	0.00016	0.089	0.000021
	Annual Median	542	8.3	8.3	13	200	10	0.0029	0.005	213	5.2	0.18	0.013	0.00013	0.00013	0.093	0.00002
LC_LC5 (RG_FO23)	% < LRL	0%	0%	0%	0%	0%	0.0%	0%	89%	0%	0%	0%	3%	16%	26%	0%	92%
	% > BCWQG ^a	-	-	0%	0%	0%	100%	0%	0%	0%	0%	-	8%	0%	-	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	-	0%	-	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	-	0%	-	-	0%	-	=	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	0%	-	-	0%	-	=	-	-	=	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	0%	1	-	0%	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table E.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2022

Station	Summary Statistic	Total Boron (mg/L)	Total Chromium	Total Cobalt (μg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese	Total Mercury	Total Molybdenum	Total Nickel	Total Selenium	Total Silver (mg/L)	Total Thallium	Total Uranium	Total Zinc (mg/L)
		15	(mg/L) 15	15	15	15	15	(mg/L) 15	(mg/L)	(mg/L)	(μg/L) 15	(μg/L) 17	15	(mg/L) 15	(mg/L) 15	15
	n Annual Minimum	<0.01	0.00015	<0.0001	<0.01	<0.00005	0.0022	<0.0001	15 <0.0000005	15 0.00056	<0.5	1.3	<0.00001	<0.00001	0.00072	<0.003
	Annual Maximum	<0.01	0.00013	<0.0001	0.023	<0.00005	0.0022	0.00088	<0.0000005	0.00030	0.8	3.3	<0.00001	0.000042	0.0018	0.0081
	Annual Mean	<0.01	0.0002	<0.0001	0.011	<0.00005	0.0035	0.00024	<0.0000005	0.00096	0.59	2.4	<0.00001	0.000012	0.0014	0.0035
	Annual Median	<0.01	0.00021	<0.0001	0.01	<0.00005	0.0035	0.00024	<0.0000005	0.00096	0.54	2.7	<0.00001	0.000012	0.0014	0.003
LC_LC1 (RG_LI24)	% < LRL	100%	0%	100%	87%	100%	0%	47%	100%	0%	40%	0%	100%	93%	0%	53%
10_101 (110_1111)	% > BCWQG ^a	0%	0%	0%	-	0%	-	0%	67%	0%	-	71%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	0%	0%	0%	_	0%	-	0%	_	-	0%	-	-	0%
	% > Level 1 Benchmark/UEC	_	_	-	-	-	_	-	_	-	-	_	-	<u> </u>	_	-
	% > Level 2 Benchmark/UEC	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_
	% > Level 3 Benchmark/UEC	_	_	_	_	_	_	-	_	_	-	_	_	-	_	_
	n	29	29	29	29	29	29	29	29	29	29	31	29	29	29	29
	Annual Minimum	<0.01	0.00013	<0.0001	<0.01	<0.00005	0.0012	<0.0001	<0.0000005	0.00043	<0.5	0.46	<0.00001	<0.00001	0.0006	<0.003
	Annual Maximum	<0.01	0.0005	<0.0001	0.098	0.00013	0.0045	0.0048	0.00000078	0.0015	0.6	1.7	<0.00001	<0.00001	0.002	0.0081
	Annual Mean	<0.01	0.00023	<0.0001	0.017	0.000053	0.0031	0.00051	0.00000053	0.0011	0.5	1.3	<0.00001	<0.00001	0.0015	0.0034
	Annual Median	<0.01	0.00021	<0.0001	0.01	0.00005	0.0034	0.00013	0.000005	0.0013	0.5	1.4	<0.00001	<0.00001	0.0016	0.003
LC_SLC (RG_SLINE)	% < LRL	100%	0%	100%	72%	93%	3%	45%	97%	0%	97%	0%	100%	100%	0%	76%
- · - /	% > BCWQG ^a	0%	0%	0%	-	0%	-	0%	69%	0%	-	0%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	0%	0%	0%	-	0%	-	0%	-	-	0%	=	-	0%
	% > Level 1 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	76	76	76	76	76	76	76	76	76	76	76	76	76	76	76
	Annual Minimum	<0.01	0.0001	<0.0001	<0.01	<0.00005	0.02	<0.0001	<0.0000005	0.0011	5.3	17	<0.00001	<0.00001	0.0016	0.0089
	Annual Maximum	0.025	0.00023	0.00016	0.082	0.00072	0.089	0.0054	0.0000064	0.003	14	90	<0.00001	0.000026	0.006	0.049
	Annual Mean	0.018	0.00014	0.0001	0.013	0.00006	0.067	0.00033	0.00000059	0.002	11	60	<0.00001	0.000015	0.0044	0.014
LC_LCUSWLC	Annual Median	0.019	0.00014	0.0001	0.01	0.00005	0.073	0.00014	0.000005	0.002	12	61	<0.00001	0.000015	0.0045	0.012
(RG_LCUT)	% < LRL	3%	9%	82%	92%	95%	0%	28%	97%	0%	0%	0%	100%	4%	0%	0%
(KG_LCUI)	% > BCWQG ^a	0%	0%	0%	=	0%	-	0%	59%	0%	-	100%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	0%	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%
	% > Level 1 Benchmark/UEC	-	-	-	=	=	-	=	-	-	-	-	-	=	-	-
	% > Level 2 Benchmark/UEC	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52
	Annual Minimum	0.012	<0.0001	<0.0001	<0.01	<0.00005	0.02	<0.0001	0.00000078	0.0011	15	160	<0.00001	<0.00002	0.0065	<0.006
	Annual Maximum	0.45	0.00035	0.00015	0.013	0.000061	0.044	0.002	0.0000013	0.0055	51	538	0.000015	0.00004	0.023	0.11
	Annual Mean	0.026	0.00013	0.00011	0.01	0.00005	0.036	0.00059	0.00000099	0.0032	26	398	0.00001	0.000027	0.017	0.043
	Annual Median	0.018	0.00011	0.0002	0.02	0.0001	0.037	0.00015	0.00000099	0.004	20	426	0.00002	0.000027	0.018	0.017
LC_WLC	% < LRL	44%	65%	92%	98%	98%	0%	52%	73%	0%	0%	0%	98%	2%	0%	27%
	% > BCWQG ^a	0%	0%	0%	-	0%	-	0%	75%	0%	-	100%	0%	0%	92%	0%
	% > BCWQG ^b	-	-	0%	0%	0%	-	0%	-	0%	-	-	0%	=	-	0%
	% > Level 1 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	58	58	58	58	58	58	58	58	58	58	60	58	58	58	58
	Annual Minimum	0.011	<0.0001	<0.0001	<0.01	<0.00005	0.026	0.001	<0.0000005	0.0016	7.3	28	<0.00001	<0.00001	0.0023	0.0062
	Annual Maximum	0.023 0.018	0.005	0.00036 0.00019	0.2 0.059	0.000094 0.000051	0.079	0.067 0.027	0.00000074 0.00000053	0.007	13	66	<0.00001	0.000037 0.000014	0.006	0.027
	Annual Mean Annual Median	0.018	0.00023 0.00014	0.00019	0.059	0.000051	0.061 0.064	0.027	0.00000053	0.004 0.0039	9.9	49 50	<0.00001 <0.00001	0.000014	0.0047 0.0049	0.013 0.011
1 C 1 C2 (BC 1 II C2)	% < LRL	0.019	5%	9%	10%	98%	0.064	0.026	95%	0.0039	0%	0%	100%	31%	0.0049	0.011
LC_LC3 (RG_LILC3)				1												
	% > BCWQG ^a	0%	2%	0%	-	0%	=	0%	74%	0%	-	100%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	0%	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%
	% > Level 1 Benchmark/UEC	-	-	-	-	-	=	-	-	-	-	=	-	=	-	- -
	% > Level 2 Benchmark/UEC	-	-	-	-	-	-	=	-	-	-	-	-	=	-	-
	% > Level 3 Benchmark/UEC	-	-	-	=	=	=	-	-	-	-	=	-	-	-	-

> 5% of samples exceed the guideline or benchmark.
> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table E.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2022

Station	Summary Statistic	Total Boron (mg/L)	Total Chromium (mg/L)	Total Cobalt (μg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Nickel (µg/L)	Total Selenium (µg/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)
	n	4	4	4	4	4	4	4	4	4	<u>(μg/L)</u> 4	(µg / L)	4	4	4	4
	Annual Minimum	0.01	0.00015	<0.0001	<0.01	<0.00005	0.026	0.0015	<0.000005	0.0013	6.1	26	<0.00001	<0.00001	0.0024	0.0053
	Annual Maximum	0.016	0.00021	<0.0001	0.035	<0.00005	0.05	0.011	<0.0000005	0.003	7	45	<0.00001	<0.00001	0.0043	0.015
	Annual Mean	0.014	0.00017	<0.0001	0.018	<0.00005	0.043	0.007	<0.0000005	0.0023	6.5	37	<0.00001	<0.00001	0.0036	0.0091
-	Annual Median	0.014	0.00017	<0.0001	0.014	<0.00005	0.048	0.0078	<0.0000005	0.0024	6.5	38	<0.00001	<0.00001	0.0038	0.008
WL_DCP_SP24	% < LRL	0%	0%	100%	25%	100%	0%	0%	100%	0%	0.0	0%	100%	100%	0%	0%
(RG_LISP24)	% > BCWQG ^a	0%	0%	0%	-	0%	0,70	0%	75%	0%	-	100%	0%	0%	0%	0%
	% > BCWQG ^b			0%	0%	0%	_	0%		0%			0%			0%
-	% > Level 1 Benchmark/UEC	-	-	-	-	1	-	-	-	- 0%	-	-	- 0%	-	-	-
-	% > Level 2 Benchmark/UEC	-	_	-	<u> </u>	-		<u> </u>			-	-	_	<u> </u>	-	-
-	% > Level 3 Benchmark/UEC	-	_	_	<u> </u>	_	_	<u> </u>	-		-		_	<u> </u>	<u>-</u>	-
	/6 > Level 3 Belicillia R/OEC	53	53	53	53	53	53	53	53	53	53	54	53	53	53	53
-	Annual Minimum	<0.01	0.0001	<0.0001	0.01	<0.00005	0.016	0.00041	<0.0000005	0.0011	3.9	18	<0.00001	<0.00001	0.0016	0.0036
	Annual Maximum Annual Maximum	0.017	0.0001	0.00023	0.01	0.00035	0.018	0.00041	0.00000062	0.0038	8.4	56	0.00001	0.0001	0.0016	0.0036
	Annual Mean	0.017	0.00097	0.00023	0.071	0.00035	0.038	0.015	0.00000062	0.0036	5.1	39	0.000046	0.00018	0.0047	0.019
	Annual Median	0.014	0.00017	0.0001	0.017	0.00005	0.043	0.0034	0.00000051	0.0023	5	41	0.000011	0.000013	0.0034	0.007
LC_LCDSSLCC	% < LRL	11%	0.00013	92%	32%	96%	0.044	0.0047	98%	0.0026	0%	0%	98%	81%	0.0036	0.0056
(RG_LIDSL)	% > BCWQG ^a	0%	0%	0%	JZ /0 -	0%	-	0%	74%	0%	-	100%	0%	0%	0%	0%
	% > BCWQG ^b		0 /0	0%	0%	0%	-	0%	1 + 70	0%			0%			0%
	% > BCWQG ² % > Level 1 Benchmark/UEC	-	-	-	U% -	-	-	-	-	- 0%	-	-	- 0%	-	-	- 0%
-	% > Level 1 Benchmark/UEC % > Level 2 Benchmark/UEC	+						<u>-</u>								
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-		-	-	-	-	-	-	-	-
	n Level 3 Belicilliark/OEC	4	4	4	4	4	- 4	4	4	- 4	4	4	4	4	4	4
-	Annual Minimum	<0.01	0.00014	<0.0001	<0.01	<0.00005	0.027	0.0012	0.00000058	0.0014	3.7	24	<0.00001	<0.00001	0.0022	0.0036
-	Annual Maximum	0.016	0.00017	<0.0001	0.038	<0.00005	0.027	0.0063	0.00000058	0.0014	4.7	37	<0.00001	<0.00001	0.0022	0.0030
-	Annual Mean	0.013	0.00017	<0.0001	0.038	<0.00005	0.042	0.0032	0.00000058	0.0023	4.7	33	<0.00001	<0.00001	0.0036	0.0058
-	Annual Median	0.013	0.00015	<0.0001	0.017	<0.00005	0.037	0.0032	0.00000058	0.0021	4.2	35	<0.00001	<0.00001	0.003	0.0052
LC_LCC (RG_LIDCOM)	% < LRL	25%	0%	100%	75%	100%	0%	0%	75%	0%	0%	0%	100%	100%	0.0032	0%
LC_LCC (KG_LIDCOM)	% > BCWQG ^a	0%	0%	0%	-	0%	-	0%	75%	0%	-	100%	0%	0%	0%	0%
-	% > BCWQG ^b			0%	0%	0%		0%		0%			0%		-	0%
=		-	-			-	-	- 070	-	- 0%	-	-	1	=		U70 -
-	% > Level 1 Benchmark/UEC % > Level 2 Benchmark/UEC	-	-	-	-		-		-		-	-	-	-	-	
-	% > Level 2 Benchmark/UEC % > Level 3 Benchmark/UEC	-	-	-	=	-	-	-	-	-	-	=	-	=	-	-
	/6 > Level 3 Belicillia R/OEC	- 55	55	55	<u>-</u> 55	55	55	<u>-</u> 55	55	55	<u>-</u> 55	57	55	- 55	55	- 55
-	Annual Minimum	0.01	0.0001	<0.0001	<0.01	<0.00005	0.013	0.00076	<0.0000005	0.00098	2.2	12	<0.00001	<0.00001	0.0014	<0.003
-	Annual Maximum Annual Maximum	0.016	0.0001	0.0001	0.086	0.000096	0.049	0.00076	0.00000059	0.0032	4.7	44	<0.00001	0.00001	0.0014	0.019
	Annual Mean	0.018	0.00036	0.00013	0.000	0.000096	0.049	0.0093	0.00000059	0.0032	3.4	30	<0.00001	0.00001	0.0036	0.0054
	Annual Median	0.013	0.00019	0.0001	0.019	0.00005	0.036	0.0022	0.00000051	0.0022	3.4	32	<0.00001	0.00001	0.0029	0.0034
LC_LC4 (RG_LI8)	% < LRL	13%	0%	93%	69%	93%	0%	0%	98%	0%	0%	0%	100%	95%	0%	2%
(INO_LIO)	% > BCWQG ^a	0%	0%	0%	-	0%	-	0%	73%	0%	-	100%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	0%	0%	0%	_	0%	-	0%		-	0%	-	-	0%
	% > Level 1 Benchmark/UEC	-	_		-	-	- -	-	-		-	_		<u> </u>	<u> </u>	-
	% > Level 2 Benchmark/UEC	-	_	_	-	-	+ +	-	-	+	-	-	_	-		-
	% > Level 3 Benchmark/UEC	-	-	-	<u> </u>	-	_	<u> </u>	-	_	-	-	-	<u> </u>		-
	n	4	4	4	4	4	4	4	4	4	4	5	4	4	4	4
	Annual Minimum	0.01	0.00011	<0.0001	<0.01	<0.00005	0.018	0.00031	0.00000082	0.00088	<0.5	27	<0.00001	<0.00001	0.0016	<0.003
	Annual Maximum	0.013	0.00021	<0.0001	0.092	0.000067	0.03	0.0064	0.00000082	0.0016	1.9	49	<0.00001	<0.00001	0.0028	<0.003
	Annual Mean	0.011	0.00021	<0.0001	0.033	0.000058	0.025	0.0026	0.00000082	0.0012	1.0	41	<0.00001	<0.00001	0.0022	<0.003
	Annual Median	0.01	0.00013	<0.0001	0.014	0.000056	0.027	0.0018	0.00000082	0.0012	0.88	43	<0.00001	<0.00001	0.0022	<0.003
LC_LC6 (RG_FRUL)	% < LRL	50%	0%	100%	50%	50%	0%	0%	75%	0%	25%	0%	100%	100%	0%	100%
	% > BCWQG ^a	0%	0%	0%	-	0%	_	0%	75%	0%	-	100%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	0%	0%	0%	_	0%	-	0%	-	-	0%	-	-	0%
	% > Level 1 Benchmark/UEC	-	_	-	-	-	_	-	_	-	-	-	-	<u> </u>	<u>-</u>	-
	% > Level 2 Benchmark/UEC	-	-	-	-	-	_	=	-	-	-	-	-	=	=	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-
		•														

> 5% of samples exceed the guideline or benchmark.
> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table E.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2022

Station	Summary Statistic	Total Boron (mg/L)	Total Chromium (mg/L)	Total Cobalt (µg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Nickel (µg/L)	Total Selenium (µg/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)
	n	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
	Annual Minimum	<0.01	0.00012	<0.0001	<0.01	<0.00005	0.016	0.00037	<0.0000005	0.0011	0.72	21	<0.00001	<0.00001	0.0014	< 0.003
	Annual Maximum	0.012	0.00085	0.00048	0.83	0.00058	0.035	0.058	0.0000057	0.002	3.3	60	0.000015	0.000023	0.003	0.011
	Annual Mean	0.01	0.00026	0.00012	0.089	0.000099	0.026	0.0068	0.00000067	0.0014	1.5	42	0.00001	0.000011	0.0024	0.0035
	Annual Median	0.01	0.00018	0.0001	0.021	0.00005	0.027	0.0017	0.000005	0.0014	1.4	43	0.00001	0.00001	0.0025	0.003
LC LC5 (RG FO23)	% < LRL	63%	0%	84%	29%	66%	0%	0%	92%	0%	0%	0%	97%	92%	0%	79%
	% > BCWQG ^a	0%	0%	0%	-	0%	-	0%	71%	0%	-	100%	0%	0%	0%	0%
	% > BCWQG ^b	=	=	0%	0%	0%	-	0%	=	0%	-	-	0%	=	=	0%
	% > Level 1 Benchmark/UEC	-	=	-	=	-	=	-	=	-	=	-	-	-	=	-
	% > Level 2 Benchmark/UEC	-	=	-	=	-	=	=	=	-	-	-	-	-	-	-
	% > Level 3 Benchmark/UEC	-	-	-	-	-	-	-	-	-	=	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table E.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2022

		Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
Station	Summary Statistic	Cadmium	Dissolved	Copper		Dissolved
	-	(µg/L)	Cobalt (µg/L)	(mg/L)	Iron (mg/L)	Nickel (µg/L)
	n	15	15	15	15	11
	Annual Minimum	<0.005	<0.1	<0.0002	<0.01	<0.5
	Annual Maximum	0.0095	<0.1	0.0004	<0.01	0.72
	Annual Mean	0.0071	<0.1	0.00022	<0.01	0.57
	Annual Median	0.0071	<0.1	0.0002	<0.01	0.5
LC_LC1 (RG_LI24)	% < LRL	13%	100%	80%	100%	55%
	% > BCWQG ^a	0%	-	13%	-	-
	% > BCWQG ^b	0%	-	0%	0%	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	0%
	% > Level 2 Benchmark/UEC	-	-	-	-	0%
	% > Level 3 Benchmark/UEC	-	-	-	-	0%
	n	29	29	29	29	12
	Annual Minimum	< 0.005	<0.1	<0.0002	<0.01	<0.5
	Annual Maximum	0.016	<0.1	0.00043	0.017	0.51
	Annual Mean	0.012	<0.1	0.00022	0.01	0.5
	Annual Median	0.011	<0.1	0.0002	0.01	0.5
LC_SLC (RG_SLINE)	% < LRL	3%	100%	76%	97%	92%
	% > BCWQG ^a	0%	_	3%	_	-
	% > BCWQG ^b	0%	-	0%	0%	-
	% > Level 1 Benchmark/UEC	0%	-		-	0%
	% > Level 2 Benchmark/UEC	-	-	-	-	0%
	% > Level 3 Benchmark/UEC	-	-	=	-	0%
	n	76	74	76	76	12
	Annual Minimum	0.15	<0.1	<0.0002	<0.01	6.2
	Annual Maximum	0.56	0.13	0.0007	0.012	12
	Annual Mean	0.33	0.1	0.00033	0.01	10
I C I CHEWI C	Annual Median	0.3	0.1	0.0003	0.01	11
LC_LCUSWLC	% < LRL	0%	95%	1%	99%	0%
(RG_LCUT)	% > BCWQG ^a	11%	-	33%	-	-
	% > BCWQG ^b	0%	-	3%	0%	-
	% > Level 1 Benchmark/UEC	13%	-	=	-	100%
	% > Level 2 Benchmark/UEC	-	-	-	-	92%
	% > Level 3 Benchmark/UEC	-	-	=	-	50%
	n	52	50	52	52	12
	Annual Minimum	0.049	<0.1	0.00042	<0.01	16
	Annual Maximum	3.6	0.14	0.012	0.11	42
	Annual Mean	1.1	0.1	0.0011	0.014	24
	Annual Median	0.48	0.2	0.0008	0.02	19
LC_WLC	% < LRL	2%	94%	0%	90%	0%
	% > BCWQG ^a	50%	-	65%	-	-
	% > BCWQG ^b	15%	-	4%	0%	-
	% > Level 1 Benchmark/UEC	40%	-	-	-	100%
	% > Level 2 Benchmark/UEC	-	-	-	-	100%
	% > Level 3 Benchmark/UEC	-	-	-	-	83%
	n	58	56	58	58	12
	Annual Minimum	0.14	<0.1	<0.0002	<0.01	8.1
	Annual Maximum	0.69	0.27	0.00079	0.037	12
	Annual Mean	0.31	0.17	0.00034	0.011	9.5
	Annual Median	0.29	0.16	0.00029	0.01	9.1
LC_LC3 (RG_LILC3)	% < LRL	0%	11%	2%	90%	0%
	% > BCWQG ^a	16%	-	43%	-	-
	% > BCWQG ^b	0%	-	0%	0%	-
	% > Level 1 Benchmark/UEC	16%	-	-	-	100%
	% > Level 2 Benchmark/UEC	-	-		-	100%
	% > Level 3 Benchmark/UEC	-	-		-	17%

> 5% of samples exceed the guideline or benchmark.
> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Values are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures. When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and tabulated together with the biological monitoring area depicted in parenthesis.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table E.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2022

Station	Summary Statistic	Dissolved Cadmium (µg/L)	Dissolved Cobalt (μg/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)	Dissolved Nickel (µg/L)
	n	4	4	4	4	4
	Annual Minimum	0.14	<0.1	0.00021	<0.01	5.4
	Annual Maximum	0.33	<0.1	0.00037	<0.01	6.9
	Annual Mean	0.22	<0.1	0.00026	<0.01	6.1
	Annual Median	0.2	<0.1	0.00022	<0.01	5.9
WL_DCP_SP24	% < LRL	0%	100%	0%	100%	0%
(RG_LISP24)	% > BCWQG ^a	0%	_	0%	-	-
_	% > BCWQG ^b	0%	_	0%	0%	_
	% > Level 1 Benchmark/UEC	25%	_	-	-	100%
-	% > Level 2 Benchmark/UEC	-	-	_	_	75%
-	% > Level 3 Benchmark/UEC	_	_	_	-	0%
	n	53	51	53	53	12
_	Annual Minimum	0.019	<0.1	<0.0002	<0.01	4
	Annual Maximum	0.38	0.19	0.0002	0.035	5.9
		0.16	0.19	0.00027	0.033	4.8
-	Annual Mean Annual Median	0.16	0.1	0.00027	0.01	4.6
LC_LCDSSLCC	% < LRL	0.14	96%	51%	98%	0%
(RG_LIDSL)					9070	
	% > BCWQG ^a	0%	-	8%	-	-
	% > BCWQG ^b	0%	-	0%	0%	-
	% > Level 1 Benchmark/UEC	2%	-	-	-	92%
	% > Level 2 Benchmark/UEC	-	-	-	-	25%
	% > Level 3 Benchmark/UEC	-	-	-	-	0%
	n	4	4	4	4	4
	Annual Minimum	0.088	<0.1	<0.0002	<0.01	3.4
	Annual Maximum	0.24	<0.1	0.00031	<0.01	4.6
	Annual Mean	0.15	<0.1	0.00023	<0.01	4
	Annual Median	0.14	<0.1	0.0002	<0.01	4
LC_LCC (RG_LIDCOM)	% < LRL	0%	100%	50%	100%	0%
	% > BCWQG ^a	0%	-	0%	-	-
	% > BCWQG ^b	0%	-	0%	0%	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	50%
	% > Level 2 Benchmark/UEC	-	-	=	-	25%
	% > Level 3 Benchmark/UEC	-	-	=	-	0%
	n	55	53	55	55	12
	Annual Minimum	0.0078	<0.1	<0.0002	<0.01	2.5
	Annual Maximum	0.2	0.21	0.0012	0.013	4.1
	Annual Mean	0.081	0.1	0.00024	0.01	3.2
	Annual Median	0.065	0.1	0.0002	0.01	3.3
LC_LC4 (RG_LI8)	% < LRL	2%	98%	73%	98%	0%
/	% > BCWQG ^a	0%	_	2%	_	-
	% > BCWQG ^b	0%	_	0%	0%	_
	% > Level 1 Benchmark/UEC	0%	_	-	-	17%
-	% > Level 2 Benchmark/UEC				-	0%
	% > Level 3 Benchmark/UEC		_		-	0%
	n	4	4	4	4	4
	Annual Minimum	0.0069	<0.1	<0.0002	<0.01	<0.5
	Annual Maximum	0.023	<0.1	0.00023	<0.01	1.6
	Annual Mean	0.023	<0.1	0.00023	<0.01	0.89
	Annual Median	0.014	<0.1	0.00021	<0.01	0.09
LC_LC6 (RG_FRUL)	% < LRL	0.014	100%	75%	100%	25%
LC_LCO (KG_FKUL)		ł	1			
	% > BCWQG ^a	0%	-	0%	-	-
	% > BCWQG ^b	0%	-	0%	0%	-
	% > Level 1 Benchmark/UEC	0%	-	-	-	0%
	% > Level 2 Benchmark/UEC	-	-	-	-	0%
	% > Level 3 Benchmark/UEC	_	_	_	i .	0%

> 5% of samples exceed the guideline or benchmark.
> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Values are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures. When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and tabulated together with the biological monitoring area depicted in parenthesis.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table E.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2022

Station	Summary Statistic	Dissolved Cadmium (µg/L)	Dissolved Cobalt (µg/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)	Dissolved Nickel (µg/L)
	n	38	38	38	38	12
	Annual Minimum	<0.005	<0.1	<0.0002	<0.01	0.73
	Annual Maximum	0.065	<0.1	0.0025	0.024	1.6
	Annual Mean	0.024	<0.1	0.00028	0.01	1.2
	Annual Median	0.023	<0.1	0.0002	0.01	1.3
LC LC5 (RG FO23)	% < LRL	3%	100%	71%	92%	0%
_ ` _ '	% > BCWQG ^a	0%	-	3%	-	-
	% > BCWQG ^b	0%	-	0%	0%	-
	% > Level 1 Benchmark/UEC	0%	-	=	-	0%
	% > Level 2 Benchmark/UEC	-	-	=	-	0%
	% > Level 3 Benchmark/UEC	-	-	-	-	0%

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "UEC" = Updated Effects Concentration. "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. UEC's are shown for Nitrate and Sulphate, Interim Screen Values are shown for Total Nickel, and EVWQP benchmarks are shown for all other relevant parameters. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures. When biological monitoring areas and routine water quality stations were in close proximity to each other and with no additional inputs between them, data collected at the biological monitoring area were combined with routine data and tabulated together with the biological monitoring area depicted in parenthesis.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life.

Table E.3: Acute Toxicity Results for Line Creek Operations, 2022

Location	Date	48-h Daphnia magna	96-h Oncorhynchus mykiss
Location	Date	Percent (%) Mortality	Percent (%) Mortality
	10-Jan-22	0	0
	24-Jan-22	0	0
	7-Feb-22	0	0
	21-Feb-22	3	0
	7-Mar-22	3	0
	21-Mar-22	0	0
	4-Apr-22	0	0
	18-Apr-22	0	0
	2-May-22	3	0
	16-May-22	0	0
	30-May-22	0	0
	13-Jun-22	0	0
	27-Jun-22	-	0
WL_BFWB_	27-Jun-22	0	-
OUT_SP21	11-Jul-22	0	0
	25-Jul-22	-	0
	25-Jul-22	0	-
	8-Aug-22	0	0
	22-Aug-22	0	0
	5-Sep-22	0	10
	19-Sep-22	0	0
	3-Oct-22	0	0
	17-Oct-22	0	0
	31-Oct-22	0	0
	14-Nov-22	0	0
	28-Nov-22	0	0
	12-Dec-22	0	0
	27-Dec-22	0	0

Note: "-" indicates no data available.

APPENDIX F BIOLOGICAL TRIGGERS

BIOLOGICAL TRIGGERS APPENDIX F

F1	INTRODUCTION	1
F1.1	Background	1
F2	METHODS	3
F2.1	Overview	3
F2.2	Percent EPT	3
F2.3	Benthic Invertebrate Tissue Selenium (BIT Se)	4
F2.4	Westslope Cutthroat Trout Muscle Tissue Selenium (WCT Se)	5
F3	RESULTS	6
E2 4		
F3.1	Percent EPT	6
	Benthic Invertebrate Tissue Selenium (BIT Se)	
F3.2		6
F3.2	Benthic Invertebrate Tissue Selenium (BIT Se)	6 7
F3.2 F3.3	Benthic Invertebrate Tissue Selenium (BIT Se)	6 7 8

F1 INTRODUCTION

F1.1 Background

Biological triggers were developed and implemented to assist with identifying and communicating unexpected and potentially important changes in aquatic ecosystem conditions and are required as part of Teck's Adaptive Management Plan (AMP; Teck 2018). Biological triggers were developed in consultation with the Environmental Monitoring Committee (EMC) for a subset of the biological monitoring endpoints that are effective indicators of changes at the ecosystem level. The purpose of the biological triggers is to quickly identify biological monitoring areas where unexpected biological conditions may be occurring that may require management action. Additionally, information provided from the analysis of biological triggers may lead to responses under the AMP response framework.

Draft biological triggers were developed in the 2018 AMP (Teck 2018) under Management Question 5, with these initially reported on in 2021 in the 2020 Local Aquatic Effects Monitoring Program (LAEMP) reports and Regional Aquatic Effects Monitoring Program (RAEMP) data package, and summarized in the 2020 Annual AMP Report (Teck 2021a). When the 2018 AMP was approved, there was an expectation that the 2018 AMP draft/interim biological triggers would be finalized, through engagement with the EMC, prior to December 15, 2021 AMP Update. The biological triggers were finalized in 2021 (Teck 2021b) and the methods applied in this report reflect the finalized biological triggers (Teck 2021b). It is important to note that the process and/or biological triggers may adjust over time as the purpose of the biological triggers is to be reflective of not only changes in the Elk Valley, but also the current state of knowledge in the area.

The finalized biological triggers (Teck 2021b) include three measurement endpoints:

- Percent EPT (% EPT; Ephemeroptera, Plecoptera, and Trichoptera) based on travelling kick samples (CABIN protocol), generally three replicates per location per sampling event.
- Benthic invertebrate tissue selenium (BIT Se) generally several replicates collected per location per sampling event, where each replicate is a composite sample of invertebrates (i.e., composite-taxa sample).
- Westslope cutthroat trout muscle tissue selenium (WCT Se) generally 8 replicates collected per location per sampling event, where each replicate corresponds to a sample from a single fish.

Evaluation of these three biological trigger endpoints is complementary to the fulsome evaluation of biological endpoints that is integrated into the LAEMP and RAEMP data evaluations. The fulsome evaluation of biological endpoints is used to support answering the specific LAEMP and RAEMP study questions through the consideration of not only the endpoints used in the biological trigger evaluation, but also a full suite of additional biological, chemical, and physical endpoints. Biological triggers do not provide information on cause and effect, report on trends, or feed directly into decision-making processes. Instead, the biological triggers act to flag areas for further evaluation, which would then take place under existing monitoring programs, through the development of supporting studies or through the response framework, as necessary.

Biological monitoring data are compared to triggers annually, and summaries of the LAEMP and RAEMP trigger evaluations and responses are summarized within annual AMP reports.

F2 METHODS

F2.1 Overview

As outlined in Section F1.1, analyses for biological triggers are meant to be complementary to other analyses conducted in the LAEMPs and RAEMP. Biological trigger analyses included all three trigger endpoints (%EPT and BIT Se [collected under the 2022 Line Creek Operation (LCO) LAEMP], and westslope cutthroat trout [WCT] muscle tissue Se at RG_LIDSL [collected as confirmatory sampling for the RAEMP; Minnow 2021b]).

For the purpose of application of the biological triggers, expectations for the endpoints evaluated (%EPT, BIT Se, and WCT muscle tissue Se) were based on projected water quality, not on measured water quality. Thus, the triggers should detect biological results that were unexpected, regardless of whether those results are due to unexpected water quality or due to unexpected relationships between water quality and biological endpoints. Biological triggers were therefore only applied at locations where water quality projections were available. Specifically, five of the mine-exposed areas (RG_LCUT, RG_LILC3, RG_LIDSL, RG_LI8, and RG_FO23) and both reference areas (RG_LI24 and RG_SLINE) included in the LCO LAEMP were evaluated for biological trigger events. Data for other areas studied under the LCO LAEMP (RG_LIDCOM, RG_LISP24, and RG_FRUL) were not available to be evaluated relative to biological triggers but were assessed elsewhere as part of the main LCO LAEMP report.

Methodological details are discussed for each of the biological trigger metrics below.

F2.2 Percent EPT

Data for percent EPT were compared to:

- Normal range: The lower limit of the habitat-adjusted normal range (2.5th percentile).
 Up-to-date limits of normal ranges¹ are provided in the RAEMP and LAEMPs, where they are recalculated as needed as new data become available (Teck 2019).
 The derivation of habitat-adjusted normal ranges is described in Appendix J of the 2020 RAEMP, and was based on consideration of more than 30 habitat, substrate, GIS, and land cover variables (Minnow 2020).
- <u>Expectations:</u> The lower limit of the range of %EPT corresponds to the predicted aquatic data integration tool (ADIT) score. The predicted ADIT scores correspond to potential effects on benthic invertebrate community (BIC) endpoints, based on

¹ The normal range will be updated as part of the three year reporting cycle of the RAEMP (Minnow 2021b).

relationships between water quality projections (for nitrate, sulphate and cadmium)² and invertebrate toxicity endpoints originally developed for the Elk Valley Water Quality Plan (EVWQP; Teck 2014; Golder 2020a). A predicted ADIT score of 3 corresponds to 50% or greater effects to reproduction of the water flea Ceriodaphnia dubia, 2 corresponds to 20 to 50% effects, 1 corresponds to 10 to 20% effects, and 0 corresponds to effect levels of 10% or less. Once %EPT is actually measured, the measured results are converted to a measured ADIT score in relation to the habitat adjusted normal range as follows: An ADIT score of 0 corresponds to expected %EPT ≥ the 10th percentile of the habitat-adjusted normal range; an ADIT score of 1 corresponds to expected %EPT between the 10th percentile and the 2.5th percentile of the habitat-adjusted normal range (and is therefore identical in application to the lower limit of normal range); an ADIT score of 2 corresponds to expected %EPT between the 2.5th percentile and half of the 2.5th percentile of the habitat-adjusted normal range; finally, an ADIT score of 3 corresponds to expected %EPT ≤ half of the 2.5th percentile and ≥ 0. Individual replicate habitat-adjusted normal ranges were used at each location for establishing the %EPT limits associated with each ADIT score. In summary, this component of the biological trigger for %EPT asks whether the measured ADIT score - calculated based on measured %EPT relative to normal ranges - is greater than the ADIT score that was predicted based on water quality projections.

Benthic invertebrate community data for %EPT collected in the fall (September) for the 2022 LCO LAEMP were included in the biological trigger analysis.

F2.3 Benthic Invertebrate Tissue Selenium (BIT Se)

Data for BIT Se were compared to:

- Normal range: The upper limit of the regional normal range (97.5th percentile) for individual replicates. Up-to-date limits of normal ranges³ are provided in the RAEMP and LAEMPs, where they are recalculated as needed as new data become available (Teck 2019).
- Expectations: The upper limit of the 95% prediction interval based on the water to BIT bioaccumulation model for lotic environments. The model originally developed in the EVWQP (Golder 2014) was updated (Golder 2020b) and the updated data set was used to calculate prediction intervals for individual replicates. Methodology for estimating the upper limit of the 95% prediction for BIT Se (given any projected value)

² Selenium was not included because selenium effects on BIC endpoints are not expected. Projections were based on the highest maximum monthly mean across all flow scenarios (low, average, and high).

³ The normal range will be updated as part of the three-year reporting cycle of the RAEMP (Minnow 2021b).

of aqueous selenium) is discussed further in the Biological Trigger Development for the Elk Valley Adaptive Management Plan (Azimuth 2021).

Benthic invertebrate tissue selenium data from sampling events completed throughout 2022 for the LCO LAEMP (May, July, September, and November/December⁴) were included in the biological trigger analysis although normal range information is based on fall (September) information.

Although effects benchmarks are not part of the trigger, they are relevant for interpreting potential significance and responses. Consequently, the level 1, 2 and 3 benchmarks for the most sensitive receptor (juvenile fish via dietary exposure) are included in plots (11, 18, and 26 mg/kg, respectively).

F2.4 Westslope Cutthroat Trout Muscle Tissue Selenium (WCT Se)

Data for WCT muscle tissue Se were compared to:

- Normal range: The upper limit of the regional normal range (97.5th percentile). Up-to-date limits of normal ranges⁵ are provided in the RAEMP and LAEMPs, where they are recalculated as needed as new data become available (Teck 2019).
- Expectations: The upper limit of the 95% prediction interval based on bioaccumulation models. For a given selenium concentration in water, the best estimate of expected WCT muscle tissue is generated in usina bioaccumulation model - water to invertebrates, and invertebrates to fish eggs after which a conversion factor is used to convert muscle selenium concentration from egg selenium concentrations. Prediction errors for new replicate samples (i.e., individual fish) are based on a different data set that relates fish directly to water. Methodology for estimating the upper limit of the 95% prediction interval for WCT muscle Se (given any projected value of aqueous selenium) is discussed further in the Biological Trigger Development for the Elk Valley Adaptive Management Plan (Azimuth 2021).

Although effects benchmarks are not part of the trigger, they are relevant for interpreting potential significance and responses. Consequently, the site-specific muscle benchmark are included in the plots (15.5 mg/kg dw; Nautilus Environmental and Interior Reforestation 2011).

⁵ The normal range will be updated as part of the three-year reporting cycle of the RAEMP (Minnow 2021b).

⁴ Benthic invertebrate tissue samples from RG_LI8 and RG_FO23 were not collected during the December sampling period due to safety concerns.

F3 RESULTS

F3.1 Percent EPT

Individual replicates for the %EPT endpoint for each of the five mine-exposed areas (RG_LCUT, RG_LILC3, RG_LIDSL, RG_LI8, and RG_FO23) as well as the reference areas (RG_LI24 and RG_SLINE) were each assessed against their respective biological triggers for the September sampling period (Table F.1, Figure F.1). Four mine-exposed areas (RG_LCUT [3 of 3 replicates], RG_LILC3 [3 of 3 replicates], RG_LIDSL [3 of 5 replicates] and RG_FO23 [3 of 5 replicates] had % EPT results that were lower than the biological trigger value. RG_LILC3 (the area closest in downstream proximity to the active water treatment facility [AWTF]) had %EPT ranging from 5.3 to 7.9% (substantially lower than the lower 2.5th percentile prediction limit of the biological trigger, ranging from 71.8 to 76.1%, while %EPT values that reached the trigger from areas further downstream did not show the same magnitude of difference (i.e. RG_LIDSL and RG_FO23). However, RG_LCUT also had substantially lower %EPT than the biological trigger values (reported values: 7.3 to 10.1%; lower 2.5th percentile prediction limit values: 68.4 to 74.3%), indicating that the results are likely not AWTF related. Additionally, %EPT at RG_LI8 did not reach the biological trigger (i.e., were higher than the trigger value).

RG_FO23 had three %EPT values which were lower than the trigger (66.6 to 69.4 %EPT [reported value] compared to 67.0 to 70.1 %EPT [lower 2.5th percentile trigger prediction limit]; Table F.1, Figure F.1) but this area is located in the Fording River downstream of Line Creek and did not follow the same spatial pattern observed in Line Creek (i.e., fewer results lower than the trigger with increasing distance from the AWTF indicating the results were not AWTF-related.

Replicates from the reference areas, RG_LI24 [5 of 5 replicates] and RG_SLINE [3 of 3 replicates], did not reach the biological trigger (i.e., were higher than the trigger value; Table F.1, Figure F.1).

F3.2 Benthic Invertebrate Tissue Selenium (BIT Se)

Benthic invertebrate tissue selenium concentrations for each mine-exposed and reference area were assessed against their respective biological trigger for individual replicate samples from each of the four sampling events (May, July, September, and November/December; Table F.2, Figure F.2). A single sample exceeded the biological trigger at RG_SLINE in September but otherwise no other replicates downstream of the AWTF discharge reached the biological trigger. These areas are located upstream of the AWTF discharge (and thus not

influenced by the AWTF), and the single sample from RG_SLINE exceeded the biological trigger by 13% (12.0 compared to 10.6 mg/kg dw). The remaining mine-exposed areas downstream of the outfall (RG_LILC3, RG_LIDSL, RG_LI8, and RG_FO23) and reference area (RG_LI24) had selenium concentrations that were below the biological trigger (Table F.2, Figure F.2).

F3.3 Westslope cutthroat trout muscle tissue selenium (WCT Se)

Westslope cutthroat trout muscle tissue selenium concentrations from the mine-exposed area RG_LIDSL were assessed against their respective biological trigger for individual replicates (collected as confirmatory sampling for the RAEMP in September, Minnow 2021b). One of the eight WCT muscle tissue samples collected at RG_LIDSL had a selenium concentration that exceeded the biological trigger by 20.8% (18.0 mg/kg dw compared to 14.9 mg/kg dw; Table F.3, Figure F.3). Tissue selenium concentration in the seven remaining collected fish from RG_LIDSL had substantially lower selenium concentrations (5.2 to 9.1 mg/kg) and were all below the biological trigger (Table F.3, Figure F.3).

F4 SUMMARY

Each of the replicates at RG_LCUT, RG_LILC3, and three of five replicates at RG_LIDSL and RG_FO23 were below the %EPT biological trigger. The %EPT results for these mine-exposed areas were consistent with results classified as 'unexpected' in the most recent RAEMP report (Minnow 2020). The biological trigger for benthic invertebrate tissue selenium concentrations was only exceeded in an individual replicate from RG_SLINE in September. The biological trigger exceedance for this replicate does not likely represent the BIT Se concentrations for these areas, as the BIT Se concentration of the remaining replicates for each area were below the threshold. It should be noted that with 20 replicates, one result would be expected to exceed the upper 95th prediction limit by chance. The WCT muscle selenium concentrations at RG_LIDSL exceeded the biological trigger in one of the eight replicates evaluated. Although the cause of the elevated muscle selenium concentrations at RG_LIDSL as these fish can be highly mobile.

The results from the biological triggers evaluation are consistent with the findings of the LCO LAEMP (main report). Current biological triggers were sufficient to identify monitoring areas where biological responses are occurring, based on the integrated assessment conducted in the LAEMP, and no additional triggers are recommended at this time. Uncertainty, however, remains around the cause of the observed %EPT response as well as the elevated WCT Se concentrations in one of the eight replicates at RG_LIDSL. In an effort to resolve uncertainty around the combined and individual effects of water quality, habitat, and other mine-related stressors on benthic invertebrate communities in lotic areas in the Elk River watershed, Minnow is developing a predictive model for benthic invertebrate community endpoints. Uncertainty around the WCT Se concentrations will be further addressed in the RAEMP and through consultation with the Elk Valley Fish and Fish Habitat Monitoring Committee and Teck's Fish Monitoring Team. Uncertainties are expected to be reduced through these efforts, and additional monitoring or potential management responses will continue to be assessed through Teck's adaptive management framework.

F5 REFERENCES

- Azimuth (Azimuth Consulting Group Inc). 2021. Development of biological triggers for the Elk Valley Adaptive Management Plan. Prepared for Teck Coal Limited. December.
- Golder (Golder Associates). 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2020a. User's Manual Aquatic Data Integration Tool (ADIT) for the Elk Valley. Prepared for Teck Coal Ltd. 15 September 2020.
- Golder. 2020b. Updates to the lotic and lentic statistical bioaccumulation models for selenium in the Elk Valley. Technical memorandum to Teck Coal Limited. 27 November 2020.
- Minnow (Minnow Environmental Inc). 2020. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Ltd. November 2020.
- Minnow. 2021a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2020. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 207202.0015.
- Minnow. 2021b. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. March. Project 207202.0006.
- Nautilus and Interior Reforestation. 2011. Evaluation of the Effects of Selenium on Early Life Stage Development of Westslope Cutthroat Trout from the Elk Valley, BC. Prepared for the Elk Valley Selenium Task Force. November 2011.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December 21, 2018.
- Teck. 2019. Elk Valley Water Quality Plan 2019 Implementation Plan Adjustment. July 2019.
- Teck. 2021a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2020 Annual Report. Prepared by Teck Coal Limited. July 31, 2021.
- Teck. 2021b. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. Prepared by Teck Coal Limited. December 15, 2021.

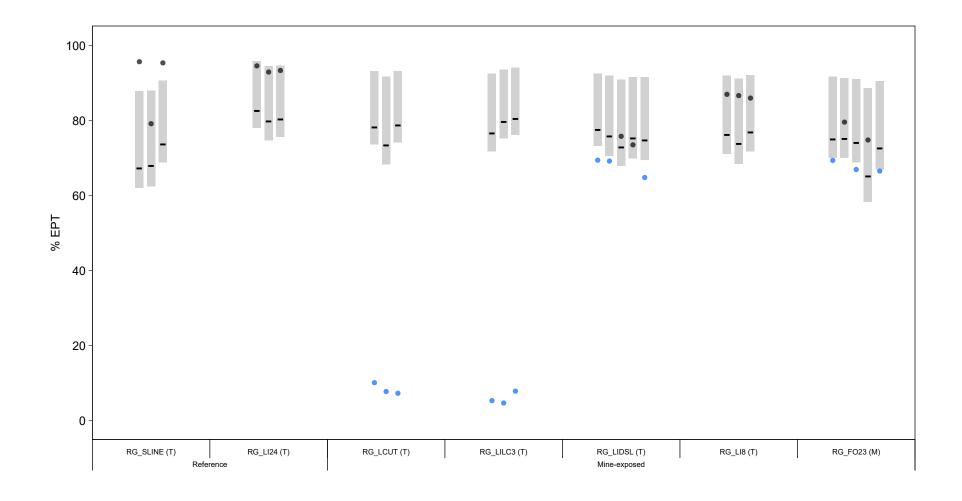


Figure F.1: Biological Trigger Analysis for % EPT Compared to Predicted Values, Line Creek LAEMP, May to December, 2022

Notes: Black bars indicate the lower limit of the predicted ADIT score for the location. Blue dots represent values exceeding the trigger (below 2.5th percentile of NR and below lower limit of predicted ADIT score). Gray shading represents the habitat-adjusted normal range for each replicate. T = Tributary, M = Mainstem.

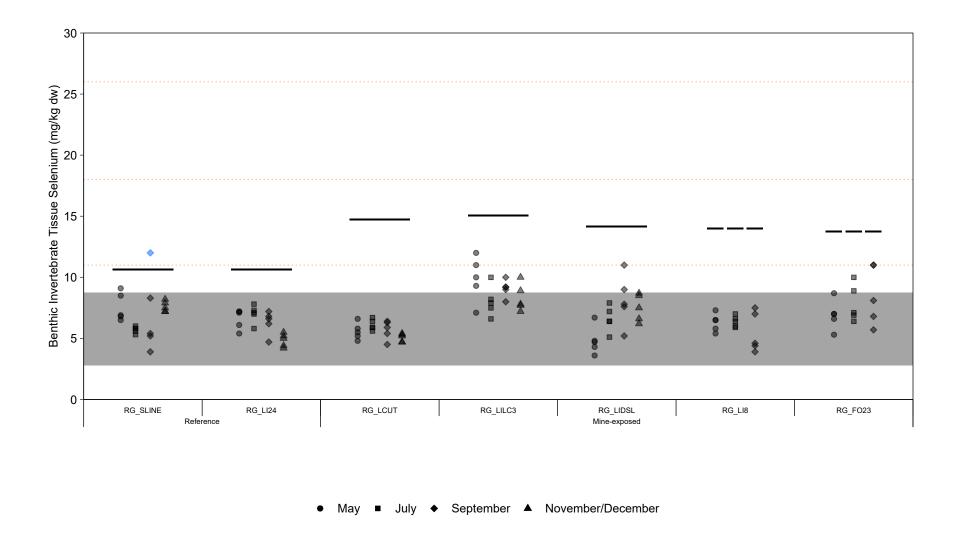


Figure F.2: Selenium Concentrations in Benthic Invertebrate Tissue Samples Compared to Predicted Values, Line Creek LAEMP, 2022

Notes: Black bars indicate the upper 95th prediction interval of the bioaccumulation model. Blue dots represent values exceeding the trigger (above the 97.5th percentile of normal range and above upper 95% prediction interval). Dotted lines indicate EVWQP benchmarks (11, 18, and 26 mg/kg respectively) for juvenile fish. Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP. T = Tributary, M = Mainstem. Benthic invertebrate tissue samples from RG_LI8 and RG_FO23 were not collected during the December sampling period due to safety concerns.

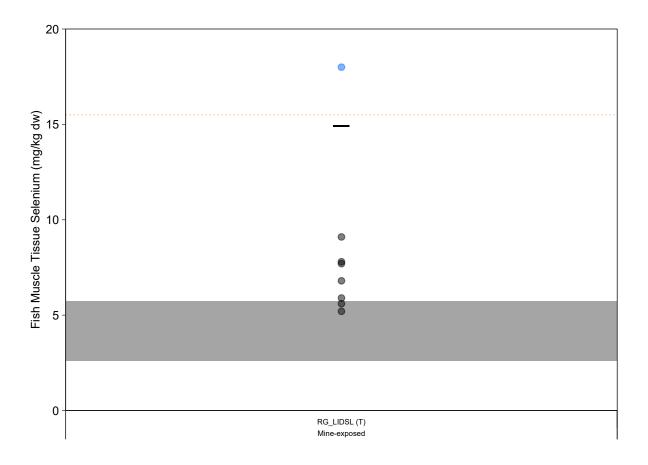


Figure F.3: Selenium Concentrations in Westslop Cutthroat Trout Samples Compared to Predicted Values, Line Creek LAEMP, September 2022

Notes: Black bars indicate the upper 95th prediction interval of the bioaccumulation model. Blue dots represent values exceeding the trigger (above the 97.5th percentile of normal range and above upper 95% prediction interval). Dotted line indicates EVWQP site-specific benchmark (15.5 mg/kg respectively) for juvenile fish. Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP.

Table F.1: Biological Trigger Analysis for %EPT in Line Creek LAEMP, September 2022

Waterbody	Exposure	Area	Stream Type	Replicate	Reported Value	ADIT Value	Lower 2.5th Percentile of the Habitat Adjusted Normal Range
			T	1	95.7	67.3	62.1
		RG_SLINE	T	2	79.2	68.0	62.6
	Reference		T	3	95.4	73.7	68.8
			Т	1	94.6	82.7	78.1
		RG_LI24	Т	2	93.0	79.8	74.8
			T	3	93.4	80.4	75.7
			T	1	10.1	78.2	73.6
		RG_LCUT	Т	2	7.76	73.5	68.4
			Т	3	7.30	78.8	74.3
Line Creek		RG_LILC3	Т	1	5.33	76.7	71.8
Lille Cleek			T	2	4.71	79.7	75.3
			Т	3	7.86	80.5	76.1
	Mine-		Т	1	69.5	77.5	73.3
	exposed		Т	2	69.2	75.8	70.6
		RG_LIDSL	Τ	3	75.8	72.9	67.9
			Τ	4	73.6	75.3	70.0
			Т	5	64.8	74.8	69.6
			Τ	1	87.0	76.2	71.2
		RG_LI8	T	2	86.7	73.8	68.5
			Т	3	86.0	76.9	71.8
			M	1	69.4	75.1	70.1
Fording	Mine-	DC 5000	М	2	79.6	75.2	70.0
River	exposed	RG_FO23	М	3	67.0	74.0	68.8
			М	4	74.8	65.1	58.3
			М	5	66.6	72.6	67.0

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. lower than both the ADIT value [as based on predicted water quality] and the lower 2.5th percentile of habitat-adjusted normal range)

Notes: M= Mainstem and T = Tributary. EPT = Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies).

Table F.2: Biological Trigger Analysis for Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples in Line Creek LAEMP, 2022

						Benthic Inv	ertebrate Sele	enium Tissue
					Predicted		Upper 97.5th	
		Stream			Selenium	Upper 95%	Percentile of	
Wate	rbody	Туре	Area	Date	Water	Prediction	Normal	Concentration
		. , , , ,			Concentration	Limit	Range	(mg/kg dw)
					(mg/L)	(mg/kg dw)	(mg/kg dw)	(mg/kg aw)
		Т	RG SLINE	03-May-22	1.1	10.6	5.3	8.5
		T	RG SLINE	03-May-22	1.1	10.6	5.3	6.9
		T	RG SLINE	03-May-22	1.1	10.6	5.3	9.1
		Т	RG SLINE	03-May-22	1.1	10.6	5.3	6.5
		Т	RG SLINE	03-May-22	1.1	10.6	5.3	6.8
		Т	RG SLINE	12-Jul-22	1.1	10.6	5.3	5.8
		Т	RG SLINE	12-Jul-22	1.1	10.6	5.3	5.6
		Т	RG SLINE	12-Jul-22	1.1	10.6	5.3	6.0
		Т	RG SLINE	12-Jul-22	1.1	10.6	5.3	5.3
		Т	RG SLINE	12-Jul-22	1.1	10.6	5.3	5.8
		Т	RG SLINE	16-Sep-22	1.1	10.6	5.3	8.3
		Т	RG SLINE	16-Sep-22	1.1	10.6	5.3	3.9
		Т	RG SLINE	16-Sep-22	1.1	10.6	5.3	5.4
		Т	RG SLINE	16-Sep-22	1.1	10.6	5.3	12.0
		Т	RG SLINE	16-Sep-22	1.1	10.6	5.3	5.2
		Т	RG SLINE	30-Nov-22	1.1	10.6	5.3	7.2
		Т	RG SLINE	30-Nov-22	1.1	10.6	5.3	7.2
		Т	RG SLINE	30-Nov-22	1.1	10.6	5.3	8.2
		Т	RG SLINE	30-Nov-22	1.1	10.6	5.3	7.9
		Т	RG SLINE	30-Nov-22	1.1	10.6	5.3	7.5
		Т	RG LI24	02-May-22	1.1	10.6	5.3	5.4
		Т	RG_LI24	02-May-22	1.1	10.6	5.3	7.2
Line	Mine-	Т	RG LI24	02-May-22	1.1	10.6	5.3	7.1
Creek	Exposed	Т	RG LI24	02-May-22	1.1	10.6	5.3	6.1
		Т	RG LI24	02-May-22	1.1	10.6	5.3	7.2
		Т	RG LI24	11-Jul-22	1.1	10.6	5.3	7.1
		Т	RG LI24	11-Jul-22	1.1	10.6	5.3	5.8
		Т	RG LI24	11-Jul-22	1.1	10.6	5.3	7.8
		Т	RG LI24	11-Jul-22	1.1	10.6	5.3	7.0
		Т	RG LI24	11-Jul-22	1.1	10.6	5.3	7.3
		Т	RG LI24	17-Sep-22	1.1	10.6	5.3	6.8
		Т	RG LI24	17-Sep-22	1.1	10.6	5.3	6.2
		Т	RG_LI24	17-Sep-22	1.1	10.6	5.3	7.2
		Т	RG_LI24	17-Sep-22	1.1	10.6	5.3	6.6
		Т	RG_LI24	17-Sep-22	1.1	10.6	5.3	4.7
		Т	RG_LI24	30-Nov-22	1.1	10.6	5.3	5.2
		Т	RG_LI24	30-Nov-22	1.1	10.6	5.3	5.0
		Т	RG_LI24	30-Nov-22	1.1	10.6	5.3	4.4
		Т	RG_LI24	30-Nov-22	1.1	10.6	5.3	5.5
		Т	RG_LI24	30-Nov-22	1.1	10.6	5.3	4.2
		Т	RG_LCUT	02-May-22	104.6	14.7	7.3	5.2
		Т	RG_LCUT	02-May-22	104.6	14.7	7.3	4.8
		Т	RG_LCUT	02-May-22	104.6	14.7	7.3	5.5
		Т	RG_LCUT	02-May-22	104.6	14.7	7.3	5.8
		Т	RG_LCUT	02-May-22	104.6	14.7	7.3	6.6

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

Notes: M= Mainstem. T = Tributary. Benthic invertebrate tissue samples from RG_LI8 and RG_FO23 were not collected during the December sampling period due to safety concerns.

Table F.2: Biological Trigger Analysis for Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples in Line Creek LAEMP, 2022

						Benthic Inv	ertebrate Sele	enium Tissue
					Predicted		Upper 97.5th	
		Stream			Selenium	Upper 95%	Percentile of	
Wate	rbody	Type	Area	Date	Water	Prediction	Normal	Concentration
		Турс			Concentration	Limit	Range	(mg/kg dw)
					(mg/L)	(mg/kg dw)	(mg/kg dw)	(mg/kg aw)
		Т	RG LCUT	12-Jul-22	104.6	14.7	7.3	5.6
		T	RG LCUT	12-Jul-22	104.6	14.7	7.3	6.4
		T	RG LCUT	12-Jul-22	104.6	14.7	7.3	5.9
		T	RG_LCUT	12-Jul-22	104.6	14.7	7.3	5.9
		T	RG_LCUT	12-Jul-22 12-Jul-22	104.6	14.7	7.3	6.7
		T	RG_LCUT				7.3	5.9
				15-Sep-22	104.6	14.7		
		T	RG_LCUT	15-Sep-22	104.6	14.7	7.3	5.4
		T	RG_LCUT	15-Sep-22	104.6	14.7	7.3	4.5
		T	RG_LCUT	15-Sep-22	104.6	14.7	7.3	6.4
		T	RG_LCUT	15-Sep-22	104.6	14.7	7.3	6.3
		T	RG_LCUT	01-Dec-22	104.6	14.7	7.3	5.2
		T	RG_LCUT	01-Dec-22	104.6	14.7	7.3	4.7
		Т	RG_LCUT	01-Dec-22	104.6	14.7	7.3	5.4
		Т	RG_LCUT	01-Dec-22	104.6	14.7	7.3	5.3
		T	RG_LCUT	01-Dec-22	104.6	14.7	7.3	4.7
		Т	RG_LILC3	02-May-22	142.2	15.1	7.5	7.1
		Т	RG_LILC3	02-May-22	142.2	15.1	7.5	11.0
		Т	RG_LILC3	02-May-22	142.2	15.1	7.5	9.3
		Т	RG_LILC3	02-May-22	142.2	15.1	7.5	12.0
		Т	RG_LILC3	02-May-22	142.2	15.1	7.5	10.0
		Т	RG_LILC3	12-Jul-22	142.2	15.1	7.5	10.0
Line	Mine-	Т	RG_LILC3	12-Jul-22	142.2	15.1	7.5	8.2
		Т	RG_LILC3	12-Jul-22	142.2	15.1	7.5	6.6
Creek	Exposed	Т	RG_LILC3	12-Jul-22	142.2	15.1	7.5	7.9
		Т	RG LILC3	12-Jul-22	142.2	15.1	7.5	7.5
		Т	RG LILC3	08-Sep-22	142.2	15.1	7.5	9.2
		Т	RG LILC3	08-Sep-22	142.2	15.1	7.5	8.0
		Т	RG LILC3	08-Sep-22	142.2	15.1	7.5	10.0
		Т	RG LILC3	08-Sep-22	142.2	15.1	7.5	9.0
		Т	RG_LILC3	08-Sep-22	142.2	15.1	7.5	9.2
		T	RG LILC3	01-Dec-22	142.2	15.1	7.5	8.9
		Ť	RG LILC3	01-Dec-22	142.2	15.1	7.5	7.8
		T	RG LILC3	01-Dec-22	142.2	15.1	7.5	7.7
		T	RG_LILC3	01-Dec-22	142.2	15.1	7.5	7.2
		T	RG LILC3	01-Dec-22	142.2	15.1	7.5	10.0
		T	RG LIDSL		60.4	14.2	7.0	4.3
		T	RG_LIDSL	•	60.4	14.2	7.0	4.7
		T	RG LIDSL	04-May-22	60.4	14.2	7.0	4.7
		T	RG_LIDSL	04-May-22	60.4	14.2	7.0	3.6
		T	RG_LIDSL	04-May-22	60.4	14.2		6.7
			_	11-Jul-22			7.0	
		T	RG_LIDSL		60.4	14.2	7.0	6.4
		T	RG_LIDSL	11-Jul-22	60.4	14.2	7.0	5.1
		T	RG_LIDSL	11-Jul-22	60.4	14.2	7.0	7.2
		T	RG_LIDSL	11-Jul-22	60.4	14.2	7.0	6.4
		Т	RG_LIDSL	11-Jul-22	60.4	14.2	7.0	7.9

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

Notes: M= Mainstem. T = Tributary. Benthic invertebrate tissue samples from RG_LI8 and RG_FO23 were not collected during the December sampling period due to safety concerns.

Table F.2: Biological Trigger Analysis for Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples in Line Creek LAEMP, 2022

					Predicted	Benthic Inv	ertebrate Sele	enium Tissue
					Selenium	Upper 95%	Upper 97.5th	
\\/oto	erbody	Stream	Area	Date	Water	Prediction	Percentile of	Reported
vvale	bouy	Type	Alea	Date	Concentration		Normal	Concentration
							Range	(mg/kg dw)
					(mg/L)	(mg/kg dw)	(mg/kg dw)	, , ,
		T	RG_LIDSL	13-Sep-22	60.4	14.2	7.0	11.0
		Т	RG_LIDSL	13-Sep-22	60.4	14.2	7.0	9.0
		Т	RG_LIDSL	13-Sep-22	60.4	14.2	7.0	5.2
		Т	RG_LIDSL	14-Sep-22	60.4	14.2	7.0	7.6
		Т	RG_LIDSL	14-Sep-22	60.4	14.2	7.0	7.8
		Т	RG_LIDSL	29-Nov-22	60.4	14.2	7.0	8.5
		Т	RG_LIDSL	29-Nov-22	60.4	14.2	7.0	7.5
		Т	RG_LIDSL	29-Nov-22	60.4	14.2	7.0	6.2
		Т	RG_LIDSL	29-Nov-22	60.4	14.2	7.0	8.7
		Т	RG_LIDSL	29-Nov-22	60.4	14.2	7.0	6.6
		Т	RG_LI8	04-May-22	52.0	14.0	6.9	6.5
Lina	Mine-	Т	RG_LI8	04-May-22	52.0	14.0	6.9	5.4
Line		Т	RG_LI8	04-May-22	52.0	14.0	6.9	6.5
Creek	Exposed	Т	RG LI8	04-May-22	52.0	14.0	6.9	5.8
		Т	RG LI8	04-May-22	52.0	14.0	6.9	7.3
		Т	RG LI8	14-Jul-22	52.0	14.0	6.9	6.0
		Т	RG LI8	14-Jul-22	52.0	14.0	6.9	7.0
		Т	RG LI8	14-Jul-22	52.0	14.0	6.9	6.4
		Т	RG LI8	14-Jul-22	52.0	14.0	6.9	5.9
		Т	RG LI8	14-Jul-22	52.0	14.0	6.9	6.6
		Т	RG LI8	17-Sep-22	52.0	14.0	6.9	3.9
		Т	RG LI8	17-Sep-22	52.0	14.0	6.9	4.4
		Т	RG LI8	17-Sep-22	52.0	14.0	6.9	7.5
		Т	RG LI8	17-Sep-22	52.0	14.0	6.9	7.0
		Т	RG LI8	17-Sep-22	52.0	14.0	6.9	4.6
		М	RG FO23	04-May-22	39.6	13.7	6.8	7.0
		М	RG FO23	04-May-22	39.6	13.7	6.8	5.3
		М	RG FO23	04-May-22	39.6	13.7	6.8	6.6
		М	RG FO23	04-May-22	39.6	13.7	6.8	7.0
		М	RG FO23	04-May-22	39.6	13.7	6.8	8.7
		М	RG FO23	11-Jul-22	39.6	13.7	6.8	7.1
		М	RG FO23	11-Jul-22	39.6	13.7	6.8	10.0
Fording		М	RG FO23	11-Jul-22	39.6	13.7	6.8	8.9
River		М	RG_F023	11-Jul-22	39.6	13.7	6.8	6.9
		М	RG FO23	11-Jul-22	39.6	13.7	6.8	6.4
		М	RG F023	09-Sep-22	39.6	13.7	6.8	8.1
		М	RG_F023	09-Sep-22	39.6	13.7	6.8	5.7
		M	RG_F023	09-Sep-22	39.6	13.7	6.8	6.8
		M	RG F023	09-Sep-22	39.6	13.7	6.8	11.0
		M	RG F023	10-Sep-22	39.6	13.7	6.8	11.0

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

Notes: M= Mainstem. T = Tributary. Benthic invertebrate tissue samples from RG_LI8 and RG_FO23 were not collected during the December sampling period due to safety concerns.

Table F.3: Biological Trigger Analysis for Westslope Cutthroat Trout Muscle Selenium Concentrations, Line Creek LAEMP, 2022

Wate	Waterbody		Date	Upper 95% Prediction	Westslope Cutthroat Trout Muscle Tissue			
vvaic	ibody	Area	Date	Limit (mg/kg dw)	Upper 95% Prediction Limit (mg/kg dw)	Upper 97.5th Percentile of Normal Range (mg/kg dw)	Reported Concentration (mg/kg dw)	
			6-Sep-22	60.4	14.9	11.4	5.6	
			6-Sep-22	60.4	14.9	11.4	7.7	
			6-Sep-22	60.4	14.9	11.4	5.2	
Line	Mine-	RG_LIDSL	6-Sep-22	60.4	14.9	11.4	7.8	
Creek		KG_LIDSL	19-Sep-22	60.4	14.9	11.4	18	
			20-Sep-22	60.4	14.9	11.4	9.1	
			20-Sep-22	60.4	14.9	11.4	5.9	
			20-Sep-22	60.4	14.9	11.4	6.8	

Shaded cells signify those individual replicates that were associated with biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

APPENDIX G SUPPORTING INFORMATION

Table G.1: In Situ Water Quality Taken at LCO LAEMP Biological Monitoring Areas, September 2022

	F: 11B	Refe	rence				Mine-E	Exposed			
	Field Parameters	RG SLINE	RG LI24	RG LCUT	RG LILC3	RG LISP24	RG LIDSL	RG LIDCOM	RG LI8	RG FRUL	RG FO23
	Date	16-Sep-22	17-Sep-22	15-Sep-22	8-Sep-22	14-Sep-22	13-Sep-22	12-Sep-22	17-Sep-22	10-Sep-22	9-Sep-22
	Temperature (°C)	4.5	4.2	6.3	7.2	7.7	7.2	7.9	8	6.6	8.4
7	Dissolved Oxygen (mg/L)	11.00	10.91	10.7	92.4	10.44	10.44	10.48	10.51	10.66	10.33
Ęį	Dissolved Oxygen (%)	85.1	83.7	87	11.11	87.6	86.7	88.4	89	87.2	88.2
Sta	Conductivity (µS/cm)	209.6	199.4	676	690	595	553	528	506	506	520
•	Specific Conductivity (µS/cm)	344.3	330.9	1050	1045	888	837	785	749	784	762
	pH	7.79	7.92	7.64	7.98	8.31	7.91	8.35	8.44	8.50	8.29
	Date	16-Sep-22	17-Sep-22	15-Sep-22	8-Sep-22	-	13-Sep-22	-	17-Sep-22	10-Sep-22	9-Sep-22
	Temperature (°C)	5.2	4.4	6.8	7.7	-	8.7	-	8	6.7	8.8
n 2	Dissolved Oxygen (mg/L)	10.89	11.08	10.73	10.87	-	10.23	-	10.14	10.75	10.39
Ę	Dissolved Oxygen (%)	85.7	85.5	88.3	91.3	-	88	-	85.4	88.1	89.8
Sta	Conductivity (µS/cm)	212.8	200	650	700	-	578	-	506	510	525
•,	Specific Conductivity (µS/cm)	342.2	329.9	996	1046	-	839	-	749	784	759
	pH	7.27	7.74	7.83	7.96	-	7.94	-	8.45	8.53	8.35
	Date	16-Sep-22	17-Sep-22	15-Sep-22	8-Sep-22	-	13-Sep-22	-	17-Sep-22	10-Sep-22	9-Sep-22
	Temperature (°C)	5.5	4.6	6.8	7.9	-	8.7	-	8.4	7.6	10
3	Dissolved Oxygen (mg/L)	10.72	10.97	10.62	92.9	-	10.14	-	10.21	10.61	10.13
Station	Dissolved Oxygen (%)	85	85.1	87.3	10.99	-	87.3	-	86.8	89	89.9
Sta	Conductivity (µS/cm)	214.2	200.8	627	708	-	585	-	510	523	542
0,	Specific Conductivity (µS/cm)	341.7	328.7	962	1051	-	850	-	748	783	760
	pH	7.52	8.40	7.82	7.94	-	8.31	-	8.26	8.56	8.40
	Date	-	-	-	-	-	14-Sep-22	-	-	-	9-Sep-22
	Temperature (°C)	-	-	-	-	-	6.9	-	-	-	11.1
л 4	Dissolved Oxygen (mg/L)	-	-	-	-	-	10.36	-	-	-	9.82
ţ	Dissolved Oxygen (%)	-	-	-	-	-	85.3	-	-	-	89.4
Sta	Conductivity (µS/cm)	-	-	-	-	-	583	-	-	-	557
•	Specific Conductivity (µS/cm)	-	-	-	-	-	892	-	-	-	760
	pH	-	-	-	-	-	7.70	-	-	-	8.62
•	Date	-	-	-	-	-	14-Sep-22	-	-	-	9-Sep-22
	Temperature (°C)	-	-	-	-	-	7.5	-	-	-	10.6
n 5	Dissolved Oxygen (mg/L)	-	-	-	-	-	10.33	-	-	-	10.06
ţį	Dissolved Oxygen (%)	-	-	-	-	-	86.5	-	-	-	90.6
Sta	Conductivity (µS/cm)	-	-	-	-	-	604	-	-	-	558
	Specific Conductivity (µS/cm)	-	-	-	-	-	907	-	-	-	770
	рН	-	-	-	-	-	7.80	-	-	-	8.78

Notes: "-" = Not sampled.

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_SL 9/16/2			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0	0	2.8 2.9	-
3 4	0	0	0	18 96	-
5	0	0	0	18	<u> </u>
6 7	0	0	0	17.2 3.5	-
8	0	0	0	2.4	-
9 10	0	0	0	13 12.2	0.25
11	0	0	0	36	-
12 13	0	0	0	2.8 5.2	-
14	0	0	0	11.5	-
15 16	0	0	0	25.5 0.2	-
17	0	0	0	1.5	-
18 19	0	0	0	17.5 3.2	<u>-</u>
20	0	0	0	10.5	0.25
21 22	0	0	0	2.7 22	<u>-</u>
23	0	0	0	0.7	-
24 25	0	0	0	15.5 28	<u>-</u>
26	0	0	0	52	-
27 28	0	0	0	8.4 17	-
29	0	0	0	10	-
30 31	0	0	0	9 10.5	0.75
32	0	0	0	18.5	- -
33 34	0	0	0	51 18.5	-
35	0	0	0	7.5	
36 37	0	0	0	38 18.8	-
38	0	0	0	1.1	<u> </u>
39 40	0	0	0	12.5 11.5	- 0.75
41	0	0	0	14.7	-
42 43	0	0	0	9.2	-
44	0	0	0	1.3 12.6	-
45	0	0	0	7.2	-
46 47	0	0	0	28.5 7.1	<u>-</u>
48	0	0	0	11.2	-
49 50	0	0	0	10.1 22.5	0.5
51	0	0	0	11.5	-
52 53	0	0	0	5.5 34.5	<u>-</u>
54	0	0	0	26.5	-
55 56	0	0	0	8.6 6.5	-
57	0	0	0	4.1	
58 59	0	0	0	4.1 15.8	-
60	0	0	0	1.4	0
61 62	0	0	0	15 17	-
63	0	0	0	15.2	-
64 65	0	0	0	0.4 17.2	-
66	0	0	0	26	-
67 68	0	0	0	9.7 17.5	-
69	0	0	0	12.5	<u>-</u>
70 71	0	0	0	4.6 7.7	0.25
72	0	0	0	18	-
73 74	0	0	0	7.6 7.9	<u>-</u>
75	0	0	0	16.3	<u>-</u> _
76 77	0	0	0	30 10	-
78	0	0	0	8.7	<u> </u>
79 80	0	0	0	11 3.5	- 0
81	0	0	0	10.2	-
82 83	0	0	0	11.5 31	-
84	0	0	0	11.6	-
85 86	0	0	0	23.2 7.8	-
87	0	0	0	1.9	<u>-</u>
88 89	0	0	0	11.4 2.9	-
90	0	0	0	13.8	0.5
91 92	0	0	0	6.1 23.2	-
93	0	0	0	24.5	
94	0	0	0	2.4 10.5	-
05	0	0	0	2.3	-
95 96			0	10	-
96 97	0	0		0 5	
96 97 98 99	0 0 0	0	0	8.5 16.5	-
96 97 98 99 100	0	0	0		
96 97 98 99	0	0	0	16.5	-

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_SL 9/16/2			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0	0	0	16.2 11.3	-
3 4	0	0	0	9.5 5.4	-
5	0	0	0	8.4	<u> </u>
6 7	0	0	0	7.3 3.4	-
8	0	0	0	4.1	
9 10	0	0 0.3	0	4 11.7	- 0.25
11	0	0.3	1	23.5	-
12 13	0	0.2 0	1 0	23 7.6	-
14	0	0	0	4.9	-
15 16	0	0	0	12.9 2.7	-
17	0	0.3	1	23.2	-
18 19	0	0	0	18.5 12.5	-
20	0	0.2	1	23.5	0.25
21 22	0	0 0.2	0	2.3 26	-
23	0	0.2	0	5.9	
24 25	0	0	0	34 1.9	-
26	0	0.2	1	15.4	<u> </u>
27	0	0	0	12.2	-
28 29	0	0	0	7.2 8.1	-
30	0	0	0	2.5	0.75
31 32	0	0	0	6.5 8.6	<u>-</u>
33	0	0	0	5.5	-
34 35	0	0	0	19.5 5.2	
36	0	0	0	14	-
37 38	0	0.1 0	1 0	10.5 34	-
39	0	0	0	7.5	-
40 41	0	0 0.1	0	14.9 18.1	0.25
42	0	0	0	12.2	<u>-</u>
43 44	0	0	0	4.6 20.9	-
45	0	0	0	12.5	-
46	0	0	0	3.6	-
47 48	0	0	0	7.6 8.2	-
49	0	0	0	16.5	-
50 51	0	0	0	7.1 12.9	0.5 -
52	0	0	0	8.2	-
53 54	0	0	0	12.1 7.8	<u>-</u>
55	0	0	0	20.5	-
56 57	0	0	0	10.1 25.5	-
58	0	0	0	24.5	-
59 60	0	0	0	15.5 19	- 0
61	0	0	0	9.6	-
62 63	0	0	0	2.9 10	-
64	0	0	0	12.1	-
65	0	0	0	8.6	-
66 67	0	0	0	22.5 15.6	<u>-</u>
68	0	0	0	7.6	-
69 70	0	0	0	4.1 8.2	0.25
71	0	0	0	1	-
72 73	0	0	0	34.5 10.6	<u>-</u>
74	0	0	0	11.5	-
75 76	0	0	0	8.2 6	<u>-</u>
77	0	0	0	21	-
78 79	0	0.2 0	0	6.1 9.7	-
80	0	0.1	1	28	0.75
81 82	0	0.1	1 0	10.1 7	<u>-</u>
83	0	0.1	1	13.9	-
84 85	0	0 0.3	0	5 32	<u>-</u>
86	0	0	0	6	-
87 88	0	0	0	5.7 5.2	-
89	0	0	0	7.2	-
90 91	0	0	0	18.5 7.1	0
92	0	0.3	1	28.5	- -
93	0	0.2	1	11.4	-
94 95	0	0.1	0	18.7 4.2	-
96	0	0.3	1	46	-
97 98	0	0	0	22.5 12.6	-
	0	0	0	9.6	-
99					^
99 100	0	0.3	1	20	0.75
99	0				0.75 0.38

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

RG_SLINE-3 9/16/2022						
Pebble 1	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm) 7.3	Embeddedness (%)	
2 3	0	0	0	8 5.6	- - -	
4	0	0	0	7.5	-	
5 6	0	0	0	7.9 7.4	-	
7	0	0	0	9.8	-	
8 9	0	0	0	6.1 7.6	-	
10 11	0	0	0	17.8 6.7	0	
12	0	0	0	17.1	-	
13 14	0	0	0	4.4 7.4	- -	
15 16	0	0	0	1.4 7.3	-	
17	0	0	0	16.8	-	
18 19	0	0	0	1.3 2.4	-	
20 21	0	0	0	7.1 4.5	0.5	
21	0	0	0	0.9	<u>-</u> -	
23 24	0	0	0	7.6 14.1	-	
25	0	0	0	0.9	-	
26 27	0	0	0	14.4 9.8	-	
28 29	0	0	0	7.2 15.2	-	
30	0	0	0	7.7	- 0.25	
31 32	0	0	0	5.4 4.8	-	
33	0	0	0	16.2	-	
34 35	0	0	0	11.6 8.2	-	
36 37	0	0	0	3.8 11.2	- -	
38	0	0	0	12.9	-	
39 40	0	0	0	7.4 13.7	- 0.75	
41 42	0	0	0	0.9	-	
43	0	0	0	4.9 13.4	-	
44 45	0	0	0	17.8 22.4	-	
46	0	0	0	3.4	-	
47 48	0	0	0	8.6 1.8	-	
49 50	0	0	0	8 9.4	- 0.25	
51	0	0	0	5.7	-	
52 53	0	0	0	7 13.6	-	
54 55	0	0	0	13.1 8.1	-	
56	0	0	0	12.5	-	
57 58	0	0	0	7.8 12.7	-	
59 60	0	0	0	6.9	- 0.5	
61	0	0	0	14.4 7.9	-	
62 63	0	0	0	10 4.3	-	
64	0	0	0	12.3	-	
65 66	0	0	0	3.4 7.6	-	
67 68	0	0	0	5.3 8.2	-	
69	0	0	0	7.7	- -	
70 71	0	0	0	6.8 2.5	0.25 -	
72	0	0	0	5.5 4.6	-	
73 74	0	0	0	29.5	<u>-</u>	
75 76	0	0	0	9.8 0.7	- -	
77	0	0	0	6.7	-	
78 79	0	0	0	48 7.8	-	
80 81	0	0	0	6.9 6.7	0.25 -	
82	0	0	0	6.6	-	
83 84	0	0	0	5.1 4.6	- -	
85 86	0	0	0	6 8.1	-	
87	0	0	0	3.7	-	
88 89	0	0	0	11.4 6.2	- -	
90 91	0	0	0	8.3 4.6	0	
92	0	0	0	6.7	-	
93 94	0	0.2 0	0	8.1 7.5	-	
95	0	0	0	5.8	-	
96 97	0	0	0	14.8 6.3	-	
98 99	0	0	0	4.9 15.8	-	
100	0	0	0	5.4	0	
Average Cic, Cip and Embed. =	0.00	0.00	0.01	8.689	0.28	
	cite Index (CI) =		<u> </u>	0.01		
New Cal	cite Index (CI) =			0.00		

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

RG_LI24-1 9/17/2022						
Pebble 1	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm) 4.9	Embeddedness (%)	
2 3	0 0	0	0	5.5 8.4	- - -	
4	0	0	0	7	-	
5 6	0	0	0	7.7 27.5	-	
7	0	0	0	9	-	
8	0	0	0	7.4 28	<u>-</u>	
10 11	0	0	0	8.3 5.5	0.25	
12	0	0	0	16.7	-	
13 14	0	0	0	9 9.3	-	
15	0	0	0	1.5	-	
16 17	0	0	0	8 1.5	-	
18 19	0	0	0	7.3 10.4	-	
20	0	0	0	6.5	0.25	
21 22	0	0	0	38.5 10.5	-	
23 24	0	0	0	6.3 5.9	-	
25	0	0	0	3.8	-	
26 27	0	0	0	8.5 22	-	
28	0	0	0	7.4	<u> </u>	
29 30	0	0	0	6 8.2	0.75	
31 32	0	0	0	14.5 5.5	<u>-</u>	
33	0	0	0	19.7	-	
34 35	0	0	0	7.9 5.8	-	
36	0	0	0	11.5	-	
37 38	0	0	0	22 6.5	-	
39 40	0	0	0	9.4 7.4	- 0.5	
41	0	0	0	7.8	-	
42 43	0	0	0	13.7 3	-	
44 45	0	0	0	12.2 2.5	-	
46	0	0	0	3.5	-	
47 48	0	0	0	12.7 8.5	-	
49 50	0	0	0	4.8	- 0.5	
51	0	0	0	5.5	-	
52 53	0	0	0	16.2 9.3	<u>-</u>	
54 55	0	0	0	8.4	-	
56	0	0	0	4.2	-	
57 58	0	0	0	3.3 5.4	-	
59 60	0	0	0	14.5 7.4	- 0.25	
61	0	0	0	6.4	-	
62 63	0	0	0	6.2 7.5	-	
64 65	0	0	0	4.4 5.1	-	
66	0	0	0	9	<u>-</u>	
67 68	0	0	0	13 12.1	<u>-</u>	
69 70	0	0	0	5.9	- 0	
71	0	0	0	12.5	-	
72 73	0	0	0	6 6.3		
74 75	0	0	0	9 3.2	-	
76	0	0	0	5	-	
77 78	0	0	0	17 16.5	-	
79 80	0	0	0	7.4 6.8	- 0.75	
81	0	0	0	9.1	0.75 -	
82 83	0	0	0	7.4 9.4	<u>-</u>	
84 85	0	0	0	4.4	-	
86	0	0	0	13	<u>-</u>	
87 88	0	0	0	5.1 7.2	- -	
89	0	0	0	2.5	-	
90 91	0	0	0	5.5 6.5	0 -	
92 93	0	0	0	4.4 4.4	-	
94	0	0	0	7.2	-	
95 96	0	0	0	4.6 10	-	
97 98	0	0	0	10.7 15	-	
99	0	0	0	7.4	-	
100 Average	0	0	0	6.5	0.25	
Cic, Cip and Embed. =	0.00	0.00	0.00	8.854	0.35	
	cite Index (CI) =			0.00		
New Cal	cite Index (CI) =			0.00		

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

RG_LI24-2 9/17/2022						
Pebble 1	Concreted Status	9/17/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm) 0.2	Embeddedness (%)	
2 3	0	0	0	4.7 1.5	- - -	
4	0	0	0	4.8	-	
5 6	0	0	0	7.4 4.2	-	
7	0	0	0	3.5	-	
8 9	0	0	0	10.4 6.4	-	
10 11	0	0	0	10.9 5.9	0.25	
12	0	0	0	5.1	-	
13 14	0	0	0	14.7 12.6	-	
15	0	0	0	2.5	-	
16 17	0	0	0	3.6 14.5	- -	
18 19	0	0	0	7.9 6.2	-	
20	0	0	0	19.5	0.25	
21 22	0	0	0	8 4.6	-	
23 24	0	0	0	12.5 18.7	-	
25	0	0	0	6.4	-	
26 27	0	0	0	2.6 3.5	-	
28	0	0	0	9.1	-	
29 30	0	0	0	4.4 5.7	- 0	
31 32	0	0	0	5 17	- -	
33	0	0	0	7.3	<u>-</u>	
34 35	0	0	0	21.9 3.1	-	
36	0	0	0	6.7	-	
37 38	0	0	0	20 15.6	-	
39 40	0	0	0	4.1 28.2	- 0.25	
41	0	0	0	3.6	-	
42 43	0	0	0	7.5 9.6	-	
44 45	0	0	0	24.5 10.3	-	
46	0	0	0	4.9	-	
47 48	0	0	0	9.4 5.1	-	
49 50	0	0	0	8.5	-	
51	0	0	0	6.3 0.4	0 -	
52 53	0	0	0	10.4 5.7	-	
54 55	0	0	0	14.4 1.6	-	
56	0	0	0	10.9	-	
57 58	0	0	0	3.6 5.7	-	
59 60	0	0	0	6.5 5.4	- 0	
61	0	0	0	3.1	-	
62 63	0	0	0	4.5 7.3	-	
64 65	0	0	0	5.8 2.6	-	
66	0	0	0	6.3	-	
67 68	0	0	0	11.6 5.6	-	
69	0	0	0	20.7	-	
70 71	0	0	0	6.4 17	0 -	
72 73	0	0	0	15.3 3.5	-	
74	0	0	0	14.3	-	
75 76	0	0	0	20.2 13.9	-	
77 78	0	0	0	6.9	-	
79	0	0	0	2.9	-	
80 81	0	0	0	1.4 4.1	0.25	
82 83	0	0	0	1.1 4.5	-	
84	0	0	0	5.3	-	
85 86	0	0	0	6 8	<u>-</u> -	
87 88	0	0	0	7.1 4.9	-	
89	0	0	0	8.1	- -	
90 91	0	0	0	3.5 5.3	0.5 -	
92 93	0	0	0	8.6	-	
94	0	0	0	4.3 3.3	<u>-</u>	
95 96	0	0	0	9.6 1.9	-	
97	0	0	0	18.5	-	
98 99	0	0	0	7.9 7.4	-	
100	0	0	0	9.3	0	
Average Cic, Cip and Embed. =	0.00	0.00	0.00	8.102	0.15	
	cite Index (CI) =			0.00		
New Cal	cite Index (CI) =			0.00		

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

RG_LI24-3 9/17/2022						
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	
1 2	0	0	0	9.4	-	
3 4	0	0	0	13.5 7.4	-	
5 6	0	0	0	19.8 6.6	-	
7	0	0	0	5.3	-	
8 9	0	0	0	8.7 3.2	-	
10	0	0	0	18.6	0.25	
11 12	0	0	0	6.3 7.9	-	
13 14	0	0	0	59.5 2.9	-	
15	0	0	0	4.4	-	
16 17	0	0	0	16.1 4.2	1	
18	0	0	0	12.9	-	
19 20	0	0	0	5.4 3.4	<u>-</u> 0	
21	0	0	0	5.1	-	
22 23	0	0	0	25 7.4	-	
24 25	0	0	0	3.2 1.7	-	
26	0	0	0	10.3	-	
27 28	0	0	0	7.7 22.2		
29	0	0	0	7.3	-	
30 31	0	0	0	18.1 2.4	0.25	
32	0	0	0	9.1	-	
33 34	0	0	0	2.3 1.1	-	
35	0	0	0	18	-	
36 37	0	0	0	40.5 13.1	-	
38 39	0	0	0	2.7	-	
40	0	0	0	29	0.75	
41 42	0	0	0	6.7 14.6	-	
43	0	0	0	21.2	-	
44 45	0	0	0	9.8 7.1	-	
46	0	0	0	4.3	-	
47 48	0	0	0	4.6 1.7	-	
49	0	0	0	2.6	-	
50 51	0	0	0	3.1 42.4	0.25	
52 53	0	0	0	1.7 4.3	-	
54	0	0	0	4.7	-	
55 56	0	0	0	8.5 7.8	-	
57	0	0	0	16.1	-	
58 59	0	0	0	3.4 15.1	-	
60	0	0	0	3.8	0	
61 62	0	0	0	5.3 4.4	-	
63 64	0	0	0	2.9 3.1	-	
65	0	0	0	6.7	-	
66 67	0	0	0	7.7 4.4	-	
68	0	0	0	2.6	-	
69 70	0	0	0	9.2 4.5	- 0	
71 72	0	0	0	6.1	-	
73	0	0	0	10.2	-	
74 75	0	0	0	7.4 5.4	-	
76	0	0	0	4.6	-	
77 78	0	0	0	11.4 3.9	-	
79	0	0	0	11.2	-	
80 81	0	0	0	9.7 11.1	0 -	
82 83	0	0	0	3.4 5.5	-	
84	0	0	0	8.9	- -	
85 86	0	0	0	5.3 12.2	-	
87	0	0	0	6.7	-	
88 89	0	0	0	9 8.7	-	
90	0	0	0	21.1	0	
91 92	0	0	0	1.6 2.1	<u>-</u> -	
93 94	0	0	0	6.7 2.3	-	
95	0	0	0	3.5	- -	
96 97	0	0	0	19.5 25.5	-	
98	0	0	0	4.4	-	
99 100	0	0	0	4.6 9.1	- 0	
Average	0.00	0.00	0.00	9.355	0.15	
Cic, Cip and Embed. =		3.00	0.00		V. 10	
	cite Index (CI) =			0.00		
I TOW Oal	(01) -	l .				

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

pterriber 2022		RG_LC			
Pebble 1	Concreted Status	9/15/2 Calcite Proportion 0.3	Calcite Presence	Intermediate Axis (cm) 7.8	Embeddedness (%)
2 3	0	0.8	1 0	8.7 6.2	
4	0	0	0	4.3	-
5 6	0	0 0.3	0 1	8.4 9	-
7 8	0	0.5 0.5	1	4.9 9.8	-
9	0	0.6	1	6.7	-
10 11	0	0.6 0.6	1	17.8 12.6	0.75 -
12 13	0	0 0.4	0	6.9 11.4	-
14	0	0.5	1	22.3	-
15 16	0	0.5 0	0	4.3 5.9	-
17 18	0	0.2 0.4	1 1	3.6 18.7	-
19	0	0.5	1	13.1	-
20 21	0	0.4	0	8.9 3.4	0.5 -
22 23	0	0.5 0.5	1	10.2 9.8	-
24	0	0.6	1	8.2	-
25 26	0	0	0 1	5.6 9.5	-
27 28	0	0.6 0.5	1	10.5 29.5	- -
29	0	0.6	1	8.9	-
30 31	0	0.6 0.7	1	12 8.6	0.5 -
32 33	0	0	0	6.8 11.2	-
34	0	0.6	1	10.6	
35 36	0	0.5 0.8	1	8.7 13.7	-
37 38	0	0	0	4.2	-
39	0	0.5	1	1.8	-
40 41	0	0.5 0.7	1	15.7 11.1	0.5 -
42	0	0.8	1	20.4	-
43 44	0	0	0	1.6 1.3	-
45 46	0	0.3 0	1 0	4.4 1.9	-
47	0	0.6	1	5.7	-
48 49	0	0.6 0.8	1	9.9 7.3	-
50 51	0	0.7 0.5	1	9.8 14.3	0.75
52	0	0	0	0.9	-
53 54	0	0.4 0.3	1	40 6	-
55 56	0	0.5 0	1 0	8.5 3.5	-
57	0	0.7	1	15.5	-
58 59	0	0.8 0.5	1	12.2 22.5	<u>-</u>
60 61	0	0.5 0.4	1	13.6 3.8	0.25 -
62	0	0.4	1	26.5	-
63 64	0	0 0.6	0	1.6 10.5	-
65 66	0	0.3	1 0	22.5 3.9	-
67	0	0	0	22	-
68 69	0	0.4	1 0	18.3 2.5	-
70 71	0	0.3	1 0	7 1.3	0.25
72	0	0.2	1	8.5	-
73 74	0	0.1 0.3	1 1	4.6 19	<u>-</u> -
75 76	0	0.1 0.2	1	4.7 4.6	-
77	0	0.7	1	5.4	-
78 79	0	0 0.2	0	7.2 10.6	-
80 81	0	0.3 0.5	1	5.4 0.3	0
82	0	0.7	1	9.1	-
83 84	0	0.3 0.1	1	2.6 3.7	-
85 86	0	0.5 0.2	1	4.2 6.2	-
87	0	0.6	1	17.9	-
88 89	0	0.3 0	1 0	7.4 4.8	<u>-</u> -
90 91	0	0.4 0.8	1	4.4 18.3	0 -
92	0	0.9	1	16.4	-
93 94	0	0 0.6	0 1	1.3 15.3	-
95 96	0	0 0.6	0	3.7 7.9	-
97	0	0.1	1	3.6	-
98 99	0	0	0	12.7 2.3	1
100	0	0.5	1	4.9	0.25
Average Cic, Cip and Embed. =	0.00	0.36	0.75	9.428	0.38
Old Cal	cite Index (CI) =			0.75	
New Cal	cite Index (CI) =			0.36	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

Sterriber 2022		RG_LC			
Pebble 1	Concreted Status	9/15/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0	0	0	0.2	- -
3 4	0	0.3	0 1	3.9 20	-
5	0	0	0	3.6	-
6 7	0	0 0.4	0 1	1.7 6.6	-
8 9	0	0	0	4.7 1.6	-
10	0	0.6	1	5.9	0
11 12	0	0.5 0.4	1	17.5 5.7	-
13	0	0.4	1	26	<u>-</u>
14 15	0	0 0.7	0	7.2 28	-
16	0	0.5	1	22	-
17 18	0	0.4 0.4	1	23 20	-
19	0	0.5	1	16.5	-
20 21	0	0.5 0.5	1	20.5 18.5	0.5 -
22	0	0.5	1	24	-
23 24	0	0.3 0.5	1	24 30	-
25	0	0.4	1	15.8	-
26 27	0	0.6	0	64 1.9	-
28	0	0.4	1	54	-
29 30	0	0.7 0	1 0	49 2.2	- 0.75
31	0	0.4	1	26	0.75
32 33	0	0.7 0	1 0	35 4.7	-
34	0	0	0	0.4	-
35 36	0	0.6 0.2	1	10.2 6.3	-
37	0	0.1	1	5.9	-
38 39	0	0.3 0	1 0	8.6 5.2	-
40	0	0	0	0.5	0
41 42	0	0.4	0	16 2.6	-
43	0	0.2	1	6.9	-
44 45	0	0 0.3	0	4.3 14.3	-
46	0	0.4	1	32	-
47 48	0	0	0	3.5 2.1	-
49	0	0.4	1	4.1	-
50 51	0	0.7 0.5	1	29 2.1	0.25
52 53	0	0	0	15.5 5.1	-
54	0	0.1	1	6.1	-
55 56	0	0.8	1 0	10.7 5.1	-
57	0	0.3	1	12.5	-
58 59	0	0.4 0.7	1	6.5 38	<u>-</u>
60	0	0.2	1	7	0.75
61 62	0	0.4 0.4	1	8.1 37	<u>-</u>
63	0	0	0	3	-
64 65	0	0.3 0	0	16 4.3	-
66	0	0	0	11.6	-
67 68	0	0.8	0	9.3 5.1	-
69	0	0	0	2.1	-
70 71	0	0	0	1.7 4.8	0 -
72 73	0	0	0	5.4	-
74	0	0.2 0.8	1	5.5 13	<u>-</u> -
75 76	0	0.1	1 0	5 4.5	- -
77	0	0.3	1	12	-
78 79	0	0 0.2	0	3.6 11.5	-
80	0	0	0	3.9	0
81 82	0	0	0	5.1 7.9	-
83	0	0	0	4.4	-
84 85	0	0 0.6	0	3.1 15.9	-
86	0	0	0	4.9	-
87 88	0	0.5 0.4	1	15.8 22	- -
89	0	0	0	2.1	-
90 91	0	0.3 0.4	1	30.5 47	0 -
92 93	0	0 0.4	0	2.5 46	-
94	0	0.5	1	21	- -
95 96	0	0	0	5.1 1.6	-
97	0	0	0	2.3	-
98 99	0	0 0.6	0	13.5 33	-
100	0	0.6	1	13	0.75
Average	0.00	0.25	0.57	13.11	0.30
Cic, Cip and Embed. =	cite Index (CI) =			0.57	
	cite Index (CI) =			0.25	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

pterriber 2022		RG_LC			
Pebble 1	Concreted Status	9/15/2 Calcite Proportion 0.3	Calcite Presence	Intermediate Axis (cm) 14.4	Embeddedness (%)
2	0	0.3 0.1 0.2	1	8.9	-
3 4	0	0.5	1	34 17	-
5 6	0	0.4 0.6	1	9.2 25	-
7	0	0.3	1	9.5	-
8 9	0	0.1 0.1	1	4.2 43	-
10	0	0	0	3.9	0
11 12	0	0.2 0.4	1	9.2	-
13 14	0	0.5 0.3	1 1	14.9 10.9	-
15	0	0.6	1	11.5	-
16 17	0	0.5 0.7	1	13.5 14.5	-
18	0	0.6	1	32	=
19 20	0	0.2	1	3.6 12	0.75
21 22	0	0 0.2	0	3.2 3.6	-
22	0	0.1	1	6.8	-
24 25	0	0.6 0.7	1	16.7 13.6	-
26	0	0	0	8	-
27 28	0	0.6 0	1 0	16.2 11.7	-
29	0	1	1	3.2	-
30 31	0	0.8	0	3.2 11	0.5 -
32 33	0	0	0	8.4 6.1	-
34	0	0.7	1	26	- -
35 36	0	0 0.2	0 1	11.5 7.2	-
37	0	0.1	1	6.5	-
38 39	0	0 0.2	0	8.5 11	-
40	0	0	0	1	0
41 42	0	0	0	8.4 1.7	-
43 44	0	0.6 0	1 0	11.5 8.5	-
45	0	0.1	1	4.4	-
46 47	0	1 0.5	1	10 10.1	-
48	0	0.4	1	9.3	-
49 50	0	0.1 0.8	1	3.1 13.4	- 0
51 52	0	0.7 0.6	1	9.6 7.5	-
53	0	0.8	1	6.1	-
54 55	0	0 0.5	0	1.8 8.5	-
56	0	0.6	1	21.5	-
57 58	0	0.5 0.2	1	6.8 6.3	-
59 60	1 0	0.3	1 0	12.2 4.5	- 0
61	2	1	1	11	-
62 63	0	0.7 0.2	1	11.3 23.7	-
64	0	0.6	1	39	-
65 66	0	0.6 0	0	31 0.3	-
67 68	0	0 0.6	0	12.1 35	-
69	0	0.1	1	0.2	-
70 71	0	0.1 0	1 0	5.1 4.7	0 -
72	0	0	0	9.5	-
73 74	0	0	0	8.1 3.3	-
75 76	0	0.2	1 0	9.3 3.9	-
77	0	0.3	1	7.6	-
78 79	0	0.2	1 0	17.5 6.5	-
80	0	0	0	2.9	0
81 82	0	0.2 0.5	1	7.2 21	-
83 84	0	0	0	1.6 5.7	-
85	0	0.7	1	10.8	-
86 87	0	0.3 0.3	1	12.6 11.4	-
88 89	0	0.4 0.5	1	13.2 17.5	-
90	0	0.6	1	13.3	- 0.25
91 92	0	0.6 0	1 0	15.5 4.1	-
93	0	0.6	1	16.1	-
94 95	0	0 0.5	0	3.1 24.9	-
96	0	0.4	1	11.2	-
97 98	0	0.4 0.8	1	4.1 9.4	-
99 100	0	0.1	1	4.7 1.8	- 0
Average					
Cic, Cip and Embed. =	0.05	0.32	0.71	11.03	0.15
	cite Index (CI) =			0.76 0.37	
new Cal	one mack (CI) =			V.V.	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

pterriber 2022	RG_LILC3-1 9/8/2022						
Pebble 1	Concreted Status	Calcite Proportion 0.4	Calcite Presence	Intermediate Axis (cm) 15.5	Embeddedness (%)		
2 3	0	0.6	1 0	28	-		
4	0	0.5	1	15	-		
5 6	0	0.3 0.7	1	6.5 17.5	1		
7	0	0.1	1	3.5	-		
8	0	0.5 0.2	1	25 8	-		
10 11	0	0.2 0.4	1	6.5 4.6	0.5		
12	0	0.4	1	5.7	-		
13 14	0	0	0	3 9.5	-		
15	0	0.1	1	3.6	-		
16 17	0	0.4 0.5	1	7.5 23	-		
18 19	0	0.2 0.4	1	7.2 11	-		
20	0	0.5	1	17.5	0.75		
21 22	0	0.7 0.1	1	18.5 3.3	-		
23 24	0	0.4	1 0	18 1.5	-		
25	0	0	0	4	-		
26 27	0	0	0	6	-		
28	0	0.3	1	12	<u>-</u>		
29 30	0	0.3	0	6.5 7.5	0.5		
31 32	0	0.1 0.6	1	6	- -		
33	0	0.4	1	9	-		
34 35	0	0.3 0.5	1 1	9.5 34	-		
36	0	0.2	1	8.5	-		
37 38	0	0.3 0.6	1	9 13	-		
39 40	0	0 0.8	0	3 8.5	- 0.25		
41	0	0	0	0.5	-		
42 43	0	0.7	0 1	1.5 23	-		
44 45	0	0 0.1	0	7.5 7	-		
46	0	0.4	1	35	-		
47 48	0	0	0	3 6	-		
49 50	0	0.6 0.1	1 1	8.5 8.5	- 0		
51	0	0.7	1	13	-		
52 53	0	0 0.5	0	4 15.5	-		
54 55	0	0.2	1 0	9 12	-		
56	0	0.7	1	12	-		
57 58	0	0.2 0.3	1	3.5 3.5	-		
59 60	0	0.6 0.7	1	10 8			
61	0	0.7	1	36	0.75		
62 63	0	0.4 0.3	1	9 8	-		
64 65	0	0.2	1 0	7 5.5	-		
66	0	0	0	7.5	<u>-</u>		
67 68	0	0.7 0.8	1	74 18	-		
69 70	0	0.1 0.2	1	6.5	-		
71	0	0.7	1	6 38	0.25		
72 73	0	0.4 0.3	1	7 11	-		
74 75	0	0.2	1	7.5 14	-		
76	0	1	1	11	-		
77 78	0	0.4 0.2	1	10.5 11	-		
79 80	0	0.7 0.5	1	25 9.5	- 0.25		
81	0	0	0	3.5	0.25 -		
82 83	0	0	0	1.5 34	-		
84 85	0	0.8	1	10.3 4.7	-		
86	0	0.5	1	6	-		
87 88	0	0.3 0.2	1	7.5 4.8	<u>-</u>		
89	0	0.1	1	10.2	-		
90 91	0	0.6 0.5	1	7 8	0.5		
92 93	0	0.3 0.8	1	5 5.5	-		
94	0	0.3	1	5.7	-		
95 96	0	0 0.4	0	7.5 17	-		
97 98	0	0.5 0.8	1	7 9.5	-		
99	0	0.7	1	13	-		
100 Average	0	0.9	1	12	0.25		
Cic, Cip and Embed. =	0.00	0.35	0.81	11.161	0.40		
	cite Index (CI) =			0.81 0.35			
New Cal	one muex (CI) =			v.vv			

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_LII 9/8/2			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0	0.2	1	6 8.5	
3 4	0	0.5 0	0	7.5 4.6	-
5 6	0	0.6 0	1 0	17.8 6.6	-
7	0	0.6	1	16.5	-
8 9	0	0.2 0.8	1 1	6.7 12.3	-
10	0	0.2	1	6.2	<u> </u>
11 12	0	0.3 0.4	1	19.1 13.8	0.25
13	0	0	0	2.6	<u>-</u>
14 15	0	0.5 0.5	1	16 16.5	-
16	0	0.3	1	5.8	<u>-</u>
17 18	0	0.2 0.9	1 1	5.5 8.2	-
19	0	0.5	1	12	<u>-</u>
20 21	0	0.6 0.8	1 1	7.6 7.5	0
21	0	0.8	1	4.5	-
23	0	0.7	1	30	-
24 25	0	0	0 1	1.5 17.5	<u>-</u>
26	0	0.7	1	17.5	-
27 28	0	0.3 0.4	1	9	<u>-</u> -
29	0	0	0	2.2	-
30 31	0	0.6 0.7	1	7.5 5	0.25 -
32	0	0.1	1	5.5	-
33 34	0	0.5 0.9	1	11 11	-
35	0	0.9	1	15.5	-
36 37	0	0	0 1	3 9.1	-
38	0	0.5	1	8.5	
39 40	0	0.5 0	1 0	10 50	- 0.75
41	0	0	0	3.1	-
42 43	0	0.5 0.4	1	20.4	-
43	0	0.4	1	8.5 13.5	<u>-</u>
45	0	0.9	1	10.5	-
46 47	0	0 0.5	0	1 7.5	<u>-</u>
48	0	0.4	1	12.5	-
49 50	0	0.7 0.8	1	6.5 16	- 0
51	0	0	0	3.5	-
52 53	0	0.4	1 0	14.5 6.5	-
54	0	0	0	2.8	-
55 56	0	0.2 0.2	1	6.5 7.8	-
57	0	0.4	1	12.5	<u> </u>
58 59	0	0.3	1 0	10	-
60	0	0.1	1	5.3	0.75
61 62	0	0.3 0.2	1	6.7 6.5	-
63	0	0.3	1	6.4	
64	0	0	0	4.6	-
65 66	0	0.6 0.6	1	19.4 11.7	<u> </u>
67	0	0.5	1	22	-
68 69	0	0.3 0.4	1	7.5 7.7	-
70	0	0	0	9	0.75
71 72	0	0.1 0	1 0	11.4 1.8	-
73	0	0.4	1	7.8	-
74 75	0	0	0	0.8 3.5	-
76	0	0.4	1	14.8	-
77 78	0	0.5 0	0	16 1.8	-
79	0	0.3	1	13.4	-
80 81	0	0.4 0.3	1	9.5 6.5	<u> </u>
82	0	0.5	1	7.5	-
83 84	0	1	1	8.2 6.7	- -
85	0	0.4	1	13.5	-
86 87	0	0.5 0.7	1	2.5 14.5	<u>-</u> -
88	0	0.4	1	35	-
89 90	0	0.4 0.5	1	6.5 15.5	0.5
91	0	0.7	1	13.5	-
92 93	0	0	0	15.5 3.5	<u>-</u>
94	0	0.3	1	6.5	- -
95 96	0	0 0.1	0 1	4.3 5.6	-
97	0	0.3	1	15	-
98 99	0	0.3 0.2	1 1	11 10	-
100	0	0.2	1	10.5	0.25
Average	0.00	0.37	0.78	10.006	0.35
ic, Cip and Embed. =	lcite Index (CI) =	5.01	0.70		0.00
				0.78	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_LII 9/8/2			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0.3 0.1	1	10	- -
3	0	0.8 0.9	1 1	9.5 9.5	
5 6	0	0.5 0.8	1	10.7 6.6	-
7	0	0.6	1	4.6	-
8 9	0	0.7 0.3	1	4.9 9.8	-
10	0	0.4	1	9.4	0.75
11 12	0	0	0	5.4 2.8	-
13	0	0.4	1	7.4	<u> </u>
14 15	0	0.6 0.8	1	7.4 6.1	-
16	0	0.3	1	9.6	<u> </u>
17 18	0	0.7 0.6	1	6.4 13.6	-
19	0	0.7	1	5.9	-
20 21	0	0.4 0.7	1	6.7 8	0.25
22	0	0.6	1	8.5	<u> </u>
23 24	0	0.5 0.7	1	6.2 7.9	-
24 25	0	0.7	1	10.6	- -
26	0	0.7	1	16.7	-
27 28	0	0.4 0.4	1	6.2 8.5	-
29	0	0.4	1	5.5	-
30 31	0	0.6 0.4	1 1	4.9 3.4	0.5 -
32	0	0.5	1	3.9	-
33 34	0	0.7 0.9	<u>1</u> 1	7.6 6.9	<u>-</u> -
35	0	0.6	1	11.8	-
36 37	0	0.9 0.7	1	9.7 7.8	-
38	0	0.5	1	17.2	-
39 40	0	0.6 0.6	1	6.1 18.3	0.75
41	0	0.9	1	7.9	-
42 43	0	0.7 0.8	<u>1</u> 1	12.9 12.7	<u>-</u>
44	0	0.5	1	2.7	-
45 46	0	0.6 0.7	<u>1</u> 1	4.5 6.6	-
47	0	0.9	1	10.9	<u>-</u>
48 49	0	0.9 0.8	1 1	7.7 8.2	-
50	0	0.8	1	13.1	0.25
51	0	0.8	1	7.6	-
52 53	0	0.4 0.8	<u> </u>	4.4 6.4	<u>-</u> -
54	0	0.7	1	7.4	-
55 56	0	0.9 0.1	<u> </u>	12.6 9.2	-
57	0	0.5	1	5.9	-
58 59	0	0.6 0.8	<u>1</u> 1	8.2 12.7	<u>-</u>
60	0	0.7	1	17.9	0
61 62	0	0.8 0.8	<u> </u>	6.2 12.4	<u>-</u> -
63	0	0.5	1	11.7	-
64 65	0	0.5 0.4	<u> </u>	17.5 17.9	-
66	0	0.5	1	18.8	-
67 68	0	0.3 0.6	1 1	7.5 6.8	- -
69	0	0.5	1	13.7	-
70 71	0	0.5 0.7	1 1	13 4.9	0.25 -
72	0	0.5	1	5.7	-
73 74	0	0.6 0.8	1 1	22.1 5.5	- -
75	0	0.7	1	4.3	-
76 77	0	0.6 0.4	<u> </u>	14.9 5	<u>-</u>
78	0	0.9	1	12	-
79 80	0	0.6 0.9	<u>1</u> 1	11.6 10.4	0.75
81	0	0.6	1	14.9	-
82 83	0	0.4 0.5	1 1	8.6 18.8	-
84	0	0.8	1	7.6	-
85 86	0	0.7 0.3	1	7.8 3.1	-
87	0	0.7	1	6.7	-
88 89	0	0.8 0.6	1	6.4 15.1	-
90	0	1	1	11	0.75
91 92	0	0.9 0.4	<u> </u>	8.5 12.7	<u>-</u>
-	0	0.5	1	10.7	
93	0	0.2 0.9	1 1	5 6.1	
93 94	(1)		1	6.6	-
93 94 95 96	0	0.8			
93 94 95 96 97	0	0.6	1	8.6	-
93 94 95 96 97 98	0 0 0	0.6 0.4 0.3	1 1 1	8.6 9.9 4.7	- - -
93 94 95 96 97 98 99	0 0 0	0.6 0.4	1	8.6 9.9	-
93 94 95 96 97 98	0 0 0 0 0 0	0.6 0.4 0.3	1 1 1	8.6 9.9 4.7	- - -

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

ptember 2022		RG_LIS			
Pebble 1	Concreted Status	9/14/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0	0	0	5.2	-
3 4	0	0.1	0	7.8 7.1	-
5 6	0	0.2 0.1	1	9.3 19.5	-
7	0	0	0	6.7	-
8 9	0	0	0	36 7.6	-
10	0	0	0	27	0.25
11 12	0	0	0	8.2 7.2	<u>-</u>
13 14	0	0	0	18 27	-
15	0	0	0	19	-
16 17	0	0	0	12 7.2	<u>-</u>
18 19	0	0	0	4 8.1	-
20	0	0	0	31	0
21 22	0	0	0	10.4 23.5	-
23	0	0	0	28	-
24 25	0	0	0	14.1 3.6	-
26 27	0	0	0	12.8 15.7	-
28	0	0.1	1	7.6	-
29 30	0	0 0.1	0	6.5 8.2	- 0
31 32	0	0	0	8.4 27.5	- -
33	0	0	0	6.3	-
34 35	0	0 0.1	0	11.1 10.2	-
36	0	0	0	16.1	-
37 38	0	0	0	10.5 9	-
39 40	0	0	0	4.1 15.7	- 0.5
41 42	0	0	0	16.5 19	-
43	0	0	0	9.1	-
44 45	0	0	0	9.1 10.3	<u>-</u>
46 47	0	0	0	8.3 17.6	-
48	0	0	0	23.5	-
49 50	0	0	0	9.4 16.4	0.25
51 52	0	0	0	11.3 3.6	-
53	0	0.1	1	11.9	<u>-</u>
54 55	0	0.1 0	0	11 7.7	-
56 57	0	0	0	16.5 6.1	-
58	0	0	0	5.6	-
59 60	0	0	0	6.8 10.6	0
61 62	0	0	0	3.5 29	-
63	0	0	0	39	-
64 65	0	0	0	12.3 4.4	-
66 67	0	0 0.1	0	9.7 6.3	-
68	0	0	0	19	-
69 70	0	0	0	46 7.1	0.5
71 72	0	0.1 0	1 0	6.2 12.1	-
73	0	0	0	22	-
74 75	0	0 0.1	0	5.7 11.9	-
76 77	0	0	0	18 38	- -
78 79	0	0	0	10.3	-
80	0	0.3	1	38	- 0.25
81 82	0	0 0.2	0	17.6 32	-
83 84	0	0	0	6.2	-
85	0	0	0	9.2	-
86 87	0	0	0	6.1 15.5	<u>-</u>
88 89	0	0	0	8.1 18	-
90	0	0	0	18	0.75
91 92	0	0.2	0	5.4 17	-
93 94	0	0	0	8.3 9.2	-
95	0	0	0	22	-
96 97	0	0	0	5.3 20	-
98 99	0	0	0	14.5 8	-
100	0	0	0	5.1	0
Average Cic, Cip and Embed. =	0.00	0.02	0.14	13.562	0.25
	cite Index (CI) =			0.14	
	cite Index (CI) =			0.02	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_LII 9/13/2			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0	0	6.2 5.5	- -
3 4	0	0	0	6.2 5.6	-
5	0	0	0	31	-
6 7	0	0	0	5.4 25	-
8	0	0	0	2.7	-
9 10	0	0	0	4.5 5.4	0.5
11	0	0	0	15.9	-
12 13	0	0	0	12 13.1	-
14	0	0	0	14	-
15 16	0	0	0	17.9 5.4	-
17	0	0	0	19	-
18 19	0	0	0	5.2 5.3	-
20 21	0	0	0	5.3 12	0
22	0	0	0	6.4	<u>-</u>
23	0	0	0	13.8	-
24 25	0	0	0	8.1 13.6	-
26	0	0	0	3.3	-
27 28	0	0	0	11.5 4	-
29	0	0	0	3.9	-
30 31	0	0	0	4.4 4.2	0 -
32	0	0	0	5.3	-
33 34	0	0	0	0.4 8.7	-
35	0	0	0	7.8	-
36 37	0	0	0	7 14.5	-
38	0	0	0	0.9	-
39 40	0	0	0	0.3 10.1	0.25
41	0	0	0	6.4	-
42 43	0	0	0	5.9 3.1	-
44	0	0	0	7.1	-
45 46	0	0	0	6.4 15.5	-
47	0	0	0	4.2	-
48 49	0	0	0	17.2 7.5	-
50	0	0	0	6.5	0
51 52	0	0	0	8.1 22	-
53	0	0	0	5.8	-
54 55	0	0	0	7.8 11.9	-
56	0	0	0	5.2	<u> </u>
57 58	0	0	0	10 5.7	-
59	0	0	0	22	-
60 61	0	0	0	3 5.1	0
62	0	0	0	27	<u> </u>
63 64	0	0	0	25 6.6	-
65	0	0	0	10.7	-
66	0	0	0	20	-
67 68	0	0	0	5.3 2.6	-
69	0	0	0	8.3	-
70 71	0	0	0	1.2 6.1	0 -
72	0	0	0	15.6	-
73 74	0	0	0	0.4 6.4	-
75	0	0	0	14.5	-
76 77	0	0	0	17 0.6	-
78 79	0	0	0	7.4 15.6	-
80	0	0	0	19	0.75
81 82	0	0	0	1.6 3.9	-
83	0	0	0	2.6	-
84 85	0	0	0	14.1 15	-
86	0	0	0	13.5	-
87 88	0	0	0	11.5 9.1	-
89	0	0	0	17	-
90 91	0	0	0	11.5 4.9	0.5
92	0	0	0	5.5	- -
93	0	0	0	3.4	-
94 95	0	0	0	10.5 22.5	-
96	0	0	0	14.5	-
97	0	0	0	19 8.8	-
98	•				
98 99	0	0	0	8.8	- 0.25
98 99 100	0	0	0	8.4	0.25
98 99	0				

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

pterriber 2022		RG_LII			
Pebble 1	Concreted Status	9/13/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm) 10.2	Embeddedness (%)
2	0	0	0	5.4 11.4	-
3 4	0	0	0	19.1	-
5 6	0	0	0	0.9 11.4	-
7	0	0	0	13.5	-
8 9	0	0	0	28 22.5	-
10	0	0	0	7.5	0.5
11 12	0	0	0	41 11.5	<u>-</u>
13 14	0	0	0	10.5 2.2	-
15	0	0	0	28	-
16 17	0	0	0	20.5 11.2	-
18	0	0	0	12.1	-
19 20	0	0	0	6.1 1.1	0
21 22	0	0	0	26.5 0.2	-
23	0	0	0	5.2	-
24 25	0	0	0	36.5 23.5	-
26	0	0	0	12.1	-
27 28	0	0	0	7.1 6	-
29 30	0	0	0	14 16	- 0.5
31	0	0	0	12.5	0.5 -
32 33	0	0	0	6.5 5.2	-
34	0	0	0	21.5	-
35 36	0	0	0	1.1 3.5	<u>-</u> -
37	0	0	0	12.4	-
38 39	0	0	0	16.5 5	-
40 41	0	0	0	16.3 15.5	0.25
42	0	0	0	13.1	-
43 44	0	0.1 0	0	7.1 11.4	-
45	0	0	0	5.4	-
46 47	0	0 0.3	0	6.1 19.5	-
48 49	0	0	0	2.4 12.7	-
50	0	0	0	0.9	0
51 52	0	0	0	7.5 10	-
53	0	0.3	1	38	-
54 55	0	0	0	6.5 12	-
56 57	0	0 0.2	0	4.5 15.4	-
58	0	0	0	8.4	-
59 60	0	0	0	0.2 13	0.75
61	0	0	0	1.5	-
62 63	0	0	0	6.7 1.1	-
64 65	0	0	0	17.7 2.3	-
66	0	0	0	5	-
67 68	0	0	0	20.5 5.7	-
69	0	0	0	13	-
70 71	0	0	0	19 12.9	0
72 73	0	0	0	6 18	-
74	0	0	0	36	-
75 76	0	0	0	1.4 6.6	<u>-</u> -
77 78	0	0	0	8.5 26	-
79	0	0	0	24	- -
80 81	0	0	0	7.5 12.1	0.25
82	0	0	0	6.9	-
83 84	0	0	0	14.8 24	<u>-</u>
85 86	0	0	0	15.5 4.6	-
87	0	0	0	4.5	-
88 89	0	0	0	8.5 5.2	-
90	0	0	0	6.7	0.75
91 92	0	0	0	16.1 5.2	<u>-</u> -
93 94	0	0	0	15.5 7.8	-
95	0	0	0	15	-
96 97	0	0	0	43 9.2	-
98	0	0	0	10.1	-
99 100	0	0	0	6.1 19	- 0
Average	0.00	0.01	0.04	12.205	0.30
Cic, Cip and Embed. =	cite Index (CI) =			0.04	
	cite Index (CI) =			0.04	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_LII 9/13/2			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0	0	9.2 5.3	<u>-</u> -
3 4	0	0	0	16 3.2	-
5	0	0	0	5.5	-
<u>6</u> 7	0	0	0	20.4 5.1	<u>-</u>
8	0	0	0	5.6	-
9 10	0	0	0	4.6 2.1	 0
11	0	0	0	5.5	-
12 13	0	0	0	14.1 14	-
14	0	0	0	6.6	-
15 16	0	0	0	12.1 4.5	-
17	0	0	0	19	<u> </u>
18 19	0	0	0	0.9 2.6	-
20	0	0	0	31	0
21	0	0	0	17.5	-
22 23	0	0	0	14.5 33	<u>-</u>
24	0	0	0	8	-
25 26	0	0	0	35 12.5	-
27	0	0	0	21	-
28 29	0	0	0	9.3 5.5	-
30	0	0	0	15.2	0.25
31	0	0	0	12.5	-
32 33	0	0	0	4.4 17.5	<u>-</u> -
34	0	0	0	13	-
35 36	0	0	0	5.1 12	<u>-</u>
37	0	0	0	22.5	-
38 39	0	0	0	43 11.5	-
40	0	0	0	10.9	0.5
41	0	0	0	7.5	-
42	0	0	0	10.4	-
44	0	0	0	35.5	-
45 46	0	0	0	9.8 10.8	<u> </u>
47	0	0	0	15.5	<u> </u>
48	0	0	0	15	-
49 50	0	0	0	43 23	0.5
51	0	0	0	22	-
52 53	0	0	0	9.1 7.9	-
54	0	0	0	9.8	-
55 56	0	0	0	10.2 6.8	-
57	0	0	0	6.2	-
58 59	0	0	0	12.3 16.3	-
60	0	0	0	1.2	0
61	0	0	0	15.5	-
62 63	0	0	0	4.3 17.5	<u>-</u>
64	0	0	0	0.2	-
65 66	0	0	0	16.5 15	-
67	0	0	0	35	-
68 69	0	0	0	7.1 8.7	-
70	0	0	0	26	0.75
71 72	0	0	0	7 22	-
73	0	0	0	38	-
74 75	0	0	0	5.2 2.4	-
76	0	0	0	12.4	-
77	0	0	0	13.8	-
78 79	0	0	0	3.4 26	- -
80	0	0	0	38	0.5
81 82	0	0	0	1.7 11.2	<u>-</u> -
83	0	0	0	16.9	-
84 85	0	0	0	12.1 0.9	-
86	0	0	0	5.1	- -
87 88	0	0.2	1 0	15.6 2.6	-
88 89	0	0	0	15.4	<u>-</u>
90	0	0	0	34	0.25
91 92	0	0	0	13.1 4.6	<u>-</u>
93	0	0	0	7.5	- -
94 95	0	0	0	6.2 16.6	-
96	0	0	0	40.5	<u>-</u>
97	0	0	0	10.8	-
98 99	0	0	0	15.4 11.3	- -
100	0	0	0	9.6	0.25
	1			40.040	
Average	0.00	0.00	0.01	13.846	0.30
Average c, Cip and Embed. =	0.00	0.00	0.01	13.846	0.30

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_LII 9/14/2			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0	0	0	5 8.2	-
3 4	0	0	0	8.2 5.9	<u>-</u>
5	0	0	0	1.9	-
<u>6</u> 7	0	0	0	43 3.7	-
8	0	0	0	5	-
9 10	0	0	0	7.5 6.5	0.25
11 12	0	0	0	1.1	-
12	0	0	0	7.8 13.1	-
14	0	0	0	7	-
15 16	0	0	0	9.3 18	-
17 18	0	0	0	11 10.4	-
19	0	0	0	42	-
20	0	0	0	28 6.6	0
21 22	0	0	0	2.7	<u>-</u>
23	0	0.3	1	46	-
24 25	0	0.4	0	14.2 44	<u>-</u>
26	0	0	0	4.5	-
27 28	0	0	0	2.2	-
29	0	0.4	1	19	
30 31	0	0	0	3.4 7.3	0
32	0	0	0	9.3	-
33 34	0	0	0	16.5 15	-
35	0	0	0	17.2	-
36 37	0	0	0	2.7 11.7	-
38	0	0	0	12.7	-
39 40	0	0	0	18 5.1	- 0
41	0	0	0	8	-
42 43	0	0	0	7.6 20	-
44	0	0	0	12.9	-
45	0	0	0	20	-
46 47	0	0	0	7.9 12.6	-
48	0	0	0	6.5	-
49 50	0	0	0	28 7.6	0.25
51	0	0	0	20	-
52 53	0	0	0	11 4.4	-
54	0	0	0	19.3	-
55 56	0	0	0	13.3 6.6	-
57	0	0	0	9.3	-
58 59	0	0	0	3.4 9	<u>-</u>
60	0	0	0	17	0.5
61 62	0	0	0	3.1 7	-
63	0	0	0	14	-
64	0	0	0	4.1	-
65 66	0	0	0	4.7 52	<u> </u>
67	0	0	0	12	-
68 69	0	0	0	7.7 48	-
70	0	0	0	20.3	0.5
71 72	0	0.2 0	0	9.8 6.5	-
73	0	0	0	7.8	-
74 75	0	0	0	11 9.2	-
76	0	0	0	22.5	-
77 78	0	0	0	15 7.5	-
79	0	0	0	5	-
80 81	0	0	0	3.5 12.3	0
82	0	0	0	4.6	-
83 84	0	0.1	0	1.9 28	-
85	0	0	0	14.1	-
86 87	0	0	0	4.5 20	<u>-</u>
88	0	0	0	10.8	-
89 90	0	0	0	4 31	- 0
91	0	0	0	25	-
92 93	0	0	0	10.5 14.5	
94	0	0	0	13.9	-
95 96	0	0	0	16	-
96 97	0	0	0	8.2 0.2	-
98	0	0	0	14.5	-
99 100	0	0	0	5.5 1.5	0
Average	0.00	0.02	0.06	12.597	0.15
Cic, Cip and Embed. =	0.00	0.02	0.00	12.001	0.10
	lcite Index (CI) =			0.06	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_LII 9/14/2			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0	0	0	9.1	-
3 4	0	0	0	6.2 8.1	-
5 6	0	0	0	9.5 8.7	-
7	0	0	0	2.2	- -
<u>8</u> 9	0	0	0	6.1 10.5	- -
10	0	0	0	5.7	0.25
11 12	0	0.2 0.3	1	38 20	-
13 14	0	0	0	5.3 4.5	-
15	0	0	0	2.6	-
16 17	0	0	0	19.5 4.5	-
18	0	0	0	13	-
19 20	0	0	0	5.7 6.5	0
21 22	0	0	0	14 6	-
23	0	0	0	19	-
24 25	0	0	0	11.5 10.2	-
26	0	0	0	29	-
27 28	0	0	0	13 15.8	-
29	0	0	0	2.3	-
30 31	0	0	0	16.5 5.2	0.25
32	0	0	0	4.5	-
33	0	0	0	5.9	
35 36	0	0	0	5.9 1.7	-
37	0	0	0	8.6	-
38 39	0	0	0	11.5 27	-
40	0	0	0	6	0
41 42	0	0	0	4.1 4.6	-
43	0	0	0	10.5	-
44 45	0	0	0	20 15	<u>-</u> -
46	0	0	0	15	-
47 48	0	0	0	4.7 41	-
49	0	0	0	8.5	-
50 51	0	0	0	10.2 6.3	0.5 -
52 53	0	0	0	25.5 46	-
54	0	0	0	8.5	<u>-</u> -
55 56	0	0	0	15.3 7.7	-
57	0	0	0	12.6	-
58 59	0	0	0	11 26	
60	0	0	0	9.9	0
61 62	0	0	0	12.5 8.1	-
63 64	0	0 0.2	0 1	3.5 41	-
65	0	0	0	5.3	-
66 67	0	0	0	10.9 4.8	-
68	0	0	0	14.5	-
69 70	0	0	0	7.6 14.1	0.5
71	0	0	0	5.4	-
72 73	0	0	0	21.5 9.5	- -
74 75	0	0	0	11.5 22.5	-
76	0	0	0	19.2	<u>-</u>
77 78	0	0	0	6.3 4.9	-
79	0	0	0	10	-
80 81	0	0	0	17.5 4.8	0.75 -
82	0	0	0	10.5	-
83 84	0	0	0	11.2 16.5	-
85 86	0	0	0	12.3 14.8	-
87	0	0	0	9.2	-
88 89	0	0	0	0.5 30	-
90	0	0	0	9.5	0.25
91 92	0	0	0	9.1 8	
93	0	0	0	28	-
94 95	0	0	0	2.1 3.7	-
96	0	0	0	5.8	-
97 98	0	0	0	4 14.2	-
99	0	0	0	6.5	-
100 Average	0	0	0	8	0
ic, Cip and Embed. =	0.00	0.01	0.03	11.85	0.25
ic, Cip and Embed					

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

pterriber 2022		RG_LID			
Pebble 1	Concreted Status	9/12/2 Calcite Proportion 0.1	Calcite Presence	Intermediate Axis (cm) 7.6	Embeddedness (%)
2	0	0	0	16.4 6.2	-
3 4	0	0	0	6.3	-
5 6	0	0.1 0	1 0	10 9.6	-
7	0	0.1	1	12.6	-
8 9	0	0	0	2 5.7	-
10	0	0	0	14.4	0.25
11 12	0	0	0	9.1 4.3	<u>-</u> -
13 14	0	0.1 0	1 0	16.6 15.1	-
15	0	0	0	6.6	-
16 17	0	0	0	17.2 11	<u>-</u>
18 19	0	0	0	11.8 11	-
20	0	0	0	14.6	0
21 22	0	0	0	22.5 10.4	-
23	0	0	0	14.5	-
24 25	0	0 0.1	0 1	13.5 10.5	-
26 27	0	0	0	9.5 17.5	-
28	0	0	0	15.7	-
29 30	0	0	0	9.4 25.5	0.25
31 32	0	0	0	13.5	-
33	0	0	0	22	<u>-</u> -
34 35	0	0	0	19.5 4.6	-
36	0	0	0	7.6	-
37 38	0	0	0	6.3 8.5	-
39 40	0	0	0	15.5 7.6	- 0.5
41 42	0	0	0	22	-
43	0	0	0	16.5 7	-
44 45	0	0	0	8.7 14.5	-
46 47	0	0	0	3.8 6.3	-
48	0	0	0	16.4	-
49 50	0	0.1 0	0	9.5 0.3	<u>-</u> 0
51	0	0	0	5.9	-
52 53	0	0.1 0	0	5.2 5	-
54 55	0	0	0	15.5 4.8	-
56 57	0	0	0	13 21	-
58	0	0	0	12.5	-
59 60	0	0	0	28 8.7	0.5
61 62	0	0	0	3 5.1	- -
63	0	0	0	1.3	-
64 65	0	0	0	13.5 2.2	-
66 67	0	0	0	22.5 6.5	-
68	0	0	0	5.6	-
69 70	0	0.1 0.1	1	11.1 8.5	0.25
71	0	0	0	0.5	-
72 73	0	0.1 0	1 0	36 12.6	<u>-</u>
74 75	0	0	0	12.1 5.2	-
76	0	0	0	5.3	-
77 78	0	0	0	4.3 5.5	-
79 80	0	0	0	20.5 19	- 0
81 82	0	0	0	2.9	-
83	0	0	0	27	-
84 85	0	0	0	14.2 7.1	-
86 87	0	0	0	15.5 12.6	-
88	0	0	0	7.8 0.4	- -
89 90	0	0	0	8.4	0.5
91 92	0	0	0	10.2 7.6	-
93	0	0	0	7.9	-
94 95	0	0.1 0	0	6.6 19	
96 97	0	0	0	13 14.2	- -
98	0	0	0	5.7	-
99 100	0	0	0	2.8 12.2	- 0.5
Average	0.00	0.01	0.11	10.973	0.28
Cic, Cip and Embed. =	cite Index (CI) =	, , , , , , , , , , , , , , , , , , ,		0.11	
	cite Index (CI) =			0.01	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

1	edness (%)
2 0 0 0 3.4 2 4 0 0 0 4.2 4 0 0 0 4.2 4 0 0 0 4.2 4.2 4 0 0 0 0 2.7 5 5 0 0 0 0 0 0 8.4 6 6 0 0 0 0 16.4 7 0 0 0 0 15.6 8 0 0 0 0 15.6 0 0 0 11.9 9 0 0 0 0 13.3 10 0 0 0 3.3 11 0 0 0 0 3.4 13 13 0 0 0 0 3.4 13 13 0 0 0 0 17.6 11.6 14.2 14.4 14 0 0 0 17.6 14.2 14.4 14.4	
4 0 0 0 27 5 0 0 0 8.4 6 0 0 0 116.4 7 0 0 0 115.6 8 0 0 0 11.9 9 0 0 0 11.9 9 0 0 0 3.3 10 0 0 0 3.9 11 0 0 0 3.4 13 0 0 0 4.2 14 0 0 0 17.6 15 0 0 0 17.6 15 0 0 0 4.3 16 0 0 0 5.1 17 0 0 0 26.4 18 0 0.2 1 4.4 19 0 0 0 15.2 22 0	-
6 0 0 16.4 7 0 0 0 15.6 8 0 0 0 11.9 9 9 0 0 0 0 33.3 10 0 0 0 39 11 0 0 0 3.4 13.3 0 0 0 5.7 12 0 0 0 0 3.4 13.3 0 0 0 3.4 13.3 0 0 0 0 3.4 13.3 0 0 0 0 3.4 13.3 0 0 0 0 3.4 13.3 0 0 0 0 3.4 13.3 0 0 0 0 17.6 15.5 0 0 0 0 17.6 15.5 15.7 17.6 15.5 0 0 0 26.4 18.8 0 0.2 1 1.4 4.4 1.9 19.9	-
7 0 0 0 15.6 8 0 0 0 11.9 9 0 0 0 13.3 10 0 0 0 39 11 0 0 0 3.4 13 0 0 0 4.2 14 0 0 0 4.3 16 0 0 0 4.3 16 0 0 0 26.4 17 0 0 0 26.4 18 0 0.2 1 4.4 19 0 0 0 4.9 20 0 0.1 1 4.6 21 0 0.1 1 4.6 21 0 0.1 1 15.2 22 0 0 0 10.6 23 0 0 0 8.2 25 0 </th <td>-</td>	-
9 0 0 0 13.3 10 0 0 0 39 11 0 0 0 39 11 0 0 0 5.7 12 0 0 0 3.4 13 0 0 0 4.2 14 0 0 0 17.6 15 0 0 0 17.6 15 0 0 0 4.3 16 0 0 0 5.1 17 0 0 0 26.4 18 0 0.2 1 4.4 19 0 0 0 4.9 20 0 0.1 1 15.2 22 0 0 0 19.6 23 0 0 0 8.7 24 0 0 0 8.2 25 0	-
10 0 0 0 39 11 0 0 0 5.7 12 0 0 0 3.4 13 0 0 0 4.2 14 0 0 0 17.6 15 0 0 0 4.3 16 0 0 0 5.1 17 0 0 0 26.4 18 0 0.2 1 4.4 19 0 0 0 4.9 20 0 0.1 1 4.6 21 0 0.1 1 15.2 22 0 0 0 10.6 23 0 0 0 8.7 24 0 0 0 8.7 24 0 0 0 8.4 27 0 0 0 4.1 28 0 <td>-</td>	-
12 0 0 0 3.4 13 0 0 0 4.2 14 0 0 0 17.6 15 0 0 0 4.3 16 0 0 0 5.1 17 0 0 0 26.4 18 0 0.2 1 4.4 19 0 0 0 4.9 20 0 0.1 1 4.6 21 0 0.1 1 15.2 22 0 0 0 0 8.7 24 0 0 0 8.7 24 0 0 0 8.4 27 0 0 0 8.4 27 0 0 0 4.1 28 0 0 0 4.2 30 0 0 0 2.9 33 <td>- 0.5</td>	- 0.5
13 0 0 0 4.2 14 0 0 0 17.6 15 0 0 0 4.3 16 0 0 0 5.1 17 0 0 0 26.4 18 0 0.2 1 4.4 19 0 0 0 4.9 20 0 0.1 1 4.6 21 0 0.1 1 15.2 22 0 0 0 10.6 23 0 0 0 8.7 24 0 0 0 8.2 25 0 0 0 8.2 25 0 0 0 4.3 26 0 0 0 4.1 28 0 0 0 4.2 30 0 0 0 6.7 31 0 <td>-</td>	-
15 0 0 0 4.3 16 0 0 0 5.1 17 0 0 0 26.4 18 0 0.2 1 4.4 19 0 0 0 4.9 20 0 0.1 1 4.6 21 0 0.1 1 15.2 22 0 0 0 10.6 23 0 0 0 10.6 23 0 0 0 8.7 24 0 0 0 8.2 25 0 0 0 8.4 27 0 0 0 4.1 28 0 0 0 4.2 30 0 0 0 4.2 30 0 0 0 2.3 32 0 0 0 2.9 34 0 <td>-</td>	-
16 0 0 0 5.1 17 0 0 0 26.4 18 0 0.2 1 4.4 19 0 0 0 4.9 20 0 0.1 1 4.6 21 0 0.1 1 15.2 22 0 0 0 10.6 23 0 0 0 8.7 24 0 0 0 8.2 25 0 0 0 4.3 26 0 0 0 4.1 28 0 0 0 4.2 30 0 0 0 4.2 30 0 0 0 4.2 30 0 0 0 2.3 32 0 0 0 2.9 33 0 0 0 2.9 34 0 <td>-</td>	-
18 0 0.2 1 4.4 19 0 0 0 4.9 20 0 0.1 1 4.6 21 0 0.1 1 15.2 22 0 0 0 10.6 23 0 0 0 8.7 24 0 0 0 8.2 25 0 0 0 4.3 26 0 0 0 4.1 28 0 0 0 4.1 28 0 0 0 4.2 30 0 0 0 6.7 31 0 0 0 2.3 32 0 0 0 21.9 33 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 37.7 37 0 0 0 3.9 36 0 0 0 3.9 <td>-</td>	-
19 0 0 0 4.9 20 0 0.1 1 4.6 21 0 0.1 1 15.2 22 0 0 0 10.6 23 0 0 0 8.7 24 0 0 0 8.2 25 0 0 0 4.3 26 0 0 0 4.4 27 0 0 0 4.1 28 0 0 0 4.2 30 0 0 0 4.2 30 0 0 0 6.7 31 0 0 0 2.9 33 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 2.9 34 0 0.1 1 10.5 35 0<	-
21 0 0.1 1 15.2 22 0 0 0 10.6 23 0 0 0 8.7 24 0 0 0 8.2 25 0 0 0 4.3 26 0 0 0 4.1 28 0 0 0 4.1 28 0 0 0 4.2 30 0 0 0 6.7 31 0 0 0 6.7 31 0 0 0 2.3 32 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 2.9 36 0 0 0 3.7 37 0 0 0 3.9 38 0 0 0 3.9 38 0	-
22 0 0 0 10.6 23 0 0 0 8.7 24 0 0 0 8.2 25 0 0 0 4.3 26 0 0 0 4.1 28 0 0 0 4.1 28 0 0 0 7.6 29 0 0 0 4.2 30 0 0 0 6.7 31 0 0 0 2.3 32 0 0 0 21.9 33 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 2.9 36 0 0 0 37.7 37 0 0 0 3.9 38 0 0 0 3.9 39 0	0
23 0 0 0 8.7 24 0 0 0 8.2 25 0 0 0 4.3 26 0 0 0 8.4 27 0 0 0 4.1 28 0 0 0 7.6 29 0 0 0 4.2 30 0 0 0 6.7 31 0 0 0 2.3 32 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 2.9 36 0 0 0 37.7 37 0 0 0 3.9 38 0 0 0 3.9 39 0 0.3 1 7.4 40 0 0 3.4 41 0 0 3.9 39 0 0 3.4 41 0	-
25 0 0 0 4.3 26 0 0 0 8.4 27 0 0 0 4.1 28 0 0 0 7.6 29 0 0 0 4.2 30 0 0 0 6.7 31 0 0 0 2.3 32 0 0 0 21.9 33 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 2.9 36 0 0 0 3.9 38 0 0 0 3.9 38 0 0 0 3.9 38 0 0 0 3.2 39 0 0.3 1 7.4 40 0 0 3.4 41 0 0	-
27 0 0 0 4.1 28 0 0 0 7.6 29 0 0 0 4.2 30 0 0 0 6.7 31 0 0 0 2.3 32 0 0 0 21.9 33 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 2.9 36 0 0 0 37.7 37 0 0 0 3.9 38 0 0 0 8.2 39 0 0.3 1 7.4 40 0 0 4.3 4.3 41 0 0 3.9 43 0 0 0 3.9 43 0 0 0 3.9 44 0 0 0 5.2 45 0 0 0 6.7	-
28 0 0 0 7.6 29 0 0 0 4.2 30 0 0 0 6.7 31 0 0 0 21.9 32 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 2.9 36 0 0 0 37.7 37 0 0 0 3.9 38 0 0 0 8.2 39 0 0.3 1 7.4 40 0 0 3.4 41 0 0 3.4 42 0 0 3.9 43 0 0 0 5.2 44 0 0 0 5.2 45 0 0 0 6.7 46 0 0 0 5.6	-
29 0 0 0 4.2 30 0 0 0 6.7 31 0 0 0 2.3 32 0 0 0 21.9 33 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 2.9 36 0 0 0 37.7 37 0 0 0 3.9 38 0 0 0 8.2 39 0 0.3 1 7.4 40 0 0 4.3 41 0 0 3.4 42 0 0 3.9 43 0 0 0 3.9 44 0 0 0 5.2 45 0 0 0 6.7 46 0 0 0 5.6	-
31 0 0 0 2.3 32 0 0 0 21.9 33 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 2.9 36 0 0 0 37.7 37 0 0 0 3.9 38 0 0 0 8.2 39 0 0.3 1 7.4 40 0 0 0 4.3 41 0 0 0 3.4 42 0 0 0 3.9 43 0 0 0 21 44 0 0 0 5.2 45 0 0 0 6.7 46 0 0 0 5.6	-
32 0 0 0 21.9 33 0 0 0 2.9 34 0 0.1 1 10.5 35 0 0 0 2.9 36 0 0 0 37.7 37 0 0 0 3.9 38 0 0 0 8.2 39 0 0.3 1 7.4 40 0 0 0 4.3 41 0 0 0 3.4 42 0 0 0 3.9 43 0 0 0 21 44 0 0 0 5.2 45 0 0 0 6.7 46 0 0 0 5.6	0
34 0 0.1 1 10.5 35 0 0 0 2.9 36 0 0 0 37.7 37 0 0 0 3.9 38 0 0 0 8.2 39 0 0.3 1 7.4 40 0 0 0 4.3 41 0 0 0 3.4 42 0 0 0 3.9 43 0 0 0 21 44 0 0 0 5.2 45 0 0 0 6.7 46 0 0 0 5.6	-
35 0 0 0 2.9 36 0 0 0 37.7 37 0 0 0 3.9 38 0 0 0 8.2 39 0 0.3 1 7.4 40 0 0 0 4.3 41 0 0 0 3.4 42 0 0 0 3.9 43 0 0 0 21 44 0 0 0 5.2 45 0 0 0 32.7 46 0 0 0 5.6	-
37 0 0 0 3.9 38 0 0 0 8.2 39 0 0.3 1 7.4 40 0 0 0 4.3 41 0 0 0 3.4 42 0 0 0 3.9 43 0 0 0 21 44 0 0 0 5.2 45 0 0 0 32.7 46 0 0 0 6.7 47 0 0 5.6	-
38 0 0 0 8.2 39 0 0.3 1 7.4 40 0 0 0 4.3 41 0 0 0 3.4 42 0 0 0 3.9 43 0 0 0 21 44 0 0 0 5.2 45 0 0 0 32.7 46 0 0 0 6.7 47 0 0 5.6	-
40 0 0 0 4.3 41 0 0 0 3.4 42 0 0 0 3.9 43 0 0 0 21 44 0 0 0 5.2 45 0 0 0 32.7 46 0 0 0 6.7 47 0 0 5.6	-
41 0 0 0 3.4 42 0 0 0 3.9 43 0 0 0 21 44 0 0 0 5.2 45 0 0 0 32.7 46 0 0 0 6.7 47 0 0 5.6	- 0
43 0 0 0 21 44 0 0 0 5.2 45 0 0 0 32.7 46 0 0 0 6.7 47 0 0 5.6	-
44 0 0 0 5.2 45 0 0 0 32.7 46 0 0 0 6.7 47 0 0 0 5.6	-
46 0 0 0 6.7 47 0 0 0 5.6	-
47 0 0 0 5.6	-
	-
48 0 0 0 27.5 49 0 0 0 13.5	-
50 0 0 0 3.1	0
51 0 0 0 5.9 52 0 0.1 1 10.6	-
53 0 0 0 5.2	-
54 0 0 0 4.8 55 0 0 0 25.2	-
56 0 0 0 4.9	-
57 0 0 0 3.2 58 0 0 0 11.4	-
59 0 0 0 10.7 60 0 0 0 20.2	- 0
61 0 0 0 9.4	-
62 0 0 0 13.9 63 0 0 0 22.6	-
64 0 0 0 5.9	-
65 0 0 0 6.3 66 0 0 0 5.7	-
67 0 0 0 6.2	=
68 0 0 0 3.4	-
70 0 0 0 7.8 0	0.25
71 0 0 0 4.8 72 0 0 0 4.5	-
73 0 0 0 6.2	-
74 0 0.1 1 9.6 75 0 0 0 6.7	-
76 0 0.1 1 7.4	-
77 0 0 0 0 3.4 78 0 0 0 9.6	-
79 0 0 0 19.4	-
80 0 0.1 1 9.2 0 81 0 0 0 2.4).25 -
82 0 0 0 7.5	-
83 0 0 0 5.9 84 0 0 0 3.8	-
85 0 0 0 7.2	-
86 0 0 0 4.9 87 0 0 0 7.8	-
88 0 0 0 5.9	=
89 0 0 0 11.8 90 0 0 0 20.2 0	- 0.25
91 0 0 0 3.7	-
92 0 0 0 4.8 93 0 0 0 10.4	-
94 0 0 0 7.3	-
95 0 0 0 14.4 96 0 0 5.6	-
97 0 0 0 7.8	-
98 0 0 0 6.2 99 0 0 0 3.3	
100 0 0 4.9	-
Average	
Old Calcite Index (CI) = 0.09	-
New Calcite Index (CI) = 0.01	0

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_L 9/17/2			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0.2	0	18.5 6.6	- -
3 4	0	0	0	17.2 22.5	-
5	0	0	0	8.6	-
6 7	0	0	0	6.7 8.2	<u>-</u>
8	0	0	0	15.5	-
9 10	0	0	0	9.7 16.8	0.25
11	0	0	0	13	-
12 13	0	0	0	12.5 6.1	<u>-</u>
14	0	0	0	3.5	-
15 16	0	0.3 0	0	26 10.4	-
17 18	0	0	0	11 9.7	-
19	0	0	0	5.8	-
20 21	0	0	0	9.6	0.75
21	0	0.1	1	3.7 7.9	-
23	0	0	0	4.6	-
24 25	0	0	0	4.3 5.9	<u>-</u>
26	0	0	0	8.3	-
27 28	0	0	0	21 3.2	-
29	0	0	0	9.5	-
30 31	0	0	0	3.1 2.1	<u> </u>
32	0	0	0	21.2	-
33 34	0	0	0	7.4 11.3	<u>-</u>
35	0	0	0	36.5	-
36 37	0	0	0	9.3 4.5	-
38	0	0	0	11	=
39 40	0	0	0	13 34	0.5
41	0	0	0	6.4	-
42 43	0	0	0	4.1 6.8	-
44	0	0	0	4.3	-
45 46	0	0	0	6.6 15.5	-
47	0	0	0	1.3	
48 49	0	0 0.1	0	12.9 16.5	-
50	0	0	0	3.5	0
51 52	0	0	0	25 4.4	-
53	0	0	0	3.2	-
54	0	0	0	2.4 13.3	-
55 56	0	0	0	4	<u> </u>
57 50	0	0	0	4.4	-
58 59	0	0	0	4.2 32.5	-
60 61	0	0	0	6	0
62	0	0	0	5.5	-
63 64	0	0	0	6.2	-
65	0	0	0	15.3 6.2	<u>-</u>
66	0	0	0	5.2	-
67 68	0	0	0	2.9 9.6	-
69	0	0	0	3.9	-
70 71	0	0	0	5.1 12	<u> </u>
72	0	0	0	4.5	-
73 74	0	0.2 0	0	33 7.8	-
75	0	0	0	7.9	-
76 77	0	0	0	19 8.1	-
78	0	0	0	1.8	-
79 80	0	0 0.4	0	11.9 30	0.25
81	0	0.3	1	24	-
82 83	0	0	0	27 15.3	-
84	0	0	0	10.1	-
85 86	0	0	0	3.2 12.3	<u>-</u>
87	0	0.3	1	32	-
88 89	0	0	0	32.5 4.8	-
90	0	0	0	8.4	0.5
91 92	0	0	0	12.2 17	-
93	0	0	0	12.2	-
94 95	0	0	0	20.2 7.1	-
96	0	0	0	9.4	-
97 98	0	0	0	6.5 6.2	-
99	0	0	0	6.1	-
100	0	0	0	39	0.5
Average Cic, Cip and Embed. =	0.00	0.02	0.08	11.424	0.28
	lcite Index (CI) =		<u> </u>	0.08	
ou	lcite Index (CI) =			0.02	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

pterriber 2022		RG_L			
Pebble 1	Concreted Status	9/17/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm) 7.9	Embeddedness (%)
2 3	0	0	0	14.6 9.4	-
4	0	0	0	8.2	-
5 6	0	0.3 0	0	13.3 12.2	-
7	0	0.2	1	11.7	-
8 9	0	0	0	8.7 8.4	-
10 11	0	0	0	10.9 5.3	0
12	0	0	0	4.2	-
13 14	0	0.5 0.2	1	25.4 10.5	-
15 16	0	0 0.1	0	8.9 8.2	-
17	0	0	0	3.6	-
18 19	0	0	0	5.4 10.7	-
20 21	0	0.4	1 0	33 9.4	0.25
21	0	0	0	2.4	-
23 24	0	0	0	4.9 7.8	-
25	0	0	0	9.4	-
26 27	0	0	0	5.8 8.6	-
28 29	0	0	0	5.2	-
30	0	0	0	8.7	0
31 32	0	0	0	26.4 3.4	- -
33	0	0	0	7.8 6.2	-
34 35	0	0	0	3.4	- -
36 37	0	0	0	3.9 3.4	-
38 39	0	0	0	26.8 11.2	-
40	0	0	0	5.4	0
41 42	0	0	0	4.7 5.2	<u>-</u>
43 44	0	0	0	8.4 11.1	-
45	0	0	0	2.3	-
46 47	0	0	0	16.9 12.7	-
48	0	0.2	1	37.1	-
49 50	0	0	0	9.6 38.1	0.25
51 52	0	0	0	3.8 16.4	-
53	0	0	0	9.4	-
54 55	0	0	0	6.8 8.2	-
56 57	0	0	0	7.4 21.2	-
58	0	0	0	13.3 4.7	-
59 60	0	0	0	5.8	- 0.25
61 62	0	0 0.2	0	12.2 33.6	<u>-</u> -
63 64	0	0	0	14.4 16.9	-
65	0	0	0	7.3	-
66 67	0	0	0	6.8 18.2	-
68	0	0	0	10.6	-
69 70	0	0	0	10.2 3.9	- 0
71 72	0	0.5 0	1 0	45.1 9.7	-
73	0	0.5	1	15.2	-
74 75	0	0.4	1 0	14.4 6.9	-
76 77	0	0	0	10.6 6.2	-
78 79	0	0	0	6.9 19.4	-
80	0	0.3	1	11.1	0.5
81 82	0	0	0	2.7 12.2	
83 84	0	0	0	8.9 10.4	-
85	0	0	0	4.5	<u>-</u> -
86 87	0	0	0	13.4 9.3	-
88 89	0	0	0	7.3 5.6	-
90	0	0	0	35	0.5
91 92	0	0	0	3.7 6.2	-
93 94	0	0	0	6.7 9.8	-
95	0	0	0	20.7	-
96 97	0	0	0	10.6 8.2	-
98 99	0	0	0	9.1 7.7	-
100	0	0	0	6.4	0
Average Cic, Cip and Embed. =	0.00	0.04	0.14	11.029	0.18
	cite Index (CI) =		<u> </u>	0.14	
	cite Index (CI) =	-		0.04	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_FI			
Pebble 1	Concreted Status	9/10/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0	0	0	6.3	<u>-</u>
3 4	0	0	0	3.1 8.2	-
5	0	0	0	9.5	-
<u>6</u> 7	0	0	0	6.2 4.9	-
8	0	0	0	8.1	-
9 10	0	0	0	6.9 2.9	0.25
11	0	0	0	3.9 8.2	-
12 13	0	0	0	4.6	- -
14	0	0	0	5.8	-
15 16	0	0	0	0.3 6.6	-
17 18	0	0	0	9.5 11	-
19	0	0	0	5.7	-
20 21	0	0	0	9.7 2.3	0.25
22	0	0	0	3.1	-
23 24	0	0	0	8.2 10.1	-
25	0	0	0	8.2	<u>-</u>
26 27	0	0	0	0.9 2.6	-
28	0	0	0	5.1	-
29 30	0	0	0	10.5 13.2	-
31	0	0	0	2.2	0 -
32	0	0	0	11 0.2	-
33 34	0	0	0	8.4	-
35 36	0	0	0	3.1 2.6	-
37	0	0	0	8.9	- -
38 39	0	0	0	6.4 12.5	-
40	0	0	0	4.5	0.25
41 42	0	0	0	14.8 2.5	-
43	0	0	0	6.5	-
44 45	0	0	0	9.4 9.7	<u>-</u>
46	0	0	0	22	-
47 48	0	0	0	6.8 0.4	-
49	0	0	0	10.4	-
50 51	0	0	0	9.5 7.8	0.25
52	0	0	0	5.7	-
53 54	0	0	0	7.6 7	-
55 56	0	0	0	8.4 7.3	-
57	0	0	0	7.5	-
58 59	0	0	0	21.5 8.4	<u>-</u>
60	0	0	0	22.8	0.5
61 62	0	0	0	0.3 7.5	-
63	0	0	0	5	-
64 65	0	0	0	37.5 12.6	-
66	0	0	0	1.2	-
67 68	0	0	0	0.3 21	-
69	0	0	0	10.3	-
70 71	0	0	0	20.2 2.5	0.25
72	0	0	0	7.4	-
73 74	0	0	0	12.6 2.8	-
75 76	0	0	0	6.7	-
77	0	0	0	3 20	-
78 79	0	0	0	4.2 6.7	-
80	0	0	0	2	0
81 82	0	0	0	13.5 2.6	-
83	0	0	0	10.9	-
84 85	0	0	0	11.6 1.8	-
86	0	0	0	9.3	-
87 88	0	0	0	2.6 2.9	-
89	0	0	0	3.6	-
90 91	0	0	0	4.5 5.1	<u> </u>
92	0	0	0	5.9	-
93 94	0	0	0	9.5 8.6	-
95	0	0	0	6.5	-
96 97	0	0	0	4.9 4.5	-
98 99	0	0	0	1.7 10.1	-
100	0	0	0	10.1	- 0
Average	0.00	0.00	0.00	7.554	0.18
Cic, Cip and Embed. =	cite Index (CI) =			0.00	-
	cite Index (CI) =			0.00	
	_	_	-	_	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_FF			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0	0	0	6.1 3.2	-
3 4	0	0	0	3.4 6.5	-
5	0	0	0	3.8	
6 7	0	0	0	3.1 16.3	-
8	0	0	0	3.8	-
9 10	0	0	0	8.6 24	0.25
11	0	0	0	14.3	-
12 13	0	0	0	7 13	-
14	0	0	0	0.5	-
15 16	0	0	0	8.3 3.1	-
17	0	0	0	0.9	-
18 19	0	0	0	12.9 3.8	-
20	0	0	0	3	0.75
21 22	0	0	0	3.5 9.2	-
23	0	0	0	1.2	-
24 25	0	0	0	16 4	-
26	0	0	0	5.7	-
27 28	0	0	0	6 25.5	-
29	0	0	0	9.6	-
30 31	0	0	0	3.3 20.5	0
32	0	0	0	14.5	- -
33 34	0	0	0	3.6 5.7	-
35	0	0	0	11.9	-
36 37	0	0	0	2.9 23.5	-
38	0	0	0	4.2	<u> </u>
39 40	0	0	0	2.9 6.1	- 0
41	0	0	0	10.5	-
42 43	0	0	0	31	-
43	0	0	0	3.4 1.5	-
45	0	0	0	16.5	-
46 47	0	0	0	11 5.7	-
48	0	0	0	19.5	-
49 50	0	0	0	5 2.2	0.25
51	0	0	0	4.7	-
52 53	0	0	0	4.4 10.4	-
54	0	0	0	2.3	-
55 56	0	0	0	5.5 18.5	-
57	0	0	0	6.6	-
58 59	0	0	0	13 6.9	-
60	0	0	0	9.5	0.25
61 62	0	0	0	2.4 4.7	-
63	0	0	0	7.3	
64 65	0	0	0	6 6.9	-
66	0	0	0	6.5	
67 68	0	0	0	15.5 5.3	-
69	0	0	0	4.2	-
70 71	0	0	0	9.3 1.7	0
72	0	0	0	10.5	-
73 74	0	0	0	9.6 4	-
75	0	0	0	18.5	-
76 77	0	0	0	5.5	-
78	0	0	0	1.3 0.2	-
79 80	0	0	0	8.6 25	- 0.5
81	0	0	0	3.7	-
82 83	0	0	0	7.9 5.2	-
84	0	0	0	5.5	-
85 86	0	0	0	9.6 20	
87	0	0	0	9.4	-
88 89	0	0	0	1.6 3.8	-
90	0	0	0	9.2	0.75
91 92	0	0	0	2.9 20	-
93	0	0	0	4.9	-
94	0	0	0	7.2	-
95 96	0	0	0	20 4.9	-
97	0	0	0	23	-
98 99	0	0	0	1.5 3.1	<u>-</u>
100	0	0	0	15.2	0.5
Average Cic Cip and Embed =	0.00	0.00	0.00	8.451	0.33
				0.00	
	lcite Index (CI) =	-		0.00	

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

pterriber 2022		RG_FI						
Pebble 1	Concreted Status	9/10/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm) 8.5	Embeddedness (%)			
2	0	0	0	22	-			
3 4	0	0	0	9 1.4	-			
5 6	0	0	0	11 38.5	-			
7	0	0	0	23	-			
8	0	0	0	10 15.5	-			
10 11	0	0	0	10.7 11.8	0			
12	0	0	0	20	-			
13 14	0	0	0	9.5 11.8	-			
15 16	0	0	0	4.8 31	-			
17	0	0	0	11.2	<u>-</u> -			
18 19	0	0	0	9.9 1.1	-			
20	0	0	0	9.2	0			
21 22	0	0	0	9.1 14.5	-			
23 24	0	0	0	19 16	-			
25	0	0	0	31	-			
26 27	0	0	0	29 5.4	-			
28	0	0	0	3.6	-			
29 30	0	0	0	5.7 2.3	0			
31 32	0	0	0	5.4 15.5	-			
33	0	0	0	13.2	-			
34 35	0	0	0	15.6 12.1	-			
36 37	0	0	0	23.5 0.4	-			
38	0	0	0	16	-			
39 40	0	0	0	0.9 34	- 0.5			
41 42	0	0	0	15.3 7.4	-			
43	0	0	0	6.1	-			
44 45	0	0	0	3.2 5.4	-			
46 47	0	0	0	7.1 26	-			
48	0	0	0	8.5	-			
49 50	0	0	0	19 8.5	<u>-</u> 0			
51	0	0	0	50	-			
52 53	0	0	0	24.5 10.6	-			
54 55	0	0	0	7.4 22	-			
56	0	0	0	10.5	-			
57 58	0	0	0	22 12.2	-			
59 60	0	0	0	2.1 19	- 0			
61	0	0	0	11.1	-			
62 63	0	0	0	10.7 33	-			
64 65	0	0	0	9.2 18	-			
66	0	0	0	12.1	-			
67 68	0	0	0	29 14	<u> </u>			
69 70	0	0	0	12.5 4.8	- 0.25			
71	0	0	0	22	-			
72 73	0	0	0	26 28	-			
74 75	0	0	0	4.7 12.5	-			
76	0	0	0	2	-			
77 78	0	0	0	32 8	-			
79 80	0	0	0	21 7	- 0			
81	0	0	0	8.9	-			
82 83	0	0	0	24 11.5	-			
84 85	0	0	0	10.6 4.9	-			
86	0	0	0	12.4	-			
87 88	0	0	0	4.9	-			
89 90	0	0	0	20.5 26	- 0			
91	0	0	0	24	-			
92 93	0	0	0	16.8 1.4	- -			
94 95	0	0	0	16.3 4.4	-			
96	0	0	0	4.1	-			
97 98	0	0	0	33 2.3	-			
99 100	0	0	0	17.5 9	- 0.75			
Average	0.00	0.00	0.00	14.02	0.15			
Cic, Cip and Embed. = 0.00 0.00 14.02 0.1								
	cite Index (CI) =			0.00				
-								

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_F0 9/9/2			
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0	0.7 1	1	8.2 4.2	-
3 4	0	1 0.7	<u> </u>	3.3 8	-
5	0	0.6	1	26	-
<u>6</u> 7	0	0	0	6.2 3.6	-
8	0	0.3	1	30.5	-
9 10	0	0.2 0.5	<u>1</u> 1	3.5 14.5	0.25
11 12	0	0.3 0	1 0	8.5 6.6	-
13	0	0	0	3.6	
14 15	0	0	0	5.4 7.7	-
16	0	0	0	3.5	
17 18	0	0.3 0	1 0	15.6 2.6	-
19	0	0	0	6.7	<u>-</u>
20 21	0	0.3 0.7	1	8.5 14	0 -
22	0	0.2	1	7.8	<u>-</u>
23 24	0	0.3 0	1 0	6.9 0.3	-
25	0	0	0	0.5	-
26 27	0	0 0.2	0 1	1.4 7.5	-
28	0	0.2	0	0.5	-
29 30	0	0 0.3	0	1.7 44	- 0.5
31	0	0.4	1	21	0.5 -
32 33	0	0.1 0.8	1	11.2 7.9	-
34	0	0	0	8.5	-
35 36	0	0.1 0.7	1	3.5 28	-
36	0	0.8	1	14	-
38 39	0	0	0	4.7 1.7	-
40	0	0	0	5.2	- 0
41	0	0.1	1	3.5	-
42	0	0	0	0.7	
44	0	0.8	1	20	-
45 46	0	0 0.3	0 1	3.8 33	-
47	0	0	0	6.5	-
48 49	0	0.2 0	0	10.5 9	-
50	0	0	0	7.5	0
51 52	0	0.3 0	<u>1</u> 0	14 7.2	<u>-</u> -
53	0	0.2	1	37	-
54 55	0	0	0	0.3 4.8	-
56 57	0	0.4	1	17 10.8	-
58	0	0	0	10.8	-
59 60	0	0.1 0.2	1	15.6 7.5	- 0.25
61	0	0.3	1	41	-
62 63	0	0.5 0	1 0	33 8.5	-
64	0	0	0	9	<u>-</u>
65 66	0	0 0.1	0	10.9 13.5	-
67	0	0	0	4.5	<u> </u>
68 69	0	0	0	2.7 7.8	
70	0	0.3	1	9.1	0
71 72	0	0	0	4 21	-
73	0	0	0	0.3	-
74 75	0	0 0.4	0	1.5 15.3	<u>-</u> -
76	0	0	0	8.5	-
77 78	0	0.5 0.1	<u> </u>	28 9	<u>-</u>
79	0	0	0	4	-
80 81	0	0.1	0	8 9	0.75 -
82	0	0.3	1	32	-
83 84	0	0	0	3.2 3.3	<u>-</u> -
85	0	0.7	1	8.5 22	-
86 87	0	0.3 0	0	0.4	
88 89	0	0.4 0.5	1	9 6.4	-
90	1	0.5	1	8.2	0.5
91	0	0	0	8.4 20	-
92 93	0	0.4	0	6.3	-
50	0	0.6	1	10.6	-
94	4	0.4	1	7.1 0.8	-
	1 0	0	0	0.0	
94 95 96 97	0	0 0.6	1	30	-
94 95 96 97 98 99	0	0		30 4.4 6.5	
94 95 96 97 98 99	0 0 0	0 0.6 0.3	1	30 4.4	-
94 95 96 97 98 99	0 0 0 0	0 0.6 0.3 0.2	1 1 1	30 4.4 6.5	- - -

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

ptember 2022		RG_F				
Pebble 1	Concreted Status	9/9/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	
2	0	0 0.1	0 1	2.6	- -	
3 4	0	0	0	29 11	-	
5 6	0	0	0	10.5 3.1	-	
7	0	0.1	1	17	-	
8 9	0	0	0	11.5 7	-	
10	0	0	0	11	0.25	
11 12	0	0	0	3.5 5.2	-	
13 14	0	0	0	18.5 8.8	- -	
15	0	0.2	1	17	-	
16 17	0	0	0	10 20.5	<u>-</u>	
18 19	0	0	0	5.5 6.5	-	
20	0	0	0	7.5	0	
21 22	0	0 0.1	0	3.7 22.5	= =	
23	0	0	0	6.9	-	
24 25	0	0	0	10.1 2.9	-	
26 27	0	0	0	5.2 8.1	-	
28	0	0	0	7.3		
29 30	0	0	0	7.2	0.75	
31 32	0	0 0.1	0	8.6 24.5	- -	
33	0	0	0	5.7	<u>-</u>	
34 35	0	0	0	4.5 3.7	-	
36	0	0	0	5.4	-	
37 38	0	0.1	1 0	8.2 9	-	
39 40	0	0	0	3.2 7.6	- 0.25	
41 42	0	0	0	8.3	-	
43	0	0	0	7.4	- -	
44 45	0	0	0	11 21	-	
46 47	0	0	0	9.5 9.7	-	
48	0	0	0	9.5	<u>-</u> -	
49 50	0	0	0	12.9 18.2	0.25	
51	0	0	0	5.2	-	
52 53	0	0 0.1	0	8.5 50	-	
54 55	0	0	0	5.7 7.5	-	
56 57	0	0	0	14.1 8.2	-	
58	0	0	0	12	-	
59 60	0	0	0	11.6 7.7	- 0	
61 62	0	0	0	5.9 8.5	-	
63	0	0.1	1	14.5	-	
64 65	0	0	0	7.7 10.5	-	
66 67	0	0	0	13.5 14	-	
68	0	0	0	8.2	-	
69 70	0	0	0	9.8 11	0.75	
71 72	0	0.1	1 0	17.5 13.2	-	
73	0	0	0	10.5	-	
74 75	0	0	0	25 10.2	-	
76 77	0	0	0	9.1 18	-	
78	0	0	0	13.8	-	
79 80	0	0	0	25 7.5	- 0	
81 82	0	0.1	1 0	22 19.3	-	
83 84	0	0	0	10.2	-	
85	0	0	0	14.1	-	
86 87	0	0	0	13.8 7.2	-	
88 89	0	0	0	45 8.9	-	
90	0	0	0	21	0.5	
91 92	0	0	0	8.3 14.2	-	
93 94	0	0	0	6.8 8.4	-	
95	0	0	0	6.5	-	
96 97	0	0	0	11.3 8.1	-	
98 99	0	0	0	6 8.8	-	
100	0	0	0	4.7	0	
Average Cic, Cip and Embed. =	0.00	0.01	0.10	11.421	0.28	
	cite Index (CI) =		<u> </u>	0.10		
	cite Index (CI) =			0.01		

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

pterriber 2022		RG_FO23-3 9/9/2022				
Pebble 1	Concreted Status	9/9/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm) 1.2	Embeddedness (%)	
2	0	0	0	15.5	-	
3 4	0	0	0	11.3 9.8	-	
5 6	0	0	0	5.2 5.7	-	
7	0	0	0	3.5	=	
8 9	0	0	0	5 2.5	-	
10	0	0	0	3.8	0	
11 12	0	0	0	2.9 12.5	-	
13 14	0	0 0	0	8.9 7.6	-	
15	0	0	0	12.9	-	
16 17	0	0	0	3.6 17	-	
18	0	0	0	28	-	
19 20	0	0	0	6.6 21	0.75	
21 22	0	0	0	8.9 5.6	-	
22	0	0	0	21.5	-	
24 25	0	0.1 0	1 0	27 19.5	-	
26	0	0	0	9.6	-	
27 28	0	0	0	13.6 9.5	-	
29	0	0	0	4.2	-	
30 31	0	0	0	5.7 22	0.25	
32 33	0	0	0	12.6 6	-	
34	0	0	0	0.3	<u>-</u>	
35 36	0	0	0	6.5 5.1	-	
37	0	0	0	3.2	-	
38 39	0	0	0	7.2 6.8	-	
40 41	0	0	0	5.2	0	
42	0	0	0	19.5	-	
43 44	0	0	0	4.5 6.2	-	
45	0	0	0	4.1	-	
46 47	0	0	0	2 15	-	
48	0	0	0	6	-	
49 50	0	0	0	5.6 1.4	0	
51 52	0	0 0	0	22 2.1	-	
53	0	0	0	4.5	-	
54 55	0	0	0	1.1 4.8	-	
56	0	0	0	3.5	-	
57 58	0	0	0	8.6 10.6	-	
59 60	0	0	0	8.4 20	- 0	
61	0	0	0	3.4	-	
62 63	0	0	0	12 5.5	<u>-</u>	
64	0	0	0	7.7	-	
65 66	0	0	0	4.1 20	-	
67 68	0	0	0	6.4 17.5	-	
69	0	0	0	15.2	-	
70 71	0	0	0	18 5.7	0.25 -	
72	0	0	0	5.6	-	
73 74	0	0	0	18.2 2.6	-	
75 76	0	0	0	5.3 15.5	-	
77	0	0	0	22	- -	
78 79	0	0	0	20 5	-	
80	0	0	0	32	0.25	
81 82	0	0	0	7.9 19	-	
83 84	0	0	0	22 14.6	-	
85	0	0	0	13.6	-	
86 87	0	0	0	11.1 1.3	-	
88 89	0	0	0	10.6 5.6	-	
90	0	0	0	1.8	- 0	
91 92	0	0 0	0	3.2 13.2	-	
93	0	0	0	9.5	-	
94 95	0	0 0	0	0.3 6.4	-	
96	0	0	0	6.1	-	
97 98	0	0	0	5.3 9.4	-	
99 100	0	0	0	10 0.3	- 0.75	
Average						
Cic, Cip and Embed. =	0.00	0.00	0.01	9.513	0.23	
	cite Index (CI) =			0.01		
new Cal	one much (CI) =			V.VV		

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

Pebble	Concreted Status	9/9/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0	0	4.8	
3 4	0	0	0	38 17.5	-
5	0	0	0	4.5	-
<u>6</u> 7	0	0	0	3.2 36	-
8	0	0	0	8.7	-
9 10	0	0	0	10.7 8.8	0.25
11	0	0	0	11.1	-
12 13	0	0	0	15.5 2.4	-
14	0	0	0	5.3	-
15 16	0	0	0	21.5 1.2	-
17	0	0	0	27	-
18 19	0	0	0	7.5 6.2	<u>-</u>
20	0	0	0	0.7	0
21 22	0	0	0	6.5 5	<u>-</u>
23	0	0	0	33	-
24 25	0	0	0	5.5 9.2	<u>-</u>
26	0	0	0	0.7	-
27 28	0	0	0	7.9 4	<u>-</u>
29	0	0	0	10.5	=
30 31	0	0	0	30 4.2	0.5
32	0	0	0	3.8	<u>-</u>
33 34	0	0	0	18.5 19	-
35	0	0	0	1.4	- -
36 37	0	0	0	10.5 1.4	-
38	0	0	0	32	-
39 40	0	0	0	2.5 0.7	- 0
41	0	0	0	10.5	-
42 43	0	0	0	8.5 29.5	-
44	0	0	0	13	-
45 46	0	0	0	32 5.3	-
47	0	0	0	12.6	-
48 49	0	0	0	23 2.2	-
50	0	0	0	10.7	0.5
51 52	0	0	0	41 2.9	-
53	0	0	0	6.5	-
54 55	0	0	0	2.8 7.2	-
56	0	0	0	6.1	-
57 58	0	0	0	17 26	-
59	0	0	0	5.5	-
60 61	0	0	0	8.1 12.5	0
62	0	0	0	17.5	-
63 64	0	0	0	11.2 6	-
65	0	0	0	20	-
66 67	0	0	0	14 31	-
68	0	0	0	0.8	- -
69 70	0	0	0	2.7 32	- 0.25
71	0	0	0	3.1	0.25
72 73	0	0	0	1.4 2.3	-
74	0	0	0	9.8	-
75 76	0	0	0	30.5 5.3	- -
77	0	0	0	5.6	-
78 79	0	0	0	6 45	-
80	0	0	0	4	0
81 82	0	0	0	25 0.3	-
83	0	0	0	1.1	-
84 85	0	0	0	40 2.5	-
86	0	0	0	20	-
87 88	0	0	0	31.5 7	-
89	0	0	0	7.1	-
90 91	0	0	0	5.2 3.2	0.25 -
92	0	0	0	20.5	-
93 94	0	0	0	9.6 48	-
95	0	0	0	18.2	-
96 97	0	0	0	0.2 0.5	<u>-</u>
98	0	0	0	58	-
99 100	0	0	0	32 1.4	- 0
Average	0.00	0.00	0.00	13.103	0.18
Cic, Cip and Embed. =		0.00	0.00		V. 10
	cite Index (CI) =			0.00	
Hew Cal	(01) -	Ĺ			

Table G.2: Pebble Counts and Calcite Measurements at LCO LAEMP Benthic Invertebrate Sampling Locations, September 2022

		RG_F			
Pebble	Concreted Status	9/9/2 Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0	0	7.6 4.1	
3 4	0	0	0	6.7 4.1	-
5	0	0	0	6.6	-
6 7	0	0.2	0 1	5.5 11.2	-
8 9	0	0	0	6.4	-
10	0	0	0	22	0.5
11 12	0	0	0	26 1.7	ı
13	0	0	0	6.5	-
14 15	0	0 0.2	0	2.6 16.3	-
16	0	0	0	6	-
17 18	0	0	0	6.8 9.5	-
19	0	0	0	12.8	-
20 21	0	0	0	6.9 6.1	<u> </u>
22	0	0	0	11.8	-
23 24	0	0	0	9.1	-
25	0	0.3	1	27	-
26 27	0	0.3 0.1	1	25 39	-
28	0	0.1	1	44	- -
29 30	0	0 0.1	0	4.9 26.5	- 0.75
31	0	0	0	4.6	-
32 33	0	0	0	3 6.9	-
34	0	0	0	6.3	-
35 36	0	0	0	3.6 5.7	-
37	0	0	0	13	-
38 39	0	0	0	5.2 31	-
40	0	0	0	19	0
41 42	0	0	0	5.7 21.5	-
43	0	0	0	6.3	-
44 45	0	0.3 0	0	32 4	-
46	0	0	0	8	-
47 48	0	0	0	19.5 15.5	<u>-</u>
49	0	0	0	6.2	-
50 51	0	0	0	25 7.3	0.5 -
52 53	0	0	0	7 21	-
54	0	0	0	8.6	-
55 56	0	0	0	30 16.5	-
57	0	0	0	8.4	
58 59	0	0	0	19 4.9	-
60	0	0	0	19	0
61 62	0	0	0	11.7 3	-
63	0	0	0	9.3	-
64 65	0	0	0	4.1 7.3	-
66	0	0	0	3.5	-
67 68	0	0	0	23 8.7	-
69	0	0	0	6.2	-
70 71	0	0	0	1.6 14.5	0 -
72	0	0	0	12.8	-
73 74	0	0	0	5.4 26	<u>-</u>
75 76	0	0	0	7.3 28	-
77	0	0	0	5.4	-
78 79	0	0.2 0	1 0	45 12.2	-
80	0	0	0	5.2	0
81 82	0	0	0	14.5 14.7	-
83	0	0	0	19	-
84 85	0	0	0	10.5 7.1	-
86	0	0	0	14.3	-
87 88	0	0	0	4.6 12.2	-
89	0	0	0	12	-
90 91	0	0 0.2	0	6.6 24	0.25 -
92	0	0	0	9.5	-
93 94	0	0	0	4.3 13	-
95	0	0	0	15	-
96 97	0	0.3 0.2	1	22 37	-
98 99	0	0	0	16 10	-
100	0	0	0	2.6	- 0
Average	0.00	0.03	0.12	12.815	0.20
Cic, Cip and Embed. =		2.25	-		
	cite Index (CI) =			0.12	
	\/	l .			

Table G.3: Hess Sample Depth and Flow Information at Areas in Line Creek and Fording River, September 2022

Area	Replicate	Date	Associated K&S Sample	Easting	Northing	Depth (cm)	Flow (m/s)
	1		1	661072	5531421	27	0.333
	2		'	661077	5531422	20	0.352
RG_SLINE	3	16-Sep-22	2	661148	5531351	5531421 27 5531422 20	0.327
	4		2	661178	5531350	21	0.372
	5		3	661189	5531336	17	0.367
	1		4	662087	5538375	24	0.375
	2		1	662094	5538379	19	0.360
RG_LI24	Replicate Date K&S Sample Easting Northing Depth (cm)	0.372					
	4		2	662193	5538392	531421 27 0.33 531422 20 0.35 531351 20 0.37 531350 21 0.37 531336 17 0.36 538375 24 0.37 538379 19 0.36 538405 17 0.37 538392 17 0.35 531717 30 0.48 531721 27 0.42 531739 22 0.49 531753 29 0.41 531778 21 0.42 531830 20 0.43 531851 24 0.49 530519 20 0.32 530581 20 0.37 530384 19 0.37 530669 17 0.36 530678 17 0.36 530678 17 0.35 530741 17 0.35	0.350
	5		3	661072 5531421 27 661077 5531422 20 661148 5531351 20 661178 5531350 21 661189 5531336 17 662087 5538375 24 662094 5538379 19 662172 5538405 17 662193 5538392 17 662200 5538387 22 659850 5531717 30 659857 5531721 27 659871 5531739 22 659880 5531753 29 659891 5531773 26 659894 5531773 26 659939 5531830 20 659940 5531851 24 659945 5531856 19 659259 5530519 20 659258 5530528 19 659300 5530384 19 659321 5530625 25 <td< td=""><td>22</td><td>0.363</td></td<>	22	0.363	
	1	8-Sep-22	1	659850	5531717	30	0.486
	2			659857	5531721	27	0.422
	3			659871	5531739	22	0.494
	4			659880	5531753	29	0.415
DC 111.02	5		2	659891	5531773	26	0.428
RG_LILC3	6		2	659894	5531778	21	0.428
	7		1 661072 5531421 27 661077 5531422 20 2 661148 5531351 20 3 661178 5531350 21 661189 5531336 17 1 662087 5538375 24 662094 5538379 19 2 662172 5538405 17 3 662193 5538392 17 662200 5538387 22 659850 5531717 30 659857 5531721 27 659871 5531739 22 659880 5531753 29 2 659891 5531773 26 659894 5531773 26 659949 5531830 20 659940 5531834 21 659945 5531856 19 1 659259 5530519 20 659258 5530528 19 2 659293 553084 19 3 659321 5530625 <	659927	5531830	20	0.430
	8			659939	5531834	21	0.436
	9			0.496			
	10			659945	5531856	19	0.491
	1		1	659259	5530519	20	0.326
	2			659258	5530528	19	0.373
	3	13-Sep-22	2	659293	5530581	20	0.373
	4		2	659300	5530384	19	0.331
	5		2	659321	5530625	25	0.323
RG_LIDSL	6		3	659317	5530616	21	0.409
	7	14-Sep-22	4	659342	5530669	17	0.307
	8		4	659340	5530678	17	0.371
	9		5	659370	5530741	17	0.355
	10			659362	5530732	17	0.386

Table G.4: Supporting Measures Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling for LCO LAEMP, September 2022

040	tion Bounnatous	Refe	rence				Mine-E	xposed			
Sta	tion Parameters	RG_SLINE	RG_LI24	RG_LCUT	RG_LILC3	RG_LISP24	RG_LIDSL	RG_LIDCOM	RG_LI8	RG_FRUL	RG_FO23
	Date	16-Sep-22	17-Sep-22	15-Sep-22	8-Sep-22	14-Sep-22	13-Sep-22	12-Sep-22	17-Sep-22	10-Sep-22	9-Sep-22
	Easting	661080	662084	660113	659849	659673	659257	658173	655450	654518	652769
	Northing	5531418	5538370	5532141	5531716	5531169	5530530	5529829	5528950	5530129	5528294
Station 1	Number of Jars	1	1	1	3	1	1	1	1	1	1
	Total Kick Distance (m)	24	20	16	20	24	22	18	30	16	18
	Full Transect (Yes / No)	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No
	Number of Transects	7	5	7	2.5	3	1.5	6	3	2	2.5
	Date	16-Sep-22	17-Sep-22	15-Sep-22	8-Sep-22	-	13-Sep-22	-	17-Sep-22	10-Sep-22	9-Sep-22
	Easting	661132	662165	660108	659893	-	659288	-	655492	654549	652856
	Northing	5531380	5538410	5532155	5531779	-	5530577	-	5528892	5530169	5528378
Station 2	Number of Jars	1	1	1	2	-	1	-	1	1	1
	Total Kick Distance (m)	15	15	20	32	-	34	-	36	22	16
	Full Transect (Yes / No)	No	Yes	Yes	Yes	-	Yes	-	Yes	No	No
	Number of Transects	4	6	4	4	-	2.5	-	3	3.5	2.5
	Date	16-Sep-22	17-Sep-22	15-Sep-22	8-Sep-22	-	13-Sep-22	-	17-Sep-22	10-Sep-22	9-Sep-22
	Easting	661191	662204	660104	659926	-	659321	-	655570	654548	652950
	Northing	5531337	5538393	5532170	5531830	-	5530626	-	5528837	5530252	5528537
Station 3	Number of Jars	1	1	1	2	-	1	-	1	1	1
	Total Kick Distance (m)	24	18	20	20	-	32	-	22	24	20
	Full Transect (Yes / No)	Yes	Yes	No	Yes	-	Yes	-	Yes	No	No
	Number of Transects	4	6	7	3	-	4	-	2	4	4
	Date	-	-	-	-	-	14-Sep-22	-	-	-	9-Sep-22
	Easting	-	-	-	-	-	659345	-	-	-	652929
	Northing	-	-	-	-	-	5530663	-	-	-	5528648
Station 4	Number of Jars	-	-	-	-	-	1	-	-	-	1
	Total Kick Distance (m)	-	-	-	-	-	18	-	-	-	25
	Full Transect (Yes / No)	-	-	-	-	-	Yes	-	-	-	No
	Number of Transects	-	-	-	-	-	2.5	-	-	-	4
	Date	-	-	-	-	-	14-Sep-22	-	-	-	9-Sep-22
	Easting	-	-	-	-	-	659365	-	-	-	652933
	Northing	-	-	-	-	-	5530726	-	-	-	5528766
Station 5	Number of Jars	-	-	-	-	-	1	-	-	-	1
	Total Kick Distance (m)	-	-	-	-	-	18	-	-	-	25
	Full Transect (Yes / No)	-	-	-	-	-	Yes	-	-	-	No
	Number of Transects	-	-	-	-	-	2	-	-	-	1

Table G.5: Depth and Velocity Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at Line Creek and Fording River, September 2022

RG SLINE			Replicate	1	2	3	4	5	Mean
Velocity (m/s)				SLINE					
Bankfull Width (m)			Depth (cm)	23	26	26	22	20	23
Wetted Width (m)			Velocity (m/s)	0.226	0.269	0.231	0.699	0.279	0.341
Bankfull-Wetted Depth (cm)		1	Bankfull Width (m)						-
Depth (cm)		Depth (cm)	-						
Velocity (m/s) 0.399 0.761 0.298 0.334 0.163 0.391			Bankfull-Wetted Depth (cm)			40			-
Wetted Wild (III) Bankfull-Wetted Depth (cm) 14 26 36 23 16 23 23 24 29 20 20 20 20 20 20 20	æ		Depth (cm)	37	17	16	7	14	18
Wetted Wild (III) Bankfull-Wetted Depth (cm) 14 26 36 23 16 23 23 24 29 20 20 20 20 20 20 20	enc		Velocity (m/s)	0.399	0.761	0.298	0.334	0.163	0.391
Wetted Wild (III) Bankfull-Wetted Depth (cm) 14 26 36 23 16 23 23 24 29 20 20 20 20 20 20 20	efer	2	Bankfull Width (m)		ļ	8.76	ļ		
Depth (cm)	Ϋ́		Wetted Width (m)			6.64			-
Velocity (m/s)			Bankfull-Wetted Depth (cm)			-			
Bankfull Width (m) 6.97 - -			Depth (cm)	14	26	36	23	16	23
Wetted Width (m) S.70 -			Velocity (m/s)	0.388	0.367	0.446	0.306	0.468	0.395
Bankfull-Wetted Depth (cm)		3	Bankfull Width (m)		ļ	6.97	ļ		-
Depth (cm)			Wetted Width (m)			5.70			-
Depth (cm)			Bankfull-Wetted Depth (cm)			-			-
Velocity (m/s)			RG	_LI24				<u>'</u>	
1 Bankfull Width (m)			Depth (cm)	7	14	18	9	7	11
Wetted Width (m) S.25 S.			Velocity (m/s)	0.071	0.184	0.272	0.253	0.036	0.163
Bankfull-Wetted Depth (cm)		1	Bankfull Width (m)		ļ	6.75	ļ		-
Depth (cm)			Wetted Width (m)			5.25			-
Velocity (m/s)			Bankfull-Wetted Depth (cm)	16					-
Bankfull-Wetted Depth (cm)	φ		Depth (cm)	14	10	15	24	19	16
Bankfull-Wetted Depth (cm)	enc		Velocity (m/s)	0.147	0.273	0.370	0.705	0.504	0.400
Bankfull-Wetted Depth (cm)	er	2	Bankfull Width (m)			11.00			
Depth (cm)	Ϋ́		Wetted Width (m)			6.20			-
Velocity (m/s) 0.361 0.182 0.561 0.034 0.167 0.261			Bankfull-Wetted Depth (cm)			-			-
Bankfull Width (m) 7.30 -			Depth (cm)	17	22	15	14	13	16
Wetted Width (m) 3.10 -			Velocity (m/s)	0.361	0.182	0.561	0.034	0.167	0.261
Bankfull-Wetted Depth (cm) - -		3	Bankfull Width (m)			7.30			-
RG_LCUT Depth (cm) 30 28 31 22 21 26 Velocity (m/s) 0.947 0.801 0.793 0.449 0.860 0.770 Bankfull Width (m) 8.8 -			Wetted Width (m)			3.10			-
Depth (cm) 30 28 31 22 21 26			Bankfull-Wetted Depth (cm)			-		20 0.279 14 0.163 16 0.468 7 0.036 19 0.504 13 0.167 21 0.860 26 0.137	-
Velocity (m/s) 0.947 0.801 0.793 0.449 0.860 0.770			RG_	LCUT					
1 Bankfull Width (m)			Depth (cm)	30	28	31	22	21	26
Wetted Width (m) 29 -			Velocity (m/s)	0.947	0.801	0.793	0.449	0.860	0.770
Bankfull-Wetted Depth (cm) 29 -		1	Bankfull Width (m)			8.8			-
Depth (cm) 34 36 27 23 26 29			Wetted Width (m)			4.5			-
Bankfull-Wetted Depth (cm) - - -	_		Bankfull-Wetted Depth (cm)			29			-
Bankfull-Wetted Depth (cm) - - -	sec		Depth (cm)	34	36	27	23	26	29
Bankfull-Wetted Depth (cm) - - -	odx		Velocity (m/s)	0.386	0.747	0.614	0.439	0.137	0.465
Bankfull-Wetted Depth (cm) - - -	<u>ا</u> ق	2	Bankfull Width (m)			7.21			-
Bankfull-Wetted Depth (cm) - - -	/line		Wetted Width (m)			6.95			-
Velocity (m/s) 0.703 0.555 0.610 0.716 0.222 0.561	_		Bankfull-Wetted Depth (cm)			-			-
			Depth (cm)	23	23	21	13	20	20
Double III Models (m)			Velocity (m/s)	0.703	0.555	0.610	0.716	0.222	0.561
S Banktuli vviatn (m) 8.13 -		3	Bankfull Width (m)			8.13			-
Wetted Width (m) 7.82 -			Wetted Width (m)			7.82			-
Bankfull-Wetted Depth (cm)			Bankfull-Wetted Depth (cm)			-			-

Table G.5: Depth and Velocity Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at Line Creek and Fording River, September 2022

		Replicate	1	2	3	4	5	Mean
		RG_	LILC3					
		Depth (cm)	34	28	20	16	20	24
		Velocity (m/s)	0.613	1.528	1.683	0.997	0.672	1.099
	1	Bankfull Width (m)	8.70					-
		Wetted Width (m)	7.16					-
_		Bankfull-Wetted Depth (cm)			-			
Mine-Exposed		Depth (cm)	24	32	37	31	32	31
od x		Velocity (m/s)	0.121	0.574	0.648	0.713	0.767	0.565
Ή	2	Bankfull Width (m)			7.40			
/ine		Wetted Width (m)			6.35			
_		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	15	10	22	37	33	23
		Velocity (m/s)	0.925	0.591	0.567	0.943	0.705	0.746
	3	Bankfull Width (m)		ļ	8.20	ļ		
		Wetted Width (m)			8.05			-
		Bankfull-Wetted Depth (cm)			0.25			
_		RG_I	LISP24					
Mine-Exposed		Depth (cm)	32	37	30	34	24	31
od x		Velocity (m/s)	0.442	0.876	0.553	0.684	0.282	0.567
Ή	1	Bankfull Width (m)			10.90			
/ine		RG LILC3 Septh (cm)						
_		Bankfull-Wetted Depth (cm)			25			-
		RG_	LIDSL					
		Depth (cm)	36	28	27	20	15	25
		Velocity (m/s)	0.382	0.694	0.598	0.609	0.893	0.635
	1	Bankfull Width (m)			12.25			
		Wetted Width (m)			11.95			-
		Bankfull-Wetted Depth (cm)			26			-
		Depth (cm)	29	33	25	32	13	26
		Velocity (m/s)	0.255	0.678	0.553	0.751	0.187	0.485
	2	Bankfull Width (m)			15.25		32 0.767 33 0.705 24 0.282 15 0.893 0.187 22 0.476	-
		Wetted Width (m)			15.20			-
~		Bankfull-Wetted Depth (cm)			-			-
Mine-Exposed		Depth (cm)	35	41	42	41	22	36
хрс		Velocity (m/s)	0.708	1.028		0.587	0.476	0.651
ө-Е	3	Bankfull Width (m)						-
Ä		Wetted Width (m)			7.40			-
_		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	31	41	36	32	26	33
		Velocity (m/s)	0.434	0.637	l	0.555	0.704	0.546
	4	Bankfull Width (m)						-
		Wetted Width (m)			9.55			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	31	26	44	26	34	32
		Velocity (m/s)	0.372	0.795	0.685	0.978	0.732	0.712
	5	Bankfull Width (m)			10.10			-
		Wetted Width (m)			9.40			-
		Bankfull-Wetted Depth (cm)			-			-

Table G.5: Depth and Velocity Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at Line Creek and Fording River, September 2022

		Replicate	1	2	3	4	5	Mean
_		RG_L	IDCOM	1	1	1		
Mine-Exposed		Depth (cm)	35	32	17	33	31	30
odx		Velocity (m/s)	0.439	0.401	0.749	0.595	0.612	0.559
ΗÛ	1	Bankfull Width (m)			13.35			-
/line		Wetted Width (m)			12.80			-
~		Bankfull-Wetted Depth (cm)			48			-
		RO	S_LI8					
		Depth (cm)	44	39	18	27	21	30
		Velocity (m/s)	0.879	0.702	0.715	0.882	1.140	0.864
	1	Bankfull Width (m)	13.20					-
		Wetted Width (m)			10.50			
-		Bankfull-Wetted Depth (cm)			38			-
Mine-Exposed		Depth (cm)	19	21	24	16	17	19
σx		Velocity (m/s)	0.635	1.305	0.362	0.451	0.847	0.720
Ф	2	Bankfull Width (m)			12.45			-
٩		Wetted Width (m)			11.50			-
_		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	23	25	25	32	29	27
		Velocity (m/s)	0.545	0.788	0.901	0.611	0.638	0.697
	3	Bankfull Width (m)			15.10			-
		Wetted Width (m)			12.70			-
		Bankfull-Wetted Depth (cm)			-			-
		-	FRUL					
		Depth (cm)	16	18	16	26	36	22
		Velocity (m/s)	0.668	0.742	0.775	0.803	0.613	0.720
	1	Bankfull Width (m)	(m)	-				
		Wetted Width (m)			19.3			-
-		Bankfull-Wetted Depth (cm)			-			-
Mine-Exposed		Depth (cm)	12	16		26	38	23
ž		Velocity (m/s)	0.366	0.548	l	0.764	0.824	0.633
е-Е	2	Bankfull Width (m)						-
Ā		Wetted Width (m)						-
		Bankfull-Wetted Depth (cm)		ı		r		-
		Depth (cm)		26			39	35
		Velocity (m/s)	0.511	1.038		0.583	0.626	0.699
	3	Bankfull Width (m) 17.1				-		
		Wetted Width (m)			14.3			-
		Bankfull-Wetted Depth (cm)			-			-

Table G.5: Depth and Velocity Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at Line Creek and Fording River, September 2022

		Replicate	1	2	3	4	5	Mean	
		RG_	FO23						
		Depth (cm)		18	23	24	30	23	
		Velocity (m/s)	0.131	0.244	0.418	0.380	0.485	0.332	
	1	Bankfull Width (m)			26.6			-	
		Wetted Width (m)			24.8			-	
		Bankfull-Wetted Depth (cm)			24			-	
		Depth (cm)	27	33	28	25	33	29	
		Velocity (m/s)	0.475	0.429	0.516	0.706	0.680	0.561	
	2	Bankfull Width (m)			28.2			-	
	Wetted Width (m)				27.2			-	
-		Bankfull-Wetted Depth (cm)			-			-	
Mine-Exposed		Depth (cm)	32	25	27	29	27	28	
xbc		Velocity (m/s)	0.636	0.693	0.553	0.844	0.725	0.690	
ө- Е	3	Bankfull Width (m)			-				
۸in		Wetted Width (m)		-					
		Bankfull-Wetted Depth (cm)		-					
		Depth (cm)	17	21	29	45	53	33	
		Velocity (m/s)	0.223	0.293	0.763 18.9	0.658	0.864	0.560	
	4	Bankfull Width (m)		-					
		Wetted Width (m)		17.8					
		Bankfull-Wetted Depth (cm)			-			-	
		Depth (cm)	16	25	14	19	16	18	
		Velocity (m/s)	0.354	0.628	0.444	0.386	0.451	0.453	
	5	Bankfull Width (m)		26.5					
		Wetted Width (m)			24.3			-	
		Bankfull-Wetted Depth (cm)			-			-	

Table G.6: Habitat Information Associated with Mine-exposed and Reference Areas Sampled during the Benthic Invertebrate Survey for LCO LAEMP, September 2022

Station ID		Refe	rence	Mine-Exposed									
อเสนอก เม		RG_LI24	RG_SLINE	RG_LCUT	RG_LILC3	RG_LISP24	RG_LIDSL	RG_LIDCOM	RG_LI8	RG_FRUL	RG_FO23		
Waterbody		Line Creek	South Line Creek	Line Creek	Line Creek	Line Creek	Line Creek	Line Creek	Line Creek	Fording River	Fording River		
Date Sampled		17-Sep-22	16-Sep-22	15-Sep-22	12-Sep-22	15-Sep-22	13-Sep-22	14-Sep-22	17-Sep-22	10-Sep-22	10-Sep-22		
Weather		Cool, Overcast	-	Warm, Overcast	Smoky, Cool	Clear, Cool	Overcast, Smoky, Cool	Overcast, Cool	Clear, Cool	Clear, Cool	Cold, Partly Cloudy		
Air Temperatu	re (°C)	10	-	15	10	-	10	10	-	5	-		
Habitat Chara	acteristics					•	•		•		•		
Surrounding L	and Use	-	-	Mining	Mining	Mining	Mining	Mining	Mining	Logging, Mining	Mining		
Length of Rea	ch Assessed (m)	30	50	30	50	100	100	50	100	100	-		
	% Bedrock	0	0	0	0	0	0	0	0	0	0		
	% Boulder	25	20	5	20	20	10	25	15	20	40		
Outs atmata	% Cobble	40	50	30	60	40	70	55	55	50	30		
Substrate	% Gravel	25	20	60	15	25	15	10	20	20	20		
	% Sand	10	5	5	5	10	5	5	5	5	10		
	% Fines	0	5	0	0	5	0	5	5	5	0		
Water Clarity		Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear		
Water Colour		Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless		
Vegetation			•		•	•	•			•	•		
Canopy Cove	rage (%)	51-75	26-50	1-25	0	1-25	1-25	1-25	26-50	1-25	1-25		
Streamside Ve	egetation	Coniferous trees, Ferns/Grasses, Shrubs	Coniferous trees, Ferns/Grasses	Coniferous trees, Ferns/Grasses, Shrubs	Coniferous trees, Ferns/Grasses	Coniferous trees, Ferns/Grasses, Shrubs	Coniferous trees, Ferns/Grasses	Coniferous trees, Ferns/Grasses	Coniferous trees, Deciduous trees, Shrubs	Coniferous trees, Shrubs	Coniferous trees, Ferns/Grasses		
Dominant Veg	etation	Coniferous trees	Coniferous trees	Shrubs	Ferns/Grass	Ferns/Grass	Coniferous trees	Ferns/Grass	Coniferous trees	Coniferous trees	Ferns/Grass		
Macrophyte C	overage (%)	0	0	0	1-25	0	0	0	0	0	0		
Dominant Mad	crophyte	-	-	-	Bryophytes	-	-	-	-	-	-		
Periphyton Co	ver (1-5)	2, 2, 2, 2, 2	2, 2, 2, 2, 2	3, 3, 3, 2, 3	3, 3, 3, 3, 4	2, 2, 3, 3, 3	2, 2, 3, 2, 2	3, 3, 3, 3, 3	3, 2, 2, 2, 2	1, 1, 2, 1, 1	2, 2, 2, 2, 2		
Comments		-	-	-	-	-	-	-	-	-	-		

Note: "-" indicates no data available.

APPENDIX H LABORATORY REPORTS

WATER CHEMISTRY

ALS Laboratory Report CG2205126 (Finalized May 11, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2205126

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAMS

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022_APR_ALS

Sampler : ---Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800
Date Samples Received : 03-May-2022 11:10

Date Analysis Commenced : 03-May-2022

Issue Date : 11-May-2022 08:51

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Delson Resende	Lab Assistant	Metals, Burnaby, British Columbia
Dwayne Bennett	Supervisor - Inorganic	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Oscar Ruiz	Lab Assistant	Inorganics, Calgary, Alberta
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand	·	Inorganics, Calgary, Alberta
Zakieh Lalonde		Inorganics, Calgary, Alberta

Page : 2 of 6 Work Order : CG2205126 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Description
Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
Conductivity.
Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
colour, turbidity).
Reported result verified by repeat analysis.

>: greater than.

Page : 3 of 6
Work Order : CG2205126
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water Client sample ID (Matrix: Water)						RG_LCUT_WS_ LAEMP_LCO_2 022-04_NP	RG_LILC3_WS_ LAEMP_LCO_2 022-04_NP	RG_FBLANK_W S_LAEMP_LCO _2022-04_NP	
			Client samp	oling date / time	02-May-2022 10:20	02-May-2022 13:00	02-May-2022 14:30	02-May-2022 08:00	
Analyte	CAS Number	Method	LOR	Unit	CG2205126-001	CG2205126-002	CG2205126-003	CG2205126-004	
					Result	Result	Result	Result	
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	5.6	3.1	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	182	210	218	<1.0	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	222	256	266	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	8.8	3.8	7.6	<1.0	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	5.3	2.3	4.6	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	191	214	226	<1.0	
conductivity		E100	2.0	μS/cm	827	1050	1120	<2.0	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	439	564	594	<0.50	
oxidation-reduction potential [ORP]		E125	0.10	mV	448	452	445	505	
pH		E108	0.10	pH units	8.40	8.31	8.35	5.74	
solids, total dissolved [TDS]		E162	10	mg/L	579	824	899	<10	
solids, total suspended [TSS]		E160-L	1.0	mg/L	7.9	1.8	2.0	<1.0	
turbidity		E121	0.10	NTU	2.32	0.70	0.50	<0.10	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.250 DLDS	<0.250 DLDS	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	3.22	10.0	16.8	<0.10	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.145	0.180	0.179	<0.020	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.801	1.09	0.984	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	13.4	16.0	14.6	<0.0050	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0041	<0.0050 DLDS	<0.0050 DLDS	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	0.0026	0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0107	0.0033	0.0044	<0.0020	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	230	352	384	<0.30	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.26	<0.50	0.50	<0.50	
carbon, total organic [TOC]		E355-L	0.50	mg/L	2.10	<0.50	0.50	<0.50	

Page : 4 of 6
Work Order : CG2205126
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water Client sample ID (Matrix: Water)						RG_LCUT_WS_ LAEMP_LCO_2 022-04_NP	RG_LILC3_WS_ LAEMP_LCO_2 022-04_NP	RG_FBLANK_W S_LAEMP_LCO _2022-04_NP	
			Client samp	ling date / time	02-May-2022 10:20	02-May-2022 13:00	02-May-2022 14:30	02-May-2022 08:00	
Analyte	CAS Number	Method	LOR	Unit	CG2205126-001	CG2205126-002	CG2205126-003	CG2205126-004	
					Result	Result	Result	Result	
Ion Balance									
anion sum		EC101	0.10	meq/L	9.66	13.0	14.0	<0.10	
cation sum		EC101	0.10	meq/L	8.93	11.7	12.4	<0.10	
ion balance (cations/anions)		EC101	0.010	%	92.4	90.0	88.6	100	
ion balance (APHA)		EC101	0.010	%	3.93	5.26	6.06	<0.010	
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0537	0.0053	0.0187	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00015	0.00038	0.00033	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00018	0.00020	0.00019	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.111	0.0498	0.0534	0.00014 RRV	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.010	0.019	0.018	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0260	0.359	0.229	<0.0050	
calcium, total	7440-70-2	E420	0.050	mg/L	116	141	142	<0.050	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00021	0.00017	0.00018	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	0.11	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.092	<0.010	0.045	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000063	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0303	0.0762	0.0691	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	52.7	66.5	71.1	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00640	0.00021	0.0164	<0.00010	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	0.00082	<0.00050	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00156	0.00219	0.00316	0.000089 RRV	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00190	0.0108	0.00840	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	1.49	1.96	1.95	<0.050	
selenium, total	7782-49-2	E420	0.050	μg/L	52.8	71.9	64.8	<0.050	
silicon, total	7440-21-3	E420	0.10	mg/L	2.23	2.31	2.20	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	3.17	11.0	11.4	<0.050	

Page : 5 of 6
Work Order : CG2205126
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_FRUL_WS_ LAEMP_LCO_2 022-04_NP	RG_LCUT_WS_ LAEMP_LCO_2 022-04_NP	RG_LILC3_WS_ LAEMP_LCO_2 022-04_NP	RG_FBLANK_W S_LAEMP_LCO _2022-04_NP	
			Client samp.	ling date / time	02-May-2022 10:20	02-May-2022 13:00	02-May-2022 14:30	02-May-2022 08:00	
Analyte	CAS Number	Method	LOR	Unit	CG2205126-001 Result	CG2205126-002 Result	CG2205126-003 Result	CG2205126-004 Result	
Total Metals					Result	Result	Result	Result	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.160	0.254	0.249	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	83.9	122	133	<0.50	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	0.000014	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00090 DLM	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00275	0.00516	0.00515	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00070	0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0128	0.0096	<0.0030	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	<0.0010	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00013	0.00036	0.00033	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00010	0.00013	0.00011	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0919	0.0471	0.0512	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.016	0.016	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0231	0.321	0.215	<0.0050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	99.5	128	133	<0.050	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00014	0.00016	0.00017	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00023	0.00036	0.00031	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0256	0.0707	0.0659	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	46.2	59.4	63.5	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00106	<0.00010	0.0106	<0.00010	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00157	0.00213	0.00304	<0.000050	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00156	0.0102	0.00788	<0.00050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.47	2.00	2.03	<0.050	

Page : 6 of 6
Work Order : CG2205126
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water Client sample ID					RG_FRUL_WS_	RG_LCUT_WS_	RG_LILC3_WS_	RG_FBLANK_W	
(Matrix: Water)					LAEMP_LCO_2 022-04_NP	LAEMP_LCO_2 022-04_NP	LAEMP_LCO_2 022-04_NP	S_LAEMP_LCO _2022-04_NP	
			Client samp	ling date / time	02-May-2022 10:20	02-May-2022 13:00	02-May-2022 14:30	02-May-2022 08:00	
Analyte	CAS Number	Method	LOR	Unit	CG2205126-001	CG2205126-002	CG2205126-003	CG2205126-004	
					Result	Result	Result	Result	
Dissolved Metals									
selenium, dissolved	7782-49-2	E421	0.050	μg/L	53.6	75.2	68.0	<0.050	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.01	2.22	2.15	<0.050	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.88	9.77	10.5	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.142	0.230	0.231	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	78.6	116	128	<0.50	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	0.000015	0.000011	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00252	0.00481	0.00486	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	0.0127	0.0081	<0.0010	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : CG2205126 Page : 1 of 21

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Ave Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5
---Telephone : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAMS
 Date Samples Received
 : 03-May-2022 11:10

 PO
 : VPO00816101
 Issue Date
 : 11-May-2022 08:51

C-O-C number : REP LAEMP LCO 2022 APR ALS

Sampler : ---Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Telephone

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples ■ No Quality Control Sample Frequency Outliers occur.									

Page : 3 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: × =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E298	02-May-2022	04-May-2022				04-May-2022	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E298	02-May-2022	04-May-2022				04-May-2022	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E298	02-May-2022	04-May-2022				04-May-2022	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E298	02-May-2022	04-May-2022				04-May-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E235.Br-L	02-May-2022					03-May-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E235.Br-L	02-May-2022					03-May-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E235.Br-L	02-May-2022					03-May-2022	28 days	1 days	✓

 Page
 : 4 of 21

 Work Order
 : CG2205126

Client : Teck Coal Limited

atrix: Water	11-412	On man History Dock	F	rootion / D		aldation. • =	Holding time exce			
Analyte Group	Method	Sampling Date		raction / Pr		·	Anatori 5 i	Analys		
Container / Client Sample ID(s)			Preparation Date	Rec	Actual	Eval	Analysis Date	Rec	7 Times Actual	Eval
nions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	E005 B. I	00 Mars 0000					00.140000	00.1	4 1	
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E235.Br-L	02-May-2022					03-May-2022	28 days	1 days	✓
nions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	E005 OLL	00.140000						00.1		,
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E235.CI-L	02-May-2022					03-May-2022	28 days	1 days	✓
nions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	E005 011	00 M 0000					00 M 0000	00 4	4 -1	,
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E235.CI-L	02-May-2022					03-May-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	F005 011	20.14 2000						00.1		
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E235.CI-L	02-May-2022					03-May-2022	28 days	1 days	√
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E235.CI-L	02-May-2022					03-May-2022	28 days	1 days	√
									, .	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ult	ra Trace Level 0.001									
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E378-U	02-May-2022					03-May-2022	3 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ult	ra Trace Level 0.001									
HDPE RG FRUL WS LAEMP LCO 2022-04 NP	E378-U	02-May-2022					03-May-2022	3 days	1 days	✓
		,					,	,		
anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ult	ra Trace Level 0.001									
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E378-U	02-May-2022					03-May-2022	3 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ult	ra Trace Level 0.001									
HDPE RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E378-U	02-May-2022					03-May-2022	3 days	1 days	1
	2010-0	02 may-2022			-		00 May-2022	Jaays	. aays	

 Page
 : 5 of 21

 Work Order
 : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E235.F	02-May-2022					03-May-2022	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG FRUL WS LAEMP LCO 2022-04 NP	E235.F	02-May-2022					03-May-2022	28 days	1 days	✓
								,	1	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E235.F	02-May-2022					03-May-2022	28 days	1 days	✓
NO_E001_WO_E/IEIWI _E00_2022-04_IVI	2200.1	oz may zozz					oo may 2022	20 dayo	, dayo	
Anions and Nutrients : Fluoride in Water by IC										
HDPE	F225 F	02 May 2022					02 May 2022	20 daya	1 days	
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E235.F	02-May-2022					03-May-2022	28 days	1 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E235.NO3-L	02-May-2022					03-May-2022	3 days	1 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E235.NO3-L	02-May-2022					03-May-2022	3 days	1 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E235.NO3-L	02-May-2022					03-May-2022	3 days	1 days	✓
							-			
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG LILC3 WS LAEMP LCO 2022-04 NP	E235.NO3-L	02-May-2022					03-May-2022	3 days	1 days	✓
		22					, 2022	Jayo	,0	•
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE	E235.NO2-L	02-May-2022					03-May-2022	2 days	1 deve	√
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	EZ35.NUZ-L	02-iviay-2022					03-iviay-2022	3 days	1 days	*

 Page
 : 6 of 21

 Work Order
 : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Crown	Mathad	Committee Date	Eve	traction / Pr		aldation.	Holding time exceed	Analys		Triolaing Till
Analyte Group	Method	Sampling Date				First.	Augustusia Data			F1
Container / Client Sample ID(s)			Preparation Date	Rec	g Times Actual	Eval	Analysis Date	Rec	7 Times Actual	Eval
Anima and Nationa - Nitrite in Materials 10 (1 and 1 and 1)			Date	Nec	Actual			Nec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E235.NO2-L	02-May-2022					03-May-2022	3 days	1 days	1
							, ,	,	,	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										-
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E235.NO2-L	02-May-2022					03-May-2022	3 days	1 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E235.NO2-L	02-May-2022					03-May-2022	3 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E235.SO4	02-May-2022					03-May-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE	E005 004	00 May 2000					00.140000	00.1	4 1	
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E235.SO4	02-May-2022					03-May-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E235.SO4	02-May-2022					03-May-2022	28 days	1 days	√
110_E001_W0_E11EMII _E00_2022-04_111	2200.001	oz way zozz					oo may 2022	20 dayo	, dayo	
Anions and Nutrients : Sulfate in Water by IC										=
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E235.SO4	02-May-2022					03-May-2022	28 days	1 days	✓
							-	_		
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E318	02-May-2022	05-May-2022				05-May-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E318	02-May-2022	05-May-2022				05-May-2022	28 days	3 days	✓

Page : 7 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						raiuation. ^ –	Holding time exce	euance, •	– vviuiiii	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E318	02-May-2022	05-May-2022				05-May-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E318	02-May-2022	05-May-2022				05-May-2022	28 days	3 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E372-U	02-May-2022	05-May-2022				05-May-2022	28 days	3 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)							1			
Amber glass total (sulfuric acid) RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E372-U	02-May-2022	05-May-2022				05-May-2022	28 days	3 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E372-U	02-May-2022	05-May-2022				05-May-2022	28 days	3 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E372-U	02-May-2022	05-May-2022				05-May-2022	28 days	3 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	02-May-2022	09-May-2022				09-May-2022	180 days	7 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	02-May-2022	09-May-2022				09-May-2022	180 days	7 days	1
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	02-May-2022	09-May-2022				09-May-2022	180 days	7 days	✓

 Page
 : 8 of 21

 Work Order
 : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						raiuation. ^ –	Holding time exce	euance, •	– vviuiiii	nolaling Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	02-May-2022	09-May-2022				09-May-2022	180 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E509	02-May-2022	07-May-2022				07-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E509	02-May-2022	07-May-2022				07-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E509	02-May-2022	07-May-2022				07-May-2022	28 days	5 days	1
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E509	02-May-2022	07-May-2022				07-May-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E421	02-May-2022	09-May-2022				09-May-2022	180 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E421	02-May-2022	09-May-2022				09-May-2022	180 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E421	02-May-2022	09-May-2022				09-May-2022	180 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E421	02-May-2022	09-May-2022				09-May-2022	180 days	7 days	✓

 Page
 : 9 of 21

 Work Order
 : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

wattrx; water					⊏v	aluation. ^ – i	nolding time excee	euance , •	– vviti iii i	Holding Tilli
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E358-L	02-May-2022	04-May-2022				05-May-2022	28 days	3 days	✓
Organic / Inorganic Carbon: Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E358-L	02-May-2022	04-May-2022				05-May-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)	E358-L	02-May-2022	04-May-2022				05-May-2022	28 days	2 days	√
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E330-L	02-Way-2022	04-May-2022				05-May-2022	20 days	3 days	•
Comming (Incomming Contract District In all Comming Contract In Co	-1)									
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve Amber glass dissolved (sulfuric acid)	el) 						I			
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E358-L	02-May-2022	04-May-2022				05-May-2022	28 days	3 days	✓
· · · · · · · · · · · · · · · · · · ·			, ,					,		
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)									
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E355-L	02-May-2022	04-May-2022				05-May-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)									
Amber glass total (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E355-L	02-May-2022	04-May-2022				05-May-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion	on (Low Level)									
Amber glass total (sulfuric acid)	E255 I	00 May 2000	0.4.140000				05.140000	00.1	0.1	,
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E355-L	02-May-2022	04-May-2022				05-May-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)									
Amber glass total (sulfuric acid) RG LILC3 WS LAEMP LCO 2022-04 NP	E355-L	02-May-2022	04-May-2022				05-May-2022	28 days	3 days	√
1.0_LILOO_110_LALIVII _LOO_2022-04_141	2000-2	52-Way-2022	O F-IVILLY-ZOZZ				33-Way-2022	20 days	Judys	•
Physical Tests : Acidity by Titration										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E283	02-May-2022					04-May-2022	14 days	2 days	✓
								1		

 Page
 : 10 of 21

 Work Order
 : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						valuation. • -	Holding time exce	suarroc , ,	- vvicini	Tiolding Tilli
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Acidity by Titration										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E283	02-May-2022					04-May-2022	14 days	2 davs	✓
							,	,		
Physical Tests : Acidity by Titration								T	I	
HDPE	F202	02 May 2022					04 May 2000	44	0 -1	✓
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E283	02-May-2022					04-May-2022	14 days	2 days	•
Physical Tests : Acidity by Titration										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E283	02-May-2022					04-May-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE							1			
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E290	02-May-2022					03-May-2022	14 days	1 days	✓
NO_I BEANN_WO_EAENII _ECO_2022-04_NI	2200	02-Way-2022					00-Way-2022	1+ days	1 days	•
Physical Tests : Alkalinity Species by Titration	_			,						
HDPE										,
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E290	02-May-2022					03-May-2022	14 days	1 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E290	02-May-2022					03-May-2022	14 days	1 days	✓
Dhysical Tests - Alkalinity Cassias by Titustian										
Physical Tests : Alkalinity Species by Titration HDPE								I		
	E290	02-May-2022					03-May-2022	14 days	1 days	1
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	L230	02-Way-2022					03-Way-2022	14 days	1 uays	•
Physical Tests : Conductivity in Water										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E100	02-May-2022					03-May-2022	28 days	1 days	✓
Physical Tests : Conductivity in Water					<u> </u>	1			1	
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E100	02-May-2022					03-May-2022	28 days	1 davs	✓
		,					, ., ., <u>.</u>	, 5	,_	

Page : 11 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water		1 - " 1				aluation. × -	Tolding time exce			Tiolding Till
Analyte Group	Method	Sampling Date		traction / Pi				Analys		
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Physical Tests : Conductivity in Water										
HDPE RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E100	02-May-2022					03-May-2022	28 days	1 days	✓
Physical Tests : Conductivity in Water										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E100	02-May-2022					03-May-2022	28 days	1 days	✓
Physical Tests : ORP by Electrode										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E125	02-May-2022					09-May-2022	0.25 hrs	167 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E125	02-May-2022					09-May-2022	0.25 hrs	168 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E125	02-May-2022					09-May-2022	0.25 hrs	171 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E125	02-May-2022					09-May-2022	0.25 hrs	173 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E108	02-May-2022					03-May-2022	0.25 hrs	26 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E108	02-May-2022					03-May-2022	0.25 hrs	28 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E108	02-May-2022					03-May-2022	0.25 hrs	31 hrs	* EHTR-FM

Page : 12 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						aluation. • -	noiding time excee	cuarice ,	_ vvitiiii	i i lolulilig Till
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E108	02-May-2022					03-May-2022	0.25	33 hrs	*
								hrs		EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
RG FBLANK WS LAEMP LCO 2022-04 NP	E162	02-May-2022					07-May-2022	7 days	5 days	✓
		, ,					, ,	, -	,-	
Physical Tacks TD0 by Ossainacks										
Physical Tests : TDS by Gravimetry					I		I	I		
HDPE RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E162	02-May-2022					07-May-2022	7 days	5 days	✓
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E102	02-Way-2022					07-Way-2022	7 days	5 days	, v
Physical Tests : TDS by Gravimetry								1		
HDPE										,
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E162	02-May-2022					07-May-2022	7 days	5 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E162	02-May-2022					07-May-2022	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E160-L	02-May-2022					05-May-2022	7 days	3 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E160-L	02-May-2022					05-May-2022	7 days	3 days	✓
110_11101_110_111111_1100_111111		,					00	,	o aayo	
Physical Tests (Tools On the August 1998)										
Physical Tests : TSS by Gravimetry (Low Level)					1			<u> </u>		
HDPE	E160-L	02-May-2022					05-May-2022	7 days	3 days	✓
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E100-L	02-iviay-2022					UD-IVIAY-2022	7 days	o uays	"
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E160-L	02-May-2022					05-May-2022	7 days	3 days	✓

Page : 13 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						/aiuation. * =	Holding time exce	edance, v	- vvitiiiii	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E121	02-May-2022					03-May-2022	3 days	1 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E121	02-May-2022					03-May-2022	3 days	1 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E121	02-May-2022					03-May-2022	3 days	1 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E121	02-May-2022					03-May-2022	3 days	1 days	✓
		,					,			
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E420.Cr-L	02-May-2022					08-May-2022	180	6 days	✓
1.00. 22 11.00.10.10.10.10.10.10.10.10.10.10.10.1		, ,					,	days	,-	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E420.Cr-L	02-May-2022					08-May-2022	180	6 days	√
NO_1 NOL_NO_L LEM _E00_2022 01_N	2 :20:0: 2	02 2022					00	days	o uujo	
T (I M (I T (I O I O I O I O I O I O I O I O I O I								dayo		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG LCUT WS LAEMP LCO 2022-04 NP	E420.Cr-L	02-May-2022					08-May-2022	180	6 days	√
NG_EGG1_WG_EAEWIF_EGG_2022-04_NF	L420.01-L	02-Way-2022					00-Way-2022	days	0 days	•
								uays		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)	E420.Cr-L	02-May-2022					08-May-2022	400	6 days	√
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E420.CI-L	02-iviay-2022					00-May-2022	180	o days	•
								days		
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)							1			
Pre-cleaned amber glass - total (lab preserved)	F500 I	00.140000					07.140000	00.1	5 1	,
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP	E508-L	02-May-2022					07-May-2022	28 days	5 days	✓

Page : 14 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix. Water							riolaling time exce	, , , , , , , , , , , , , , , , , , ,		
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										,
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E508-L	02-May-2022					07-May-2022	28 days	5 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)	E500 I	00 May 2000					07.140000	00.1	5 1	,
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E508-L	02-May-2022					07-May-2022	28 days	5 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)	E508-L	02-May-2022					07-May-2022	28 days	E days	✓
RG_LILC3_WS_LAEMP_LCO_2022-04_NP	E008-L	02-May-2022					07-May-2022	28 days	5 days	•
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG FBLANK WS LAEMP LCO 2022-04 NP	E420	02-May-2022					08-May-2022	180	6 days	1
NG_I BLANN_WO_LALINIF_LOO_2022-04_NF	L420	02-Way-2022					00-Way-2022	days	0 days	·
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)	F.100									,
RG_FRUL_WS_LAEMP_LCO_2022-04_NP	E420	02-May-2022					08-May-2022	180	6 days	✓
Total Metals : Total Metals in Water by CRC ICPMS								days		
HDPE total (nitric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-04_NP	E420	02-May-2022					08-May-2022	180	6 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG LILC3 WS LAEMP LCO 2022-04 NP	E420	02-May-2022					08-May-2022	180	6 days	✓
NO_LILOO_WO_LALIVIF_LOO_2022-04_INF	L-720	02-Way-2022					00-111ay-2022	100	Juays	•

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

 Page
 : 15 of 21

 Work Order
 : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			С	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	476694	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	475939	1	11	9.0	5.0	✓
Ammonia by Fluorescence	E298	476756	1	20	5.0	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	475928	1	9	11.1	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	475929	1	9	11.1	5.0	1
Conductivity in Water	E100	475940	1	7	14.2	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	481808	1	18	5.5	5.0	1
Dissolved Mercury in Water by CVAAS	E509	480071	1	20	5.0	5.0	<u>√</u>
Dissolved Metals in Water by CRC ICPMS	E421	481809	1	18	5.5	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476697	1	18	5.5	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	476060	1	9	11.1	5.0	√
Fluoride in Water by IC	E235.F	475932	1	9	11.1	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	475930	1	9	11.1	5.0	<u>√</u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	475931	1	9	11.1	5.0	1
ORP by Electrode	E125	480110	1	20	5.0	5.0	1
pH by Meter	E108	475941	1	4	25.0	5.0	√
Sulfate in Water by IC	E235.SO4	475927	1	9	11.1	5.0	1
TDS by Gravimetry	E162	477329	1	20	5.0	5.0	<u>√</u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	480183	1	20	5.0	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	476736	1	20	5.0	5.0	1
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	480228	1	19	5.2	5.0	√
Total Metals in Water by CRC ICPMS	E420	480182	1	20	5.0	5.0	1
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	476698	1	18	5.5	5.0	<u>√</u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	476754	1	20	5.0	5.0	√
Turbidity by Nephelometry	E121	475914	1	9	11.1	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	476694	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	475939	1	11	9.0	5.0	1
Ammonia by Fluorescence	E298	476756	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	475928	1	9	11.1	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	475929	1	9	11.1	5.0	✓
Conductivity in Water	E100	475940	1	7	14.2	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	481808	1	18	5.5	5.0	1
Dissolved Mercury in Water by CVAAS	E509	480071	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	481809	1	18	5.5	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476697	1	18	5.5	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	476060	1	9	11.1	5.0	1

 Page
 : 16 of 21

 Work Order
 : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water

Fvaluation: × =	OC frequency	nutside s	necification.	\prime = OC fre	auency within	specification

Matrix: water		Evaluati	ion: × = QC trequ	ency outside sp	ecification; • =	QC frequency wit	nın specificatio	
Quality Control Sample Type				ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued								
Fluoride in Water by IC	E235.F	475932	1	9	11.1	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	475930	1	9	11.1	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	475931	1	9	11.1	5.0	✓	
ORP by Electrode	E125	480110	1	20	5.0	5.0	✓	
pH by Meter	E108	475941	1	4	25.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	475927	1	9	11.1	5.0	✓	
TDS by Gravimetry	E162	477329	1	20	5.0	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	480183	1	20	5.0	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	476736	1	20	5.0	5.0	✓	
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	480228	1	19	5.2	5.0	√	
Total Metals in Water by CRC ICPMS	E420	480182	1	20	5.0	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	476698	1	18	5.5	5.0	√	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	476754	1	20	5.0	5.0	✓	
TSS by Gravimetry (Low Level)	E160-L	477324	1	20	5.0	5.0	√	
Turbidity by Nephelometry	E121	475914	1	9	11.1	5.0	√	
Method Blanks (MB)								
Acidity by Titration	E283	476694	1	20	5.0	5.0	✓	
Alkalinity Species by Titration	E290	475939	1	11	9.0	5.0		
Ammonia by Fluorescence	E298	476756	1	20	5.0	5.0	<u> </u>	
Bromide in Water by IC (Low Level)	E235.Br-L	475928	1	9	11.1	5.0	<u> </u>	
Chloride in Water by IC (Low Level)	E235.CI-L	475929	1	9	11.1	5.0	<u> </u>	
Conductivity in Water	E100	475940	1	7	14.2	5.0		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	481808	1	18	5.5	5.0	<u> </u>	
Dissolved Mercury in Water by CVAAS	E509	480071	1	20	5.0	5.0	<u> </u>	
Dissolved Metals in Water by CRC ICPMS	E421	481809	1	18	5.5	5.0		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476697	1	18	5.5	5.0	<u> </u>	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	476060	1	9	11.1	5.0	<u> </u>	
Fluoride in Water by IC	E235.F	475932	1	9	11.1	5.0		
Nitrate in Water by IC (Low Level)	E235.NO3-L	475930	1	9	11.1	5.0	<u> </u>	
Nitrite in Water by IC (Low Level)	E235.NO2-L	475931	1	9	11.1	5.0	<u> </u>	
Sulfate in Water by IC	E235.SO4	475927	1	9	11.1	5.0	<u> </u>	
TDS by Gravimetry	E162	477329	1	20	5.0	5.0	<u> </u>	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	480183	1	20	5.0	5.0	<u> </u>	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	476736	1	20	5.0	5.0		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	480228	1	19	5.2	5.0	<u> </u>	
Total Metals in Water by CRC ICPMS	E420	480182	1	20	5.0	5.0	<u> </u>	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	476698	1	18	5.5	5.0		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	476754	1	20	5.0	5.0		
	_3 0							
TSS by Gravimetry (Low Level)	E160-L	477324	1	20	5.0	5.0	✓	

Page : 17 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ★ = QC frequency outside specification; ✓ = QC frequency within specification.

Quality Control Sample Type						Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	ount Regular	Actual	Expected	Evaluation		
Matrix Spikes (MS)									
Ammonia by Fluorescence	E298	476756	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	475928	1	9	11.1	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	475929	1	9	11.1	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	481808	1	18	5.5	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	480071	1	20	5.0	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	481809	1	18	5.5	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476697	1	18	5.5	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	476060	1	9	11.1	5.0	✓		
Fluoride in Water by IC	E235.F	475932	1	9	11.1	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	475930	1	9	11.1	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	475931	1	9	11.1	5.0	✓		
Sulfate in Water by IC	E235.SO4	475927	1	9	11.1	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	480183	1	20	5.0	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	476736	1	20	5.0	5.0	✓		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	480228	1	19	5.2	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	480182	1	20	5.0	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	476698	1	18	5.5	5.0	✓		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	476754	1	20	5.0	5.0	✓		

Page : 18 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
	Outros Francisco de la			measured by immersion of a conductivity cell with platinum electrodes into a water
all by Make	Calgary - Environmental	10/-4	ADUA 4500 H (sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light
	L121			scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
T201 0 1 1 1 1	Calgary - Environmental		4 DU 14 OF 10 D (1)	results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	caigar, _immemia			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
				filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
official in tracer by to (Lett Level)	L233.GI-L	Water	21 7 (000.1 (mod)	detection.
	Calgary - Environmental			dotoston.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
That is trained by the (20th 2010),	L203.NO3-L			detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
A CELOLO TANCE	Calgary - Environmental	\A/ ·	ADUA 0040 D ("	A CP C Laborator House to the control of the Contro
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
	Jaigary Environmental			

Page : 19 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 20 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCI.

Page : 21 of 21 Work Order : CG2205126

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2205126 Page : 1 of 18

Client: Teck Coal LimitedLaboratory: Calgary - EnvironmentalContact: Cybele HeddleAccount Manager: Lyudmyla Shvets

:421 Pine Ave Address :2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5
---Telephone :+1 403 407 1800

Telephone :---- Telephone :+1 403 407 1800

Project :REGIONAL EFFECTS PROGRAMS Date Samples Received :03-May-2022 11:10

PO :VPO00816101 Date Analysis Commenced :03-May-2022

Sampler :---Site ----

Quote number : Teck Coal Master Quote

No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
 Matrix Spike (MS) Report; Recovery and Acceptance Limits

• Reference Material (RM) Report; Recovery and Acceptance Limits

Method Blank (MB) Report; Recovery and Acceptance Limits

: 4

Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Delson Resende	Lab Assistant	Metals, Burnaby, British Columbia
Dwayne Bennett	Supervisor - Inorganic	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Oscar Ruiz	Lab Assistant	Inorganics, Calgary, Alberta
Owen Cheng		Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Zakieh Lalonde		Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water	Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Physical Tests (QC	Lot: 475914)													
CG2205119-001	Anonymous	turbidity		E121	0.10	NTU	3.44	3.53	2.35%	15%				
Physical Tests (QC	Lot: 475939)													
CG2205106-007	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	239	253	5.60%	20%				
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR				
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR				
		alkalinity, total (as CaCO3)		E290	2.0	mg/L	239	253	5.60%	20%				
Physical Tests (QC	Lot: 475940)													
CG2205106-011	Anonymous	conductivity		E100	2.0	μS/cm	1860	1880	0.856%	10%				
Physical Tests (QC	Lot: 475941)													
CG2205126-001	RG_FRUL_WS_LAEMP_L CO_2022-04_NP	pH		E108	0.10	pH units	8.40	8.45	0.593%	4%				
Physical Tests (QC	Lot: 476694)													
CG2205126-001	RG_FRUL_WS_LAEMP_L CO_2022-04_NP	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR				
Physical Tests (QC	Lot: 477329)													
CG2205104-005	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	306	282	8.16%	20%				
Physical Tests (QC	Lot: 480110)													
CG2205104-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	488	482	1.40%	15%				
Anions and Nutrien	ts (QC Lot: 475927)													
CG2205119-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	8.23	8.35	1.43%	20%				
Anions and Nutrien	ts (QC Lot: 475928)													
CG2205119-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR				
Anions and Nutrien	ts (QC Lot: 475929)													
CG2205119-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.41	0.40	0.01	Diff <2x LOR				
Anions and Nutrien	ts (QC Lot: 475930)													
CG2205119-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0094	0.0086	0.0008	Diff <2x LOR				
Anions and Nutrien	ts (QC Lot: 475931)													
CG2205119-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR				
Anions and Nutrien	ts (QC Lot: 475932)													
CG2205119-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.104	0.105	0.0007	Diff <2x LOR				
Anions and Nutrien	ts (QC Lot: 476060)													
CG2205119-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0201	0.0197	1.89%	20%				

 Page
 : 4 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Anions and Nutrien	ts (QC Lot: 476736)												
CG2205098-008	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.200	0.232	0.033	Diff <2x LOR			
nions and Nutrien	ts (QC Lot: 476754)												
CG2205106-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0042	0.0042	0.00004	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 476756)												
CG2205106-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 47669	7)											
CG2205126-001	RG_FRUL_WS_LAEMP_L CO_2022-04_NP	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.26	1.39	0.13	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 47669	8)											
CG2205126-001	RG_FRUL_WS_LAEMP_L CO_2022-04_NP	carbon, total organic [TOC]		E355-L	0.50	mg/L	2.10	1.82	0.28	Diff <2x LOR			
otal Metals (QC Lo	ot: 480182)												
CG2205098-008	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0038	0.0031	0.0007	Diff <2x LOR			
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00021	0.00021	0.0000004	Diff <2x LOR			
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00071	0.00068	0.00003	Diff <2x LOR			
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0108	0.0108	0.0294%	20%			
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR			
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		boron, total	7440-42-8	E420	0.010	mg/L	0.042	0.041	0.002	Diff <2x LOR			
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.677 μg/L	0.000650	4.01%	20%			
		calcium, total	7440-70-2	E420	0.050	mg/L	288	282	2.08%	20%			
		cobalt, total	7440-48-4	E420	0.10	mg/L	16.4 µg/L	0.0163	0.760%	20%			
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
		iron, total	7439-89-6	E420	0.010	mg/L	0.441	0.438	0.684%	20%			
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000092	0.000091	0.000001	Diff <2x LOR			
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0900	0.0846	6.18%	20%			
		magnesium, total	7439-95-4	E420	0.0050	mg/L	180	175	2.93%	20%			
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.537	0.528	1.70%	20%			
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.0132	0.0132	0.344%	20%			
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0625	0.0616	1.49%	20%			
		potassium, total	7440-09-7	E420	0.050	mg/L	5.02	4.98	0.903%	20%			
		selenium, total	7782-49-2	E420	0.050	mg/L	2.47 µg/L	0.00263	6.22%	20%			
		silicon, total	7440-21-3	E420	0.10	mg/L	2.94	2.89	1.75%	20%			
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR			
		sodium, total	7440-23-5	E420	0.050	mg/L	8.84	8.48	4.16%	20%			
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.400	0.406	1.62%	20%			
		Sasmani, total			3.30020	9, ⊏	3.100	3.100			l .		

 Page
 : 5 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 480182) - continued										
CG2205098-008	Anonymous	sulfur, total	7704-34-9	E420	0.50	mg/L	326	324	0.587%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000095	0.000096	0.0000008	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.0145	0.0146	0.162%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0227	0.0231	0.0004	Diff <2x LOR	
otal Metals (QC Lo	ot: 480183)										
CG2205098-008	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
otal Metals (QC Lo	ot: 480228)										
CG2205104-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
issolved Metals (C	QC Lot: 480071)										
G2205070-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
issolved Metals (C	QC Lot: 481808)										
CG2205126-001	RG_FRUL_WS_LAEMP_L CO 2022-04 NP	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00014	0.00017	0.00003	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 481809)										
CG2205126-001	RG_FRUL_WS_LAEMP_L CO 2022-04 NP	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	<0.0010	0.0004	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00013	0.00013	0.000003	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00010	<0.00010	0.000003	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0919	0.0944	2.65%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0231 μg/L	0.0000190	0.0000041	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	99.5	99.8	0.261%	20%	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00023	0.00023	0.000002	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0256	0.0257	0.283%	20%	
			7439-95-4	E421	0.0050	mg/L	46.2	45.4	1.76%	20%	
				·	1 2.3000				0,0		ſ
		magnesium, dissolved		F421	0.00010	ma/l	0.00106	0.00106	0.133%	20%	
		manganese, dissolved molybdenum, dissolved	7439-96-5 7439-98-7	E421	0.00010 0.000050	mg/L mg/L	0.00106 0.00157	0.00106 0.00158	0.133% 0.498%	20% 20%	

 Page
 : 6 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Dissolved Metals (QC Lot: 481809) - contin	ued									
CG2205126-001	RG_FRUL_WS_LAEMP_L CO_2022-04_NP	potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.47	1.46	0.738%	20%	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	53.6 μg/L	0.0541	0.822%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.01	2.01	0.163%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.88	2.87	0.383%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.142	0.145	1.41%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	78.6	78.3	0.403%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00252	0.00252	0.0985%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
					1						1

 Page
 : 7 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 475914)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 475939)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 475940)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 476694)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 477324)					
olids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 477329)					
olids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 475927)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 475928)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 475929)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 475930)					
itrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 475931)					
itrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 475932)					
luoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 476060)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 476736)					
(jeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 476754)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	

 Page
 : 8 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analuto	CAS Number	Method	LOR	Unit	Result	Qualifier
Analyte Anions and Nutrients (OCL et: 476		metriod	Lon	Oint	Result	Quanner
Anions and Nutrients (QCLot: 476 ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon(QCLo				, and the second		
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon(QCLo				, and the second		
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 480182)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7		0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9		0.00005	mg/L	<0.000050	
poron, total	7440-42-8		0.01	mg/L	<0.010	
cadmium, total	7440-43-9		0.00005	mg/L	<0.000050	
calcium, total	7440-70-2		0.05	mg/L	<0.050	
cobalt, total	7440-48-4		0.0001	mg/L	<0.00010	
copper, total	7440-50-8		0.0005	mg/L	<0.00050	
ron, total	7439-89-6		0.01	mg/L	<0.010	
ead, total	7439-92-1		0.00005	mg/L	<0.000050	
ithium, total	7439-93-2		0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5		0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0		0.0005	mg/L	<0.00050	
potassium, total	7440-09-7		0.05	mg/L	<0.050	
selenium, total	7782-49-2		0.00005	mg/L	<0.000050	
silicon, total	7440-21-3		0.1	mg/L	<0.10	
silver, total	7440-22-4		0.00001	mg/L	<0.000010	
sodium, total	7440-23-5		0.05	mg/L	<0.050	
strontium, total	7440-24-6		0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9		0.5	mg/L	<0.50	
hallium, total	7440-28-0		0.00001	mg/L	<0.00010	
in, total	7440-31-5		0.0001	mg/L	<0.00010	
itanium, total	7440-32-6		0.0003	mg/L	<0.00030	
uranium, total	7440-61-1		0.00001	mg/L	<0.000010	
/anadium, total	7440-62-2		0.0005	mg/L	<0.00050	

 Page
 : 9 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
otal Metals (QCLot: 480182) - continue					
inc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
otal Metals (QCLot: 480183)					
hromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
otal Metals (QCLot: 480228)					
nercury, total	7439-97-6 E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 480071)					
nercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 481808)					
hromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 481809)					
luminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
ntimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
rsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
arium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
eryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
ismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
alcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
opper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
on, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
thium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
ickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
otassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
elenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
ilicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
ilver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
odium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
trontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
hallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	

 Page
 : 10 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

ALS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 481809) -	continued					
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	

 Page
 : 11 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Con	trol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 475914)									
turbidity		E121	0.1	NTU	200 NTU	105	85.0	115	
Physical Tests (QCLot: 475939)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	102	85.0	115	
Physical Tests (QCLot: 475940)									
conductivity		E100	1	μS/cm	146.9 μS/cm	102	90.0	110	
Physical Tests (QCLot: 475941)									
pH		E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 476694)									
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	104	85.0	115	
Physical Tests (QCLot: 477324)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	90.4	85.0	115	
Physical Tests (QCLot: 477329)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	98.3	85.0	115	
Physical Tests (QCLot: 480110)									
oxidation-reduction potential [ORP]		E125		mV	220 mV	98.6	95.4	104	
Anions and Nutrients (QCLot: 475927)									
sulfate (as SO4)	14808-79-8 I	E235.SO4	0.3	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 475928)									
bromide	24959-67-9 I	E235.Br-L	0.05	mg/L	0.5 mg/L	98.1	85.0	115	
Anions and Nutrients (QCLot: 475929)									
chloride	16887-00-6 I	E235.CI-L	0.1	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 475930)									
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 475931)									
nitrite (as N)	14797-65-0 I	E235.NO2-L	0.001	mg/L	0.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 475932)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	99.8	90.0	110	
Anions and Nutrients (QCLot: 476060)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	99.1	80.0	120	
Anions and Nutrients (QCLot: 476736)									
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	100	75.0	125	
Anions and Nutrients (QCLot: 476754)									
(4,0201110101)									

 Page
 : 12 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

	Sub-Matrix: Water				Laboratory Co	ntrol Sample (LCS)	Report		
Monte and Nutrients (OCLot: 476754) - continued 7723-14-0 5372-11 0.002 mg/L 6.62 mg/L 111 80.0 120					Spike	Recovery (%)	Recovery	Limits (%)	
Marcine and Nutrients (QCLot: 476765)	Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Marcine and Nutrients (QCLot: 476765)	Anions and Nutrients (QCLot: 476754) - co	ntinued							
Proposition	phosphorus, total		0.002	mg/L	8.02 mg/L	111	80.0	120	
Proposition	Anions and Nutrients (QCLot: 476756)								
Paganic / Inorganic (Carbon (QCLot: 476688) Paganic / Inorganic (Carbon (QCLot: 480182) Paganic / Inorganic (QCLot:	ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	94.7	85.0	115	
Paganic / Inorganic (Carbon (QCLot: 476688) Paganic / Inorganic (Carbon (QCLot: 480182) Paganic / Inorganic (QCLot:									
Paganic / Inorganic (Carbon (QCLot: 476688) Paganic / Inorganic (Carbon (QCLot: 480182) Paganic / Inorganic (QCLot:	Organic / Inorganic Carbon (QCLot: 476697								
Second S	carbon, dissolved organic [DOC]		0.5	mg/L	8.57 mg/L	100	80.0	120	
Second S	Organic / Inorganic Carbon (QCLot: 476698								
Number 1,429-90-5 E420 0.003 mg/L 2 mg/L 100 8.00 120	carbon, total organic [TOC]		0.5	mg/L	8.57 mg/L	108	80.0	120	
Number 1,429-90-5 E420 0.003 mg/L 2 mg/L 100 8.00 120									
Number 1,429-90-5 E420 0.003 mg/L 2 mg/L 100 8.00 120	Total Metals (QCLot: 480182)								
rearic, total 7440-38-2	aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	100	80.0	120	
arium, total 7440-39-3	antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	103	80.0	120	
eryllum, total 7440-417 E420 0.00002 mg/L 0.1 mg/L 101 80.0 120	arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	101	80.0	120	
Semult, total 7440-69-9 E420	barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	99.3	80.0	120	
oron, total 7440-42-8 6420	beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	101	80.0	120	
admium, total 7440-43-9 E420 0.000005 mg/L 0.1 mg/L 96.5 80.0 120	bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	99.1	80.0	120	
alcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 98.5 80.0 120	boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	96.2	80.0	120	
obalt, total 7440-48-4 opper, total 440-50-8 opper, total 440	cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	96.5	80.0	120	
poper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 99.7 80.0 120	calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	102	80.0	120	
no, total 7439-89-6 tad, total 7439-92-1 tad, total 7439-93-2 tad, total 7439-93-5 tad, total 7439-93-6 tad, total	cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	98.5	80.0	120	
rad, total 7439-92-1	copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	96.7	80.0	120	
thium, total 7439-93-2 [6420 0.001 mg/L 0.25 mg/L 99.6 80.0 120	iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	99.7	80.0	120	
ragnesium, total 7439-95-4 E420 0.005 mg/L 0.25 mg/L 101 80.0 120	lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	100	80.0	120	
hanganese, total 7439-96-5 E420	lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	99.6	80.0	120	
holybdenum, total 7439-98-7 E420 0.0005 mg/L 0.25 mg/L 99.9 80.0 120 holybdenum, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 holybdenum, total 7440-09-7 E420 0.05 mg/L 50 mg/L 102 80.0 120 holybdenum, total 7440-09-7 E420 0.05 mg/L 102 80.0 120 holybdenum, total 7440-09-7 E420 0.0005 mg/L 1 mg/L 100 80.0 120 holybdenum, total 100 mg/L 99.7 80.0 120 holybdenum, total 100 mg/L 99.7 80.0 120 holybdenum, total 100 mg/L 99.7 80.0 120 holybdenum, total 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 99.7 80.0 120 holybdenum, total 7440-23-5 E420 0.05 mg/L 50 mg/L 97.8 80.0 120 holybdenum, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 holybdenum, total 7440-28-0 E420 0.0001 mg/L 50 mg/L 86.8 80.0 120 holybdenum, total 7440-28-0 E420 0.0001 mg/L 100 mg/L 101 80.0 120 holybdenum, total 7440-28-0 E420 0.0001 mg/L 100 mg/L 101 80.0 120 holybdenum, total 7440-28-0 E420 0.0001 mg/L 100 mg/L 101 80.0 120 holybdenum, total 7440-28-0 E420 0.0001 mg/L 100 mg	magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	105	80.0	120	
ickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 otassium, total 7440-09-7 E420 0.005 mg/L 50 mg/L 102 80.0 120 elenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 100 80.0 120 elenium, total 7440-21-3 E420 0.1 mg/L 10 mg/L 99.7 80.0 120 elenium, total 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 99.7 80.0 120 elenium, total 7440-23-5 E420 0.0001 mg/L 0.1 mg/L 93.6 80.0 120 elenium, total 7440-24-6 E420 0.0001 mg/L 50 mg/L 109 80.0 120 elenium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 elenium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 elenium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 86.8 80.0 120 elenium, total 7440-28-0 E420 0.0001 mg/L 10 mg/L 10 mg/L 80.0 120 elenium, total 7440-28-0 E420 0.0001 mg/L 10 mg/L 10 mg/L 10 mg/L 80.0 120 elenium, total 10 mg/L 10 mg/L 10 mg/L 10 mg/L 10 mg/L 80.0 120 elenium, total 10 mg/L	manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
totassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 102 80.0 120 elenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 100 80.0 120 elenium, total 100, total 100	molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	102	80.0	120	
elenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 100 80.0 120 dilicon, total 120 dilicon, t	nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	99.9	80.0	120	
licon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 99.7 80.0 120 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 99.7 80.0 120 trontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 trontium, total 7704-34-9 E420 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 trontium, total 7704-34-9 E420 0.0002 mg/L 50 mg/L 97.8 80.0 120 trontium, total 7704-34-9 E420 0.5 mg/L 50 mg/L 101 80.0 120 trontium, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 101 80.0 120	potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	102	80.0	120	
licon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 99.7 80.0 120 liver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 93.6 80.0 120 lodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 109 80.0 120 ltrontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 ltrontium, total 7704-34-9 E420 0.5 mg/L 50 mg/L 97.8 80.0 120 luffur, total 7704-34-9 E420 0.0001 mg/L 100 mg/L 101 80.0 120 lallium, total 101 80.0 120	selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	100	80.0	120	
ilver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 93.6 80.0 120 odium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 109 80.0 120 trontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 outfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 50 mg/L 86.8 80.0 120 outfur, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 101 80.0 120	silicon, total	7440-21-3 E420	0.1	mg/L	_	99.7	80.0	120	
trontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 ulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 86.8 80.0 120 nallium, total 1 mg/L 1 mg/L 101 80.0 120	silver, total	7440-22-4 E420	0.00001	mg/L	_	93.6	80.0	120	
ulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 86.8 80.0 120 nallium, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 101 80.0 120	sodium, total	7440-23-5 E420	0.05	mg/L	50 mg/L	109	80.0	120	
ulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 86.8 80.0 120 nallium, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 101 80.0 120	strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	97.8	80.0	120	
	sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	86.8	80.0	120	
	thallium, total	7440-28-0 E420	0.00001	mg/L	1 mg/L	101	80.0	120	
	tin, total	7440-31-5 E420	0.0001	mg/L		95.3	80.0	120	

 Page
 : 13 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 480182) - continued									
titanium, total	7440-32-6 E	E420	0.0003	mg/L	0.25 mg/L	98.4	80.0	120	
uranium, total	7440-61-1 E	E420	0.00001	mg/L	0.005 mg/L	109	80.0	120	
vanadium, total	7440-62-2 E	E420	0.0005	mg/L	0.5 mg/L	100	80.0	120	
zinc, total	7440-66-6 E	E420	0.003	mg/L	0.5 mg/L	96.3	80.0	120	
Total Metals (QCLot: 480183)									
chromium, total	7440-47-3 E	E420.Cr-L	0.0001	mg/L	0.25 mg/L	98.9	80.0	120	
Total Metals (QCLot: 480228)									
mercury, total	7439-97-6 E	E508-L	0.5	ng/L	5 ng/L	99.6	80.0	120	
mercury, dissolved	7439-97-6 E	E 509	0.000005	mg/L	0.0001 mg/L	98.4	80.0	120	
Dissolved Metals (QCLot: 481808)									
chromium, dissolved	7440-47-3 E	E421.Cr-L	0.0001	mg/L	0.25 mg/L	105	80.0	120	
Dissolved Metals (QCLot: 481809)									
aluminum, dissolved	7429-90-5 E	E421	0.001	mg/L	2 mg/L	100	80.0	120	
antimony, dissolved	7440-36-0 E	E421	0.0001	mg/L	1 mg/L	105	80.0	120	
arsenic, dissolved	7440-38-2 E	E421	0.0001	mg/L	1 mg/L	104	80.0	120	
barium, dissolved	7440-39-3 E	E421	0.0001	mg/L	0.25 mg/L	101	80.0	120	
beryllium, dissolved	7440-41-7 E		0.00002	mg/L	0.1 mg/L	98.8	80.0	120	
bismuth, dissolved	7440-69-9 E		0.00005	mg/L	1 mg/L	103	80.0	120	
boron, dissolved	7440-42-8 E		0.01	mg/L	1 mg/L	93.5	80.0	120	
cadmium, dissolved	7440-43-9 E		0.000005	mg/L	0.1 mg/L	102	80.0	120	
calcium, dissolved	7440-70-2 E		0.05	mg/L	50 mg/L	99.8	80.0	120	
cobalt, dissolved	7440-48-4 E		0.0001	mg/L	0.25 mg/L	100	80.0	120	
copper, dissolved	7440-50-8 E		0.0002	mg/L	0.25 mg/L	100	80.0	120	
iron, dissolved	7439-89-6 E	Ξ421	0.01	mg/L	1 mg/L	106	80.0	120	
lead, dissolved	7439-92-1 E	E421	0.00005	mg/L	0.5 mg/L	104	80.0	120	
lithium, dissolved	7439-93-2 E		0.001	mg/L	0.25 mg/L	98.3	80.0	120	
magnesium, dissolved	7439-95-4 E		0.005	mg/L	50 mg/L	106	80.0	120	
manganese, dissolved	7439-96-5 E		0.0001	mg/L	0.25 mg/L	100	80.0	120	
molybdenum, dissolved	7439-98-7 E	E421	0.00005	mg/L	0.25 mg/L	103	80.0	120	
nickel, dissolved	7440-02-0 E	E421	0.0005	mg/L	0.5 mg/L	101	80.0	120	
potassium, dissolved	7440-09-7 E	E421	0.05	mg/L	50 mg/L	112	80.0	120	
selenium, dissolved	7782-49-2 E		0.00005	mg/L	1 mg/L	104	80.0	120	
silicon, dissolved	7440-21-3 E		0.05	mg/L	10 mg/L	102	80.0	120	
silver, dissolved	7440-22-4 E	E421	0.00001	mg/L	0.1 mg/L	96.4	80.0	120	
sodium, dissolved	7440-23-5 E	E421	0.05	mg/L	50 mg/L	108	80.0	120	
strontium, dissolved	7440-24-6 E		0.0002	mg/L	0.25 mg/L	102	80.0	120	
I '				•	g /=				

 Page
 : 14 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 481809) - continu	ued								
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	98.9	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	103	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	101	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	102	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	105	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	104	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	100	80.0	120	

 Page
 : 15 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery Limits (%) Low High 75.0 125 75.0 125 75.0 125 75.0 125 75.0 125 75.0 125 70.0 130 70.0 130				
∟aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
	ients (QCLot: 475927)											
CG2205126-004	RG_FBLANK_WS_LAEMP_ LCO_2022-04_NP	sulfate (as SO4)	14808-79-8	E235.SO4	101 mg/L	100 mg/L	101	75.0	125			
nions and Nutr	ients (QCLot: 475928)											
CG2205126-004	RG_FBLANK_WS_LAEMP_ LCO_2022-04_NP	bromide	24959-67-9	E235.Br-L	0.488 mg/L	0.5 mg/L	97.6	75.0	125			
nions and Nutr	ients (QCLot: 475929)											
CG2205126-004	RG_FBLANK_WS_LAEMP_ LCO_2022-04_NP	chloride	16887-00-6	E235.CI-L	101 mg/L	100 mg/L	101	75.0	125			
nions and Nutr	ients (QCLot: 475930)											
CG2205126-004	RG_FBLANK_WS_LAEMP_ LCO_2022-04_NP	nitrate (as N)	14797-55-8	E235.NO3-L	2.52 mg/L	2.5 mg/L	101	75.0	125			
nions and Nutr	ients (QCLot: 475931)											
CG2205126-004	RG_FBLANK_WS_LAEMP_ LCO_2022-04_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.513 mg/L	0.5 mg/L	102	75.0	125			
nions and Nutr	ients (QCLot: 475932)											
CG2205126-004	RG_FBLANK_WS_LAEMP_ LCO_2022-04_NP	fluoride	16984-48-8	E235.F	0.997 mg/L	1 mg/L	99.7	75.0	125			
nions and Nutr	ients (QCLot: 476060)											
CG2205119-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0516 mg/L	0.05 mg/L	103	70.0	130			
nions and Nutr	ients (QCLot: 476736)											
CG2205098-010	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.01 mg/L	2.5 mg/L	80.4	70.0	130			
nions and Nutr	ients (QCLot: 476754)											
CG2205106-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0574 mg/L	0.0676 mg/L	85.0	70.0	130			
nions and Nutr	ients (QCLot: 476756)											
CG2205106-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.110 mg/L	0.1 mg/L	110	75.0	125			
rganic / Inorga	nic Carbon (QCLot: 4766	697)										
CG2205126-001	RG_FRUL_WS_LAEMP_LC O_2022-04_NP	carbon, dissolved organic [DOC]		E358-L	5.47 mg/L	5 mg/L	109	70.0	130			
rganic / Inorga	nic Carbon (QCLot: 4766	698)										
CG2205126-001	RG_FRUL_WS_LAEMP_LC O 2022-04 NP	carbon, total organic [TOC]		E355-L	4.57 mg/L	5 mg/L	91.5	70.0	130			

 Page
 : 16 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

ub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery Limits (%)		
boratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
tal Metals (QC	Lot: 480182) - cont	inued								
G2205098-010	Anonymous	aluminum, total	7429-90-5	E420	0.183 mg/L	0.2 mg/L	91.7	70.0	130	
		antimony, total	7440-36-0	E420	0.0195 mg/L	0.02 mg/L	97.4	70.0	130	
		arsenic, total	7440-38-2	E420	0.0198 mg/L	0.02 mg/L	98.8	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0381 mg/L	0.04 mg/L	95.2	70.0	130	
		bismuth, total	7440-69-9	E420	0.00861 mg/L	0.01 mg/L	86.1	70.0	130	
		boron, total	7440-42-8	E420	0.093 mg/L	0.1 mg/L	93.0	70.0	130	
		cadmium, total	7440-43-9	E420	0.00357 mg/L	0.004 mg/L	89.3	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0178 mg/L	0.02 mg/L	88.8	70.0	130	
		copper, total	7440-50-8	E420	0.0174 mg/L	0.02 mg/L	87.0	70.0	130	
		iron, total	7439-89-6	E420	1.88 mg/L	2 mg/L	94.0	70.0	130	
		lead, total	7439-92-1	E420	0.0174 mg/L	0.02 mg/L	87.0	70.0	130	
		lithium, total	7439-93-2	E420	ND mg/L	0.1 mg/L	ND	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0205 mg/L	0.02 mg/L	102	70.0	130	
		nickel, total	7440-02-0	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130	
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, total	7440-21-3	E420	9.44 mg/L	10 mg/L	94.4	70.0	130	
		silver, total	7440-22-4	E420	0.00388 mg/L	0.004 mg/L	97.1	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00343 mg/L	0.004 mg/L	85.8	70.0	130	
		tin, total	7440-31-5	E420	0.0186 mg/L	0.02 mg/L	93.0	70.0	130	
		titanium, total	7440-32-6	E420	0.0395 mg/L	0.04 mg/L	98.7	70.0	130	
		uranium, total	7440-61-1	E420	ND mg/L	0.004 mg/L	ND	70.0	130	
		vanadium, total	7440-62-2	E420	0.0969 mg/L	0.1 mg/L	96.9	70.0	130	
		zinc, total	7440-66-6	E420	0.349 mg/L	0.4 mg/L	87.3	70.0	130	
tal Metals (QC	Lot: 480183)									
G2205098-010	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0375 mg/L	0.04 mg/L	93.8	70.0	130	
otal Metals (QC	Lot: 480228)									
G2205104-002	Anonymous	mercury, total	7439-97-6	E508-L	5.59 ng/L	5 ng/L	112	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 480071) - cont	tinued								
CG2205119-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000939 mg/L	0.0001 mg/L	93.9	70.0	130	
Dissolved Metals	(QCLot: 481808)									
CG2205126-002	RG_LCUT_WS_LAEMP_LC O 2022-04 NP	chromium, dissolved	7440-47-3	E421.Cr-L	0.0392 mg/L	0.04 mg/L	98.0	70.0	130	
issolved Metals	(QCLot: 481809)									
CG2205126-002	RG_LCUT_WS_LAEMP_LC	aluminum, dissolved	7429-90-5	E421	0.194 mg/L	0.2 mg/L	97.2	70.0	130	
	O_2022-04_NP	antimony, dissolved	7440-36-0	E421	0.0194 mg/L	0.02 mg/L	96.8	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0207 mg/L	0.02 mg/L	104	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0370 mg/L	0.04 mg/L	92.4	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00853 mg/L	0.01 mg/L	85.3	70.0	130	
		boron, dissolved	7440-42-8	E421	0.090 mg/L	0.1 mg/L	90.5	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00385 mg/L	0.004 mg/L	96.2	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0184 mg/L	0.02 mg/L	92.1	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0182 mg/L	0.02 mg/L	91.1	70.0	130	
		iron, dissolved	7439-89-6	E421	1.84 mg/L	2 mg/L	92.2	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0182 mg/L	0.02 mg/L	91.3	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0874 mg/L	0.1 mg/L	87.4	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0186 mg/L	0.02 mg/L	93.1	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0197 mg/L	0.02 mg/L	98.7	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0357 mg/L	0.04 mg/L	89.3	70.0	130	
		potassium, dissolved	7440-09-7	E421	4.07 mg/L	4 mg/L	102	70.0	130	
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.29 mg/L	10 mg/L	92.9	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00398 mg/L	0.004 mg/L	99.6	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00365 mg/L	0.004 mg/L	91.3	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0194 mg/L	0.02 mg/L	97.0	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0378 mg/L	0.04 mg/L	94.6	70.0	130	
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0998 mg/L	0.004 mg/L 0.1 mg/L	99.8	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.0998 mg/L	0.1 mg/L 0.4 mg/L	93.9	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2205126

 Client
 : Teck Coal Limited

ieck															ТТ	<u>·</u>		
					22_APR_ALS			ID TIME:			Regul	ar ar	نتفتتنة		RUSH N/A		لنشجين	
	SPROJECT/CLIENT INFO			- 2 - 7	10 miles (10 miles)					101 53	Pat are				OTHER INFO			
	Regional Effects Program -	LCO LA	EMP					ALS Calga					•	rmat / D	istribution	Excel	PDF	EDD
Project Manager						Lab		Lyudmyla					ail 1:	aquaso	cilab@teck.com	x	X	X
	Cybele Heddle@Teck.com							Lyudmyla		ALSGloba	l.com		ail 2:		@equisonline.com	ļ	↓	X
Address	421 Pine Ave						Address	2559 29 St	treet NE				ail 3:	Teck.Lat	.Results@teck.com	X	X	x
						+					,		ail 4:		Ritz@Teck.com	X	X	X
City	Sparwood			+	BC ;			Calgary			AB		ail 5:		ehler@Minnow.ca	X	X	X
Postal Code				Country	Canada			TIY 7B5		Country	Canada		ail 6:	Ibowron	@minnow.ca	X	<i>x</i>	X
Phone Number	SAMPLE DE	TAILS:	91) 154	4 7.7.65		Phone	Number	403 407 17		LVCIC DE	OL IDOTE		umber	Degree in .	VPO00			
	SAMPLE DE	IAILS	1		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10				ANA	LYSIS RE	QUESTE	D		T	Filtered - F: Fiel	I, L: Lab, FI	A Field & L	Lab, N; N
	÷				,			F	N	F	N	F	N	N		İ	ĺ	`
					4			2	 					ļ- 	 	<u> </u>	\vdash	
	· · ·			İ		1		2 H2SO4	H2SO4	HCL	NONE	HNO3	HNO3	NONE	<u> </u>			
			ि			1.		H2304	112304	nce	NONE	·	ппоз	l nong	Environr	nenta	I Divi	sion
			es/No)			ł		3.				-		1	Elivitorii	110111	. –	
			, s						ALS_Package-TKN/TOC			TECKCOAL-MET-D-VA	TECKCOAL-METNHG- T-CL) 2	Calgary Work C CG	order B	eferen	ice
	:		la (,		'		် ပ	Z		4	Ξ.	Z	15		22	051	126
			Material	•		1		S	X	A /	5	ME	Z	١ē		22	50	
	į	•	M.					NLY ge	94	CVAF-VA	K	7	3	3			_ ====	
	i.		smo					S S	cks	, Y	<u>5</u>	õ	ŏ	Į Š			$\Lambda M T$	
	C1- V	701.14	ard		j	G=Grab	I .		25, ,	7	윤	KC	ξ, <u>ξ</u>	5			GM.	4 1111
- Sample ID	Sample Location (sys_loc_code)	Field Matrix	Haza	Date	Time (24hr)	C=Com	# Of Cont.	ALS_Package-DOC	ST	нС-р-(HG-T-U-CVAF-VA	EC	었다	reck va	i Walit i	W		4 1111
			†	j	1 0 . 6			A	1						† ·	(<u>)</u>	' ' ' (' ('	8 IIII
RG_FRYLUS, LAEMP. LCO_202-64_NP		WS	NO	2022 :05-C	"	G	7		~	_ ≪	04	0	01	X	- - -	II AVRA	⊞π .11	^
RG. LCUTUS LAEMP. LC3_2022-64. NP	RG. LLUI	WS		2022 35-		G .	7	- X	. ^	×	a	æ		<u> </u>	[elephone	+1403	40/ 1000	U
RG_LILC3_WS-LAEMP_LCO_2022-02-14		ws _	NO	2022 -05.	·2 14:30 S	G	7	2 X	N		R	×		×	<u> </u>	r 1	7	
RG. FRIANK US_LAEMP_LCO_2012 -04.14	P RG_FBLANK	ws	NO	2002 -05	a 08:00 i	G	7	0	X	X	x	ملا	0	×			•	•
· ,		ws	NO			G		6									İ	
		ws	NO		1	G												
		~ WS	NO			G							_					
		ws	NO			G												
		WŞ	NO	-		G					-							
		ws	NO			G		\$			 		-					
		WS	NO			G												
		ws ·	NO	1	-	G			 									
•		ws	NO			G											$\overline{}$	
ADDITIONAL COMMENTS/SPEC	CIAL INSTRUCTIONS (19)	S. Carro		RELINO	UISHED BY/AFFILI		- S	DATE/	IME	AÇCI	EPTED B	Y/AFFI	LIATIC	i DN⊘*⊜l		TE/TIM	E Barbar	e de la constant
Please include DI for f			Rich	Smit/Ldi	Environmental			2022-05-0		V/	10				E 17	7.44. 2 4174		1 ST 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					INCLUDING TOUR	 			D-1 (1,4,2)	1000					'')/5			
										 					·	V	1:10	<u></u>
				· · · ·		:									 		. (5	<u>ر </u>
SEDVICE DECUPER (1		Spirits at	The same of the second state of the second sta	। । তুর াকু বিশিক্ত	180	E TO ANT TO MAKE A	and legine propose :	magain is a Territor	1000 77.3		् अनुग्रस	7-1	a the same of consequent	ika ngraja ji ng		
SERVICE REQUEST (rush - sub	bject to availability) Regular (de					And Aller	\$ [1] \ \frac{1}{2} \]				1. Jan 19 19 19 19 19 19 19 19 19 19 19 19 19	8 - <u>12 - 2</u> - 8	R			4.7	12.77	
Priority (2-3	Regular (del 3 business days) - 50% surch		1	Sample	r's Name	Rich	Sm	I_{ℓ}			Mobi	le#	402.	586.	- 3241			
	Business Day) - 100% surch		ļ		-01 1		7	· · · · · · · · · · · · · · · · · · ·								<u> </u>		
	SAP or Weekend - Contact		<u> </u>	Sampler's	S Signature)				Date/I	ime	rear	65	-02 / 1	7:00	Į.	

I of

Page

WATER CHEMISTRY

ALS Laboratory Report CG2205191 (Finalized May 16, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2205191

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAMS

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022_APR_ALS

Sampler : Rick Smit

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 04-May-2022 10:35

Date Analysis Commenced : 04-May-2022

Issue Date : 16-May-2022 12:19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Kyle Chang	Lab Assistant	Metals, Burnaby, British Columbia	
Oscar Ruiz	Lab Assistant	Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Parnian Sane	Analsyt	Metals, Burnaby, British Columbia	
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Woochan Song	Lab Analyst	Metals, Burnaby, British Columbia	

Page : 2 of 6 Work Order : CG2205191 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Page : 3 of 6
Work Order : CG2205191
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	lient sample ID	RG_LISP24_WS _LAEMP_LCO_ 2022-04_NP	RG_LI24_WS_L AEMP_LCO_20 22-04_NP	RG_SLINE_WS_ LAEMP_LCO_2 022-04_NP	RG_RIVER_WS _LAEMP_LCO_ 2022-04_NP	
			Client samp	oling date / time	03-May-2022 09:00	03-May-2022 11:15	03-May-2022 13:30	03-May-2022 15:30	
Analyte	CAS Number	Method	LOR	Unit	CG2205191-001	CG2205191-002	CG2205191-003	CG2205191-004	
					Result	Result	Result	Result	
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	118	193	138	135	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	143	236	168	165	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	2.0	8.6	5.4	5.6	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	1.2	5.2	3.2	3.4	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	120	202	143	141	
conductivity		E100	2.0	μS/cm	280	898	324	325	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	152	497	183	182	
oxidation-reduction potential [ORP]		E125	0.10	mV	368	364	358	348	
pH		E108	0.10	pH units	8.37	8.44	8.46	8.47	
solids, total dissolved [TDS]		E162	10	mg/L	153	618	201	194	
solids, total suspended [TSS]		E160-L	1.0	mg/L	6.3	1.2	3.2	8.9	
turbidity		E121	0.10	NTU	0.78	0.97	2.96	5.40	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.18	11.8	0.26	0.24	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.321	0.201	0.293	0.296	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.084	<0.050 TKNI	0.087	0.068	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.195	9.97	0.0742	0.0658	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	0.0015	0.0011	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0026	0.0031	0.0095	0.0088	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	33.1	258	37.0	37.2	
Organic / Inorganic Carbon	000 70-0			J				-	
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.67	0.77	1.98	1.09	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.88	0.82	1.92	0.95	
,		_000 L	5.55	mg/L	3.55	1	1.02	0.00	

Page : 4 of 6
Work Order : CG2205191
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	ient sample ID	RG_LISP24_WS _LAEMP_LCO_ 2022-04_NP	RG_LI24_WS_L AEMP_LCO_20 22-04_NP	RG_SLINE_WS_ LAEMP_LCO_2 022-04_NP	RG_RIVER_WS _LAEMP_LCO_ 2022-04_NP	
				ling date / time	03-May-2022 09:00	03-May-2022 11:15	03-May-2022 13:30	03-May-2022 15:30	
Analyte	CAS Number	Method	LOR	Unit	CG2205191-001 Result	CG2205191-002 Result	CG2205191-003 Result	CG2205191-004 Result	
Ion Balance					Result	Result	Result	Result	
anion sum		EC101	0.10	meq/L	3.12	10.5	3.66	3.62	
cation sum		EC101	0.10	meq/L	3.11	10.3	3.70	3.68	
ion balance (cations/anions)		EC101	0.010	%	99.7	98.1	101	102	
ion balance (APHA)		EC101	0.010	%	0.160	0.962	0.543	0.822	
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0034	0.0030	0.0443	0.0528	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	0.00025	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00017	0.00014	0.00016	0.00017	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0378	0.0490	0.0392	0.0408	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	0.014	<0.010	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0080	0.157	0.0210	0.0199	
calcium, total	7440-70-2	E420	0.050	mg/L	43.9	114	49.1	48.5	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00017	0.00016	0.00022	0.00023	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	0.035	0.045	0.052	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0.000052	0.000057	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0032	0.0498	0.0039	0.0038	
magnesium, total	7439-95-4	E420	0.0050	mg/L	10.8	52.3	14.8	15.3	
manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	0.0107	0.00236	0.00258	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	0.00078	0.00086	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000761	0.00239	0.000954	0.000984	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00054	0.00609	<0.00050	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	0.283	1.50	0.402	0.413	
selenium, total	7782-49-2	E420	0.050	μg/L	1.72	49.4	1.22	1.27	
silicon, total	7440-21-3	E420	0.10	mg/L	1.70	2.21	2.18	2.27	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total		E420	0.050	_	1.30	7.92	0.817	0.819	
sodium, total	7440-23-5	E420	0.050	mg/L	1.30	7.92	0.817	0.819	

Page : 5 of 6
Work Order : CG2205191
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	RG_LISP24_WS _LAEMP_LCO_ 2022-04_NP	RG_LI24_WS_L AEMP_LCO_20 22-04_NP	RG_SLINE_WS_ LAEMP_LCO_2 022-04_NP	RG_RIVER_WS _LAEMP_LCO_ 2022-04_NP	
			·	ling date / time	03-May-2022 09:00		03-May-2022 13:30	03-May-2022 15:30	
Analyte	CAS Number	Method	LOR	Unit	CG2205191-001 Result	CG2205191-002 Result	CG2205191-003 Result	CG2205191-004 Result	
Total Metals					Nesuit	Nesuit	Result	Nesuit	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.152	0.222	0.159	0.162	
sulfur, total	7704-34-9	E420	0.50	mg/L	12.9	101	14.0	14.4	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030 DLM	0.00094	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00115	0.00394	0.00144	0.00147	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0068	0.0034	0.0039	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0022	<0.0010	0.0021	0.0014	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00024	<0.00010	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00015	<0.00010	0.00012	0.00011	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0367	0.0478	0.0386	0.0379	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.015	<0.010	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0070	0.135	0.0138	0.0137	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	43.9	118	49.1	49.0	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00015	0.00011	0.00016	0.00016	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	0.00021	0.00043	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0034	0.0522	0.0039	0.0038	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	10.4	49.2	14.6	14.5	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	0.00479	0.00013	0.00011	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000892	0.00239	0.00116	0.00104	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	0.00544	<0.00050	<0.00050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.278	1.43	0.394	0.383	

Page : 6 of 6
Work Order : CG2205191
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	RG_LISP24_WS	RG_LI24_WS_L	RG_SLINE_WS_	RG_RIVER_WS	
(Matrix: Water)					_LAEMP_LCO_	AEMP_LCO_20	LAEMP_LCO_2	_LAEMP_LCO_	
					2022-04_NP	22-04_NP	022-04_NP	2022-04_NP	
			Client samp	ling date / time	03-May-2022 09:00	03-May-2022 11:15	03-May-2022 13:30	03-May-2022 15:30	
Analyte	CAS Number	Method	LOR	Unit	CG2205191-001	CG2205191-002	CG2205191-003	CG2205191-004	
					Result	Result	Result	Result	
Dissolved Metals									
selenium, dissolved	7782-49-2	E421	0.050	μg/L	1.53	47.2	1.19	1.16	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.61	2.10	2.02	2.09	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	1.23	7.59	0.793	0.780	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.146	0.215	0.156	0.157	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	12.7	98.3	13.5	13.7	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00113	0.00370	0.00136	0.00137	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0019	0.0055	0.0036	0.0020	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : CG2205191 Page : 1 of 21

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Ave Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

 Telephone
 : --- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAMS
 Date Samples Received
 : 04-May-2022 10:35

Sampler : Rick Smit

Sparwood BC Canada

Site : ____

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

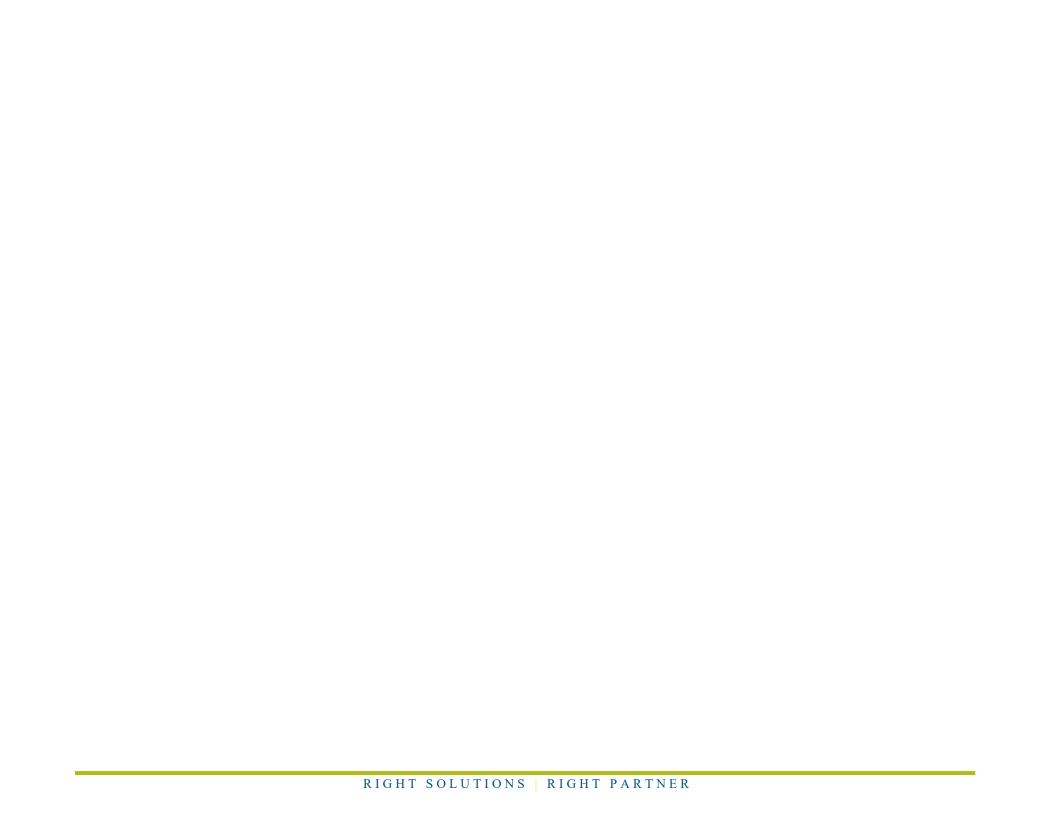
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E298	03-May-2022	06-May-2022				06-May-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E298	03-May-2022	06-May-2022				06-May-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E298	03-May-2022	06-May-2022				06-May-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	E298	02 May 2022	00 M 2022				00 Mari 2000	00 -1	0 -1	1
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E298	03-May-2022	06-May-2022				06-May-2022	28 days	3 days	•
Anions and Nutrients : Bromide in Water by IC (Low Level)							I			
HDPE RG LI24 WS LAEMP LCO 2022-04 NP	E235.Br-L	03-May-2022					05-May-2022	28 days	2 days	✓
NO_LIZ4_WO_LALWII _LOO_2022-04_IVI	L200.BI-L	00-May-2022					00-Way-2022	20 days	2 days	·
Anione and Nutrients - Brancide in Water by IC /I and Level										
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E235.Br-L	03-May-2022					05-May-2022	28 days	2 davs	1
							' , '	,	,	
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E235.Br-L	03-May-2022					05-May-2022	28 days	2 days	✓

Page : 4 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: x = Holding time exceedance; √ = Within Holding Time Analyte Group Extraction / Preparation Analysis Method Sampling Date Container / Client Sample ID(s) **Holding Times** Eval Analysis Date **Holding Times** Eval Preparation Rec Actual Rec Actual Date Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE E235.Br-L ✓ RG_SLINE_WS_LAEMP_LCO_2022-04_NP 03-May-2022 05-May-2022 28 days 2 days Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** RG_LI24_WS_LAEMP_LCO_2022-04_NP E235.CI-L 03-May-2022 05-May-2022 28 days 2 days ✓ Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** E235.CI-L ✓ RG_LISP24_WS_LAEMP_LCO_2022-04_NP 03-May-2022 05-May-2022 28 days 2 days Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** RG_RIVER_WS_LAEMP_LCO_2022-04_NP E235.CI-L 03-May-2022 05-May-2022 28 days 2 days Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** E235.CI-L 03-May-2022 ✓ 05-May-2022 RG_SLINE_WS_LAEMP_LCO_2022-04_NP 28 days 2 days Anions and Nutrients: Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** E378-U 03-May-2022 ✓ RG_LI24_WS_LAEMP_LCO_2022-04_NP 04-May-2022 3 days 1 days Anions and Nutrients: Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** E378-U 3 days 03-May-2022 04-May-2022 1 days RG_LISP24_WS_LAEMP_LCO_2022-04_NP Anions and Nutrients: Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** E378-U 03-May-2022 ✓ RG_RIVER_WS_LAEMP_LCO_2022-04_NP 04-May-2022 3 days 1 days Anions and Nutrients: Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** RG_SLINE_WS_LAEMP_LCO_2022-04_NP E378-U 03-May-2022 04-May-2022 3 days 1 days

Page : 5 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Preparation Holding Times			Analysis Date	Holding	Eval		
			Date	Rec	Actual			Rec	Actual		
Anions and Nutrients : Fluoride in Water by IC											
HDPE											
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E235.F	03-May-2022					05-May-2022	28 days	2 days	✓	
Anions and Nutrients : Fluoride in Water by IC											
HDPE											
RG LISP24 WS LAEMP LCO 2022-04 NP	E235.F	03-May-2022					05-May-2022	28 days	2 davs	✓	
· · · · · · · · · · · · · · · · · · ·		,					, ,				
Anions and Nutrients : Fluoride in Water by IC											
HDPE											
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E235.F	03-May-2022					05-May-2022	28 days	2 days	✓	
110_111VE11_WO_B1EINII _E00_2022-04_111	2200.1	00 May 2022					00 May 2022	20 dayo	2 days	·	
Anions and Nutrients : Fluoride in Water by IC				1	1 1		I	1	1 1		
HDPE	E005 E	02 M 2022					05 M 0000	00 4	0 4	√	
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E235.F	03-May-2022					05-May-2022	28 days	2 days	•	
Anions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E235.NO3-L	03-May-2022					05-May-2022	3 days	2 days	✓	
Anions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E235.NO3-L	03-May-2022					05-May-2022	3 days	2 days	✓	
Anions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E235.NO3-L	03-May-2022					05-May-2022	3 days	2 days	✓	
Anions and Nutrients : Nitrate in Water by IC (Low Level)											
HDPE											
RG SLINE WS LAEMP LCO 2022-04 NP	E235.NO3-L	03-May-2022					05-May-2022	3 days	2 days	✓	
		55a, 2022						2 24,5		•	
							L				
Anions and Nutrients : Nitrite in Water by IC (Low Level)							I				
HDPE		1					I				
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E235.NO2-L	03-May-2022					05-May-2022	2 days	2 days	✓	

Page : 6 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

viatrix: water						alaation.	nolaing time excee	oddiioo ,	***************************************	riolanig riii	
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Anions and Nutrients : Nitrite in Water by IC (Low Level)											
HDPE											
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E235.NO2-L	03-May-2022					05-May-2022	3 days	2 days	✓	
									-		
Anions and Nutrients : Nitrite in Water by IC (Low Level)											
HDPE											
RG RIVER WS LAEMP LCO 2022-04 NP	E235.NO2-L	03-May-2022					05-May-2022	3 days	2 days	✓	
110_111VE11_VVO_EACIVII _E00_2022-04_111	2200102 2	00 May 2022					00-Way-2022	o days	2 days	•	
Anions and Nutrients : Nitrite in Water by IC (Low Level)											
HDPE	Eggs NOO I	00.140000					05.140000	0.1	0.1		
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E235.NO2-L	03-May-2022					05-May-2022	3 days	2 days	✓	
Anions and Nutrients : Sulfate in Water by IC											
HDPE											
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E235.SO4	03-May-2022					05-May-2022	28 days	2 days	✓	
Anions and Nutrients : Sulfate in Water by IC											
HDPE											
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E235.SO4	03-May-2022					05-May-2022	28 days	2 days	✓	
								-	-		
Anions and Nutrients : Sulfate in Water by IC											
HDPE								l			
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E235.SO4	03-May-2022					05-May-2022	28 days	2 days	✓	
110_111/E11_110_B1E1111 _E00_2022 01_111		00					00	20 00,0			
Anions and Nutrients : Sulfate in Water by IC								I			
HDPE	E235.SO4	02 May 2022					05 May 2000	00 4	0 4	√	
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E235.5U4	03-May-2022					05-May-2022	28 days	2 days	•	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid)											
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E318	03-May-2022	06-May-2022				08-May-2022	28 days	5 days	✓	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid)											
· · · · · · · · · · · · · · · · · · ·	E318	03-May-2022	06-May-2022				08-May-2022	28 days	5 days	✓	
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	L310	00-Way-2022	00-111ay-2022				OO Way LOLL	Lo dayo	o dayo		

Page : 7 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: water						uluulion.	noiding time exce	oddiioo ,	- vvicinii	riolaling rill
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E318	03-May-2022	06-May-2022				08-May-2022	28 days	5 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E318	03-May-2022	06-May-2022				08-May-2022	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E372-U	03-May-2022	05-May-2022				11-May-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E372-U	03-May-2022	05-May-2022				11-May-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E372-U	03-May-2022	05-May-2022				11-May-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E372-U	03-May-2022	05-May-2022				11-May-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	03-May-2022	10-May-2022				10-May-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	03-May-2022	10-May-2022				10-May-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	03-May-2022	10-May-2022				10-May-2022	180	7 days	✓
								days		

Page : 8 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water						/aluation. ^ –	Holding time exce	euance, •	– vvitriiri	nolaing till	
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation		Analysis				
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)			Date		7 10101			1100	11010101		
HDPE dissolved (nitric acid)											
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	03-May-2022	10-May-2022				10-May-2022	180 days	7 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid)											
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E509	03-May-2022	09-May-2022				09-May-2022	28 days	6 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid)											
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E509	03-May-2022	09-May-2022				09-May-2022	28 days	6 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS							1				
Glass vial dissolved (hydrochloric acid)											
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E509	03-May-2022	09-May-2022				09-May-2022	28 days	6 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid)											
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E509	03-May-2022	09-May-2022				09-May-2022	28 days	6 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS							1				
HDPE dissolved (nitric acid)											
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E421	03-May-2022	10-May-2022				10-May-2022	180 days	7 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid)											
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E421	03-May-2022	10-May-2022				10-May-2022	180 days	7 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid)											
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E421	03-May-2022	10-May-2022				10-May-2022	180 days	7 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid)											
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E421	03-May-2022	10-May-2022				10-May-2022	180 days	7 days	✓	

Page : 9 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

wainx: water						uluution.	nolding time exce	oudinoo ,	***************************************	Troiding Til
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation					
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low	v Level)									
Amber glass dissolved (sulfuric acid)										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E358-L	03-May-2022	06-May-2022				10-May-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lov	v Level)									
Amber glass dissolved (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E358-L	03-May-2022	06-May-2022				10-May-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lov	v Level)									
Amber glass dissolved (sulfuric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E358-L	03-May-2022	06-May-2022				10-May-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lov	v Level)									
Amber glass dissolved (sulfuric acid)										
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E358-L	03-May-2022	06-May-2022				10-May-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Com	bustion (Low Level)									
Amber glass total (sulfuric acid)										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E355-L	03-May-2022	06-May-2022				10-May-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Com	bustion (Low Level)									
Amber glass total (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E355-L	03-May-2022	06-May-2022				10-May-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Com	bustion (Low Level)									
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E355-L	03-May-2022	06-May-2022				10-May-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Com	bustion (Low Level)									
Amber glass total (sulfuric acid)										
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E355-L	03-May-2022	06-May-2022				10-May-2022	28 days	7 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E283	03-May-2022					06-May-2022	14 days	3 days	1
		1								

Page : 10 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: water							Holding time excee	,				
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval		
			Date	Rec	Actual			Rec	Actual			
Physical Tests : Acidity by Titration												
HDPE												
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E283	03-May-2022					06-May-2022	14 days	3 days	✓		
Physical Tests : Acidity by Titration												
HDPE												
RG RIVER WS LAEMP LCO 2022-04 NP	E283	03-May-2022					06-May-2022	14 days	3 days	✓		
							·	_	-			
Physical Tests : Acidity by Titration												
HDPE												
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E283	03-May-2022					06-May-2022	14 days	3 days	✓		
		_					·		-			
Physical Tests : Alkalinity Species by Titration												
HDPE												
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E290	03-May-2022					06-May-2022	14 days	3 days	1		
								_				
Physical Tests : Alkalinity Species by Titration												
HDPE												
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E290	03-May-2022					06-May-2022	14 days	3 days	✓		
							,		,			
Physical Tests : Alkalinity Species by Titration												
HDPE												
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E290	03-May-2022					06-May-2022	14 days	3 days	✓		
							,		,			
Physical Tests : Alkalinity Species by Titration												
HDPE												
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E290	03-May-2022					06-May-2022	14 days	3 davs	✓		
							, ,		-			
Physical Tests : Conductivity in Water												
HDPE								<u> </u>				
RG LI24 WS LAEMP LCO 2022-04 NP	E100	03-May-2022					06-May-2022	28 days	3 davs	1		
	2.00								,-			
Physical Tests : Conductivity in Water												
HDPE							I					
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E100	03-May-2022					06-May-2022	28 days	3 days	1		
		30a, 2022							J, J			

Page : 11 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water						aluation. ^ –	Holding time exce			Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E100	03-May-2022					06-May-2022	28 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E100	03-May-2022					06-May-2022	28 days	3 days	✓
							-		-	
Physical Tests : ORP by Electrode										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E125	03-May-2022					10-May-2022	0.25	167 hrs	*
1.00,11.51.01.005.151111		,						hrs		EHTR-FM
								1110		
Physical Tests : ORP by Electrode							I			
HDPE	E125	03-May-2022					10-May-2022	0.05	169 hrs	×
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E125	03-May-2022					10-May-2022	0.25	1091115	EHTR-FM
								hrs		EU I K-LINI
Physical Tests : ORP by Electrode										
HDPE										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E125	03-May-2022					10-May-2022	0.25	172 hrs	*
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E125	03-May-2022					10-May-2022	0.25	174 hrs	*
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E108	03-May-2022					06-May-2022	0.25	69 hrs	*
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG SLINE WS LAEMP LCO 2022-04 NP	E108	03-May-2022					06-May-2022	0.25	71 hrs	3c
		' , '					, ,	hrs	_	EHTR-FM
Dhysical Tests and by Meter										
Physical Tests : pH by Meter							I			
HDPE PG 1124 WS LAEMP LCO 2022 04 NP	E108	03-May-2022					06-May-2022	0.05	73 hrs	×
RG_LI24_WS_LAEMP_LCO_2022-04_NP	L 100	00-iviay-2022					00-iviay-2022	0.25	731113	EHTR-FM
								hrs		∟⊓ I N-FIVI

Page : 12 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

		1					nolaing time exce			
Analyte Group	Method	Sampling Date		traction / Pr				Analys		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter							ı			
HDPE RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E108	03-May-2022					06-May-2022	0.25 hrs	75 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E162	03-May-2022					10-May-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E162	03-May-2022					10-May-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E162	03-May-2022					10-May-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E162	03-May-2022					10-May-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E160-L	03-May-2022					09-May-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E160-L	03-May-2022					09-May-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)									I	
HDPE RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E160-L	03-May-2022					09-May-2022	7 days	6 days	1
1/G_1/1/21/_WO_EAEWIF_LOO_2022-04_NF	E 100-E	00-iviay-2022					09-Way-2022	7 days	0 days	•
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE	F460 I	00 May 2000					00 M 2000	7 -1	C -1	
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E160-L	03-May-2022					09-May-2022	7 days	ь days	✓

Page : 13 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

viatinx: water			_			diddion.	nolaing time exce			Tiolding Til
Analyte Group	Method	Sampling Date	Ex	traction / Pr □	reparation		Analysis			
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E121	03-May-2022					04-May-2022	3 days	1 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E121	03-May-2022					04-May-2022	3 days	1 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E121	03-May-2022					04-May-2022	3 days	1 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E121	03-May-2022					04-May-2022	3 days	1 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E420.Cr-L	03-May-2022					10-May-2022	180	7 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E420.Cr-L	03-May-2022					10-May-2022	180	7 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E420.Cr-L	03-May-2022					10-May-2022	180	7 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E420.Cr-L	03-May-2022					10-May-2022	180	7 days	✓
								days		
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_LI24_WS_LAEMP_LCO_2022-04_NP	E508-L	03-May-2022					08-May-2022	28 days	5 days	✓

Page : 14 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

natrix: water						valuation. ^ –	Holding time exce	edance, v	- vvitiiiii	Holding
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eva
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved) RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E508-L	03-May-2022					08-May-2022	28 days	5 days	✓
otal Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved) RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E508-L	03-May-2022					08-May-2022	28 days	5 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved) RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E508-L	03-May-2022					08-May-2022	28 days	5 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_LI24_WS_LAEMP_LCO_2022-04_NP	E420	03-May-2022					10-May-2022	180 days	7 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_LISP24_WS_LAEMP_LCO_2022-04_NP	E420	03-May-2022					10-May-2022	180 days	7 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_RIVER_WS_LAEMP_LCO_2022-04_NP	E420	03-May-2022					10-May-2022	180 days	7 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_SLINE_WS_LAEMP_LCO_2022-04_NP	E420	03-May-2022					10-May-2022	180 days	7 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Page : 15 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	479521	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	479526	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	479903	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	477675	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	477676	1	20	5.0	5.0	✓
Conductivity in Water	E100	479525	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	483086	1	9	11.1	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	481456	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	483085	1	13	7.6	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	479726	1	18	5.5	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	477205	1	20	5.0	5.0	1
Fluoride in Water by IC	E235.F	477679	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	477677	1	20	5.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	477678	1	20	5.0	5.0	✓
ORP by Electrode	E125	481837	1	20	5.0	5.0	✓
pH by Meter	E108	479524	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	477674	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	480573	1	20	5.0	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	482522	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479652	1	17	5.8	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	480804	1	18	5.5	5.0	✓
Total Metals in Water by CRC ICPMS	E420	482521	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	479727	1	18	5.5	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	478202	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	477050	1	14	7.1	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	479521	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	479526	1	20	5.0	5.0	<u> </u>
Ammonia by Fluorescence	E298	479903	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	477675	1	20	5.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	477676	1	20	5.0	5.0	<u>√</u>
Conductivity in Water	E100	479525	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	483086	1	9	11.1	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	481456	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	483085	1	13	7.6	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	479726	1	18	5.5	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	477205	1	20	5.0	5.0	1

Page : 16 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water

		e specification: ✓			

Matrix: Water		Evaluati	ion: × = QC freque		ecification; ✓ =		
Quality Control Sample Type	M-111	001-14		Dunt	Actual	Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	477679	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	477677	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	477678	1	20	5.0	5.0	✓
ORP by Electrode	E125	481837	1	20	5.0	5.0	✓
pH by Meter	E108	479524	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	477674	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	480573	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	482522	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479652	1	17	5.8	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	480804	1	18	5.5	5.0	✓
Total Metals in Water by CRC ICPMS	E420	482521	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	479727	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	478202	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	480561	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	477050	1	14	7.1	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	479521	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	479526	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	479903	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	477675	1	20	5.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	477676	1	20	5.0	5.0	✓
Conductivity in Water	E100	479525	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	483086	1	9	11.1	5.0	√
Dissolved Mercury in Water by CVAAS	E509	481456	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	483085	1	13	7.6	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	479726	1	18	5.5	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	477205	1	20	5.0	5.0	<u> </u>
Fluoride in Water by IC	E235.F	477679	1	20	5.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	477677	1	20	5.0	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	477678	1	20	5.0	5.0	<u>√</u>
Sulfate in Water by IC	E235.SO4	477674	1	20	5.0	5.0	
TDS by Gravimetry	E162	480573	1	20	5.0	5.0	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	482522	1	19	5.2	5.0	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479652	1	17	5.8	5.0	
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	480804	1	18	5.5	5.0	
Total Metals in Water by CRC ICPMS	E420	482521	1	20	5.0	5.0	<u> </u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	479727	1	18	5.5	5.0	<u> </u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	478202	1	20	5.0	5.0	
TSS by Gravimetry (Low Level)	E160-L	480561	1	20	5.0	5.0	<u> </u>
Turbidity by Nephelometry	E121	477050	1	14	7.1	5.0	<u> </u>

Page : 17 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water

Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification.

Matrix. Water	Evaluation: * - QC frequency outside specification, * - QC frequency within specific								
Quality Control Sample Type			С	ount		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Matrix Spikes (MS)									
Ammonia by Fluorescence	E298	479903	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	477675	1	20	5.0	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	477676	1	20	5.0	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	483086	1	9	11.1	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	481456	1	20	5.0	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	483085	1	13	7.6	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	479726	1	18	5.5	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	477205	1	20	5.0	5.0	✓		
Fluoride in Water by IC	E235.F	477679	1	20	5.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	477677	1	20	5.0	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	477678	1	20	5.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	477674	1	20	5.0	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	482522	1	19	5.2	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479652	1	17	5.8	5.0	✓		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	480804	1	18	5.5	5.0	√		
Total Metals in Water by CRC ICPMS	E420	482521	1	20	5.0	5.0	√		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	479727	1	18	5.5	5.0	✓		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	478202	1	20	5.0	5.0			

Page : 18 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
Trushi dita da Nama da da mantana	0 ,	10/-4	ADUA 0400 D (pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			Scatter under defined conditions.
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Colorani Faninosantol			filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
, ,	2.02			filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	0.1			detection.
Chlorida in Water by IC (Levy Leval)	Calgary - Environmental	Water	EDA 200.1 (mad)	
Chloride in Water by IC (Low Level)	E235.CI-L	water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
Twittate in water by to (Low Level)	E235.NO3-L	vvator	Li A 300.1 (mod)	detection.
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
A 1 19 A 7 A 19	Calgary - Environmental	187 -	ADUA 0042 7 4 "	
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
	Salgary - Environmental			

Page : 19 of 21
Work Order : CG2205191

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 20 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

Page : 21 of 21 Work Order : CG2205191

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order CG2205191

Client : Teck Coal Limited Contact : Cybele Heddle Address

Sparwood BC Canada

421 Pine Ave

Telephone

Project : REGIONAL EFFECTS PROGRAMS

PO : VPO00816101

C-O-C number :REP LAEMP LCO 2022 APR ALS

Sampler : Rick Smit

Site

Quote number : Teck Coal Master Quote

No. of samples received : 4 No. of samples analysed : 4 Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets Address

: 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Date Samples Received :04-May-2022 10:35

Date Analysis Commenced :04-May-2022

: 16-May-2022 12:19 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Vancouver Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Kyle Chang	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Oscar Ruiz	Lab Assistant	Calgary Inorganics, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta
Parnian Sane	Analsyt	Vancouver Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Woochan Song	Lab Analyst	Vancouver Metals, Burnaby, British Columbia

 Page
 : 2 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	ntory Duplicate (D	иР) кероп		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (Q	,										
CG2205188-001	Anonymous	turbidity		E121	0.10	NTU	1.54	1.45	6.28%	15%	
Physical Tests (Q	C Lot: 479521)										
CG2205187-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (Q	C Lot: 479524)										
CG2205187-001	Anonymous	pH		E108	0.10	pH units	8.46	8.47	0.118%	4%	
Physical Tests (Q	C Lot: 479525)										
G2205187-001	Anonymous	conductivity		E100	2.0	μS/cm	626	627	0.160%	10%	
Physical Tests (Q	C Lot: 479526)										
CG2205187-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	191	199	4.20%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	8.8	9.2	0.4	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	200	208	4.22%	20%	
Physical Tests (Q	C L ot: 480573)										
CG2205187-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	429	405	5.76%	20%	
Physical Tests (O	,					J				-	
Physical Tests (QCCG2205168-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	347	334	3.82%	15%	
	,	Oxidation-reduction potential [OTT]		E 120	0.10	111.4	047	004	0.0270	1070	
Anions and Nutriei CG2205177-001	nts (QC Lot: 477205)	wheelpate orthor discolved (so D)	14265-44-2	E378-U	0.0500	m a /l	2.45	2.34	4.47%	20%	l
	Anonymous	phosphate, ortho-, dissolved (as P)	14205-44-2	E376-U	0.0500	mg/L	2.45	2.34	4.47%	20%	
	nts (QC Lot: 477674)										
CG2205187-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	151	150	0.735%	20%	
	nts (QC Lot: 477675)										
CG2205187-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 477676)										
CG2205187-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.88	0.81	0.07	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 477677)										
G2205187-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.669	0.662	1.11%	20%	
nions and Nutrie	nts (QC Lot: 477678)										
CG2205187-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
nions and Nutrie	nts (QC Lot: 477679)										
CG2205187-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.187	0.186	0.001	Diff <2x LOR	

 Page
 : 4 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Anions and Nutrien	ts (QC Lot: 478202) - c	ontinued											
CG2205191-001	RG_LISP24_WS_LAEMP_ LCO_2022-04_NP	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0026	0.0032	0.0006	Diff <2x LOR			
nions and Nutrien	ts (QC Lot: 479652)												
CG2205191-001	RG_LISP24_WS_LAEMP_ LCO_2022-04_NP	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.084	0.071	0.013	Diff <2x LOR			
nions and Nutrien	ts (QC Lot: 479903)												
CG2205187-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0050	<0.0050	0	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 47972	(6)											
CG2205191-001	RG_LISP24_WS_LAEMP_ LCO_2022-04_NP	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.67	0.88	0.20	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 47972	(7)											
CG2205191-001	RG_LISP24_WS_LAEMP_ LCO 2022-04 NP	carbon, total organic [TOC]		E355-L	0.50	mg/L	0.88	0.86	0.03	Diff <2x LOR			
otal Metals (QC Lo	ot: 480804)												
CG2205168-001	Anonymous	mercury, total	7439-97-6	E508-L	0.50	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR			
otal Metals (QC Lo	ot: 482521)												
G2205187-002	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0790	0.0776	1.85%	20%			
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00011	0.00011	0.000002	Diff <2x LOR			
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00019	0.00022	0.00002	Diff <2x LOR			
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0467	0.0461	1.28%	20%			
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR			
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR			
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0368 µg/L	0.0000311	0.0000056	Diff <2x LOR			
		calcium, total	7440-70-2	E420	0.050	mg/L	79.7	78.6	1.34%	20%			
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR			
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
		iron, total	7439-89-6	E420	0.010	mg/L	0.095	0.099	0.004	Diff <2x LOR			
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000090	0.000094	0.000003	Diff <2x LOR			
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0076	0.0076	0.00005	Diff <2x LOR			
		magnesium, total	7439-95-4	E420	0.0050	mg/L	41.2	41.3	0.366%	20%			
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00409	0.00400	2.12%	20%			
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000811	0.000859	5.70%	20%			
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00125	0.00114	0.00011	Diff <2x LOR			
		potassium, total	7440-09-7	E420	0.050	mg/L	1.03	1.02	0.487%	20%			
		selenium, total	7782-49-2	E420	0.000050	mg/L	41.0 µg/L	0.0407	0.809%	20%			
		silicon, total	7440-21-3	E420	0.10	mg/L	2.08	2.06	0.919%	20%			

 Page
 : 5 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Total Metals (QC Lo	ot: 482521) - continued												
CG2205187-002	Anonymous	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR			
		sodium, total	7440-23-5	E420	0.050	mg/L	1.66	1.65	0.346%	20%			
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.112	0.113	0.607%	20%			
		sulfur, total	7704-34-9	E420	0.50	mg/L	60.7	61.3	0.912%	20%			
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000010	0.000012	0.000001	Diff <2x LOR			
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00012	0.00012	0.000007	Diff <2x LOR			
		titanium, total	7440-32-6	E420	0.00120	mg/L	<0.00120	<0.00120	0	Diff <2x LOR			
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00241	0.00237	1.71%	20%			
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	0.00051	0.00001	Diff <2x LOR			
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0040	0.0010	Diff <2x LOR			
otal Metals (QC Lo													
G2205187-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00025	0.00023	0.00002	Diff <2x LOR			
issolved Metals (C	,		7400.07.0	====				2 22222		D.W. 0. 10D			
G2205187-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR			
issolved Metals (C													
G2205191-001	RG_LISP24_WS_LAEMP_ LCO_2022-04_NP	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0022	0.0019	0.0003	Diff <2x LOR			
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00015	0.00016	0.00001	Diff <2x LOR			
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0367	0.0377	2.61%	20%			
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR			
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR			
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0070 µg/L	0.0000059	0.0000011	Diff <2x LOR			
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	43.9	43.6	0.758%	20%			
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR			
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR			
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR			
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0034	0.0033	0.00001	Diff <2x LOR			
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	10.4	10.7	2.80%	20%			
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000892	0.000859	3.80%	20%			
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	0.00051	0.00001	Diff <2x LOR			
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.278	0.299	0.021	Diff <2x LOR			
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	1.53 µg/L	0.00152	0.228%	20%			

 Page
 : 6 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 483085) - contin	ued									
CG2205191-001	RG_LISP24_WS_LAEMP_ LCO_2022-04_NP	silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.61	1.63	1.49%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	1.23	1.24	0.874%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.146	0.147	0.414%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	12.7	12.1	4.85%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00113	0.00115	1.61%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0019	0.0017	0.0002	Diff <2x LOR	
Dissolved Metals (QC Lot: 483086)										
CG2205191-001	RG_LISP24_WS_LAEMP_ LCO_2022-04_NP	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00015	0.00018	0.00003	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 477050)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 479521)					
cidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 479525)					
onductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 479526)					
lkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
lkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
Ikalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
lkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 480561)					
olids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 480573)					
olids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 477205)					
hosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 477674)					
ulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 477675)					
romide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 477676)					
hloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 477677)					
itrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 477678)					
itrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 477679)					
uoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 478202)					
hosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 479652)					
(jeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 479903)					

 Page
 : 8 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 47						
ammonia, total (as N)	7664-41-7 E	298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCL	ot: 479726)					
carbon, dissolved organic [DOC]	E	358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCL	ot: 479727)					
carbon, total organic [TOC]	E	355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 480804)						
mercury, total	7439-97-6 E	508-L	0.5	ng/L	<0.50	
Total Metals (QCLot: 482521)						
aluminum, total	7429-90-5 E	420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E	420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E	420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E	420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E	420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E	420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E	420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E	420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2 E	420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E	420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E	420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E	420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E	420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E	420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E	420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E	420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E	420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E	420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E	420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E	420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E	420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E	420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E		0.5	mg/L	<0.50	
thallium, total	7440-28-0 E		0.00001	mg/L	<0.000010	
tin, total	7440-31-5 E		0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E		0.0003	mg/L	<0.00030	

 Page
 : 9 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 482521) - 0	continued					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 482522)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 48145	66)					
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 48308	5)					
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
ooron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	

 Page
 : 10 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 483085) - co	ntinued					
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 483086)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	

 Page
 : 11 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 477050)								
turbidity	E121	0.1	NTU	200 NTU	98.6	85.0	115	
Physical Tests (QCLot: 479521)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	104	85.0	115	
Physical Tests (QCLot: 479524)								
рН	E108		pH units	7 pH units	101	98.6	101	
Physical Tests (QCLot: 479525)								
conductivity	E100	1	μS/cm	146.9 μS/cm	102	90.0	110	
Physical Tests (QCLot: 479526)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	104	85.0	115	
Physical Tests (QCLot: 480561)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	91.8	85.0	115	
Physical Tests (QCLot: 480573)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	91.7	85.0	115	
Physical Tests (QCLot: 481837)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	98.1	95.4	104	
Anions and Nutrients (QCLot: 477205)	14265-44-2 E378-U	0.004		2.22 "	100	00.0	400	
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-0	0.001	mg/L	0.02 mg/L	109	80.0	120	
Anions and Nutrients (QCLot: 477674)	14808-79-8 E235.SO4	0.3		100 #	10.1	00.0	440	
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 477675)	24959-67-9 E235.Br-L	0.05	m a/l	0.5 #	07.0	85.0	115	l
bromide	24959-07-9 E235.BI-L	0.05	mg/L	0.5 mg/L	97.9	05.0	115	
Anions and Nutrients (QCLot: 477676)	16887-00-6 E235.CI-L	0.1	mg/L	100 #	100	90.0	110	
	10667-00-0 E233.CI-L	0.1	IIIg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 477677)	14797-55-8 E235.NO3-L	0.005	m a/l	0.5 "	404	90.0	110	l
nitrate (as N)	14797-55-6 E235.NO3-L	0.005	mg/L	2.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 477678)	14797-65-0 E235.NO2-L	0.001	mg/L	0.5 "	104	90.0	110	
	14/9/-05-0 EZ35.NOZ-L	0.001	mg/L	0.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 477679)	16984-48-8 E235.F	0.02	mg/L	1 ma/l	104	90.0	110	I
	10904-40-0 E233.F	0.02	IIIg/L	1 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 478202)	7723-14-0 E372-U	0.002	mg/L	9.02	101	80.0	120	
, ,	1123-14-0 E312-0	0.002	IIIg/L	8.02 mg/L	101	60.0	120	
Anions and Nutrients (QCLot: 479652)								

 Page
 : 12 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

ub-Matrix: Water				Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 479652) - cont	inued									
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	93.8	75.0	125			
Anions and Nutrients (QCLot: 479903)										
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	106	85.0	115			
Organic / Inorganic Carbon (QCLot: 479726)										
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	8.57 mg/L	96.2	80.0	120			
Organic / Inorganic Carbon (QCLot: 479727)										
carbon, total organic [TOC]	E355-L	0.5	mg/L	8.57 mg/L	103	80.0	120			
Total Metals (QCLot: 480804)										
mercury, total	7439-97-6 E508-L	0.5	ng/L	5 ng/L	92.2	80.0	120			
Total Metals (QCLot: 482521)										
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	102	80.0	120			
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	106	80.0	120			
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	106	80.0	120			
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120			
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	106	80.0	120			
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	103	80.0	120			
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	108	80.0	120			
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	105	80.0	120			
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	107	80.0	120			
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	103	80.0	120			
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	103	80.0	120			
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	104	80.0	120			
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	103	80.0	120			
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	110	80.0	120			
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	106	80.0	120			
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	104	80.0	120			
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	102	80.0	120			
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	102	80.0	120			
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	108	80.0	120			
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	108	80.0	120			
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	111	80.0	120			
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	93.9	80.0	120			
sodium, total	7440-23-5 E420	0.05	mg/L	50 mg/L	105	80.0	120			
strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	102	80.0	120			
sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	105	80.0	120			

 Page
 : 13 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Sub-Matrix: Water	p-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)	imits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Total Metals (QCLot: 482521) - continu	ued											
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	105	80.0	120				
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	99.6	80.0	120				
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	102	80.0	120				
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	105	80.0	120				
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	106	80.0	120				
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	105	80.0	120				
Total Metals (QCLot: 482522)												
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	104	80.0	120				
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	105	80.0	120				
Dissolved Metals (QCLot: 483085)												
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	98.8	80.0	120				
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	101	80.0	120				
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	99.1	80.0	120				
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	96.7	80.0	120				
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	97.9	80.0	120				
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	97.6	80.0	120				
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	101	80.0	120				
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	94.5	80.0	120				
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	102	80.0	120				
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	96.2	80.0	120				
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	96.5	80.0	120				
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	98.6	80.0	120				
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	95.2	80.0	120				
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	102	80.0	120				
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	94.5	80.0	120				
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	95.7	80.0	120				
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	97.9	80.0	120				
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	96.3	80.0	120				
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	103	80.0	120				
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	99.4	80.0	120				
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	99.5	80.0	120				
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	88.6	80.0	120				
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	100	80.0	120				
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	99.3	80.0	120				
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	90.1	80.0	120				
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	102	80.0	120				

 Page
 : 14 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 483085) - continu	ed								
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	95.2	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	99.0	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	102	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.4	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	94.9	80.0	120	
Dissolved Metals (QCLot: 483086)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	97.7	80.0	120	

Page : 15 of 18 Work Order : CG2205191 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							-	e (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
Anions and Nutr	ients (QCLot: 477205)									
CG2205188-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0506 mg/L	0.05 mg/L	101	70.0	130	
Anions and Nutr	ients (QCLot: 477674)									
CG2205202-016	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	99.4 mg/L	100 mg/L	99.4	75.0	125	
Anions and Nutr	ients (QCLot: 477675)									
CG2205202-016	Anonymous	bromide	24959-67-9	E235.Br-L	0.460 mg/L	0.5 mg/L	92.1	75.0	125	
Anions and Nutr	ients (QCLot: 477676)									
CG2205202-016	Anonymous	chloride	16887-00-6	E235.CI-L	102 mg/L	100 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 477677)									
CG2205202-016	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.60 mg/L	2.5 mg/L	104	75.0	125	
Anions and Nutr	ients (QCLot: 477678)									
CG2205202-016	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.545 mg/L	0.5 mg/L	109	75.0	125	
Anions and Nutr	ients (QCLot: 477679)									
CG2205202-016	Anonymous	fluoride	16984-48-8	E235.F	1.08 mg/L	1 mg/L	108	75.0	125	
Anions and Nutr	ients (QCLot: 478202)									
CG2205191-002	RG_LI24_WS_LAEMP_LCO _2022-04_NP	phosphorus, total	7723-14-0	E372-U	0.0550 mg/L	0.0676 mg/L	81.3	70.0	130	
Anions and Nutr	ients (QCLot: 479652)									
CG2205191-002	RG_LI24_WS_LAEMP_LCO _2022-04_NP	Kjeldahl nitrogen, total [TKN]		E318	2.39 mg/L	2.5 mg/L	95.5	70.0	130	
Anions and Nutr	ients (QCLot: 479903)									
CG2205187-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.110 mg/L	0.1 mg/L	110	75.0	125	
Organic / Inorga	nic Carbon (QCLot: 4797	726)								
CG2205191-001	RG_LISP24_WS_LAEMP_L CO_2022-04_NP	carbon, dissolved organic [DOC]		E358-L	5.23 mg/L	5 mg/L	105	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 4797	727)								
CG2205191-001	RG_LISP24_WS_LAEMP_L CO_2022-04_NP	carbon, total organic [TOC]		E355-L	5.54 mg/L	5 mg/L	111	70.0	130	
otal Metals (QC	CLot: 480804)									
CG2205168-002	Anonymous	mercury, total	7439-97-6	E508-L	4.39 ng/L	5 ng/L	87.8	70.0	130	
otal Metals (QC	CLot: 482521)									
CG2205187-003	Anonymous	aluminum, total	7429-90-5	E420	0.178 mg/L	0.2 mg/L	89.3	70.0	130	

 Page
 : 16 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

ub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
otal Metals (QC	Lot: 482521) - conti	nued								
CG2205187-003	Anonymous	antimony, total	7440-36-0	E420	0.0203 mg/L	0.02 mg/L	101	70.0	130	
		arsenic, total	7440-38-2	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0398 mg/L	0.04 mg/L	99.6	70.0	130	
		bismuth, total	7440-69-9	E420	0.00928 mg/L	0.01 mg/L	92.8	70.0	130	
		boron, total	7440-42-8	E420	0.104 mg/L	0.1 mg/L	104	70.0	130	
		cadmium, total	7440-43-9	E420	0.00397 mg/L	0.004 mg/L	99.2	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0189 mg/L	0.02 mg/L	94.6	70.0	130	
		copper, total	7440-50-8	E420	0.0188 mg/L	0.02 mg/L	94.0	70.0	130	
		iron, total	7439-89-6	E420	1.92 mg/L	2 mg/L	96.2	70.0	130	
		lead, total	7439-92-1	E420	0.0186 mg/L	0.02 mg/L	92.9	70.0	130	
		lithium, total	7439-93-2	E420	0.0993 mg/L	0.1 mg/L	99.3	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0191 mg/L	0.02 mg/L	95.4	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0199 mg/L	0.02 mg/L	99.3	70.0	130	
		nickel, total	7440-02-0	E420	0.0375 mg/L	0.04 mg/L	93.7	70.0	130	
		potassium, total	7440-09-7	E420	4.00 mg/L	4 mg/L	100	70.0	130	
		selenium, total	7782-49-2	E420	0.0416 mg/L	0.04 mg/L	104	70.0	130	
		silicon, total	7440-21-3	E420	9.36 mg/L	10 mg/L	93.6	70.0	130	
		silver, total	7440-22-4	E420	0.00399 mg/L	0.004 mg/L	99.7	70.0	130	
		sodium, total	7440-23-5	E420	2.05 mg/L	2 mg/L	102	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00381 mg/L	0.004 mg/L	95.3	70.0	130	
		tin, total	7440-31-5	E420	0.0190 mg/L	0.02 mg/L	95.2	70.0	130	
		titanium, total	7440-32-6	E420	0.0390 mg/L	0.04 mg/L	97.5	70.0	130	
		uranium, total	7440-61-1	E420	0.00404 mg/L	0.004 mg/L	101	70.0	130	
		vanadium, total	7440-62-2	E420	0.101 mg/L	0.1 mg/L	101	70.0	130	
		zinc, total	7440-66-6	E420	0.388 mg/L	0.4 mg/L	97.1	70.0	130	
otal Metals (QC	Lot: 482522)									
CG2205187-003	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0397 mg/L	0.04 mg/L	99.2	70.0	130	
issolved Metals	(QCLot: 481456)									
CG2205187-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000944 mg/L	0.0001 mg/L	94.4	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 483085) - cont	tinued								
CG2205191-002	RG_LI24_WS_LAEMP_LCO	aluminum, dissolved	7429-90-5	E421	0.183 mg/L	0.2 mg/L	91.3	70.0	130	
	_2022-04_NP	antimony, dissolved	7440-36-0	E421	0.0203 mg/L	0.02 mg/L	101	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0197 mg/L	0.02 mg/L	98.4	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0372 mg/L	0.04 mg/L	93.1	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00834 mg/L	0.01 mg/L	83.4	70.0	130	
		boron, dissolved	7440-42-8	E421	0.096 mg/L	0.1 mg/L	95.6	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00380 mg/L	0.004 mg/L	94.9	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0179 mg/L	0.02 mg/L	89.6	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0177 mg/L	0.02 mg/L	88.6	70.0	130	
		iron, dissolved	7439-89-6	E421	1.86 mg/L	2 mg/L	93.2	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0179 mg/L	0.02 mg/L	89.6	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0878 mg/L	0.1 mg/L	87.8	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0183 mg/L	0.02 mg/L	91.4	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0205 mg/L	0.02 mg/L	102	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0356 mg/L	0.04 mg/L	89.1	70.0	130	
		potassium, dissolved	7440-09-7	E421	3.82 mg/L	4 mg/L	95.6	70.0	130	
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.39 mg/L	10 mg/L	93.9	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00390 mg/L	0.004 mg/L	97.5	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00365 mg/L	0.004 mg/L	91.2	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0192 mg/L	0.02 mg/L	95.9	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0387 mg/L	0.04 mg/L	96.7	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00399 mg/L	0.004 mg/L	99.8	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0960 mg/L	0.1 mg/L	96.0	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.360 mg/L	0.4 mg/L	90.1	70.0	130	
ssolved Metals	(QCLot: 483086)									
G2205191-002	RG_LI24_WS_LAEMP_LCO 2022-04 NP	chromium, dissolved	7440-47-3	E421.Cr-L	0.0378 mg/L	0.04 mg/L	94.6	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2205191

 Client
 : Teck Coal Limited

REP_LAEMP_LCO_2022_APR_ALS TURNAROUND TIME: COC ID: RUSH: N/A PROJECT/CLIENTINFO OTHER INFO Facility Name / Job# Regional Effects Program - LCO LAEMP Lab Name ALS Calgary Report Format / Distribution Excel PDF EDD Project Manager Cybele Heddle Lab Contact Lyudmyla Shvets anuascilab@teck.com Email 1: Email Lyudmyla.Shvets@ALSGlobal.com Email Cybele.Heddle@Teck.com Email 2: eckcoal@equisonline.com Address 2559 29 Street NE Address 421 Pine Ave Email 3: Feck, Lab, Results@teck.com Email 4: City Province BC City Calgary Province AB Sparwood Email 5: Tyler.Mehler@Minnow.ca Country Canada Postal Code T1Y 7B5 Country V0B 2G0 Postal Code Canada Email 6: lbowron@minnow.ca Phone Number 250-910-8755 Phone Number 403 407 1794 VPO00816101 PO number SAMPLE DETAILS Filtered - F: Field, La Lab, FL: Field & Lab, N: None ANALYSIS REQUESTED H2SO4 H2SO4 HCL NONE HNO3 HNO3 NONE Hazardous Material (Yes/No) TECKCOAL-ROUTINE-VA G=Grab Sample Location Field C=Com #Of Sample ID (sys loc code) Matrix Date Time (24hr) 4 Cont. RG LUDDY WY LAEMP LOW 2022-04-NP RG. LISTRY ã. ws NO 00:00 7 1-02-05-03 RG 1724 W LACHR LCO-2002 -4.NP RG 1724 す å ws NO 11:15 G X 202-05-03 0 ےہ 13:30 7 DE RG_SLINE BG SLINE LUS LAEMP LUS - 2012-04-NP WS NO 1022-05.03 G R × ~ **Environmental Division** RG_ RIVER 15/30 WS G ã RGRIGELIS LAEMP LCO 2002. OF MP 2502-5-03 d Calgary WS NO \mathbf{G} Work Order Reference CG2205191 WS NO \mathbf{G} NO \mathbf{G} WS NO \mathbf{G} WS WS G NO ~ws NO G W.S NO G WS NO WS RELINQUISHED BY/AFFILIATION DATE/TIME ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS ACCEPTED BY/AFFILIATION Ride Smil/ Lolic Environmenta Measeshehide DI for fields 2022 0503/17100 SERVICE REQUEST (rush - subject to availability) Regular (default) X Rick Smit Sampler's Name Mobile # Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Sampler's Signature 2022 05 03 17:00 Date/Time For Emergency <1 Day, ASAP or Weekend - Contact ALS

WATER CHEMISTRY

ALS Laboratory Report CG2205354 (Finalized May 17, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2205354

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAMS

PO : VPO00816101

C-O-C number : REP_LAEMP_ICO_2022_APR_ALS

Sampler : Emma Thompson

Site : --

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800
Date Samples Received : 05-May-2022 10:20

Date Analysis Commenced : 06-May-2022

Issue Date : 17-May-2022 14:39

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Team Leader - Inorganics Lab Analyst	Inorganics, Calgary, Alberta Metals, Burnaby, British Columbia
•	Metals. Burnaby. British Columbia
	, , , , , , , , , , , , , , , , , , ,
Lab Assistant	Metals, Burnaby, British Columbia
Team Leader - Inorganics	Inorganics, Calgary, Alberta
Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lab Assistant	Metals, Burnaby, British Columbia
Lab Assistant	Inorganics, Calgary, Alberta
	Metals, Burnaby, British Columbia
Laboratory Analyst	Inorganics, Calgary, Alberta
Analyst	Inorganics, Calgary, Alberta
	Supervisor - Metals ICP Instrumentation Lab Assistant Lab Assistant Laboratory Analyst

 Page
 : 2 of 6

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within
	hold time.
RRV	Reported result verified by repeat analysis.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 3 of 6
Work Order : CG2205354
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	lient sample ID	RG_LIDCOM_W S_LAEMP_LCO _2022-04_NP	RG_LI8_WS_LA EMP_LCO_202 2-04_NP	RG_FO23_WS_ LAEMP_LCO_2 022-04_NP	RG_TRIP_WS_L AEMP_LCO_20 22-04_NP	
			Client samp	oling date / time	04-May-2022 10:30	04-May-2022 09:30	04-May-2022 07:30	04-May-2022 16:00	
Analyte	CAS Number	Method	LOR	Unit	CG2205354-001	CG2205354-002	CG2205354-003	CG2205354-004	
					Result	Result	Result	Result	
Physical Tests		5000							
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	193	171	187	<1.0	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	235	209	228	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	7.2	7.0	6.8	<1.0	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	4.3	4.2	4.1	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	200	178	194	<1.0	
conductivity		E100	2.0	μS/cm	776	681	772	<2.0	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	391	333	390	<0.50	
oxidation-reduction potential [ORP]		E125	0.10	mV	296	493	465	513	
рН		E108	0.10	pH units	8.40	8.42	8.40	5.92	
solids, total dissolved [TDS]		E162	10	mg/L	606	452	540	<10	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.8	3.6	13.8	<1.0	
turbidity		E121	0.10	NTU	0.60	0.63	1.16	<0.10	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	9.62	7.99	4.20	<0.10	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.217	0.241	0.176	<0.020	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	1.60	1.57	1.10 TKNI	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	7.92	6.53	11.5	<0.0050 HTD	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0019	0.0014	0.0044	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0011	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0063	0.0056	0.0114	<0.0020	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	220	184	214	<0.30	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.26	1.06	1.30		
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.24	1.16	1.65	<0.50	

Page : 4 of 6
Work Order : CG2205354
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	ient sample ID	RG_LIDCOM_W S_LAEMP_LCO _2022-04_NP	RG_LI8_WS_LA EMP_LCO_202 2-04_NP	RG_FO23_WS_ LAEMP_LCO_2 022-04_NP	RG_TRIP_WS_L AEMP_LCO_20 22-04_NP	
			·	ling date / time	04-May-2022 10:30	04-May-2022 09:30	04-May-2022 07:30	04-May-2022 16:00	
Analyte	CAS Number	Method	LOR	Unit	CG2205354-001 Result	CG2205354-002 Result	CG2205354-003 Result	CG2205354-004 Result	
Ion Balance					Result	Nesuit	rtesuit	Nesuit	
anion sum		EC101	0.10	meq/L	9.42	8.09	9.28	<0.10	
cation sum		EC101	0.10	meq/L	8.13	6.92	7.96	<0.10	
ion balance (cations/anions)		EC101	0.010	%	86.3	85.5	85.8	100 RRV	
ion balance (APHA)		EC101	0.010	%	7.35	7.79	7.66	<0.010	
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0244	0.0201	0.0566	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00020	0.00017	0.00015	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00013	0.00014	0.00016	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0626	0.0553	0.0891	<0.00010	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.013	0.011	<0.010	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.108	0.0838	0.0468	<0.0050	
calcium, total	7440-70-2	E420	0.050	mg/L	94.0	82.3	96.2	<0.050	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00016	0.00018	0.00060	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.038	0.028	0.107	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0.000087	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0383	0.0307	0.0259	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	40.1	34.7	41.9	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00631	0.00449	0.00873	<0.00010	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	0.00058	0.00059	0.00090		
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00202	0.00200	0.00152	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00368	0.00315	0.00209	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	1.23	1.04	1.30	<0.050	
selenium, total	7782-49-2	E420	0.050	μg/L	38.4	30.8	46.5	<0.050	
silicon, total	7440-21-3	E420	0.10	mg/L	2.45	2.09	2.19	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	6.40	5.43	3.39	<0.050	

Page : 5 of 6
Work Order : CG2205354
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	RG_LIDCOM_W S_LAEMP_LCO _2022-04_NP	RG_LI8_WS_LA EMP_LCO_202 2-04_NP	RG_FO23_WS_ LAEMP_LCO_2 022-04_NP	RG_TRIP_WS_L AEMP_LCO_20 22-04_NP	
			Client samp	ling date / time	04-May-2022 10:30	04-May-2022 09:30	04-May-2022 07:30	04-May-2022 16:00	
Analyte	CAS Number	Method	LOR	Unit	CG2205354-001 Result	CG2205354-002 Result	CG2205354-003 Result	CG2205354-004 Result	
Total Metals					Result	Result	Nesuit	Nesuit	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.206	0.185	0.168	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	78.6	66.0	76.6	<0.50	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00048	0.00052	0.00088	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00309	0.00272	0.00255	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0044	0.0039	<0.0030	<0.0030	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0011	0.0013	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00020	0.00017	0.00014	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011	0.00012	0.00010	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0593	0.0522	0.0821	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.013	0.011	<0.010	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0884	0.0466	0.0208	<0.0050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	91.4	78.9	89.4	<0.050	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00013	0.00013	0.00010	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00021	0.00023	0.00022	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0373	0.0310	0.0268	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	39.5	33.1	40.4	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00160	0.00093	0.00103	<0.00010	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00205	0.00178	0.00154	<0.000050	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00344	0.00277	0.00167	<0.00050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.21	1.01	1.26	<0.050	

Page : 6 of 6
Work Order : CG2205354
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Column C	Sub-Matrix: Water			CI	lient sample ID	RG_LIDCOM_W	RG_LI8_WS_LA	RG_FO23_WS_	RG_TRIP_WS_L	
Client sampling date / time 04-May-2022 04-May-2024	(Matrix: Water)					S_LAEMP_LCO	EMP_LCO_202	LAEMP_LCO_2	AEMP_LCO_20	
Analyte CAS Number Method LOR Unit CG2205354-001 CG2205354-002 CG2205354-003 CG2205354-004						2022-04_NP	2-04_NP	022-04_NP	22-04_NP	
Passit Passit				Client samp	oling date / time	,	,	,	, ,	
Dissolved Metals Selenium, dissolved T782-49-2 E421 0.050 µg/L 40.2 32.3 51.2 <0.050	Analyte	CAS Number	Method	LOR	Unit	CG2205354-001	CG2205354-002	CG2205354-003	CG2205354-004	
selenium, dissolved 7782-49-2 E421 0.050 µg/L 40.2 32.3 51.2 <0.050						Result	Result	Result	Result	
silicon, dissolved 7440-21-3 E421 0.050 mg/L 2.32 2.02 2.11 <0.050	Dissolved Metals									
silver, dissolved 7440-22-4 E421 0.000010 mg/L <0.000010	selenium, dissolved	7782-49-2	E421	0.050	μg/L	40.2	32.3	51.2	<0.050	
sodium, dissolved 7440-23-5 E421 0.050 mg/L 6.68 5.40 3.42 <0.050	silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.32	2.02	2.11	<0.050	
strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.206 0.185 0.164 <0.00020	silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sulfur, dissolved 7704-34-9 E421 0.50 mg/L 78.6 65.1 77.5 <0.50 thallium, dissolved 7440-28-0 E421 0.00010 mg/L <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 < tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 < titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 </td <td>sodium, dissolved</td> <td>7440-23-5</td> <td>E421</td> <td>0.050</td> <td>mg/L</td> <td>6.68</td> <td>5.40</td> <td>3.42</td> <td><0.050</td> <td></td>	sodium, dissolved	7440-23-5	E421	0.050	mg/L	6.68	5.40	3.42	<0.050	
thallium, dissolved 7440-28-0 E421 0.000010 mg/L <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010	strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.206	0.185	0.164	<0.00020	
tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010	sulfur, dissolved	7704-34-9	E421	0.50	mg/L	78.6	65.1	77.5	<0.50	
titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030	thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.00307 0.00266 0.00249 <0.00010	tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
vanadium, dissolved 7440-62-2 E421 0.00050 mg/L <0.00050	titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
zinc, dissolved 7440-66-6 E421 0.0010 mg/L 0.0037 0.0035 0.0011 0.0011 RRV dissolved mercury filtration location EP509 Field Field Field	uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00307	0.00266	0.00249	<0.000010	
dissolved mercury filtration location EP509 - Field Field Field	vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
	zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0037	0.0035	0.0011	0.0011 RRV	
disabled models (Monthley Location)	dissolved mercury filtration location		EP509	-	-	Field	Field	Field		
aissoived metals filtration location EP421 Field Field Field Field	dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order CG2205354 Page : 1 of 22

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle Account Manager : Lyudmyla Shvets

Address Address : 2559 29th Street NE : 421 Pine Ave

Calgary, Alberta Canada T1Y 7B5

Sparwood BC Canada Telephone Telephone : +1 403 407 1800

Project : REGIONAL EFFECTS PROGRAMS **Date Samples Received** : 05-May-2022 10:20 PO Issue Date : VPO00816101 : 17-May-2022 14:39

C-O-C number : REP_LAEMP_ICO_2022_APR_ALS

Sampler : Emma Thompson

Site

Quote number : Teck Coal Master Quote

No. of samples received : 4 No. of samples analysed :4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

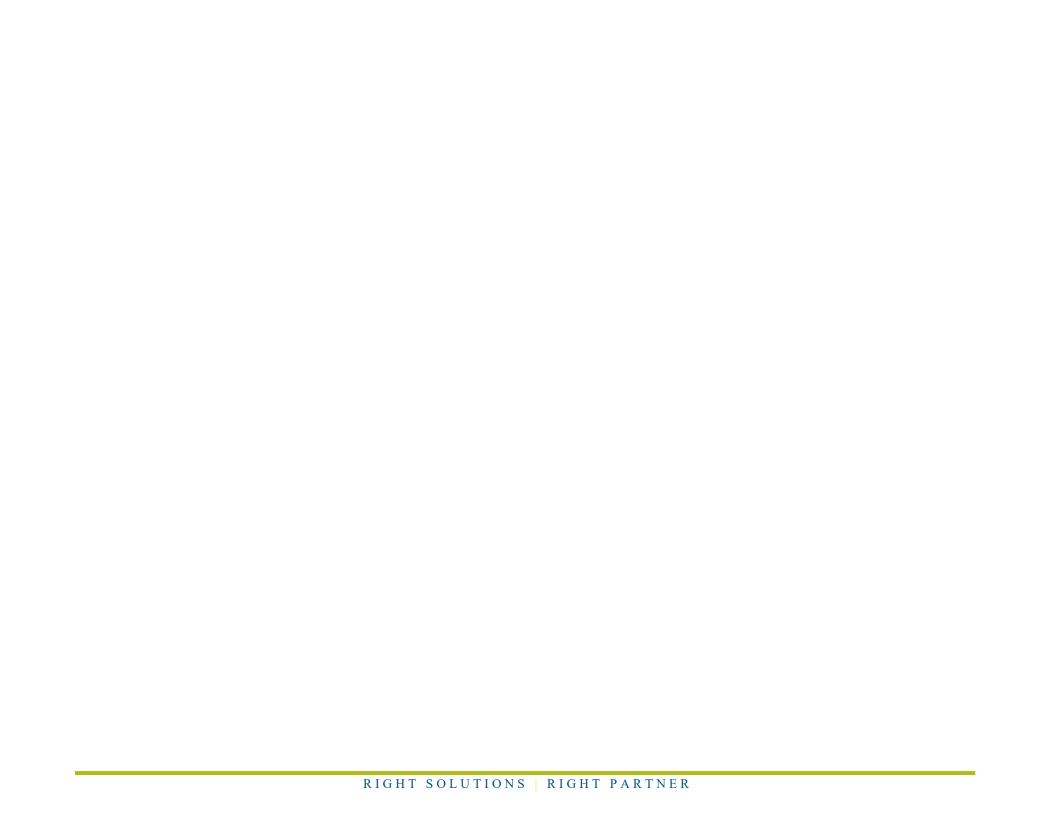
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

No Quality Control Sample Frequency Outliers occur.

 Page
 : 3 of 22

 Work Order
 : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Total Metals	QC-MRG3-4837010		aluminum, total	7429-90-5	E420	0.0035 MB-LOR	0.003 mg/L	Blank result exceeds
	01					mg/L		permitted value

Result Qualifiers

Qualifier	Description
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

Page : 4 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E۱	/aluation: ズ =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_FO23_WS_LAEMP_LCO_2022-04_NP	E298	04-May-2022	06-May-2022				06-May-2022	28 days	2 days	√
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LI8_WS_LAEMP_LCO_2022-04_NP	E298	04-May-2022	06-May-2022				06-May-2022	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E298	04-May-2022	06-May-2022				06-May-2022	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E298	04-May-2022	06-May-2022				06-May-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_FO23_WS_LAEMP_LCO_2022-04_NP	E235.Br-L	04-May-2022					06-May-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2022-04_NP	E235.Br-L	04-May-2022					06-May-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E235.Br-L	04-May-2022					06-May-2022	28 days	2 days	✓

 Page
 : 5 of 22

 Work Order
 : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Analysis Method Sampling Date Container / Client Sample ID(s) **Holding Times** Eval Analysis Date **Holding Times** Eval Preparation Rec Actual Rec Actual Date Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE E235.Br-L 04-May-2022 06-May-2022 ✓ RG_TRIP_WS_LAEMP_LCO_2022-04_NP 28 days 2 days Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** RG_FO23_WS_LAEMP_LCO_2022-04_NP E235.CI-L 04-May-2022 06-May-2022 28 days 2 days ✓ Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** E235.CI-L ✓ RG_LI8_WS_LAEMP_LCO_2022-04_NP 04-May-2022 06-May-2022 28 days 2 days Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP E235.CI-L 04-May-2022 06-May-2022 28 days 2 days Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** E235.CI-L 04-May-2022 06-May-2022 RG_TRIP_WS_LAEMP_LCO_2022-04_NP 28 days 2 days Anions and Nutrients: Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** E378-U 04-May-2022 ✓ RG_FO23_WS_LAEMP_LCO_2022-04_NP 06-May-2022 3 days 2 days Anions and Nutrients: Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** E378-U 3 days 04-May-2022 06-May-2022 2 days RG_LI8_WS_LAEMP_LCO_2022-04_NP Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** E378-U ✓ RG LIDCOM WS LAEMP LCO 2022-04 NP 04-May-2022 06-May-2022 3 days 2 days Anions and Nutrients: Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** RG_TRIP_WS_LAEMP_LCO_2022-04_NP E378-U 04-May-2022 06-May-2022 3 days 2 days

 Page
 : 6 of 22

 Work Order
 : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water						/aluation. * -	Holding time exce	edance, v	– vvitriiri	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E235.F	04-May-2022					06-May-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E235.F	04-May-2022					06-May-2022	28 days	2 days	✓
		·					•			
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E235.F	04-May-2022					06-May-2022	28 days	2 davs	✓
		, ,					, ,		,	
Anisms and Nutrients a Flooride in Weten by 10										
Anions and Nutrients : Fluoride in Water by IC HDPE				<u> </u>	l		I .	<u> </u>		
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E235.F	04-May-2022					06-May-2022	28 days	2 days	✓
NG_INIF_WG_LALIMF_LOO_2022-04_INF	L200.1	04-Way-2022					00-Way-2022	20 days	2 days	•
Anions and Nutrients : Nitrate in Water by IC (Low Level)								T T		
HDPE	E235.NO3-L	04-May-2022					06-May-2022	2 days	2 days	√
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E233.NO3-L	04-iviay-2022					00-May-2022	3 days	2 days	•
Anions and Nutrients : Nitrate in Water by IC (Low Level)							ı			
HDPE	5005 NO. 1	0.4.44 00000								,
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E235.NO3-L	04-May-2022					06-May-2022	3 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E235.NO3-L	04-May-2022					06-May-2022	3 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E235.NO3-L	04-May-2022					10-May-2022	3 days	6 days	*
										EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)				<u> </u>						
HDPE										
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E235.NO2-L	04-May-2022					06-May-2022	3 days	2 days	✓
_										

Page : 7 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

water							nolding time exce			
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E235.NO2-L	04-May-2022					06-May-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG LIDCOM WS LAEMP LCO 2022-04 NP	E235.NO2-L	04-May-2022					06-May-2022	3 days	2 days	✓
							-	-		
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E235.NO2-L	04-May-2022					06-May-2022	3 davs	2 days	✓
							, ,	,	,	
Anione and Nutricutes Culfete in Weter by 10										
Anions and Nutrients : Sulfate in Water by IC HDPE							l	l l	I	
RG FO23 WS LAEMP LCO 2022-04 NP	E235.SO4	04-May-2022					06-May-2022	28 days	2 days	✓
NG_1 020_VV3_LALIVIF_LGO_2022-04_NF	L233.004	04-Way-2022					00-Way-2022	20 days	2 days	,
Anions and Nutrients : Sulfate in Water by IC								T T	I	
HDPE	E235.SO4	04-May-2022					06-May-2022	28 days	O days	√
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E235.304	04-iviay-2022					00-May-2022	20 days	2 days	,
Anions and Nutrients : Sulfate in Water by IC				1						
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E235.SO4	04-May-2022					06-May-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E235.SO4	04-May-2022					06-May-2022	28 days	2 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E318	04-May-2022	10-May-2022				10-May-2022	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)									1	1
Amber glass total (sulfuric acid)										
• '	F040	04.140000	10-May-2022				10-May-2022	28 days	6 days	✓
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E318	04-May-2022	10-May-2022				10-iviay-2022	20 uays	0 uays	, ,

Page : 8 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water						raiuation. * -	Holding time exce	euance , •	– vviuiiii	nolaling Time
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E318	04-May-2022	10-May-2022				10-May-2022	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E318	04-May-2022	10-May-2022				10-May-2022	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_FO23_WS_LAEMP_LCO_2022-04_NP	E372-U	04-May-2022	11-May-2022				11-May-2022	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_LI8_WS_LAEMP_LCO_2022-04_NP	E372-U	04-May-2022	11-May-2022				11-May-2022	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E372-U	04-May-2022	11-May-2022				11-May-2022	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E372-U	04-May-2022	11-May-2022				11-May-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_FO23_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	04-May-2022	12-May-2022				12-May-2022	180 days	8 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_LI8_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	04-May-2022	12-May-2022				12-May-2022	180 days	8 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	04-May-2022	12-May-2022				12-May-2022	180 days	8 days	✓

 Page
 : 9 of 22

 Work Order
 : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: water						valuation. * =	noiding time exce	euance, •	– vvitilili	Holding Till
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analysis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E421.Cr-L	04-May-2022	12-May-2022				12-May-2022	180	8 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E509	04-May-2022	11-May-2022				11-May-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E509	04-May-2022	11-May-2022				11-May-2022	28 days	7 days	✓
		-							-	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG LIDCOM WS LAEMP LCO 2022-04 NP	E509	04-May-2022	11-May-2022				11-May-2022	28 days	7 days	✓
		,	,				,			
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG FO23 WS LAEMP LCO 2022-04 NP	E421	04-May-2022	12-May-2022				12-May-2022	180	8 days	✓
		·	,				,	days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS								,		
HDPE dissolved (nitric acid)										
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E421	04-May-2022	12-May-2022				12-May-2022	180	8 days	✓
			, ,					days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS								,		
HDPE dissolved (nitric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E421	04-May-2022	12-May-2022				12-May-2022	180	8 days	✓
1.0_1.5001.0_1.11.00_1.011			,				,	days	, -	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E421	04-May-2022	12-May-2022				12-May-2022	180	8 days	1
110_11111 _110_11111111 _1100_1101111		0 : may 2022	.2				12	days	o days	
Commiss / Insurancia Carley a Dissalved Commiss Carley by Carley dis-	(0)							aayo		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev Amber glass dissolved (sulfuric acid)	/el)						I			
	1	1								
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E358-L	04-May-2022	10-May-2022				12-May-2022	28 days	8 dave	✓

Page : 10 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Method Sampling Date Extraction / Preparation							Analysis			
		Preparation Holdin		g Times	Eval	Analysis Date	Holding	Times	Eval	
		Date	Rec	Actual		-	Rec	Actual		
/el)										
E358-L	04-May-2022	10-May-2022				12-May-2022	28 days	8 days	✓	
/el)										
E358-L	04-May-2022	10-May-2022				12-May-2022	28 days	8 days	✓	
ion (Low Level)										
E355-L	04-May-2022	10-May-2022				12-May-2022	28 days	8 days	✓	
ion (Low Level)										
E355-L	04-May-2022	10-May-2022				12-May-2022	28 days	8 days	✓	
ion (Low Level)										
E355-L	04-May-2022	10-May-2022				12-May-2022	28 days	8 days	✓	
ion (Low Level)										
E355-L	04-May-2022	10-May-2022				12-May-2022	28 days	8 days	✓	
E283	04-May-2022					09-May-2022	14 days	5 days	✓	
E283	04-May-2022					09-May-2022	14 days	5 days	✓	
						09-May-2022		5 days	√	
E283	04-May-2022									
i	E358-L Vel) E358-L ion (Low Level) E355-L ion (Low Level)	E358-L 04-May-2022 vel) E358-L 04-May-2022 ion (Low Level) E355-L 04-May-2022 ion (Low Level) E355-L 04-May-2022 ion (Low Level) E355-L 04-May-2022 E283 04-May-2022	Preparation Date Preparation Date Preparation Date Preparation Date Preparation Date Preparation Date Preparation Preparation	Preparation Holding Times Rec Actual	Preparation Holding Times Rec Actual	Preparation Holding Times Rec Actual Analysis Date Rec Actual	Preparation Date Holding Times Rec Actual Analysis Date Holding Rec Rec Actual	Preparation Holding Times Rec Actual Eval Analysis Date Holding Times Rec Actual		

Page : 11 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analysis Onesin		0 " 0 "			Analysis					
Analyte Group	Method	Sampling Date		Extraction / Preparation						
Container / Client Sample ID(s)					ng Times Eval		Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Acidity by Titration										
HDPE RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E283	04-May-2022					09-May-2022	14 days	5 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE RG_FO23_WS_LAEMP_LCO_2022-04_NP	E290	04-May-2022					07-May-2022	14 days	3 days	√
Physical Tests : Alkalinity Species by Titration										
HDPE RG_LI8_WS_LAEMP_LCO_2022-04_NP	E290	04-May-2022					07-May-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E290	04-May-2022					07-May-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E290	04-May-2022					07-May-2022	14 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE RG_FO23_WS_LAEMP_LCO_2022-04_NP	E100	04-May-2022					07-May-2022	28 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE RG_LI8_WS_LAEMP_LCO_2022-04_NP	E100	04-May-2022					07-May-2022	28 days	3 days	✓
Physical Tests : Conductivity in Water									l	
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E100	04-May-2022					07-May-2022	28 days	3 days	√
Physical Tests : Conductivity in Water										
HDPE RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E100	04-May-2022					07-May-2022	28 days	3 days	✓

Page : 12 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: water						valuation. * =	noiding time exce	euance,	- vviti iii	i i ioiding Tili	
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Physical Tests : ORP by Electrode											
HDPE											
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E125	04-May-2022					12-May-2022	0.25	191 hrs	se	
		·						hrs		EHTR-FM	
Physical Tests : ORP by Electrode											
HDPE							I				
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E125	04-May-2022					12-May-2022	0.25	196 hrs	s:	
110_LIDOOW_WO_LALIWI _LOO_2022-04_141	2.120	O'I May 2022					12-Way-2022	hrs	1001113	EHTR-FM	
								1113		LITTIC I W	
Physical Tests : ORP by Electrode						ı					
HDPE	F.105	0444 0000					40.14 0000		4071		
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E125	04-May-2022					12-May-2022	0.25	197 hrs	3 0	
								hrs		EHTR-FM	
Physical Tests : ORP by Electrode											
HDPE											
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E125	04-May-2022					12-May-2022	0.25	199 hrs	*	
								hrs		EHTR-FM	
Physical Tests : pH by Meter											
HDPE											
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E108	04-May-2022					07-May-2022	0.25	71 hrs	æ	
		·						hrs		EHTR-FM	
Physical Tests : pH by Meter											
HDPE							I				
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E108	04-May-2022					07-May-2022	0.25	77 hrs	3 2	
NO_EIDOOM_WO_E/\E\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.00	O'I May 2022					or may zozz	hrs	77 1110	EHTR-FM	
								1115		LITTIC-I IV	
Physical Tests : pH by Meter											
HDPE	F400	0444 0000									
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E108	04-May-2022					07-May-2022	0.25	78 hrs		
								hrs		EHTR-FM	
Physical Tests : pH by Meter											
HDPE											
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E108	04-May-2022					07-May-2022	0.25	80 hrs	*	
								hrs		EHTR-FM	
Physical Tests : TDS by Gravimetry											
HDPE											
	F400	04-May-2022					10-May-2022	7 days	6 days	✓	
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E162	04-Way-2022					10-101ay-2022	1 uays	U uays		

Page : 13 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

iviatrix: water						aldation. • =	nolaing time exce			Tiolding Tilli
Analyte Group	Method	Sampling Date		traction / Pr □	eparation			Analys		
Container / Client Sample ID(s)					g Times	Eval	Analysis Date			Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE										
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E162	04-May-2022					10-May-2022	7 days	6 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E162	04-May-2022					10-May-2022	7 days	6 days	✓
110_EB00M_110_E1EM _E00_E0EE 01_11		J,						. aayo	o days	
Physical Tests : TDS by Gravimetry										
HDPE	F400	04 May 2000					40 M 2000	7 -1	C -l	✓
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E162	04-May-2022					10-May-2022	7 days	6 days	∀
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E160-L	04-May-2022					11-May-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E160-L	04-May-2022					11-May-2022	7 days	7 days	✓
		,					, ,	,		
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
	E160-L	04-May-2022					11-May-2022	7 days	7 days	✓
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E100-L	04-Way-2022					11-May-2022	1 days	1 uays	•
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E160-L	04-May-2022					11-May-2022	7 days	7 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E121	04-May-2022					06-May-2022	3 days	2 days	✓
		'							•	
Dhysical Tests - Turkidity by Nauhalamatus										
Physical Tests : Turbidity by Nephelometry							I			
HDPE	E121	04 May 2022					06 May 2022	3 days	2 days	✓
RG_LI8_WS_LAEMP_LCO_2022-04_NP	EIZI	04-May-2022					06-May-2022	3 days	2 days	•

Page : 14 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: water						diddion.	noiding time exce	oddiioo ,	***************************************	riolanig riii			
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval			
			Date	Rec	Actual		-	Rec	Actual	Ī			
Physical Tests : Turbidity by Nephelometry													
HDPE													
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E121	04-May-2022					06-May-2022	3 days	2 days	✓			
Physical Tests : Turbidity by Nephelometry													
HDPE													
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E121	04-May-2022					06-May-2022	3 days	2 days	✓			
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)													
HDPE total (nitric acid)													
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E420.Cr-L	04-May-2022					12-May-2022	180	8 days	✓			
								days					
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)													
HDPE total (nitric acid)													
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E420.Cr-L	04-May-2022					12-May-2022	180	8 days	✓			
								days					
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)													
HDPE total (nitric acid)													
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E420.Cr-L	04-May-2022					12-May-2022	180	8 days	✓			
								days					
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)													
HDPE total (nitric acid)													
RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E420.Cr-L	04-May-2022					12-May-2022	180	8 days	✓			
								days					
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)													
Pre-cleaned amber glass - total (lab preserved)													
RG_FO23_WS_LAEMP_LCO_2022-04_NP	E508-L	04-May-2022					12-May-2022	28 days	8 days	✓			
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)													
Pre-cleaned amber glass - total (lab preserved)													
RG_LI8_WS_LAEMP_LCO_2022-04_NP	E508-L	04-May-2022					12-May-2022	28 days	8 days	✓			
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)													
Pre-cleaned amber glass - total (lab preserved)													
RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E508-L	04-May-2022					12-May-2022	28 days	8 days	✓			

Page : 15 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method Sampling Date Extraction / Preparation							Analys		
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_FO23_WS_LAEMP_LCO_2022-04_NP	E420	04-May-2022					12-May-2022	180 days	8 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_LI8_WS_LAEMP_LCO_2022-04_NP	E420	04-May-2022					12-May-2022	180 days	8 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP	E420	04-May-2022					12-May-2022	180 days	8 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_TRIP_WS_LAEMP_LCO_2022-04_NP	E420	04-May-2022					12-May-2022	180 days	8 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

 Page
 : 16 of 22

 Work Order
 : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			0	ount		= QC frequency within specific Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected Expected	Evaluation		
Laboratory Duplicates (DUP)									
Acidity by Titration	E283	481373	1	20	5.0	5.0	✓		
Alkalinity Species by Titration	E290	480606	2	39	5.1	5.0	√		
Ammonia by Fluorescence	E298	479915	1	20	5.0	5.0	1		
Bromide in Water by IC (Low Level)	E235.Br-L	479607	1	8	12.5	5.0	1		
Chloride in Water by IC (Low Level)	E235.CI-L	479608	1	19	5.2	5.0	√		
Conductivity in Water	E100	480605	2	40	5.0	5.0	√		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	485277	1	6	16.6	5.0	√		
Dissolved Mercury in Water by CVAAS	E509	483546	1	20	5.0	5.0	1		
Dissolved Metals in Water by CRC ICPMS	E421	485275	1	12	8.3	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	483189	1	14	7.1	5.0	1		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	479684	1	19	5.2	5.0	√		
Fluoride in Water by IC	E235.F	479605	1	19	5.2	5.0	√		
Nitrate in Water by IC (Low Level)	E235.NO3-L	479609	1	19	5.2	5.0	1		
Nitrite in Water by IC (Low Level)	E235.NO2-L	479610	1	19	5.2	5.0	<u> </u>		
ORP by Electrode	E125	485973	2	23	8.7	5.0	1		
pH by Meter	E108	480604	2	40	5.0	5.0	<u>√</u>		
Sulfate in Water by IC	E235.SO4	479606	1	8	12.5	5.0	√		
TDS by Gravimetry	E162	481133	2	26	7.6	5.0	1		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	483702	1	18	5.5	5.0	√		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	481589	1	19	5.2	5.0	√		
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	485189	1	15	6.6	5.0	√		
Total Metals in Water by CRC ICPMS	E420	483701	1	20	5.0	5.0	1		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	483190	1	15	6.6	5.0	1		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	480192	1	20	5.0	5.0	√		
Turbidity by Nephelometry	E121	479699	3	45	6.6	5.0	1		
Laboratory Control Samples (LCS)							_		
Acidity by Titration	E283	481373	1	20	5.0	5.0	✓		
Alkalinity Species by Titration	E290	480606	2	39	5.1	5.0	✓		
Ammonia by Fluorescence	E298	479915	1	20	5.0	5.0	√		
Bromide in Water by IC (Low Level)	E235.Br-L	479607	1	8	12.5	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	479608	1	19	5.2	5.0	✓		
Conductivity in Water	E100	480605	2	40	5.0	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	485277	1	6	16.6	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	483546	1	20	5.0	5.0	√		
Dissolved Metals in Water by CRC ICPMS	E421	485275	1	12	8.3	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	483189	1	14	7.1	5.0	√		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	479684	1	19	5.2	5.0	√		

Page : 17 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water

Fvaluation: × =	OC frequency	nutside s	necification .	\prime = OC fre	auency within	specification

Matrix: water		Evaluati	ion: 🔻 = QC trequ	ericy outside spi	ecincation, V –	QC frequency with	nın specilicatior
Quality Control Sample Type				ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	479605	1	19	5.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	479609	1	19	5.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	479610	1	19	5.2	5.0	✓
ORP by Electrode	E125	485973	2	23	8.7	5.0	✓
pH by Meter	E108	480604	2	40	5.0	5.0	√
Sulfate in Water by IC	E235.SO4	479606	1	8	12.5	5.0	✓
TDS by Gravimetry	E162	481133	2	26	7.6	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	483702	1	18	5.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	481589	1	19	5.2	5.0	√
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	485189	1	15	6.6	5.0	<u>√</u>
Total Metals in Water by CRC ICPMS	E420	483701	1	20	5.0	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	483190	1	15	6.6	5.0	<u> </u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	480192	1	20	5.0	5.0	
TSS by Gravimetry (Low Level)	E160-L	481140	1	13	7.6	5.0	<u> </u>
Turbidity by Nephelometry	E121	479699	3	45	6.6	5.0	<u>√</u>
Method Blanks (MB)							
Acidity by Titration	E283	481373	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	480606	2	39	5.1	5.0	
Ammonia by Fluorescence	E298	479915	1	20	5.0	5.0	
Bromide in Water by IC (Low Level)	E235.Br-L	479607	1	8	12.5	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	479608	1	19	5.2	5.0	<u>√</u>
Conductivity in Water	E100	480605	2	40	5.0	5.0	<u>√</u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	485277	1	6	16.6	5.0	<u> </u>
Dissolved Mercury in Water by CVAAS	E509	483546	1	20	5.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	485275	1	12	8.3	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	483189	1	14	7.1	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	479684	1	19	5.2	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	479605	1	19	5.2	5.0	<u>√</u>
Nitrate in Water by IC (Low Level)	E235.NO3-L	479609	1	19	5.2	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	479610	1	19	5.2	5.0	<u>√</u>
Sulfate in Water by IC	E235.NO2-L	479606	1	8	12.5	5.0	<u>√</u>
TDS by Gravimetry	E235.504	481133	2	26	7.6	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)		483702	1	18	5.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E420.Cr-L E318	481589	1	19	5.2	5.0	
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)		485189	1	15	6.6	5.0	√
Total Metals in Water by CRC ICPMS	E508-L E420	483701	1	20	5.0	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	-	483190	1	15	6.6	5.0	
· · · · · · · · · · · · · · · · · · ·	E355-L	480192	1	20	5.0	5.0	√
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U		1	13	7.6	5.0	√
TSS by Gravimetry (Low Level)	E160-L	481140					√
Turbidity by Nephelometry	E121	479699	3	45	6.6	5.0	✓

Page : 18 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water

Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification.

Matrix. Water		Lvaluatio	on. * – QC nequ	cricy outside spe	cincation, • -	QO HEQUEITOY WIL	mm specimean
Quality Control Sample Type			C	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	479915	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	479607	1	8	12.5	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	479608	1	19	5.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	485277	1	6	16.6	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	483546	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	485275	1	12	8.3	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	483189	1	14	7.1	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	479684	1	19	5.2	5.0	✓
Fluoride in Water by IC	E235.F	479605	1	19	5.2	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	479609	1	19	5.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	479610	1	19	5.2	5.0	√
Sulfate in Water by IC	E235.SO4	479606	1	8	12.5	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	483702	1	18	5.5	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	481589	1	19	5.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	485189	1	15	6.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	483701	2	20	10.0	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	483190	1	15	6.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	480192	1	20	5.0	5.0	1

Page : 19 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	J ,	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimeny (Low Lever)	E160-L	vvalei	AFHA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			

Page : 20 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 21 of 22 Work Order : CG2205354

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

 Page
 : 22 of 22

 Work Order
 : CG2205354

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2205354

Client : Teck Coal Limited
Contact : Cybele Heddle
Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAMS

PO : VPO00816101

C-O-C number : REP_LAEMP_ICO_2022_APR_ALS

Sampler : Emma Thompson

Site :--

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 05-May-2022 10:20

Date Analysis Commenced : 06-May-2022

Issue Date : 17-May-2022 14:39

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Vancouver Metals, Burnaby, British Columbia
Christopher Li	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Kyle Chang	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Oscar Ruiz	Lab Assistant	Calgary Inorganics, Calgary, Alberta
Owen Cheng		Vancouver Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Shirley Li		Calgary Inorganics, Calgary, Alberta
Zakieh Lalonde		Calgary Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 479699)										
CG2205207-001	Anonymous	turbidity		E121	0.10	NTU	0.20	0.19	0.01	Diff <2x LOR	
Physical Tests (QC	Lot: 479700)										
CG2205275-003	Anonymous	turbidity		E121	0.10	NTU	5.40	5.95	9.65%	15%	
Physical Tests (QC	Lot: 479705)										
CG2205354-004	RG_TRIP_WS_LAEMP_LC O_2022-04_NP	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 480604)										
CG2205328-002	Anonymous	pH		E108	0.10	pH units	8.23	8.23	0.00%	4%	
Physical Tests (QC	Lot: 480605)										
CG2205328-002	Anonymous	conductivity		E100	2.0	μS/cm	345	343	0.581%	10%	
Physical Tests (QC	Lot: 480606)										
CG2205328-002	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	152	159	4.63%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	2.0	mg/L	152	159	4.63%	20%	
Physical Tests (QC	Lot: 480607)										
CG2205354-003	RG_FO23_WS_LAEMP_L CO_2022-04_NP	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	187	191	1.75%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	6.8	6.8	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	194	197	1.68%	20%	
Physical Tests (QC	Lot: 480608)										
CG2205354-003	RG_FO23_WS_LAEMP_L CO_2022-04_NP	рН		E108	0.10	pH units	8.40	8.39	0.119%	4%	
Physical Tests (QC	C Lot: 480609)										
CG2205354-003	RG_FO23_WS_LAEMP_L CO_2022-04_NP	conductivity		E100	2.0	μS/cm	772	773	0.129%	10%	
Physical Tests (QC	C Lot: 481133)										
CG2205330-007	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	3520	3510	0.114%	20%	
Physical Tests (QC	Lot: 481134)										
CG2205354-003	RG_FO23_WS_LAEMP_L CO_2022-04_NP	solids, total dissolved [TDS]		E162	20	mg/L	540	577	6.62%	20%	
Physical Tests (QC	Lot: 481373)										
CG2205336-001	Anonymous	acidity (as CaCO3)		E283	10.0	mg/L	53.4	50.7	2.7	Diff <2x LOR	

 Page
 : 4 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 485973)										
CG2205330-006	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	456	449	1.39%	15%	
Physical Tests (QC	Lot: 485974)										
CG2205354-002	RG_LI8_WS_LAEMP_LCO _2022-04_NP	oxidation-reduction potential [ORP]		E125	0.10	mV	493	505	2.34%	15%	
Anions and Nutrien	ts (QC Lot: 479605)										
CG2205335-003	Anonymous	fluoride	16984-48-8	E235.F	0.400	mg/L	<0.400	<0.400	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 479606)										
CG2205335-003	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	6.00	mg/L	1220	1220	0.266%	20%	
Anions and Nutrien	ts (QC Lot: 479607)										
CG2205335-003	Anonymous	bromide	24959-67-9	E235.Br-L	1.00	mg/L	<1.00	<1.00	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 479608)										
CG2205335-003	Anonymous	chloride	16887-00-6	E235.CI-L	2.00	mg/L	44.1	43.7	0.754%	20%	
Anione and Nutrien	to (OC Let: 470600)										
CG2205335-003	ts (QC Lot: 479609) Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.100	mg/L	157	158	0.0989%	20%	
	•	mutate (as IV)	11101 00 0	2200100 2	000	9/ =	107		0.000070	2070	
Anions and Nutrien CG2205335-003	ts (QC Lot: 479610) Anonymous	777 (10	14797-65-0	E235.NO2-L	0.0200	no er /1	0.129	0.126	0.0031	Diff <2x LOR	
	,	nitrite (as N)	14797-05-0	E235.NO2-L	0.0200	mg/L	0.129	0.126	0.0031	DIII <2X LOR	
	ts (QC Lot: 479684)										
CG2205298-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 479915)										
CG2205336-005	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.125	mg/L	2.39	2.43	1.36%	20%	
Anions and Nutrien	ts (QC Lot: 480192)										
CG2205335-005	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0026	0.0024	0.0002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 481589)										
CG2205311-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	<0.500	<0.500	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 48318	9)									
CG2205336-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	10.0	mg/L	214	229	7.05%	20%	
Organic / Inorganic	Carbon (QC Lot: 48319	0)									
CG2205336-001	Anonymous	carbon, total organic [TOC]		E355-L	10.0	mg/L	231	217	6.01%	20%	
	,					3					
Total Metals (QC Lo	ot: 483701) Anonymous	aluminum total	7429-90-5	E420	0.0030	mg/L	0.0636	0.0658	3.55%	20%	
1 62200404-00 1	Anonymous	aluminum, total	7429-90-3	E420	0.0030	-	0.00028	0.0038		Diff <2x LOR	
		antimony, total				mg/L			0.0000006		
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00090	0.00090	0.000002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0454	0.0451	0.627%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	

 Page
 : 5 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
• •	ot: 483701) - continued										
′L2200404-001	Anonymous	boron, total	7440-42-8	E420	0.010	mg/L	1.20	1.18	0.845%	20%	
		cadmium, total	7440-43-9	E420	0.0000100	mg/L	<0.0000100	<0.0000100	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	429	430	0.206%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00046	0.00043	0.00003	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00244	0.00242	0.00002	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.181	0.184	1.16%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0729	0.0713	2.24%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	118	118	0.248%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.130	0.132	1.60%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.0267	0.0264	1.12%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0162	0.0164	1.54%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	21.3	21.9	2.72%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000068	<0.000050	0.000018	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	5.11	5.11	0.0442%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	347	358	3.10%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	8.34	8.18	1.85%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	151	151	0.185%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00120	mg/L	<0.00120	<0.00120	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.0127	0.0128	1.07%	20%	
		·	7440-62-2	E420	0.00050	mg/L	0.00068	0.0070	0.00002	Diff <2x LOR	
		vanadium, total	7440-66-6	E420	0.0030	•	<0.0030	<0.0030	0.00002	Diff <2x LOR	
		zinc, total	7440-00-0	E420	0.0030	mg/L	<0.0030	<0.0030	0	DIII <2x LOR	
otal Metals (QC Lo			7440.47.0	E400.0	0.00040	//	0.00054	0.00054	0.0000040	D''' -0 10D	
′L2200404-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00054	0.00054	0.0000010	Diff <2x LOR	
otal Metals (QC Lo	,										
G2205330-001	Anonymous	mercury, total	7439-97-6	E508-L	0.50	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
issolved Metals (C	QC Lot: 483546)										
CG2205324-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 485275)										
CG2205353-003	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0025	0.0023	0.0002	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00046	0.00051	0.00005	Diff <2x LOR	

 Page
 : 6 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 485275) - conti	nued									
CG2205353-003	Anonymous	barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0613	0.0612	0.320%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	40.7	40.9	0.459%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00041	0.00042	0.00001	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	0.010	0.010	0.0001	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000088	0.000088	0.00000005	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0035	0.0034	0.00007	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	13.3	13.1	1.45%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00580	0.00575	0.861%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000766	0.000755	1.48%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.656	0.667	1.68%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	2.79 µg/L	0.00268	3.97%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.52	2.46	2.68%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	4.86	4.88	0.300%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.170	0.169	0.152%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	15.0	15.0	0.247%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000863	0.000871	0.916%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Dissolved Metals (7440.47.0	E404.0.1	0.00046		20.00045	20.00045		D:# +0 1 65	I
CG2205353-003	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 479699)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 479700)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 479705)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 480605)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 480606)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 480607)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 480609)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 481133)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 481134)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 481140)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 481373)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Anions and Nutrients (QCLot: 479605)					1
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 479606)					1
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 479607)					1
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
1	The state of the s	The state of the s		T. Control of the Con	I .

 Page
 : 8 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 479608)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 479609)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 479610)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 479684)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 479915)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 480192)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 481589)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot: 483189)					
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 483190)					
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 483701)					
aluminum, total	7429-90-5 E420	0.003	mg/L	# 0.0035	MB-LOR
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E420	0.01	mg/L	<0.010	
lead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
			_		
	7439-96-5 E420	0.0001	mg/L	<0.00010	
manganese, total molybdenum, total	7439-96-5 E420 7439-98-7 E420	0.0001 0.00005	mg/L mg/L	<0.00010 <0.000050	

 Page
 : 9 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 483701) - co					
ootassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
ilicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
ilver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
ulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
n, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	
ıranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	
inc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Fotal Metals (QCLot: 483702)					
hromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
otal Metals (QCLot: 485189)					
nercury, total	7439-97-6 E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 483546)				
nercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 485275					
lluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
ntimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
rsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
arium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
ismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
alcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
opper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
on, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
thium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	

 Page
 : 10 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 485275)	- continued					
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
nallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
n, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
itanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
ranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
anadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 485277)						
hromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
		1				

Qualifiers

Qualifier Description

MB-LOR Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

Page : 11 of 18 Work Order : CG2205354

: Teck Coal Limited Client

: REGIONAL EFFECTS PROGRAMS Project

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	Matrix: Water				Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	Limits (%)			
Analyte CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 479699)										
turbidity	E121	0.1	NTU	200 NTU	100.0	85.0	115			
Physical Tests (QCLot: 479700)										
turbidity	E121	0.1	NTU	200 NTU	102	85.0	115			
Physical Tests (QCLot: 479705)										
turbidity	E121	0.1	NTU	200 NTU	106	85.0	115			
Physical Tests (QCLot: 480604)										
pH	E108		pH units	7 pH units	100	98.6	101			
Physical Tests (QCLot: 480605)										
conductivity	E100	1	μS/cm	146.9 μS/cm	102	90.0	110			
Physical Tests (QCLot: 480606)										
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	101	85.0	115			
Physical Tests (QCLot: 480607)										
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	102	85.0	115			
Physical Tests (QCLot: 480608)										
pH	E108		pH units	7 pH units	100	98.6	101			
Physical Tests (QCLot: 480609)										
conductivity	E100	1	μS/cm	146.9 μS/cm	103	90.0	110			
Physical Tests (QCLot: 481133)										
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	90.1	85.0	115			
Physical Tests (QCLot: 481134)										
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	99.0	85.0	115			
Physical Tests (QCLot: 481140)										
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	92.6	85.0	115			
Physical Tests (QCLot: 481373)										
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	104	85.0	115			
Physical Tests (QCLot: 485973)										
oxidation-reduction potential [ORP]	E125		mV	220 mV	104	95.4	104			
Physical Tests (QCLot: 485974)										
oxidation-reduction potential [ORP]	E125		mV	220 mV	104	95.4	104			
Anions and Nutrients (QCLot: 479605)										
fluoride 16984-48-8	E235.F	0.02	mg/L	1 mg/L	103	90.0	110			
Anions and Nutrients (QCLot: 479606)										

 Page
 : 12 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water						Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Anions and Nutrients (QCLot: 479606) - cont	inued											
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	104	90.0	110				
Anions and Nutrients (QCLot: 479607)												
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	99.4	85.0	115				
Anions and Nutrients (QCLot: 479608)												
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	102	90.0	110				
Anions and Nutrients (QCLot: 479609)												
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	103	90.0	110				
Anions and Nutrients (QCLot: 479610)												
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	104	90.0	110				
Anions and Nutrients (QCLot: 479684)									1			
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	104	80.0	120				
Anions and Nutrients (QCLot: 479915)												
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	90.5	85.0	115				
Anions and Nutrients (QCLot: 480192)					-							
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.02 mg/L	110	80.0	120				
Anions and Nutrients (QCLot: 481589)					,							
Kieldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	98.3	75.0	125				
Organic / Inorganic Carbon (QCLot: 483189)												
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	97.8	80.0	120				
Organic / Inorganic Carbon (QCLot: 483190)												
carbon, total organic [TOC]		E355-L	0.5	mg/L	8.57 mg/L	105	80.0	120				
					Ĭ							
Total Metals (QCLot: 483701)												
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	95.9	80.0	120				
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	105	80.0	120				
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	103	80.0	120				
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120				
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	98.0	80.0	120				
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	99.0	80.0	120				
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	89.2	80.0	120				
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	102	80.0	120				
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	99.8	80.0	120				
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	100	80.0	120				
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	100	80.0	120				
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	107	80.0	120				
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	103	80.0	120				

 Page
 : 13 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Ordinaria Color	Sub-Matrix: Water	Matrix: Water						Laboratory Control Sample (LCS) Report					
Metals (OCLot: 483701)						Spike	Recovery (%)	Recovery	Limits (%)				
Manushale 7439492 E420 0.001 mg/L 0.25 mg/L 97.0 80.0 120	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Page Page	Total Metals (QCLot: 483701) - continued												
Page Page	lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	97.0	80.0	120				
Carbon C	magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	97.8	80.0	120				
Communication Communicatio	manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120				
reaspian, total 7440-07 6420	molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	101	80.0	120				
Image: Control 1	nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120				
Incom, total	potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	100	80.0	120				
Tree, total 7440-224 E420 0.00001 mg/L 0.1 mg/L 93.4 80.0 120 —— total 7440-23-5 E420 0.05 mg/L 103 80.0 120 —— total 7440-23-6 E420 0.05 mg/L 103 80.0 120 —— total 7440-23-6 E420 0.002 mg/L 50 mg/L 103 80.0 120 —— total 1011, total 7740-34-8 E420 0.0001 mg/L 1 mg/L 104 80.0 120 —— total 1011, total 7440-35-6 E420 0.0001 mg/L 1 mg/L 104 80.0 120 —— tanium, total 7440-35-6 E420 0.0001 mg/L 0.5 mg/L 101 80.0 120 —— tanium, total 7440-35-6 E420 0.0001 mg/L 0.5 mg/L 101 80.0 120 —— tanium, total 7440-45-1 E420 0.0001 mg/L 0.5 mg/L 102 80.0 120 —— tanium, total 7440-85-6 E420 0.0001 mg/L 0.5 mg/L 102 80.0 120 —— tanium, total 7440-85-6 E420 0.0001 mg/L 0.5 mg/L 102 80.0 120 —— tanium, total 7440-85-6 E420 0.0005 mg/L 0.5 mg/L 102 80.0 120 —— total 1011-101-101-101-101-101-101-101-101-10	selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	104	80.0	120				
Continue, total Continue,	silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	108	80.0	120				
trontum, total 7440-24-6 [420 0.0002 mg/L 0.25 mg/L 106 80.0 120	silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	93.4	80.0	120				
ufurt. total 7704-34-9 E420 0.5 mg/L 50 mg/L 95.5 80.0 120	sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	103	80.0	120				
reallium, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 104 80.0 120	strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	108	80.0	120				
n, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 101 80.0 120	sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	95.5	80.0	120				
tanium, total 7440-81-6 [8420	thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	104	80.0	120				
ranium, total 7440-61-1	tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	101	80.0	120				
anadium, total 7440-62-2 E420 0.0005 mg/L 0.5 mg/L 102 80.0 120	titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	94.5	80.0	120				
TAYOUR METALS (QCLOT: 483702) TOTAL METALS (QCLOT: 483702) TOTAL METALS (QCLOT: 483702) TOTAL METALS (QCLOT: 483702) TOTAL METALS (QCLOT: 485189) TAYOUR METALS (QCLOT: 485189) TAYOUR METALS (QCLOT: 485189) TAYOUR METALS (QCLOT: 485189) TAYOUR METALS (QCLOT: 485275) TAYO	uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	103	80.0	120				
Total Metals (QCLot: 483702) Total Metals (QCLot: 485189) Total Metals (QCLot: 485275)	vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120				
Table Tabl	zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	104	80.0	120				
Table Tabl	Total Metals (QCLot: 483702)												
recrury, total 7439-97-6 E508-L 0.5 ng/L 5 ng/L 92.8 80.0 120 recrury, dissolved 7439-97-6 E509 0.00005 mg/L 0.0001 mg/L 103 80.0 120 recrury, dissolved Metals (QCLot: 485275) Uurniumn, dissolved 7449-90-5 E421 0.001 mg/L 1 mg/L 105 80.0 120 respit, dissolved 7440-38-0 E421 0.0001 mg/L 1 mg/L 102 80.0 120 arium, dissolved 7440-38-3 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 eryllium, dissolved 7440-41-7 E421 0.0002 mg/L 0.1 mg/L 102 80.0 120 eryllium, dissolved 7440-49-9 E421 0.0005 mg/L 1 mg/L 96.5 80.0 120 admium, dissolved 7440-42-8 E421 0.0005 mg/L 1 mg/L 100 80.0 120 eryllium, dissolved 7440-48-9 E421 0.0005 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-42-8 E421 0.0005 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-48-9 E421 0.0005 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-48-9 E421 0.00005 mg/L 0.1 mg/L 100 80.0 120 admium, dissolved 7440-48-4 E421 0.00005 mg/L 0.1 mg/L 101 80.0 120 admium, dissolved 7440-48-4 E421 0.000 mg/L 0.25 mg/L 0.1 mg/L 101 80.0 120 admium, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120	chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	99.4	80.0	120				
recrury, total 7439-97-6 E508-L 0.5 ng/L 5 ng/L 92.8 80.0 120 recrury, dissolved 7439-97-6 E509 0.00005 mg/L 0.0001 mg/L 103 80.0 120 recrury, dissolved Metals (QCLot: 485275) Uurniumn, dissolved 7449-90-5 E421 0.001 mg/L 1 mg/L 105 80.0 120 respit, dissolved 7440-38-0 E421 0.0001 mg/L 1 mg/L 102 80.0 120 arium, dissolved 7440-38-3 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 eryllium, dissolved 7440-41-7 E421 0.0002 mg/L 0.1 mg/L 102 80.0 120 eryllium, dissolved 7440-49-9 E421 0.0005 mg/L 1 mg/L 96.5 80.0 120 admium, dissolved 7440-42-8 E421 0.0005 mg/L 1 mg/L 100 80.0 120 eryllium, dissolved 7440-48-9 E421 0.0005 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-42-8 E421 0.0005 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-48-9 E421 0.0005 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-48-9 E421 0.00005 mg/L 0.1 mg/L 100 80.0 120 admium, dissolved 7440-48-4 E421 0.00005 mg/L 0.1 mg/L 101 80.0 120 admium, dissolved 7440-48-4 E421 0.000 mg/L 0.25 mg/L 0.1 mg/L 101 80.0 120 admium, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120	Total Metals (QCLot: 485189)												
Dissolved Metals (QCLot: 485275) Thuminum, dissolved 7429-90-5	mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	92.8	80.0	120				
Dissolved Metals (QCLot: 485275) Thuminum, dissolved 7429-90-5													
tuminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 100 80.0 120	mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	103	80.0	120				
ntimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 105 80.0 120 rsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 102 80.0 120 arium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 eryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 102 80.0 120 ismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 96.5 80.0 120 oron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-43-9 E421 0.00005 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 101 80.0 120 admium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 101 80.0 120 alcium, dissolved 7440-48-4 E421 0.001 mg/L 50 mg/L 99.8 80.0 120 obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 opeper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120	Dissolved Metals (QCLot: 485275)												
rsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 102 80.0 120 arium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 102 80.0 120 eryllium, dissolved 7440-42-8 E421 0.00005 mg/L 1 mg/L 96.5 80.0 120 admium, dissolved 7440-42-8 E421 0.00005 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-43-9 E421 0.00005 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 101 80.0 120 admium, dissolved 7440-70-2 E421 0.05 mg/L 0.05 mg/L 0.1 mg/L 101 80.0 120 admium, dissolved 7440-84-4 E421 0.000 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-84-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-84-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-84-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 admium, dissolved 7440-80-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 admium, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 admium, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 admium, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 admium, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 admium, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 admium, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 admium, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 admium, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 admium, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 99.6 80.0 120 admium, dissolved 9	aluminum, dissolved				_	2 mg/L	100						
arium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 eryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 102 80.0 120 dismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 96.5 80.0 120 dadmium, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 100 80.0 120 dadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 101 80.0 120 dadmium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 101 80.0 120 dalcium, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 dalcium, dissolved 7440-80-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 dobalt, dissolved 7440-50-8 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 dopper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120	antimony, dissolved					_							
eryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 102 80.0 120 ismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 96.5 80.0 120 oron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 101 80.0 120 alcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 101 80.0 120 oron, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 oron, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 oron, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120 oron, dissolved 99.6 80.0 120	arsenic, dissolved					_							
ismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 96.5 80.0 120 oron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 101 80.0 120 alcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 101 80.0 120 obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120	barium, dissolved				_	0.25 mg/L	99.8						
oron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 100 80.0 120 admium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 101 80.0 120 alcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 101 80.0 120 obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120	beryllium, dissolved				_	0.1 mg/L	102						
admium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 101 80.0 120 alcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 101 80.0 120 obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120	bismuth, dissolved				mg/L	1 mg/L	96.5						
alcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 101 80.0 120 obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120	boron, dissolved				mg/L	1 mg/L	100						
obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120	cadmium, dissolved				mg/L	0.1 mg/L	101						
opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 99.6 80.0 120	calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	101	80.0	120				
	cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	99.8	80.0	120				
on, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 109 80.0 120	copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	99.6	80.0	120				
	iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	109	80.0	120				

 Page
 : 14 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 485275) - co	ntinued								
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	98.3	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	101	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	95.9	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	98.3	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	101	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	100	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	101	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	103	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	110	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	93.0	80.0	120	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	102	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	106	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	106	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	97.8	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	101	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	92.6	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	101	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	100	80.0	120	
Dissolved Metals (QCLot: 485277)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	97.6	80.0	120	

 Page
 : 15 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
_aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	ients (QCLot: 479605)									
CG2205354-004	RG_TRIP_WS_LAEMP_LC O_2022-04_NP	fluoride	16984-48-8	E235.F	0.950 mg/L	1 mg/L	95.0	75.0	125	
Anions and Nutri	ients (QCLot: 479606)									
CG2205354-004	RG_TRIP_WS_LAEMP_LC O_2022-04_NP	sulfate (as SO4)	14808-79-8	E235.SO4	92.7 mg/L	100 mg/L	92.7	75.0	125	
Anions and Nutri	ients (QCLot: 479607)									
CG2205354-004	RG_TRIP_WS_LAEMP_LC O_2022-04_NP	bromide	24959-67-9	E235.Br-L	0.439 mg/L	0.5 mg/L	87.9	75.0	125	
Anions and Nutri	ients (QCLot: 479608)									
CG2205354-004	RG_TRIP_WS_LAEMP_LC O_2022-04_NP	chloride	16887-00-6	E235.CI-L	91.4 mg/L	100 mg/L	91.4	75.0	125	
Anions and Nutri	ients (QCLot: 479609)									
CG2205354-004	RG_TRIP_WS_LAEMP_LC O_2022-04_NP	nitrate (as N)	14797-55-8	E235.NO3-L	2.32 mg/L	2.5 mg/L	92.8	75.0	125	
Anions and Nutri	ients (QCLot: 479610)									
CG2205354-004	RG_TRIP_WS_LAEMP_LC O_2022-04_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.464 mg/L	0.5 mg/L	92.7	75.0	125	
Anions and Nutri	ients (QCLot: 479684)									
CG2205298-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0548 mg/L	0.05 mg/L	110	70.0	130	
Anions and Nutri	ients (QCLot: 479915)									
CG2205336-006	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125	
Anions and Nutri	ients (QCLot: 480192)									
CG2205336-001	Anonymous	phosphorus, total	7723-14-0	E372-U	ND mg/L	0.0676 mg/L	ND	70.0	130	
Anions and Nutri	ients (QCLot: 481589)									
CG2205312-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.25 mg/L	2.5 mg/L	90.1	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 483	189)								
CG2205336-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 483	190)								
CG2205336-001	Anonymous	carbon, total organic [TOC]		E355-L	ND mg/L	5 mg/L	ND	70.0	130	
otal Metals (QC	Lot: 483701)									
YL2200404-002	Anonymous	aluminum, total	7429-90-5	E420	0.189 mg/L	0.2 mg/L	94.5	70.0	130	
	I	magnesium, total	7439-95-4	E420	0.954 mg/L	1 mg/L	95.4	70.0	130	

 Page
 : 16 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Sub-Matrix: Water				Matrix Spike (MS) Report						
					S	oike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	Lot: 483701) - continu	ned								
YL2200404-002	Anonymous	strontium, total	7440-24-6	E420	0.0192 mg/L	0.02 mg/L	95.9	70.0	130	
YL2200404-002	Anonymous	antimony, total	7440-36-0	E420	0.0199 mg/L	0.02 mg/L	99.7	70.0	130	
		arsenic, total	7440-38-2	E420	0.0190 mg/L	0.02 mg/L	95.0	70.0	130	
		barium, total	7440-39-3	E420	0.0192 mg/L	0.02 mg/L	95.9	70.0	130	
		beryllium, total	7440-41-7	E420	0.0377 mg/L	0.04 mg/L	94.2	70.0	130	
		bismuth, total	7440-69-9	E420	0.00978 mg/L	0.01 mg/L	97.8	70.0	130	
		boron, total	7440-42-8	E420	0.083 mg/L	0.1 mg/L	82.7	70.0	130	
		cadmium, total	7440-43-9	E420	0.00388 mg/L	0.004 mg/L	97.1	70.0	130	
		calcium, total	7440-70-2	E420	3.68 mg/L	4 mg/L	92.0	70.0	130	
		cobalt, total	7440-48-4	E420	0.0193 mg/L	0.02 mg/L	96.4	70.0	130	
		copper, total	7440-50-8	E420	0.0197 mg/L	0.02 mg/L	98.3	70.0	130	
		iron, total	7439-89-6	E420	1.90 mg/L	2 mg/L	95.2	70.0	130	
		lead, total	7439-92-1	E420	0.0192 mg/L	0.02 mg/L	95.9	70.0	130	
		lithium, total	7439-93-2	E420	0.0895 mg/L	0.1 mg/L	89.5	70.0	130	
		manganese, total	7439-96-5	E420	0.0193 mg/L	0.02 mg/L	96.4	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0194 mg/L	0.02 mg/L	97.0	70.0	130	
		nickel, total	7440-02-0	E420	0.0392 mg/L	0.04 mg/L	98.1	70.0	130	
		potassium, total	7440-09-7	E420	3.81 mg/L	4 mg/L	95.2	70.0	130	
		selenium, total	7782-49-2	E420	0.0394 mg/L	0.04 mg/L	98.6	70.0	130	
		silicon, total	7440-21-3	E420	9.54 mg/L	10 mg/L	95.4	70.0	130	
		silver, total	7440-22-4	E420	0.00415 mg/L	0.004 mg/L	104	70.0	130	
		sodium, total	7440-23-5	E420	1.91 mg/L	2 mg/L	95.7	70.0	130	
		sulfur, total	7704-34-9	E420	19.6 mg/L	20 mg/L	98.0	70.0	130	
		thallium, total	7440-28-0	E420	0.00380 mg/L	0.004 mg/L	94.9	70.0	130	
		tin, total	7440-31-5	E420	0.0188 mg/L	0.02 mg/L	93.9	70.0	130	
		titanium, total	7440-32-6	E420	0.0373 mg/L	0.04 mg/L	93.2	70.0	130	
		uranium, total	7440-61-1	E420	0.00380 mg/L	0.004 mg/L	95.1	70.0	130	
		vanadium, total	7440-62-2	E420	0.0956 mg/L	0.1 mg/L	95.6	70.0	130	
		zinc, total	7440-66-6	E420	0.397 mg/L	0.4 mg/L	99.3	70.0	130	
otal Metals (QC	Lot: 483702)									
/L2200404-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0383 mg/L	0.04 mg/L	95.8	70.0	130	
otal Metals (QC	Lot: 485189)									
CG2205330-002	Anonymous	mercury, total	7439-97-6	E508-L	3.79 ng/L	5 ng/L	75.9	70.0	130	
Dissolved Metals	(QCLot: 483546)									
CG2205324-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000950 mg/L	0.0001 mg/L	95.0	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Sub-Matrix: Water				Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 485275)									
CG2205353-004	Anonymous	aluminum, dissolved	7429-90-5	E421	0.188 mg/L	0.2 mg/L	93.8	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0200 mg/L	0.02 mg/L	99.9	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0384 mg/L	0.04 mg/L	96.1	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00880 mg/L	0.01 mg/L	88.0	70.0	130	
		boron, dissolved	7440-42-8	E421	0.100 mg/L	0.1 mg/L	99.6	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00388 mg/L	0.004 mg/L	97.0	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0184 mg/L	0.02 mg/L	92.3	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0183 mg/L	0.02 mg/L	91.7	70.0	130	
		iron, dissolved	7439-89-6	E421	1.91 mg/L	2 mg/L	95.4	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0189 mg/L	0.02 mg/L	94.7	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0910 mg/L	0.1 mg/L	91.0	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0185 mg/L	0.02 mg/L	92.7	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0200 mg/L	0.02 mg/L	100	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0373 mg/L	0.04 mg/L	93.2	70.0	130	
		potassium, dissolved	7440-09-7	E421	3.77 mg/L	4 mg/L	94.2	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0423 mg/L	0.04 mg/L	106	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.61 mg/L	10 mg/L	96.1	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00404 mg/L	0.004 mg/L	101	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	20.0 mg/L	20 mg/L	100	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00379 mg/L	0.004 mg/L	94.8	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0197 mg/L	0.02 mg/L	98.4	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0361 mg/L	0.04 mg/L	90.2	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00392 mg/L	0.004 mg/L	97.9	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0974 mg/L	0.1 mg/L	97.4	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.382 mg/L	0.4 mg/L	95.6	70.0	130	
issolved Metals	(QCLot: 485277)									
CG2205353-004	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0374 mg/L	0.04 mg/L	93.4	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2205354

 Client
 : Teck Coal Limited

Teck REP LAEMP LCO 2022 APR ALS COC ID: TURNAROUND TIME: RUSH: N/A PROJECT/CLIENT/INFO LABORATORY OTHER INFO Facility Name / Job# Regional Effects Program - LCO LAEMP Lab Name ALS Calgary Report Format / Distribution Excel PDF EDD Lab Contact Lyudmyla Shvets Project Manager Cybele Heddle Email 1: aguascilab@teck.com Email Cybele Heddle@Teck.com . Email Lyudmyla.Shvets@ALSGlobal.com Email 2: eckcoal@equisonline.com Address 421 Pine Ave Address 2559 29 Street NE ... Email 3: Teck.Lab.Results@teck.com Email 4: Jessica.Ritz@Teck.com BC City - Sparwood Province City Calgary Province AB Email 5: Tyler.Mehler@Minnow.ca V0B 2G0 Country Canada Postal Code TIY 7B5 Canada Email 6: Country lbowron@minnow.ca Postal Code Phone Number 250-910-8755 Phone Number 403 407 1794 PO number VPO00816101 Fittered - F. Field, L. Lab. FL: Field & Lab, N: None SAMPLE DETAILS: ANALYSIS REQUESTED **Environmental Division** Calgary
Work Order Reference HNO3 HNO3 NONE H2SO4 H2SO4 HCL NONE Hazardous Material (Yes/No) CG2205354 FECKCOAL-MET-D-VA FECKCOAL-ROUTINE-G=Grab C=Com Sample Location Field #Of (sys' loc code) Matrix Date Time (24hr) Cont. Sample ID Telephone: +1 403 407 1800 X WS 22/05/04 0330 G 7 RG. LIDCOM RG-LIDCOM-WS-LAGNP-LCD-2022-04-NP X 22/05/04 09:30 X X RG: LIA WS NO G X × RG_LIB_WS_LAEMP_LCO_2022-04-NP 22/05/04/07:30 X X X WS NO G X X × RGL FO23 RGI. FO23-WS.LAEMP.LCO. 2022-UH. NP 7 RCI-LIDSL WS 39-LIDS WS-LAEMP LCO-2022-04-N 22/05/04 RG- TRIP WS 16:00 \mathbf{G} RG_TRIP-WS. LAEMP-100-2022-04-NP WS \mathbf{G} NO WS G NO WS NO G WS NO G WS NO G WS NO G iáze G WS DATE/TIME RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Please include DI for field blank 0:20 2 1 2 2 2 2 SERVICE REQUEST (rush - subject to availability) Regular (default) X 3572 Mobile # 250 421 Sampler's Name Thumpson Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge 15:00 2022 105 104 Date/Time Sampler's Signature For Emergency <1 Day, ASAP or Weekend - Contact ALS

40

WATER CHEMISTRY

ALS Laboratory Report CG2209065 (Finalized July 20, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2209065

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : Regional Effects Program

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022_JULY_ALS

Sampler : ---Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 12-Jul-2022 09:40

Date Analysis Commenced : 12-Jul-2022

Issue Date : 20-Jul-2022 13:33

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anshim Anshim	Lab Assistant	Metals, Burnaby, British Columbia
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia
Elke Tabora		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Parnian Sane	Analyst	Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta

 Page
 : 2 of 6

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

ALS

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Description
Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
colour, turbidity).
Hold time exceeded for re-analysis or dilution, but initial testing was conducted within
hold time.
TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 3 of 6
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			C	lient sample ID	RG_F023_WS_	RG_L124_WS_	RG_FBLANK_W	RG_TRIP_WS_L	
(Matrix: Water)					LAEMP_LCO_2 022-07_N	LAEMP_LCO_2 022-07_N	S_LAEMP_LCO _2022-07_NP	AEMP_LCO_20 22-07_NP	
			Client samp	oling date / time	11-Jul-2022 15:30	11-Jul-2022 11:10	11-Jul-2022 09:00	11-Jul-2022 10:00	
Analyte	CAS Number	Method	LOR	Unit	CG2209065-001	CG2209065-002	CG2209065-003	CG2209065-004	
					Result	Result	Result	Result	
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	158	107	<1.0	<1.0	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	192	130	<1.0	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	9.0	<1.0	<1.0	<1.0	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	5.4	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	166	107	<1.0	<1.0	
conductivity		E100	2.0	μS/cm	491	233	<2.0	<2.0	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	268	119	<0.50	<0.50	
oxidation-reduction potential [ORP]		E125	0.10	mV	246	252	571	577	
рН		E108	0.10	pH units	8.42	8.14	5.44	5.19	
solids, total dissolved [TDS]		E162	10	mg/L	328	132	<10	<10	
solids, total suspended [TSS]		E160-L	1.0	mg/L	3.3	1.1	<1.0	<1.0	
turbidity		E121	0.10	NTU	1.21	0.31	<0.10	<0.10	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	2.13	0.19	<0.10	<0.10	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.174	0.236	<0.020	<0.020	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.500 DLM, TKNI	<0.500 DLM	<0.050	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	5.83	0.147	<0.0050 HTD	<0.0050 HTD	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0040	<0.0010	<0.0010	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0050	0.0032	<0.0020	<0.0020	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	114	29.9	<0.30	<0.30	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.92	<0.50	<0.50		
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.92	<0.50	<0.50	<0.50	
Ion Balance									

Page : 4 of 6
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_F023_WS_ LAEMP_LCO_2 022-07_N	RG_L124_WS_ LAEMP_LCO_2 022-07_N	RG_FBLANK_W S_LAEMP_LCO _2022-07_NP	RG_TRIP_WS_L AEMP_LCO_20 22-07_NP	
			Client samp	ling date / time	11-Jul-2022 15:30	11-Jul-2022 11:10	11-Jul-2022 09:00	11-Jul-2022 10:00	
Analyte	CAS Number	Method	LOR	Unit	CG2209065-001	CG2209065-002	CG2209065-003	CG2209065-004	
					Result	Result	Result	Result	
Ion Balance									
anion sum		EC101	0.10	meq/L	6.18	2.79	<0.10	<0.10	
cation sum		EC101	0.10	meq/L	5.48	2.44	<0.10	<0.10	
ion balance (cations/anions)		EC101	0.010	%	88.7	87.4	100	100	
ion balance (APHA)		EC101	0.010	%	6.00	6.69	<0.010	<0.010	
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0192	0.0073	<0.0030	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00016	<0.00010	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00015	0.00020	<0.00010	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0562	0.0332	<0.00010	<0.00010	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0678	0.0108	<0.0050	<0.0050	
calcium, total	7440-70-2	E420	0.050	mg/L	67.8	36.5	<0.050	<0.050	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00011	0.00018	<0.00010	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.030	<0.010	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0202	0.0029	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	27.8	8.39	<0.0050	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00396	0.00026	<0.00010	<0.00010	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050		
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00130	0.000686	<0.000050	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00171	0.00077	<0.00050	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	1.03	0.230	<0.050	<0.050	
selenium, total	7782-49-2	E420	0.050	μg/L	24.7	1.90	<0.050	<0.050	
silicon, total	7440-21-3	E420	0.10	mg/L	2.02	1.55	<0.10	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	2.28	0.962	<0.050	<0.050	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.115	0.0972	<0.00020	<0.00020	

Page : 5 of 6
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_F023_WS_ LAEMP_LCO_2 022-07 N	RG_L124_WS_ LAEMP_LCO_2 022-07 N	RG_FBLANK_W S_LAEMP_LCO 2022-07 NP	RG_TRIP_WS_L AEMP_LCO_20 22-07 NP	
					022-01_N	022-07_IN	_2022-07_NP	22-0/_INF	
			Client samp	ling date / time	11-Jul-2022 15:30	11-Jul-2022 11:10	11-Jul-2022 09:00	11-Jul-2022 10:00	
Analyte	CAS Number	Method	LOR	Unit	CG2209065-001	CG2209065-002	CG2209065-003	CG2209065-004	
					Result	Result	Result	Result	
Total Metals									
sulfur, total	7704-34-9	E420	0.50	mg/L	36.9	9.73	<0.50	<0.50	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00170	0.00109	<0.000010	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	0.00058	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0033	<0.0030	<0.0030	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0023	0.0034	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00013	<0.00010	<0.00010	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011	0.00015	<0.00010	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0601	0.0349	<0.00010	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0706	<0.0050	<0.0050	<0.0050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	63.7	34.7	<0.050	<0.050	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00016	0.00017	<0.00010	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0195	0.0026	<0.0010	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	26.4	7.93	<0.0050	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00121	<0.00010	<0.00010	<0.00010	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	<0.000050		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00128	0.000746	<0.000050	<0.000050	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00155	0.00078	<0.00050	<0.00050	
potassium, dissolved	7440-02-0	E421	0.050	mg/L	1.11	0.235	<0.050	<0.050	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	28.6	2.29	<0.050	<0.050	
silicon, dissolved		E421	0.050		1.88	1.44	<0.050	<0.050	
Janicon, dissolved	7440-21-3	L421	0.000	mg/L	1.00	1.44	\0.000	~0.000	

Page : 6 of 6
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water Client sample ID				RG_F023_WS_ LAEMP LCO 2	RG_L124_WS_	RG_FBLANK_W	RG_TRIP_WS_L		
(Matrix: Water)						LAEMP_LCO_2 022-07_N	S_LAEMP_LCO _2022-07_NP	AEMP_LCO_20 22-07_NP	
			Client samp	ling date / time	11-Jul-2022 15:30	11-Jul-2022 11:10	11-Jul-2022 09:00	11-Jul-2022 10:00	
Analyte	CAS Number	Method	LOR	Unit	CG2209065-001	CG2209065-002	CG2209065-003	CG2209065-004	
					Result	Result	Result	Result	
Dissolved Metals									
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.40	1.04	<0.050	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.120	0.103	<0.00020	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	36.9	9.58	<0.50	<0.50	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00173	0.00109	<0.000010	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0022	0.0031	<0.0010	<0.0010	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field		
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2209065** Page : 1 of 22

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle Account Manager : Lyudmyla Shvets

Address : 421 Pine Ave Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

 Telephone
 : --- Telephone
 : +1 403 407 1800

 Project
 : Regional Effects Program
 Date Samples Received
 : 12-Jul-2022 09:40

PO : VPO00816101 Issue Date : 20-Jul-2022 13:33

C-O-C number : REP_LAEMP_LCO_2022_JULY_ALS
Sampler :

Sampler : ---Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

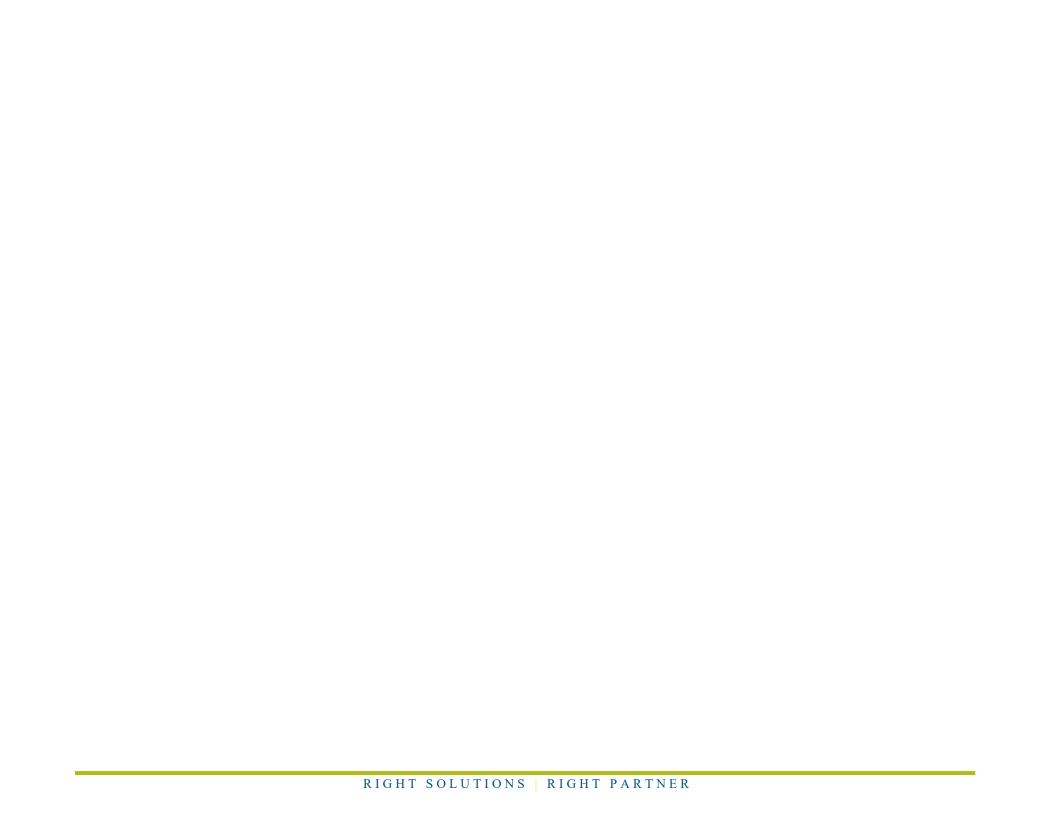
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 22 : CG2209065 Work Order Client : Teck Coal Limited

: Regional Effects Program Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Dissolved Metals	QC-MRG2-5631100		silicon, dissolved	7440-21-3	E421	0.052 B	0.05 mg/L	Blank result exceeds
	01					mg/L		permitted value

Result Qualifiers

Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

 Page
 : 4 of 22

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water Evaluation: × = Holding time exceedance; √ = Within Holding Time

atrix: water						valuation. ^ -	Holding time exce	euance,	– vvitilili	Holding I	
Analyte Group	Method Sampling Date Extraction / Preparation						Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
nions and Nutrients : Ammonia by Fluorescence											
Amber glass total (sulfuric acid)											
RG_F023_WS_LAEMP_LCO_2022-07_N	E298	11-Jul-2022	13-Jul-2022				13-Jul-2022	28 days	2 days	✓	
nions and Nutrients : Ammonia by Fluorescence											
Amber glass total (sulfuric acid)	E298	11-Jul-2022	40 1.1.0000				40 1.1 0000	00.1	0.1	1	
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E298	11-Jul-2022	13-Jul-2022				13-Jul-2022	28 days	2 days	•	
nions and Nutrients : Ammonia by Fluorescence											
Amber glass total (sulfuric acid) RG L124 WS LAEMP LCO 2022-07 N	E298	11-Jul-2022	13-Jul-2022				13-Jul-2022	28 days	2 days	√	
NG_L124_W3_LAEMIF_LCO_2022-07_N	L290	11-Jui-2022	13-Jui-2022				13-3ui-2022	20 days	2 uays	•	
nions and Nutrients : Ammonia by Fluorescence											
Amber glass total (sulfuric acid) RG TRIP WS LAEMP LCO 2022-07 NP	E298	11-Jul-2022	13-Jul-2022				13-Jul-2022	28 days	2 days	√	
RG_TRIP_WS_LAEIMP_LCO_2022-01_NP	L290	11-Jui-2022	13-Jul-2022				13-Jui-2022	20 days	2 uays	•	
nions and Nutrients : Bromide in Water by IC (Low Level)											
HDPE RG F023 WS LAEMP LCO 2022-07 N	E235.Br-L	11-Jul-2022					12-Jul-2022	28 days	1 days	√	
RG_F023_WS_LAEMP_LCO_2022-01_N	E233.BI-L	11-Jul-2022					12-Jui-2022	20 days	i uays	•	
nions and Nutrients : Bromide in Water by IC (Low Level)											
HDPE RG FBLANK WS LAEMP LCO 2022-07 NP	E235.Br-L	11-Jul-2022					12-Jul-2022	28 days	1 days	√	
NG_I BLANK_WS_LAEWIF_LOO_2022-01_INF	L200.DI-L	11-0ui-2022					12-Jui-2022	20 days	1 uays	•	
nions and Nutrients : Bromide in Water by IC (Low Level)											
HDPE	E235.Br-L	11-Jul-2022					12-Jul-2022	28 days	1 days	√	
RG_L124_WS_LAEMP_LCO_2022-07_N	EZ33.BI-L	1 1-Jui-2022					12-JUI-2022	∠o uays	ruays	•	

Page : 5 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E235.Br-L	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_F023_WS_LAEMP_LCO_2022-07_N	E235.CI-L	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E235.CI-L	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_L124_WS_LAEMP_LCO_2022-07_N	E235.CI-L	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E235.CI-L	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_F023_WS_LAEMP_LCO_2022-07_N	E378-U	11-Jul-2022					13-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E378-U	11-Jul-2022					13-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_L124_WS_LAEMP_LCO_2022-07_N	E378-U	11-Jul-2022					13-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E378-U	11-Jul-2022					13-Jul-2022	3 days	2 days	✓

Page : 6 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: x = Holding time exceedance · ✓ = Within Holding Time

atrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding ⁻
Analyte Group	Method	Sampling Date	Ex	traction / Pi	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_F023_WS_LAEMP_LCO_2022-07_N	E235.F	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E235.F	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_L124_WS_LAEMP_LCO_2022-07_N	E235.F	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E235.F	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE	5005 1100 1	44 1 1 0000								,
RG_F023_WS_LAEMP_LCO_2022-07_N	E235.NO3-L	11-Jul-2022					12-Jul-2022	3 days	1 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE	5005 NOO 1	44 1 1 0000					40 1 1 0000			,
RG_L124_WS_LAEMP_LCO_2022-07_N	E235.NO3-L	11-Jul-2022					12-Jul-2022	3 days	1 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE	E235.NO3-L	11-Jul-2022					40 11 2022	0 4	F 4	×
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E233.INU3-L	11-Jul-2022					16-Jul-2022	3 days	5 days	EH.
										ЕП
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE PG TPID WS LAEMD LCO 2022 07 ND	E235.NO3-L	11-Jul-2022					16-Jul-2022	3 days	5 days	*
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	EZSS.INOS-L	11-JUI-2022					10-301-2022	Juays	Juays	EH.
										LII
nions and Nutrients : Nitrite in Water by IC (Low Level)							I			
HDPE RG F023 WS LAEMP LCO 2022-07 N	E235.NO2-L	11-Jul-2022					12-Jul-2022	3 days	1 days	✓
NG_FUZ3_WS_LAEINIP_LCU_ZUZZ-U1_IN	EZSS.INUZ-L	11-Jui-2022					12-Jui-2022	3 uays	i uays	•

Page : 7 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: × = Holding time exceedance : ✓ = Within Holding Time

fatrix: Water		_			Ev	valuation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding 1
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E235.NO2-L	11-Jul-2022					12-Jul-2022	3 days	1 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_L124_WS_LAEMP_LCO_2022-07_N	E235.NO2-L	11-Jul-2022					12-Jul-2022	3 days	1 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E235.NO2-L	11-Jul-2022					12-Jul-2022	3 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_F023_WS_LAEMP_LCO_2022-07_N	E235.SO4	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E235.SO4	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_L124_WS_LAEMP_LCO_2022-07_N	E235.SO4	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
nions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E235.SO4	11-Jul-2022					12-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_F023_WS_LAEMP_LCO_2022-07_N	E318	11-Jul-2022	17-Jul-2022				17-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E318	11-Jul-2022	17-Jul-2022				17-Jul-2022	28 days	6 days	✓
		_		_						

 Page
 : 8 of 22

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Matrix: Water					aing time exceedance, V = Within Holdi					
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_L124_WS_LAEMP_LCO_2022-07_N	E318	11-Jul-2022	17-Jul-2022				17-Jul-2022	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG TRIP WS LAEMP LCO 2022-07 NP	E318	11-Jul-2022	17-Jul-2022				17-Jul-2022	28 days	6 davs	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_F023_WS_LAEMP_LCO_2022-07_N	E372-U	11-Jul-2022	15-Jul-2022				15-Jul-2022	28 days	4 davs	✓
									, -	
Anima and National Tatal Pharmhama by Calaminator (0.000 mm/l)										
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid)							I			
RG FBLANK WS LAEMP LCO 2022-07 NP	E372-U	11-Jul-2022	15-Jul-2022				15-Jul-2022	28 days	4 days	✓
RG_FBLANK_W3_LAEMIP_LCO_2022-07_NP	L372-0	11-Jui-2022	13-341-2022				13-341-2022	20 days	4 uays	•
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	E372-U	11-Jul-2022	15-Jul-2022				15-Jul-2022	20 4	4 -1	1
RG_L124_WS_LAEMP_LCO_2022-07_N	E372-U	11-Jul-2022	15-Jul-2022				15-Jul-2022	28 days	4 days	•
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)	_			_		I				
Amber glass total (sulfuric acid)	5070 11	44 1 1 0000	45 1 1 0000				45 1 1 0000	00.1		,
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E372-U	11-Jul-2022	15-Jul-2022				15-Jul-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_F023_WS_LAEMP_LCO_2022-07_N	E421.Cr-L	11-Jul-2022	16-Jul-2022				17-Jul-2022	180	6 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E421.Cr-L	11-Jul-2022	16-Jul-2022				17-Jul-2022	180	6 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_L124_WS_LAEMP_LCO_2022-07_N	E421.Cr-L	11-Jul-2022	16-Jul-2022				17-Jul-2022	180	6 days	✓
								days		

Page : 9 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: x = Holding time exceedance · ✓ = Within Holding Time

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🕥	= Within	Holding T
Analyte Group	Method	Sampling Date	Ex	traction / Pi	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E421.Cr-L	11-Jul-2022	16-Jul-2022				17-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_F023_WS_LAEMP_LCO_2022-07_N	E509	11-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E509	11-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_L124_WS_LAEMP_LCO_2022-07_N	E509	11-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_F023_WS_LAEMP_LCO_2022-07_N	E421	11-Jul-2022	16-Jul-2022				17-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E421	11-Jul-2022	16-Jul-2022				17-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_L124_WS_LAEMP_LCO_2022-07_N	E421	11-Jul-2022	16-Jul-2022				17-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E421	11-Jul-2022	16-Jul-2022				17-Jul-2022	180 days	6 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	rel)									
Amber glass dissolved (sulfuric acid) RG_F023_WS_LAEMP_LCO_2022-07_N	E358-L	11-Jul-2022	18-Jul-2022				19-Jul-2022	28 days	8 days	√

Page : 10 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

Container / Client Sample ID(s) Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid)	ethod	Sampling Date	Ext Preparation Date			Eval	Analysis Date	Analys Holding		Eval
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid)			•		g Times	Eval	Analysis Date	Holding	Times	Eval
Amber glass dissolved (sulfuric acid)			Data	- 3					1111163	⊏vai
Amber glass dissolved (sulfuric acid)			Date	Rec	Actual			Rec	Actual	
, ,										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP										
	358-L	11-Jul-2022	18-Jul-2022				19-Jul-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)										
Amber glass dissolved (sulfuric acid)										
RG_L124_WS_LAEMP_LCO_2022-07_N	358-L	11-Jul-2022	18-Jul-2022				19-Jul-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low L	evel)									
Amber glass total (sulfuric acid)	-0701)									
,	355-L	11-Jul-2022	18-Jul-2022				19-Jul-2022	28 days	8 davs	✓
	-							,-	, -	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low L	_evel)									
Amber glass total (sulfuric acid)	355-L	11-Jul-2022	18-Jul-2022				19-Jul-2022	28 days	9 days	✓
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	000-L	11-Jui-2022	10-Jul-2022				19-Jul-2022	20 uays	o uays	•
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low L	_evel)									
Amber glass total (sulfuric acid)	\	44 1/1 0000	40 1 1 0000				40 1 1 0000	00.1		,
RG_L124_WS_LAEMP_LCO_2022-07_N	355-L	11-Jul-2022	18-Jul-2022				19-Jul-2022	28 days	8 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low L	_evel)									
Amber glass total (sulfuric acid)										
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	355-L	11-Jul-2022	18-Jul-2022				19-Jul-2022	28 days	8 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_F023_WS_LAEMP_LCO_2022-07_N	283	11-Jul-2022					13-Jul-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	283	11-Jul-2022					13-Jul-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE										
1.2.2	283	11-Jul-2022					13-Jul-2022	14 days	2 days	✓
									,	

Page : 11 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: x = Holding time exceedance · ✓ = Within Holding Time

atrix: Water					Ev	⁄aluation: ≍ =	Holding time exce	edance ; 🕦	= Within	Holding
nalyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
hysical Tests : Acidity by Titration										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E283	11-Jul-2022					13-Jul-2022	14 days	2 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE										
RG_F023_WS_LAEMP_LCO_2022-07_N	E290	11-Jul-2022					13-Jul-2022	14 days	2 days	✓
hysical Tests : Alkalinity Species by Titration										
IDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E290	11-Jul-2022					13-Jul-2022	14 days	2 days	✓
hysical Tests : Alkalinity Species by Titration										
HDPE	F000	44 1-1 0000					40 1.1.0000	44 1	0.1	1
RG_L124_WS_LAEMP_LCO_2022-07_N	E290	11-Jul-2022					13-Jul-2022	14 days	2 days	•
hysical Tests : Alkalinity Species by Titration				ı	I I					
HDPE	E290	11-Jul-2022					13-Jul-2022	14 days	2 days	√
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	L290	11-301-2022					13-Jul-2022	14 uays	2 uays	•
The latest and the la										
hysical Tests : Conductivity in Water HDPE				l			I			
RG_F023_WS_LAEMP_LCO_2022-07_N	E100	11-Jul-2022					13-Jul-2022	28 days	2 days	√
110_1 020_110_E11EIIII _E00_2022 01_11		1.04.2022					10 04. 2022	20 days		
hysical Tests : Conductivity in Water										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E100	11-Jul-2022					13-Jul-2022	28 days	2 days	✓
hysical Tests : Conductivity in Water										
HDPE										
RG_L124_WS_LAEMP_LCO_2022-07_N	E100	11-Jul-2022					13-Jul-2022	28 days	2 days	✓
hysical Tests : Conductivity in Water										
IDPE										
	The second secon	- I		1	1				0.1	,
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E100	11-Jul-2022					13-Jul-2022	28 days	2 days	✓

Page : 12 of 22 Work Order : CG2209065 Client : Teck Coal Limited : Regional Effects Program Project

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; •	✓ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : ORP by Electrode										
HDPE RG_F023_WS_LAEMP_LCO_2022-07_N	E125	11-Jul-2022					18-Jul-2022	0.25 hrs	165 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_L124_WS_LAEMP_LCO_2022-07_N	E125	11-Jul-2022					18-Jul-2022	0.25 hrs	170 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E125	11-Jul-2022					18-Jul-2022	0.25 hrs	171 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E125	11-Jul-2022					18-Jul-2022	0.25 hrs	172 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_F023_WS_LAEMP_LCO_2022-07_N	E108	11-Jul-2022					13-Jul-2022	0.25 hrs	44 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_L124_WS_LAEMP_LCO_2022-07_N	E108	11-Jul-2022					13-Jul-2022	0.25 hrs	48 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E108	11-Jul-2022					13-Jul-2022	0.25 hrs	50 hrs	* EHTR-FM
Physical Tests : pH by Meter									1	
HDPE RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E108	11-Jul-2022					13-Jul-2022	0.25 hrs	51 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE RG_F023_WS_LAEMP_LCO_2022-07_N	E162	11-Jul-2022					16-Jul-2022	7 days	5 days	*

Page : 13 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: **x** = Holding time exceedance : ✓ = Within Holding Time

atrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	/ = Within	Holding I
nalyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
hysical Tests : TDS by Gravimetry										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E162	11-Jul-2022					16-Jul-2022	7 days	5 days	✓
hysical Tests : TDS by Gravimetry										
HDPE										
RG_L124_WS_LAEMP_LCO_2022-07_N	E162	11-Jul-2022					16-Jul-2022	7 days	5 days	✓
hysical Tests : TDS by Gravimetry										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E162	11-Jul-2022					16-Jul-2022	7 days	5 days	✓
hysical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_F023_WS_LAEMP_LCO_2022-07_N	E160-L	11-Jul-2022					16-Jul-2022	7 days	5 days	✓
hysical Tests : TSS by Gravimetry (Low Level)									·	
HDPE [TSS-WB]										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E160-L	11-Jul-2022					16-Jul-2022	7 days	5 days	✓
hysical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_L124_WS_LAEMP_LCO_2022-07_N	E160-L	11-Jul-2022					16-Jul-2022	7 days	5 days	✓
hysical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E160-L	11-Jul-2022					16-Jul-2022	7 days	5 days	✓
hysical Tests : Turbidity by Nephelometry										
HDPE										
RG_F023_WS_LAEMP_LCO_2022-07_N	E121	11-Jul-2022					13-Jul-2022	3 days	2 days	✓
hysical Tests : Turbidity by Nephelometry										
hysical Tests : Turbidity by Nephelometry HDPE										
	E121	11-Jul-2022					13-Jul-2022	3 days	2 days	✓

Page : 14 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: × = Holding time exceedance : ✓ = Within Holding Time

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; •	= Within	Holding 7
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
hysical Tests : Turbidity by Nephelometry										
HDPE										
RG_L124_WS_LAEMP_LCO_2022-07_N	E121	11-Jul-2022					13-Jul-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E121	11-Jul-2022					13-Jul-2022	3 days	2 days	✓
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE total (nitric acid)										
RG_F023_WS_LAEMP_LCO_2022-07_N	E420.Cr-L	11-Jul-2022					16-Jul-2022	180	5 days	1
								days	. ,	
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)								-		
HDPE total (nitric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E420.Cr-L	11-Jul-2022					16-Jul-2022	180	5 days	✓
								days		
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)	E400.0.1	44 1.1.0000					40.1.1.0000			,
RG_L124_WS_LAEMP_LCO_2022-07_N	E420.Cr-L	11-Jul-2022					16-Jul-2022	180	5 days	✓
Total Matella v. Total Observations in Water by ODO JORNO (Lawy) and								days		
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE total (nitric acid)							I			
RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E420.Cr-L	11-Jul-2022					16-Jul-2022	180	5 days	1
								days	,	
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_F023_WS_LAEMP_LCO_2022-07_N	E508	11-Jul-2022					19-Jul-2022	28 days	8 days	✓
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)	E508	11-Jul-2022					19-Jul-2022	28 days	9 days	√
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	⊏308	1 1-Jul-2022					19-Jui-2022	20 uays	o uays	•
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_L124_WS_LAEMP_LCO_2022-07_N	E508	11-Jul-2022					19-Jul-2022	28 days	8 days	✓

 Page
 : 15 of 22

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

Project : Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_F023_WS_LAEMP_LCO_2022-07_N	E420	11-Jul-2022					16-Jul-2022	180 days	5 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_FBLANK_WS_LAEMP_LCO_2022-07_NP	E420	11-Jul-2022					16-Jul-2022	180 days	5 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_L124_WS_LAEMP_LCO_2022-07_N	E420	11-Jul-2022					16-Jul-2022	180 days	5 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_TRIP_WS_LAEMP_LCO_2022-07_NP	E420	11-Jul-2022					16-Jul-2022	180 days	5 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

 Page
 : 16 of 22

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluat	ion: × = QC frequ		ecification; ✓ =		
Quality Control Sample Type				ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	560524	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	560520	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	560823	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	559713	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	559714	1	20	5.0	5.0	✓
Conductivity in Water	E100	560519	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	563110	1	12	8.3	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	567870	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	563111	1	17	5.8	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	566981	1	14	7.1	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	560879	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	559712	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	559715	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	559716	1	20	5.0	5.0	✓
ORP by Electrode	E125	563943	1	20	5.0	5.0	✓
pH by Meter	E108	560518	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	559717	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	563230	2	40	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	563023	1	4	25.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	565330	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	567642	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	563024	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	566982	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	562419	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	560402	2	40	5.0	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	560524	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	560520	1	20	5.0	5.0	√
Ammonia by Fluorescence	E298	560823	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	559713	1	20	5.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	559714	1	20	5.0	5.0	1
Conductivity in Water	E100	560519	1	20	5.0	5.0	<u> </u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	563110	1	12	8.3	5.0	√
Dissolved Mercury in Water by CVAAS	E509	567870	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	563111	1	17	5.8	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	566981	1	14	7.1	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	560879	1	20	5.0	5.0	✓

Page : 17 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification.

Matrix: water		Evaluati	ion: × = QC trequ	ency outside sp	ecification; • =	QC frequency with	nın specificatior
Quality Control Sample Type				ount	Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	559712	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	559715	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	559716	1	20	5.0	5.0	✓
ORP by Electrode	E125	563943	1	20	5.0	5.0	✓
pH by Meter	E108	560518	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	559717	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	563230	2	40	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	563023	1	4	25.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	565330	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	567642	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	563024	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	566982	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	562419	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	563225	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	560402	2	40	5.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	560524	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	560520	1	20	5.0	5.0	√
Ammonia by Fluorescence	E298	560823	1	20	5.0	5.0	<u> </u>
Bromide in Water by IC (Low Level)	E235.Br-L	559713	1	20	5.0	5.0	<u>√</u>
Chloride in Water by IC (Low Level)	E235.CI-L	559714	1	20	5.0	5.0	√
Conductivity in Water	E100	560519	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	563110	1	12	8.3	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	567870	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	563111	1	17	5.8	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	566981	1	14	7.1	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	560879	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	559712	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	559715	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	559716	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	559717	1	20	5.0	5.0	√
TDS by Gravimetry	E162	563230	2	40	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	563023	1	4	25.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	565330	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	567642	1	20	5.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	563024	1	20	5.0	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	566982	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	562419	1	20	5.0	5.0	√
TSS by Gravimetry (Low Level)		563225	1	20	5.0	5.0	<u> </u>
100 2) 0.41	E160-L	303223	'	20	5.0	5.0	✓

Page : 18 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification.

Wattix. Water		Lvaldativ	on. • – QC nequ	crity outside spe	concation, · - v	active with	min specimean
Quality Control Sample Type			Co	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	560823	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	559713	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	559714	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	563110	1	12	8.3	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	567870	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	563111	1	17	5.8	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	566981	1	14	7.1	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	560879	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	559712	1	20	5.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	559715	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	559716	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	559717	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	563023	1	4	25.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	565330	1	20	5.0	5.0	√
Total Mercury in Water by CVAAS	E508	567642	1	20	5.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	563024	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	566982	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	562419	1	20	5.0	5.0	✓

Page : 19 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	J ,	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimeny (Low Lever)	E160-L	vvalei	AFHA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			

 Page
 : 20 of 22

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 21 of 22
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver -	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.

Environmental

 Page
 : 22 of 22

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

Project : Regional Effects Program

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2209065

Client : Teck Coal Limited
Contact : Cybele Heddle

:421 Pine Ave

Sparwood BC Canada

Telephone : ---

Address

Project : Regional Effects Program

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022_JULY_ALS

Sampler : ---Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 12-Jul-2022 09:40

Date Analysis Commenced : 12-Jul-2022

Issue Date : 20-Jul-2022 13:33

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anshim Anshim	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Dan Gebert	Laboratory Analyst	Vancouver Metals, Burnaby, British Columbia
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta
Parnian Sane	Analyst	Vancouver Metals, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	tory Duplicate (D	ог) кероп		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (Q	C Lot: 560402)										
CG2209046-003	Anonymous	turbidity		E121	0.10	NTU	138	152	9.11%	15%	
Physical Tests (Q	C Lot: 560518)										
CG2209065-001	RG_F023_WS_LAEMP_LC O_2022-07_N	pH		E108	0.10	pH units	8.42	8.43	0.119%	4%	
Physical Tests (Q	C Lot: 560519)										
CG2209065-001	RG_F023_WS_LAEMP_LC O_2022-07_N	conductivity		E100	2.0	μS/cm	491	492	0.203%	10%	
Physical Tests (Q	C Lot: 560520)										
CG2209065-001	RG_F023_WS_LAEMP_LC O_2022-07_N	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	158	161	2.38%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	9.0	9.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	166	170	2.26%	20%	
Physical Tests (Q	C Lot: 560524)										
CG2209065-001	RG_F023_WS_LAEMP_LC O_2022-07_N	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (Q	C Lot: 561012)										
CG2208729-002	Anonymous	turbidity		E121	0.10	NTU	916	970	5.68%	15%	
Physical Tests (Q	C Lot: 563230)										
CG2209046-008	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	662	636	3.93%	20%	
Physical Tests (Q	C Lot: 563231)							ı			
CG2209065-004	RG_TRIP_WS_LAEMP_LC O_2022-07_NP	solids, total dissolved [TDS]		E162	10	mg/L	<10	<10	0	Diff <2x LOR	
Physical Tests (Q											
CG2209047-004	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	421	417	0.954%	15%	
Anions and Nutrie	nts (QC Lot: 559712)										
CG2209025-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 559713)										
CG2209025-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 559714)							<u> </u>			
CG2209025-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 559715)										
CG2209025-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	

 Page
 : 4 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	its (QC Lot: 559716) - co	ntinued									
CG2209025-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 559717)										
CG2209025-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 560823)										
CG2209057-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 560879)										
CG2209065-001	RG_F023_WS_LAEMP_LC O_2022-07_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
	its (QC Lot: 562419)										
CG2209047-013	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0114	0.0115	0.00006	Diff <2x LOR	
	its (QC Lot: 565330)										
CG2209028-003	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	0.825	0.742	0.084	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 566981	1)									
CG2209057-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.69	0.61	0.08	Diff <2x LOR	
	Carbon (QC Lot: 566982	2)									
CG2209057-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	0.64	0.71	0.06	Diff <2x LOR	
Total Metals (QC L	ot: 563023)										
CG2209065-001	RG_F023_WS_LAEMP_LC O_2022-07_N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00011	0.00012	0.000008	Diff <2x LOR	
Total Metals (QC L	ot: 563024)										
CG2209065-001	RG_F023_WS_LAEMP_LC O_2022-07_N	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0192	0.0162	0.0030	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00016	0.00016	0.000001	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00015	0.00018	0.00002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0562	0.0564	0.250%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0678 µg/L	0.0000692	2.01%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	67.8	67.6	0.271%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.030	0.027	0.002	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0202	0.0203	0.642%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	27.8	28.0	0.858%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00396	0.00379	4.34%	20%	

 Page
 : 5 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 563024) - continued										
CG2209065-001	RG_F023_WS_LAEMP_LC O_2022-07_N	molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00130	0.00124	4.95%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00171	0.00176	0.00005	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.03	1.02	0.313%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	24.7 μg/L	0.0245	0.764%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.02	2.07	2.56%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	2.28	2.32	1.64%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.115	0.112	2.27%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	36.9	37.2	0.735%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00170	0.00164	3.56%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 567642)										
CG2209065-001	RG_F023_WS_LAEMP_LC O_2022-07_N	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 563110)										
CG2209057-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 563111)										
CG2209057-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0015	0.0014	0.0001	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00039	0.00039	0.000005	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00013	0.00012	0.000007	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0180	0.0186	3.29%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.018	0.018	0.0004	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	1.89 µg/L	0.00189	0.0313%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	176	178	1.26%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00171	0.00177	0.00006	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0243	0.0236	2.57%	20%	
	1			I	1						i e

Page : 6 of 18
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 563111) - contin	ued									
CG2209057-001	Anonymous	magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	110	112	1.56%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00082	0.00080	0.00002	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00130	0.00130	0.380%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.0294	0.0297	0.896%	20%	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.35	2.40	2.38%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	268 µg/L	0.265	1.24%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.62	2.58	1.45%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	1.72	1.74	1.09%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.132	0.132	0.0232%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	214	205	4.24%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000025	0.000028	0.000003	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00881	0.00903	2.50%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0789	0.0812	2.78%	20%	
Dissolved Metals (QC Lot: 567870)										
CG2209065-001	RG_F023_WS_LAEMP_LC O_2022-07_N	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 560402)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 560519)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 560520)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 560524)					
acidity (as CaCO3)	E283	2	mg/L	2.2	
Physical Tests (QCLot: 561012)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 563225)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 563230)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 563231)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 559712)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 559713)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 559714)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 559715)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 559716)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 559717)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 560823)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 560879)					

Page : 8 of 18
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water

Sub-Matrix: Water					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 560879)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 562419)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 565330)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot: 56	6981)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 56	6982)				
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 563023)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 563024)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	

Page : 9 of 18
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water

Sub-Matrix: Water		1				
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 563024) - co						
sulfur, total	7704-34-9		0.5	mg/L	<0.50	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
ıranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Fotal Metals (QCLot: 567642)						
nercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 563110)					
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 563111)					
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
intimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
rsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
eryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
sismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
ickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	# 0.052	В
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	

 Page
 : 10 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 563111) - c	ontinued				
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 567870)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	

Qualifiers

Qualifier Description

B Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

 Page
 : 11 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number M	lethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 560402)									
turbidity	E	121	0.1	NTU	200 NTU	102	85.0	115	
Physical Tests (QCLot: 560518)									
рН	E	108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 560519)									
conductivity	E	100	1	μS/cm	146.9 μS/cm	93.9	90.0	110	
Physical Tests (QCLot: 560520)									
alkalinity, total (as CaCO3)	E	290	1	mg/L	500 mg/L	105	85.0	115	
Physical Tests (QCLot: 560524)									
acidity (as CaCO3)	E	283	2	mg/L	50 mg/L	103	85.0	115	
Physical Tests (QCLot: 561012)									
turbidity	E	121	0.1	NTU	200 NTU	102	85.0	115	
Physical Tests (QCLot: 563225)									
solids, total suspended [TSS]	E	160-L	1	mg/L	150 mg/L	90.4	85.0	115	
Physical Tests (QCLot: 563230)									
solids, total dissolved [TDS]	E	162	10	mg/L	1000 mg/L	90.6	85.0	115	
Physical Tests (QCLot: 563231)									
solids, total dissolved [TDS]	E	162	10	mg/L	1000 mg/L	94.0	85.0	115	
Physical Tests (QCLot: 563943)									
oxidation-reduction potential [ORP]	E	125		mV	220 mV	99.0	95.4	104	
Anions and Nutrients (QCLot: 559712)									
fluoride	16984-48-8 E	235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 559713)									
bromide	24959-67-9 E	235.Br-L	0.05	mg/L	0.5 mg/L	99.2	85.0	115	
Anions and Nutrients (QCLot: 559714)									
chloride	16887-00-6 E	235.CI-L	0.1	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 559715)									
nitrate (as N)	14797-55-8 E	235.NO3-L	0.005	mg/L	2.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 559716)									
nitrite (as N)	14797-65-0 E	235.NO2-L	0.001	mg/L	0.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 559717)									
sulfate (as SO4)	14808-79-8 E	235.SO4	0.3	mg/L	100 mg/L	109	90.0	110	
Anions and Nutrients (QCLot: 560823)									

 Page
 : 12 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualific
Anions and Nutrients (QCLot: 560823) - contir	ued								
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	96.0	85.0	115	
Anions and Nutrients (QCLot: 560879)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	98.6	80.0	120	
Anions and Nutrients (QCLot: 562419)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.02 mg/L	92.8	80.0	120	
Anions and Nutrients (QCLot: 565330)									
(jeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	101	75.0	125	
, , , , , ,				ŭ	9.=				
Organic / Inorganic Carbon (OCI et: E66081)									
Organic / Inorganic Carbon (QCLot: 566981) earbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	95.6	80.0	120	
Pranie / Increasie Carbon (OCI et. E66092)									
Organic / Inorganic Carbon (QCLot: 566982) earbon, total organic (TOC)		E355-L	0.5	mg/L	8.57 mg/L	99.3	80.0	120	
, 3 1 1				ŭ	5.5g				
Total Metals (QCLot: 563023)									
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	95.6	80.0	120	
Total Metals (QCLot: 563024)									
luminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	96.1	80.0	120	
antimony, total	7440-36-0		0.0001	mg/L	1 mg/L	104	80.0	120	
arsenic, total	7440-38-2		0.0001	mg/L	1 mg/L	97.0	80.0	120	
parium, total	7440-39-3		0.0001	mg/L	0.25 mg/L	101	80.0	120	
peryllium, total	7440-41-7		0.00002	mg/L	0.1 mg/L	101	80.0	120	
pismuth, total	7440-69-9		0.00005	mg/L	1 mg/L	102	80.0	120	
poron, total	7440-42-8		0.01	mg/L	1 mg/L	86.6	80.0	120	
admium, total	7440-43-9		0.000005	mg/L	0.1 mg/L	98.0	80.0	120	
alcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	99.3	80.0	120	
cobalt, total	7440-48-4		0.0001	mg/L	0.25 mg/L	95.1	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	94.1	80.0	120	
ron, total	7439-89-6		0.01	mg/L	1 mg/L	99.3	80.0	120	
ead, total	7439-92-1		0.00005	mg/L	0.5 mg/L	101	80.0	120	
thium, total	7439-93-2		0.001	mg/L	0.25 mg/L	103	80.0	120	
nagnesium, total	7439-95-4		0.005	mg/L	50 mg/L	96.1	80.0	120	
nanganese, total	7439-96-5		0.0001	mg/L	0.25 mg/L	96.9	80.0	120	
nolybdenum, total	7439-98-7		0.00005	mg/L	0.25 mg/L	98.8	80.0	120	
nickel, total	7440-02-0		0.0005	mg/L	0.5 mg/L	96.8	80.0	120	
potassium, total	7440-09-7		0.05	mg/L	50 mg/L	99.0	80.0	120	
selenium, total	7782-49-2		0.00005	mg/L	1 mg/L	101	80.0	120	
ilicon, total	7440-21-3		0.0000	mg/L	1 mg/L	110	80.0	120	

Page : 13 of 18
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie	
Total Metals (QCLot: 563024) - continued										
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	95.0	80.0	120		
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	100	80.0	120		
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	93.2	80.0	120		
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	85.0	80.0	120		
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	102	80.0	120		
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	100	80.0	120		
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	92.5	80.0	120		
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	100	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	97.2	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	97.0	80.0	120		
Total Metals (QCLot: 567642)										
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	94.1	80.0	120		
					-					
Dissolved Metals (QCLot: 563110)										
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	101	80.0	120		
Dissolved Metals (QCLot: 563111)										
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	106	80.0	120		
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	106	80.0	120		
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	104	80.0	120		
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	104	80.0	120		
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	95.7	80.0	120		
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	99.6	80.0	120		
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	90.9	80.0	120		
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	102	80.0	120		
calcium, dissolved	7440-70-2		0.05	mg/L	50 mg/L	98.3	80.0	120		
cobalt, dissolved	7440-48-4		0.0001	mg/L	0.25 mg/L	103	80.0	120		
copper, dissolved	7440-50-8		0.0002	mg/L	0.25 mg/L	100	80.0	120		
iron, dissolved	7439-89-6		0.01	mg/L	1 mg/L	107	80.0	120		
lead, dissolved	7439-92-1		0.00005	mg/L	0.5 mg/L	104	80.0	120		
lithium, dissolved	7439-93-2		0.001	mg/L	0.25 mg/L	96.5	80.0	120		
magnesium, dissolved	7439-95-4		0.005	mg/L	50 mg/L	97.8	80.0	120		
manganese, dissolved	7439-96-5		0.0001	mg/L	0.25 mg/L	101	80.0	120		
molybdenum, dissolved	7439-98-7		0.00005	mg/L	0.25 mg/L	105	80.0	120		
nickel, dissolved	7440-02-0		0.0005	mg/L	0.25 Hig/L 0.5 mg/L	101	80.0	120		
potassium, dissolved	7440-02-0		0.005	mg/L	50 mg/L	101	80.0	120		
selenium, dissolved	7782-49-2		0.00005	mg/L	1 mg/L	110	80.0	120		
silicon. dissolved	7440-21-3		0.00003	mg/L		100	80.0	120		
silicon, dissolved	1440-21-3	L74 1	0.05	mg/L	10 mg/L	109	00.0	120		

 Page
 : 14 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: Water	trix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)			
alyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
solved Metals (QCLot: 563111) - continu	ed										
r, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	100	80.0	120			
um, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	102	80.0	120			
ntium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	105	80.0	120			
r, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	99.3	80.0	120			
um, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	103	80.0	120			
lissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	104	80.0	120			
um, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	100	80.0	120			
ium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	105	80.0	120			
dium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	104	80.0	120			
dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	108	80.0	120			
cury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	95.9	80.0	120			
cury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	95.9	80.0	120			

 Page
 : 15 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							-	re (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
Anions and Nutr	ients (QCLot: 559712)									
CG2209065-004	RG_TRIP_WS_LAEMP_LC O_2022-07_NP	fluoride	16984-48-8	E235.F	0.933 mg/L	1 mg/L	93.3	75.0	125	
Anions and Nutr	ients (QCLot: 559713)									
CG2209065-004	RG_TRIP_WS_LAEMP_LC O_2022-07_NP	bromide	24959-67-9	E235.Br-L	0.515 mg/L	0.5 mg/L	103	75.0	125	
nions and Nutr	ients (QCLot: 559714)									
CG2209065-004	RG_TRIP_WS_LAEMP_LC O_2022-07_NP	chloride	16887-00-6	E235.CI-L	104 mg/L	100 mg/L	104	75.0	125	
nions and Nutr	ients (QCLot: 559715)									
CG2209065-004	RG_TRIP_WS_LAEMP_LC O_2022-07_NP	nitrate (as N)	14797-55-8	E235.NO3-L	2.61 mg/L	2.5 mg/L	104	75.0	125	
Anions and Nutr	ients (QCLot: 559716)									
CG2209065-004	RG_TRIP_WS_LAEMP_LC O_2022-07_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.532 mg/L	0.5 mg/L	106	75.0	125	
Anions and Nutr	ients (QCLot: 559717)									
CG2209065-004	RG_TRIP_WS_LAEMP_LC O_2022-07_NP	sulfate (as SO4)	14808-79-8	E235.SO4	111 mg/L	100 mg/L	111	75.0	125	
Anions and Nutr	ients (QCLot: 560823)									
CG2209057-004	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0990 mg/L	0.1 mg/L	99.0	75.0	125	
Anions and Nutr	ients (QCLot: 560879)									
CG2209065-002	RG_L124_WS_LAEMP_LC O_2022-07_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0475 mg/L	0.05 mg/L	95.0	70.0	130	
Anions and Nutr	ients (QCLot: 562419)									
CG2209052-001	Anonymous	phosphorus, total	7723-14-0	E372-U	ND mg/L	0.0676 mg/L	ND	70.0	130	
Anions and Nutr	ients (QCLot: 565330)									
CG2209057-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.44 mg/L	2.5 mg/L	97.7	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 566	981)								
CG2209057-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	4.79 mg/L	5 mg/L	95.8	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 566	982)								
CG2209057-001	Anonymous	carbon, total organic [TOC]		E355-L	4.85 mg/L	5 mg/L	97.0	70.0	130	
otal Metals (QC	CLot: 563023)									
CG2209065-002	RG_L124_WS_LAEMP_LC O 2022-07 N	chromium, total	7440-47-3	E420.Cr-L	0.0378 mg/L	0.04 mg/L	94.5	70.0	130	

Page : 16 of 18
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water	b-Matrix: Water						Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	CLot: 563024)									
CG2209065-002	RG_L124_WS_LAEMP_LC	aluminum, total	7429-90-5	E420	0.188 mg/L	0.2 mg/L	94.3	70.0	130	
	O_2022-07_N	antimony, total	7440-36-0	E420	0.0203 mg/L	0.02 mg/L	102	70.0	130	
		arsenic, total	7440-38-2	E420	0.0189 mg/L	0.02 mg/L	94.7	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0389 mg/L	0.04 mg/L	97.2	70.0	130	
		bismuth, total	7440-69-9	E420	0.00956 mg/L	0.01 mg/L	95.6	70.0	130	
		boron, total	7440-42-8	E420	0.082 mg/L	0.1 mg/L	81.8	70.0	130	
		cadmium, total	7440-43-9	E420	0.00382 mg/L	0.004 mg/L	95.5	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0188 mg/L	0.02 mg/L	94.2	70.0	130	
		copper, total	7440-50-8	E420	0.0187 mg/L	0.02 mg/L	93.4	70.0	130	
		iron, total	7439-89-6	E420	1.95 mg/L	2 mg/L	97.6	70.0	130	
		lead, total	7439-92-1	E420	0.0197 mg/L	0.02 mg/L	98.5	70.0	130	
		lithium, total	7439-93-2	E420	0.0994 mg/L	0.1 mg/L	99.4	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0191 mg/L	0.02 mg/L	95.6	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0198 mg/L	0.02 mg/L	99.3	70.0	130	
		nickel, total	7440-02-0	E420	0.0380 mg/L	0.04 mg/L	94.9	70.0	130	
		potassium, total	7440-09-7	E420	3.88 mg/L	4 mg/L	97.0	70.0	130	
		selenium, total	7782-49-2	E420	0.0406 mg/L	0.04 mg/L	102	70.0	130	
		silicon, total	7440-21-3	E420	9.22 mg/L	10 mg/L	92.2	70.0	130	
		silver, total	7440-22-4	E420	0.00395 mg/L	0.004 mg/L	98.6	70.0	130	
		sodium, total	7440-23-5	E420	1.97 mg/L	2 mg/L	98.4	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	19.0 mg/L	20 mg/L	94.9	70.0	130	
		thallium, total	7440-28-0	E420	0.00379 mg/L	0.004 mg/L	94.8	70.0	130	
		tin, total	7440-31-5	E420	0.0195 mg/L	0.02 mg/L	97.7	70.0	130	
		titanium, total	7440-32-6	E420	0.0378 mg/L	0.04 mg/L	94.4	70.0	130	
		uranium, total	7440-61-1	E420	0.00392 mg/L	0.004 mg/L	97.9	70.0	130	
		vanadium, total	7440-62-2	E420	0.0957 mg/L	0.1 mg/L	95.7	70.0	130	
		zinc, total	7440-66-6	E420	0.380 mg/L	0.4 mg/L	95.0	70.0	130	
otal Metals (QC	CLot: 567642)									
CG2209065-002	RG_L124_WS_LAEMP_LC O_2022-07_N	mercury, total	7439-97-6	E508	0.0000946 mg/L	0.0001 mg/L	94.6	70.0	130	
Dissolved Metals	(QCLot: 563110)									
CG2209057-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0392 mg/L	0.04 mg/L	98.0	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2209065

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Cas mann. Traici			-Matrix: Water						Matrix Spike (MS) Report					
					Spi	ike	Recovery (%)		Limits (%)					
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
ID				1										
Dissolved Metals	(QCLot: 563111)													
CG2209057-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.203 mg/L	0.2 mg/L	101	70.0	130					
		antimony, dissolved	7440-36-0	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130					
		arsenic, dissolved	7440-38-2	E421	0.0203 mg/L	0.02 mg/L	102	70.0	130					
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130					
		beryllium, dissolved	7440-41-7	E421	0.0372 mg/L	0.04 mg/L	92.9	70.0	130					
		bismuth, dissolved	7440-69-9	E421	0.00889 mg/L	0.01 mg/L	88.9	70.0	130					
		boron, dissolved	7440-42-8	E421	0.089 mg/L	0.1 mg/L	89.3	70.0	130					
		cadmium, dissolved	7440-43-9	E421	0.00391 mg/L	0.004 mg/L	97.7	70.0	130					
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130					
		cobalt, dissolved	7440-48-4	E421	0.0192 mg/L	0.02 mg/L	96.2	70.0	130					
		copper, dissolved	7440-50-8	E421	0.0187 mg/L	0.02 mg/L	93.5	70.0	130					
		iron, dissolved	7439-89-6	E421	1.93 mg/L	2 mg/L	96.7	70.0	130					
		lead, dissolved	7439-92-1	E421	0.0193 mg/L	0.02 mg/L	96.6	70.0	130					
		lithium, dissolved	7439-93-2	E421	0.0917 mg/L	0.1 mg/L	91.7	70.0	130					
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130					
		manganese, dissolved	7439-96-5	E421	0.0198 mg/L	0.02 mg/L	99.1	70.0	130					
		molybdenum, dissolved	7439-98-7	E421	0.0205 mg/L	0.02 mg/L	103	70.0	130					
		nickel, dissolved	7440-02-0	E421	0.0381 mg/L	0.04 mg/L	95.3	70.0	130					
		potassium, dissolved	7440-09-7	E421	4.10 mg/L	4 mg/L	103	70.0	130					
		selenium, dissolved	7782-49-2	E421	0.0440 mg/L	0.04 mg/L	110	70.0	130					
		silicon, dissolved	7440-21-3	E421	9.32 mg/L	10 mg/L	93.2	70.0	130					
		silver, dissolved	7440-22-4	E421	0.00396 mg/L	0.004 mg/L	99.0	70.0	130					
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130					
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130					
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130					
		thallium, dissolved	7440-28-0	E421	0.00386 mg/L	0.004 mg/L	96.5	70.0	130					
		tin, dissolved	7440-31-5	E421	0.0200 mg/L	0.02 mg/L	99.9	70.0	130					
		titanium, dissolved	7440-32-6	E421	0.0401 mg/L	0.04 mg/L	100	70.0	130					
		uranium, dissolved	7440-61-1	E421	0.00392 mg/L	0.004 mg/L	98.1	70.0	130					
		vanadium, dissolved	7440-62-2	E421	0.100 mg/L	0.1 mg/L	100	70.0	130					
		zinc, dissolved	7440-66-6	E421	0.395 mg/L	0.4 mg/L	98.8	70.0	130					
Dissolved Metals	(QCLot: 567870)													
CG2209065-002	RG_L124_WS_LAEMP_LC O 2022-07 N	mercury, dissolved	7439-97-6	E509	0.0000908 mg/L	0.0001 mg/L	90.8	70.0	130					

Page : 18 of 18
Work Order : CG2209065
Client : Teck Coal Limited
Project : Regional Effects Program

WATER CHEMISTRY

ALS Laboratory Report CG2209232 (Finalized July 21, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2209232

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAMS

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022_JULY_ALS

Sampler : Tristin Vandemeulen

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 14-Jul-2022 10:05

Date Analysis Commenced : 14-Jul-2022

Issue Date : 21-Jul-2022 18:13

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Elke Tabora		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kyle Chang	Lab Assistant	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parnian Sane	Analyst	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sofiya Ivanova	Lab Assistant	Inorganics, Calgary, Alberta

Page : 2 of 6

Work Order : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

pH units	pH units
NTU	nephelometric turbidity units
mV	millivolts
mg/L	milligrams per litre
meq/L	milliequivalents per litre
μS/cm	Microsiemens per centimetre
μg/L	micrograms per litre
%	percent
-	No Unit
Unit	Description

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 6
Work Order : CG2209232
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water			C	lient sample ID	RG_LISP24_WS	RG_FRUL_WS_	 	
(Matrix: Water)					_LAEMP_LCO_ 2022-07_N	LAEMP_LCO_2 022-07_N		
			Client samp	oling date / time	13-Jul-2022 12:45	13-Jul-2022 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2209232-001	CG2209232-002	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	189	185	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	230	226	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	189	185	 	
conductivity		E100	2.0	μS/cm	577	539	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	290	276	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	379	372	 	
pH		E108	0.10	pH units	7.67	7.79	 	
solids, total dissolved [TDS]		E162	10	mg/L	404	358	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.9	5.7	 	
turbidity		E121	0.10	NTU	0.18	1.36	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	3.92	1.50	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.237	0.197	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	1.05	1.49	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	5.62	6.44	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0034	0.0044	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0021	0.0054	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	132	109	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.78	1.18	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.71	1.06	 	
Ion Balance								

Page : 4 of 6
Work Order : CG2209232
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_LISP24_WS	RG_FRUL_WS_	 	
(Matrix: Water)					_LAEMP_LCO_ 2022-07_N	LAEMP_LCO_2 022-07_N		
			Client samp	ling date / time	13-Jul-2022 12:45	13-Jul-2022 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2209232-001	CG2209232-002	 	
					Result	Result	 	
Ion Balance								
anion sum		EC101	0.10	meq/L	7.05	6.48	 	
cation sum		EC101	0.10	meq/L	6.02	5.63	 	
ion balance (cations/anions)		EC101	0.010	%	85.4	86.9	 	
ion balance (APHA)		EC101	0.010	%	7.88	7.02	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0033	0.0102	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00021	0.00013	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00013	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0321	0.0662	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.010	0.013	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.358	0.0251	 	
calcium, total	7440-70-2	E420	0.050	mg/L	74.4	65.2	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00017	0.00014	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	0.019	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0262	0.0177	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	31.8	29.1	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00152	0.00296	 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00133	0.00115	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00653	0.00113	 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.11	1.06	 	
selenium, total	7782-49-2	E420	0.050	μg/L	28.0	27.8	 	
silicon, total	7440-21-3	E420	0.10	mg/L	1.96	1.82	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total	7440-23-5	E420	0.050	mg/L	4.44	1.89	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.144	0.111	 	
1 ' " 			1		<u> </u>	l		

Page : 5 of 6
Work Order : CG2209232
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

			Cii	ient sample ID	RG_LISP24_WS	RG_FRUL_WS_	 	
(Matrix: Water)					_LAEMP_LCO_ 2022-07_N	LAEMP_LCO_2 022-07_N		
			Client samp	ling date / time	13-Jul-2022 12:45	13-Jul-2022 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2209232-001	CG2209232-002	 	
					Result	Result	 	
Total Metals								
sulfur, total	7704-34-9	E420	0.50	mg/L	47.6	40.9	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	0.00032	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00236	0.00165	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0150	<0.0030	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0020	0.0013	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00022	0.00012	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00010	<0.00010	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0326	0.0658	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.010	<0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.330	0.0184	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	69.5	66.2	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00013	0.00014	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00037	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0293	0.0194	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	28.4	26.9	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00125	0.00100	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00144	0.00125	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00623	0.00095	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.13	1.11	 	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	27.7	28.7	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.89	1.73	 	

Page : 6 of 6 : CG2209232 Work Order Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water			CI	lient sample ID	RG_LISP24_WS	RG_FRUL_WS_	 	
(Matrix: Water)					_LAEMP_LCO_	LAEMP_LCO_2		
					2022-07_N	022-07_N		
			Client samp	ling date / time	13-Jul-2022 12:45	13-Jul-2022 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2209232-001	CG2209232-002	 	
					Result	Result	 	
Dissolved Metals								
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	4.23	1.90	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.144	0.106	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	46.8	37.8	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000010	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00231	0.00160	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0136	<0.0010	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2209232** Page : 1 of 16

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Ave Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAMS
 Date Samples Received
 : 14-Jul-2022 10:05

 PO
 : VPO00816101
 Issue Date
 : 21-Jul-2022 18:13

C-O-C number : REP LAEMP LCO 2022 JULY ALS

C-O-C number : REP_LAEMP_LCO_2022_JULY_ALS
Sampler : Tristin Vandemeulen

Sampler : Tristin Vandemeulen
Site :----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

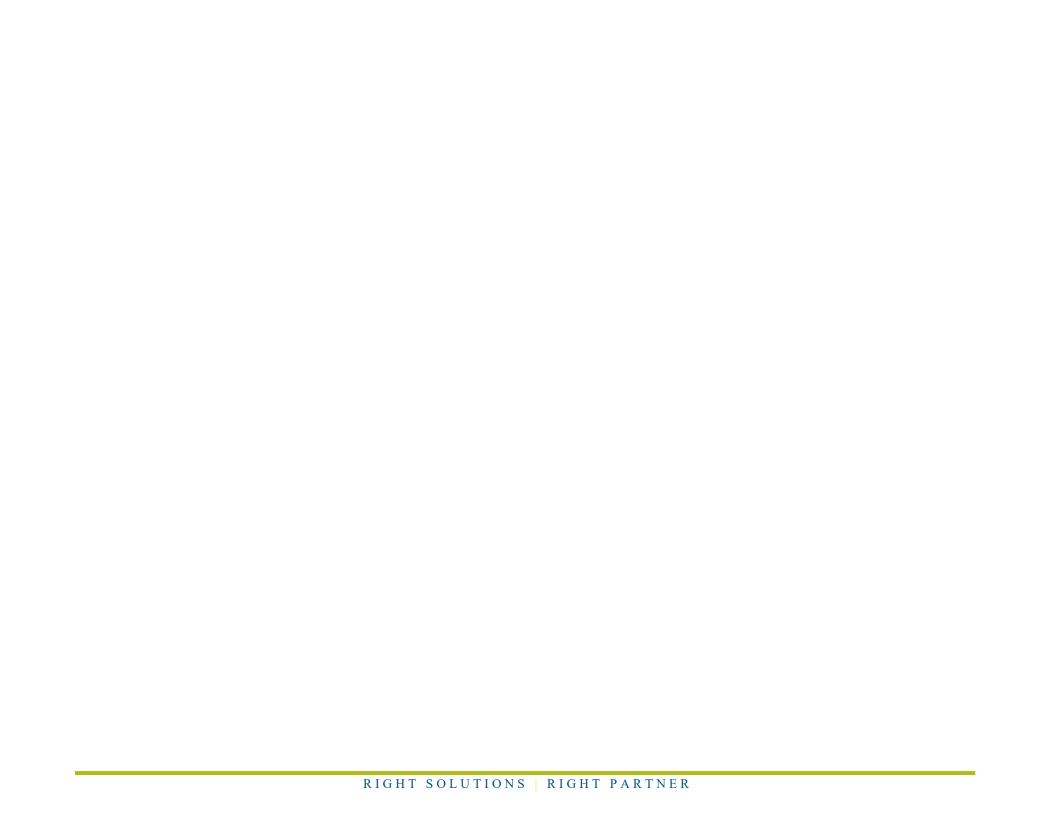
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

 Page
 : 3 of 16

 Work Order
 : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_FRUL_WS_LAEMP_LCO_2022-07_N	E298	13-Jul-2022	14-Jul-2022				14-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-07_N	E298	13-Jul-2022	14-Jul-2022				14-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E235.Br-L	13-Jul-2022					15-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E235.Br-L	13-Jul-2022					15-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)							l			
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E235.CI-L	13-Jul-2022					15-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E235.CI-L	13-Jul-2022					15-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E378-U	13-Jul-2022					15-Jul-2022	3 days	2 days	✓

Page : 4 of 16 Work Order : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Extraction / Preparation							
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level 0.001									
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E378-U	13-Jul-2022					15-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E235.F	13-Jul-2022					15-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E235.F	13-Jul-2022					15-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E235.NO3-L	13-Jul-2022					15-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E235.NO3-L	13-Jul-2022					15-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E235.NO2-L	13-Jul-2022					15-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E235.NO2-L	13-Jul-2022					15-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E235.SO4	13-Jul-2022					15-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E235.SO4	13-Jul-2022					15-Jul-2022	28 days	2 days	✓

Page : 5 of 16 Work Order : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					L\	/aluation. ^ –	Holding time exce	euance, •	– vviuiiii	Holding Tim	
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis				
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid) RG_FRUL_WS_LAEMP_LCO_2022-07_N	E318	13-Jul-2022	20-Jul-2022				20-Jul-2022	28 days	7 days	✓	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-07_N	E318	13-Jul-2022	20-Jul-2022				20-Jul-2022	28 days	7 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid) RG_FRUL_WS_LAEMP_LCO_2022-07_N	E372-U	13-Jul-2022	18-Jul-2022				20-Jul-2022	28 days	7 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-07_N	E372-U	13-Jul-2022	18-Jul-2022				20-Jul-2022	28 days	7 days	✓	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid) RG_FRUL_WS_LAEMP_LCO_2022-07_N	E421.Cr-L	13-Jul-2022	19-Jul-2022				19-Jul-2022	180 days	6 days	✓	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid) RG_LISP24_WS_LAEMP_LCO_2022-07_N	E421.Cr-L	13-Jul-2022	19-Jul-2022				19-Jul-2022	180 days	6 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid) RG_FRUL_WS_LAEMP_LCO_2022-07_N	E509	13-Jul-2022	21-Jul-2022				21-Jul-2022	28 days	8 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid) RG_LISP24_WS_LAEMP_LCO_2022-07_N	E509	13-Jul-2022	21-Jul-2022				21-Jul-2022	28 days	8 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid) RG_FRUL_WS_LAEMP_LCO_2022-07_N	E421	13-Jul-2022	19-Jul-2022				19-Jul-2022	180 days	6 days	✓	

 Page
 : 6 of 16

 Work Order
 : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

wattrx: water	_						Holding time exce	, , , , , , , , , , , , , , , , , , ,	**********		
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid)											
RG_LISP24_WS_LAEMP_LCO_2022-07_N	E421	13-Jul-2022	19-Jul-2022				19-Jul-2022	180	6 days	✓	
								days			
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	rel)										
Amber glass dissolved (sulfuric acid)											
RG_FRUL_WS_LAEMP_LCO_2022-07_N	E358-L	13-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	8 davs	1	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	vol)										
Amber glass dissolved (sulfuric acid)											
RG_LISP24_WS_LAEMP_LCO_2022-07_N	E358-L	13-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	8 davs	1	
110_E101 21_110_E11E1111 _E00_2022 01_11		10 04: 2022	.0 04. 2022				2.00.2022	20 00,0	o days		
Committee (Incommittee Continue Tartel Committee (Incommittee Continue (Incommittee Cont	(I I I)										
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti Amber glass total (sulfuric acid)	on (Low Level)						I	l l			
RG_FRUL_WS_LAEMP_LCO_2022-07_N	E355-L	13-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	8 days	1	
NG_INOL_WG_EALWIF_ECO_2022-01_IN	L333-L	10-341-2022	13-341-2022				21-3ui-2022	20 days	0 days	•	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)							T T			
Amber glass total (sulfuric acid)	E355-L	13-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	9 days	1	
RG_LISP24_WS_LAEMP_LCO_2022-07_N	E333-L	13-Jul-2022	19-Jul-2022				21-Jul-2022	20 days	o uays	•	
Physical Tests : Acidity by Titration							1				
HDPE	F000	40 1-1-0000					44 1.1 0000	44 1	4 1		
RG_FRUL_WS_LAEMP_LCO_2022-07_N	E283	13-Jul-2022					14-Jul-2022	14 days	1 days	✓	
Physical Tests : Acidity by Titration											
HDPE											
RG_LISP24_WS_LAEMP_LCO_2022-07_N	E283	13-Jul-2022					14-Jul-2022	14 days	1 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE											
RG_FRUL_WS_LAEMP_LCO_2022-07_N	E290	13-Jul-2022					14-Jul-2022	14 days	1 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE											
RG_LISP24_WS_LAEMP_LCO_2022-07_N	E290	13-Jul-2022					14-Jul-2022	14 days	1 days	✓	

 Page
 : 7 of 16

 Work Order
 : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	traction / Pr			Analysis				
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval	
			Date	Rec	Actual			Rec	Actual	ļ	
Physical Tests : Conductivity in Water				I	l I						
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E100	13-Jul-2022					14-Jul-2022	28 days	1 days	✓	
Physical Tests : Conductivity in Water											
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E100	13-Jul-2022					14-Jul-2022	28 days	1 days	✓	
Physical Tests : ORP by Electrode											
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E125	13-Jul-2022					21-Jul-2022	0.25 hrs	194 hrs	* EHTR-FM	
Physical Tests : ORP by Electrode											
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E125	13-Jul-2022					21-Jul-2022	0.25 hrs	197 hrs	* EHTR-FM	
Physical Tests : pH by Meter											
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E108	13-Jul-2022					14-Jul-2022	0.25 hrs	28 hrs	* EHTR-FM	
Physical Tests : pH by Meter											
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E108	13-Jul-2022					14-Jul-2022	0.25 hrs	31 hrs	* EHTR-FM	
Physical Tests : TDS by Gravimetry											
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E162	13-Jul-2022					19-Jul-2022	7 days	6 days	✓	
Physical Tests : TDS by Gravimetry											
HDPE RG_LISP24_WS_LAEMP_LCO_2022-07_N	E162	13-Jul-2022					19-Jul-2022	7 days	6 days	✓	
Physical Tests : TSS by Gravimetry (Low Level)				1							
HDPE RG_FRUL_WS_LAEMP_LCO_2022-07_N	E160-L	13-Jul-2022					18-Jul-2022	7 days	5 days	✓	

 Page
 : 8 of 16

 Work Order
 : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

atrix: Water			Evaluation: × = Holding time exceedance ; √ = Within							
nalyte Group	Method	Sampling Date	Ext	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
hysical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-07_N	E160-L	13-Jul-2022					18-Jul-2022	7 days	5 days	✓
hysical Tests : Turbidity by Nephelometry								I		
HDPE	E121	13-Jul-2022					15-Jul-2022	3 days	2 days	1
RG_FRUL_WS_LAEMP_LCO_2022-07_N	LIZI	13-3ul-2022					15-Jul-2022	3 days	2 days	•
hysical Tests : Turbidity by Nephelometry										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-07_N	E121	13-Jul-2022					15-Jul-2022	3 days	2 days	✓
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)					1		I	1		
RG_FRUL_WS_LAEMP_LCO_2022-07_N	E420.Cr-L	13-Jul-2022					20-Jul-2022	180	7 days	✓
110_1110L_110_L11LIMI _E00_2022-07_11	2 120.01 2	10 041 2022					20 00. 2022	days	, days	
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-07_N	E420.Cr-L	13-Jul-2022					20-Jul-2022	180	7 days	✓
								days		
otal Metals : Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid)							I	I		
RG FRUL WS LAEMP LCO 2022-07 N	E508	13-Jul-2022					21-Jul-2022	28 days	8 days	1
110_1110L_110_L11LIMI _E00_2022-07_11	2000	10 041 2022					21 041 2022	20 dayo	dayo	
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-07_N	E508	13-Jul-2022					21-Jul-2022	28 days	8 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG FRUL WS LAEMP LCO 2022-07 N	E420	13-Jul-2022					20-Jul-2022	180	7 days	1
RG_FRUL_WS_LAEIMF_LCO_2022-07_IN	L420	13-3ul-2022					20-341-2022	days	7 days	•
otal Metals : Total Metals in Water by CRC ICPMS								,		
HDPE total (nitric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-07_N	E420	13-Jul-2022					20-Jul-2022	180	7 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

 Page
 : 9 of 16

 Work Order
 : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Rec. HT: ALS recommended hold time (see units).

Page : 10 of 16 Work Order : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	563141	1	16	6.2	5.0	1
Alkalinity Species by Titration	E290	563124	1	16	6.2	5.0	✓
Ammonia by Fluorescence	E298	563059	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	564054	1	17	5.8	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	564055	1	17	5.8	5.0	✓
Conductivity in Water	E100	563122	1	16	6.2	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	567151	1	9	11.1	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	570989	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	567150	1	16	6.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	568988	1	7	14.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	564549	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	564053	1	17	5.8	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	564051	1	20	5.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	564052	1	19	5.2	5.0	✓
ORP by Electrode	E125	566710	1	20	5.0	5.0	✓
pH by Meter	E108	563123	1	16	6.2	5.0	1
Sulfate in Water by IC	E235.SO4	564056	1	17	5.8	5.0	✓
TDS by Gravimetry	E162	566570	1	20	5.0	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	567891	1	11	9.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	568586	1	17	5.8	5.0	✓
Total Mercury in Water by CVAAS	E508	570996	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	567890	1	17	5.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	568989	1	7	14.2	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	566882	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	563914	2	40	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	563141	1	16	6.2	5.0	1
Alkalinity Species by Titration	E290	563124	1	16	6.2	5.0	<u> </u>
Ammonia by Fluorescence	E298	563059	1	20	5.0	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	564054	1	17	5.8	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	564055	1	17	5.8	5.0	<u>√</u>
Conductivity in Water	E100	563122	1	16	6.2	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	567151	1	9	11.1	5.0	√
Dissolved Mercury in Water by CVAAS	E509	570989	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	567150	1	16	6.2	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	568988	1	7	14.2	5.0	<u>√</u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	564549	1	20	5.0	5.0	<u>√</u>

Page : 11 of 16 Work Order : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water**Evaluation: ▼ = QC frequency outside specification; ✓ = QC frequency within specification.

iviatrix. vvater			on QC neque		Jointoution, ·		<u> </u>
Quality Control Sample Type				ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	564053	1	17	5.8	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	564051	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	564052	1	19	5.2	5.0	✓
ORP by Electrode	E125	566710	1	20	5.0	5.0	✓
pH by Meter	E108	563123	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	564056	1	17	5.8	5.0	✓
TDS by Gravimetry	E162	566570	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	567891	1	11	9.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	568586	1	17	5.8	5.0	✓
Total Mercury in Water by CVAAS	E508	570996	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	567890	1	17	5.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	568989	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	566882	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	566556	1	20	5.0	5.0	√
Turbidity by Nephelometry	E121	563914	2	40	5.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	563141	1	16	6.2	5.0	✓
Alkalinity Species by Titration	E290	563124	1	16	6.2	5.0	√
Ammonia by Fluorescence	E298	563059	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	564054	1	17	5.8	5.0	<u> </u>
Chloride in Water by IC (Low Level)	E235.CI-L	564055	1	17	5.8	5.0	√
Conductivity in Water	E100	563122	1	16	6.2	5.0	<u> </u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	567151	1	9	11.1	5.0	√
Dissolved Mercury in Water by CVAAS	E509	570989	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	567150	1	16	6.2	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	568988	1	7	14.2	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	564549	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	564053	1	17	5.8	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	564051	1	20	5.0	5.0	√
Nitrite in Water by IC (Low Level)	E235.NO2-L	564052	1	19	5.2	5.0	√
Sulfate in Water by IC	E235.SO4	564056	1	17	5.8	5.0	√
TDS by Gravimetry	E162	566570	1	20	5.0	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	567891	1	11	9.0	5.0	<u>√</u>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	568586	1	17	5.8	5.0	<u> </u>
Total Mercury in Water by CVAAS	E508	570996	1	20	5.0	5.0	
Total Metals in Water by CRC ICPMS	E420	567890	1	17	5.8	5.0	<u> </u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	568989	1	7	14.2	5.0	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	566882	1	20	5.0	5.0	<u> </u>
TSS by Gravimetry (Low Level)	E160-L	566556	1	20	5.0	5.0	
Turbidity by Nephelometry	E121	563914	2	40	5.0	5.0	<u> </u>

Page : 12 of 16 Work Order : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

			40 0 94	orres carerae ope	· · · · · · · · · · · · · · · · · · ·	a o moquement min	op oom out o
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	563059	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	564054	1	17	5.8	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	564055	1	17	5.8	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	567151	1	9	11.1	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	570989	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	567150	1	16	6.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	568988	1	7	14.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	564549	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	564053	1	17	5.8	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	564051	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	564052	1	19	5.2	5.0	✓
Sulfate in Water by IC	E235.SO4	564056	1	17	5.8	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	567891	1	11	9.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	568586	1	17	5.8	5.0	√
Total Mercury in Water by CVAAS	E508	570996	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	567890	1	17	5.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	568989	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	566882	1	20	5.0	5.0	✓
					-		

Page : 13 of 16 Work Order : CG2209232

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	J ,	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimeny (Low Lever)	E160-L	vvalei	AFHA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and or UV detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			

Page : 14 of 16 Work Order : CG2209232

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 15 of 16
Work Order : CG2209232

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	арна 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.

 Page
 : 16 of 16

 Work Order
 : CG2209232

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2209232

Client : Teck Coal Limited
Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAMS

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022_JULY_ALS

Sampler : Tristin Vandemeulen

Site :--

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 14-Jul-2022 10:05

Date Analysis Commenced : 14-Jul-2022

Issue Date : 21-Jul-2022 18:13

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Kyle Chang	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia
Parnian Sane	Analyst	Vancouver Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Sofiya Ivanova	Lab Assistant	Calgary Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	tory Duplicate (D	ver) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
hysical Tests (QC	Lot: 563122)										
CG2209230-001	Anonymous	conductivity		E100	2.0	μS/cm	231	226	2.19%	10%	
Physical Tests (QC	Lot: 563123)										
CG2209230-001	Anonymous	pH		E108	0.10	pH units	7.17	7.27	1.38%	4%	
Physical Tests (QC	Lot: 563124)										
CG2209230-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	126	123	2.17%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	126	123	2.17%	20%	
Physical Tests (QC	Lot: 563141)										
CG2209221-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	2.2	2.3	0.02	Diff <2x LOR	
Physical Tests (QC	Lot: 563914)										
CG2209209-017	Anonymous	turbidity		E121	0.10	NTU	7.74	7.60	1.80%	15%	
Physical Tests (QC	Lot: 564227)										
G2209219-001	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 566570)										
CG2209232-001	RG_LISP24_WS_LAEMP_ LCO_2022-07_N	solids, total dissolved [TDS]		E162	20	mg/L	404	404	0.124%	20%	
Physical Tests (QC	Lot: 566710)										
CG2209221-004	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	309	304	1.53%	15%	
Anions and Nutrien	ts (QC Lot: 563059)										
CG2209220-009	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0523	0.0511	2.32%	20%	
Anions and Nutrien	ts (QC Lot: 564051)										
CG2209197-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	0.0680	0.0800	0.0120	Diff <2x LOR	
Inions and Nutrien	ts (QC Lot: 564052)										
CG2209197-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
nions and Nutrien	ts (QC Lot: 564053)										
CG2209197-001	Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	0.114	0.117	0.003	Diff <2x LOR	
nions and Nutrien	ts (QC Lot: 564054)							<u> </u>			
CG2209197-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
nions and Nutr <u>ien</u>	ts (QC Lot: 564055)										
G2209197-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.50	mg/L	3.74	3.52	0.22	Diff <2x LOR	

 Page
 : 4 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	ts (QC Lot: 564056) - c	ontinued									
CG2209197-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	463	460	0.553%	20%	
Anions and Nutrien	ts (QC Lot: 564549)										
CG2209232-001	RG_LISP24_WS_LAEMP_ LCO_2022-07_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 566882)										
CG2209221-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 568586)										
CG2209220-016	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.063	0.075	0.012	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 56898	8)									
CG2209232-001	RG_LISP24_WS_LAEMP_ LCO 2022-07 N	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.78	0.77	0.02	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 56898	9)									
CG2209232-001	RG_LISP24_WS_LAEMP_ LCO 2022-07 N	carbon, total organic [TOC]		E355-L	0.50	mg/L	0.71	0.70	0.02	Diff <2x LOR	
otal Metals (QC Lo											
CG2209232-001	RG_LISP24_WS_LAEMP_ LCO 2022-07 N	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0033	0.0035	0.0002	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00021	0.00022	0.000008	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00013	0.00001	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0321	0.0323	0.589%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.010	<0.010	0.0003	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.358 µg/L	0.000354	1.24%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	74.4	71.0	4.63%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0262	0.0251	4.43%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	31.8	32.0	0.758%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00152	0.00161	5.58%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00133	0.00141	6.04%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00653	0.00653	0.0941%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.11	1.12	0.320%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	28.0 µg/L	0.0283	1.18%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	1.96	1.92	2.20%	20%	

Page : 5 of 18
Work Order : CG2209232
Client : Teck Coal Limited

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC L	ot: 567890) - continued										
CG2209232-001	RG_LISP24_WS_LAEMP_ LCO_2022-07_N	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	4.44	4.41	0.787%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.144	0.147	2.25%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	47.6	47.1	1.07%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00236	0.00246	4.45%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0150	0.0154	0.0004	Diff <2x LOR	
otal Metals (QC L	ot: 567891)										
CG2209232-001	RG_LISP24_WS_LAEMP_ LCO_2022-07_N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00017	0.00014	0.00003	Diff <2x LOR	
otal Metals (QC L	ot: 570996)										
G2209220-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
issolved Metals (QC Lot: 567150)										
G2209232-001	RG_LISP24_WS_LAEMP_ LCO_2022-07_N	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0020	0.0015	0.0005	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00022	0.00022	0.000001	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00010	0.00011	0.000003	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0326	0.0324	0.571%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.010	0.010	0.0001	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.330 µg/L	0.000335	1.40%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	69.5	69.4	0.0354%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00037	0.00035	0.00001	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0293	0.0291	0.812%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	28.4	29.3	2.96%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00125	0.00119	4.73%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00144	0.00146	1.91%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00623	0.00628	0.880%	20%	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.13	1.14	0.965%	20%	
	The second secon	The state of the s	The second secon	1	1		I	I	1	To the second se	f .

 Page
 : 6 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 567150) - contin	ued									
CG2209232-001	RG_LISP24_WS_LAEMP_ LCO 2022-07 N	selenium, dissolved	7782-49-2	E421	0.000050	mg/L	27.7 μg/L	0.0294	6.05%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.89	1.91	1.02%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	4.23	4.23	0.0590%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.144	0.150	3.82%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	46.8	46.3	0.982%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000010	0.000010	0.0000003	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00231	0.00234	1.41%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0136	0.0137	0.838%	20%	
Dissolved Metals(QC Lot: 567151)										
CG2209232-001	RG_LISP24_WS_LAEMP_ LCO_2022-07_N	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00013	0.00013	0.000002	Diff <2x LOR	
Dissolved Metals (QC Lot: 570989)										
CG2209220-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		1							1		

 Page
 : 7 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 563122)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 563124)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
lkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 563141)					
cidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 563914)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 564227)					
ırbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 566556)					
olids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 566570)					
olids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 563059)					
mmonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 564051)					
itrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 564052)					
itrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 564053)					
uoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 564054)					
romide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 564055)					
hloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 564056)					
ulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 564549)					
hosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 566882)					

 Page
 : 8 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 566882)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 568586)						
(jeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot: 568	8988)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 568						
earbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 567890)						
luminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0		0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2		0.0001	mg/L	<0.00010	
parium, total	7440-39-3		0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7		0.00002	mg/L	<0.000020	
ismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8	E420	0.01	mg/L	<0.010	
admium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
alcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
otassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
ilicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
ilver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
odium, total	7440-23-5	E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
ulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	

 Page
 : 9 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 567890) - c						
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 567891)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Fotal Metals (QCLot: 570996)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 567150	0)					
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
poron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	F421	0.0003	mg/L	<0.00030	

 Page
 : 10 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 567150) - c	ontinued					
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 567151)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 570989)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	

Page : 11 of 18 Work Order : CG2209232

: Teck Coal Limited Client

: REGIONAL EFFECTS PROGRAMS Project

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report				
				Spike	Recovery (%)	Recovery Limits (%)		
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 563122)								
conductivity	E100	1	μS/cm	146.9 μS/cm	101	90.0	110	
Physical Tests (QCLot: 563123)								
рН	E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 563124)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	109	85.0	115	
Physical Tests (QCLot: 563141)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	101	85.0	115	
Physical Tests (QCLot: 563914)								
turbidity	E121	0.1	NTU	200 NTU	101	85.0	115	
Physical Tests (QCLot: 564227)								
turbidity	E121	0.1	NTU	200 NTU	99.2	85.0	115	
Physical Tests (QCLot: 566556)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	95.6	85.0	115	
Physical Tests (QCLot: 566570)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	90.2	85.0	115	
Physical Tests (QCLot: 566710)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	99.5	95.4	104	
Anions and Nutrients (QCLot: 563059)	7004 44 7 F000	2.225						
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	98.6	85.0	115	
Anions and Nutrients (QCLot: 564051)	44707 55 0 5005 110	2.25						
nitrate (as N)	14797-55-8 E235.NC	0.005 0.005	mg/L	2.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 564052)	44707 05 0 F005 NG	0.004				00.0	140	
nitrite (as N)	14797-65-0 E235.NC	0.001 0.001	mg/L	0.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 564053)	10001 10 0 5005 5	2.22						
fluoride	16984-48-8 E235.F	0.02	mg/L	1 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 564054)	04050 07 0 5005 5					05.0	445	
bromide	24959-67-9 E235.Br-	·L 0.05	mg/L	0.5 mg/L	105	85.0	115	
Anions and Nutrients (QCLot: 564055)	40007.00.0 5005.00					00.0	440	
chloride	16887-00-6 E235.CI-	L 0.1	mg/L	100 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 564056)	44000 70 0 705					00.5	410	
sulfate (as SO4)	14808-79-8 E235.SC	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 564549)								

 Page
 : 12 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	(%) Recovery Limits (%)		
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 564549) - conti	nued							
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.02 mg/L	102	80.0	120	
Anions and Nutrients (QCLot: 566882)							1	
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	8.02 mg/L	104	80.0	120	
Anions and Nutrients (QCLot: 568586)							1	
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	98.0	75.0	125	
Organic / Inorganic Carbon (QCLot: 568988)								
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	8.57 mg/L	90.0	80.0	120	
Organic / Inorganic Carbon (QCLot: 568989)								
carbon, total organic [TOC]	E355-L	0.5	mg/L	8.57 mg/L	93.9	80.0	120	
Total Metals (QCLot: 567890)								
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	103	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	107	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	104	80.0	120	
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	106	80.0	120	
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	98.1	80.0	120	
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	97.7	80.0	120	
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	97.0	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	106	80.0	120	
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	97.1	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	102	80.0	120	
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	106	80.0	120	
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	98.7	80.0	120	
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	92.4	80.0	120	
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	103	80.0	120	
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	99.2	80.0	120	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	99.0	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	103	80.0	120	
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	103	80.0	120	
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	103	80.0	120	
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	106	80.0	120	
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	88.2	80.0	120	
sodium, total	7440-23-5 E420	0.05	mg/L	50 mg/L	103	80.0	120	
strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	98.8	80.0	120	
			3	0.20g/2	00.0			

 Page
 : 13 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	AS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 567890) - continued									
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	99.3	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	97.0	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	104	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	105	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	104	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	106	80.0	120	
Total Metals (QCLot: 567891)									
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	102	80.0	120	
Total Metals (QCLot: 570996)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	98.3	80.0	120	
Dissolved Metals (QCLot: 567150)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	103	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	106	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	100	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	99.5	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	97.9	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	92.1	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	94.2	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	98.3	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	98.2	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	96.0	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	97.3	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	103	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	98.8	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	96.9	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	97.8	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	98.1	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	104	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	95.6	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	104	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	99.2	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	102	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	97.4	80.0	120	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	101	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	101	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	101	80.0	120	

 Page
 : 14 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 567150) - conti	nued											
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	97.7	80.0	120				
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	98.7	80.0	120				
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	95.4	80.0	120				
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	95.7	80.0	120				
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.7	80.0	120				
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	99.7	80.0	120				
Dissolved Metals (QCLot: 567151)												
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	96.5	80.0	120				
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	97.2	80.0	120				

 Page
 : 15 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
_aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
Anions and Nutri	ents (QCLot: 563059)									
CG2209220-010	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0974 mg/L	0.1 mg/L	97.4	75.0	125	
Anions and Nutri	ents (QCLot: 564051)									
CG2209197-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.15 mg/L	2.5 mg/L	86.2	75.0	125	
Anions and Nutri	ents (QCLot: 564052)									
CG2209197-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.441 mg/L	0.5 mg/L	88.2	75.0	125	
Anions and Nutri	ents (QCLot: 564053)									
CG2209197-002	Anonymous	fluoride	16984-48-8	E235.F	0.899 mg/L	1 mg/L	89.9	75.0	125	
Anions and Nutri	ents (QCLot: 564054)									
CG2209197-002	Anonymous	bromide	24959-67-9	E235.Br-L	0.468 mg/L	0.5 mg/L	93.6	75.0	125	
Anions and Nutri	ents (QCLot: 564055)									
CG2209197-002	Anonymous	chloride	16887-00-6	E235.CI-L	86.6 mg/L	100 mg/L	86.6	75.0	125	
Anions and Nutri	ents (QCLot: 564056)									
CG2209197-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	86.8 mg/L	100 mg/L	86.8	75.0	125	
Anions and Nutri	ents (QCLot: 564549)									
CG2209232-002	RG_FRUL_WS_LAEMP_LC O_2022-07_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0483 mg/L	0.05 mg/L	96.6	70.0	130	
Anions and Nutri	ents (QCLot: 566882)									
CG2209221-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0550 mg/L	0.0676 mg/L	81.3	70.0	130	
Anions and Nutri	ents (QCLot: 568586)									
CG2209220-017	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.51 mg/L	2.5 mg/L	100	70.0	130	
Organic / Inorgar	nic Carbon (QCLot: 5689	988)								
CG2209232-001	RG_LISP24_WS_LAEMP_L CO_2022-07_N	carbon, dissolved organic [DOC]		E358-L	4.88 mg/L	5 mg/L	97.6	70.0	130	
Organic / Inorgar	nic Carbon (QCLot: 5689	989)								
CG2209232-001	RG_LISP24_WS_LAEMP_L CO_2022-07_N	carbon, total organic [TOC]		E355-L	5.09 mg/L	5 mg/L	102	70.0	130	
Total Metals (QC	Lot: 567890)									
CG2209232-002	RG_FRUL_WS_LAEMP_LC	aluminum, total	7429-90-5	E420	0.198 mg/L	0.2 mg/L	99.3	70.0	130	
	O_2022-07_N	antimony, total	7440-36-0	E420	0.0208 mg/L	0.02 mg/L	104	70.0	130	
		arsenic, total	7440-38-2	E420	0.0200 mg/L	0.02 mg/L	100.0	70.0	130	

 Page
 : 16 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

ıb-Matrix: Water						Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
boratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
	CLot: 567890) - continue	d										
G2209232-002	RG_FRUL_WS_LAEMP_LC	barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
	O_2022-07_N	beryllium, total	7440-41-7	E420	0.0383 mg/L	0.04 mg/L	95.6	70.0	130			
		bismuth, total	7440-69-9	E420	0.00978 mg/L	0.01 mg/L	97.8	70.0	130			
		boron, total	7440-42-8	E420	0.090 mg/L	0.1 mg/L	90.3	70.0	130			
		cadmium, total	7440-43-9	E420	0.00400 mg/L	0.004 mg/L	100.0	70.0	130			
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, total	7440-48-4	E420	0.0188 mg/L	0.02 mg/L	94.2	70.0	130			
		copper, total	7440-50-8	E420	0.0184 mg/L	0.02 mg/L	92.2	70.0	130			
		iron, total	7439-89-6	E420	1.96 mg/L	2 mg/L	97.8	70.0	130			
		lead, total	7439-92-1	E420	0.0187 mg/L	0.02 mg/L	93.6	70.0	130			
		lithium, total	7439-93-2	E420	0.0926 mg/L	0.1 mg/L	92.6	70.0	130			
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, total	7439-96-5	E420	0.0185 mg/L	0.02 mg/L	92.5	70.0	130			
		molybdenum, total	7439-98-7	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130			
		nickel, total	7440-02-0	E420	0.0372 mg/L	0.04 mg/L	92.9	70.0	130			
		potassium, total	7440-09-7	E420	3.82 mg/L	4 mg/L	95.5	70.0	130			
		selenium, total	7782-49-2	E420	0.0400 mg/L	0.04 mg/L	100	70.0	130			
		silicon, total	7440-21-3	E420	9.24 mg/L	10 mg/L	92.4	70.0	130			
		silver, total	7440-22-4	E420	0.00378 mg/L	0.004 mg/L	94.6	70.0	130			
		sodium, total	7440-23-5	E420	1.96 mg/L	2 mg/L	98.3	70.0	130			
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130			
		thallium, total	7440-28-0	E420	0.00371 mg/L	0.004 mg/L	92.8	70.0	130			
		tin, total	7440-31-5	E420	0.0197 mg/L	0.02 mg/L	98.4	70.0	130			
		titanium, total	7440-32-6	E420	0.0403 mg/L	0.04 mg/L	101	70.0	130			
		uranium, total	7440-61-1	E420	0.00407 mg/L	0.004 mg/L	102	70.0	130			
		vanadium, total	7440-62-2	E420	0.0999 mg/L	0.1 mg/L	99.9	70.0	130			
		zinc, total	7440-66-6	E420	0.388 mg/L	0.4 mg/L	97.0	70.0	130			
tal Metals (QC	CLot: 567891)											
2209232-002	RG_FRUL_WS_LAEMP_LC O_2022-07_N	chromium, total	7440-47-3	E420.Cr-L	0.0392 mg/L	0.04 mg/L	98.1	70.0	130			
tal Metals (QC	CLot: 570996)											
G2209220-002	Anonymous	mercury, total	7439-97-6	E508	0.0000939 mg/L	0.0001 mg/L	93.9	70.0	130			
ssolved Metals	s (QCLot: 567150)											
G2209232-002	RG_FRUL_WS_LAEMP_LC	aluminum, dissolved	7429-90-5	E421	0.186 mg/L	0.2 mg/L	93.1	70.0	130			
	O_2022-07_N	antimony, dissolved	7440-36-0	E421	0.0205 mg/L	0.02 mg/L	103	70.0	130			

 Page
 : 17 of 18

 Work Order
 : CG2209232

 Client
 : Teck Coal Limited

ub-Matrix: Water							Matrix Spik	re (MS) Report		
				Spi	ke	Recovery (%)	Recovery	Limits (%)		
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 567150) - cont	tinued								
CG2209232-002	RG_FRUL_WS_LAEMP_LC	arsenic, dissolved	7440-38-2	E421	0.0200 mg/L	0.02 mg/L	100	70.0	130	
	O_2022-07_N	barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0388 mg/L	0.04 mg/L	97.1	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00820 mg/L	0.01 mg/L	82.0	70.0	130	
		boron, dissolved	7440-42-8	E421	0.096 mg/L	0.1 mg/L	96.4	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00397 mg/L	0.004 mg/L	99.3	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0183 mg/L	0.02 mg/L	91.5	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0184 mg/L	0.02 mg/L	92.2	70.0	130	
		iron, dissolved	7439-89-6	E421	1.85 mg/L	2 mg/L	92.7	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0188 mg/L	0.02 mg/L	93.8	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0971 mg/L	0.1 mg/L	97.1	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0185 mg/L	0.02 mg/L	92.7	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0354 mg/L	0.04 mg/L	88.4	70.0	130	
		potassium, dissolved	7440-09-7	E421	3.64 mg/L	4 mg/L	90.9	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0376 mg/L	0.04 mg/L	94.0	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.27 mg/L	10 mg/L	92.7	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00388 mg/L	0.004 mg/L	96.9	70.0	130	
		sodium, dissolved	7440-23-5	E421	1.79 mg/L	2 mg/L	89.3	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00359 mg/L	0.004 mg/L	89.7	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0198 mg/L	0.02 mg/L	99.0	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0390 mg/L	0.04 mg/L	97.4	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00373 mg/L	0.004 mg/L	93.4	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0962 mg/L	0.1 mg/L	96.2	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.369 mg/L	0.4 mg/L	92.4	70.0	130	
ssolved Metals	(QCLot: 567151)									
G2209232-002	RG_FRUL_WS_LAEMP_LC O_2022-07_N	chromium, dissolved	7440-47-3	E421.Cr-L	0.0380 mg/L	0.04 mg/L	95.0	70.0	130	
ssolved Metals	(QCLot: 570989)									
G2209220-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000987 mg/L	0.0001 mg/L	98.7	70.0	130	

Page : 18 of 18
Work Order : CG2209232
Client : Teck Coal Limited

SERVICE REQUEST/(rush - subject to availability)

Regular (default) X

Priority (2-3 business days) - 50% surcharge

Emergency (1 Business Day) - 100% surcharge

For Emergency < 1 Day, ASAP or Weekend - Contact ALS

Sampler's Signature

To is tin Vande(meanly Mobile # 250-569 - 7-209 - 100%)

Date/Time 2022-07-13 @ 15:19

WATER CHEMISTRY

ALS Laboratory Report CG2209323 (Finalized July 25, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2209323

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAMS

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022_JULY_ALS

Sampler : Tristin Vandemeulen

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 15-Jul-2022 10:30

Date Analysis Commenced : 16-Jul-2022

Issue Date : 25-Jul-2022 16:50

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Thornton	Analyst	Metals, Burnaby, British Columbia
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Erin Sanchez		Metals, Burnaby, British Columbia
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Woochan Song	Lab Analyst	Metals, Burnaby, British Columbia

Page : 2 of 6
Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Page : 3 of 6
Work Order : CG2209323
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water			C	lient sample ID	RG_LIDCOM_W	RG_LI8_WS_LA	 	
(Matrix: Water)					S_LAEMP_LCO _2022-07_N	EMP_LCO_202 2-07_N		
			Client samp	oling date / time	14-Jul-2022 13:00	14-Jul-2022 09:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2209323-001	CG2209323-002	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	182	173	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	222	211	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	6.8	8.6	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	4.1	5.2	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	188	182	 	
conductivity		E100	2.0	μS/cm	526	505	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	290	274	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	432	395	 	
рН		E108	0.10	pH units	8.32	8.32	 	
solids, total dissolved [TDS]		E162	10	mg/L	377	360	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.9	1.8	 	
turbidity		E121	0.10	NTU	0.30	0.21	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0103	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	3.77	3.77	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.241	0.265	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.743	<0.500 DLM, TKN	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	5.13	4.81	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0020	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0011	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0038	0.0059	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	132	123	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	 	
Ion Balance								

Page : 4 of 6
Work Order : CG2209323
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	RG_LIDCOM_W	RG_LI8_WS_LA	 	
(Matrix: Water)					S_LAEMP_LCO _2022-07_N	EMP_LCO_202 2-07_N		
			Client samp	ling date / time	14-Jul-2022 13:00	14-Jul-2022 09:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2209323-001	CG2209323-002	 	
					Result	Result	 	
Ion Balance								
anion sum		EC101	0.10	meq/L	6.99	6.66	 	
cation sum		EC101	0.10	meq/L	5.99	5.67	 	
ion balance (cations/anions)		EC101	0.010	%	85.7	85.1	 	
ion balance (APHA)		EC101	0.010	%	7.70	8.03	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0068	0.0078	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00019	0.00018	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00014	0.00015	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0408	0.0405	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.237	0.208	 	
calcium, total	7440-70-2	E420	0.050	mg/L	63.4	63.2	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00014	0.00014	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0268	0.0252	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	26.1	24.4	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00120	0.00127	 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00138	0.00138	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00466	0.00410	 	
potassium, total	7440-09-7	E420	0.050	mg/L	0.989	0.910	 	
selenium, total	7782-49-2	E420	0.050	μg/L	26.5	23.9	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.15	2.02	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total	7440-23-5	E420	0.050	mg/L	4.01	3.70	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.152	0.154	 	
<u> </u>			1			l		

Page : 5 of 6
Work Order : CG2209323
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	RG_LIDCOM_W	RG_LI8_WS_LA	 	
(Matrix: Water)					S_LAEMP_LCO _2022-07_N	EMP_LCO_202 2-07_N		
			Client samp	ling date / time	14-Jul-2022 13:00	14-Jul-2022 09:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2209323-001	CG2209323-002	 	
					Result	Result	 	
Total Metals								
sulfur, total	7704-34-9	E420	0.50	mg/L	44.3	41.6	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00217	0.00204	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0092	0.0094	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0013	0.0018	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00016	0.00016	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00012	0.00010	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0442	0.0422	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.011	0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.235	0.168	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	68.0	64.6	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00014	0.00016	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00031	0.00036	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0256	0.0238	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	29.2	27.5	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00071	0.00072	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00131	0.00130	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00456	0.00423	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.04	0.978	 	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	26.4	21.7	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.01	1.88	 	

Page : 6 of 6
Work Order : CG2209323
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	ient sample ID	RG_LIDCOM_W S LAEMP LCO	RG_LI8_WS_LA EMP_LCO_202	 	
(Wallist Water)					_2022-07_N	2-07_N		
			Client samp	ling date / time	14-Jul-2022 13:00	14-Jul-2022 09:45	 	
Analyte CAS I	lumber	Method	LOR	Unit	CG2209323-001	CG2209323-002	 	
					Result	Result	 	
Dissolved Metals								
silver, dissolved 74	0-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved 74	0-23-5	E421	0.050	mg/L	3.80	3.74	 	
strontium, dissolved 74	0-24-6	E421	0.00020	mg/L	0.140	0.137	 	
sulfur, dissolved 77	4-34-9	E421	0.50	mg/L	41.2	36.9	 	
thallium, dissolved 74	0-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
tin, dissolved 74	0-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved 74	0-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved 74	0-61-1	E421	0.000010	mg/L	0.00208	0.00198	 	
vanadium, dissolved 74	0-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved 74.	0-66-6	E421	0.0010	mg/L	0.0092	0.0093	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2209323** Page : 1 of 16

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Ave Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

 Telephone
 : --- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAMS
 Date Samples Received
 : 15-Jul-2022 10:30

C-O-C number : REP_LAEMP_LCO_2022_JULY_ALS

Sampler : Tristin Vandemeulen
Site :----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

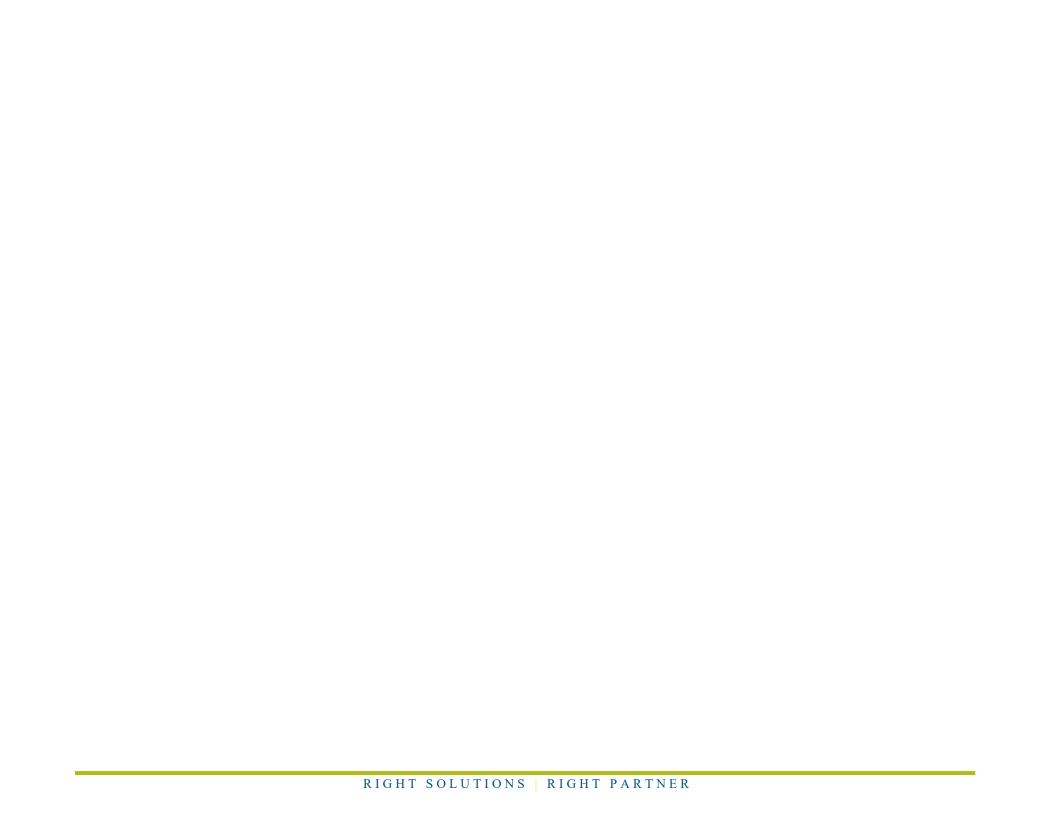
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LI8_WS_LAEMP_LCO_2022-07_N	E298	14-Jul-2022	17-Jul-2022				17-Jul-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E298	14-Jul-2022	17-Jul-2022				17-Jul-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E235.Br-L	14-Jul-2022					16-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E235.Br-L	14-Jul-2022					16-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E235.CI-L	14-Jul-2022					16-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E235.CI-L	14-Jul-2022					16-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E378-U	14-Jul-2022					16-Jul-2022	3 days	2 days	✓

Page : 4 of 16
Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method Sampling Date Extraction / Preparation							Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace L	evel 0.001									
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E378-U	14-Jul-2022					16-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E235.F	14-Jul-2022					16-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E235.F	14-Jul-2022					16-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E235.NO3-L	14-Jul-2022					16-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E235.NO3-L	14-Jul-2022					16-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E235.NO2-L	14-Jul-2022					16-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E235.NO2-L	14-Jul-2022					16-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E235.SO4	14-Jul-2022					16-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E235.SO4	14-Jul-2022					16-Jul-2022	28 days	2 days	✓

Page : 5 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

wainx: water						aluation. • -	nolaing time exce	cuarioc ,	- vvicinii	riolaling rill
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2022-07_N	E318	14-Jul-2022	22-Jul-2022				22-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E318	14-Jul-2022	22-Jul-2022				22-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2022-07_N	E372-U	14-Jul-2022	20-Jul-2022				22-Jul-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E372-U	14-Jul-2022	20-Jul-2022				22-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_LI8_WS_LAEMP_LCO_2022-07_N	E421.Cr-L	14-Jul-2022	24-Jul-2022				24-Jul-2022	180	10 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E421.Cr-L	14-Jul-2022	24-Jul-2022				24-Jul-2022	180	10 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LI8_WS_LAEMP_LCO_2022-07_N	E509	14-Jul-2022	25-Jul-2022				25-Jul-2022	28 days	11 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E509	14-Jul-2022	25-Jul-2022				25-Jul-2022	28 days	11 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_LI8_WS_LAEMP_LCO_2022-07_N	E421	14-Jul-2022	24-Jul-2022				24-Jul-2022	180	10 days	✓
								days		

 Page
 : 6 of 16

 Work Order
 : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					L\	/aluation. * =	Holding time exce	euance , •	- vviti iii i	Holding Tilli
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation					
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E421	14-Jul-2022	24-Jul-2022				24-Jul-2022	180 days	10 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) RG_LI8_WS_LAEMP_LCO_2022-07_N	E358-L	14-Jul-2022	21-Jul-2022				21-Jul-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E358-L	14-Jul-2022	21-Jul-2022				21-Jul-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid) RG_LI8_WS_LAEMP_LCO_2022-07_N	E355-L	14-Jul-2022	21-Jul-2022				21-Jul-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E355-L	14-Jul-2022	21-Jul-2022				21-Jul-2022	28 days	7 days	✓
Physical Tests : Acidity by Titration										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E283	14-Jul-2022					16-Jul-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E283	14-Jul-2022					16-Jul-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E290	14-Jul-2022					16-Jul-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E290	14-Jul-2022					16-Jul-2022	14 days	2 days	✓

Page : 7 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						aluation. ^ -	Holding time exce	edance, v	- vviuiiii	Holding Tilli
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Physical Tests : Conductivity in Water										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E100	14-Jul-2022					16-Jul-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E100	14-Jul-2022					16-Jul-2022	28 days	2 days	√
Physical Tests : ORP by Electrode										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E125	14-Jul-2022					22-Jul-2022	0.25 hrs	195 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E125	14-Jul-2022					22-Jul-2022	0.25 hrs	198 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E108	14-Jul-2022					16-Jul-2022	0.25 hrs	45 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E108	14-Jul-2022					16-Jul-2022	0.25 hrs	48 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E162	14-Jul-2022					20-Jul-2022	7 days	6 days	√
Physical Tests : TDS by Gravimetry										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E162	14-Jul-2022					20-Jul-2022	7 days	6 days	4
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2022-07_N	E160-L	14-Jul-2022					20-Jul-2022	7 days	6 days	✓

Page : 8 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						aluation. * -	Holding time excee	cuarice, .	- vvitiiiii	riolaling rill
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E160-L	14-Jul-2022					20-Jul-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE	E404	44 1-1 0000					40 1 1 0000			,
RG_LI8_WS_LAEMP_LCO_2022-07_N	E121	14-Jul-2022					16-Jul-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E121	14-Jul-2022					17-Jul-2022	3 days	3 days	1
 								,		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_LI8_WS_LAEMP_LCO_2022-07_N	E420.Cr-L	14-Jul-2022					21-Jul-2022	180	7 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E420.Cr-L	14-Jul-2022					21-Jul-2022	180	7 days	✓
								days		
Total Metals : Total Mercury in Water by CVAAS				I						
Glass vial total (hydrochloric acid) RG_LI8_WS_LAEMP_LCO_2022-07_N	E508	14-Jul-2022					24-Jul-2022	28 days	10 days	✓
RG_LIO_WG_LAEIWIF_LCO_2022-07_IN	L300	14-301-2022					24-Jui-2022	20 days	10 days	•
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E508	14-Jul-2022					24-Jul-2022	28 days	10 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_LI8_WS_LAEMP_LCO_2022-07_N	E420	14-Jul-2022					21-Jul-2022	180	7 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)		44 1 : 2225					04 1 :			
RG_LIDCOM_WS_LAEMP_LCO_2022-07_N	E420	14-Jul-2022					21-Jul-2022	180	7 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Page : 9 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Rec. HT: ALS recommended hold time (see units).

Page : 10 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	565350	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	565353	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	566163	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	565524	1	10	10.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	565525	1	10	10.0	5.0	✓
Conductivity in Water	E100	565352	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	574896	1	5	20.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	575564	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	574895	1	5	20.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	572228	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	565426	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	565523	1	10	10.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	565526	1	10	10.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	565527	1	10	10.0	5.0	✓
ORP by Electrode	E125	573151	1	20	5.0	5.0	✓
pH by Meter	E108	565351	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	565522	1	14	7.1	5.0	✓
TDS by Gravimetry	E162	568399	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	568909	1	9	11.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	571643	1	8	12.5	5.0	✓
Total Mercury in Water by CVAAS	E508	575021	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	568907	1	10	10.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	572229	1	4	25.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	569613	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	565410	2	15	13.3	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	565350	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	565353	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	566163	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	565524	1	10	10.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	565525	1	10	10.0	5.0	√
Conductivity in Water	E100	565352	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	574896	1	5	20.0	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	575564	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	574895	1	5	20.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	572228	1	17	5.8	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	565426	1	20	5.0	5.0	1

Page : 11 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: Water

Evaluation: **×** = QC frequency outside specification; ✓ = QC frequency within specification.

Matrix: water		Lvaidat	ion Qo negai	circy dutaide api	cincation, • -	QC trequency wit	mm specificatio	
Quality Control Sample Type			Co	ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued								
Fluoride in Water by IC	E235.F	565523	1	10	10.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	565526	1	10	10.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	565527	1	10	10.0	5.0	✓	
ORP by Electrode	E125	573151	1	20	5.0	5.0	✓	
pH by Meter	E108	565351	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	565522	1	14	7.1	5.0	✓	
TDS by Gravimetry	E162	568399	1	20	5.0	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	568909	1	9	11.1	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	571643	1	8	12.5	5.0	✓	
Total Mercury in Water by CVAAS	E508	575021	1	13	7.6	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	568907	1	10	10.0	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	572229	1	4	25.0	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	569613	1	20	5.0	5.0	✓	
TSS by Gravimetry (Low Level)	E160-L	568391	1	20	5.0	5.0	✓	
Turbidity by Nephelometry	E121	565410	2	15	13.3	5.0	✓	
Method Blanks (MB)								
Acidity by Titration	E283	565350	1	20	5.0	5.0	✓	
Alkalinity Species by Titration	E290	565353	1	20	5.0	5.0	<u>√</u>	
Ammonia by Fluorescence	E298	566163	1	20	5.0	5.0	<u> </u>	
Bromide in Water by IC (Low Level)	E235.Br-L	565524	1	10	10.0	5.0	√	
Chloride in Water by IC (Low Level)	E235.CI-L	565525	1	10	10.0	5.0	√	
Conductivity in Water	E100	565352	1	20	5.0	5.0	<u> </u>	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	574896	1	5	20.0	5.0	√	
Dissolved Mercury in Water by CVAAS	E509	575564	1	20	5.0	5.0	<u> </u>	
Dissolved Metals in Water by CRC ICPMS	E421	574895	1	5	20.0	5.0	√	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	572228	1	17	5.8	5.0	√	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	565426	1	20	5.0	5.0	√	
Fluoride in Water by IC	E235.F	565523	1	10	10.0	5.0	√	
Nitrate in Water by IC (Low Level)	E235.NO3-L	565526	1	10	10.0	5.0	√	
Nitrite in Water by IC (Low Level)	E235.NO2-L	565527	1	10	10.0	5.0	√	
Sulfate in Water by IC	E235.SO4	565522	1	14	7.1	5.0	√	
TDS by Gravimetry	E162	568399	1	20	5.0	5.0	<u>√</u>	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	568909	1	9	11.1	5.0	√	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	571643	1	8	12.5	5.0	√	
Total Mercury in Water by CVAAS	E508	575021	1	13	7.6	5.0		
Total Metals in Water by CRC ICPMS	E420	568907	1	10	10.0	5.0	<u>√</u>	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	572229	1	4	25.0	5.0		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	569613	1	20	5.0	5.0	<u>√</u>	
TSS by Gravimetry (Low Level)	E160-L	568391	1	20	5.0	5.0	<u>√</u>	
Turbidity by Nephelometry	E121	565410	2	15	13.3	5.0		

Page : 12 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

				oney caronac ope		a o noquono, m	op ooout.o
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	566163	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	565524	1	10	10.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	565525	1	10	10.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	574896	1	5	20.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	575564	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	574895	1	5	20.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	572228	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	565426	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	565523	1	10	10.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	565526	1	10	10.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	565527	1	10	10.0	5.0	✓
Sulfate in Water by IC	E235.SO4	565522	1	14	7.1	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	568909	1	9	11.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	571643	1	8	12.5	5.0	✓
Total Mercury in Water by CVAAS	E508	575021	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	568907	1	10	10.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	572229	1	4	25.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	569613	1	20	5.0	5.0	✓
				-			

Page : 13 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	J ,	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimeny (Low Lever)	E160-L	vvalei	AFHA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			

Page : 14 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 15 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
lon Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.

Page : 16 of 16 Work Order : CG2209323

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2209323

Client : Teck Coal Limited
Contact : Cybele Heddle

:421 Pine Ave

Sparwood BC Canada

Telephone : ----

Project : REGIONAL EFFECTS PROGRAMS

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022_JULY_ALS

Sampler : Tristin Vandemeulen

Site :--

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Date Samples Received : 15-Jul-2022 10:30

Date Analysis Commenced : 16-Jul-2022

Issue Date : 25-Jul-2022 16:50

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Thornton	Analyst	Vancouver Metals, Burnaby, British Columbia
Angela Ren	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Erin Sanchez		Vancouver Metals, Burnaby, British Columbia
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Vancouver Metals, Burnaby, British Columbia
Maria Tuguinay	Lab Assistant	Calgary Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Woochan Song	Lab Analyst	Vancouver Metals, Burnaby, British Columbia

 Page
 : 2 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water						Laboratory Duplicate (DUP) Report								
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie			
Physical Tests (QC	Lot: 565350)													
CG2209304-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	8.0	7.6	0.4	Diff <2x LOR				
Physical Tests (QC	Lot: 565351)													
CG2209304-001	Anonymous	pH		E108	0.10	pH units	7.71	7.75	0.517%	4%				
Physical Tests (QC	Lot: 565352)													
CG2209304-001	Anonymous	conductivity		E100	2.0	μS/cm	2320	2340	0.858%	10%				
Physical Tests (QC	Lot: 565353)													
CG2209304-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	262	254	3.33%	20%				
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR				
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR				
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	262	254	3.33%	20%				
Physical Tests (QC	Lot: 565410)													
CG2209323-002	RG_LI8_WS_LAEMP_LCO _2022-07_N	turbidity		E121	0.10	NTU	0.21	0.22	0.009	Diff <2x LOR				
Physical Tests (QC	Lot: 565788)													
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	turbidity		E121	0.10	NTU	0.30	0.30	0.001	Diff <2x LOR				
Physical Tests (QC	Lot: 568399)													
CG2209304-009	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	595	585	1.70%	20%				
Physical Tests (QC	Lot: 573151)													
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	oxidation-reduction potential [ORP]		E125	0.10	mV	432	434	0.439%	15%				
Anions and Nutrien	ts (QC Lot: 565426)													
CG2209304-008	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR				
nions and Nutrien	ts (QC Lot: 565522)													
CG2209118-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR				
Anions and Nutrien	ts (QC Lot: 565523)													
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	fluoride	16984-48-8	E235.F	0.020	mg/L	0.241	0.243	0.619%	20%				
Anions and Nutrient	ts (QC Lot: 565524)													
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR				
Anions and Nutrien	ts (QC Lot: 565525)													
CG2209323-001	RG_LIDCOM_WS_LAEMP LCO 2022-07 N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	3.77	3.73	1.18%	20%				

 Page
 : 4 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Anions and Nutrien	ts (QC Lot: 565526) - cc	ontinued											
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	5.13	5.08	0.891%	20%			
Anions and Nutrien	ts (QC Lot: 565527)												
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0020	0.0015	0.0005	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 566163)												
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 569613)												
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0038	0.0040	0.0002	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 571643)												
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	0.743	<0.500	0.243	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 57222	8)											
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 572229	9)											
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR			
Total Metals (QC Lo	ot: 568907)												
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0068	0.0064	0.0003	Diff <2x LOR			
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00019	0.00019	0.000004	Diff <2x LOR			
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00014	0.00013	0.000003	Diff <2x LOR			
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0408	0.0417	2.20%	20%			
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR			
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR			
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.237 μg/L	0.000246	3.77%	20%			
		calcium, total	7440-70-2	E420	0.050	mg/L	63.4	63.6	0.327%	20%			
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR			
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR			
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0268	0.0270	0.723%	20%			
		magnesium, total	7439-95-4	E420	0.0050	mg/L	26.1	26.4	0.980%	20%			
			7439-95-4	E420	0.00010	mg/L	0.00120	0.00134	10.6%	20%			
		manganese, total				-				20%			
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00138	0.00138	0.651%				
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00466	0.00459	0.00007	Diff <2x LOR			

 Page
 : 5 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Project

: REGIONAL EFFECTS PROGRAMS

ub-Matrix: Water	atrix: Water					Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie		
otal Metals (QC L	ot: 568907) - continued												
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	potassium, total	7440-09-7	E420	0.050	mg/L	0.989	1.01	2.03%	20%			
		selenium, total	7782-49-2	E420	0.000050	mg/L	26.5 μg/L	0.0271	2.05%	20%			
		silicon, total	7440-21-3	E420	0.10	mg/L	2.15	2.13	0.987%	20%			
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR			
		sodium, total	7440-23-5	E420	0.050	mg/L	4.01	3.94	1.99%	20%			
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.152	0.154	1.72%	20%			
		sulfur, total	7704-34-9	E420	0.50	mg/L	44.3	44.4	0.197%	20%			
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR			
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR			
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00217	0.00213	1.55%	20%			
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0092	0.0093	0.0001	Diff <2x LOR			
otal Metals (QC L	ot: 568909)												
G2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00014	0.00013	0.000006	Diff <2x LOR			
otal Metals (QC L	ot: 575021)												
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR			
issolved Metals (QC Lot: 574895)												
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0013	0.0010	0.0003	Diff <2x LOR			
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00016	0.00016	0.000002	Diff <2x LOR			
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00012	0.00011	0.000004	Diff <2x LOR			
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0442	0.0431	2.45%	20%			
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR			
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.011	0.011	0.0002	Diff <2x LOR			
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.235 μg/L	0.000228	3.27%	20%			
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	68.0	68.2	0.384%	20%			
			7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR			
		cobalt, dissolved	7 0 0 1						1	5.00			
		cobalt, dissolved copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00031	0.00030	0.00001	Diff <2x LOR			
				E421 E421	0.00020 0.010	mg/L mg/L	0.00031 <0.010	0.00030 <0.010	0.00001	Diff <2x LOR Diff <2x LOR			
		copper, dissolved	7440-50-8			_							
		copper, dissolved iron, dissolved	7440-50-8 7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR			
		copper, dissolved iron, dissolved lead, dissolved	7440-50-8 7439-89-6 7439-92-1	E421 E421	0.010 0.000050	mg/L mg/L	<0.010 <0.000050	<0.010 <0.000050	0	Diff <2x LOR Diff <2x LOR			

 Page
 : 6 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

A

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 574895) - contin	nued									
CG2209323-001	RG_LIDCOM_WS_LAEMP LCO 2022-07 N	molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00131	0.00130	0.257%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00456	0.00453	0.00003	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.04	0.998	3.78%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	26.4 μg/L	0.0266	0.716%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.01	1.97	1.68%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	3.80	3.73	1.68%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.140	0.141	0.495%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	41.2	40.9	0.605%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00208	0.00206	0.670%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0092	0.0091	0.00006	Diff <2x LOR	
Dissolved Metals (QC Lot: 574896)										
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00014	0.00013	0.000010	Diff <2x LOR	
Dissolved Metals (QC Lot: 575564)										
CG2209323-001	RG_LIDCOM_WS_LAEMP _LCO_2022-07_N	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 565350)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 565352)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 565353)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 565410)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 565788)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 568391)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 568399)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 565426)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 565522)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 565523)					
luoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 565524)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 565525)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 565526)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 565527)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 566163)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 569613)					

 Page
 : 8 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 569613)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 571643)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot: 5	72228)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 5					
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 568907)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
oismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8 E420	0.01	mg/L	<0.010	
admium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
alcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
ilicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	

Page : 9 of 18
Work Order : CG2209323
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 568907) -	continued					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 568909)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 575021)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 57489	95)					
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9		0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0		0.0001	mg/L	<0.00010	
tin, dissolved	7440-31-5		0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6		0.0003	mg/L	<0.00030	

 Page
 : 10 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 574895) - coi	ntinued				
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 574896)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	MBRR
Dissolved Metals (QCLot: 575564)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	

Qualifiers

Qualifier	Description
MBRR	Initial MB for this submission had positive results for flagged analyte (data not shown). Low level samples were repeated with new QC (2nd MB results shown). High level results (>5x initial MB level) and non-detect results were reported and are defensible

Page : 11 of 18 Work Order : CG2209323

: Teck Coal Limited Client

: REGIONAL EFFECTS PROGRAMS Project

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 565350)									
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	102	85.0	115	
Physical Tests (QCLot: 565351)									
рН		E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 565352)									
conductivity		E100	1	μS/cm	146.9 μS/cm	95.5	90.0	110	
Physical Tests (QCLot: 565353)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	105	85.0	115	
Physical Tests (QCLot: 565410)									
turbidity		E121	0.1	NTU	200 NTU	98.6	85.0	115	
Physical Tests (QCLot: 565788)									
turbidity		E121	0.1	NTU	200 NTU	96.8	85.0	115	
Physical Tests (QCLot: 568391)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	93.8	85.0	115	
Physical Tests (QCLot: 568399)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	99.8	85.0	115	
Physical Tests (QCLot: 573151)									
oxidation-reduction potential [ORP]		E125		mV	220 mV	99.2	95.4	104	
Anions and Nutrients (QCLot: 565426)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	99.3	80.0	120	
Anions and Nutrients (QCLot: 565522)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	97.8	90.0	110	
Anions and Nutrients (QCLot: 565523)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	96.5	90.0	110	
Anions and Nutrients (QCLot: 565524)									
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	96.2	85.0	115	
Anions and Nutrients (QCLot: 565525)									
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	96.4	90.0	110	
Anions and Nutrients (QCLot: 565526)									
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	99.0	90.0	110	
Anions and Nutrients (QCLot: 565527)									
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	97.8	90.0	110	
Anions and Nutrients (QCLot: 566163)									
Amons and Nutrients (QCEOL 300103)									

 Page
 : 12 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Sub-Matrix: Water	ub-Matrix: Water						Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)						
Analyte CAS Number	method	LOR	Unit	Concentration	LCS	Low	High	Qualifier					
Anions and Nutrients (QCLot: 566163) - continued													
ammonia, total (as N) 7664-41-	7 E298	0.005	mg/L	0.2 mg/L	101	85.0	115						
Anions and Nutrients (QCLot: 569613)													
	0 E372-U	0.002	mg/L	8.02 mg/L	102	80.0	120						
Anions and Nutrients (QCLot: 571643)													
	E318	0.05	mg/L	4 mg/L	97.3	75.0	125						
Organic / Inorganic Carbon (QCLot: 572228)													
carbon, dissolved organic [DOC]	- E358-L	0.5	mg/L	8.57 mg/L	91.6	80.0	120						
Organic / Inorganic Carbon (QCLot: 572229)													
	E355-L	0.5	mg/L	8.57 mg/L	92.6	80.0	120						
Total Metals (QCLot: 568907)													
aluminum, total 7429-90-	5 E420	0.003	mg/L	2 mg/L	105	80.0	120						
antimony, total 7440-36-	0 E420	0.0001	mg/L	1 mg/L	112	80.0	120						
arsenic, total 7440-38-	2 E420	0.0001	mg/L	1 mg/L	102	80.0	120						
barium, total 7440-39-	3 E420	0.0001	mg/L	0.25 mg/L	108	80.0	120						
beryllium, total 7440-41-	7 E420	0.00002	mg/L	0.1 mg/L	97.9	80.0	120						
bismuth, total 7440-69-	9 E420	0.00005	mg/L	1 mg/L	99.2	80.0	120						
boron, total 7440-42-	8 E420	0.01	mg/L	1 mg/L	114	80.0	120						
cadmium, total 7440-43-	9 E420	0.000005	mg/L	0.1 mg/L	104	80.0	120						
calcium, total 7440-70-	2 E420	0.05	mg/L	50 mg/L	95.2	80.0	120						
cobalt, total 7440-48-	4 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120						
copper, total 7440-50-	8 E420	0.0005	mg/L	0.25 mg/L	101	80.0	120						
iron, total 7439-89-	6 E420	0.01	mg/L	1 mg/L	102	80.0	120						
lead, total 7439-92-	1 E420	0.00005	mg/L	0.5 mg/L	98.1	80.0	120						
lithium, total 7439-93-	2 E420	0.001	mg/L	0.25 mg/L	104	80.0	120						
magnesium, total 7439-95-	4 E420	0.005	mg/L	50 mg/L	101	80.0	120						
manganese, total 7439-96-	5 E420	0.0001	mg/L	0.25 mg/L	104	80.0	120						
molybdenum, total 7439-98-	7 E420	0.00005	mg/L	0.25 mg/L	109	80.0	120						
nickel, total 7440-02-	0 E420	0.0005	mg/L	0.5 mg/L	100	80.0	120						
potassium, total 7440-09-	7 E420	0.05	mg/L	50 mg/L	101	80.0	120						
selenium, total 7782-49-	2 E420	0.00005	mg/L	1 mg/L	102	80.0	120						
silicon, total 7440-21-	3 E420	0.1	mg/L	10 mg/L	108	80.0	120						
silver, total 7440-22-	4 E420	0.00001	mg/L	0.1 mg/L	99.0	80.0	120						
sodium, total 7440-23-	5 F420	0.05	mg/L	50 mg/L	104	80.0	120						
strontium, total 7440-24-	5 L420	0.00	3. =	oo mg/L	104								
Strontium, total	6 E420	0.0002	mg/L	0.25 mg/L	111	80.0	120						

 Page
 : 13 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report							
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Metho	d LOR	Unit	Concentration	LCS	Low	High	Qualifie
Total Metals (QCLot: 568907) - continued								
thallium, total	7440-28-0 E420	0.00001	mg/L	1 mg/L	97.8	80.0	120	
tin, total	7440-31-5 E420	0.0001	mg/L	0.5 mg/L	103	80.0	120	
titanium, total	7440-32-6 E420	0.0003	mg/L	0.25 mg/L	98.8	80.0	120	
uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	104	80.0	120	
vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	103	80.0	120	
zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	100	80.0	120	
Total Metals (QCLot: 568909)								
chromium, total	7440-47-3 E420.0	Cr-L 0.0001	mg/L	0.25 mg/L	103	80.0	120	
Total Metals (QCLot: 575021)								
mercury, total	7439-97-6 E508	0.000005	mg/L	0.0001 mg/L	103	80.0	120	
Dissolved Metals (QCLot: 574895)								
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	99.6	80.0	120	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	95.8	80.0	120	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	99.2	80.0	120	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	104	80.0	120	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	102	80.0	120	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	93.8	80.0	120	
boron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	97.2	80.0	120	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	97.0	80.0	120	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	97.4	80.0	120	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	95.1	80.0	120	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	95.9	80.0	120	
iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	95.8	80.0	120	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	98.4	80.0	120	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	101	80.0	120	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	98.2	80.0	120	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	96.5	80.0	120	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	96.2	80.0	120	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	97.2	80.0	120	
ootassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	97.9	80.0	120	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	95.6	80.0	120	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	95.8	80.0	120	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	88.0	80.0	120	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	50 mg/L	98.5	80.0	120	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	92.6	80.0	120	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	50 mg/L	102	80.0	120	

 Page
 : 14 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Sub-Matrix: Water	ub-Matrix: Water						ntrol Sample (LCS)	Report			
					Spike	Recovery (%) Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 574895) - continued											
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	101	80.0	120			
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	93.1	80.0	120			
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	96.6	80.0	120			
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	97.5	80.0	120			
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.4	80.0	120			
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	96.3	80.0	120			
Dissolved Metals (QCLot: 574896)											
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	96.4	80.0	120			
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	92.1	80.0	120			

Page : 15 of 18 Work Order : CG2209323 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAMS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

ab-Matrix. Trater	-Matrix: Water							e (MS) Report		
					Spi		Recovery (%)	Recovery	Limits (%)	
.aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
nions and Nutr	ents (QCLot: 565426)									
CG2209304-009	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0469 mg/L	0.05 mg/L	93.8	70.0	130	
nions and Nutr	ents (QCLot: 565522)									
CG2209118-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	114 mg/L	100 mg/L	114	75.0	125	
nions and Nutr	ents (QCLot: 565523)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	fluoride	16984-48-8	E235.F	0.915 mg/L	1 mg/L	91.5	75.0	125	
nions and Nutr	ents (QCLot: 565524)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	bromide	24959-67-9	E235.Br-L	0.486 mg/L	0.5 mg/L	97.2	75.0	125	
nions and Nutr	ents (QCLot: 565525)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	chloride	16887-00-6	E235.CI-L	91.4 mg/L	100 mg/L	91.4	75.0	125	
nions and Nutr	ents (QCLot: 565526)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125	
nions and Nutr	ents (QCLot: 565527)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.470 mg/L	0.5 mg/L	94.0	75.0	125	
nions and Nutr	ents (QCLot: 566163)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	ammonia, total (as N)	7664-41-7	E298	0.103 mg/L	0.1 mg/L	103	75.0	125	
nions and Nutr	ents (QCLot: 569613)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	phosphorus, total	7723-14-0	E372-U	0.0596 mg/L	0.0676 mg/L	88.2	70.0	130	
nions and Nutr	ents (QCLot: 571643)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	Kjeldahl nitrogen, total [TKN]		E318	2.47 mg/L	2.5 mg/L	98.7	70.0	130	
rganic / Inorga	nic Carbon (QCLot: 5722	228)								
CG2209323-001	RG_LIDCOM_WS_LAEMP_ LCO_2022-07_N	carbon, dissolved organic [DOC]		E358-L	5.55 mg/L	5 mg/L	111	70.0	130	
rganic / Inorga	nic Carbon (QCLot: 5722	229)								
CG2209323-001	RG_LIDCOM_WS_LAEMP_ LCO_2022-07_N	carbon, total organic [TOC]		E355-L	5.28 mg/L	5 mg/L	106	70.0	130	

 Page
 : 16 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
otal Metals (QC	Lot: 568907) - continue	d								
CG2209323-002	RG_LI8_WS_LAEMP_LCO_	aluminum, total	7429-90-5	E420	0.192 mg/L	0.2 mg/L	96.0	70.0	130	
	2022-07_N	antimony, total	7440-36-0	E420	0.0215 mg/L	0.02 mg/L	107	70.0	130	
		arsenic, total	7440-38-2	E420	0.0197 mg/L	0.02 mg/L	98.7	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0370 mg/L	0.04 mg/L	92.5	70.0	130	
		bismuth, total	7440-69-9	E420	0.00986 mg/L	0.01 mg/L	98.6	70.0	130	
		boron, total	7440-42-8	E420	0.093 mg/L	0.1 mg/L	93.1	70.0	130	
		cadmium, total	7440-43-9	E420	0.00404 mg/L	0.004 mg/L	101	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0186 mg/L	0.02 mg/L	92.8	70.0	130	
		copper, total	7440-50-8	E420	0.0186 mg/L	0.02 mg/L	92.9	70.0	130	
		iron, total	7439-89-6	E420	1.87 mg/L	2 mg/L	93.7	70.0	130	
		lead, total	7439-92-1	E420	0.0188 mg/L	0.02 mg/L	94.1	70.0	130	
		lithium, total	7439-93-2	E420	0.0999 mg/L	0.1 mg/L	99.9	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0185 mg/L	0.02 mg/L	92.3	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0215 mg/L	0.02 mg/L	108	70.0	130	
		nickel, total	7440-02-0	E420	0.0364 mg/L	0.04 mg/L	91.0	70.0	130	
		potassium, total	7440-09-7	E420	3.86 mg/L	4 mg/L	96.6	70.0	130	
		selenium, total	7782-49-2	E420	0.0390 mg/L	0.04 mg/L	97.5	70.0	130	
		silicon, total	7440-21-3	E420	9.49 mg/L	10 mg/L	94.9	70.0	130	
		silver, total	7440-22-4	E420	0.00404 mg/L	0.004 mg/L	101	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00369 mg/L	0.004 mg/L	92.2	70.0	130	
		tin, total	7440-31-5	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		titanium, total	7440-32-6	E420	0.0379 mg/L	0.04 mg/L	94.8	70.0	130	
		uranium, total	7440-61-1	E420	0.00404 mg/L	0.004 mg/L	101	70.0	130	
		vanadium, total	7440-62-2	E420	0.0987 mg/L	0.1 mg/L	98.7	70.0	130	
		zinc, total	7440-66-6	E420	0.372 mg/L	0.4 mg/L	93.0	70.0	130	
otal Metals (QC	Lot: 568909)								1	
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	chromium, total	7440-47-3	E420.Cr-L	0.0390 mg/L	0.04 mg/L	97.5	70.0	130	
otal Metals (QC	Lot: 575021)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	mercury, total	7439-97-6	E508	0.000104 mg/L	0.0001 mg/L	104	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 574895)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_	aluminum, dissolved	7429-90-5	E421	0.187 mg/L	0.2 mg/L	93.7	70.0	130	
	2022-07_N	antimony, dissolved	7440-36-0	E421	0.0195 mg/L	0.02 mg/L	97.4	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0198 mg/L	0.02 mg/L	99.1	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0393 mg/L	0.04 mg/L	98.3	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00833 mg/L	0.01 mg/L	83.3	70.0	130	
		boron, dissolved	7440-42-8	E421	0.097 mg/L	0.1 mg/L	97.2	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00392 mg/L	0.004 mg/L	98.1	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0182 mg/L	0.02 mg/L	91.1	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0180 mg/L	0.02 mg/L	90.0	70.0	130	
		iron, dissolved	7439-89-6	E421	1.90 mg/L	2 mg/L	94.8	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0189 mg/L	0.02 mg/L	94.4	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0977 mg/L	0.1 mg/L	97.7	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0186 mg/L	0.02 mg/L	93.2	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0197 mg/L	0.02 mg/L	98.6	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0363 mg/L	0.04 mg/L	90.8	70.0	130	
		potassium, dissolved	7440-09-7	E421	3.59 mg/L	4 mg/L	89.8	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0408 mg/L	0.04 mg/L	102	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.12 mg/L	10 mg/L	91.2	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00356 mg/L	0.004 mg/L	89.1	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00381 mg/L	0.004 mg/L	95.2	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0189 mg/L	0.02 mg/L	94.5	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0378 mg/L	0.04 mg/L	94.5	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00367 mg/L	0.004 mg/L	91.8	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0972 mg/L	0.1 mg/L	97.2	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.374 mg/L	0.4 mg/L	93.4	70.0	130	
issolved Metals	(QCLot: 574896)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	chromium, dissolved	7440-47-3	E421.Cr-L	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	
issolved Metals	(QCLot: 575564)									
CG2209323-002	RG_LI8_WS_LAEMP_LCO_ 2022-07_N	mercury, dissolved	7439-97-6	E509	0.0000973 mg/L	0.0001 mg/L	97.3	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2209323

 Client
 : Teck Coal Limited

100 Teck COC ID: REP_LAEMP_LCO 2022 JULY ALS TURNAROUND TIME: RUSH N/A PROJECT/CLIENT INFO LABORATORY OTHER INFO Facility Name / Job# Regional Effects Program - LCO LAEMP Lab Name ALS Calgary Excel PDF EDD Report Format / Distribution Lab Contact Lyudmyla Shvets Project Manager Cybele Heddle aquascilab@teck.com Email Lyudmyla.Shyets@ALSGlobal.com Email Cybele.Heddle@Teck.com Email 2: teckcoal@equisonline.com Address 2559 29 Street NE Address 421'Pine Ave Email 3: Feek, Lab, Results@teck.com Email 4: City Calgary Province BC Province AB City Sparwood Email 5: Postal Code V0B 2G0 Country Canada Postal Code T1Y 7B5 Country Canada Email 6: Phone Number 250-910-8755 Phone Number 403 407 1794 PO number VPO00816101 SAMPLE DETAILS ANALYSIS REQUESTED Filtered - F: Field, L: Lab, FL: Field & Lab, N: None H2SO4 H2SO4 HNO3 NONE HCL NONE HNO3 Hazardous Material (Yes/No) **TECKCOAL-MET-D-VA** FECKCOAL-ROUTINE G=Grab C=Com #Of Sample Location Field Sample ID (sys loc code) Matrix Date Time (24 ar) Cont. RG_LIDCOM_WS_LAEMP_LCO-2022-07-N RG-LIDCOM WS NO \mathbf{G} K 2022-07-14 13:00 RG_LIB_WS_LAEMP_LCO-2022-01_N WS NO 09:45 G X × × X X Х WS NO G **Environmental Division** WS G NO Calgary Work Order Reference CG2209323 WS NO G WS G NO WŚ NO G WS NO G WS NO G 1. WS NO G WS G NO Telephone: +1 403 407 1800 WS NO G WS NO ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION DATE/TIME Rich Smil/Lotic environ mundo 202-67-14 13.00 100 1 SERVICE REQUEST (rush - subject to availability) Regular (default) X Mobile # Sampler's Name Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time 700 For Emergency <1 Day, ASAP or Weekend - Contact ALS

2 C

WATER CHEMISTRY

ALS Laboratory Report CG2209155 (Finalized July 29, 2022)

CERTIFICATE OF ANALYSIS

Page **Work Order** : CG2209155

Amendment : 1

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle Account Manager : Lyudmyla Shvets Address : 421 Pine Ave

Sparwood BC Canada

Telephone

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number : REP LAEMP LCO 2022 JULY ALS

Sampler Site

: Teck Coal Master Quote Quote number

No. of samples received : 4 No. of samples analysed : 4 : 1 of 7

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 Date Samples Received : 13-Jul-2022 10:20

Date Analysis Commenced : 13-Jul-2022

Issue Date : 29-Jul-2022 15:20

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia
Elke Tabora		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Kyle Chang	Lab Assistant	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Parnian Sane	Analyst	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Russell Zhang		Metals, Burnaby, British Columbia
Sara Niroomand		Inorganics, Calgary, Alberta

Page : 3 of 7

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page

: 4 of 7 : CG2209155 Amendment 1 Work Order

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

(Matrix: Water)			0.	lient sample ID	RG_SLINE_WS_ LAEMP_LCO_2	RG_LCUT_WS_ LAEMP_LCO_2	RG_LILC3_WS_ LAEMP_LCO_2	RG_RIVER_WS _LAEMP_LCO_	
					022-07_N	022-07_N	022-07_N	2022-07_NP	
			Client samp	oling date / time	12-Jul-2022 14:00	12-Jul-2022 09:30	12-Jul-2022 11:45	12-Jul-2022 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2209155-001	CG2209155-002	CG2209155-003	CG2209155-004	
					Result	Result	Result	Result	
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	120	226	184	182	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	146	276	224	222	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	120	226	184	182	
conductivity		E100	2.0	μS/cm	230	552	665	668	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	131	304	375	370	
oxidation-reduction potential [ORP]		E125	0.10	mV	324	414	446	386	
pH		E108	0.10	pH units	8.24	7.84	8.04	8.04	
solids, total dissolved [TDS]		E162	10	mg/L	152	392	496	488	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
turbidity		E121	0.10	NTU	0.29	0.22	0.14	0.22	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0140	<0.0050	0.0230	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.14	3.75	5.24	5.12	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.205	0.190	0.183	0.176	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.500 DLM, TKNI	0.838	1.24	0.629 TKNI	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.121	6.34	7.51	7.47	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0022	0.0010	0.0022	0.0025	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0040	0.0023	0.0024	0.0023	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	18.0	125	170	168	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.86	<0.50	<0.50	<0.50	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.79	<0.50	<0.50	<0.50	
Ion Balance									

Page Work Order : 5 of 7

: CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_SLINE_WS_ LAEMP_LCO_2	RG_LCUT_WS_ LAEMP_LCO_2	RG_LILC3_WS_ LAEMP_LCO_2	RG_RIVER_WS _LAEMP_LCO_	
,					022-07_N	022-07_N	022-07_N	2022-07_NP	
			Client samp	ling date / time	12-Jul-2022 14:00	12-Jul-2022 09:30	12-Jul-2022 11:45	12-Jul-2022 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2209155-001	CG2209155-002	CG2209155-003	CG2209155-004	
					Result	Result	Result	Result	
Ion Balance									
anion sum		EC101	0.10	meq/L	2.80	7.69	7.91	7.82	
cation sum		EC101	0.10	meq/L	2.65	6.32	7.77	7.66	
ion balance (cations/anions)		EC101	0.010	%	94.6	82.2	98.2	98.0	
ion balance (APHA)		EC101	0.010	%	2.75	9.78	0.893	1.03	
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0105	0.0043	0.0038	0.0046	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	0.00027	0.00028	0.00030	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00012	0.00013	0.00014	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0264	0.0303	0.0338	0.0328	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	0.011	0.013	0.013	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0181	0.471	0.485	0.460	
calcium, total	7440-70-2	E420	0.050	mg/L	34.1	67.5	81.5	84.3	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00018	0.00014	0.00014	0.00014	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0014	0.0333	0.0369	0.0379	
magnesium, total	7439-95-4	E420	0.0050	mg/L	9.02	28.6	37.0	38.0	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00030	0.00020	0.00254	0.00243	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000782	0.00145	0.00172	0.00165	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	0.00855	0.00898	0.00870	
potassium, total	7440-09-7	E420	0.050	mg/L	0.301	1.34	1.50	1.47	
selenium, total	7782-49-2	E420	0.050	μg/L	0.755	28.3	43.5	42.6	
silicon, total	7440-21-3	E420	0.10	mg/L	1.66	1.98	2.18	2.04	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	0.462	4.84	5.56	5.66	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.0810	0.162	0.182	0.174	
1	2 1 0		T. Control	J J		I	I	I	

Page : 6 of 7

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	RG_SLINE_WS_ LAEMP_LCO_2	RG_LCUT_WS_ LAEMP_LCO_2	RG_LILC3_WS_ LAEMP_LCO_2	RG_RIVER_WS _LAEMP_LCO_	
(IVIALIA. VVALEI)					022-07_N	022-07_N	022-07_N	2022-07_NP	
			Client samp	ling date / time	12-Jul-2022 14:00	12-Jul-2022 09:30	12-Jul-2022 11:45	12-Jul-2022 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2209155-001	CG2209155-002	CG2209155-003	CG2209155-004	
					Result	Result	Result	Result	
Total Metals									
sulfur, total	7704-34-9	E420	0.50	mg/L	6.54	45.9	65.0	65.4	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	0.000012	0.000013	0.000014	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000980	0.00246	0.00307	0.00300	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0194	0.0209	0.0193	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0024	0.0013	0.0025	0.0011	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00026	0.00028	0.00028	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00012	0.00011	0.00011	0.00011	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0252	0.0290	0.0310	0.0315	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.011	0.013	0.013	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0161	0.453	0.474	0.476	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	36.4	71.3	85.4	84.5	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00016	0.00011	0.00012	0.00012	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00023	0.00051	0.00055	0.00048	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0015	0.0340	0.0378	0.0389	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	9.80	30.6	39.2	38.5	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	0.00012	0.00209	0.00207	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000771	0.00142	0.00171	0.00171	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	0.00818	0.00860	0.00879	
potassium, dissolved	7440-02-0	E421	0.050	mg/L	0.300	1.29	1.41	1.40	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	0.742	28.0	41.3	40.9	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.61	1.84	1.93	1.92	
Sincon, dissolved	1440-21-3	L761	0.000	mg/L	1.01	1.04	1.90	1.32	

Page : 7 of 7

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Ci	lient sample ID	RG_SLINE_WS_	RG_LCUT_WS_	RG_LILC3_WS_	RG_RIVER_WS	
Matrix: Water)					LAEMP_LCO_2	LAEMP_LCO_2	LAEMP_LCO_2	_LAEMP_LCO_	
					022-07_N	022-07_N	022-07_N	2022-07_NP	
			Client samr	oling date / time	12-Jul-2022 14:00	12-Jul-2022 09:30	12-Jul-2022 11:45	12-Jul-2022 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2209155-001	CG2209155-002	CG2209155-003	CG2209155-004	
•					Result	Result	Result	Result	
Dissolved Metals									
ilver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
odium, dissolved	7440-23-5	E421	0.050	mg/L	0.439	4.90	5.65	5.45	
trontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0789	0.157	0.174	0.174	
ulfur, dissolved	7704-34-9	E421	0.50	mg/L	6.63	44.0	58.7	58.0	
nallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	0.000013	0.000014	0.000013	
n, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
tanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
ranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000953	0.00238	0.00296	0.00291	
anadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
nc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0028	0.0190	0.0192	0.0198	
issolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
issolved metals filtration location		EP421	-	-	Field	Field	Field	Field	
			I .						

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : CG2209155 Page : 1 of 21

. 1 Amendment

Client : Calgary - Environmental : Teck Coal Limited Laboratory Contact **Account Manager** : Lyudmyla Shvets : Cvbele Heddle Address Address : 2559 29th Street NE : 421 Pine Ave

Sparwood BC Canada

Calgary, Alberta Canada T1Y 7B5

: 29-Jul-2022 15:20

Telephone Telephone : +1 403 407 1800 Project REGIONAL EFFECTS PROGRAM **Date Samples Received** : 13-Jul-2022 10:20 PO

: VPO00816101 C-O-C number : REP LAEMP LCO 2022 JULY ALS

Sampler Site : ----

Quote number Teck Coal Master Quote

No. of samples received : 4 No. of samples analysed : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Issue Date

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit). RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur	ır.		

Page : 3 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

					_ v	aldation. • =	Holding time exce	cuarioc , .	- vviti iii i	Holding Till
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-07_N	E298	12-Jul-2022	13-Jul-2022				13-Jul-2022	28 days	1 days	✓
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E298	12-Jul-2022	13-Jul-2022				13-Jul-2022	28 days	1 days	✓
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	5000	40.1.1000	40 1 1 0000				40.1.1.0000	00.1		,
RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E298	12-Jul-2022	13-Jul-2022				13-Jul-2022	28 days	1 days	✓
nions and Nutrients : Ammonia by Fluorescence				ı						
Amber glass total (sulfuric acid) RG SLINE WS LAEMP LCO 2022-07 N	E298	12-Jul-2022	13-Jul-2022				13-Jul-2022	28 days	1 days	1
NG_SLINE_WS_LAEINF_LCO_2022-01_IN	LZ30	12-341-2022	13-3ul-2022				13-341-2022	20 days	1 uays	•
nions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE							I			
RG LCUT WS LAEMP LCO 2022-07 N	E235.Br-L	12-Jul-2022					14-Jul-2022	28 days	2 davs	✓
								,	,	
nions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E235.Br-L	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
nions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E235.Br-L	12-Jul-2022					14-Jul-2022	28 days	2 days	✓

Page : 4 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Matrix: Water					Εν	valuation: × =	Holding time exce	edance ; 🖠	✓ = Within	Holding Ti
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_SLINE_WS_LAEMP_LCO_2022-07_N	E235.Br-L	12-Jul-2022					14-Jul-2022	28 days	2 days	√
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LCUT_WS_LAEMP_LCO_2022-07_N	E235.CI-L	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-07_N	E235.CI-L	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E235.CI-L	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_SLINE_WS_LAEMP_LCO_2022-07_N	E235.CI-L	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_LCUT_WS_LAEMP_LCO_2022-07_N	E378-U	12-Jul-2022					14-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_LILC3_WS_LAEMP_LCO_2022-07_N	E378-U	12-Jul-2022					14-Jul-2022	3 days	2 days	4
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E378-U	12-Jul-2022					14-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_SLINE_WS_LAEMP_LCO_2022-07_N	E378-U	12-Jul-2022					14-Jul-2022	3 days	2 days	√

Page : 5 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Mainx: water							nolaing lime exce			
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-07_N	E235.F	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E235.F	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E235.F	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE							1			
RG SLINE WS LAEMP LCO 2022-07 N	E235.F	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
110_0E111E_110_E11E1111 _E00_2022-01_11	2200.1	12 001 2022					1 1 0di 2022	20 dayo	2 days	
A transcription of the Nicoland Market 1970 and the Nicoland Market 1970 a										
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE							I			
RG_LCUT_WS_LAEMP_LCO_2022-07_N	E235.NO3-L	12-Jul-2022					14-Jul-2022	3 days	2 days	✓
RG_LCOT_WG_LAEMF_LCO_2022-07_N	L233.1103-L	12-341-2022					14-3ui-2022	3 days	2 uays	•
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE	E235.NO3-L	12-Jul-2022					14-Jul-2022	3 days	2 days	✓
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E233.NO3-L	12-Jui-2022					14-Jui-2022	3 uays	2 uays	•
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE	E005 NO0 I	40 1 0000					44 1.1 0000	0.1		,
RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E235.NO3-L	12-Jul-2022					14-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)				1						
HDPE										,
RG_SLINE_WS_LAEMP_LCO_2022-07_N	E235.NO3-L	12-Jul-2022					14-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-07_N	E235.NO2-L	12-Jul-2022					14-Jul-2022	3 days	2 days	✓

Page : 6 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Mainx: water							Holding time exce	,		
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E235.NO2-L	12-Jul-2022					14-Jul-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG RIVER WS LAEMP LCO 2022-07 NP	E235.NO2-L	12-Jul-2022					14-Jul-2022	3 days	2 days	✓
1.01.10_1								,-		
Asiana and Nutrianta - Nikrita in Watan ha 10 (Laurel and D										
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE							I	I		
1.2.2	E235.NO2-L	12-Jul-2022					14-Jul-2022	3 days	2 days	√
RG_SLINE_WS_LAEMP_LCO_2022-07_N	E233.NO2-L	12-Jui-2022					14-Jui-2022	3 uays	2 uays	•
Anions and Nutrients : Sulfate in Water by IC								1		
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-07_N	E235.SO4	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E235.SO4	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E235.SO4	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
								_		
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_SLINE_WS_LAEMP_LCO_2022-07_N	E235.SO4	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
NG_SLINE_WS_EALIWIF_EGO_2022-07_IN	L200.004	12-041-2022					14-5ul-2022	20 days	2 days	•
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)	F040	40 101 0000	40 1.4 0000				40 101 0000	00 4	7 4	,
RG_LCUT_WS_LAEMP_LCO_2022-07_N	E318	12-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	/ days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E318	12-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	7 days	✓
	The second secon	1		T. Control of the Con	1		I .	1	1	

Page : 7 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water											
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is		
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E318	12-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	7 days	✓	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid) RG_SLINE_WS_LAEMP_LCO_2022-07_N	E318	12-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	7 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2022-07_N	E372-U	12-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	7 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)							1				
Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-07_N	E372-U	12-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	7 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E372-U	12-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	7 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)											
Amber glass total (sulfuric acid) RG_SLINE_WS_LAEMP_LCO_2022-07_N	E372-U	12-Jul-2022	19-Jul-2022				19-Jul-2022	28 days	7 days	✓	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid) RG_LILC3_WS_LAEMP_LCO_2022-07_N	E421.Cr-L	12-Jul-2022	18-Jul-2022				19-Jul-2022	180 days	6 days	✓	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)									'		
HDPE dissolved (nitric acid) RG_SLINE_WS_LAEMP_LCO_2022-07_N	E421.Cr-L	12-Jul-2022	18-Jul-2022				19-Jul-2022	180 days	6 days	✓	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid) RG_LCUT_WS_LAEMP_LCO_2022-07_N	E421.Cr-L	12-Jul-2022	18-Jul-2022				19-Jul-2022	180 days	7 days	✓	

Page : 8 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water					= \	/aluation. * -	Holding time exce	edance, v	– vvitriiri	nolaling Tim
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E421.Cr-L	12-Jul-2022	18-Jul-2022				19-Jul-2022	180 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_LCUT_WS_LAEMP_LCO_2022-07_N	E509	12-Jul-2022	20-Jul-2022				20-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_LILC3_WS_LAEMP_LCO_2022-07_N	E509	12-Jul-2022	20-Jul-2022				20-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E509	12-Jul-2022	20-Jul-2022				20-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_SLINE_WS_LAEMP_LCO_2022-07_N	E509	12-Jul-2022	20-Jul-2022				20-Jul-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_LILC3_WS_LAEMP_LCO_2022-07_N	E421	12-Jul-2022	18-Jul-2022				19-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_SLINE_WS_LAEMP_LCO_2022-07_N	E421	12-Jul-2022	18-Jul-2022				19-Jul-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_LCUT_WS_LAEMP_LCO_2022-07_N	E421	12-Jul-2022	18-Jul-2022				19-Jul-2022	180 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E421	12-Jul-2022	18-Jul-2022				19-Jul-2022	180 days	7 days	✓

Page : 9 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Analyte Group	Method	Complian Date	F.,	traction / Pr	reneration			Analys	ic	
· ·	Method	Sampling Date			•	First.	Augustusia Data			
Container / Client Sample ID(s)			Preparation Date	Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Actual	Eval
Organic / Inorganic Carbon:Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2022-07_N	E358-L	12-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	9 days	~
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-07_N	E358-L	12-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	9 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E358-L	12-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	9 days	~
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid) RG_SLINE_WS_LAEMP_LCO_2022-07_N	E358-L	12-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	9 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	tion (Low Level)									
Amber glass total (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2022-07_N	E355-L	12-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	9 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	tion (Low Level)									
Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-07_N	E355-L	12-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	9 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	tion (Low Level)									
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E355-L	12-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	9 days	✓
organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	tion (Low Level)						1			
Amber glass total (sulfuric acid) RG_SLINE_WS_LAEMP_LCO_2022-07_N	E355-L	12-Jul-2022	19-Jul-2022				21-Jul-2022	28 days	9 days	✓
Physical Tests : Acidity by Titration										
HDPE										

Page : 10 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

	Evaluation. * - notain											
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval		
			Date	Rec	Actual			Rec	Actual			
Physical Tests : Acidity by Titration												
HDPE												
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E283	12-Jul-2022					14-Jul-2022	14 days	2 days	✓		
Physical Tests : Acidity by Titration												
HDPE								<u> </u>				
RG RIVER WS LAEMP LCO 2022-07 NP	E283	12-Jul-2022					14-Jul-2022	14 days	2 davs	✓		
1.67.11.71.61.677.71												
District Action Action in The Control												
Physical Tests : Acidity by Titration							I					
HDPE	E283	12-Jul-2022					14-Jul-2022	14 days	2 days	√		
RG_SLINE_WS_LAEMP_LCO_2022-07_N	E203	12-Jul-2022					14-Jul-2022	14 days	2 days	•		
Physical Tests : Alkalinity Species by Titration												
HDPE												
RG_LCUT_WS_LAEMP_LCO_2022-07_N	E290	12-Jul-2022					14-Jul-2022	14 days	2 days	✓		
Physical Tests : Alkalinity Species by Titration												
HDPE												
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E290	12-Jul-2022					14-Jul-2022	14 days	2 days	✓		
									-			
Physical Tests : Alkalinity Species by Titration												
HDPE												
RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E290	12-Jul-2022					14-Jul-2022	14 days	2 days	✓		
110_111VE11_VVO_B1CIVIII _E00_2022-01_111	2200	12 0di 2022					1 1 0di 2022	11 days	2 days			
Physical Tests : Alkalinity Species by Titration												
HDPE	F200	12 101 2022					44 11 2000	44 -1	0 4			
RG_SLINE_WS_LAEMP_LCO_2022-07_N	E290	12-Jul-2022					14-Jul-2022	14 days	2 days	✓		
Physical Tests : Conductivity in Water												
HDPE												
RG_LCUT_WS_LAEMP_LCO_2022-07_N	E100	12-Jul-2022					14-Jul-2022	28 days	2 days	✓		
Physical Tests : Conductivity in Water				·								
HDPE												
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E100	12-Jul-2022					14-Jul-2022	28 days	2 days	✓		
									'			

Page : 11 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E100	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE RG_SLINE_WS_LAEMP_LCO_2022-07_N	E100	12-Jul-2022					14-Jul-2022	28 days	2 days	✓
Physical Tests : ORP by Electrode										
HDPE RG_SLINE_WS_LAEMP_LCO_2022-07_N	E125	12-Jul-2022					19-Jul-2022	0.25 hrs	166 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-07_N	E125	12-Jul-2022					19-Jul-2022	0.25 hrs	168 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E125	12-Jul-2022					19-Jul-2022	0.25 hrs	169 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_LCUT_WS_LAEMP_LCO_2022-07_N	E125	12-Jul-2022					19-Jul-2022	0.25 hrs	170 hrs	≭ EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_SLINE_WS_LAEMP_LCO_2022-07_N	E108	12-Jul-2022					14-Jul-2022	0.25 hrs	45 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-07_N	E108	12-Jul-2022					14-Jul-2022	0.25 hrs	47 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E108	12-Jul-2022					14-Jul-2022	0.25 hrs	48 hrs	# EHTR-FM

Page : 12 of 21

Work Order : CG2209155 Amendment 1

RG_SLINE_WS_LAEMP_LCO_2022-07_N

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

18-Jul-2022

7 days 6 days

Analyte Group	Mothod	Sampling Data	Ev	traction / Pr	renaration			Analys		
Container / Client Sample ID(s)	Method	Sampling Date				E I	Anatoria Data			E
Container / Chefit Sample ID(s)			Preparation Date	Rec	g Times Actual	Eval	Analysis Date	Rec	7 Times Actual	Eval
hysical Tests : pH by Meter										
HDPE RG_LCUT_WS_LAEMP_LCO_2022-07_N	E108	12-Jul-2022					14-Jul-2022	0.25 hrs	49 hrs	# EHTR-F
Physical Tests : TDS by Gravimetry										
HDPE RG_LCUT_WS_LAEMP_LCO_2022-07_N	E162	12-Jul-2022					18-Jul-2022	7 days	6 days	✓
Physical Tests : TDS by Gravimetry										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-07_N	E162	12-Jul-2022					18-Jul-2022	7 days	6 days	~
hysical Tests : TDS by Gravimetry										
HDPE RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E162	12-Jul-2022					18-Jul-2022	7 days	6 days	✓
Physical Tests : TDS by Gravimetry										
HDPE RG_SLINE_WS_LAEMP_LCO_2022-07_N	E162	12-Jul-2022					18-Jul-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB] RG_LCUT_WS_LAEMP_LCO_2022-07_N	E160-L	12-Jul-2022					18-Jul-2022	7 days	6 days	1
hysical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB] RG_LILC3_WS_LAEMP_LCO_2022-07_N	E160-L	12-Jul-2022					18-Jul-2022	7 days	6 days	✓
hysical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB] RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E160-L	12-Jul-2022					18-Jul-2022	7 days	6 days	✓
hysical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										

12-Jul-2022

E160-L

Page : 13 of 21

Work Order CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water	Evaluation: * = Holding time exceeds										
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analysis			
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval	
Physical Tests : Turbidity by Nephelometry											
HDPE RG_LCUT_WS_LAEMP_LCO_2022-07_N	E121	12-Jul-2022					14-Jul-2022	3 days	2 days	✓	
Physical Tests : Turbidity by Nephelometry											
HDPE RG_LILC3_WS_LAEMP_LCO_2022-07_N	E121	12-Jul-2022					14-Jul-2022	3 days	2 days	✓	
Physical Tests : Turbidity by Nephelometry											
HDPE RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E121	12-Jul-2022					14-Jul-2022	3 days	2 days	✓	
Physical Tests : Turbidity by Nephelometry											
HDPE RG_SLINE_WS_LAEMP_LCO_2022-07_N	E121	12-Jul-2022					14-Jul-2022	3 days	2 days	✓	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)											
HDPE total (nitric acid) RG_LCUT_WS_LAEMP_LCO_2022-07_N	E420.Cr-L	12-Jul-2022					17-Jul-2022	180 days	5 days	✓	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)											
HDPE total (nitric acid) RG_LILC3_WS_LAEMP_LCO_2022-07_N	E420.Cr-L	12-Jul-2022					17-Jul-2022	180 days	5 days	✓	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)											
HDPE total (nitric acid) RG_SLINE_WS_LAEMP_LCO_2022-07_N	E420.Cr-L	12-Jul-2022					17-Jul-2022	180 days	5 days	✓	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)											
HDPE total (nitric acid) RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E420.Cr-L	12-Jul-2022					18-Jul-2022	180 days	6 days	✓	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid) RG_LCUT_WS_LAEMP_LCO_2022-07_N	E508	12-Jul-2022					20-Jul-2022	28 days	8 days	✓	

Page : 14 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

attix. Water						araaron.	riolaling time exce	oudinoo ,	***************************************	riolaling
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E508	12-Jul-2022					20-Jul-2022	28 days	8 days	✓
intel Matela - Total Mayoum: in Water by CVAAC										
otal Metals : Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid)										
RG RIVER WS LAEMP LCO 2022-07 NP	E508	12-Jul-2022					20-Jul-2022	28 days	8 davs	1
								,		
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_SLINE_WS_LAEMP_LCO_2022-07_N	E508	12-Jul-2022					20-Jul-2022	28 days	8 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-07_N	E420	12-Jul-2022					17-Jul-2022	180	5 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)	F400	40 1 1 0000					47 1 1 0000			
RG_LILC3_WS_LAEMP_LCO_2022-07_N	E420	12-Jul-2022					17-Jul-2022	180	5 days	✓
otal Metals : Total Metals in Water by CRC ICPMS								days		
HDPE total (nitric acid)										
RG SLINE WS LAEMP LCO 2022-07 N	E420	12-Jul-2022					17-Jul-2022	180	5 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-07_NP	E420	12-Jul-2022					18-Jul-2022	180	6 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Page : 15 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	562431	1	18	5.5	5.0	1
Alkalinity Species by Titration	E290	562390	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	561445	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	562709	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	562705	1	20	5.0	5.0	✓
Conductivity in Water	E100	562389	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	565735	1	7	14.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	569406	1	19	5.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	565736	2	12	16.6	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	568728	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	562295	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	562704	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	562706	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	562707	1	20	5.0	5.0	✓
ORP by Electrode	E125	566201	1	20	5.0	5.0	✓
pH by Meter	E108	562388	1	20	5.0	5.0	√
Sulfate in Water by IC	E235.SO4	562710	1	12	8.3	5.0	✓
TDS by Gravimetry	E162	564856	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	565269	2	15	13.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	566816	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	569412	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	565270	3	38	7.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	568729	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	562817	2	40	5.0	5.0	✓
Turbidity by Nephelometry	E121	562145	2	40	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	562431	1	18	5.5	5.0	✓
Alkalinity Species by Titration	E290	562390	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	561445	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	562709	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	562705	1	20	5.0	5.0	√
Conductivity in Water	E100	562389	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	565735	1	7	14.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	569406	1	19	5.2	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	565736	1	12	8.3	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	568728	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	562295	1	20	5.0	5.0	1

Page : 16 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	562704	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	562706	1	20	5.0	5.0	√
Nitrite in Water by IC (Low Level)	E235.NO2-L	562707	1	20	5.0	5.0	√
ORP by Electrode	E125	566201	1	20	5.0	5.0	√
pH by Meter	E108	562388	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	562710	1	12	8.3	5.0	√
TDS by Gravimetry	E162	564856	1	20	5.0	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	565269	2	15	13.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	566816	1	20	5.0	5.0	√
Total Mercury in Water by CVAAS	E508	569412	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	565270	2	38	5.2	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	568729	1	20	5.0	5.0	√
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	562817	2	40	5.0	5.0	√
TSS by Gravimetry (Low Level)	E160-L	564848	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	562145	2	40	5.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	562431	1	18	5.5	5.0	✓
Alkalinity Species by Titration	E290	562390	1	20	5.0	5.0	<u> </u>
Ammonia by Fluorescence	E298	561445	1	20	5.0	5.0	<u> </u>
Bromide in Water by IC (Low Level)	E235.Br-L	562709	1	20	5.0	5.0	<u> </u>
Chloride in Water by IC (Low Level)	E235.CI-L	562705	1	20	5.0	5.0	<u> </u>
Conductivity in Water	E100	562389	1	20	5.0	5.0	<u> </u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	565735	1	7	14.2	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	569406	1	19	5.2	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	565736	2	12	16.6	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	568728	1	20	5.0	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	562295	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	562704	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	562706	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	562707	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	562710	1	12	8.3	5.0	✓
TDS by Gravimetry	E162	564856	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	565269	2	15	13.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	566816	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	569412	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	565270	2	38	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	568729	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	562817	2	40	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	564848	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	562145	2	40	5.0	5.0	✓

Page : 17 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water

Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification.

Wattis. Water		Lvaidati	on Qo nequ	orroy outorate ope	omounon, ·	ac negaciney with	imi opoomoan
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	561445	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	562709	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	562705	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	565735	1	7	14.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	569406	1	19	5.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	565736	2	12	16.6	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	568728	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	562295	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	562704	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	562706	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	562707	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	562710	1	12	8.3	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	565269	2	15	13.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	566816	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	569412	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	565270	2	38	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	568729	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	562817	2	40	5.0	5.0	✓

Page : 18 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
ODD by Electrode	Calgary - Environmental	\\/-4	A C.T.M. D.4.400 (***1)	
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TOO I - O - i - t - t - t - t - 1	Calgary - Environmental	10/	A DUI A 05 40 D (******)	results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
,,	2102		()	filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Floorite in Wester Lov IO	Calgary - Environmental	10/	EDA 000 4 (*** 1)	
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
, , ,	2200.1102		,	detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
	3 7			

Page : 19 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 20 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	арна 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.

Page : 21 of 21

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Telephone

Date Analysis Commenced

Work Order Page CG2209155 : 1 of 22

Amendment

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle **Account Manager** : Lyudmyla Shvets Address 421 Pine Ave Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

: 13-Jul-2022

:+1 403 407 1800

Telephone Project : REGIONAL EFFECTS PROGRAM

Sparwood BC Canada

PO : VPO00816101

C-O-C number :REP LAEMP LCO 2022 JULY ALS

Sampler Site

: Teck Coal Master Quote Quote number

No. of samples received : 4 No. of samples analysed : 4

Date Samples Received : 13-Jul-2022 10:20

: 29-Jul-2022 15:20 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Vancouver Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Dan Gebert	Laboratory Analyst	Vancouver Metals, Burnaby, British Columbia
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Vancouver Metals, Burnaby, British Columbia
Kyle Chang	Lab Assistant	Vancouver Metals, Burnaby, British Columbia
Owen Cheng		Vancouver Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta
Parnian Sane	Analyst	Vancouver Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Russell Zhang		Vancouver Metals, Burnaby, British Columbia
Sara Niroomand		Calgary Inorganics, Calgary, Alberta

Page : 2 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 562145)										
CG2209139-005	Anonymous	turbidity		E121	0.10	NTU	0.91	0.85	0.06	Diff <2x LOR	
Physical Tests (QC	Lot: 562388)										
CG2209154-001	Anonymous	рН		E108	0.10	pH units	8.06	8.11	0.618%	4%	
Physical Tests (QC	Lot: 562389)										
CG2209154-001	Anonymous	conductivity		E100	2.0	μS/cm	162	162	0.247%	10%	
Physical Tests (QC	Lot: 562390)										
CG2209154-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	92.5	92.4	0.108%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	92.5	92.4	0.108%	20%	
Physical Tests (QC	Lot: 562431)										
CG2209154-009	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 562566)										
CG2209129-006	Anonymous	turbidity		E121	0.10	NTU	1.47	1.43	2.62%	15%	
Physical Tests (QC	Lot: 564856)										
CG2209154-008	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	135	132	2	Diff <2x LOR	
Physical Tests (QC	Lot: 566201)										
CG2209154-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	428	422	1.41%	15%	
Anions and Nutrien	its (QC Lot: 561445)										
CG2209149-011	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 562295)										
CG2209154-009	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0113	0.0116	2.62%	20%	
Anions and Nutrien	its (QC Lot: 562704)										
CG2209105-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
Anions and Nutrion	its (QC Lot: 562705)										
CG2209105-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.14	0.10	0.04	Diff <2x LOR	
Anions and Nutrion	its (QC Lot: 562706)					-					
CG2209105-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0590	0.0523	12.0%	20%	
	its (QC Lot: 562707)					<u> </u>					
CG2209105-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0014	0.0015	0.0001	Diff <2x LOR	
	,	- (/		1 1		J.		1 11 1	1		

Page : 4 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	ts (QC Lot: 562709) - co	ontinued									
CG2209105-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 562710)										
CG2209137-003	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	35.6	36.0	0.889%	20%	
Anions and Nutrien	ts (QC Lot: 562817)										
CG2209149-005	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0105	0.0100	0.0005	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 562818)										
CG2209155-002	RG_LCUT_WS_LAEMP_L CO_2022-07_N	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0023	0.0024	0.00006	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 566816)										
CG2209140-003	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	TKND
Organic / Inorganic	Carbon (QC Lot: 56872	B)									
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.86	0.79	0.08	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 568729	9)									
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	carbon, total organic [TOC]		E355-L	0.50	mg/L	0.79	0.88	0.09	Diff <2x LOR	
Total Metals (QC L	ot: 565269)										
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00018	0.00016	0.00002	Diff <2x LOR	
Total Metals (QC L	ot: 565270)										
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	sodium, total	7440-23-5	E420	0.050	mg/L	0.462	0.480	0.018	Diff <2x LOR	
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0105	0.0097	0.0008	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00012	0.00012	0.0000004	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0264	0.0266	0.803%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0181 µg/L	0.0000226	0.0000045	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	34.1	33.9	0.546%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0014	0.0014	0.000006	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	9.02	9.25	2.55%	20%	
		magnesium, total	1400-00-4	L720	0.0000	IIIg/L	9.02	9.23	2.0070	2070	

Page : 5 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

ub-Matrix: Water						Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie		
otal Metals (QC Lo	ot: 565270) - continued												
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000782	0.000794	1.58%	20%			
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
		potassium, total	7440-09-7	E420	0.050	mg/L	0.301	0.311	0.010	Diff <2x LOR			
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.755 μg/L	0.000831	9.62%	20%			
		silicon, total	7440-21-3	E420	0.10	mg/L	1.66	1.79	7.51%	20%			
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR			
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.0810	0.0837	3.25%	20%			
		sulfur, total	7704-34-9	E420	0.50	mg/L	6.54	6.63	1.40%	20%			
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR			
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR			
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000980	0.00102	4.02%	20%			
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0032	0.0002	Diff <2x LOR			
otal Metals (QC Lo	ot: 565291)												
G2209155-004	RG_RIVER_WS_LAEMP_ LCO 2022-07 NP	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0046	0.0040	0.0006	Diff <2x LOR			
	LCO_2022-07_INF	antimony, total	7440-36-0	E420	0.00010	mg/L	0.00030	0.00028	0.00002	Diff <2x LOR			
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00014	0.00013	0.000008	Diff <2x LOR			
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0328	0.0318	3.11%	20%			
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR			
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		boron, total	7440-42-8	E420	0.010	mg/L	0.013	0.014	0.0004	Diff <2x LOR			
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.460 μg/L	0.000480	4.11%	20%			
		calcium, total	7440-70-2	E420	0.050	mg/L	84.3	82.1	2.55%	20%			
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	0.00010	0.000004	Diff <2x LOR			
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR			
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0379	0.0382	0.726%	20%			
		magnesium, total	7439-95-4	E420	0.0050	mg/L	38.0	38.8	2.24%	20%			
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00243	0.00256	5.10%	20%			
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00165	0.00169	2.19%	20%			
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00870	0.00862	0.958%	20%			
		potassium, total	7440-09-7	E420	0.050	mg/L	1.47	1.50	1.86%	20%			
		selenium, total	7782-49-2	E420	0.000050	mg/L	42.6 µg/L	0.0419	1.72%	20%			

Page : 6 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Water						Labora	ntory Duplicate (D	UP) Report			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC L	ot: 565291) - continued										
CG2209155-004	RG_RIVER_WS_LAEMP_ LCO_2022-07_NP	silicon, total	7440-21-3	E420	0.10	mg/L	2.04	2.04	0.285%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	5.66	5.74	1.46%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.174	0.174	0.177%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	65.4	65.4	0.155%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000014	0.000014	0.0000004	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00300	0.00300	0.185%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0193	0.0200	0.0006	Diff <2x LOR	
Total Metals (QC L	ot: 565292)										
CG2209155-004	RG_RIVER_WS_LAEMP_ LCO_2022-07_NP	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00014	0.00015	0.00001	Diff <2x LOR	
otal Metals (QC L	ot: 569412)										
CG2209154-008	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 565735)										
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00016	0.00014	0.00002	Diff <2x LOR	
Dissolved Metals (QC Lot: 565736)										
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0024	0.0022	0.0002	Diff <2x LOR	
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00012	0.00012	0.000002	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0252	0.0255	1.04%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0161 µg/L	0.0000145	0.0000016	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	36.4	36.4	0.234%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00023	0.00023	0.0000004	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0015	0.0015	0.00003	Diff <2x LOR	

Page : 7 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 565736) - contin	ued									
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000771	0.000775	0.461%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.300	0.292	0.008	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.742 μg/L	0.000784	5.47%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.61	1.60	0.542%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	0.439	0.431	0.008	Diff <2x LOR	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.0789	0.0784	0.711%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	6.63	6.36	4.28%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000953	0.000952	0.138%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0028	0.0026	0.0001	Diff <2x LOR	
Dissolved Metals (QC Lot: 569406)										
CG2209154-008	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Qualifiers

Qualifier Description

TKND TKN duplication was poor due to interference from high nitrate, which causes negative bias on TKN.

Page : 8 of 22

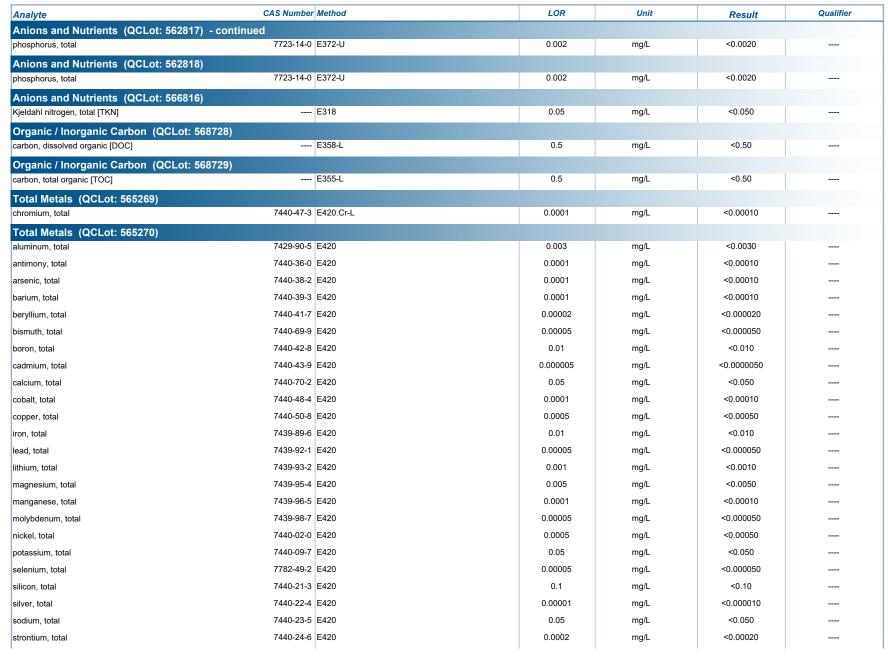
Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

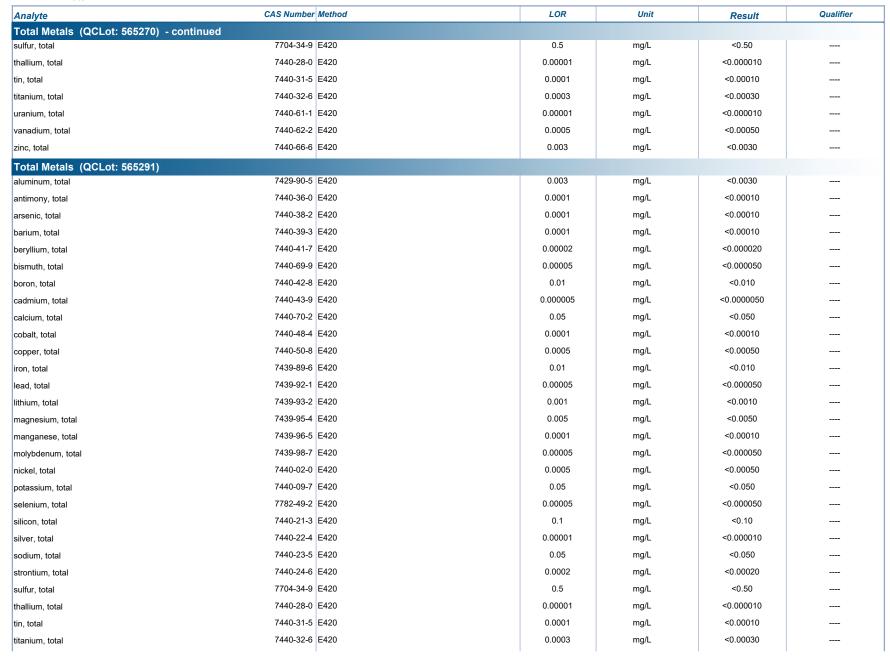

Part	Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (OCLot: 562389)	Physical Tests (QCLot: 562145)					
Part	turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 562390)	Physical Tests (QCLot: 562389)					
Mainly, Nearbonate (as CaCO3)	conductivity	E100	1	μS/cm	<1.0	
Ralinity, carbonate (as CaCO3)	Physical Tests (QCLot: 562390)					
Realinty, hydroxide (as CaCO3)	alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
Realinity, total (as CaCO3)	alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
hysical Tests (QCLot: 562431) cidity (as CaCO3) — E283 2 mg/L 2.2 mg/L 2.2 — hysical Tests (QCLot: 562566) cidity (as CaCO3) — E121 0.1 NTU < <0.10 — hysical Tests (QCLot: 564848) cidits (Accord Tests (QCLot: 564848) cidits (Accord Tests (QCLot: 564848) cidits (Accord Tests (QCLot: 564856) cidits (Accord Tests (QCLot: 564868)	alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
Early (as CaCO3)	alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Thysical Tests (QCLot: 562566) Includity	Physical Tests (QCLot: 562431)					
Page Page	acidity (as CaCO3)	E283	2	mg/L	2.2	
Physical Tests (QCLot: 564848)	Physical Tests (QCLot: 562566)				,	
Thysical Tosts (QCLot: 564856)	turbidity	E121	0.1	NTU	<0.10	
Physical Tosts (QCLot: 564856)	Physical Tests (QCLot: 564848)					
Side Storage TOS Stora	solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 561445) Immonia, total (as N) 7664-41-7 E298 0.005 mg/L <0.0050 Anions and Nutrients (QCLot: 562295) Interiors and Nutrients (QCLot: 562704) Indicated (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Indicated (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Indicated (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Indicated (as P) 14265-44-2 E378-U 0.001 mg/L <0.000 Indicated (as P) 14265-44-2 E378-U 0.001 mg/L <0.000 Indicated (as R) 16984-48-8 E235.F 0.002 mg/L <0.000 Indicated (as R) 14797-55-8 E35.NO3-L 0.005 mg/L <0.0050 Indicated (as N) 14797-65-0 E235.NO3-L 0.001 mg/L <0.0050 Indicated (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Indicated (as N) 14797-65-0 E235.NO2-L 0.05 mg/L <0.050 Indicated (as N) 14797-65-0 E235.NO2-L 0.05 mg/L <0.050 Indicated (as N) 14808-79-8 E235.SO4 0.3 mg/L <0.30	Physical Tests (QCLot: 564856)					
### Properties Part	solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 562295) Anions and Nutrients (QCLot: 562704) Anions and Nutrients (QCLot: 562704) Anions and Nutrients (QCLot: 562705) Anions and Nutrients (QCLot: 562705) Anions and Nutrients (QCLot: 562706) Anions and Nutrients (QCLot: 562706) Anions and Nutrients (QCLot: 562706) Anions and Nutrients (QCLot: 562707) Anions and Nutrients (QCLot: 562707) Anions and Nutrients (QCLot: 562707) Anions and Nutrients (QCLot: 562709) Anions and Nutrients (QCLot: 562709) Anions and Nutrients (QCLot: 562710) Anions and Anions and Anions and Anions and Anions and Anions and Anions and Anions and Anions and Anions and Anions and Anions and Anions and Anions and Anions anions and Anions anions anions and Anions an	Anions and Nutrients (QCLot: 561445)					
Marients Marients	ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Section Color Co	Anions and Nutrients (QCLot: 562295)					
16984-48-8 E235.F 0.02 mg/L <0.020	phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Initions and Nutrients (QCLot: 562705) Inloride 16887-00-6 E235.Cl-L 0.1 mg/L <0.10 Initions and Nutrients (QCLot: 562706) Itrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Initions and Nutrients (QCLot: 562707) Itrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Initions and Nutrients (QCLot: 562709) Initions and Nutrients (QCLot: 562709) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initions and Nutrients (QCLot: 562710) Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30 Initiate (as SO4) 14808-79-8 E235.SO4	Anions and Nutrients (QCLot: 562704)					
Section Sect	fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 562706) Itrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Inions and Nutrients (QCLot: 562707) Itrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Inions and Nutrients (QCLot: 562709) Inions and Nutrients (QCLot: 562709) Inions and Nutrients (QCLot: 562710)	Anions and Nutrients (QCLot: 562705)					
trate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050 Inions and Nutrients (QCLot: 562707) Inions and Nutrients (QCLot: 562709) Inions and Nutrients (QCLot: 562709) Inions and Nutrients (QCLot: 562709) Inions and Nutrients (QCLot: 562710)	chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 562707) Itrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 562709) Fromide 24959-67-9 E235.Br-L 0.05 mg/L <0.050 Anions and Nutrients (QCLot: 562710) Anions and Nutrients (QCLot: 562710) Anions and Nutrients (QCLot: 562710) Anions and Nutrients (QCLot: 562710) Anions and Nutrients (QCLot: 562710)	Anions and Nutrients (QCLot: 562706)					
Itrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Inions and Nutrients (QCLot: 562709) romide 24959-67-9 E235.Br-L 0.05 mg/L <0.050 Inions and Nutrients (QCLot: 562710) ulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30	nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 562709) romide 24959-67-9 E235.Br-L 0.05 mg/L <0.050 Anions and Nutrients (QCLot: 562710) ulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30	Anions and Nutrients (QCLot: 562707)					
romide 24959-67-9 E235.Br-L 0.05 mg/L <0.050 Anions and Nutrients (QCLot: 562710) Ulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30	nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 562710) Ulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30	Anions and Nutrients (QCLot: 562709)					
ulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L <0.30	bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
	Anions and Nutrients (QCLot: 562710)					
nions and Nutrients (QCLot: 562817)	sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
	Anions and Nutrients (QCLot: 562817)					

Page : 9 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

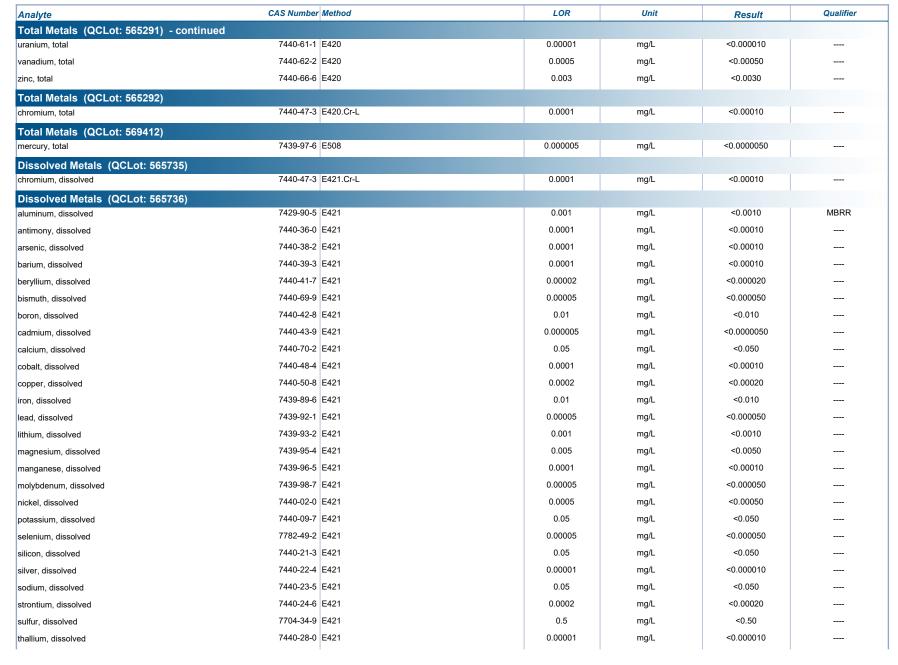


Page : 10 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM



Page : 11 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Page : 12 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 565736) - c	continued					
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 569406)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	

Qualifiers

Qualifier	Description

MBRR Initial MB for this submission had positive results for flagged analyte (data not shown). Low level samples were repeated with new QC (2nd MB results shown). High level results (>5x initial MB level) and non-detect results were reported and are defensible

Page : 13 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

b-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 562145)											
turbidity		E121	0.1	NTU	200 NTU	102	85.0	115			
Physical Tests (QCLot: 562388)											
рН		E108		pH units	7 pH units	100	98.6	101			
Physical Tests (QCLot: 562389)											
conductivity		E100	1	μS/cm	146.9 μS/cm	97.3	90.0	110			
Physical Tests (QCLot: 562390)											
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	104	85.0	115			
Physical Tests (QCLot: 562431)											
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	102	85.0	115			
Physical Tests (QCLot: 562566)											
turbidity		E121	0.1	NTU	200 NTU	101	85.0	115			
Physical Tests (QCLot: 564848)											
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	92.7	85.0	115			
Physical Tests (QCLot: 564856)											
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	100	85.0	115			
Physical Tests (QCLot: 566201)											
oxidation-reduction potential [ORP]		E125		mV	220 mV	97.8	95.4	104			
Anions and Nutrients (QCLot: 561445)	7004 44 7	5000	0.005								
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	95.6	85.0	115			
Anions and Nutrients (QCLot: 562295)	11005 11 0	5070.11	0.004					400			
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	100	80.0	120			
Anions and Nutrients (QCLot: 562704)	10001 10 0	5005.5	0.00								
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	100	90.0	110			
Anions and Nutrients (QCLot: 562705)											
chloride	16887-00-6	E235.Cl-L	0.1	mg/L	100 mg/L	99.6	90.0	110			
Anions and Nutrients (QCLot: 562706)											
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110			
Anions and Nutrients (QCLot: 562707)		5005 NOO 1	0.55				20.5	4.5			
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	97.1	90.0	110			
Anions and Nutrients (QCLot: 562709)											
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	99.7	85.0	115			
Anions and Nutrients (QCLot: 562710)											

Page : 14 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
				Spike Recovery (%) Recovery Limits (%)					
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Anions and Nutrients (QCLot: 562710) - cor	ntinued								
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110		
Anions and Nutrients (QCLot: 562817)									
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	8.02 mg/L	106	80.0	120		
Anions and Nutrients (QCLot: 562818)									
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	8.02 mg/L	101	80.0	120		
Anions and Nutrients (QCLot: 566816)									
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	98.4	75.0	125		
Organic / Inorganic Carbon (QCLot: 568728)									
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	8.57 mg/L	104	80.0	120		
Organic / Inorganic Carbon (QCLot: 568729)									
carbon, total organic [TOC]	E355-L	0.5	mg/L	8.57 mg/L	99.2	80.0	120		
Total Metals (QCLot: 565269)									
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	93.3	80.0	120		
Total Metals (QCLot: 565270)									
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	95.9	80.0	120		
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	99.4	80.0	120		
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	97.3	80.0	120		
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	92.8	80.0	120		
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	89.6	80.0	120		
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	94.4	80.0	120		
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	87.7	80.0	120		
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	93.1	80.0	120		
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	92.9	80.0	120		
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	94.0	80.0	120		
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	93.0	80.0	120		
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	96.4	80.0	120		
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	96.5	80.0	120		
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	88.9	80.0	120		
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	90.9	80.0	120		
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	97.0	80.0	120		
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	98.1	80.0	120		
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	94.6	80.0	120		
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	102	80.0	120		
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	99.1	80.0	120		
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	101	80.0	120		

Page : 15 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike Recovery (%) Recovery Limits (%)							
Analyte	CAS Number M	lethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Total Metals (QCLot: 565270) - continue	d											
silver, total	7440-22-4 E	420	0.00001	mg/L	0.1 mg/L	94.2	80.0	120				
sodium, total	7440-23-5 E	420	0.05	mg/L	50 mg/L	97.5	80.0	120				
strontium, total	7440-24-6 E	420	0.0002	mg/L	0.25 mg/L	99.4	80.0	120				
sulfur, total	7704-34-9 E	420	0.5	mg/L	50 mg/L	94.2	80.0	120				
thallium, total	7440-28-0 E	420	0.00001	mg/L	1 mg/L	96.3	80.0	120				
tin, total	7440-31-5 E	420	0.0001	mg/L	0.5 mg/L	93.2	80.0	120				
titanium, total	7440-32-6 E	420	0.0003	mg/L	0.25 mg/L	91.5	80.0	120				
uranium, total	7440-61-1 E	420	0.00001	mg/L	0.005 mg/L	98.8	80.0	120				
vanadium, total	7440-62-2 E	420	0.0005	mg/L	0.5 mg/L	96.2	80.0	120				
zinc, total	7440-66-6 E	420	0.003	mg/L	0.5 mg/L	97.6	80.0	120				
Total Metals (QCLot: 565291)												
aluminum, total	7429-90-5 E	420	0.003	mg/L	2 mg/L	111	80.0	120				
antimony, total	7440-36-0 E	420	0.0001	mg/L	1 mg/L	112	80.0	120				
arsenic, total	7440-38-2 E	420	0.0001	mg/L	1 mg/L	110	80.0	120				
barium, total	7440-39-3 E	420	0.0001	mg/L	0.25 mg/L	108	80.0	120				
beryllium, total	7440-41-7 E	420	0.00002	mg/L	0.1 mg/L	104	80.0	120				
bismuth, total	7440-69-9 E	420	0.00005	mg/L	1 mg/L	108	80.0	120				
boron, total	7440-42-8 E	420	0.01	mg/L	1 mg/L	101	80.0	120				
cadmium, total	7440-43-9 E	420	0.000005	mg/L	0.1 mg/L	105	80.0	120				
calcium, total	7440-70-2 E	420	0.05	mg/L	50 mg/L	106	80.0	120				
cobalt, total	7440-48-4 E	420	0.0001	mg/L	0.25 mg/L	108	80.0	120				
copper, total	7440-50-8 E	420	0.0005	mg/L	0.25 mg/L	108	80.0	120				
iron, total	7439-89-6 E	420	0.01	mg/L	1 mg/L	111	80.0	120				
lead, total	7439-92-1 E	420	0.00005	mg/L	0.5 mg/L	107	80.0	120				
lithium, total	7439-93-2 E	420	0.001	mg/L	0.25 mg/L	106	80.0	120				
magnesium, total	7439-95-4 E	420	0.005	mg/L	50 mg/L	109	80.0	120				
manganese, total	7439-96-5 E	420	0.0001	mg/L	0.25 mg/L	108	80.0	120				
molybdenum, total	7439-98-7 E	420	0.00005	mg/L	0.25 mg/L	109	80.0	120				
nickel, total	7440-02-0 E	420	0.0005	mg/L	0.5 mg/L	106	80.0	120				
potassium, total	7440-09-7 E	420	0.05	mg/L	50 mg/L	116	80.0	120				
selenium, total	7782-49-2 E	420	0.00005	mg/L	1 mg/L	109	80.0	120				
silicon, total	7440-21-3 E	420	0.1	mg/L	10 mg/L	111	80.0	120				
silver, total	7440-22-4 E	420	0.00001	mg/L	0.1 mg/L	104	80.0	120				
sodium, total	7440-23-5 E	420	0.05	mg/L	50 mg/L	113	80.0	120				
strontium, total	7440-24-6 E	420	0.0002	mg/L	0.25 mg/L	109	80.0	120				
sulfur, total	7704-34-9 E	420	0.5	mg/L	50 mg/L	112	80.0	120				
thallium, total	7440-28-0 E4	420	0.00001	mg/L	1 mg/L	109	80.0	120				

Page : 16 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water						Laboratory Control Sample (LCS) Report					
				Spike Recovery (%) Recovery Limits (%)								
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Total Metals (QCLot: 565291) - continue	ed											
tin, total	7440-31-5 E420	0.0001	mg/L	0.5 mg/L	108	80.0	120					
titanium, total	7440-32-6 E420	0.0003	mg/L	0.25 mg/L	99.4	80.0	120					
uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	115	80.0	120					
vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	108	80.0	120					
zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	107	80.0	120					
Total Metals (QCLot: 565292)												
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	108	80.0	120					
Total Metals (QCLot: 569412)												
mercury, total	7439-97-6 E508	0.000005	mg/L	0.0001 mg/L	98.5	80.0	120					
Dissolved Metals (QCLot: 565735)												
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	0.25 mg/L	102	80.0	120					
Dissolved Metals (QCLot: 565736)												
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	101	80.0	120					
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	100	80.0	120					
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	102	80.0	120					
barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	102	80.0	120					
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	99.5	80.0	120					
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	99.1	80.0	120					
boron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	95.9	80.0	120					
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	99.1	80.0	120					
calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	100	80.0	120					
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	99.1	80.0	120					
copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	99.3	80.0	120					
iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	99.2	80.0	120					
lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	98.4	80.0	120					
lithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	97.6	80.0	120					
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	105	80.0	120					
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	101	80.0	120					
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	104	80.0	120					
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	99.5	80.0	120					
potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	103	80.0	120					
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	100	80.0	120					
silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	102	80.0	120					
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	96.6	80.0	120					
sodium, dissolved	7440-23-5 E421	0.05	mg/L	50 mg/L	105	80.0	120					
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	103	80.0	120					

Page : 17 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 565736) - co	ntinued											
sulfur, dissolved	7704-34-9 E	E421	0.5	mg/L	50 mg/L	94.8	80.0	120				
thallium, dissolved	7440-28-0 E	E421	0.00001	mg/L	1 mg/L	102	80.0	120				
tin, dissolved	7440-31-5 E	E421	0.0001	mg/L	0.5 mg/L	95.5	80.0	120				
titanium, dissolved	7440-32-6 E	E421	0.0003	mg/L	0.25 mg/L	99.8	80.0	120				
uranium, dissolved	7440-61-1 E	E421	0.00001	mg/L	0.005 mg/L	103	80.0	120				
vanadium, dissolved	7440-62-2 E	E421	0.0005	mg/L	0.5 mg/L	103	80.0	120				
zinc, dissolved	7440-66-6 E	E421	0.001	mg/L	0.5 mg/L	101	80.0	120				
mercury, dissolved	7439-97-6 E	E509	0.000005	mg/L	0.0001 mg/L	97.3	80.0	120				

Page : 18 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	ents (QCLot: 561445)									
CG2209149-012	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0971 mg/L	0.1 mg/L	97.1	75.0	125	
nions and Nutri	ents (QCLot: 562295)									
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0440 mg/L	0.05 mg/L	88.1	70.0	130	
Anions and Nutri	ents (QCLot: 562704)									
CG2209105-007	Anonymous	fluoride	16984-48-8	E235.F	0.965 mg/L	1 mg/L	96.5	75.0	125	
nions and Nutri	ents (QCLot: 562705)									
CG2209105-007	Anonymous	chloride	16887-00-6	E235.CI-L	91.9 mg/L	100 mg/L	91.9	75.0	125	
nions and Nutri	ents (QCLot: 562706)									
CG2209105-007	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.32 mg/L	2.5 mg/L	92.7	75.0	125	
nions and Nutri	ents (QCLot: 562707)									
CG2209105-007	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.454 mg/L	0.5 mg/L	90.7	75.0	125	
nions and Nutri	ents (QCLot: 562709)									
CG2209105-007	Anonymous	bromide	24959-67-9	E235.Br-L	0.457 mg/L	0.5 mg/L	91.3	75.0	125	
nions and Nutri	ents (QCLot: 562710)									
CG2209137-004	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	96.6 mg/L	100 mg/L	96.6	75.0	125	
nions and Nutri	ents (QCLot: 562817)									
CG2209149-006	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0598 mg/L	0.0676 mg/L	88.5	70.0	130	
nions and Nutri	ents (QCLot: 562818)									
CG2209155-003	RG_LILC3_WS_LAEMP_LC O_2022-07_N	phosphorus, total	7723-14-0	E372-U	0.0546 mg/L	0.0676 mg/L	80.7	70.0	130	
nions and Nutri	ents (QCLot: 566816)									
CG2209140-004	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.48 mg/L	2.5 mg/L	99.3	70.0	130	
Organic / Inorgan	ic Carbon (QCLot: 5687	728)								
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	carbon, dissolved organic [DOC]		E358-L	5.55 mg/L	5 mg/L	111	70.0	130	
Organic / Inorgan	ic Carbon (QCLot: 5687	729)								
CG2209155-001	RG_SLINE_WS_LAEMP_L CO_2022-07_N	carbon, total organic [TOC]		E355-L	5.82 mg/L	5 mg/L	116	70.0	130	
Total Metals (QC									l	

Page : 19 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

ub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	Lot: 565269) - continue	d								
CG2209155-002	RG_LCUT_WS_LAEMP_LC O_2022-07_N	chromium, total	7440-47-3	E420.Cr-L	0.0369 mg/L	0.04 mg/L	92.2	70.0	130	
otal Metals (QC	Lot: 565270)									
CG2209155-002	RG_LCUT_WS_LAEMP_LC	aluminum, total	7429-90-5	E420	0.190 mg/L	0.2 mg/L	94.8	70.0	130	
	O_2022-07_N	antimony, total	7440-36-0	E420	0.0192 mg/L	0.02 mg/L	96.3	70.0	130	
		arsenic, total	7440-38-2	E420	0.0193 mg/L	0.02 mg/L	96.7	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0358 mg/L	0.04 mg/L	89.5	70.0	130	
		bismuth, total	7440-69-9	E420	0.00899 mg/L	0.01 mg/L	89.9	70.0	130	
		boron, total	7440-42-8	E420	0.094 mg/L	0.1 mg/L	93.6	70.0	130	
		cadmium, total	7440-43-9	E420	0.00365 mg/L	0.004 mg/L	91.2	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0179 mg/L	0.02 mg/L	89.6	70.0	130	
		copper, total	7440-50-8	E420	0.0175 mg/L	0.02 mg/L	87.7	70.0	130	
		iron, total	7439-89-6	E420	1.81 mg/L	2 mg/L	90.7	70.0	130	
		lead, total	7439-92-1	E420	0.0184 mg/L	0.02 mg/L	92.3	70.0	130	
		lithium, total	7439-93-2	E420	0.0827 mg/L	0.1 mg/L	82.7	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0188 mg/L	0.02 mg/L	94.2	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0196 mg/L	0.02 mg/L	98.1	70.0	130	
		nickel, total	7440-02-0	E420	0.0352 mg/L	0.04 mg/L	88.1	70.0	130	
		potassium, total	7440-09-7	E420	3.85 mg/L	4 mg/L	96.3	70.0	130	
		selenium, total	7782-49-2	E420	0.0394 mg/L	0.04 mg/L	98.5	70.0	130	
		silicon, total	7440-21-3	E420	8.94 mg/L	10 mg/L	89.4	70.0	130	
		silver, total	7440-22-4	E420	0.00383 mg/L	0.004 mg/L	95.7	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00370 mg/L	0.004 mg/L	92.5	70.0	130	
		tin, total	7440-31-5	E420	0.0189 mg/L	0.004 mg/L	94.6	70.0	130	
		titanium, total	7440-31-5	E420	0.0370 mg/L	0.02 mg/L 0.04 mg/L	92.6	70.0	130	
		uranium, total	7440-61-1	E420	0.00370 mg/L	0.004 mg/L	92.9	70.0	130	
		vanadium, total	7440-62-2	E420	0.0952 mg/L	0.004 mg/L 0.1 mg/L	95.2	70.0	130	
		zinc, total	7440-66-6	E420	0.365 mg/L	0.1 mg/L 0.4 mg/L	91.2	70.0	130	
otal Metals (QC	Lot: 565291)								1	1
CG2209166-001	Anonymous	aluminum, total	7429-90-5	E420	0.201 mg/L	0.2 mg/L	100	70.0	130	1

Page : 20 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

ub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
otal Metals (QC	Lot: 565291) - contir	nued								
CG2209166-001	Anonymous	antimony, total	7440-36-0	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		arsenic, total	7440-38-2	E420	0.0207 mg/L	0.02 mg/L	103	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0382 mg/L	0.04 mg/L	95.6	70.0	130	
		bismuth, total	7440-69-9	E420	0.00931 mg/L	0.01 mg/L	93.1	70.0	130	
		boron, total	7440-42-8	E420	0.092 mg/L	0.1 mg/L	91.6	70.0	130	
		cadmium, total	7440-43-9	E420	0.00388 mg/L	0.004 mg/L	97.0	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0191 mg/L	0.02 mg/L	95.4	70.0	130	
		copper, total	7440-50-8	E420	0.0186 mg/L	0.02 mg/L	92.8	70.0	130	
		iron, total	7439-89-6	E420	1.95 mg/L	2 mg/L	97.5	70.0	130	
		lead, total	7439-92-1	E420	0.0188 mg/L	0.02 mg/L	94.2	70.0	130	
		lithium, total	7439-93-2	E420	ND mg/L	0.1 mg/L	ND	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0196 mg/L	0.02 mg/L	98.0	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0210 mg/L	0.02 mg/L	105	70.0	130	
		nickel, total	7440-02-0	E420	0.0370 mg/L	0.04 mg/L	92.5	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130	
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, total	7440-21-3	E420	9.83 mg/L	10 mg/L	98.3	70.0	130	
		silver, total	7440-22-4	E420	0.00385 mg/L	0.004 mg/L	96.3	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00379 mg/L	0.004 mg/L	94.8	70.0	130	
		tin, total	7440-31-5	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		titanium, total	7440-32-6	E420	0.0407 mg/L	0.04 mg/L	102	70.0	130	
		uranium, total	7440-61-1	E420	ND mg/L	0.004 mg/L	ND	70.0	130	
		vanadium, total	7440-62-2	E420	0.101 mg/L	0.1 mg/L	101	70.0	130	
		zinc, total	7440-66-6	E420	0.371 mg/L	0.4 mg/L	92.7	70.0	130	
otal Metals (QC	Lot: 565292)									
CG2209166-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0394 mg/L	0.04 mg/L	98.5	70.0	130	
otal Metals (QC	Lot: 569412)									
CG2209154-009	Anonymous	mercury, total	7439-97-6	E508	0.0000957 mg/L	0.0001 mg/L	95.7	70.0	130	

Page : 21 of 22

Work Order : CG2209155 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	(QCLot: 565735) - cont	tinued								
CG2209155-002	RG_LCUT_WS_LAEMP_LC O_2022-07_N	chromium, dissolved	7440-47-3	E421.Cr-L	0.0398 mg/L	0.04 mg/L	99.6	70.0	130	
Dissolved Metals	(QCLot: 565736)									
CG2209155-002	RG_LCUT_WS_LAEMP_LC	aluminum, dissolved	7429-90-5	E421	0.205 mg/L	0.2 mg/L	102	70.0	130	
	O_2022-07_N					•				
CG2209155-002	RG_LCUT_WS_LAEMP_LC O 2022-07 N	antimony, dissolved	7440-36-0	E421	0.0204 mg/L	0.02 mg/L	102	70.0	130	
	0_2022-07_14	arsenic, dissolved	7440-38-2	E421	0.0203 mg/L	0.02 mg/L	102	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0383 mg/L	0.04 mg/L	95.7	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00834 mg/L	0.01 mg/L	83.4	70.0	130	
		boron, dissolved	7440-42-8	E421	0.095 mg/L	0.1 mg/L	94.9	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00398 mg/L	0.004 mg/L	99.4	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0188 mg/L	0.02 mg/L	93.8	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0188 mg/L	0.02 mg/L	94.2	70.0	130	
		iron, dissolved	7439-89-6	E421	1.93 mg/L	2 mg/L	96.4	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0184 mg/L	0.02 mg/L	91.8	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0905 mg/L	0.1 mg/L	90.5	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0195 mg/L	0.02 mg/L	97.5	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0213 mg/L	0.02 mg/L	107	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0376 mg/L	0.04 mg/L	93.9	70.0	130	
		potassium, dissolved	7440-02-0	E421	3.56 mg/L	4 mg/L	89.0	70.0	130	
		selenium, dissolved			Ŭ I	Ü		70.0		
		silicon, dissolved	7782-49-2	E421	0.0406 mg/L	0.04 mg/L	102		130	
			7440-21-3	E421	8.81 mg/L	10 mg/L	88.1	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00399 mg/L	0.004 mg/L	99.7	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00370 mg/L	0.004 mg/L	92.5	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0194 mg/L	0.02 mg/L	97.1	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0387 mg/L	0.04 mg/L	96.9	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00380 mg/L	0.004 mg/L	94.9	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0995 mg/L	0.1 mg/L	99.5	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.389 mg/L	0.4 mg/L	97.3	70.0	130	
issolved Metals	(QCLot: 569406)									
CG2209154-009	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000968 mg/L	0.0001 mg/L	96.8	70.0	130	

Page : 22 of 22

Work Order : CG2209155 Amendment 1
Client : Teck Coal Limited

Environmental Division
Calgary
Work Order Reference
CG2209155

WATER CHEMISTRY

ALS Laboratory Report CG2212408 (Finalized September 15, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2212408

: Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Avenue

Sparwood BC Canada V0B2G0

Telephone : ---

Client

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022-09_ALS

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 13-Sep-2022 09:11

Date Analysis Commenced : 13-Sep-2022

Issue Date : 15-Sep-2022 15:27

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Elke Tabora		Inorganics, Calgary, Alberta
Kevin Baxter		Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sara Niroomand		Metals, Calgary, Alberta
Sonthuong Bui	Laboratory Analyst	Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

Page : 2 of 6
Work Order : CG2212408

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

pH units	pH units
NTU	nephelometric turbidity units
mV	millivolts
mg/L	milligrams per litre
meq/L	milliequivalents per litre
μS/cm	Microsiemens per centimetre
μg/L	micrograms per litre
%	percent
-	No Unit
Unit	Description

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
HTA	Analytical holding time was exceeded.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 3 of 6
Work Order : CG2212408
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Ci	lient sample ID	RG_FRUL_WS_ LAEMP_LCO_2 022-09_N	 	
			Client samp	oling date / time	10-Sep-2022 08:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212408-001	 	
					Result	 	
Physical Tests							
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	193	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	235	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	7.2	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	4.3	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	200	 	
conductivity		E100	2.0	μS/cm	741	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	404	 	
oxidation-reduction potential [ORP]	<u></u>	E125	0.10	mV	331	 	
pH		E108	0.10	pH units	8.38	 	
solids, total dissolved [TDS]	<u></u>	E162	10	mg/L	562	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	 	
turbidity		E121	0.10	NTU	0.11 HTA	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	2.64	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.185	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.505 TKNI	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	11.2	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0039	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010 HTA	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	192	 	
Organic / Inorganic Carbon	14000-79-0						
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	 	
carbon, total organic [100]		E300-L	0.50	mg/L	\0.50	 	

Page : 4 of 6
Work Order : CG2212408
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Analyte Ion Balance anion sum cation sum ion balance (cations/anions)	CAS Number	Method EC101	Client sampl	ling date / time	022-09_N 10-Sep-2022 08:45	 	
Ion Balance anion sum cation sum			LOR	Unit	00.10		
anion sum cation sum		EC101		Orm	CG2212408-001	 	
anion sum cation sum		EC101			Result	 	
cation sum		ECIUI	0.10	meq/L	8.88	 	
		EC101	0.10	meq/L	8.22	 	
		EC101	0.010	%	92.6	 	
ion balance (APHA)		EC101	0.010	%	3.86	 	
Total Metals							
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0038	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00011	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.114	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0109	 	
calcium, total	7440-70-2	E420	0.050	mg/L	96.3	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000067	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0292	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	45.6	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00061	 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00125	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00064	 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.26	 	
selenium, total	7782-49-2	E420	0.050	μg/L	46.0	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.34	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	 	
sodium, total	7440-23-5	E420	0.050	mg/L	2.81	 	

Page : 5 of 6
Work Order : CG2212408
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Client sampling date / time	022-09_N 10-Sep-2022 08:45 CG2212408-001 Result 0.153 68.2 <0.000010 <0.00010 <0.00030	 	
Total Metals strontium, total 7440-24-6 E420 0.00020 mg/L sulfur, total 7704-34-9 E420 0.50 mg/L thallium, total 7440-28-0 E420 0.000010 mg/L	CG2212408-001 Result 0.153 68.2 <0.000010 <0.00010 <0.00030	 	
strontium, total 7440-24-6 E420 0.00020 mg/L sulfur, total 7704-34-9 E420 0.50 mg/L thallium, total 7440-28-0 E420 0.000010 mg/L	0.153 68.2 <0.000010 <0.00010 <0.00030	 	
strontium, total 7440-24-6 E420 0.00020 mg/L sulfur, total 7704-34-9 E420 0.50 mg/L thallium, total 7440-28-0 E420 0.000010 mg/L	68.2 <0.000010 <0.00010 <0.00030	 	
sulfur, total 7704-34-9 E420 0.50 mg/L thallium, total 7440-28-0 E420 0.000010 mg/L	<0.000010 <0.00010 <0.00030		
thallium, total 7440-28-0 E420 0.000010 mg/L	<0.000010 <0.00010 <0.00030		
, , , , , , , , , , , , , , , , , , , ,	<0.00010 <0.00030		
titanium, total 7440-32-6 E420 0.00030 mg/L		 	
uranium, total 7440-61-1 E420 0.000010 mg/L	0.00218	 	
vanadium, total 7440-62-2 E420 0.00050 mg/L	<0.00050	 	
zinc, total 7440-66-6 E420 0.0030 mg/L	<0.0030	 	
Dissolved Metals			
aluminum, dissolved 7429-90-5 E421 0.0010 mg/L	<0.0010	 	
antimony, dissolved 7440-36-0 E421 0.00010 mg/L	0.00011	 	
arsenic, dissolved 7440-38-2 E421 0.00010 mg/L	<0.00010	 	
barium, dissolved 7440-39-3 E421 0.00010 mg/L	0.100	 	
beryllium, dissolved 7440-41-7 E421 0.020 μg/L	<0.020	 	
bismuth, dissolved 7440-69-9 E421 0.000050 mg/L	<0.000050	 	
boron, dissolved 7440-42-8 E421 0.010 mg/L	0.010	 	
cadmium, dissolved 7440-43-9 E421 0.0050 μg/L	0.0069	 	
calcium, dissolved 7440-70-2 E421 0.050 mg/L	91.9	 	
chromium, dissolved 7440-47-3 E421.Cr-L 0.00010 mg/L	<0.00010	 	
cobalt, dissolved 7440-48-4 E421 0.10 μg/L	<0.10	 	
copper, dissolved 7440-50-8 E421 0.00020 mg/L	<0.00020	 	
iron, dissolved 7439-89-6 E421 0.010 mg/L	<0.010	 	
lead, dissolved 7439-92-1 E421 0.000050 mg/L	<0.000050	 	
lithium, dissolved 7439-93-2 E421 0.0010 mg/L	0.0256	 	
magnesium, dissolved 7439-95-4 E421 0.0050 mg/L	42.3	 	
manganese, dissolved 7439-96-5 E421 0.00010 mg/L	0.00031	 	
mercury, dissolved 7439-97-6 E509 0.0000050 mg/L	<0.0000050	 	
molybdenum, dissolved 7439-98-7 E421 0.000050 mg/L	0.00120	 	
nickel, dissolved 7440-02-0 E421 0.00050 mg/L	0.00055	 	
potassium, dissolved 7440-09-7 E421 0.050 mg/L	1.32	 	

Page : 6 of 6
Work Order : CG2212408
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Client sampling date / time 10-Sep-2022 08-45	Sub-Matrix: Water			CI	lient sample ID	RG_FRUL_WS_	 	
Client sampling date / time 10-Sep-2022 08-45	(Matrix: Water)					LAEMP_LCO_2		
CAS Number Method LOR Unit CG2212408-001						022-09_N		
Analyte CAS Number Method LOR Unit CG2212408-001				Client samp	oling date / time	10-Sep-2022	 	
Result Selenium, dissolved 7782-49-2 E421 0.050 μg/L 56.8 Selenium, dissolved 7440-21-3 E421 0.050 mg/L 2.40 Selenium, dissolved 7440-22-4 E421 0.00010 mg/L 4.000010 Selenium, dissolved 7440-23-5 E421 0.050 mg/L 2.85 Selenium, dissolved 7440-24-6 E421 0.00020 mg/L 0.154 Selenium, dissolved 7440-24-6 E421 0.00020 mg/L 66.8 Selenium, dissolved 7440-24-6 E421 0.00010 mg/L 4.000010 Selenium, dissolved 7440-24-6 E421 0.000010 mg/L 4.000010 Selenium, dissolved 7440-24-6 E421 0.00010 mg/L 4.000010 Selenium, dissolved 7440-34-9 E421 0.50 mg/L 4.000010 Selenium, dissolved 7440-31-5 E421 0.00010 mg/L 4.000010 Selenium, dissolved 7440-31-5 E421 0.00010 mg/L 4.000010 Selenium, dissolved 7440-32-6 E421 0.00030 mg/L 4.00030 Selenium, dissolved 7440-61-1 E421 0.00010 mg/L 4.00030 Selenium, dissolved 7440-66-6 E421 0.00050 mg/L 4.00050 Selenium, dissolved 7440-66-6 E421 0.00050 mg/L 4.00050 Selenium, dissolved 7440-66-6 E421 0.00050 mg/L 4.00050 Selenium, dissolved 7440-66-6 E421 0.00050 Selenium, dissolved 7440-66-6 E421 0.0010 Selenium, dissolved T440-66-6 E42						08:45		
Dissolved Metals Selenium, dissolved 7782-49-2 E421 0.050 µg/L 56.8	Analyte	CAS Number	Method	LOR	Unit	CG2212408-001	 	
selenium, dissolved 7782-49-2 E421 0.050 µg/L 56.8						Result	 	
silicon, dissolved 7440-21-3 E421 0.050 mg/L 2.40 silver, dissolved 7440-22-4 E421 0.000010 mg/L 2.000010 sodium, dissolved 7440-23-5 E421 0.050 mg/L 2.85 strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.154 sulfur, dissolved 7704-34-9 E421 0.50 mg/L 0.50 mg/L 0.154	Dissolved Metals							
silver, dissolved 7440-22-4 E421 0.000010 mg/L <0.000010	selenium, dissolved	7782-49-2	E421	0.050	μg/L	56.8	 	
sodium, dissolved 7440-23-5 E421 0.050 mg/L 0.154	silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.40	 	
strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.154	silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sulfur, dissolved 7704-34-9 E421 0.50 mg/L 66.8	sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.85	 	
thallium, dissolved 7440-28-0 E421 0.000010 mg/L <0.000010	strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.154	 	
tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010	sulfur, dissolved	7704-34-9	E421	0.50	mg/L	66.8	 	
titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030	thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.00227 <	tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
vanadium, dissolved 7440-62-2 E421 0.00050 mg/L <0.00050	titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
zinc, dissolved 7440-66-6 E421 0.0010 mg/L <0.0010 dissolved mercury filtration location EP509 Field	uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00227	 	
dissolved mercury filtration location EP509 Field	vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
	zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	 	
dissolved metals filtration location	dissolved mercury filtration location		EP509	-	-	Field	 	
2133017CG IIICIGIO II	dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Sparwood BC Canada V0B2G0

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212408** Page : 1 of 12

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle Account Manager : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

 Telephone
 : --- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 13-Sep-2022 09:11

Sampler : Jennifer Ings

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

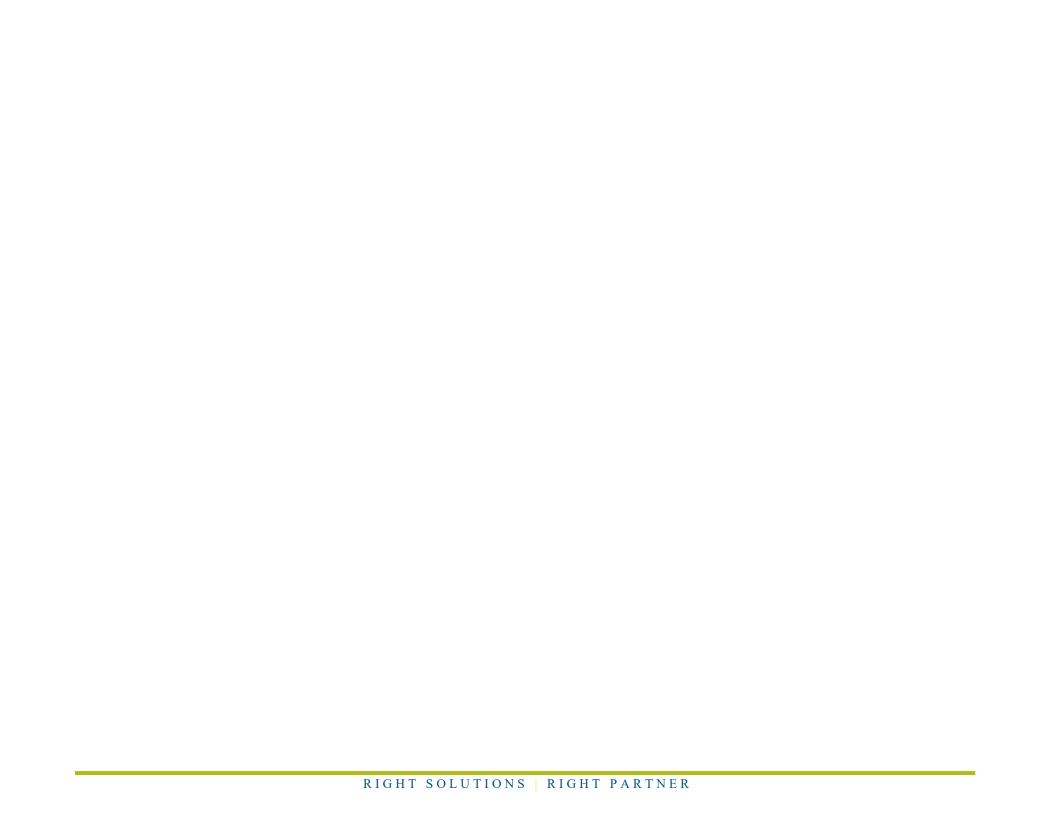
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 12 Work Order : CG2212408

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🛚	✓ = Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_FRUL_WS_LAEMP_LCO_2022-09_N	E298	10-Sep-2022	13-Sep-2022				13-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-09_N	E235.Br-L	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-09_N	E235.CI-L	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_FRUL_WS_LAEMP_LCO_2022-09_N	E378-U	10-Sep-2022	13-Sep-2022				13-Sep-2022	3 days	3 days	* EHTL
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-09_N	E235.F	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-09_N	E235.NO3-L	10-Sep-2022	14-Sep-2022	3 days	4 days	* EHTL	14-Sep-2022	3 days	0 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LAEMP_LCO_2022-09_N	E235.NO2-L	10-Sep-2022	14-Sep-2022				14-Sep-2022	3 days	4 days	# EHTL

Page : 4 of 12 Work Order : CG2212408

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						aldation. • -	noiding time exce	cuarioc , ·	- vvicinii	riolanig rii
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E235.SO4	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	√
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E318	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)									1	
Amber glass total (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E372-U	10-Sep-2022	14-Sep-2022				15-Sep-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E421.Cr-L	10-Sep-2022	14-Sep-2022				14-Sep-2022	180 days	4 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E509	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E421	10-Sep-2022	14-Sep-2022				14-Sep-2022	180 days	4 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	rel)									
Amber glass dissolved (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E358-L	10-Sep-2022	13-Sep-2022				14-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	ion (Low Level)									
Amber glass total (sulfuric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E355-L	10-Sep-2022	13-Sep-2022				14-Sep-2022	28 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E283	10-Sep-2022	14-Sep-2022				14-Sep-2022	14 days	4 days	✓

 Page
 : 5 of 12

 Work Order
 : CG2212408

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viatrix: water						aldation. • -	noiding time exce	Analys		Tribianing Till
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation					
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E290	10-Sep-2022	14-Sep-2022				14-Sep-2022	14 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E100	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	4 days	✓
Physical Tests : ORP by Electrode										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E125	10-Sep-2022					14-Sep-2022	0.25	99 hrs	æ
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG FRUL WS LAEMP LCO 2022-09 N	E108	10-Sep-2022	14-Sep-2022				14-Sep-2022	0.25	0.26	*
		,	,				·	hrs	hrs	EHTR-FN
Physical Tests : TDS by Gravimetry										
HDPE								T		
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E162	10-Sep-2022					14-Sep-2022	7 days	4 days	✓
								, -	, -	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E160-L	10-Sep-2022					14-Sep-2022	7 days	4 days	1
NO_1 NOE_WO_LNEWN _EGG_2022-05_N	2100 2	10 00p 2022					11 Cop 2022	, dayo	, dayo	
Physical Tests : Turbidity by Nephelometry HDPE							I			
	E121	10-Sep-2022					13-Sep-2022	3 days	3 days	√
RG_FRUL_WS_LAEMP_LCO_2022-09_N	LIZI	10-3ер-2022					13-3ep-2022	3 days	3 uays	,
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)									ı	I
HDPE - total (lab preserved)	E400.0-1	40.0 0000	44.6 2022				44.0 2000		4 -1	
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E420.Cr-L	10-Sep-2022	14-Sep-2022				14-Sep-2022	180	4 days	√
								days		
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_FRUL_WS_LAEMP_LCO_2022-09_N	E508	10-Sep-2022	14-Sep-2022				14-Sep-2022	28 days	5 days	✓

Page : 6 of 12 Work Order : CG2212408

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Extraction / Preparation							
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) RG_FRUL_WS_LAEMP_LCO_2022-09_N	E420	10-Sep-2022	14-Sep-2022				14-Sep-2022	180 days	4 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

Rec. HT: ALS recommended hold time (see units).

 Page
 : 7 of 12

 Work Order
 : CG2212408

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	646040	1	9	11.1	5.0	1
Alkalinity Species by Titration	E290	646035	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	645526	1	9	11.1	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	645945	1	3	33.3	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	645946	1	3	33.3	5.0	1
Conductivity in Water	E100	646037	1	5	20.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	646741	1	18	5.5	5.0	1
Dissolved Mercury in Water by CVAAS	E509	647532	1	13	7.6	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	646742	1	18	5.5	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	645441	1	9	11.1	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	645469	1	3	33.3	5.0	1
Fluoride in Water by IC	E235.F	645942	1	15	6.6	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	645947	1	3	33.3	5.0	√
Nitrite in Water by IC (Low Level)	E235.NO2-L	645948	1	3	33.3	5.0	✓
ORP by Electrode	E125	646219	1	9	11.1	5.0	✓
pH by Meter	E108	646036	1	5	20.0	5.0	✓
Sulfate in Water by IC	E235.SO4	645941	1	15	6.6	5.0	✓
TDS by Gravimetry	E162	647154	1	11	9.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	646084	1	5	20.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	645448	1	9	11.1	5.0	✓
Total Mercury in Water by CVAAS	E508	647531	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	646083	1	6	16.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	645442	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	646476	1	9	11.1	5.0	✓
Turbidity by Nephelometry	E121	645422	1	3	33.3	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	646040	1	9	11.1	5.0	✓
Alkalinity Species by Titration	E290	646035	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	645526	1	9	11.1	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	645945	1	3	33.3	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	645946	1	3	33.3	5.0	✓
Conductivity in Water	E100	646037	1	5	20.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	646741	1	18	5.5	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	647532	1	13	7.6	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	646742	1	18	5.5	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	645441	1	9	11.1	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	645469	1	3	33.3	5.0	1

 Page
 : 8 of 12

 Work Order
 : CG2212408

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type			Co	ount		Frequency (%)	<u> </u>
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	645942	1	15	6.6	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	645947	1	3	33.3	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	645948	1	3	33.3	5.0	
ORP by Electrode	E125	646219	1	9	11.1	5.0	
pH by Meter	E108	646036	1	5	20.0	5.0	<u>√</u>
Sulfate in Water by IC	E235.SO4	645941	1	15	6.6	5.0	<u> </u>
TDS by Gravimetry	E162	647154	1	11	9.0	5.0	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	646084	1	5	20.0	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	645448	1	9	11.1	5.0	<u>√</u>
Total Mercury in Water by CVAAS	E508	647531	1	13	7.6	5.0	√
Total Metals in Water by CRC ICPMS	E420	646083	1	6	16.6	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	645442	1	9	11.1	5.0	<u> </u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	646476	1	9	11.1	5.0	√
TSS by Gravimetry (Low Level)	E160-L	647137	1	17	5.8	5.0	<u>-</u> ✓
Turbidity by Nephelometry	E121	645422	1	3	33.3	5.0	√
Method Blanks (MB)							_
Acidity by Titration	E283	646040	1	9	11.1	5.0	✓
Alkalinity Species by Titration	E290	646035	1	20	5.0	5.0	√
Ammonia by Fluorescence	E298	645526	1	9	11.1	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	645945	1	3	33.3	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	645946	1	3	33.3	5.0	√
Conductivity in Water	E100	646037	1	5	20.0	5.0	<u>√</u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	646741	1	18	5.5	5.0	√
Dissolved Mercury in Water by CVAAS	E509	647532	1	13	7.6	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	646742	1	18	5.5	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	645441	1	9	11.1	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	645469	1	3	33.3	5.0	√
Fluoride in Water by IC	E235.F	645942	1	15	6.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	645947	1	3	33.3	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	645948	1	3	33.3	5.0	✓
Sulfate in Water by IC	E235.SO4	645941	1	15	6.6	5.0	✓
TDS by Gravimetry	E162	647154	1	11	9.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	646084	1	5	20.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	645448	1	9	11.1	5.0	✓
Total Mercury in Water by CVAAS	E508	647531	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	646083	1	6	16.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	645442	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	646476	1	9	11.1	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	647137	1	17	5.8	5.0	✓
Turbidity by Nephelometry	E121	645422	1	3	33.3	5.0	✓

 Page
 : 9 of 12

 Work Order
 : CG2212408

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

			-4		,		-1
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	645526	1	9	11.1	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	645945	1	3	33.3	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	645946	1	3	33.3	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	646741	1	18	5.5	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	647532	1	13	7.6	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	646742	1	18	5.5	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	645441	1	9	11.1	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	645469	1	3	33.3	5.0	✓
Fluoride in Water by IC	E235.F	645942	1	15	6.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	645947	1	3	33.3	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	645948	1	3	33.3	5.0	✓
Sulfate in Water by IC	E235.SO4	645941	1	15	6.6	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	646084	1	5	20.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	645448	1	9	11.1	5.0	✓
Total Mercury in Water by CVAAS	E508	647531	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	646083	1	6	16.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	645442	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	646476	1	9	11.1	5.0	✓

Page : 10 of 12 Work Order : CG2212408

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
ODD by Electrode	Calgary - Environmental	\\/-4	A C.T.M. D.4.400 (***1)	
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TOO I - O - i - t - t - t - t - 1	Calgary - Environmental	10/	A DUI A 05 40 D (******)	results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
,,	2102		()	filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Floorite in Wester Lov IO	Calgary - Environmental	10/	EDA 000 4 (*** 1)	
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
, , ,	2200.1102 2		,	detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
	3 7			

Page : 11 of 12 Work Order : CG2212408

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 12 of 12 Work Order : CG2212408

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS	E421.Cr-L	Water	APHA 3030 B/EPA	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by
(Low Level)	Calgary - Environmental		6020B (mod)	Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction
	Calgary - Environmental			with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by
Dissolved Hardness (Calculated)	Calgary - Environmental EC100	Water	APHA 2340B	CVAAS. "Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
Dissolved Hardness (Calculated)	Calgary - Environmental	vvalei	AF IIA 2340B	Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
D 5 TOU.	Calgary - Environmental			
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355	Water		Preparation for Total Organic Carbon by Combustion
	Calgary - Environmental			
Preparation for Dissolved Organic Carbon for Combustion	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
	Calgary - Environmental			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Calgary - Environmental			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Discolused Marsum Water Filter Harr	Calgary - Environmental	\A/-+	ADLIA 2020D	Water complex are filtered (0.45 um) and present of with LIO
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HCI.

QUALITY CONTROL REPORT

Work Order : CG2212408

Client : Teck Coal Limited
Contact : Cybele Heddle
Address : 421 Pine Avenue

Sparwood BC Canada V0B2G0

Telephone : ---

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022-09_ALS

Sampler : Jennifer Ings

Site :--

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Date Samples Received :13-Sep-2022 09:11

Date Analysis Commenced : 13-Sep-2022

Issue Date : 15-Sep-2022 15:27

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Elke Tabora		Calgary Inorganics, Calgary, Alberta	
Kevin Baxter		Calgary Metals, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta	
Sara Niroomand		Calgary Inorganics, Calgary, Alberta	
Sara Niroomand		Calgary Metals, Calgary, Alberta	
Sonthuong Bui	Laboratory Analyst	Calgary Metals, Calgary, Alberta	
Vladka Stamenova	Analyst	Calgary Inorganics, Calgary, Alberta	

 Page
 : 2 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 645422)										
CG2212408-001	RG_FRUL_WS_LAEMP_L CO_2022-09_N	turbidity		E121	0.10	NTU	0.11	0.11	0.001	Diff <2x LOR	
Physical Tests (QC	Lot: 646035)										
CG2212400-003	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	575	594	3.33%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	2.0	mg/L	575	594	3.33%	20%	
Physical Tests (QC	Lot: 646036)										
CG2212407-001	Anonymous	pH		E108	0.10	pH units	8.38	8.38	0.00%	4%	
Physical Tests (QC	Lot: 646037)										
CG2212407-001	Anonymous	conductivity		E100	2.0	μS/cm	769	762	0.914%	10%	
Physical Tests (QC	Lot: 646040)										
CG2212395-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 646219)										
CG2212395-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	313	315	0.541%	15%	
Physical Tests (QC	Lot: 647154)										
CG2212395-001	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	529	542	2.43%	20%	
Anions and Nutrien	ts (QC Lot: 645448)										
CG2212395-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	<0.500	<0.500	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 645469)										
CG2212408-001	RG_FRUL_WS_LAEMP_L CO 2022-09 N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 645526)									1	
CG2212395-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 645941)										
CG2212394-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	489	487	0.390%	20%	
Anions and Nutrien	ts (QC Lot: 645942)										
CG2212394-001	Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	0.181	0.185	0.004	Diff <2x LOR	
Anions and Nutr <u>ien</u>	ts (QC Lot: 645945)										
CG2212408-001	RG_FRUL_WS_LAEMP_L CO 2022-09 N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 645946)							<u> </u>		1	

Page : 4 of 18
Work Order : CG2212408
Client : Teck Coal Limited

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
nions and Nutrien	ts (QC Lot: 645946) - co	ontinued									
G2212408-001	RG_FRUL_WS_LAEMP_L CO_2022-09_N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	2.64	2.64	0.121%	20%	
nions and Nutrien	ts (QC Lot: 645947)										
:G2212408-001	RG_FRUL_WS_LAEMP_L CO_2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	11.2	11.2	0.127%	20%	
nions and Nutrien	ts (QC Lot: 645948)										
G2212408-001	RG_FRUL_WS_LAEMP_L CO_2022-09_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0039	0.0038	0.0001	Diff <2x LOR	
nions and Nutrien	ts (QC Lot: 646476)										
G2212395-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0071	0.0072	0.00009	Diff <2x LOR	
rganic / Inorganic	Carbon (QC Lot: 64544	1)									
G2212395-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
rganic / Inorganic	Carbon (QC Lot: 64544	2)									
G2212395-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
otal Metals (QC Lo	ot: 646083)										
G2212407-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0046	0.0048	0.0002	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00011	0.00010	0.000007	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	0.00012	0.00002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.109	0.108	1.48%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.011	0.010	0.0001	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0284 µg/L	0.0000292	0.0000008	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	97.2	98.5	1.30%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0322	0.0312	3.20%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	45.2	44.6	1.36%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00160	0.00147	8.14%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00128	0.00128	0.270%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00096	0.00088	0.00008	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.30	1.28	1.35%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	50.0 μg/L	0.0474	5.39%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.17	2.15	0.874%	20%	
			1	1	1						

 Page
 : 5 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 646083) - continued										
CG2212407-001	Anonymous	sodium, total	7440-23-5	E420	0.050	mg/L	2.80	2.79	0.0809%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.145	0.145	0.295%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	68.2	68.4	0.334%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00220	0.00216	2.03%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
otal Metals (QC Lo	ot: 646084)										
CG2212407-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	0.00016	0.00003	Diff <2x LOR	
Total Metals (QC Lo	ot: 647531)										
CG2212395-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 646741)										
CG2212207-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 646742)										
CG2212207-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00065	0.00067	0.00002	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00010	<0.00010	0.000003	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0502	0.0508	1.31%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.031	0.032	0.0007	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0869 µg/L	0.0000969	10.9%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	223	228	2.24%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.306	0.305	0.501%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	125	128	2.52%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00044	0.00048	0.00005	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00269	0.00280	3.97%	20%	
		morphacham, alasoreca		I	3.000000	9-	0.00200	0.00200	0.0.75		
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00659	0.00652	1.04%	20%	

Page : 6 of 18
Work Order : CG2212408
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 646742) - con	tinued									
CG2212207-001	Anonymous	selenium, dissolved	7782-49-2	E421	0.000050	mg/L	128 μg/L	0.135	5.63%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.60	2.66	2.27%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	10.8	11.1	2.46%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.381	0.392	2.84%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	179	188	4.75%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.0113	0.0116	2.59%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0031	0.0032	0.00007	Diff <2x LOR	
Dissolved Metals (QC Lot: 647532)										
CG2212395-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
							1				

 Page
 : 7 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 645422)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 646035)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 646037)					
conductivity	E100	1	μS/cm	1.2	
Physical Tests (QCLot: 646040)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 647137)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 647154)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 645448)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 645469)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 645526)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 645941)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 645942)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 645945)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 645946)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 645947)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 645948)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 646476)					

 Page
 : 8 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

	· · · · · · · · · · · · · · · · · · ·				
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 646					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLo					
arbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon(QCLo	t: 645442)				
arbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 646083)					
lluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
intimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
rsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
sismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8 E420	0.01	mg/L	<0.010	
admium, total	7440-43-9 E420	0.000005	mg/L	<0.0000050	
alcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.00050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
ilicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
ilver, total	7440-22-4 E420	0.00001	mg/L	<0.00010	
odium, total	7440-23-5 E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
ulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6 E420	0.0003	mg/L	<0.00010	
ıranium, total	7440-61-1 E420	0.00001	mg/L	<0.00000	
ranium, total	7440-61-1 E420 7440-62-2 E420	0.0005	mg/L	<0.00050	

 Page
 : 9 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 646083) - contin					
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 646084)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 647531)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 646741)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 646742)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.00010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	

 Page
 : 10 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Meth	nod	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 646742) - co	ntinued					
uranium, dissolved	7440-61-1 E421	1	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	1	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	1	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 647532)						
mercury, dissolved	7439-97-6 E509		0.000005	mg/L	<0.0000050	

Page : 11 of 18

Work Order : CG2212408

Client : Took Cool I in

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Con	trol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 645422)									
turbidity		E121	0.1	NTU	200 NTU	106	85.0	115	
Physical Tests (QCLot: 646035)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	104	85.0	115	
Physical Tests (QCLot: 646036)									
рН		E108		pH units	7 pH units	101	98.6	101	
Physical Tests (QCLot: 646037)									
conductivity		E100	1	μS/cm	146.9 μS/cm	96.9	90.0	110	
Physical Tests (QCLot: 646040)									
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	104	85.0	115	
Physical Tests (QCLot: 646219)									
oxidation-reduction potential [ORP]		E125		mV	220 mV	102	95.4	104	
Physical Tests (QCLot: 647137)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	99.8	85.0	115	
Physical Tests (QCLot: 647154)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	99.0	85.0	115	
Anions and Nutrients (QCLot: 645448)									ı
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	99.6	75.0	125	
Anions and Nutrients (QCLot: 645469)		E000 11	0.77					45-	ı
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	96.8	80.0	120	
Anions and Nutrients (QCLot: 645526)		E000	0						ı
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	98.4	85.0	115	
Anions and Nutrients (QCLot: 645941)									ı
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 645942)									ı
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 645945)									ı
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	104	85.0	115	
Anions and Nutrients (QCLot: 645946)									ı
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 645947)									ı
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 645948)									

 Page
 : 12 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 645948)	- continued							
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 646476)								
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	0.03 mg/L	94.4	80.0	120	
Organic / Inorganic Carbon (QCLot: 645	5441)							
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	8.57 mg/L	103	80.0	120	
Organic / Inorganic Carbon (QCLot: 645	5442)							
carbon, total organic [TOC]	E355-L	0.5	mg/L	8.57 mg/L	105	80.0	120	
Total Metals (QCLot: 646083)								
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	98.5	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	95.8	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	93.0	80.0	120	
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	96.0	80.0	120	
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	95.5	80.0	120	
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	102	80.0	120	
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	92.3	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	94.6	80.0	120	
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	93.0	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	93.9	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	93.0	80.0	120	
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	104	80.0	120	
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	102	80.0	120	
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	102	80.0	120	
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	102	80.0	120	
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	96.2	80.0	120	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	96.5	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	93.9	80.0	120	
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	97.2	80.0	120	
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	90.8	80.0	120	
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	103	60.0	140	
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	83.2	80.0	120	
sodium, total	7440-23-5 E420	0.05	mg/L	50 mg/L	98.3	80.0	120	
strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	95.7	80.0	120	
sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	93.9	80.0	120	
thallium, total	7440-28-0 E420	0.00001	mg/L	1 mg/L	97.8	80.0	120	
tin, total	7440-31-5 E420	0.0001	mg/L	0.5 mg/L	96.1	80.0	120	
•			_					

 Page
 : 13 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Total Metals (CCLot: 646083) - continued Tatal Metals (CCLot: 646084) Total Metals (CCLo	Sub-Matrix: Water					Laboratory Co	ontrol Sample (LCS)	Report	
Total Metals (QCLot: 646083) - continued 7446-32-6 6420 0.0003 mpl. 0.25 mgl. 91.7 80.0 12					Spike	Recovery (%)	Recovery	Limits (%)	
Manufact 7440-324 E420 0.0003 mg/L 0.25 mg/L 91.7 80.0 120	Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
uranium, total 7440-81-1 E420 0.00001 mgL 0.005mgL 91.5 80.0 120 120 vanadum, total 7440-82-2 E420 0.0003 mgL 0.5mgL 91.0 80.0 120 120 120 120 120 120 120 120 120 12	Total Metals (QCLot: 646083) - continue	d							
vanadium, total 7440-62-2 E420 0.0005 mgl. 0.5 mgl. 94.1 80.0 120 zonc, folial 740-66-6 E420 0.0003 mgl. 0.5 mgl. 91.0 80.0 120 Total Metals (OCLot: 646784) Total Metals (OCLot: 647531) mercury, total 7439-67-6 E508 0.000005 mgl. 0.0001 mgl. 100 80.0 120 Dissolved Metals (OCLot: 646741) Commun, dissolved 7440-47-3 E421 Cr.L. 0.0001 mgl. 0.25 mgl. 99.0 80.0 120 Dissolved Metals (OCLot: 646742) Authority dissolved 7440-47-3 E421 0.001 mgl. 2 mgl. 99.0 80.0 120 Dissolved Metals (OCLot: 646742) Authority dissolved 7440-85-0 E421 0.001 mgl. 1 mgl. 101 80.0 120 Dissolved Metals (OCLot: 646742) 7440-85-0 E421 0.0001 mgl. </td <td>titanium, total</td> <td>7440-32-6 E420</td> <td>0.0003</td> <td>mg/L</td> <td>0.25 mg/L</td> <td>91.7</td> <td>80.0</td> <td>120</td> <td></td>	titanium, total	7440-32-6 E420	0.0003	mg/L	0.25 mg/L	91.7	80.0	120	
Total Metals (CCLot: 646084) Total Metals (CCLot: 647531) mercury, total 7440-47-3	uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	91.5	80.0	120	
Total Metals (QCLot: 846984) Chromium, total T440-47-3 E420.Cr-L 0.0001 mg/L 0.25 mg/L 95.9 80.0 120	vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	94.1	80.0	120	
Total Metals (QCLot: 647531) Marcury, Iotal 7440-47-3 E420 Crk. 0.00001 mg/L 0.25 mg/L 0.0001 mg/L 100 80.0 12	zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	91.0	80.0	120	
Total Metals (QCLot: 647631) Mercury, Iotal 7440-47-3 E420 Crk. 0.00001 mg/L 0.25 mg/L 0.0001 mg/L	Total Metals (QCLot: 646084)								
Dissolved Metals (QCLot: 646741)		7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	95.9	80.0	120	
Dissolved Metals (QCLot: 646741)	Total Metals (QCI of: 647531)								
Dissolved Metals (QCLot: 646742) Sept. S		7439-97-6 E508	0.000005	mg/L	0.0001 mg/L	100	80.0	120	
Dissolved Metals (QCLot: 646742) 6421 Cr-L 0.0001 mg/L 0.25 mg/L 99.0 80.0 120									
Dissolved Metals (QCLot: 646742) 6421 Cr-L 0.0001 mg/L 0.25 mg/L 99.0 80.0 120	Dissolved Metals (QCLot: 646741)								
aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 103 80.0 120 antimory, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 101 80.0 120 antimory, dissolved 7440-36-2 E421 0.0001 mg/L 1 mg/L 99.1 80.0 120 barium, dissolved 7440-38-3 E421 0.0001 mg/L 0.25 mg/L 99.7 80.0 120 barium, dissolved 7440-41-7 E421 0.0002 mg/L 0.1 mg/L 106 80.0 120 beryllium, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 98.2 80.0 120 bismuth, dissolved 7440-42-8 E421 0.0005 mg/L 1 mg/L 98.6 80.0 120 boron, dissolved 7440-43-8 E421 0.01 mg/L 1 mg/L 98.6 80.0 120 calcium, dissolved 7440-44-8 E421 0.00005 mg/L 0.1 mg/L 98.8 80.0 120 calcium, dissolved 7440-84-8 E421 0.0005 mg/L 0.5 mg/L 95.4 80.0 120 cobalt, dissolved 7440-84-8 E421 0.000 mg/L 0.25 mg/L 96.5 80.0 120 cobalt, dissolved 7440-84-8 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 cobalt, dissolved 7440-84-8 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 coper, dissolved 7440-84-8 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 coper, dissolved 7439-89-8 E421 0.0005 mg/L 0.5 mg/L 96.5 80.0 120 lithium, dissolved 7439-89-5 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 lithium, dissolved 7439-95-1 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 manganesu, dissolved 7439-95-5 E421 0.0005 mg/L 0.5 mg/L 98.9 80.0 120 manganesu, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 98.7 80.0 120 manganesu, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 98.9 80.0 120 manganesu, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 98.9 80.0 120 manganesu, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 manganesu, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120		7440-47-3 E421.Cr-L	0.0001	mg/L	0.25 mg/L	99.0	80.0	120	
aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 103 80.0 120 antimory, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 101 80.0 120 antimory, dissolved 7440-36-2 E421 0.0001 mg/L 1 mg/L 99.1 80.0 120 barium, dissolved 7440-38-3 E421 0.0001 mg/L 0.25 mg/L 99.7 80.0 120 barium, dissolved 7440-41-7 E421 0.0002 mg/L 0.1 mg/L 106 80.0 120 beryllium, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 98.2 80.0 120 bismuth, dissolved 7440-42-8 E421 0.0005 mg/L 1 mg/L 98.6 80.0 120 boron, dissolved 7440-43-8 E421 0.01 mg/L 1 mg/L 98.6 80.0 120 calcium, dissolved 7440-44-8 E421 0.00005 mg/L 0.1 mg/L 98.8 80.0 120 calcium, dissolved 7440-84-8 E421 0.0005 mg/L 0.5 mg/L 95.4 80.0 120 cobalt, dissolved 7440-84-8 E421 0.000 mg/L 0.25 mg/L 96.5 80.0 120 cobalt, dissolved 7440-84-8 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 cobalt, dissolved 7440-84-8 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 coper, dissolved 7440-84-8 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 coper, dissolved 7439-89-8 E421 0.0005 mg/L 0.5 mg/L 96.5 80.0 120 lithium, dissolved 7439-89-5 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 lithium, dissolved 7439-95-1 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 manganesu, dissolved 7439-95-5 E421 0.0005 mg/L 0.5 mg/L 98.9 80.0 120 manganesu, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 98.7 80.0 120 manganesu, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 98.9 80.0 120 manganesu, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 98.9 80.0 120 manganesu, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 manganesu, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 manganesu, dissolved 7440-09-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120	Dissolved Metals (QCLot: 646742)								
arsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 99.1 80.0 120 barium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 99.7 80.0 120 beryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 106 80.0 120 beryllium, dissolved 7440-68-9 E421 0.00005 mg/L 1 mg/L 98.2 80.0 120 boron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 98.6 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 98.8 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 98.8 80.0 120 cadmium, dissolved 7440-69-9 E421 0.00005 mg/L 50 mg/L 50 mg/L 96.0 80.0 120 cobalt, dissolved 7440-60-8 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 copper, dissolved 7440-60-8 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 lead, dissolved 7439-89-6 E421 0.0002 mg/L 0.25 mg/L 96.5 80.0 120 lead, dissolved 7439-98-7 E421 0.0005 mg/L 0.55 mg/L 98.7 80.0 120 lithium, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 96.4 80.0 120 magnesium, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 96.4 80.0 120 magnesium, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 96.4 80.0 120 magnesium, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 96.4 80.0 120 magnesium, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 96.4 80.0 120 magnesium, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 96.4 80.0 120 magnesium, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 96.4 80.0 120 magnesium, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 96.4 80.0 120 magnesium, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 96.4 80.0 120 magnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 96.5 80.0 120 magnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 96.5 80.0 120 magnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 magnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 magnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 99.2 80.0 120 magnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 99.2 80.0 120 magnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 99.2 80.0 120 magnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 99.2 80.0		7429-90-5 E421	0.001	mg/L	2 mg/L	103	80.0	120	
barium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 99.7 80.0 120 beryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 106 80.0 120 bismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 98.2 80.0 120 bismuth, dissolved 7440-42-8 E421 0.00005 mg/L 1 mg/L 98.6 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 98.8 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 50 mg/L 95.4 80.0 120 calcium, dissolved 7440-43-9 E421 0.0001 mg/L 0.25 mg/L 95.4 80.0 120 calcium, dissolved 7440-84-8 E421 0.0001 mg/L 0.25 mg/L 96.0 80.0 120 copper, dissolved 7440-80-8 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 copper, dissolved 7439-89-6 E421 0.0002 mg/L 0.25 mg/L 96.5 80.0 120 ciron, dissolved 7439-98-2 E421 0.0001 mg/L 1 mg/L 108 80.0 120 ciron, dissolved 7439-98-2 E421 0.0001 mg/L 0.5 mg/L 98.7 80.0 120 ciron, dissolved 7439-98-2 E421 0.0001 mg/L 0.5 mg/L 98.7 80.0 120 ciron, dissolved 7439-98-2 E421 0.0001 mg/L 0.5 mg/L 98.7 80.0 120 ciron, dissolved 7439-98-2 E421 0.0001 mg/L 0.5 mg/L 98.7 80.0 120 ciron, dissolved 7439-98-2 E421 0.0001 mg/L 0.5 mg/L 98.7 80.0 120 ciron, dissolved 7439-98-2 E421 0.0001 mg/L 0.5 mg/L 98.7 80.0 120 ciron, dissolved 7439-98-2 E421 0.0001 mg/L 0.5 mg/L 99.9 80.0 120 ciron, dissolved 7439-98-2 E421 0.0001 mg/L 0.25 mg/L 99.9 80.0 120 ciron, dissolved 7439-98-2 E421 0.0001 mg/L 0.25 mg/L 99.9 80.0 120 ciron, dissolved 7439-98-7 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 ciron, dissolved 7439-98-7 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 ciron, dissolved 7439-98-7 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 ciron, dissolved 7439-98-7 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 ciron, dissolved 7439-98-7 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 ciron, dissolved 7439-98-7 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 ciron, dissolved 7439-98-7 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 ciron, dissolved 7440-00-7 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 ciron, dissolved 7440-00-7 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 ciron, dissolved 7440-00-7 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 ciron, dissolv	antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	101	80.0	120	
beryllium, dissolved	arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	99.1	80.0	120	
bismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 98.2 80.0 120 cadmium, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 98.6 80.0 120 cadmium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 98.8 80.0 120 calcium, dissolved 7440-49-8 E421 0.05 mg/L 50 mg/L 95.4 80.0 120 calcium, dissolved 7440-49-8 E421 0.001 mg/L 0.25 mg/L 96.0 80.0 120 cabalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 caper, dissolved 7440-89-8 E421 0.0002 mg/L 0.25 mg/L 96.5 80.0 120 iron, dissolved 7439-89-6 E421 0.000 mg/L 1 mg/L 108 80.0 120 iron, dissolved 7439-99-1 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 iron, dissolved 7439-99-2 E421 0.000 mg/L 0.25 mg/L 91.7 80.0 120 magnesium, dissolved 7439-99-6 E421 0.005 mg/L 0.25 mg/L 91.7 80.0 120 magnesium, dissolved 7439-99-6 E421 0.0005 mg/L 0.25 mg/L 94.9 80.0 120 magnesium, dissolved 7439-99-6 E421 0.0001 mg/L 0.25 mg/L 99.9 80.0 120 magnesium, dissolved 7439-99-6 E421 0.0001 mg/L 0.25 mg/L 99.9 80.0 120 magnesium, dissolved 7439-99-7 E421 0.0001 mg/L 0.25 mg/L 99.5 80.0 120 magnesium, dissolved 7439-99-7 E421 0.0001 mg/L 0.25 mg/L 99.5 80.0 120 molybdenum, dissolved 7439-99-7 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved 7440-020 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 molybdenum, dissolved	barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	99.7	80.0	120	
boron, dissolved 7440-42-8 E421	beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	106	80.0	120	
cadmium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 98.8 80.0 120 calcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 95.4 80.0 120 cobalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 96.0 80.0 120 copper, dissolved 7439-89-6 E421 0.0002 mg/L 0.25 mg/L 96.5 80.0 120 iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 108 80.0 120 lead, dissolved 7439-99-6 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 91.7 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 94.9 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 nickel, dissolve	bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	98.2	80.0	120	
calcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 95.4 80.0 120 cobalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 96.0 80.0 120 copper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 96.5 80.0 120 iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 108 80.0 120 lead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 91.7 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 94.9 80.0 120 molybdenum, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.4 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 99.5 80.0 120 potassium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120	boron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	98.6	80.0	120	
cobalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 96.0 80.0 120 copper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 96.5 80.0 120 iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 108 80.0 120 lead, dissolved 7439-92-1 E421 0.00005 mg/L 0.5 mg/L 98.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 91.7 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 94.9 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 96.4 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 potassium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120	cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	98.8	80.0	120	
copper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 96.5 80.0 120 iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 108 80.0 120 lead, dissolved 7439-92-1 E421 0.00005 mg/L 0.5 mg/L 98.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 91.7 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 94.9 80.0 120 molybdenum, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.4 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 99.5 80.0 120 potassium, dissolved 7440-02-7 E421 0.005 mg/L 50 mg/L 99.2 80.0 120	calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	95.4	80.0	120	
iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 108 80.0 120 lead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 91.7 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 94.9 80.0 120 manganese, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 96.4 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 molybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.55 mg/L 99.5 80.0 120 potassium, dissolved 7440-09-7 E421 0.005 mg/L 0.50 mg/L 99.2 80.0 120	cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	96.0	80.0	120	
lead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 91.7 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 94.9 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.4 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 mickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.55 mg/L 99.5 80.0 120 potassium, dissolved 7440-09-7 E421 0.005 mg/L 0.55 mg/L 99.2 80.0 120	copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	96.5	80.0	120	
lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 91.7 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 94.9 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.4 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 mickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.55 mg/L 99.5 80.0 120 potassium, dissolved 7440-09-7 E421 0.005 mg/L 0.55 mg/L 99.2 80.0 120	iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	108	80.0	120	
magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 94.9 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.4 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 99.5 80.0 120 nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 94.7 80.0 120 potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 99.2 80.0 120	lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	98.7	80.0	120	
manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.4 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 99.5 80.0 120 nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 94.7 80.0 120 potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 99.2 80.0 120	lithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	91.7	80.0	120	
molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 99.5 80.0 120 nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 94.7 80.0 120 potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 99.2 80.0 120	magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	94.9	80.0	120	
nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 94.7 80.0 120 potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 99.2 80.0 120	manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	96.4	80.0	120	
potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 99.2 80.0 120	molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	99.5	80.0	120	
	nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	94.7	80.0	120	
	potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	99.2	80.0	120	
selenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 90.2 80.0 120		7782-49-2 E421	0.00005	mg/L	_	90.2	80.0	120	
silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 100 60.0 140	silicon, dissolved	7440-21-3 E421	0.05		_		60.0	140	
silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 89.0 80.0 120		7440-22-4 E421	0.00001	-	_		80.0	120	
sodium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 99.7 80.0 120	sodium, dissolved	7440-23-5 E421	0.05	-			80.0	120	
strontium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 101 80.0 120	strontium, dissolved	7440-24-6 E421	0.0002	-	-		80.0	120	
sulfur, dissolved 7704-34-9 E421 0.5 mg/L 50 mg/L 99.0 80.0 120	sulfur, dissolved	7704-34-9 E421	0.5		_		80.0	120	

: 14 of 18 : CG2212408 Page Work Order Client

: Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 646742) - continu	ued								
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	99.4	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	97.2	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	98.8	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	96.2	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.8	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	103	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	104	80.0	120	

 Page
 : 15 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spil	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
Anions and Nutr	ients (QCLot: 645448)								
CG2212395-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.54 mg/L	2.5 mg/L	101	70.0	130	
Anions and Nutr	ients (QCLot: 645469)								
CG2212409-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0462 mg/L	0.05 mg/L	92.4	70.0	130	
Anions and Nutr	ients (QCLot: 645526)								
CG2212395-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.109 mg/L	0.1 mg/L	109	75.0	125	
Anions and Nutr	ients (QCLot: 645941)								
CG2212394-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125	
Anions and Nutr	ients (QCLot: 645942)								
CG2212394-002	Anonymous	fluoride	16984-48-8	E235.F	1.04 mg/L	1 mg/L	104	75.0	125	
Anions and Nutr	ients (QCLot: 645945)								
CG2212409-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.486 mg/L	0.5 mg/L	97.3	75.0	125	
Anions and Nutr	ients (QCLot: 645946)								
CG2212409-001	Anonymous	chloride	16887-00-6	E235.CI-L	97.9 mg/L	100 mg/L	97.9	75.0	125	
Anions and Nutr	ients (QCLot: 645947)								
CG2212409-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125	
Anions and Nutr	ients (QCLot: 645948)								
CG2212409-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.499 mg/L	0.5 mg/L	99.9	75.0	125	
Anions and Nutr	ients (QCLot: 646476)								
CG2212395-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0472 mg/L	0.05 mg/L	94.4	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 6	45441)								
CG2212395-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.72 mg/L	5 mg/L	114	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 6	45442)					<u>'</u>			
CG2212395-001	Anonymous	carbon, total organic [TOC]		E355-L	5.80 mg/L	5 mg/L	116	70.0	130	
Total Metals (Q	CLot: 646083)									
CG2212407-001	Anonymous	aluminum, total	7429-90-5	E420	1.92 mg/L	2 mg/L	96.3	70.0	130	
		antimony, total	7440-36-0	E420	0.186 mg/L	0.2 mg/L	93.2	70.0	130	
		arsenic, total	7440-38-2	E420	0.190 mg/L	0.2 mg/L	94.8	70.0	130	
		barium, total	7440-39-3	E420	0.178 mg/L	0.2 mg/L	88.8	70.0	130	
	1	beryllium, total	7440-41-7	E420	0.373 mg/L	0.4 mg/L	93.2	70.0	130	

 Page
 : 16 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Matrix Spike (MS) Report					
					Spi	ke	Recovery (%) Recov		Limits (%)		
.aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
otal Metals (QC	Lot: 646083) - cont	inued									
CG2212407-001	Anonymous	bismuth, total	7440-69-9	E420	0.0998 mg/L	0.1 mg/L	99.8	70.0	130		
		boron, total	7440-42-8	E420	0.899 mg/L	1 mg/L	89.9	70.0	130		
		cadmium, total	7440-43-9	E420	0.0393 mg/L	0.04 mg/L	98.2	70.0	130		
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130		
		cobalt, total	7440-48-4	E420	0.192 mg/L	0.2 mg/L	95.8	70.0	130		
		copper, total	7440-50-8	E420	0.194 mg/L	0.2 mg/L	97.0	70.0	130		
		iron, total	7439-89-6	E420	19.1 mg/L	20 mg/L	95.4	70.0	130		
		lead, total	7439-92-1	E420	0.203 mg/L	0.2 mg/L	102	70.0	130		
		lithium, total	7439-93-2	E420	0.934 mg/L	1 mg/L	93.4	70.0	130		
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130		
		manganese, total	7439-96-5	E420	0.194 mg/L	0.2 mg/L	96.9	70.0	130		
		molybdenum, total	7439-98-7	E420	0.199 mg/L	0.2 mg/L	99.5	70.0	130		
		nickel, total	7440-02-0	E420	0.384 mg/L	0.4 mg/L	96.0	70.0	130		
		potassium, total	7440-09-7	E420	38.3 mg/L	40 mg/L	95.8	70.0	130		
		selenium, total	7782-49-2	E420	0.388 mg/L	0.4 mg/L	97.0	70.0	130		
		silicon, total	7440-21-3	E420	102 mg/L	100 mg/L	102	70.0	130		
		silver, total	7440-22-4	E420	0.0384 mg/L	0.04 mg/L	96.1	70.0	130		
		sodium, total	7440-23-5	E420	19.6 mg/L	20 mg/L	97.9	70.0	130		
		strontium, total	7440-24-6	E420	0.197 mg/L	0.2 mg/L	98.5	70.0	130		
		sulfur, total	7704-34-9	E420	174 mg/L	200 mg/L	87.0	70.0	130		
		thallium, total	7440-28-0	E420	0.0361 mg/L	0.04 mg/L	90.2	70.0	130		
		tin, total	7440-31-5	E420	0.184 mg/L	0.2 mg/L	91.9	70.0	130		
		titanium, total	7440-32-6	E420	0.378 mg/L	0.4 mg/L	94.4	70.0	130		
		uranium, total	7440-61-1	E420	0.0373 mg/L	0.04 mg/L	93.3	70.0	130		
		vanadium, total	7440-62-2	E420	0.954 mg/L	1 mg/L	95.4	70.0	130		
		zinc, total	7440-66-6	E420	3.84 mg/L	4 mg/L	95.9	70.0	130		
otal Metals (QC	Lot: 646084)										
CG2212407-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.392 mg/L	0.4 mg/L	98.1	70.0	130		
otal Metals (QC	Lot: 647531)										
CG2212395-002	Anonymous	mercury, total	7439-97-6	E508	0.000103 mg/L	0.0001 mg/L	103	70.0	130		
issolved Metals	(QCLot: 646741)										
CG2212207-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.451 mg/L	0.4 mg/L	113	70.0	130		
issolved Metals	(QCLot: 646742)										
CG2212207-002	Anonymous	aluminum, dissolved	7429-90-5	E421	2.29 mg/L	2 mg/L	114	70.0	130		
	T .	antimony, dissolved	7440-36-0	E421	0.219 mg/L	0.2 mg/L	109	70.0	130		

 Page
 : 17 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Matrix Spike (MS) Report					
					Spi	ike	Recovery (%)	Recovery Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Dissolved Metals	(QCLot: 646742) -	continued									
CG2212207-002	Anonymous	arsenic, dissolved	7440-38-2	E421	0.213 mg/L	0.2 mg/L	106	70.0	130		
		barium, dissolved	7440-39-3	E421	0.148 mg/L	0.2 mg/L	74.3	70.0	130		
		beryllium, dissolved	7440-41-7	E421	0.439 mg/L	0.4 mg/L	110	70.0	130		
		bismuth, dissolved	7440-69-9	E421	0.111 mg/L	0.1 mg/L	111	70.0	130		
		boron, dissolved	7440-42-8	E421	1.05 mg/L	1 mg/L	105	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.0445 mg/L	0.04 mg/L	111	70.0	130		
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130		
		cobalt, dissolved	7440-48-4	E421	0.216 mg/L	0.2 mg/L	108	70.0	130		
		copper, dissolved	7440-50-8	E421	0.220 mg/L	0.2 mg/L	110	70.0	130		
		iron, dissolved	7439-89-6	E421	21.2 mg/L	20 mg/L	106	70.0	130		
		lead, dissolved	7439-92-1	E421	0.225 mg/L	0.2 mg/L	112	70.0	130		
		lithium, dissolved	7439-93-2	E421	0.956 mg/L	1 mg/L	95.6	70.0	130		
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130		
		manganese, dissolved	7439-96-5	E421	0.222 mg/L	0.2 mg/L	111	70.0	130		
		molybdenum, dissolved	7439-98-7	E421	0.217 mg/L	0.2 mg/L	108	70.0	130		
		nickel, dissolved	7440-02-0	E421	0.433 mg/L	0.4 mg/L	108	70.0	130		
		potassium, dissolved	7440-09-7	E421	40.9 mg/L	40 mg/L	102	70.0	130		
		selenium, dissolved	7782-49-2	E421	0.362 mg/L	0.4 mg/L	90.6	70.0	130		
		silicon, dissolved	7440-21-3	E421	82.1 mg/L	100 mg/L	82.1	70.0	130		
		silver, dissolved	7440-22-4	E421	0.0463 mg/L	0.04 mg/L	116	70.0	130		
		sodium, dissolved	7440-23-5	E421	20.3 mg/L	20 mg/L	101	70.0	130		
		strontium, dissolved	7440-24-6	E421	0.238 mg/L	0.2 mg/L	119	70.0	130		
		sulfur, dissolved	7704-34-9	E421	141 mg/L	200 mg/L	70.4	70.0	130		
		thallium, dissolved	7440-28-0	E421	0.0425 mg/L	0.04 mg/L	106	70.0	130		
		tin, dissolved	7440-31-5	E421	0.222 mg/L	0.2 mg/L	111	70.0	130		
		titanium, dissolved	7440-32-6	E421	0.451 mg/L	0.4 mg/L	113	70.0	130		
		uranium, dissolved	7440-61-1	E421	0.0404 mg/L	0.04 mg/L	101	70.0	130		
		vanadium, dissolved	7440-62-2	E421	1.08 mg/L	1 mg/L	108	70.0	130		
		zinc, dissolved	7440-66-6	E421	4.76 mg/L	4 mg/L	119	70.0	130		
issolved Metals	(QCLot: 647532)										
CG2212395-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.000100 mg/L	0.0001 mg/L	100	70.0	130		

 Page
 : 18 of 18

 Work Order
 : CG2212408

 Client
 : Teck Coal Limited

Teck KEP LAEMIP LUU ZUZZ-RUSH: Priorty TURNAROUND TIME: COC ID: 2-3 Business Days OTHER INFO LABORATORY PROJECT/CLIENT INFO EDD Excel PDF Facility Name / Job# Regional Effects Program Lab Name ALS Calgary Report Format / Distribution Lab Contact Lyudmyla Shyets Email 1: Project Manager Cybele Heddle AquaSciLab@Teck.com Email Lyudmyla Shvets@At SGlobal.com Email 2: Email Cybele Heddle@teck.com х teckcoal@equisonline.com Address 2559 29 Street NE Email 3: Address 421 Pine Avenue Teck Lab Results@teck.com X Email 4: Lisa.Bowron@minnow.ca Provinc BC City Calgary Province AB Email 5: City Sparwood Tyter Mehler@minnow.ca Postal Code T1Y 7B5 Postal Code V0B 2G0 Country Canada Country Canada Email 6: Hannah.Penner@Teck.com X Phone Number 403 407 1794 PO number VPO00816101 Phone Number 1-250-865-3048 ANALYSIS REQUESTED Filtered - F: Field, L: Lab, FL: Field & Lab, N: None SAMPLE DETAILS Ν **Environmental Division** Calgary
Work Order Reference
CG2212408 H2SO4 H2SO4 HCL HCL. Material (Yes/No) FECKCOAL METNHG LECKCOAL_METNHG_ FECKCOAL_ROUTINE Mercury_Dissolved [ercury_Total Hazardous G=Grab Telephone: +1 403 407 1600 DOC Sample Location Field Time C=Com # Of (sys loc code) Matrix Date (24hr) Cont RG_FRUL WS 2022/09/10 RG_FRUL_WS_LAEMP_LCO_2022-09_N 8:45 G 7 1 ACCEPTED BY/AFFILIATION DATE/TIME RELINOUISHED BY/AFFILIATION DATE/TIME ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Dissolved metals were field filtered and to be lab preserved Jennifer Ings/Minnow ############## Total metals to be lab preserved SERVICE REQUEST (rush - subject to availability) Regular (default) Jennifer Ings Mobile # 5195003444 Sampler's Name Priority (2-3 business days) - 50% surcharge X

Sampler's Signature

Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend - Contact ALS

September 12, 2022

Date/Time

WATER CHEMISTRY

ALS Laboratory Report CG2212276 (Finalized September 15, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2212276

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECT PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022-09_ALS

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 10-Sep-2022 11:45

Date Analysis Commenced : 11-Sep-2022

Issue Date : 15-Sep-2022 16:03

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta
Dwayne Bennett	Supervisor - Inorganic	Metals, Calgary, Alberta
Elke Tabora		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta
Millicent Brentnall	Laboratory Analyst	Metals, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sara Niroomand		Metals, Calgary, Alberta

Page : 2 of 6
Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Description
Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
Conductivity.
Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
colour, turbidity).
TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 3 of 6
Work Order : CG2212276
Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Analytical Results

Sub-Matrix: Water Client sample ID (Matrix: Water)						RG_LILC3_WS_ LAEMP_LCO_2 022-08_N	 	
		Client sampling date / time		09-Sep-2022 08:05	08-Sep-2022 09:30	 		
Analyte	AS Number	Method	LOR	Unit	CG2212276-001	CG2212276-002	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	186	230	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	226	281	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	11.0	<1.0	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	6.6	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	197	230	 	
conductivity		E100	2.0	μS/cm	709	968	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	413	561	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	240	244	 	
pH		E108	0.10	pH units	8.41	8.16	 	
solids, total dissolved [TDS]		E162	10	mg/L	499	712	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.3	<1.0	 	
turbidity		E121	0.10	NTU	0.22	0.20	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.250 DLDS	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	4.22	14.8	 	
	16984-48-8	E235.F	0.020	mg/L	0.208	0.207	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.126 TKNI	<0.500 DLM, TKNI	 	
	14797-55-8	E235.NO3-L	0.0050	mg/L	9.54	10.8	 	
	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0029	<0.0050 DLDS	 	
	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0025	0.0035	 	
	14808-79-8	E235.SO4	0.30	mg/L	189	316	 	
Organic / Inorganic Carbon				J.				
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.63	0.56	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.68	0.68	 	
		2000 2	0.00	mg/L	0.00	0.00		

Page : 4 of 6
Work Order : CG2212276
Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Analytical Results

Sub-Matrix: Water Client sample ID					RG_FO23_WS_	RG_LILC3_WS_			
(Matrix: Water)	LAEMP_LCO_2 022-09_N	LAEMP_LCO_2 022-08_N							
			Client samp	ling date / time	09-Sep-2022 08:05	08-Sep-2022 09:30			
Analyte	CAS Number	Method	LOR	Unit	CG2212276-001	CG2212276-002			
Lou Balance					Result	Result			
Ion Balance anion sum		EC101	0.10	meq/L	8.68	12.4			
cation sum		EC101	0.10	meq/L	8.43	11.7			
ion balance (cations/anions)		EC101	0.010	%	97.1	94.4			
ion balance (APHA)		EC101	0.010	%	1.46	2.90			
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0053	0.0052			
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00014	0.00031			
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00015	0.00016			
barium, total	7440-39-3	E420	0.00010	mg/L	0.0916	0.0561			
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020			
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050			
boron, total	7440-42-8	E420	0.010	mg/L	0.011	0.018			
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0333	0.372			
calcium, total	7440-70-2	E420	0.050	mg/L	97.4	128			
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00018	0.00014			
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	0.10			
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050			
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	0.022			
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050			
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0293	0.0587			
magnesium, total	7439-95-4	E420	0.0050	mg/L	41.6	59.8			
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00057	0.0115			
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050			
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00140	0.00284			
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00142	0.00992			
potassium, total	7440-09-7	E420	0.050	mg/L	1.28	1.74			
selenium, total	7782-49-2	E420	0.050	μg/L	40.9	49.3			
silicon, total	7440-21-3	E420	0.10	mg/L	2.55	2.56			
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.00010			
sodium, total	7440-23-5	E420	0.050	mg/L	3.66	9.74			
I and the second			1	· ·			ı	ı	1

Page : 5 of 6
Work Order : CG2212276
Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	RG_F023_WS_ LAEMP_LCO_2 022-09_N	RG_LILC3_WS_ LAEMP_LCO_2 022-08_N	 	
			·	ling date / time	09-Sep-2022 08:05	08-Sep-2022 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212276-001 Result	CG2212276-002 Result	 	
Total Metals					Nesuit	Result	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.174	0.233	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	76.3	114	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	0.000014	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00224	0.00400	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00057	0.00054	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0154	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	0.0011	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00012	0.00029	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0959	0.0561	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.011	0.019	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0230	0.356	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	95.7	123	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00011	0.00012	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	0.00026	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0277	0.0590	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	42.2	61.7	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00033	0.0116	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00139	0.00285	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00132	0.00936	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.18	1.65	 	

Page : 6 of 6
Work Order : CG2212276
Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_FO23_WS_	RG_LILC3_WS_	 	
(Matrix: Water)					LAEMP_LCO_2	LAEMP_LCO_2		
					022-09_N	022-08_N		
			Client samp	ling date / time	09-Sep-2022 08:05	08-Sep-2022 09:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212276-001	CG2212276-002	 	
					Result	Result	 	
Dissolved Metals								
selenium, dissolved	7782-49-2	E421	0.050	μg/L	49.7	60.0	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.41	2.40	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	3.65	9.57	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.164	0.217	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	70.5	112	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	0.000013	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00216	0.00395	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0012	0.0141	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212276** Page : 1 of 15

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

Address : 421 Pine Ave Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

 Telephone
 : --- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECT PROGRAM
 Date Samples Received
 : 10-Sep-2022 11:45

PO : VPO00816101 | Issue Date : 15-Sep-2022 16:04

C-O-C number : REP_LAEMP_LCO_2022-09_ALS

Sampler : Jennifer Ings

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

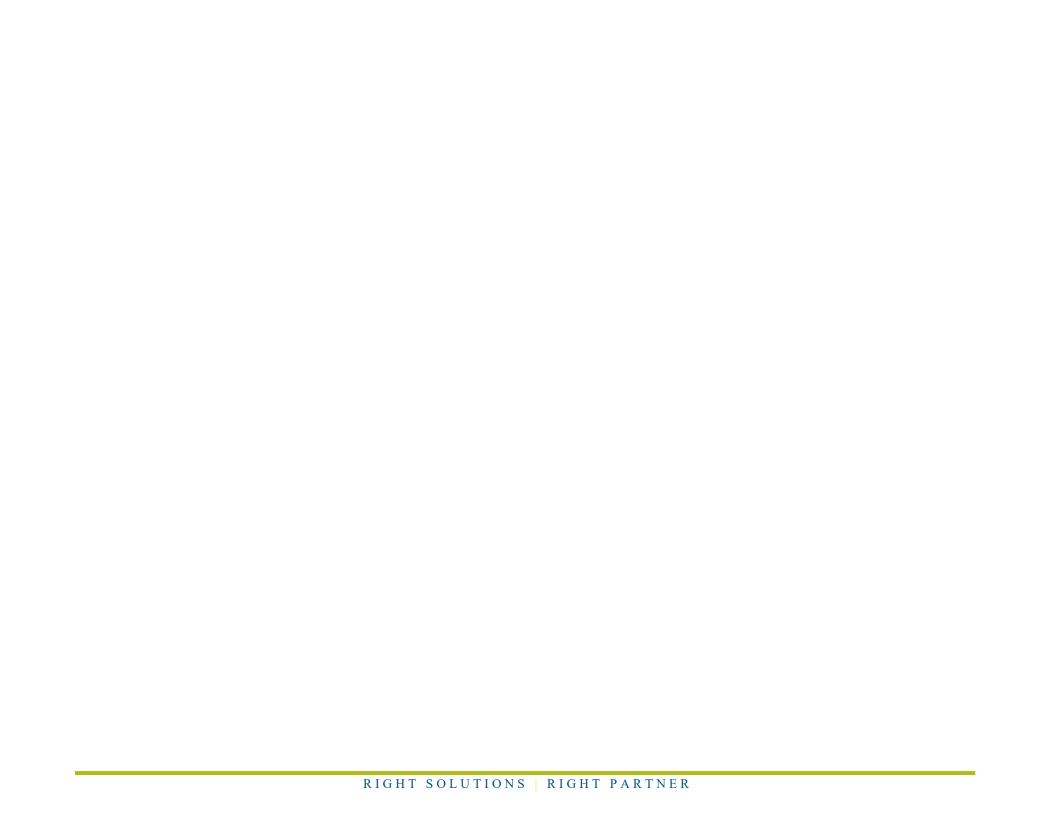
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation					Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_FO23_WS_LAEMP_LCO_2022-09_N	E298	09-Sep-2022	11-Sep-2022				11-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-08_N	E298	08-Sep-2022	11-Sep-2022				11-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_FO23_WS_LAEMP_LCO_2022-09_N	E235.Br-L	09-Sep-2022	11-Sep-2022				11-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-08_N	E235.Br-L	08-Sep-2022	11-Sep-2022				11-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_FO23_WS_LAEMP_LCO_2022-09_N	E235.CI-L	09-Sep-2022	11-Sep-2022				11-Sep-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-08_N	E235.CI-L	08-Sep-2022	11-Sep-2022				11-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_FO23_WS_LAEMP_LCO_2022-09_N	E378-U	09-Sep-2022	11-Sep-2022				11-Sep-2022	3 days	2 days	✓

Page : 4 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** E378-U 08-Sep-2022 ✓ 11-Sep-2022 11-Sep-2022 3 days 3 days RG LILC3 WS LAEMP LCO 2022-08 N ----Anions and Nutrients: Fluoride in Water by IC E235.F ✓ RG FO23 WS LAEMP LCO 2022-09 N 09-Sep-2022 11-Sep-2022 11-Sep-2022 28 days 2 days Anions and Nutrients: Fluoride in Water by IC HDPE E235.F 08-Sep-2022 11-Sep-2022 11-Sep-2022 28 days RG_LILC3_WS_LAEMP_LCO_2022-08_N 3 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_FO23_WS_LAEMP_LCO_2022-09_N E235.NO3-L 09-Sep-2022 11-Sep-2022 3 days 2 days ✓ 11-Sep-2022 3 days 0 davs ✓ Anions and Nutrients : Nitrate in Water by IC (Low Level) **HDPE** ✓ 1 RG_LILC3_WS_LAEMP_LCO_2022-08_N E235.NO3-L 08-Sep-2022 11-Sep-2022 11-Sep-2022 3 days 3 days 3 days 0 days Anions and Nutrients: Nitrite in Water by IC (Low Level) **HDPE** E235.NO2-L 09-Sep-2022 ✓ RG FO23 WS LAEMP LCO 2022-09 N 11-Sep-2022 11-Sep-2022 3 days 2 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG LILC3 WS LAEMP LCO 2022-08 N E235.NO2-L 08-Sep-2022 11-Sep-2022 11-Sep-2022 3 days 3 days ✓ ----Anions and Nutrients : Sulfate in Water by IC HDPE RG_FO23_WS_LAEMP_LCO_2022-09_N E235.SO4 09-Sep-2022 11-Sep-2022 11-Sep-2022 28 days 2 days ✓ Anions and Nutrients : Sulfate in Water by IC HDPE ✓ RG_LILC3_WS_LAEMP_LCO_2022-08_N E235.SO4 08-Sep-2022 11-Sep-2022 11-Sep-2022 28 days 3 days ----

Page : 5 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viaurix: vvater						diddion.	nolaing time exce	oudinoo ,	**********	riolanig riii
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_FO23_WS_LAEMP_LCO_2022-09_N	E318	09-Sep-2022	12-Sep-2022				12-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E318	08-Sep-2022	12-Sep-2022				12-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_FO23_WS_LAEMP_LCO_2022-09_N	E372-U	09-Sep-2022	12-Sep-2022				13-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E372-U	08-Sep-2022	12-Sep-2022				13-Sep-2022	28 days	5 days	✓
									-	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_FO23_WS_LAEMP_LCO_2022-09_N	E421.Cr-L	09-Sep-2022	12-Sep-2022				13-Sep-2022	180	5 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E421.Cr-L	08-Sep-2022	12-Sep-2022				13-Sep-2022	180	5 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_FO23_WS_LAEMP_LCO_2022-09_N	E509	09-Sep-2022	12-Sep-2022				12-Sep-2022	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E509	08-Sep-2022	12-Sep-2022				12-Sep-2022	28 days	4 days	✓
									-	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_FO23_WS_LAEMP_LCO_2022-09_N	E421	09-Sep-2022	12-Sep-2022				13-Sep-2022	180	5 days	✓
								days		

Page : 6 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

viaurix: water							nolding time exce			
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E421	08-Sep-2022	12-Sep-2022				13-Sep-2022	180	5 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	vel)									
Amber glass dissolved (sulfuric acid)										
RG FO23 WS LAEMP LCO 2022-09 N	E358-L	09-Sep-2022	11-Sep-2022				11-Sep-2022	28 days	2 days	1
			-				·		-	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E358-L	08-Sep-2022	11-Sep-2022				11-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	tion (Low Level)									
Amber glass total (sulfuric acid)										
RG_F023_WS_LAEMP_LC0_2022-09_N	E355-L	09-Sep-2022	11-Sep-2022				11-Sep-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	tion (Low Level)									
Amber glass total (sulfuric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E355-L	08-Sep-2022	11-Sep-2022				11-Sep-2022	28 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_F023_WS_LAEMP_LC0_2022-09_N	E283	09-Sep-2022	12-Sep-2022				12-Sep-2022	14 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E283	08-Sep-2022	12-Sep-2022				12-Sep-2022	14 days	4 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_FO23_WS_LAEMP_LCO_2022-09_N	E290	09-Sep-2022	12-Sep-2022				12-Sep-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration									I.	
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E290	08-Sep-2022	12-Sep-2022				12-Sep-2022	14 days	4 days	✓

Page : 7 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Fyt	traction / Pr			Holding time exce	Analys		
Container / Client Sample ID(s)	Wetriod	Sampling Date			g Times	Eval	Analysis Date		g Times	Eval
Container / Crieft Cample 15(3)			Preparation Date	Rec	Actual	⊏vai	Analysis Date	Rec	Actual	Evai
Physical Tests : Conductivity in Water										
HDPE RG_F023_WS_LAEMP_LCO_2022-09_N	E100	09-Sep-2022	12-Sep-2022				12-Sep-2022	28 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-08_N	E100	08-Sep-2022	12-Sep-2022				12-Sep-2022	28 days	4 days	✓
Physical Tests : ORP by Electrode										
HDPE RG_FO23_WS_LAEMP_LCO_2022-09_N	E125	09-Sep-2022					12-Sep-2022	0.25 hrs	76 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-08_N	E125	08-Sep-2022					12-Sep-2022	0.25 hrs	99 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_FO23_WS_LAEMP_LCO_2022-09_N	E108	09-Sep-2022	12-Sep-2022				12-Sep-2022	0.25 hrs	0.26 hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-08_N	E108	08-Sep-2022	12-Sep-2022				12-Sep-2022	0.25 hrs	0.26 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE RG_FO23_WS_LAEMP_LCO_2022-09_N	E162	09-Sep-2022					13-Sep-2022	7 days	4 days	✓
Physical Tests : TDS by Gravimetry										
HDPE RG_LILC3_WS_LAEMP_LCO_2022-08_N	E162	08-Sep-2022					13-Sep-2022	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_FO23_WS_LAEMP_LCO_2022-09_N	E160-L	09-Sep-2022					13-Sep-2022	7 days	5 days	✓

Page : 8 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; •	/ = Within	Holding
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eva
			Date	Rec	Actual			Rec	Actual	
hysical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E160-L	08-Sep-2022					13-Sep-2022	7 days	5 days	✓
hysical Tests : Turbidity by Nephelometry										
HDPE										
RG_FO23_WS_LAEMP_LCO_2022-09_N	E121	09-Sep-2022					11-Sep-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry HDPE							I			
RG LILC3 WS LAEMP LCO 2022-08 N	E121	08-Sep-2022					11-Sep-2022	3 days	3 days	✓
NO_LICO_WO_L/LIMI _E00_2022 00_N	2.2.	00 00p 2022					11 000 2022	o dayo	o dayo	
Fotal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_FO23_WS_LAEMP_LCO_2022-09_N	E420.Cr-L	09-Sep-2022	12-Sep-2022				13-Sep-2022	180	4 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)	F400 C-1	00.0 0000	10.0 0000				40.0 0000		5 1	,
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E420.Cr-L	08-Sep-2022	12-Sep-2022				13-Sep-2022	180	5 days	✓
								days		
Fotal Metals : Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid)					l l		I			
RG FO23 WS LAEMP LCO 2022-09 N	E508	09-Sep-2022	12-Sep-2022				12-Sep-2022	28 days	3 davs	1
		,	,				' '		,	
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-08_N	E508	08-Sep-2022	12-Sep-2022				12-Sep-2022	28 days	4 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)		00.0	400				40.0			
RG_FO23_WS_LAEMP_LCO_2022-09_N	E420	09-Sep-2022	12-Sep-2022				13-Sep-2022	180	4 days	✓
					<u> </u>			days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) RG_LILC3_WS_LAEMP_LCO_2022-08_N	E420	08-Sep-2022	12-Sep-2022				13-Sep-2022	180	5 days	✓
1.0_E1E00_VVO_EAEIVII _E00_2022-00_IV	L-720	00-06p-2022	12-00p-2022				10-00p-2022	days	Juays	•
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Page : 9 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Rec. HT: ALS recommended hold time (see units).

Page : 10 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	642501	1	17	5.8	5.0	1
Alkalinity Species by Titration	E290	642497	1	17	5.8	5.0	1
Ammonia by Fluorescence	E298	641825	1	16	6.2	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	641957	1	15	6.6	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	641958	1	15	6.6	5.0	✓
Conductivity in Water	E100	642496	1	17	5.8	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	643704	1	16	6.2	5.0	1
Dissolved Mercury in Water by CVAAS	E509	642719	1	17	5.8	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	643705	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	641869	1	14	7.1	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	641921	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	641956	1	15	6.6	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	641959	1	19	5.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	641960	1	19	5.2	5.0	✓
ORP by Electrode	E125	641962	1	15	6.6	5.0	✓
pH by Meter	E108	642495	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	641961	1	15	6.6	5.0	✓
TDS by Gravimetry	E162	645182	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	643302	1	16	6.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	642132	1	15	6.6	5.0	✓
Total Mercury in Water by CVAAS	E508	642722	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	643301	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	641870	1	15	6.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	642658	1	17	5.8	5.0	✓
Turbidity by Nephelometry	E121	641757	1	17	5.8	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	642501	1	17	5.8	5.0	✓
Alkalinity Species by Titration	E290	642497	1	17	5.8	5.0	√
Ammonia by Fluorescence	E298	641825	1	16	6.2	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	641957	1	15	6.6	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	641958	1	15	6.6	5.0	<u> </u>
Conductivity in Water	E100	642496	1	17	5.8	5.0	<u>√</u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	643704	1	16	6.2	5.0	<u> </u>
Dissolved Mercury in Water by CVAAS	E509	642719	1	17	5.8	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	643705	1	20	5.0	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	641869	1	14	7.1	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	641921	1	20	5.0	5.0	

Page : 11 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Matrix: Water

Evaluation: $\times = 0$	C frequency	/ outside	specification:	/ = 00	frequency within	specification

Matrix. Water		Lvaidati	on. • - Qo nequi	ericy outside spe	cinculion, -	QC Hequency with	min specimean
Quality Control Sample Type		·	Co	ount	Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	641956	1	15	6.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	641959	1	19	5.2	5.0	√
Nitrite in Water by IC (Low Level)	E235.NO2-L	641960	1	19	5.2	5.0	✓
ORP by Electrode	E125	641962	1	15	6.6	5.0	✓
pH by Meter	E108	642495	1	17	5.8	5.0	√
Sulfate in Water by IC	E235.SO4	641961	1	15	6.6	5.0	✓
TDS by Gravimetry	E162	645182	1	20	5.0	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	643302	1	16	6.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	642132	1	15	6.6	5.0	1
Total Mercury in Water by CVAAS	E508	642722	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	643301	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	641870	1	15	6.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	642658	1	17	5.8	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	645179	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	641757	1	17	5.8	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	642501	1	17	5.8	5.0	1
Alkalinity Species by Titration	E290	642497	1	17	5.8	5.0	1
Ammonia by Fluorescence	E298	641825	1	16	6.2	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	641957	1	15	6.6	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	641958	1	15	6.6	5.0	√
Conductivity in Water	E100	642496	1	17	5.8	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	643704	1	16	6.2	5.0	√
Dissolved Mercury in Water by CVAAS	E509	642719	1	17	5.8	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	643705	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	641869	1	14	7.1	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	641921	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	641956	1	15	6.6	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	641959	1	19	5.2	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	641960	1	19	5.2	5.0	<u>√</u>
Sulfate in Water by IC	E235.SO4	641961	1	15	6.6	5.0	1
TDS by Gravimetry	E162	645182	1	20	5.0	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	643302	1	16	6.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	642132	1	15	6.6	5.0	√
Total Mercury in Water by CVAAS	E508	642722	1	19	5.2	5.0	√
Total Metals in Water by CRC ICPMS	E420	643301	1	20	5.0	5.0	1
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	641870	1	15	6.6	5.0	√
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	642658	1	17	5.8	5.0	√
rss by Gravimetry (Low Level)	E160-L	645179	1	20	5.0	5.0	1

Page : 12 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Matrix: Water Evaluation: ▼ = QC frequency outside specification; ✓ = QC frequency within specification.

Evaluation. Water								
Quality Control Sample Type			Count Frequency (
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	641825	1	16	6.2	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	641957	1	15	6.6	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	641958	1	15	6.6	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	643704	1	16	6.2	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	642719	1	17	5.8	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	643705	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	641869	1	14	7.1	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	641921	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	641956	1	15	6.6	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	641959	1	19	5.2	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	641960	1	19	5.2	5.0	✓	
Sulfate in Water by IC	E235.SO4	641961	1	15	6.6	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	643302	1	16	6.2	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	642132	1	15	6.6	5.0	✓	
Total Mercury in Water by CVAAS	E508	642722	1	19	5.2	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	643301	1	20	5.0	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	641870	1	15	6.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	642658	1	17	5.8	5.0	✓	

Page : 13 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	J ,	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimeny (Low Lever)	E160-L	vvalei	AFHA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			

Page : 14 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 15 of 15 Work Order : CG2212276

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

QUALITY CONTROL REPORT

Work Order : CG2212276

Contact : Teck Coal Limited
Contact : Cybele Heddle
Address : 421 Pine Ave

: 421 Pine Ave Sparwood BC Canada

Telephone :----

•

Project : REGIONAL EFFECT PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022-09_ALS

Sampler : Jennifer Ings

Site :--

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 10-Sep-2022 11:45

Date Analysis Commenced : 11-Sep-2022

Issue Date : 15-Sep-2022 16:04

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta	
Dwayne Bennett	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta	
Elke Tabora		Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Millicent Brentnall	Laboratory Analyst	Calgary Metals, Calgary, Alberta	
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta	
Sara Niroomand		Calgary Inorganics, Calgary, Alberta	
Sara Niroomand		Calgary Metals, Calgary, Alberta	

 Page
 : 2 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	ntory Duplicate (D	иР) кероп		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 641757)										
CG2212274-001	Anonymous	turbidity		E121	0.10	NTU	0.50	0.57	0.06	Diff <2x LOR	
Physical Tests (QC	Lot: 641962)										
CG2212274-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	236	236	0.212%	15%	
Physical Tests (QC	Lot: 642495)										
CG2212274-001	Anonymous	рН		E108	0.10	pH units	8.17	8.20	0.366%	4%	
Physical Tests (QC	Lot: 642496)										
CG2212274-001	Anonymous	conductivity		E100	2.0	μS/cm	1710	1710	0.468%	10%	
Physical Tests (QC	Lot: 642497)										
CG2212274-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	274	271	1.06%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	274	271	1.06%	20%	
Physical Tests (QC	L of: 642501)										
CG2212274-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	L ot: 645192)										
CG2212233-003	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	837	852	1.72%	20%	
	,	some, comments (confi				<u> </u>					
CG2212274-001	ts (QC Lot: 641825) Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
	,	unimonia, total (ao 14)	7001111	2200	0.000	9.2	0.0000	0.0000		D 2/(2011	
Anions and Nutrien CG2212270-021	ts (QC Lot: 641921) Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
	•	priospriate, ortio-, dissolved (as F)	14203-44-2	L370-0	0.0010	IIIg/L	~0.0010	\0.0010	0	DIII VZX LOIX	
Anions and Nutrien CG2212274-001	ts (QC Lot: 641956) Anonymous	9	16984-48-8	E235.F	0.400	/I	0.405	0.400	0.005	D:# +0 I OD	
	,	fluoride	10904-40-0	E235.F	0.100	mg/L	0.195	0.190	0.005	Diff <2x LOR	
	ts (QC Lot: 641957)		04050 07.0	5005 B .	0.050	,,	.0.050	.0.050		D:# -0 10D	
CG2212274-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
	ts (QC Lot: 641958)										
CG2212274-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.50	mg/L	2.24	2.22	0.01	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 641959)										
CG2212274-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	6.17	6.14	0.419%	20%	
Anions and Nutrien	ts (QC Lot: 641960)										
CG2212274-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	

Page : 4 of 18
Work Order : CG2212276
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 641961) - co	ontinued									
CG2212274-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	932	923	0.990%	20%	
Anions and Nutrient	s (QC Lot: 642132)										
CG2212274-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.393	0.392	0.0005	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 642658)										
CG2212274-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0052	0.0031	0.0020	Diff <2x LOR	
Organic / Inorganic (Carbon (QC Lot: 64186	9)									
CG2212274-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.33	1.37	0.04	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 64187	0)									
CG2212274-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.39	1.28	0.11	Diff <2x LOR	
Total Metals (QC Lo	it: 642722)										
CG2212136-001	Anonymous	mercury, total	7439-97-6	E508	0.0000500	mg/L	<0.0000500	<0.0000500	0	Diff <2x LOR	
Total Metals (QC Lo	t: 643301)										
CG2212204-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0203	0.0186	0.0017	Diff <2x LOR	
	,	antimony, total	7440-36-0	E420	0.00010	mg/L	0.00017	0.00017	0.000001	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00048	0.00046	0.00001	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0164	0.0163	0.465%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.032	0.031	0.001	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0142 µg/L	0.0000107	0.0000035	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	236	228	3.49%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.39 µg/L	0.00039	0.000004	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.169	0.170	0.725%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.163	0.154	5.65%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	151	153	1.04%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0284	0.0288	1.56%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00190	0.00187	1.74%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00509	0.00520	2.10%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	4.58	4.63	1.15%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.808 µg/L	0.000831	2.79%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	3.22	3.23	0.333%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.00010	0	Diff <2x LOR	
		onvoi, total		- :7	0.0000.0	9/ =	0.0000.0	0.0000.0			

Page : 5 of 18
Work Order : CG2212276
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC L	ot: 643301) - continued										
CG2212204-001	Anonymous	strontium, total	7440-24-6	E420	0.00020	mg/L	0.542	0.539	0.538%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	266	268	0.696%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000020	0.000018	0.000001	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00017	0.00016	0.00002	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00771	0.00771	0.0799%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
otal Metals (QC L	ot: 643302)										
CG2212204-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals(QC Lot: 642719)										
CG2212274-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals(QC Lot: 643704)										
CG2212019-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00017	0.00016	0.000004	Diff <2x LOR	
issolved Metals(QC Lot: 643705)										
G2212019-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0019	0.0011	0.0008	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00015	0.00015	0.000002	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00024	0.00024	0.000002	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0844	0.0843	0.120%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.028	0.030	0.001	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0223 µg/L	0.0000188	0.0000035	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	96.6	96.1	0.432%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.12 μg/L	0.00011	0.000004	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0145	0.0145	0.159%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	37.8	37.1	1.82%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00217	0.00221	1.79%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00106	0.00108	1.72%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00513	0.00512	0.225%	20%	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.17	1.15	1.90%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	5		0.00472	0.351%	20%	

 Page
 : 6 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (Dl	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (0	QC Lot: 643705) - continu	ued									
CG2212019-001	Anonymous	silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.07	2.05	1.03%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	10.2	10.1	1.39%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.347	0.341	1.84%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	83.8	81.5	2.76%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000020	0.000018	0.000002	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00180	0.00184	2.32%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0010	0.0011	0.00009	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 641757)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 642496)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 642497)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 642501)					
acidity (as CaCO3)	E283	2	mg/L	2.1	
Physical Tests (QCLot: 645179)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 645182)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 641825)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 641921)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 641956)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 641957)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 641958)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 641959)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 641960)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 641961)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 642132)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 642658)					

 Page
 : 8 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 6426					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot					
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot	·				
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 642722)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
Total Metals (QCLot: 643301)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
ooron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	

Page : 9 of 18
Work Order : CG2212276
Client : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

ALS

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 643301) - co					
uranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 643302)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 642719)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 643704)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 643705)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	

 Page
 : 10 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

ALS

Analyte	CAS Number Me	ethod	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 643705) - co	ontinued					
tin, dissolved	7440-31-5 E4	421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E4	421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E4	421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E4	421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E4	421	0.001	mg/L	<0.0010	

 Page
 : 11 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Con	trol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS I	Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 641757)								
turbidity	E121	0.1	NTU	200 NTU	101	85.0	115	
Physical Tests (QCLot: 641962)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	101	95.4	104	
Physical Tests (QCLot: 642495)								
рН	E108		pH units	7 pH units	101	98.6	101	
Physical Tests (QCLot: 642496)								
conductivity	E100	1	μS/cm	146.9 µS/cm	97.8	90.0	110	
Physical Tests (QCLot: 642497)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	104	85.0	115	
Physical Tests (QCLot: 642501)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	109	85.0	115	
Physical Tests (QCLot: 645179)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	102	85.0	115	
Physical Tests (QCLot: 645182)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	95.4	85.0	115	
Anions and Nutrients (QCLot: 641825)				_				
ammonia, total (as N) 76	64-41-7 E298	0.005	mg/L	0.2 mg/L	97.9	85.0	115	
Anions and Nutrients (QCLot: 641921)								
phosphate, ortho-, dissolved (as P)	65-44-2 E378-U	0.001	mg/L	0.03 mg/L	98.3	80.0	120	
Anions and Nutrients (QCLot: 641956)				_				
fluoride 169	84-48-8 E235.F	0.02	mg/L	1 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 641957)								
bromide 249	59-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	103	85.0	115	
Anions and Nutrients (QCLot: 641958)								
chloride 168	87-00-6 E235.CI-L	0.1	mg/L	100 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 641959)								
nitrate (as N) 147	97-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 641960)								
nitrite (as N) 147	97-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 641961)								
sulfate (as SO4) 148	08-79-8 E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110	

 Page
 : 12 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report								
				Spike	Recovery (%)	Recovery	Recovery Limits (%) Low High Qual 75.0 125 - 80.0 120 - 80.0 120 - 80.0 120 - 80.0 120 - 80.0 120 - 80.0 120 - 80.0 120 - 80.0 120 - 80.0 120 - 80.0 120 - 80.0 120 - 80.0 120 - 80.0 120 -			
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 642132) - con	tinued									
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	100	75.0	125			
Anions and Nutrients (QCLot: 642658)										
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	0.03 mg/L	99.4	80.0	120			
Organic / Inorganic Carbon (QCLot: 641869)										
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	8.57 mg/L	99.7	80.0	120			
Organic / Inorganic Carbon (QCLot: 641870)										
carbon, total organic [TOC]	E355-L	0.5	mg/L	8.57 mg/L	97.1	80.0	120			
Total Metals (QCLot: 642722)										
mercury, total	7439-97-6 E508	0.000005	mg/L	0.0001 mg/L	104	80.0	120			
Total Metals (QCLot: 643301)										
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	95.1	80.0	120			
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	105	80.0	120			
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	97.6	80.0	120			
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	99.8	80.0	120			
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	96.1	80.0	120			
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	101	80.0	120			
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	92.7	80.0	120			
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	96.1	80.0	120			
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	96.0	80.0	120			
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	95.3	80.0	120			
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	96.2	80.0	120			
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	105	80.0	120			
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	99.7	80.0	120			
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	93.8	80.0	120			
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	95.6	80.0	120			
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	99.2	80.0	120			
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	102	80.0	120			
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	96.0	80.0	120			
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	97.1	80.0	120			
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	92.5	80.0	120			
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	100	60.0	140			
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	91.0	80.0	120			
sodium, total	7440-23-5 E420	0.05	mg/L	50 mg/L	96.7	80.0	120			
strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	103	80.0	120			
sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	102	80.0	120			

 Page
 : 13 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 643301) - continued										
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	101	80.0	120		
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	99.0	80.0	120		
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	93.0	80.0	120		
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	91.7	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	96.9	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	93.8	80.0	120		
Total Metals (QCLot: 643302)										
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	96.8	80.0	120		
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	103	80.0	120		
Dissolved Metals (QCLot: 643704)										
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	103	80.0	120		
Dissolved Metals (QCLot: 643705)										
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	110	80.0	120		
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	101	80.0	120		
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	98.2	80.0	120		
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	103	80.0	120		
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	104	80.0	120		
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	101	80.0	120		
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	105	80.0	120		
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	102	80.0	120		
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	102	80.0	120		
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	101	80.0	120		
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	97.7	80.0	120		
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	111	80.0	120		
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	104	80.0	120		
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	102	80.0	120		
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	104	80.0	120		
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	103	80.0	120		
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	104	80.0	120		
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	99.4	80.0	120		
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	106	80.0	120		
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	96.9	80.0	120		
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	106	60.0	140		
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	91.1	80.0	120		
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	104	80.0	120		

 Page
 : 14 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 643705) - contin	ued										
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	99.8	80.0	120			
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	100	80.0	120			
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	96.0	80.0	120			
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	99.1	80.0	120			
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	98.0	80.0	120			
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	103	80.0	120			
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	95.8	80.0	120			

Page : 15 of 18 Work Order : CG2212276 Client

: Teck Coal Limited

Project : REGIONAL EFFECT PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	ients (QCLot: 641825)									
CG2212276-001	RG_FO23_WS_LAEMP_LC O_2022-09_N	ammonia, total (as N)	7664-41-7	E298	0.101 mg/L	0.1 mg/L	101	75.0	125	
Anions and Nutr	ients (QCLot: 641921)									
CG2212273-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0538 mg/L	0.05 mg/L	108	70.0	130	
Anions and Nutr	ients (QCLot: 641956)									
CG2212276-001	RG_FO23_WS_LAEMP_LC O_2022-09_N	fluoride	16984-48-8	E235.F	0.982 mg/L	1 mg/L	98.2	75.0	125	
Anions and Nutr	ients (QCLot: 641957)									
CG2212276-001	RG_FO23_WS_LAEMP_LC O_2022-09_N	bromide	24959-67-9	E235.Br-L	0.514 mg/L	0.5 mg/L	103	75.0	125	
Anions and Nutr	ients (QCLot: 641958)									
CG2212276-001	RG_FO23_WS_LAEMP_LC O_2022-09_N	chloride	16887-00-6	E235.CI-L	100 mg/L	100 mg/L	100	75.0	125	
Anions and Nutr	ients (QCLot: 641959)									
CG2212276-001	RG_FO23_WS_LAEMP_LC O_2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125	
Anions and Nutr	ients (QCLot: 641960)									
CG2212276-001	RG_FO23_WS_LAEMP_LC O_2022-09_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.509 mg/L	0.5 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 641961)									
CG2212276-001	RG_FO23_WS_LAEMP_LC O_2022-09_N	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125	
Anions and Nutr	ients (QCLot: 642132)									
CG2212276-001	RG_FO23_WS_LAEMP_LC O_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	2.80 mg/L	2.5 mg/L	112	70.0	130	
Anions and Nutr	ients (QCLot: 642658)									
CG2212276-001	RG_FO23_WS_LAEMP_LC O_2022-09_N	phosphorus, total	7723-14-0	E372-U	0.0528 mg/L	0.05 mg/L	106	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 6418	869)								
CG2212274-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.37 mg/L	5 mg/L	107	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 6418	870)								
CG2212274-001	Anonymous	carbon, total organic [TOC]		E355-L	5.54 mg/L	5 mg/L	111	70.0	130	
otal Metals (QC	CLot: 642722)									
CG2212274-001	Anonymous	mercury, total	7439-97-6	E508	0.0000951 mg/L	0.0001 mg/L	95.1	70.0	130	

Page : 16 of 18
Work Order : CG2212276
Client : Teck Coal Limited

Sub-Matrix: Water	rix: Water			Matrix Spike (MS) Report						
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
otal Metals (QC	Lot: 643301)									
CG2212274-001	Anonymous	aluminum, total	7429-90-5	E420	2.06 mg/L	2 mg/L	103	70.0	130	
		antimony, total	7440-36-0	E420	0.208 mg/L	0.2 mg/L	104	70.0	130	
		arsenic, total	7440-38-2	E420	0.211 mg/L	0.2 mg/L	106	70.0	130	
		barium, total	7440-39-3	E420	0.220 mg/L	0.2 mg/L	110	70.0	130	
		beryllium, total	7440-41-7	E420	0.391 mg/L	0.4 mg/L	97.8	70.0	130	
		bismuth, total	7440-69-9	E420	0.0988 mg/L	0.1 mg/L	98.8	70.0	130	
		boron, total	7440-42-8	E420	0.936 mg/L	1 mg/L	93.6	70.0	130	
		cadmium, total	7440-43-9	E420	0.0441 mg/L	0.04 mg/L	110	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.213 mg/L	0.2 mg/L	106	70.0	130	
		copper, total	7440-50-8	E420	0.216 mg/L	0.2 mg/L	108	70.0	130	
		iron, total	7439-89-6	E420	21.6 mg/L	20 mg/L	108	70.0	130	
		lead, total	7439-92-1	E420	0.197 mg/L	0.2 mg/L	98.7	70.0	130	
		lithium, total	7439-93-2	E420	0.981 mg/L	1 mg/L	98.1	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.216 mg/L	0.2 mg/L	108	70.0	130	
		molybdenum, total	7439-98-7	E420	0.213 mg/L	0.2 mg/L	106	70.0	130	
		nickel, total	7440-02-0	E420	0.429 mg/L	0.4 mg/L	107	70.0	130	
		potassium, total	7440-09-7	E420	41.6 mg/L	40 mg/L	104	70.0	130	
		selenium, total	7782-49-2	E420	0.420 mg/L	0.4 mg/L	105	70.0	130	
		silicon, total	7440-21-3	E420	92.2 mg/L	100 mg/L	92.2	70.0	130	
		silver, total	7440-22-4	E420	0.0428 mg/L	0.04 mg/L	107	70.0	130	
		sodium, total	7440-23-5	E420	22.3 mg/L	20 mg/L	112	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.2 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	200 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.0390 mg/L	0.04 mg/L	97.6	70.0	130	
		tin, total	7440-31-5	E420	0.213 mg/L	0.2 mg/L	106	70.0	130	
		titanium, total	7440-32-6	E420	0.408 mg/L	0.4 mg/L	102	70.0	130	
		uranium, total	7440-61-1	E420	0.0396 mg/L	0.04 mg/L	99.1	70.0	130	
		vanadium, total	7440-62-2	E420	1.07 mg/L	1 mg/L	107	70.0	130	
		zinc, total	7440-66-6	E420	4.14 mg/L	4 mg/L	104	70.0	130	
otal Metals (QC	Lot: 643302)									
G2212274-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.435 mg/L	0.4 mg/L	109	70.0	130	
issolved Metals	(QCLot: 642719)									
G2212276-001	RG_F023_WS_LAEMP_LC O 2022-09 N	mercury, dissolved	7439-97-6	E509	0.000102 mg/L	0.0001 mg/L	102	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Recovery Limits (%) Low High Q 70.0 130 70.0 130 70.0 130 70.0 130 70.0 130 70.0 130 70.0 130 70.0 130 70.0 130 70.0 130 70.0 130 70.0 130 70.0 130 70.0 130	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 643704)									
CG2212204-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.372 mg/L	0.4 mg/L	93.1	70.0	130	
Dissolved Metals	(QCLot: 643705)									
CG2212204-001	Anonymous	aluminum, dissolved	7429-90-5	E421	1.89 mg/L	2 mg/L	94.7	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.184 mg/L	0.2 mg/L	92.2			
		arsenic, dissolved	7440-38-2	E421	0.182 mg/L	0.2 mg/L	91.1			
		barium, dissolved	7440-39-3	E421	0.186 mg/L	0.2 mg/L	93.3			
		beryllium, dissolved	7440-41-7	E421	0.364 mg/L	0.4 mg/L	91.0	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0891 mg/L	0.1 mg/L	89.1	70.0	130	
		boron, dissolved	7440-42-8	E421	0.969 mg/L	1 mg/L	96.9	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0392 mg/L	0.04 mg/L	97.9	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.185 mg/L	0.2 mg/L	92.6	70.0	130	
		copper, dissolved	7440-50-8	E421	0.181 mg/L	0.2 mg/L	90.6	70.0	130	
		iron, dissolved	7439-89-6	E421	18.2 mg/L	20 mg/L	91.2	70.0	130	
		lead, dissolved	7439-92-1	E421	0.192 mg/L	0.2 mg/L	96.1	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.943 mg/L	1 mg/L	94.3	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.186 mg/L	0.2 mg/L	93.0	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.191 mg/L	0.2 mg/L	95.7	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.366 mg/L	0.4 mg/L	91.5	70.0	130	
		potassium, dissolved	7440-09-7	E421	34.7 mg/L	40 mg/L	86.8	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.377 mg/L	0.4 mg/L	94.3	70.0	130	
		silicon, dissolved	7440-21-3	E421	91.7 mg/L	100 mg/L	91.7	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0376 mg/L	0.04 mg/L	94.0	70.0	130	
		sodium, dissolved	7440-23-5	E421	18.6 mg/L	20 mg/L	93.1	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	200 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0344 mg/L	0.04 mg/L	86.1	70.0	130	
		tin, dissolved	7440-31-5	E421	0.184 mg/L	0.2 mg/L	92.3	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.357 mg/L	0.4 mg/L	89.2	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.0368 mg/L	0.04 mg/L	91.9	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.937 mg/L	1 mg/L	93.7	70.0	130	
		zinc, dissolved	7440-66-6	E421	3.66 mg/L	4 mg/L	91.5	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2212276

 Client
 : Teck Coal Limited

Teck

COC ID: REP_LAENIP_LCU_ZUZZ- TURNAROUND TIME:

RUSH: Priorty 2-3 Business Days PROJECT/CLIENT INFO LABORATORY OTHER INFO Facility Name / Job# Regional Effects Program Lab Name ALS Calgary Report Format / Distribution Excel PDF EDD Project Manager Cybele Heddle Lab Contact Lyudmyla Shvets Email 1: AquaSciLab@Teck.com Cybele, Heddle@teck.com Email Lyudmyla.Shvets@ALSGlobat.com Email Email 2: teckcoal@equisonline.com Address 2559 29 Street NE Address 421 Pine Avenue Email 3: Teck.Lab.Results@teck.com Email 4: Lisa.Bowron@minnow.ca Provinc BC City Calgary Province AB Email 5: City Sparwood Tyler.Mehler@minnow.ca Postal Code T1Y 7B5 Country Canada Postal Code V0B 2G0 Country Canada Email 6: Hannah Penner@Teck.com Phone Number 403 407 1794 Phone Number 1-250-865-3048 PO number VPO00816101 ANALYSIS REQUESTED Filtered - F: Field, L: Lab, FL: Field & Lab, N: Non SAMPLE DETAILS HCL H2SQ4 HCL H2SO4 Hazardous Material (Yes/No) TECKCOAL_METNHG_ FECKCOAL_METNHG_ TECKCOAL_ROUTINE FOC_TKN G=Grab Field Sample Location Time C=Com # Of Sample ID (sys loc code) Matrix Date (24hr) Cont RG FO23 WS LAEMP LCO 2022-09 N RG FO23 WS 2022/09/09 08:05 G7 1 1 1 1 1 **Environmental Division** RG_LILC3 WS 2022/09/08 RG LILC3 WS LAEMP LCO 2022-09 N 09:30 \mathbf{G} 7 1 Calgary Work Order Reference CG2212276 Telephone: +1 403 407 1800 RELINOUISHED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS DATE/TIME ACCEPTED BY/AFFILIATION Dissolved metals were field filtered and to be lab preserved Jennifer Ings/Minnow ############## Total metals to be lab preserved SERVICE REQUEST (rush - subject to availability) Regular (default) Sampler's Name Jennifer Ings Mobile # 5195003444 Priority (2-3 business days) - 50% surcharge X Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time For Emergency <1 Day, ASAP or Weekend - Contact ALS

Ł

WATER CHEMISTRY

ALS Laboratory Report CG2212561 (Finalized September 17, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2212561

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Avenue

Sparwood BC Canada V0B2G0

Telephone : ---

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEMP_LCO_2022-09_ALS

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 14-Sep-2022 09:00

Date Analysis Commenced : 16-Sep-2022

Issue Date : 17-Sep-2022 15:42

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Anthony Calero Supervisor - Inorganic Metals, Calgary, A	Alberta
Dwayne Bennett Supervisor - Inorganic Metals, Calgary, A	Alberta
Harpreet Chawla Team Leader - Inorganics Inorganics, Calgar	ry, Alberta
Harpreet Chawla Team Leader - Inorganics Metals, Calgary, A	Alberta
Sara Niroomand Inorganics, Calgar	ry, Alberta
Sara Niroomand Metals, Calgary, A	Alberta
Sheida Aria Lab Assistant Metals, Calgary, A	Alberta

Page : 2 of 6 Work Order : CG2212561 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLB	Detection Limit Raised. Analyte detected at comparable level in Method Blank.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTA	Analytical holding time was exceeded.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 3 of 6
Work Order : CG2212561
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	lient sample ID	RG_LIDCOM_W S_LAEMP_LCO _2022-09_N	 	
			Client samp	oling date / time		 	
Analyte	CAS Number	Method	LOR	Unit	CG2212561-001	 	
					Result	 	
Physical Tests							
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	205	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	250	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	6.4	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	3.8	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	212	 	
conductivity		E100	2.0	μS/cm	772	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	433	 	
oxidation-reduction potential [ORP]	<u></u>	E125	0.10	mV	288	 	
pH		E108	0.10	pH units	8.34	 	
solids, total dissolved [TDS]		E162	10	mg/L	530	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.1	 	
turbidity		E121	0.10	NTU	0.18 HTA	 	
Anions and Nutrients ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	9.61	 	
fluoride		E235.F	0.020	_	0.230	 	
	16984-48-8	E318	0.050	mg/L	<0.500 DLM, TKNI		
Kjeldahl nitrogen, total [TKN]				mg/L			
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	6.96	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0011	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0014	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0039	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	216	 	
Organic / Inorganic Carbon							
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	 	

Page : 4 of 6
Work Order : CG2212561
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)	Client samp. e CAS Number Method LOR alance sum EC101 0.10 sum EC101 0.10						 	
				ling date / time	12-Sep-2022 14:40		 	
Analyte	CAS Number	Method	LOR	Unit	CG2212561-001 Result		 	
Ion Balance	Balance				result			
anion sum		EC101	0.10	meq/L	9.51		 	
cation sum		EC101	0.10	meq/L	8.99		 	
ion balance (cations/anions)		EC101	0.010	%	94.5		 	
ion balance (APHA)		EC101	0.010	%	2.81		 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0150 DLB		 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00022		 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00050 DLB		 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0638		 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020		 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050		 	
boron, total	7440-42-8	E420	0.010	mg/L	0.016		 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.168		 	
calcium, total	7440-70-2	E420	0.050	mg/L	106		 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00017		 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10		 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050		 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010		 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050		 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0424		 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	44.6		 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00278		 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050		 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00234		 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00458		 	
potassium, total	7440-09-7	E420	0.050	mg/L	1.34		 	
selenium, total	7782-49-2	E420	0.050	μg/L	37.8		 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.68		 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010		 	
sodium, total	7440-23-5	E420	0.050	mg/L	6.97		 	

: 5 of 6 : CG2212561 Page Work Order Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_LIDCOM_W		 	
(Matrix: Water)					S_LAEMP_LCO _2022-09_N			
			Client samp	ling date / time	12-Sep-2022 14:40		 	
Analyte	CAS Number	Method	LOR	Unit	CG2212561-001		 	
Total Metals					Result		 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.217		 	
sulfur, total	7704-34-9	E420	0.50	mg/L	77.7		 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010		 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010		 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030		 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00322		 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00250 DLB		 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0060		 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010		 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00023		 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011		 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0705		 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020		 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050		 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.013		 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.157		 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	99.2		 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00014		 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10		 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020		 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010		 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050		 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0384		 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	45.1		 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00226		 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050		 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00233		 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00456		 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.36		 	

Page : 6 of 6
Work Order : CG2212561
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LIDCOM_W	 	
(Matrix: Water)					S_LAEMP_LCO		
					_2022-09_N		
			Client samp	ling date / time	12-Sep-2022	 	
		7782-49-2 E421 0.050 μg/ 7440-21-3 E421 0.050 mg/ 7440-22-4 E421 0.000010 mg/ 7440-23-5 E421 0.050 mg/ 7440-24-6 E421 0.00020 mg/ 7704-34-9 E421 0.50 mg/ 7440-28-0 E421 0.00010 mg/ 7440-31-5 E421 0.00010 mg/ 7440-32-6 E421 0.00030 mg/ 7440-61-1 E421 0.000010 mg/			14:40		
Analyte	CAS Number	Method	LOR	Unit	CG2212561-001	 	
					Result	 	
Dissolved Metals							
selenium, dissolved	7782-49-2	E421	0.050	μg/L	43.8	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.47	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	6.88	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.217	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	86.2	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00331	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0057	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212561** Page : 1 of 13

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 14-Sep-2022 09:00

C-O-C number : REP_LAEMP_LCO_2022-09_ALS

Sparwood BC Canada V0B2G0

Sampler : Jennifer Ings

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Site

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

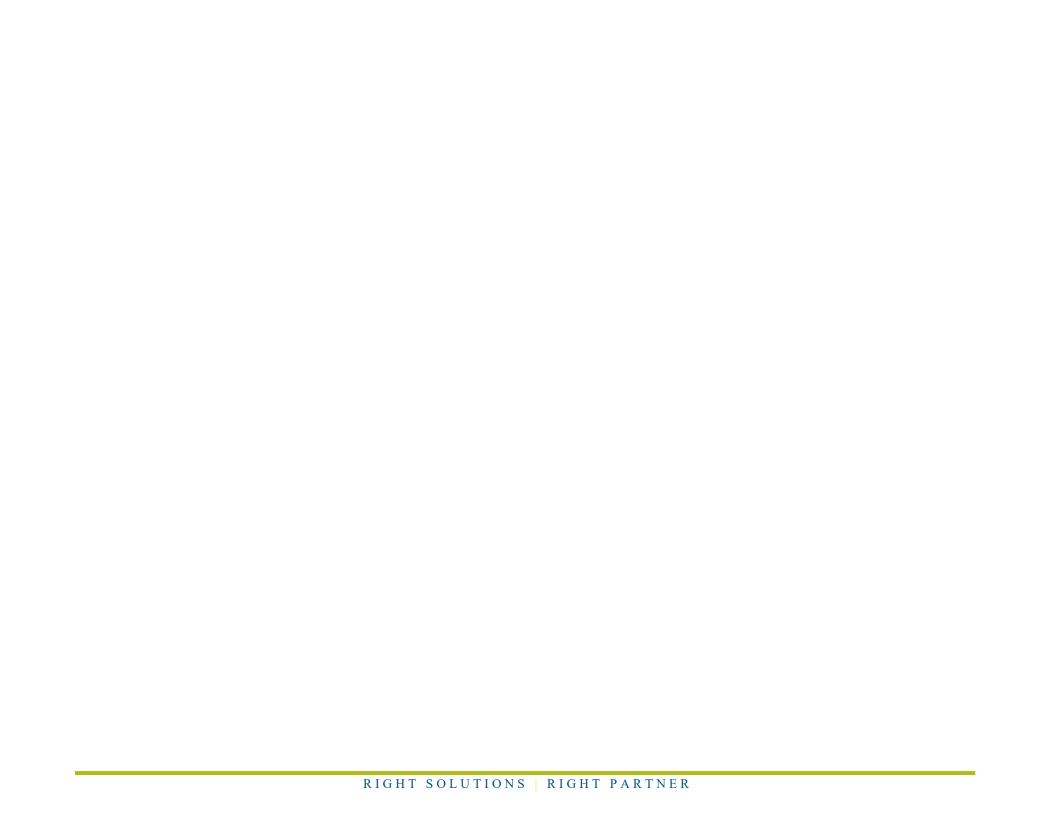
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Page : 3 of 13 : CG2212561 Work Order

Client : Teck Coal Limited

: REGIONAL EFFECTS PROGRAM Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Total Metals	QC-MRG2-6509510 01		aluminum, total	7429-90-5	E420	0.0032 MB-LOR mg/L	0.003 mg/L	Blank result exceeds permitted value
Total Metals	QC-MRG2-6509510 01		arsenic, total	7440-38-2	E420	0.00022 MB-LOR mg/L	0.0001 mg/L	Blank result exceeds permitted value
Total Metals	QC-MRG2-6509510 01		vanadium, total	7440-62-2	E420	0.00170 MB-LOR mg/L	0.0005 mg/L	Blank result exceeds permitted value

Result Qualifiers

Qualifier	Description
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
	below 5x blank level.

Page : 4 of 13 Work Order : CG2212561

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: 🗴 = 🛭	Holding time excee	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E298	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	4
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E235.Br-L	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E235.CI-L	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E378-U	12-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	4 days	# EHT
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E235.F	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	√
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E235.NO3-L	12-Sep-2022	16-Sep-2022	3 days	4 days	# EHT	16-Sep-2022	3 days	0 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E235.NO2-L	12-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	4 days	* EHT

Page : 5 of 13 Work Order : CG2212561

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						uluulloii.	noiding time exce	oddiioo ,	************	
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E235.SO4	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										,
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E318	12-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	E372-U	12-Sep-2022	16-Sep-2022				17-Sep-2022	28 days	E days	✓
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E372-U	12-Sep-2022	16-Sep-2022				17-Sep-2022	20 days	5 days	•
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level) HDPE - dissolved (lab preserved)							I			
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E421.Cr-L	12-Sep-2022	16-Sep-2022				16-Sep-2022	180	4 days	√
1.0_EBB0011_110_B1.EIIII	2.20. 2	.2 000 2022	.0 000 2022				10 000 2022	days	,	
Dissolved Metals : Dissolved Mercury in Water by CVAAS							<u> </u>	,		
Glass vial dissolved (hydrochloric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E509	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E421	12-Sep-2022	16-Sep-2022				16-Sep-2022	180	4 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	el)									
Amber glass dissolved (sulfuric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E358-L	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combusti	on (Low Level)						ı			
Amber glass total (sulfuric acid)	F255 I	10 Con 2022	16 Can 2022				16 Con 2022	20 day:-	1 days	4
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E355-L	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	•
District and the second of the										
Physical Tests : Acidity by Titration HDPE							I			
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E283	12-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	4 days	✓
		. L OOP LULL	. J OOP 2022	1	1				. 44,5	•

 Page
 : 6 of 13

 Work Order
 : CG2212561

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E290	12-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E100	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	1
		' '							, -	
Dhysical Tests - ODD by Flacticada										
Physical Tests : ORP by Electrode HDPE							I			
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E125	12-Sep-2022					16-Sep-2022	0.25	94 hrs	*
1.0_EID00M_V0_E1EMI _E00_2022 00_IV	2.20	12 dop 2022					10 000 2022	hrs	011110	EHTR-FM
								1113		Littivi
Physical Tests : pH by Meter							_		I	I
HDPE	E108	10 Can 2022	16 Can 2022				16 Con 2022	0.05	2.05	×
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E100	12-Sep-2022	16-Sep-2022				16-Sep-2022	0.25	0.25	
								hrs	hrs	EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E162	12-Sep-2022					16-Sep-2022	7 days	4 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E160-L	12-Sep-2022					16-Sep-2022	7 days	4 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E121	12-Sep-2022					16-Sep-2022	3 days	4 days	*
										EHT
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										1
HDPE - total (lab preserved)										
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E420.Cr-L	12-Sep-2022	16-Sep-2022				17-Sep-2022	180	5 days	✓
			•					days		
Total Metals : Total Mercury in Water by CVAAS								,		
Glass vial total (hydrochloric acid)										
	E508	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	√
RG LIDCOM WS LAEMP LCO 2022-09 N										

Page : 7 of 13 Work Order : CG2212561

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	E420	12-Sep-2022	16-Sep-2022				17-Sep-2022	180 days	5 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 8 of 13 Work Order : CG2212561

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type		·	C	ount		Frequency (%	thin specification
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	651335	1	15	6.6	5.0	✓
Alkalinity Species by Titration	E290	651338	1	15	6.6	5.0	✓
Ammonia by Fluorescence	E298	651291	1	11	9.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	650788	1	12	8.3	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	650789	1	12	8.3	5.0	√
Conductivity in Water	E100	651337	1	15	6.6	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	651141	1	3	33.3	5.0	√
Dissolved Mercury in Water by CVAAS	E509	650795	1	8	12.5	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	651142	1	3	33.3	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651190	1	3	33.3	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651014	1	20	5.0	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	650787	1	13	7.6	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	650790	1	16	6.2	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	650791	1	16	6.2	5.0	√
ORP by Electrode	E125	650800	1	1	100.0	5.0	1
pH by Meter	E108	651336	1	17	5.8	5.0	<u>√</u>
Sulfate in Water by IC	E235.SO4	650792	1	13	7.6	5.0	1
TDS by Gravimetry	E162	651254	1	15	6.6	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	650951	1	3	33.3	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	650991	1	1	100.0	5.0	1
Total Mercury in Water by CVAAS	E508	650796	1	8	12.5	5.0	√
Total Metals in Water by CRC ICPMS	E420	650952	1	6	16.6	5.0	1
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651191	1	3	33.3	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	650784	1	17	5.8	5.0	✓
Turbidity by Nephelometry	E121	650802	1	1	100.0	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	651335	1	15	6.6	5.0	1
Alkalinity Species by Titration	E290	651338	1	15	6.6	5.0	√
Ammonia by Fluorescence	E298	651291	1	11	9.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	650788	1	12	8.3	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	650789	1	12	8.3	5.0	√
Conductivity in Water	E100	651337	1	15	6.6	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	651141	1	3	33.3	5.0	√
Dissolved Mercury in Water by CVAAS	E509	650795	1	8	12.5	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	651142	1	3	33.3	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651190	1	3	33.3	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651014	1	20	5.0	5.0	1

Page : 9 of 13 Work Order : CG2212561

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.

Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	650787	1	13	7.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	650790	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	650791	1	16	6.2	5.0	✓
ORP by Electrode	E125	650800	1	1	100.0	5.0	✓
pH by Meter	E108	651336	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	650792	1	13	7.6	5.0	✓
TDS by Gravimetry	E162	651254	1	15	6.6	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	650951	1	3	33.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	650991	1	1	100.0	5.0	✓
Total Mercury in Water by CVAAS	E508	650796	1	8	12.5	5.0	✓
Total Metals in Water by CRC ICPMS	E420	650952	1	6	16.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651191	1	3	33.3	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	650784	1	17	5.8	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	651251	1	14	7.1	5.0	✓
Turbidity by Nephelometry	E121	650802	1	1	100.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	651335	1	15	6.6	5.0	✓
Alkalinity Species by Titration	E290	651338	1	15	6.6	5.0	√
Ammonia by Fluorescence	E298	651291	1	11	9.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	650788	1	12	8.3	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	650789	1	12	8.3	5.0	✓
Conductivity in Water	E100	651337	1	15	6.6	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	651141	1	3	33.3	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	650795	1	8	12.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	651142	1	3	33.3	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651190	1	3	33.3	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651014	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	650787	1	13	7.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	650790	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	650791	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	650792	1	13	7.6	5.0	✓
TDS by Gravimetry	E162	651254	1	15	6.6	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	650951	1	3	33.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	650991	1	1	100.0	5.0	✓
Total Mercury in Water by CVAAS	E508	650796	1	8	12.5	5.0	✓
Total Metals in Water by CRC ICPMS	E420	650952	1	6	16.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651191	1	3	33.3	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	650784	1	17	5.8	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	651251	1	14	7.1	5.0	✓
Turbidity by Nephelometry	E121	650802	1	1	100.0	5.0	✓

Page : 10 of 13 Work Order : CG2212561

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Width. Water		Lvaldativ	on Qo nequ	crity outside spe	comodition, -	QU II CQUCITOY WIL	min specimeane
Quality Control Sample Type			C	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	651291	1	11	9.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	650788	1	12	8.3	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	650789	1	12	8.3	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	651141	1	3	33.3	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	650795	1	8	12.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	651142	1	3	33.3	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651190	1	3	33.3	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651014	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	650787	1	13	7.6	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	650790	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	650791	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	650792	1	13	7.6	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	650951	1	3	33.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	650991	0	1	0.0	5.0	×
Total Mercury in Water by CVAAS	E508	650796	1	8	12.5	5.0	✓
Total Metals in Water by CRC ICPMS	E420	650952	1	6	16.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651191	1	3	33.3	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	650784	1	17	5.8	5.0	✓

Page : 11 of 13 Work Order : CG2212561

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
all back Made	Calgary - Environmental	147.4	ADIIA 4500 II (c. 1)	sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	.	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravillieu y (Low Level)	E160-L Calgary - Environmental	watei	AFTIA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}\text{C}$ for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental	147.4	554 000 4 (I)	
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
Thursday III Water by IO	Calgary - Environmental	Water	Li A 300.1 (mod)	detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
			, ,	detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			

Page : 12 of 13 Work Order : CG2212561

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 13 of 13 Work Order : CG2212561

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HCl.

QUALITY CONTROL REPORT

Work Order CG2212561

Client : Teck Coal Limited Contact : Cybele Heddle Address

Sparwood BC Canada V0B2G0

421 Pine Avenue

Telephone

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number :REP LAEMP LCO 2022-09 ALS

Sampler : Jennifer Ings

Site

Quote number : Teck Coal Master Quote

No. of samples received No. of samples analysed : 1 Page : 1 of 17

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets Address

:2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800 Date Samples Received : 14-Sep-2022 09:00

Date Analysis Commenced :16-Sep-2022

: 17-Sep-2022 15:42 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta	
Dwayne Bennett	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Sara Niroomand		Calgary Inorganics, Calgary, Alberta	
Sara Niroomand		Calgary Metals, Calgary, Alberta	
Sheida Aria	Lab Assistant	Calgary Metals, Calgary, Alberta	

 Page
 : 2 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Lim

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC CG2212561-001	C Lot: 650800) RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	oxidation-reduction potential [ORP]		E125	0.10	mV	288	289	0.173%	15%	
Physical Tests (QC	C Lot: 650802)										
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	turbidity		E121	0.10	NTU	0.18	0.16	0.02	Diff <2x LOR	
Physical Tests (QC	C Lot: 651254)										
CG2212385-001	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	1930	1950	1.08%	20%	
Physical Tests (QC	C Lot: 651335)										
CG2212559-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	C Lot: 651336)										
CG2212559-001	Anonymous	pH		E108	0.10	pH units	8.33	8.34	0.120%	4%	
Physical Tests (QC	C Lot: 651337)										
CG2212559-001	Anonymous	conductivity		E100	2.0	μS/cm	1540	1530	0.783%	10%	
Physical Tests (QC	C Lot: 651338)										
CG2212559-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	238	252	5.95%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	7.6	8.2	0.6	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	246	261	6.00%	20%	
Anions and Nutrier	nts (QC Lot: 650784)										
CG2212553-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0065	0.0066	0.0002	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 650787)										
CG2212561-001	RG_LIDCOM_WS_LAEMP LCO 2022-09 N	fluoride	16984-48-8	E235.F	0.020	mg/L	0.230	0.230	0.348%	20%	
Anions and Nutrier	nts (QC Lot: 650788)										
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 650789)										
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	9.61	9.62	0.0496%	20%	
Anions and Nutrier	nts (QC Lot: 650790)										
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	6.96	6.95	0.155%	20%	
Anions and Nutrier	its (QC Lot: 650791)										
CG2212561-001	RG_LIDCOM_WS_LAEMP LCO 2022-09 N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0011	0.0011	0	Diff <2x LOR	

Page : 4 of 17
Work Order : CG2212561
Client : Teck Coal Limited

ALS

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Anions and Nutrie	nts (QC Lot: 650792)										
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	216	215	0.189%	20%	
Anions and Nutrie	nts (QC Lot: 650991)										
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	<0.500	<0.500	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 651014)										
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0014	0.0014	0.00001	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 651291)										
CG2212596-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.619	0.621	0.339%	20%	
Organic / Inorganic	c Carbon (QC Lot: 65119	0)									
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	c Carbon (QC Lot: 65119	1)									
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC L	_ot: 650796)										
CG2212561-001	RG_LIDCOM_WS_LAEMP	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC L											
CG2212561-001	RG_LIDCOM_WS_LAEMP LCO 2022-09 N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00017	0.00018	0.00001	Diff <2x LOR	
Total Metals (QC L											
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0150	0.0053	0.0097	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00022	0.00022	0.000005	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00050	0.00037	0.00013	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0638	0.0636	0.375%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.016	0.015	0.0009	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.168 μg/L	0.000142	16.8%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	106	102	4.52%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
									The second secon		
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0424	0.0410	3.40%	20%	
		lithium, total magnesium, total	7439-93-2 7439-95-4	E420 E420	0.0010 0.0050	mg/L mg/L	0.0424 44.6	0.0410 43.9	3.40% 1.61%	20% 20%	

 Page
 : 5 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 650952) - continued										
CG2212561-001	RG_LIDCOM_WS_LAEMP LCO 2022-09 N	molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00234	0.00220	6.34%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00458	0.00453	0.00005	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.34	1.31	2.76%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	37.8 μg/L	0.0357	5.76%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.68	2.60	2.94%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	6.97	6.88	1.33%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.217	0.205	5.49%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	77.7	74.7	3.91%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00322	0.00311	3.28%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00250	0.00085	0.00165	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0060	0.0054	0.0005	Diff <2x LOR	
Dissolved Metals (QC Lot: 650795)										
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 651141)										
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00014	0.00012	0.00002	Diff <2x LOR	
Dissolved Metals (QC Lot: 651142)										
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00023	0.00022	0.000008	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00011	0.00011	0.0000008	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0705	0.0722	2.46%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.013	0.013	0.0002	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.157 μg/L	0.000158	0.799%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	99.2	96.2	3.08%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0384	0.0373	3.02%	20%	
	A Committee of the Comm	A Company of the Comp	t contract to the contract to	A Committee of the Comm					the second secon		and the second s

 Page
 : 6 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

A

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (0	QC Lot: 651142) - contin	ued									
CG2212561-001	RG_LIDCOM_WS_LAEMP _LCO_2022-09_N	magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	45.1	47.3	4.59%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00226	0.00252	11.1%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00233	0.00236	1.49%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00456	0.00459	0.00002	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.36	1.42	4.65%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	43.8 μg/L	0.0431	1.81%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.47	2.49	1.06%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	6.88	7.17	4.13%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.217	0.215	0.947%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	86.2	86.4	0.236%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00331	0.00331	0.0227%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0057	0.0056	0.0002	Diff <2x LOR	

 Page
 : 7 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 650802)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 651251)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 651254)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 651335)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 651337)					
conductivity	E100	1	μS/cm	1.0	
Physical Tests (QCLot: 651338)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 650784)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 650787)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 650788)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 650789)			-		
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 650790)	44707 55 0 5005 NO. I	0.005		.0.0050	
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 650791)	44707.05.0 E005.NO.0 I	0.004		10.0040	
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 650792)	44000 70.0 5005 004	0.0		10.00	
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 650991)	E318	0.05	mall.	<0.050	
Kjeldahl nitrogen, total [TKN]	E310	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 651014)	14265-44-2 E378-U	0.004	ma/l	<0.0040	
phosphate, ortho-, dissolved (as P)	14200-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 651291)					

 Page
 : 8 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 6512					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon(QCLot					
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot	:: 651191)				
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 650796)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.0000050	
Total Metals (QCLot: 650951)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 650952)				'	
aluminum, total	7429-90-5 E420	0.003	mg/L	# 0.0032	MB-LOR
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	# 0.00022	MB-LOR
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
ooron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0 E420	0.00001	mg/L	<0.00010	

 Page
 : 9 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 650952) - con	tinued				
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	# 0.00170	MB-LOR
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Dissolved Metals (QCLot: 650795)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 651141)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 651142)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
sismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
alcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
otassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
elenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
ilicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.00010	
odium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
hallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	

 Page
 : 10 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Metho	od	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 651142) - c	ontinued					
tin, dissolved	7440-31-5 E421		0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421		0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421		0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421		0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421		0.001	mg/L	<0.0010	

Qualifiers

Qualifier Description

MB-LOR Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

 Page
 : 11 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Cor	trol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 650800)									
oxidation-reduction potential [ORP]		E125		mV	220 mV	101	95.4	104	
Physical Tests (QCLot: 650802)									
turbidity		E121	0.1	NTU	200 NTU	106	85.0	115	
Physical Tests (QCLot: 651251)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	93.9	85.0	115	
Physical Tests (QCLot: 651254)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	93.0	85.0	115	
Physical Tests (QCLot: 651335)									
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	106	85.0	115	
Physical Tests (QCLot: 651336)									
pH		E108		pH units	7 pH units	101	98.6	101	
Physical Tests (QCLot: 651337)									
conductivity		E100	1	μS/cm	146.9 µS/cm	99.6	90.0	110	
Physical Tests (QCLot: 651338)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	103	85.0	115	
Anions and Nutrients (QCLot: 650784)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.03 mg/L	96.8	80.0	120	
Anions and Nutrients (QCLot: 650787)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 650788)									
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	104	85.0	115	
Anions and Nutrients (QCLot: 650789)									
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 650790)									
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 650791)									
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 650792)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 650991)									
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	102	75.0	125	
Anions and Nutrients (QCLot: 651014)					, ,				

 Page
 : 12 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Analyte CAS Number Method LOR Unit	Spike	Recovery (%)	Laboratory Control Sample (LCS) Report			
CAS Number Method LOR Unit		Accovery (70)	Recovery	Limits (%)		
Analyte CAS Number Method LOR Unit	Concentration	LCS	Low	High	Qualifier	
Anions and Nutrients (QCLot: 651014) - continued						
phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L	0.03 mg/L	94.5	80.0	120		
Anions and Nutrients (QCLot: 651291)						
ammonia, total (as N) 7664-41-7 E298 0.005 mg/L	0.2 mg/L	103	85.0	115		
Organic / Inorganic Carbon (QCLot: 651190)						
carbon, dissolved organic [DOC] E358-L 0.5 mg/L	8.57 mg/L	94.9	80.0	120		
Organic / Inorganic Carbon (QCLot: 651191)						
carbon, total organic [TOC] E355-L 0.5 mg/L	8.57 mg/L	97.8	80.0	120		
Total Metals (QCLot: 650796)					ı	
mercury, total 7439-97-6 E508 0.000005 mg/L	0.0001 mg/L	94.5	80.0	120		
Total Metals (QCLot: 650951)						
chromium, total 7440-47-3 E420.Cr-L 0.0001 mg/L	0.25 mg/L	99.8	80.0	120		
Total Metals (QCLot: 650952)						
aluminum, total 7429-90-5 E420 0.003 mg/L	2 mg/L	97.5	80.0	120		
antimony, total 7440-36-0 E420 0.0001 mg/L	1 mg/L	102	80.0	120		
arsenic, total 7440-38-2 E420 0.0001 mg/L	1 mg/L	95.9	80.0	120		
barium, total 7440-39-3 E420 0.0001 mg/L	0.25 mg/L	98.0	80.0	120		
beryllium, total 7440-41-7 E420 0.00002 mg/L	0.1 mg/L	97.1	80.0	120		
bismuth, total 7440-69-9 E420 0.00005 mg/L	1 mg/L	98.0	80.0	120		
boron, total 7440-42-8 E420 0.01 mg/L	1 mg/L	86.2	80.0	120		
cadmium, total 7440-43-9 E420 0.000005 mg/L	0.1 mg/L	95.9	80.0	120		
calcium, total 7440-70-2 E420 0.05 mg/L	50 mg/L	98.6	80.0	120		
cobalt, total 7440-48-4 E420 0.0001 mg/L	0.25 mg/L	95.2	80.0	120		
copper, total 7440-50-8 E420 0.0005 mg/L	0.25 mg/L	95.2	80.0	120		
iron, total 7439-89-6 E420 0.01 mg/L	1 mg/L	110	80.0	120		
lead, total 7439-92-1 E420 0.00005 mg/L	0.5 mg/L	97.3	80.0	120		
lithium, total 7439-93-2 E420 0.001 mg/L	0.25 mg/L	104	80.0	120		
magnesium, total 7439-95-4 E420 0.005 mg/L	50 mg/L	92.7	80.0	120		
manganese, total 7439-96-5 E420 0.0001 mg/L	0.25 mg/L	97.6	80.0	120		
molybdenum, total 7439-98-7 E420 0.00005 mg/L	0.25 mg/L	100.0	80.0	120		
nickel, total 7440-02-0 E420 0.0005 mg/L	0.5 mg/L	96.9	80.0	120		
potassium, total 7440-09-7 E420 0.05 mg/L	50 mg/L	98.5	80.0	120		
selenium, total 7782-49-2 E420 0.00005 mg/L	1 mg/L	84.9	80.0	120		
silicon, total 7440-21-3 E420 0.1 mg/L	10 mg/L	101	60.0	140		
silver, total 7440-22-4 E420 0.00001 mg/L	0.1 mg/L	84.8	80.0	120		
sodium, total 7440-23-5 E420 0.05 mg/L	50 mg/L	97.4	80.0	120		

 Page
 : 13 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Total Metals (QCLot: 650952) - continued T440324, E620	Sub-Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report		
Total Metals (OCLOT: 650952) - continued T409245 Ed22 0.0002 mg/L 0.25 mg/L 98.2 85.0 120					Spike	Recovery (%)	Recovery	Low High 80.0 120 80.0 120 80.0 120 80.0 120 80.0 120 80.0 120 80.0 120 80.0 120 80.0 120 80.0 120 80.0 120 80.0 120 80.0 120		
Northern 1740-246 E400 0.0000 mgh. 0.25 mgh. 0.62 0.000 120	Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Author totals	Total Metals (QCLot: 650952) - conti	nued								
hallum, total 744-926 E420 0.00001 mgL 1 mgL 97.2 88.0 120	strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	96.2	80.0	120		
In total	sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	87.7	80.0	120		
Communication Communicatii Communication Communication Communication Communication	thallium, total	7440-28-0 E420	0.00001	mg/L	1 mg/L	97.2	80.0	120		
######################################	tin, total	7440-31-5 E420	0.0001	mg/L	0.5 mg/L	99.5	80.0	120		
Amandulm, total 7440-622 E420 0.0005 mg/L 0.5 mg/L 94.9 80.0 120 —— Amandulm, total 7440-66 E420 0.0005 mg/L 0.5 mg/L 94.9 80.0 120 —— Amandulm, total 7440-66 E420 0.0005 mg/L 0.0001 mg/L 96.2 80.0 120 —— Amandulm, total 7440-66 E420 0.0001 mg/L 0.5 mg/L 96.2 80.0 120 —— Amandulm, total 7440-67 E421 0.0001 mg/L 2 mg/L 105 80.0 120 —— Amandulm, total 8415 (QCLot: 651141) ***Dissolved Metals (QCLot: 651142) ***Amandulm, dissolved 7440-88 E421 0.0001 mg/L 2 mg/L 105 80.0 120 —— ***Amandulm, dissolved 7440-88 E421 0.0001 mg/L 1 mg/L 105 80.0 120 —— ***Amandulm, dissolved 7440-88 E421 0.0001 mg/L 0.25 mg/L 102 80.0 120 —— ***Amandulm, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 96.4 80.0 120 —— ***Amandulm, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 97.3 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.00005 mg/L 1 mg/L 97.3 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.00005 mg/L 1 mg/L 97.3 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.00005 mg/L 0.1 mg/L 102 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.00005 mg/L 0.1 mg/L 102 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.00005 mg/L 0.1 mg/L 102 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.00005 mg/L 0.1 mg/L 102 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.00005 mg/L 0.1 mg/L 102 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.0005 mg/L 0.1 mg/L 102 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.0005 mg/L 0.1 mg/L 0.25 mg/L 101 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.0005 mg/L 0.5 mg/L 104 80.0 120 —— ***Amandulm, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 104 80.0 120 —— ***Amandulm, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 104 80.0 120 —— ***Amandulm, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 109 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.0005 mg/L 0.5 mg/L 109 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.0005 mg/L 0.5 mg/L 109 80.0 120 —— ***Amandulm, dissolved 7440-40-9 E421 0.0005 mg/L 0.5 mg/L 109 80.0 120 —— ***Amandulm, disso	titanium, total	7440-32-6 E420	0.0003	mg/L	0.25 mg/L	91.4	80.0	120		
Page Page	uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	95.9	80.0	120		
Properties of the control of the con	vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	101	80.0	120		
Dissolved Metals (QCLot: 651141) T440-47-3 E421 Cr-L 0.0001 mg/L 0.25 mg/L 105 80.0 120	zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	94.9	80.0	120		
Dissolved Metals (QCLot: 651142)	mercury, dissolved	7439-97-6 E509	0.000005	mg/L	0.0001 mg/L	96.2	80.0	120		
Dissolved Metals (QCLot: 651142) Alluminum, dissolved 7440-39-0 5421 0.001 mg/L 1 mg/L 104 80.0 120	Dissolved Metals (QCLot: 651141)									
aluminum, dissolved 7429-90.5 [Ed21 0.001 mg/L 2 mg/L 1104 80.0 120	chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	0.25 mg/L	105	80.0	120		
aluminum, dissolved 7429-90.5 [Ed21 0.001 mg/L 2 mg/L 1104 80.0 120	Dissolved Metals (QCLot: 651142)									
arsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 102 80.0 120	aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	104	80.0	120		
Parlium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120	antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	105	80.0	120		
peryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 95.4 80.0 120 poismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 97.3 80.0 120 pooron, dissolved 7440-42-8 E421 0.001 mg/L 1 mg/L 86.0 80.0 120 pooron, dissolved 7440-43-8 E421 0.00005 mg/L 0.1 mg/L 96.9 80.0 120 pooron, dissolved 7440-43-8 E421 0.005 mg/L 0.25 mg/L 96.9 80.0 120 pooron, dissolved 7440-44-4 E421 0.005 mg/L 0.25 mg/L 103 80.0 120 pooron, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 pooron, dissolved 7440-48-4 E421 0.0002 mg/L 0.25 mg/L 101 80.0 120 pooron, dissolved 7440-89-8 E421 0.0002 mg/L 0.25 mg/L 101 80.0 120 pooron, dissolved 7439-89-6 E421 0.00005 mg/L 0.5 mg/L 114 80.0 120 pooron, dissolved 7439-99-7 E421 0.00005 mg/L 0.5 mg/L 101 80.0 120 pooron, dissolved 7439-99-8 E421 0.00005 mg/L 0.25 mg/L 101 80.0 120 pooron, dissolved 7439-99-8 E421 0.001 mg/L 0.25 mg/L 101 80.0 120 pooron, dissolved 7439-99-8 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 pooron, dissolved 7439-99-8 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 pooron, dissolved 7439-99-8 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 pooron, dissolved 7439-99-8 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 pooron, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 104 80.0 120 pooron, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 pooron, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 pooron, dissolved 7440-02-1 E421 0.0005 mg/L 0.5 mg/L 105 80.0 120 pooron, dissolved 7440-02-1 E421 0.0005 mg/L 0.5 mg/L 105 80.0 120 pooron, dissolved 7440-02-1 E421 0.0005 mg/L 0.5 mg/L 105 60.0 140 pooron, dissolved 7440-02-2 E421 0.0001 mg/L 0.5 mg/L 105 60.0 140 pooron, dissolved 7440-02-2 E421 0.0001 mg/L 0.5 mg/L 105 60.0 140 pooron, dissolved 7440-02-2 E421 0.0001 mg/L 0.5 mg/L 105 60.0 140 pooron, dissolved 7440-02-2 E421 0.0001 mg/L 0.5 mg/L 105 60.0 140 pooron, dissolved 7440-02-3 E421 0.0001 mg/L 0.5 mg/L 105 60.0 140 pooron, dissolved 7440-02-3 E421 0.0001	arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	102	80.0	120		
Separation 1985 1	barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	103	80.0	120		
poron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 86.0 80.0 120	beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	95.4	80.0	120		
sadmum, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 102 80.0 120	bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	97.3	80.0	120		
Adelium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 96.9 80.0 120 Adelium, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 Adelium, dissolved 7440-80-8 E421 0.0002 mg/L 0.25 mg/L 101 80.0 120 Adelium, dissolved 7439-89-6 E421 0.0002 mg/L 0.5 mg/L 114 80.0 120 Adelium, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 99.1 80.0 120 Adelium, dissolved 7439-95-4 E421 0.0001 mg/L 0.25 mg/L 101 80.0 120 Adelium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 101 80.0 120 Adelium, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 104 80.0 120 Adelium, dissolved 7439-96-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 Adelium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 Adelium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 Adelium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 Adelium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 Adelium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 Adelium, dissolved 7440-02-0 E421 0.0005 mg/L 105 mg/L 102 80.0 120 Adelium, dissolved 7440-02-1 E421 0.005 mg/L 10 mg	boron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	86.0	80.0	120		
sobalit, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120	cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	102	80.0	120		
copper, dissolved 7440-50-8 ton, dissolved E421 0.0002 mg/L 0.25 mg/L 101 mg/L 80.0 120 ms/L ron, dissolved 7439-89-6 total, dissolved 7439-89-6 total, dissolved E421 0.0005 mg/L 0.5 mg/L 99.1 total, dissolved 80.0 total, dissolved 120 ms/L iditium, dissolved 7439-93-2 total, dissolved 7439-93-2 total, dissolved E421 total, dissolved 0.001 mg/L 0.25 mg/L 101 total, dissolved 80.0 total, dissolved manganese, dissolved 7439-96-5 total, dissolved 7439-96-5 total, dissolved E421 total, dissolved 0.0001 mg/L 0.25 mg/L 106 total, dissolved 80.0 total, dissolved molybdenum, dissolved 7439-98-7 total, dissolved 7440-02-0 total, dissol	calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	96.9	80.0	120		
ron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 114 80.0 120	cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	103	80.0	120		
ead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 99.1 80.0 120 ithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 101 80.0 120 magnesium, dissolved 7439-96-5 E421 0.005 mg/L 0.25 mg/L 104 80.0 120 molybdenum, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 106 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 molybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 molybdenum, dissolved 7440-03-7 E421 0.005 mg/L 105 mg/L 102 80.0 120 molybdenum, dissolved 7440-03-7 E421 0.05 mg/L 100 mg	copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	101	80.0	120		
ithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 101 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 104 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 106 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 molybdenum, dissolved 7440-09-7 E421 0.005 mg/L 50 mg/L 103 80.0 120 molybdenum, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 102 80.0 120 molybdenum, dissolved 7440-09-7 E421 0.005 mg/L 100 mg/L	iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	114	80.0	120		
magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 104 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 106 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 mickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 molybdenum, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 102 80.0 120 molybdenum, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 96.9 80.0 120 molybdenum, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 96.9 80.0 120 molybdenum, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 96.9 80.0 120 molybdenum, dissolved 7782-49-2 E421 0.0005 mg/L 10 mg/L 10 mg/L 105 60.0 140 molybdenum, dissolved 7440-21-3 E421 0.0005 mg/L 10 mg/L 0.1 mg/L 95.7 80.0 120 molybdenum, dissolved 7440-22-5 E421 0.0001 mg/L 0.1 mg/L 95.7 80.0 120 molybdenum, dissolved 7440-23-5 E421 0.0001 mg/L 50 mg/L 104 80.0 120 molybdenum, dissolved 7440-23-5 E421 0.0001 mg/L 50 mg/L 104 80.0 120 molybdenum, dissolved 7440-23-5 E421 0.0001 mg/L 50 mg/L 104 80.0 120 molybdenum, dissolved 7440-23-5 E421 0.0001 mg/L 50 mg/L 104 80.0 120 molybdenum, dissolved 7440-23-5 E421 0.0001 mg/L 50 mg/L 104 80.0 120 molybdenum, dissolved 7440-23-5 E421 0.0001 mg/L 50 mg/L 104 80.0 120 molybdenum, dissolved 7440-23-5 E421 0.0001 mg/L 50 mg/L 50 mg/L 104 80.0 120	lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	99.1	80.0	120		
manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 106 80.0 120 molybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 mickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 molybdenum, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 102 80.0 120 molybdenum, dissolved 7440-09-7 E421 0.05 mg/L 102 80.0 120 molybdenum, dissolved 103 80.0 120 mol	lithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	101	80.0	120		
molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 nickel, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 102 80.0 120 selenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 96.9 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 105 60.0 140 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 95.7 80.0 120 sodium, dissolved 7440-23-5 E421 0.0001 mg/L 0.1 mg/L 95.7 80.0 120 sodium, dissolved 7440-23-5 E421 0.005 mg/L 50 mg/L 104 80.0 120	magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	104	80.0	120		
nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 102 80.0 120 selenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 96.9 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 105 60.0 140 silver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 95.7 80.0 120 sodium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 104 80.0 120	manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	106	80.0	120		
100 mickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 103 80.0 120 100 mg/L	molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	103	80.0	120		
cotassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 102 80.0 120 selenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 96.9 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 105 60.0 140 silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 95.7 80.0 120 sodium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 104 80.0 120	nickel, dissolved	7440-02-0 E421	0.0005	mg/L	_		80.0	120		
selenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 96.9 80.0 120 silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 105 60.0 140 silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 95.7 80.0 120 sodium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 104 80.0 120	potassium, dissolved	7440-09-7 E421	0.05		_		80.0	120		
silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 105 60.0 140 silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 95.7 80.0 120 sodium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 104 80.0 120	selenium, dissolved	7782-49-2 E421	0.00005	mg/L		96.9	80.0	120		
silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 95.7 80.0 120 sodium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 104 80.0 120	silicon, dissolved		0.05		_		60.0	140		
sodium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 104 80.0 120	silver, dissolved	7440-22-4 E421	0.00001		_		80.0	120		
	sodium, dissolved	7440-23-5 E421	0.05		_		80.0	120		
	strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	101	80.0	120		

 Page
 : 14 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%) Recovery Limits (%)		Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 651142) - conti	inued								
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	120	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	98.6	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	103	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	101	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	101	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	103	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	107	80.0	120	

Page : 15 of 17

Work Order : CG2212561

Client : Teck Coal Lim

Client : Teck Coal Limited
Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nutr	ients (QCLot: 650784)										
CG2212553-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0490 mg/L	0.05 mg/L	97.9	70.0	130		
Anions and Nutr	ients (QCLot: 650787)										
CG2212595-003	Anonymous	fluoride	16984-48-8	E235.F	1.01 mg/L	1 mg/L	101	75.0	125		
Anions and Nutr	ients (QCLot: 650788)										
CG2212595-003	Anonymous	bromide	24959-67-9	E235.Br-L	0.514 mg/L	0.5 mg/L	103	75.0	125		
Anions and Nutr	rients (QCLot: 650789)										
CG2212595-003	Anonymous	chloride	16887-00-6	E235.CI-L	100 mg/L	100 mg/L	100	75.0	125		
Anions and Nutr	rients (QCLot: 650790)										
CG2212595-003	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.52 mg/L	2.5 mg/L	101	75.0	125		
Anions and Nutr	rients (QCLot: 650791)										
CG2212595-003	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.511 mg/L	0.5 mg/L	102	75.0	125		
Anions and Nutr	ients (QCLot: 650792)										
CG2212595-003	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	102 mg/L	100 mg/L	102	75.0	125		
Anions and Nutr	rients (QCLot: 651014)										
CG2212600-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0518 mg/L	0.05 mg/L	104	70.0	130		
Anions and Nutr	rients (QCLot: 651291)										
CG2212596-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125		
Organic / Inorga	nic Carbon (QCLot: 651	190)									
CG2212561-001	RG_LIDCOM_WS_LAEMP_ LCO_2022-09_N	carbon, dissolved organic [DOC]		E358-L	5.41 mg/L	5 mg/L	108	70.0	130		
Organic / Inorga	nic Carbon (QCLot: 651	191)									
CG2212561-001	RG_LIDCOM_WS_LAEMP_ LCO_2022-09_N	carbon, total organic [TOC]		E355-L	5.73 mg/L	5 mg/L	115	70.0	130		
Total Metals (Q	CLot: 650796)										
CG2212562-001	Anonymous	mercury, total	7439-97-6	E508	0.0000987 mg/L	0.0001 mg/L	98.7	70.0	130		
Total Metals (Q	CLot: 650951)										
CG2212596-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.416 mg/L	0.4 mg/L	104	70.0	130		
Total Metals (Q	CLot: 650952)										
CG2212596-001	Anonymous	aluminum, total	7429-90-5	E420	2.00 mg/L	2 mg/L	100	70.0	130		
	T .	antimony, total	7440-36-0	E420	0.217 mg/L	0.2 mg/L	108	70.0	130		

 Page
 : 16 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
	Lot: 650952) - conti	inued										
CG2212596-001	Anonymous	arsenic, total	7440-38-2	E420	0.202 mg/L	0.2 mg/L	101	70.0	130			
		barium, total	7440-39-3	E420	0.196 mg/L	0.2 mg/L	98.0	70.0	130			
		beryllium, total	7440-41-7	E420	0.400 mg/L	0.4 mg/L	100	70.0	130			
		bismuth, total	7440-69-9	E420	0.0987 mg/L	0.1 mg/L	98.7	70.0	130			
		boron, total	7440-42-8	E420	1.03 mg/L	1 mg/L	103	70.0	130			
		cadmium, total	7440-43-9	E420	0.0418 mg/L	0.04 mg/L	104	70.0	130			
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130			
		cobalt, total	7440-48-4	E420	0.200 mg/L	0.2 mg/L	100	70.0	130			
		copper, total	7440-50-8	E420	0.200 mg/L	0.2 mg/L	100.0	70.0	130			
		iron, total	7439-89-6	E420	20.6 mg/L	20 mg/L	103	70.0	130			
		lead, total	7439-92-1	E420	0.202 mg/L	0.2 mg/L	101	70.0	130			
		lithium, total	7439-93-2	E420	0.980 mg/L	1 mg/L	98.0	70.0	130			
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130			
		manganese, total	7439-96-5	E420	0.203 mg/L	0.2 mg/L	102	70.0	130			
		molybdenum, total	7439-98-7	E420	0.216 mg/L	0.2 mg/L	108	70.0	130			
		nickel, total	7440-02-0	E420	0.408 mg/L	0.4 mg/L	102	70.0	130			
		potassium, total	7440-09-7	E420	39.8 mg/L	40 mg/L	99.6	70.0	130			
		selenium, total	7782-49-2	E420	0.426 mg/L	0.4 mg/L	106	70.0	130			
		silicon, total	7440-21-3	E420	104 mg/L	100 mg/L	104	70.0	130			
		silver, total	7440-22-4	E420	0.0444 mg/L	0.04 mg/L	111	70.0	130			
		sodium, total	7440-23-5	E420	20.0 mg/L	20 mg/L	99.9	70.0	130			
		strontium, total	7440-24-6	E420	ND mg/L	0.2 mg/L	ND	70.0	130			
		sulfur, total	7704-34-9	E420	ND mg/L	200 mg/L	ND	70.0	130			
		thallium, total	7440-28-0	E420	0.0390 mg/L	0.04 mg/L	97.5	70.0	130			
		tin, total	7440-31-5	E420	0.212 mg/L	0.2 mg/L	106	70.0	130			
		titanium, total	7440-32-6	E420	0.382 mg/L	0.4 mg/L	95.5	70.0	130			
		uranium, total	7440-61-1	E420	0.0402 mg/L	0.04 mg/L	100	70.0	130			
		vanadium, total	7440-62-2	E420	1.04 mg/L	1 mg/L	104	70.0	130			
		zinc, total	7440-66-6	E420	4.00 mg/L	4 mg/L	100.0	70.0	130			
ssolved Metals	(QCLot: 650795)											
G2212562-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000970 mg/L	0.0001 mg/L	97.0	70.0	130			
ssolved Metals	(QCLot: 651141)											
G2212596-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.378 mg/L	0.4 mg/L	94.5	70.0	130			
issolved Metals	(QCLot: 651142)											
G2212596-001	Anonymous	aluminum, dissolved	7429-90-5	E421	1.85 mg/L	2 mg/L	92.5	70.0	130			
		antimony, dissolved	7440-36-0	E421	0.202 mg/L	0.2 mg/L	101	70.0	130			

 Page
 : 17 of 17

 Work Order
 : CG2212561

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ub-Matrix: Water							Matrix Spike	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
issolved Metals	(QCLot: 651142) -	continued								
CG2212596-001	Anonymous	arsenic, dissolved	7440-38-2	E421	0.186 mg/L	0.2 mg/L	92.8	70.0	130	
		barium, dissolved	7440-39-3	E421	0.185 mg/L	0.2 mg/L	92.7	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.349 mg/L	0.4 mg/L	87.3	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0935 mg/L	0.1 mg/L	93.5	70.0	130	
		boron, dissolved	7440-42-8	E421	0.808 mg/L	1 mg/L	80.8	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0373 mg/L	0.04 mg/L	93.3	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.182 mg/L	0.2 mg/L	91.0	70.0	130	
		copper, dissolved	7440-50-8	E421	0.177 mg/L	0.2 mg/L	88.5	70.0	130	
		iron, dissolved	7439-89-6	E421	18.0 mg/L	20 mg/L	90.2	70.0	130	
		lead, dissolved	7439-92-1	E421	0.185 mg/L	0.2 mg/L	92.7	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.844 mg/L	1 mg/L	84.4	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.196 mg/L	0.2 mg/L	98.0	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.194 mg/L	0.2 mg/L	97.0	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.361 mg/L	0.4 mg/L	90.3	70.0	130	
		potassium, dissolved	7440-09-7	E421	35.7 mg/L	40 mg/L	89.2	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.354 mg/L	0.4 mg/L	88.5	70.0	130	
		silicon, dissolved	7440-21-3	E421	90.5 mg/L	100 mg/L	90.5	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0408 mg/L	0.04 mg/L	102	70.0	130	
		sodium, dissolved	7440-23-5	E421	17.3 mg/L	20 mg/L	86.5	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	200 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0372 mg/L	0.04 mg/L	93.1	70.0	130	
		tin, dissolved	7440-31-5	E421	0.191 mg/L	0.2 mg/L	95.3	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.343 mg/L	0.4 mg/L	85.8	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.0392 mg/L	0.04 mg/L	98.1	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.894 mg/L	1 mg/L	89.4	70.0	130	
		zinc, dissolved	7440-66-6	E421	3.87 mg/L	4 mg/L	96.8	70.0	130	

Teck REP_LAEMP_LCO_ZUZZ-RUSH: Priorty TURNAROUND TIME: COC ID: 2-3 Business Days OTHER INFO PROJECT/CLIENT INFO LABORATORY Facility Name / Job# Regional Effects Program Lab Name ALS Calgary Report Format / Distribution Excel PDF EDD Lab Contact Lyudmyla Shvets Email 1: Project Manager Cybele Heddle AquaSciLab@Teck.com Email 2 Email Lyudmyla.Shvets@ALSGlobal.com Email Cybele.Heddie@teck.com Address 2559 29 Street NE Email 3: Address 421 Pine Avenue Teck.Lab.Results@teck.com X Email 4 Lisa Bowron@minnow.ca City Calgary Email 5: Provinc BC Provinc AB City Sparwood Postal Code T1Y 7B5 Country Canada Email 6: Postal Code V0B 2G0 Country Canada Hannah.Fenner@Teck.com X Phone Number 403 407 1794 VPO00816101 PO number Phone Number 1-250-865-3048 Filtered - F: Field, L. Lab, FL: Field & Lab, N: Non ANALYSIS REQUESTED SAMPLE DETAILS FN H2SO4 112504 HCL HCL Hazardous Material (Yes/No) FECKCOAL_METNHG_ TECKCOAL_METNHG_ **TECKCOAL_ROUTINE** Mercury_Dissolved Mercury_Total G=Grab Environmental Division #Of Sample Location Field Time C=Com Calgary
Work Order Reference
CG2212561 Cont Matrix Date (24hr) (sys loc code) Sample ID 2022/09/12 14:40 G 7 1 1 1 RG LIDCOM RG LIDCOM_WS_LAEMP_LCO_2022-09_N RELINOUISHED BY/AFFILIATION DATE/TIME DATE/TIME ACCEPTED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Jennifer Ings/Minnow ############### Dissolved metals were field filtered and to be lab preserved Total metals to be lab preserved SERVICE REQUEST (rush - subject to availability)

Regular (default)

Priority (2-3 business days) - 50% surcharge X Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend - Contact ALS

Sampler's Name

Sampler's Signature

Jennifer Ings

Mobile #

Date/Time

110

5195003444

September 13, 2022

WATER CHEMISTRY

ALS Laboratory Report CG2212665 (Finalized September 20, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2212665

Client : Teck Coal Limited

Contact : Cybele Heddle Address : 421 Pine Ave

Sparwood BC Canada

Telephone

Project : Regional Effects Program

: VPO00816101

C-O-C number : REP LAEMP LCO 2022-09 ALS

Sampler : Jennifer Ings/Minnow

Site

Quote number : Teck Coal Master Quote

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets Address

: 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 **Date Samples Received** : 16-Sep-2022 08:50

Date Analysis Commenced : 17-Sep-2022

Issue Date : 20-Sep-2022 16:27

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta
Anthony Calero	Supervisor - Inorganic	Metals, Calgary, Alberta
Elke Tabora		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Metals, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Shirley Li		Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

Page : 2 of 6
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Page : 3 of 6
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			Ci	lient sample ID	RG_LISP24_WS	 	
(Matrix: Water)					_LAEMP_LCO_ 2022-09_N		
			Client samp	oling date / time	14-Sep-2022 14:55	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212665-001	 	
Physical Tests					Result	 	
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	219	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	267	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as CaCO3)	3012-32-0	E290	1.0	mg/L	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
alkalinity, total (as CaCO3)	14200-30-9	E290	1.0	mg/L	219	 	
conductivity		E100	2.0	μS/cm	836	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	460	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	294	 	
pH		E108	0.10	pH units	8.21	 	
solids, total dissolved [TDS]		E162	10	mg/L	587	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.2	 	
turbidity		E121	0.10	NTU	0.21	 	
		L121	0.10	1110	0.21		
Anions and Nutrients ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	11.5	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.230	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.455 ^{TKNI}	 	
nitrate (as N)	44707 FF 9	E235.NO3-L	0.0050		8.48	 	
nitrite (as N)	14797-55-8	E235.NO3-L E235.NO2-L	0.0030	mg/L mg/L	0.0021	 	
phosphate, ortho-, dissolved (as P)	14797-65-0	E378-U	0.0010	_	<0.0021	 	
phosphorus, total	14265-44-2	E376-U E372-U	0.0010	mg/L	0.0010	 	
sulfate (as SO4)	7723-14-0	E235.SO4	0.0020	mg/L	251	 	
, ,	14808-79-8	E230.304	0.30	mg/L	201	 	
Organic / Inorganic Carbon carbon, dissolved organic [DOC]		E358-L	0.50	mg/l	<0.50	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50		
carbon, total organic [100]		E333-L	0.50	mg/L	\0.50	 	

Page : 4 of 6
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_LISP24_WS	 		
(Matrix: Water)					_LAEMP_LCO_ 2022-09_N			
			Client samp	ling date / time	14-Sep-2022 14:55	 		
Analyte	CAS Number	Method	LOR	Unit	CG2212665-001	 		
					Result	 		
Ion Balance anion sum		EC101	0.10	meq/L	10.5	 		
cation sum		EC101	0.10	meq/L	9.54	 		
ion balance (cations/anions)		EC101	0.010	%	90.8	 		
ion balance (APHA)		EC101	0.010	%	4.79	 		
		LC101	0.010	70	4.79	 		
Total Metals aluminum, total	7429-90-5	E420	0.0030	ma/l	0.0033	 		
antimony, total		E420	0.00010	mg/L	0.00036	 		
-	7440-36-0	E420	0.00010	mg/L	0.00020	 		
arsenic, total	7440-38-2			mg/L	0.00013			
barium, total	7440-39-3	E420	0.00010	mg/L		 		
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	 		
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 		
boron, total	7440-42-8	E420	0.010	mg/L	0.016	 		
cadmium, total	7440-43-9	E420	0.0050	μg/L 	0.235	 		
calcium, total	7440-70-2	E420	0.050	mg/L	108	 		
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00021	 		
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	 		
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 		
iron, total	7439-89-6	E420	0.010	mg/L	0.013	 		
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	 		
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0464	 		
magnesium, total	7439-95-4	E420	0.0050	mg/L	51.1	 		
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00688	 		
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	 		
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00233	 		
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00702	 		
potassium, total	7440-09-7	E420	0.050	mg/L	1.43	 		
selenium, total	7782-49-2	E420	0.050	μg/L	39.6	 		
silicon, total	7440-21-3	E420	0.10	mg/L	2.44	 		
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	 		
sodium, total	7440-23-5	E420	0.050	mg/L	7.60	 		
T .			1	-			ı	1

Page : 5 of 6
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_LISP24_WS		 	
(Matrix: Water)					_LAEMP_LCO_ 2022-09_N			
			Client samp	ling date / time	14-Sep-2022 14:55		 	
Analyte	CAS Number	Method	LOR	Unit	CG2212665-001		 	
					Result		 	
Total Metals								
strontium, total	7440-24-6	E420	0.00020	mg/L	0.209		 	
sulfur, total	7704-34-9	E420	0.50	mg/L	97.7		 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010		 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010		 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030		 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00362		 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050		 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0093		 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010		 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00024		 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00010		 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0552		 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020		 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050		 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.014		 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.231		 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	104		 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00013		 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10		 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00023		 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010		 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050		 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0499		 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	48.6		 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00624		 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050		 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00233		 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00690		 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.39		 	
The state of the s			1	, ,	1	l l	ı	l l

Page : 6 of 6
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			CI	lient sample ID	RG_LISP24_WS	 	
(Matrix: Water)					_LAEMP_LCO_		
					2022-09_N		
			Client samp	oling date / time	14-Sep-2022 14:55	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212665-001	 	
					Result	 	
Dissolved Metals							
selenium, dissolved	7782-49-2	E421	0.050	μg/L	43.8	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.40	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	7.41	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.210	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	94.7	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00363	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0094	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212665** Page : 1 of 12

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Ave Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

 Telephone
 : --- Telephone
 : +1 403 407 1800

 Project
 : Regional Effects Program
 Date Samples Received
 : 16-Sep-2022 08:50

C-O-C number : REP_LAEMP_LCO_2022-09_ALS

Sampler : Jennifer Ings/Minnow

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

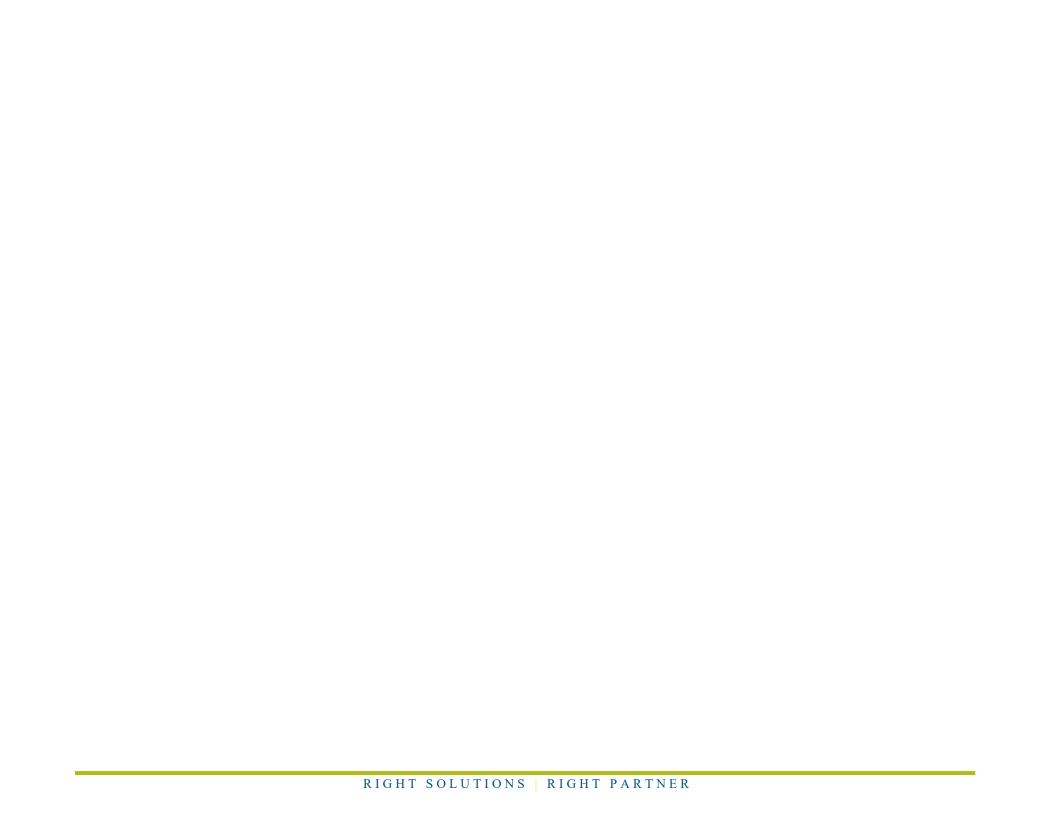
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

 Page
 : 3 of 12

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Matrix: Water Analyte Group Extraction / Preparation Method Sampling Date Container / Client Sample ID(s) **Holding Times** Eval Analysis Date Holding Times Eval Preparation Rec Actual Date Rec Actual Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) F298 14-Sep-2022 1 RG LISP24 WS LAEMP LCO 2022-09 N 17-Sep-2022 17-Sep-2022 28 days 3 days Anions and Nutrients : Bromide in Water by IC (Low Level) **HDPE** E235.Br-L 14-Sep-2022 17-Sep-2022 17-Sep-2022 28 days 3 days ✓ RG LISP24 WS LAEMP LCO 2022-09 N ----Anions and Nutrients: Chloride in Water by IC (Low Level) **HDPE** E235.CI-L 17-Sep-2022 17-Sep-2022 28 days 3 days RG LISP24 WS LAEMP LCO 2022-09 N 14-Sep-2022 Anions and Nutrients: Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** RG_LISP24_WS_LAEMP_LCO_2022-09_N E378-U 14-Sep-2022 17-Sep-2022 17-Sep-2022 3 days 3 days ----Anions and Nutrients: Fluoride in Water by IC **HDPE** E235.F 14-Sep-2022 17-Sep-2022 17-Sep-2022 28 days 3 days ✓ RG LISP24 WS LAEMP LCO 2022-09 N Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG LISP24 WS LAEMP LCO 2022-09 N E235.NO3-L 14-Sep-2022 17-Sep-2022 3 days 3 days ✓ 17-Sep-2022 3 days 0 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE E235.NO2-L 14-Sep-2022 1 RG LISP24 WS LAEMP LCO 2022-09 N 17-Sep-2022 17-Sep-2022 3 days 3 days

Page : 4 of 12 : CG2212665 Work Order Client : Teck Coal Limited : Regional Effects Program Project

Matrix: Water						aluation: × =	Holding time exce	edance ; 🔻	= Within	ı Holding Ti
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Anions and Nutrients : Sulfate in Water by IC			24.0							
HDPE							T			
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E235.SO4	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Le	evel)									
Amber glass total (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E318	14-Sep-2022	18-Sep-2022				18-Sep-2022	28 days	4 days	*
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E372-U	14-Sep-2022	19-Sep-2022				20-Sep-2022	28 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low L	.evel)									
HDPE - dissolved (lab preserved)										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E421.Cr-L	14-Sep-2022	19-Sep-2022				19-Sep-2022	180 days	5 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E509	14-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	6 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E421	14-Sep-2022	19-Sep-2022				19-Sep-2022	180 days	5 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion	(Low Level)									
Amber glass dissolved (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E358-L	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by	Combustion (Low Level)									
Amber glass total (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E355-L	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE	F000	44.0 0000	47.0 0000				17.0 0000	44.1	0.1	
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E283	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	~

Page : 5 of 12
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

wattin. **atei					L v	aluation. •• –	Holding time exce	cuarice,	_ vvitiiii	i i ioiding ii
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E290	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E100	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Physical Tests : ORP by Electrode										ı
HDPE	F40F	44.0 2000					47.0 2000		C7 h	
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E125	14-Sep-2022					17-Sep-2022	0.25	67 hrs	EUTD F
								hrs		EHTR-F
Physical Tests : pH by Meter							1			I
HDPE	E108	14-Sep-2022	17-Sep-2022				17-Sep-2022	0.05	0.05	*
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E100	14-3ep-2022	17-3ep-2022				17-3ep-2022	0.25 hrs	0.25 hrs	EHTR-F
								1115	1115	LIIIX-I
Physical Tests : TDS by Gravimetry HDPE							I			
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E162	14-Sep-2022					17-Sep-2022	7 days	3 days	1
NO_EIGI 24_WO_EAEIWI _EOO_2022-05_N	2102	11 Cop 2022					17-00p-2022	, days	o days	·
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E160-L	14-Sep-2022					17-Sep-2022	7 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E121	14-Sep-2022					17-Sep-2022	3 days	3 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E420.Cr-L	14-Sep-2022	18-Sep-2022				18-Sep-2022	180	4 days	✓
								days		
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-09_N	E508	14-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	6 days	✓

 Page
 : 6 of 12

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

Project : Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation					
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date Holding Time		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved) RG_LISP24_WS_LAEMP_LCO_2022-09_N	E420	14-Sep-2022	18-Sep-2022				18-Sep-2022	180 days	4 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

 Page
 : 7 of 12

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	·	Evaluat	ion: × = QC frequ		ecification; ✓ =		<u> </u>
Quality Control Sample Type				ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	652128	1	19	5.2	5.0	✓
Alkalinity Species by Titration	E290	652131	1	19	5.2	5.0	✓
Ammonia by Fluorescence	E298	652333	1	9	11.1	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	652450	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	652451	1	20	5.0	5.0	✓
Conductivity in Water	E100	652130	1	19	5.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	653366	1	18	5.5	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	655111	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	653367	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	652321	1	13	7.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651928	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	652449	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	652452	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	652453	1	20	5.0	5.0	✓
ORP by Electrode	E125	652149	1	19	5.2	5.0	✓
pH by Meter	E108	652129	1	19	5.2	5.0	1
Sulfate in Water by IC	E235.SO4	652454	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	652293	1	17	5.8	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	652285	1	9	11.1	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	652135	1	1	100.0	5.0	✓
Total Mercury in Water by CVAAS	E508	655100	1	19	5.2	5.0	1
Total Metals in Water by CRC ICPMS	E420	652286	1	9	11.1	5.0	1
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	652326	1	13	7.6	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	653712	1	20	5.0	5.0	1
Turbidity by Nephelometry	E121	651923	1	14	7.1	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	652128	1	19	5.2	5.0	1
Alkalinity Species by Titration	E290	652131	1	19	5.2	5.0	1
Ammonia by Fluorescence	E298	652333	1	9	11.1	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	652450	1	20	5.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	652451	1	20	5.0	5.0	
Conductivity in Water	E100	652130	1	19	5.2	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	653366	1	18	5.5	5.0	√
Dissolved Mercury in Water by CVAAS	E509	655111	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	653367	1	19	5.2	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	652321	1	13	7.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651928	1	20	5.0	5.0	✓

Page : 8 of 12
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification.

Matrix: Water		Evaluati	on: × = QC trequ		ecification; 🗸 = 0		
Quality Control Sample Type				ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	652449	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	652452	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	652453	1	20	5.0	5.0	✓
ORP by Electrode	E125	652149	1	19	5.2	5.0	✓
pH by Meter	E108	652129	1	19	5.2	5.0	✓
Sulfate in Water by IC	E235.SO4	652454	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	652293	1	17	5.8	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	652285	1	9	11.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	652135	1	1	100.0	5.0	✓
Total Mercury in Water by CVAAS	E508	655100	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	652286	1	9	11.1	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	652326	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	653712	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	652292	1	17	5.8	5.0	✓
Turbidity by Nephelometry	E121	651923	1	14	7.1	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	652128	1	19	5.2	5.0	✓
Alkalinity Species by Titration	E290	652131	1	19	5.2	5.0	✓
Ammonia by Fluorescence	E298	652333	1	9	11.1	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	652450	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	652451	1	20	5.0	5.0	✓
Conductivity in Water	E100	652130	1	19	5.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	653366	1	18	5.5	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	655111	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	653367	1	19	5.2	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	652321	1	13	7.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651928	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	652449	1	20	5.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	652452	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	652453	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	652454	1	20	5.0	5.0	√
TDS by Gravimetry	E162	652293	1	17	5.8	5.0	<u>√</u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	652285	1	9	11.1	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	652135	1	1	100.0	5.0	<u>√</u>
Total Mercury in Water by CVAAS	E508	655100	1	19	5.2	5.0	<u> </u>
Total Metals in Water by CRC ICPMS	E420	652286	1	9	11.1	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	652326	1	13	7.6	5.0	<u>√</u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	653712	1	20	5.0	5.0	<u>√</u>
TSS by Gravimetry (Low Level)	E160-L	652292	1	17	5.8	5.0	<u>√</u>
Turbidity by Nephelometry	E121	651923	1	14	7.1	5.0	<u> </u>

 Page
 : 9 of 12

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: Water

Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification.

Wattix. Water		Lvaldati	on. • - QC nega	ericy outside spe	cirication, • -	QU ITEQUETICY WIL	min specificatio
Quality Control Sample Type			Co	ount		Frequency (%)	1
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	652333	1	9	11.1	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	652450	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	652451	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	653366	1	18	5.5	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	655111	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	653367	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	652321	1	13	7.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651928	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	652449	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	652452	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	652453	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	652454	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	652285	1	9	11.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	652135	0	1	0.0	5.0	Je.
Total Mercury in Water by CVAAS	E508	655100	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	652286	1	9	11.1	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	652326	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	653712	1	20	5.0	5.0	√

 Page
 : 10 of 12

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

Project : Regional Effects Program

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
Trushi dita da Nama da da mantana	0 ,	10/-4	ADUA 0400 D (pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			Scatter under defined conditions.
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Colorani Faninosantol			filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
, ,	2.02			filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	0.1			detection.
Chlorida in Water by IC (Levy Leval)	Calgary - Environmental	Water	EDA 200.1 (mad)	
Chloride in Water by IC (Low Level)	E235.CI-L	water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
Twittate in water by to (Low Level)	E235.NO3-L	vvator	Li A 300.1 (mod)	detection.
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
A 1 19 A 7 A 19	Calgary - Environmental	187 -	ADUA 0042 7 4 "	
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
	Salgary - Environmental			

Page : 11 of 12
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 12 of 12
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

QUALITY CONTROL REPORT

Work Order CG2212665

Client : Teck Coal Limited Contact : Cybele Heddle Address

421 Pine Ave

Sparwood BC Canada

Telephone

Project : Regional Effects Program

PO : VPO00816101

C-O-C number :REP LAEMP LCO 2022-09 ALS

Sampler : Jennifer Ings/Minnow

Site

Quote number : Teck Coal Master Quote

No. of samples received No. of samples analysed : 1 Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Date Samples Received : 16-Sep-2022 08:50

Date Analysis Commenced :17-Sep-2022

: 20-Sep-2022 16:27 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta	
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta	
Elke Tabora		Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Mackenzie Lamoureux	Laboratory Analyst	Calgary Metals, Calgary, Alberta	
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta	
Sara Niroomand		Calgary Inorganics, Calgary, Alberta	
Shirley Li		Calgary Metals, Calgary, Alberta	
Vladka Stamenova	Analyst	Calgary Inorganics, Calgary, Alberta	

 Page
 : 2 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 651923)										
CG2212626-001	Anonymous	turbidity		E121	0.10	NTU	0.95	1.01	0.06	Diff <2x LOR	
Physical Tests (QC	Lot: 652128)										
CG2212650-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 652129)							ı			
CG2212650-001	Anonymous	pH		E108	0.10	pH units	8.34	8.31	0.360%	4%	
Physical Tests (QC	Lot: 652130)										
CG2212650-001	Anonymous	conductivity		E100	2.0	μS/cm	287	288	0.348%	10%	
Physical Tests (QC	L of: 652131)										
CG2212650-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	144	156	7.92%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	6.8	5.4	1.4	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	151	162	6.72%	20%	
Physical Tests (QC	Lot: 652149)					-					
CG2212650-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	268	269	0.186%	15%	
Physical Tasta (OC	,									-	
Physical Tests(QC CG2212657-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	1400	1420	1.38%	20%	
	,	conac, total alcooned [120]				9-		1.2			
CG2212626-001	ts (QC Lot: 651928) Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0048	0.0047	0.00008	Diff <2x LOR	
	,	phosphate, ortho-, dissolved (as r)	14203-44-2	2370-0	0.0010	IIIg/L	0.0040	0.0041	0.0000	DIII 12X LOIX	
Anions and Nutrien CG2212665-001	ts (QC Lot: 652135) RG LISP24 WS LAEMP	Kindahi nita nan Astal ITKNI		E318	0.050	m a/l	0.455	0.432	0.023	Diff <2x LOR	
CG2212005-001	LCO 2022-09 N	Kjeldahl nitrogen, total [TKN]		E310	0.050	mg/L	0.455	0.432	0.023	DIII <2X LOR	
Anions and Nutrien	ts (QC Lot: 652333)										
CG2212663-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 652449)										
CG2212665-001	RG_LISP24_WS_LAEMP_	fluoride	16984-48-8	E235.F	0.020	mg/L	0.230	0.233	0.994%	20%	
	LCO_2022-09_N										
	ts (QC Lot: 652450)		04050 67.0	E005 D- I	0.050	(I	-0.050	10.050	0	D:# +01 CD	
CG2212665-001	RG_LISP24_WS_LAEMP_ LCO_2022-09_N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nu <u>trien</u>	ts (QC Lot: 652451)										
CG2212665-001	RG_LISP24_WS_LAEMP_ LCO 2022-09 N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	11.5	11.4	0.431%	20%	
nions and Nutrien	ts (QC Lot: 652452)										

 Page
 : 4 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	its (QC Lot: 652452) - co	ontinued									
CG2212665-001	RG_LISP24_WS_LAEMP_ LCO_2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	8.48	8.46	0.276%	20%	
Anions and Nutrien	ts (QC Lot: 652453)										
CG2212665-001	RG_LISP24_WS_LAEMP_ LCO_2022-09_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0021	0.0021	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 652454)										
CG2212665-001	RG_LISP24_WS_LAEMP_ LCO_2022-09_N	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	251	250	0.425%	20%	
Anions and Nutrien	ts (QC Lot: 653712)										
CG2212650-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0033	0.0035	0.0002	Diff <2x LOR	
Organic / Inorga <u>nic</u>	Carbon (QC Lot: 65232	1)									
CG2212662-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / <u>Inorganic</u>	Carbon (QC Lot: 652320	6)									
CG2212662-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 652285)										
CG2212663-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 652286)										
CG2212663-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0057	<0.0030	0.0027	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	0.0066	<0.0050	0.0016	Diff <2x LOR	
		manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, total	7440-02-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		· · ·	7782-49-2	E420	0.000050	mg/L	<0.050 μg/L	<0.00050	0	Diff <2x LOR	
		selenium, total	1102-45-2	トサムリ	0.000030	mg/L	~0.000 μg/L	~0.000000	"	DIII >ZX LUK	

 Page
 : 5 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualif
Total Metals (QC Lo	ot: 652286) - continue	d									
CG2212663-001	Anonymous	silicon, total	7440-21-3	E420	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		strontium, total	7440-24-6	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		sulfur, total	7704-34-9	E420	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 655100)										
CG2212650-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	0.0000055	0.0000005	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 653366)										
CG2212376-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00018	0.00017	0.00002	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 653367)										
CG2212376-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00014	0.00012	0.00002	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0432	0.0414	4.29%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	44.6	43.6	2.14%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0038	0.0036	0.0001	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.1	11.7	2.73%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000923	0.000900	2.55%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
									1		

 Page
 : 6 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

ub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals(QC Lot: 653367) - cor	tinued									
CG2212376-001	Anonymous	selenium, dissolved	7782-49-2	E421	0.000050	mg/L	3.40 µg/L	0.00320	6.14%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.63	1.56	4.72%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	1.30	1.27	2.53%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.159	0.154	2.87%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	19.1	18.0	5.64%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00111	0.00119	7.45%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0016	0.0013	0.0003	Diff <2x LOR	
Dissolved Metals (QC Lot: 655111)										
CG2212650-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 651923)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 652128)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 652130)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 652131)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 652292)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 652293)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 651928)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 652135)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 652333)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 652449)					
luoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 652450)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 652451)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 652452)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 652453)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 652454)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 653712)					

Page : 8 of 18
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 653712						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot: 6	552321)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 6	552326)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 652285)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 652286)						
aluminum, total	7429-90-5		0.003	mg/L	<0.0030	
antimony, total	7440-36-0		0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2		0.0001	mg/L	<0.00010	
parium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
poron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	

Page : 9 of 18
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 652286) - c	ontinued					
ıranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
anadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
rinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 655100)						
nercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 65336	6)					
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 65336	7)					
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
poron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
alcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
in, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	

Page : 10 of 18
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number Me	ethod	LOR	Unit	Result	Qualifier			
Dissolved Metals (QCLot: 653367) - continued									
uranium, dissolved	7440-61-1 E42	21	0.00001	mg/L	<0.000010				
vanadium, dissolved	7440-62-2 E42	121	0.0005	mg/L	<0.00050				
zinc, dissolved	7440-66-6 E42	321	0.001	mg/L	<0.0010				
Dissolved Metals (QCLot: 655111)									
mercury, dissolved	7439-97-6 E50	509	0.000005	mg/L	<0.0000050				

 Page
 : 11 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)				
Analyte CA.	S Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 651923)											
turbidity	E121	0.1	NTU	200 NTU	109	85.0	115				
Physical Tests (QCLot: 652128)											
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	106	85.0	115				
Physical Tests (QCLot: 652129)											
рН	E108		pH units	7 pH units	100	98.6	101				
Physical Tests (QCLot: 652130)											
conductivity	E100	1	μS/cm	146.9 μS/cm	97.3	90.0	110				
Physical Tests (QCLot: 652131)											
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	101	85.0	115				
Physical Tests (QCLot: 652149)											
oxidation-reduction potential [ORP]	E125		mV	220 mV	100	95.4	104				
Physical Tests (QCLot: 652292)											
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	88.9	85.0	115				
Physical Tests (QCLot: 652293)											
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	92.5	85.0	115				
Anions and Nutrients (QCLot: 651928)								1			
phosphate, ortho-, dissolved (as P)	4265-44-2 E378-U	0.001	mg/L	0.03 mg/L	92.8	80.0	120				
Anions and Nutrients (QCLot: 652135)											
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	101	75.0	125				
Anions and Nutrients (QCLot: 652333)								1			
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	96.4	85.0	115				
Anions and Nutrients (QCLot: 652449)											
fluoride 1	6984-48-8 E235.F	0.02	mg/L	1 mg/L	104	90.0	110				
Anions and Nutrients (QCLot: 652450)											
bromide 2	4959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115				
Anions and Nutrients (QCLot: 652451)											
chloride 1	6887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110				
Anions and Nutrients (QCLot: 652452)											
nitrate (as N)	4797-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110				
Anions and Nutrients (QCLot: 652453)											
nitrite (as N)	4797-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	103	90.0	110				
Anions and Nutrients (QCLot: 652454)											

 Page
 : 12 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report						
							Spike Recovery (%) Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie			
Anions and Nutrients (QCLot: 652454) - conti	nued											
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110				
Anions and Nutrients (QCLot: 653712)												
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.03 mg/L	95.2	80.0	120				
Organic / Inorganic Carbon (QCLot: 652321)												
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	96.7	80.0	120				
Organic / Inorganic Carbon (QCLot: 652326)												
carbon, total organic [TOC]		E355-L	0.5	mg/L	8.57 mg/L	104	80.0	120				
					, and the second							
Total Metals (QCLot: 652285)												
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	96.7	80.0	120				
Total Metals (QCLot: 652286)												
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	102	80.0	120				
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	103	80.0	120				
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	97.2	80.0	120				
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120				
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	98.5	80.0	120				
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	96.5	80.0	120				
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	97.3	80.0	120				
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	97.9	80.0	120				
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	96.7	80.0	120				
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	100	80.0	120				
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	96.0	80.0	120				
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	111	80.0	120				
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	97.6	80.0	120				
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	97.4	80.0	120				
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	102	80.0	120				
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	99.4	80.0	120				
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	98.3	80.0	120				
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	96.9	80.0	120				
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	99.7	80.0	120				
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	91.9	80.0	120				
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	100	60.0	140				
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	90.5	80.0	120				
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	102	80.0	120				
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	98.3	80.0	120				
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	106	80.0	120				

Page : 13 of 18
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Months Collect: 65286	Sub-Matrix: Water					Report					
Continue Continue						Spike Recovery (%) Recovery Limits (%)					
Martin Ball	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
1, betail	Total Metals (QCLot: 652286) - continue	d									
amum, total 7440-526 E420 0.0003 mgL 0.26 mgL 89.5 80.0 120	thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	98.1	80.0	120		
rankum, total 7440-61-1 Fa20 0.00001 mg/L 0.005 mg/L 99.9 80.0 120 rankum, total 7440-62-2 Fa20 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 rotal Marias (OCLOT-655100) ***Total 7440-66-5 Fa20 0.00001 mg/L 0.5 mg/L 97.0 80.0 120 ***Total 7440-66-5 Fa20 0.00001 mg/L 0.5 mg/L 97.0 80.0 120 ***Total 7440-66-5 Fa20 0.00001 mg/L 0.001 mg/L 118 80.0 120 ***Total 7440-66-5 Fa21 0.0001 mg/L 0.25 mg/L 104 80.0 120 ***Total 7440-66-5 Fa21 0.0001 mg/L 1 mg/L 101 80.0 120 ***Total 840-86-86-86-86-86-86-86-86-86-86-86-86-86-	tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	98.4	80.0	120		
medium, total 7440-82-2 F420 0.0005 mg/L 0.5 mg/L 97.0 80.0 120 — **TATURE STATE S	titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	99.5	80.0	120		
Tex. Loted 7440-66 e 4420 0.003 mgt 0.5 mgt 97.0 80.0 120	uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	96.4	80.0	120		
Section Color Co	vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	99.9	80.0	120		
Secolved Metals (QCLot: 653366) Secolution Secoluti	zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	97.0	80.0	120		
Sissolved Metals (QCLot: 653366) Sissolved Metals (QCLot: 653367) E421 Cr. L. 0.0001 mg. L. 0.25 mg. L. 0.99. L. 0.90 mg. L. 0.25 mg. L. 0.0001 mg. L. 0.25 mg. L. 0.0001 mg. L. 0.0000 mg. L. 0.0000 mg. L. 0.0001 mg. L. 0.0000 mg. L. 0.000	Total Metals (QCLot: 655100)										
Sesolved Metals (QCLot: 653367) Sesolved Metals (QCLot: 653367) Sesolved Metals (QCLot: 653367) Sesolved Metals (QCLot: 653367) Sesolved Metals (QCLot: 653367) Sesolved 7440-346-0 E421 0.0001 mg/L 1 mg/L 101 80.0 120 Sesolved 7440-346-0 E421 0.0001 mg/L 1 mg/L 101 80.0 120 Sesolved 7440-346-0 E421 0.0001 mg/L 0.5 mg/L 97.7 80.0 120 Sesolved 7440-446-1 Sesolved 7440-446-1 E421 0.0001 mg/L 0.5 mg/L 98.6 80.0 120 Sesolved 7440-446-1 Sesolved 7440-446-1 E421 0.00002 mg/L 0.1 mg/L 98.6 80.0 120 Sesolved 7440-446-1 Sesolved 7440-446-1 E421 0.00005 mg/L 0.1 mg/L 98.6 80.0 120 Sesolved 7440-446-1 Sesolved 7440-466-1 Sesolved Sesolved 7440-466-1 Sesolved Sesol	mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	118	80.0	120		
Sesolved Metals (QCLot: 653367) Sesolved Metals (QCLot: 653367) Sesolved Metals (QCLot: 653367) Sesolved Metals (QCLot: 653367) Sesolved Metals (QCLot: 653367) Sesolved 7440-346-0 E421 0.0001 mg/L 1 mg/L 101 80.0 120 Sesolved 7440-346-0 E421 0.0001 mg/L 1 mg/L 101 80.0 120 Sesolved 7440-346-0 E421 0.0001 mg/L 0.5 mg/L 97.7 80.0 120 Sesolved 7440-446-1 Sesolved 7440-446-1 E421 0.0001 mg/L 0.5 mg/L 98.6 80.0 120 Sesolved 7440-446-1 Sesolved 7440-446-1 E421 0.00002 mg/L 0.1 mg/L 98.6 80.0 120 Sesolved 7440-446-1 Sesolved 7440-446-1 E421 0.00005 mg/L 0.1 mg/L 98.6 80.0 120 Sesolved 7440-446-1 Sesolved 7440-466-1 Sesolved Sesolved 7440-466-1 Sesolved Sesol											
Infinity Infinity	Dissolved Metals (QCLot: 653366)										
turnirum, dissolved 7429-90 5 [421] 0.001 mg/L 2 mg/L 104 80.0 120	chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	99.4	80.0	120		
Intimony, dissolved 7440-38-0 E421 0.0001 mg/L 1 mg/L 97.7 80.0 120	Dissolved Metals (QCLot: 653367)										
rsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 97.7 80.0 120	aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	104	80.0	120		
rafum, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 97.2 80.0 120	antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	101	80.0	120		
eryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 98.6 80.0 120	arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	97.7	80.0	120		
smuth dissolved 7440-68-9 E421 0.00005 mg/L 1 mg/L 95.6 80.0 120 smuth dissolved 7440-88-8 E421 0.01 mg/L 1 mg/L 86.6 80.0 120 smuth dissolved 7440-48-8 E421 0.00005 mg/L 0.1 mg/L 95.6 80.0 120 smuth dissolved 7440-48-9 E421 0.00005 mg/L 0.1 mg/L 96.4 80.0 120 shalt dissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 99.0 80.0 120 sper, dissolved 7440-50-8 E421 0.0001 mg/L 0.25 mg/L 99.0 80.0 120 sper, dissolved 7439-89-6 E421 0.0001 mg/L 0.25 mg/L 99.5 80.0 120 smuth dissolved 7439-89-6 E421 0.0001 mg/L 0.55 mg/L 98.6 80.0 120 smuth dissolved 7439-98-6 E421 0.001 mg/L 0.5 mg/L 98.6 80.0 120 smuth dissolved 7439-98-6 E421 0.001 mg/L 0.55 mg/L 98.6 80.0 120 smuth dissolved 7439-98-6 E421 0.001 mg/L 0.55 mg/L 98.6 80.0 120 smuth dissolved 7439-98-6 E421 0.001 mg/L 0.55 mg/L 98.6 80.0 120 smuth dissolved 7439-98-6 E421 0.001 mg/L 0.25 mg/L 104 80.0 120 smuth dissolved 7439-98-6 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 smuth dissolved 7439-98-6 E421 0.0005 mg/L 0.55 mg/L 98.8 80.0 120 smuth dissolved 7439-98-6 E421 0.0005 mg/L 0.55 mg/L 101 80.0 120 smuth dissolved 7440-92-7 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 smuth dissolved 7440-92-7 E421 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 smuth dissolved 7440-92-8 E421 0.0005 mg/L 100 mg/L 98.7 80.0 120 smuth dissolved 7440-92-8 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 smuth dissolved 7440-92-8 E421 0.00001 mg/L 0.5 mg/L 99.7 80.0 120 smuth dissolved 7440-92-8 E421 0.00001 mg/L 0.5 mg/L 99.7 80.0 120 smuth dissolved 7440-92-8 E421 0.00001 mg/L 0.5 mg/L 99.7 80.0 120 smuth dissolved 7440-92-8 E421 0.00001 mg/L 0.5 mg/L 99.7 80.0 120 smuth dissolved 7440-92-8 E421 0.00001 mg/L 0.5 mg/L 99.7 80.0 120 smuth dissolved 7440-92-8 E421 0.00001 mg/L 0.5 mg/L 99.7 80.0 120 smuth dissolved 7440-92-8 E421 0.00001 mg/L 0.5 mg/L 99.7 80.0 120 smuth dissolved 7440-92-8 E421 0.00001 mg/L 0.5 mg/L 99.8 80.0 120 smuth dissolved 99.8 80.0 120 smuth dissolved 99.8 80.0 120 smuth diss	barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	97.2	80.0	120		
ron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 86.6 80.0 120	beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	98.6	80.0	120		
admium, dissolved 7440-32-9 E421 0.000005 mg/L 0.1 mg/L 96.4 80.0 120 alcium, dissolved 7440-70-2 E421 0.005 mg/L 50 mg/L 99.0 80.0 120 abalt, dissolved 7440-80-8 E421 0.0001 mg/L 0.25 mg/L 98.0 80.0 120 abalt, dissolved 7440-80-8 E421 0.0002 mg/L 0.25 mg/L 98.0 80.0 120 abalt, dissolved 7440-80-8 E421 0.0002 mg/L 0.25 mg/L 95.5 80.0 120 abalt, dissolved 7439-80-6 E421 0.0002 mg/L 0.5 mg/L 113 80.0 120 abalt, dissolved 7439-90-1 E421 0.0005 mg/L 0.5 mg/L 94.6 80.0 120 alagnesium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 94.6 80.0 120 alagnesium, dissolved 7439-96-5 E421 0.005 mg/L 50 mg/L 96.8 80.0 120 alagnesium, dissolved 7439-96-6 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 alagnesium, dissolved 7439-96-7 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 alagnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.8 80.0 120 alagnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.8 80.0 120 alagnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.8 80.0 120 alagnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.8 80.0 120 alagnesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.8 80.0 120 alagnesium, dissolved 7440-02-1 E421 0.0005 mg/L 0.5 mg/L 96.7 80.0 120 alagnesium, dissolved 7440-02-1 E421 0.0005 mg/L 0.5 mg/L 96.7 80.0 120 alagnesium, dissolved 7440-02-1 E421 0.0005 mg/L 0.5 mg/L 90.7 80.0 120 alagnesium, dissolved 7440-02-1 E421 0.00005 mg/L 0.1 mg/L 90.7 80.0 120 alagnesium, dissolved 7440-02-1 E421 0.00005 mg/L 0.1 mg/L 90.7 80.0 120 alagnesium, dissolved 7440-02-1 E421 0.00005 mg/L 0.1 mg/L 90.7 80.0 120 alagnesium, dissolved 7440-02-1 E421 0.00005 mg/L 0.1 mg/L 90.7 80.0 120 alagnesium, dissolved 7440-02-1 E421 0.00005 mg/L 0.1 mg/L 90.7 80.0 120 alagnesium, dissolved 7440-02-1 E421 0.00005 mg/L 0.1 mg/L 90.7 80.0 120 alagnesium, dissolved 90.0 120	bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	95.6	80.0	120		
alcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 99.0 80.0 120	boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	86.6	80.0	120		
balat, dissolved 7440-48-4 cpper, dissolved 7440-60-8 cpper, dissolved 6421 0.000	cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	96.4	80.0	120		
poper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 95.5 80.0 120 and, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 113 80.0 120 and, dissolved 7439-92-1 E421 0.0005 mg/L 0.25 mg/L 94.6 80.0 120 and, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 94.6 80.0 120 angenesium, dissolved 7439-96-5 E421 0.005 mg/L 0.25 mg/L 96.8 80.0 120 angenesium, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 angenesium, dissolved 7439-96-6 E421 0.0001 mg/L 0.25 mg/L 101 80.0 120 angenesium, dissolved 7439-96-7 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 angenesium, dissolved 7440-02-0 F421 0.0005 mg/L 0.55 mg/L 97.4 80.0 120 alenium, dissolved 7440-09-7 E421 0.005 mg/L 0.55 mg/L 98.7 80.0 120 alenium, dissolved 7440-21-3 E421 0.0005 mg/L 1 mg/L 90.7 80.0 120 alenium, dissolved 7440-21-3 E421 0.005 mg/L 10 mg/L 1	calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	99.0	80.0	120		
on, dissolved 7439-89-6 ad, dissolved 7439-92-1 ad, dissolved 7439-92-1 ad, dissolved 7439-92-1 ad, dissolved 7439-92-1 ad, dissolved 7439-93-2 ad, dissolved 7439-93-2 ad, dissolved 7439-93-2 ad, dissolved 7439-93-2 ad, dissolved 7439-94-5 ad, dissolved 7439-96-5 ad, dissolved 7439-96-5 ad, dissolved 7439-96-5 ad, dissolved 7439-98-7 ad, dissolved 7440-02-0 ad, dissolved 7440-02-0 ad, dissolved 7440-02-0 ad, dissolved 7440-02-0 ad, dissolved 7440-02-0 ad, dissolved 7440-02-1 ad, di	cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	98.0	80.0	120		
rad, dissolved 7439-92-1	copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	95.5	80.0	120		
hium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 104 80.0 120	iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	113	80.0	120		
ragnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 96.8 80.0 120	lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	94.6	80.0	120		
Paraganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 101 80.0 120 tolopydenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.55 mg/L 101 80.0 120 tolopydenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 97.4 80.0 120 tolopydenum, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 98.7 80.0 120 tolopydenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 90.7 80.0 120 tolopydenium, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 10 mg/L 10 mg/L 103 60.0 140 tolopydenium, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 86.3 80.0 120 tolopydenium, dissolved 7440-23-5 E421 0.0001 mg/L 0.1 mg/L 97.8 80.0 120 tolopydenium, dissolved 7440-23-5 E421 0.0001 mg/L 0.25 mg/L 97.8 80.0 120 tolopydenium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 tolopydenium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 tolopydenium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 tolopydenium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 tolopydenium, dissolved	lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	104	80.0	120		
100 by denum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 101 80.0 120	magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	96.8	80.0	120		
tokel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 97.4 80.0 120 totassium, dissolved 97.40-09-7 E421 0.005 mg/L 50 mg/L 98.7 80.0 120 telenium, dissolved 97.40-21-3 E421 0.00005 mg/L 1 mg/L 90.7 80.0 120 totassium, dissolved 10.005 mg/L 10 mg/L 10 mg/L 10.000 140 totassium, dissolved 10.0001 mg/L 0.1 mg/L 86.3 80.0 120 totassium, dissolved 10.0001 mg/L 0.1 mg/L 86.3 80.0 120 totassium, dissolved 10.0001 mg/L 0.1 mg/L 90.7 80.0 120 totassium, dissolved 10.0001 mg/L 0.1 mg/L 90.7 80.0 120 totassium, dissolved 10.0001 mg/L 0.1 mg/L 90.7 80.0 120 totassium, dissolved 10.0001 mg/L 0.1 mg/L 90.7 80.0 120 totassium, dissolved 10.0001 mg/L 90.7 80.0 120 totassium, dissolved 10.0001 mg/L 90.7 80.0 120 totassium, dissolved 10.0001 mg/L 90.7 80.0 120 totassium, dissolved 90.0001 mg/L 90.7 80.0 120	manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	101	80.0	120		
telenium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 98.7 80.0 120 elenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 90.7 80.0 120 elenium, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 103 60.0 140 elenium, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 86.3 80.0 120 elenium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 100 80.0 120 elenium, dissolved 7440-23-5 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 elenium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 elenium, dissolved 98.7 80.0 120 elenium, diss	molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	101	80.0	120		
elenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 90.7 80.0 120 licon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 103 60.0 140 lver, dissolved 7440-22-4 E421 0.0001 mg/L 0.1 mg/L 86.3 80.0 120 rontium, dissolved 7440-23-5 E421 0.002 mg/L 50 mg/L 100 80.0 120 rontium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120	nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	97.4	80.0	120		
licon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 103 60.0 140 liver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 86.3 80.0 120 bright dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 100 80.0 120 bright dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120 bright dissolved 97.8 80.0 120	potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	98.7	80.0	120		
lver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 86.3 80.0 120 pdium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 100 80.0 120 percentium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120	selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	90.7	80.0	120		
odium, dissolved 7440-23-5 E421 0.05 mg/L 50 mg/L 100 80.0 120 trontium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120	silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	103	60.0	140		
trontium, dissolved 7440-24-6 E421 0.0002 mg/L 0.25 mg/L 97.8 80.0 120	silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	86.3	80.0	120		
	sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	100	80.0	120		
ılfur, dissolved 7704-34-9 E421 0.5 mg/L 50 mg/L 96.7 80.0 120	strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	97.8	80.0	120		
	sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	96.7	80.0	120		

 Page
 : 14 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 653367) - ce	ontinued										
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	95.4	80.0	120			
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	94.8	80.0	120			
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	92.7	80.0	120			
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	92.8	80.0	120			
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.0	80.0	120			
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	99.4	80.0	120			
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	95.8	80.0	120			

 Page
 : 15 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

		. , , ,		, 3	· ·						
Sub-Matrix: Water				Matrix Spike (MS) Report Spike Recovery (%) Recovery Limits (%)							
	i				<u> </u>	Spike		Recovery Limits (%)			
.aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
Anions and Nutri	ents (QCLot: 651928)										
CG2212650-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0514 mg/L	0.05 mg/L	103	70.0	130		
Anions and Nutri	ents (QCLot: 652333)										
CG2212663-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.101 mg/L	0.1 mg/L	101	75.0	125		
Anions and Nutri	ents (QCLot: 652449)										
CG2212674-001	Anonymous	fluoride	16984-48-8	E235.F	0.890 mg/L	1 mg/L	89.0	75.0	125		
nions and Nutri	ents (QCLot: 652450)										
CG2212674-001	Anonymous	bromide	24959-67-9	E235.Br-L	ND mg/L	0.5 mg/L	ND	75.0	125		
Anions and Nutri	ents (QCLot: 652451)										
CG2212674-001	Anonymous	chloride	16887-00-6	E235.CI-L	92.0 mg/L	100 mg/L	92.0	75.0	125		
Anions and Nutri	ents (QCLot: 652452)										
CG2212674-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.33 mg/L	2.5 mg/L	93.1	75.0	125		
nions and Nutri	ents (QCLot: 652453)						<u>'</u>				
CG2212674-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.467 mg/L	0.5 mg/L	93.5	75.0	125		
Anions and Nutri	ents (QCLot: 652454)										
CG2212674-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125		
Anions and Nutri	ents (QCLot: 653712)										
CG2212650-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0504 mg/L	0.05 mg/L	101	70.0	130		
Organic / Inorgar	nic Carbon (QCLot: 652	2321)									
CG2212662-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.49 mg/L	5 mg/L	110	70.0	130		
Organic / Inorgar	nic Carbon (QCLot: 652	2326)									
CG2212662-001	Anonymous	carbon, total organic [TOC]		E355-L	6.35 mg/L	5 mg/L	127	70.0	130		
otal Metals (QC	Lot: 652285)						<u>'</u>				
CG2212663-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.500 mg/L	0.4 mg/L	125	70.0	130		
otal Metals (QC	Lot: 652286)										
CG2212663-002	Anonymous	aluminum, total	7429-90-5	E420	2.36 mg/L	2 mg/L	118	70.0	130		
		antimony, total	7440-36-0	E420	0.238 mg/L	0.2 mg/L	119	70.0	130		
		arsenic, total	7440-38-2	E420	0.251 mg/L	0.2 mg/L	126	70.0	130		
		barium, total	7440-39-3	E420	0.221 mg/L	0.2 mg/L	111	70.0	130		
		beryllium, total	7440-41-7	E420	0.489 mg/L	0.4 mg/L	122	70.0	130		

Page : 16 of 18
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	CLot: 652286) - cont	inued								
CG2212663-002	Anonymous	bismuth, total	7440-69-9	E420	0.113 mg/L	0.1 mg/L	113	70.0	130	
		boron, total	7440-42-8	E420	1.13 mg/L	1 mg/L	113	70.0	130	
		cadmium, total	7440-43-9	E420	0.0506 mg/L	0.04 mg/L	127	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.256 mg/L	0.2 mg/L	128	70.0	130	
		copper, total	7440-50-8	E420	0.250 mg/L	0.2 mg/L	125	70.0	130	
		iron, total	7439-89-6	E420	24.7 mg/L	20 mg/L	123	70.0	130	
		lead, total	7439-92-1	E420	0.233 mg/L	0.2 mg/L	116	70.0	130	
		lithium, total	7439-93-2	E420	1.22 mg/L	1 mg/L	122	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.256 mg/L	0.2 mg/L	128	70.0	130	
		molybdenum, total	7439-98-7	E420	0.239 mg/L	0.2 mg/L	120	70.0	130	
		nickel, total	7440-02-0	E420	0.505 mg/L	0.4 mg/L	126	70.0	130	
		potassium, total	7440-09-7	E420	49.9 mg/L	40 mg/L	125	70.0	130	
		selenium, total	7782-49-2	E420	0.482 mg/L	0.4 mg/L	120	70.0	130	
		silicon, total	7440-21-3	E420	97.5 mg/L	100 mg/L	97.5	70.0	130	
		silver, total	7440-22-4	E420	0.0493 mg/L	0.04 mg/L	123	70.0	130	
		sodium, total	7440-23-5	E420	22.4 mg/L	20 mg/L	112	70.0	130	
		strontium, total	7440-24-6	E420	0.193 mg/L	0.2 mg/L	96.4	70.0	130	
		sulfur, total	7704-34-9	E420	214 mg/L	200 mg/L	107	70.0	130	
		thallium, total	7440-28-0	E420	0.0455 mg/L	0.04 mg/L	114	70.0	130	
		tin, total	7440-31-5	E420	0.237 mg/L	0.2 mg/L	119	70.0	130	
		titanium, total	7440-32-6	E420	0.520 mg/L	0.4 mg/L	130	70.0	130	
		uranium, total	7440-61-1	E420	0.0476 mg/L	0.04 mg/L	119	70.0	130	
		vanadium, total	7440-62-2	E420	1.27 mg/L	1 mg/L	127	70.0	130	
		zinc, total	7440-66-6	E420	5.05 mg/L	4 mg/L	126	70.0	130	
otal Metals (QC	CLot: 655100)								1	
CG2212650-002	Anonymous	mercury, total	7439-97-6	E508	0.0000937 mg/L	0.0001 mg/L	93.7	70.0	130	
issolved Metals	(QCLot: 653366)									
CG2212376-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.366 mg/L	0.4 mg/L	91.5	70.0	130	
issolved Metals	(QCLot: 653367)									
CG2212376-002	Anonymous	aluminum, dissolved	7429-90-5	E421	1.87 mg/L	2 mg/L	93.6	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.188 mg/L	0.2 mg/L	94.1	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.176 mg/L	0.2 mg/L	88.0	70.0	130	
		barium, dissolved	7440-39-3	E421	0.182 mg/L	0.2 mg/L	91.3	70.0	130	
	I	beryllium, dissolved	7440-41-7	E421	0.369 mg/L	0.4 mg/L	92.2	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2212665

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water							Matrix Spike	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 653367) -	continued								
CG2212376-002	Anonymous	bismuth, dissolved	7440-69-9	E421	0.0851 mg/L	0.1 mg/L	85.1	70.0	130	
		boron, dissolved	7440-42-8	E421	0.824 mg/L	1 mg/L	82.4	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0355 mg/L	0.04 mg/L	88.8	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.182 mg/L	0.2 mg/L	91.0	70.0	130	
		copper, dissolved	7440-50-8	E421	0.181 mg/L	0.2 mg/L	90.4	70.0	130	
		iron, dissolved	7439-89-6	E421	17.9 mg/L	20 mg/L	89.7	70.0	130	
		lead, dissolved	7439-92-1	E421	0.174 mg/L	0.2 mg/L	86.9	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.983 mg/L	1 mg/L	98.3	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.182 mg/L	0.2 mg/L	91.2	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.184 mg/L	0.2 mg/L	92.2	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.363 mg/L	0.4 mg/L	90.8	70.0	130	
		potassium, dissolved	7440-09-7	E421	35.4 mg/L	40 mg/L	88.6	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.339 mg/L	0.4 mg/L	84.8	70.0	130	
		silicon, dissolved	7440-21-3	E421	72.6 mg/L	100 mg/L	72.6	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0363 mg/L	0.04 mg/L	90.7	70.0	130	
		sodium, dissolved	7440-23-5	E421	18.6 mg/L	20 mg/L	92.8	70.0	130	
		strontium, dissolved	7440-24-6	E421	0.183 mg/L	0.2 mg/L	91.4	70.0	130	
		sulfur, dissolved	7704-34-9	E421	171 mg/L	200 mg/L	85.4	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0342 mg/L	0.04 mg/L	85.4	70.0	130	
		tin, dissolved	7440-31-5	E421	0.176 mg/L	0.2 mg/L	88.2	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.355 mg/L	0.4 mg/L	88.8	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.0347 mg/L	0.04 mg/L	86.8	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.881 mg/L	1 mg/L	88.1	70.0	130	
		zinc, dissolved	7440-66-6	E421	3.80 mg/L	4 mg/L	95.1	70.0	130	
Dissolved Metals	(QCLot: 655111)									
CG2212650-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000938 mg/L	0.0001 mg/L	93.8	70.0	130	

Page : 18 of 18
Work Order : CG2212665
Client : Teck Coal Limited
Project : Regional Effects Program

						Page	e	1 of	1										
Teck	COC ID:	KEP_L/	A E IVI	P_LCU_20	ZZ-	THON	A DATE	D TIME	,.						DUCH	Priorty			
DDC.	DJECT/CLIENT INFO			ALC		TURNA	ANGUI		RATOR	,	2-3 Busir	ness Days				ER INFO		•	
	Regional Effects Program				T	Lab Name	ALSC		MATOR		D.	mort For	mot / T	Distribution		Excel	PDF	EDD	
Project Manager						ab Contact						ail 1:	T			EXCE	rDr	עעם	
	Cybele Heddle@teck.com		-		<u>-</u>			a.Shvets@A				nail 2:		aSciLab@T		X	X	X	
	421 Pine Avenue							9 Street N				nail 3:		oal@equiso		-		X	
Address	421 Fine Avenue				├	Addiess	2337 2	- Birco. To				nail 4:		ab.Results		X	X .	<u> </u>	+
	C	-	Province	IDC	 -	City	Calgar		Provin	ad A D		nail 5:		Bowron@m		X	X	_X	
City	Sparwood				-	ostal Code				y Canada		nail 6:	$\overline{}$	Mehler@m			X	X	
Postal Code	1 250 865 2049		Countr	Canada	Phot	ostar Code ne Number	403 40	7 1704	Count	y Canada		umber	Hann	ah Penner@		1X 0816101	X	JX	
Phone Number	1-250-865-3048 SAMPLE DETAIL	c .			Phor	ne Number	403 40	7 1794	AN	ALYSIS RE			1000	5 95 10		tered - F: Fiel	u Taraki	El . Esile e	Lab. N. Blanc
	SAWIFLE DETAIL	. <u></u>	T		T	1	1	-	A IN	LISISKE	QUEST	LD			7	T TE	M, D. 1319,	FL. Fich &	Lau, N. Pene
								Ĕ F	F	N	F	N	N	N	ļ	<u> </u>			
-								H2SC	HCL	HCL				H2SO4					
			Hazardous Material (Yes/No)							1	HIG.	HIC.	INE				-		
			aterial					ANALYSIS	solved	 =	TECKCOAL_METNHG_D	TECKCOAL_METNHG_	TECKCOAL_ROUTINE	- -					
			ous M			C-Cual		ANAI	Mercury_Dissolved	Mercury_Total	COAL	COAL	COAL	FOC_TKN_PT					
Comple ID	Sample Location	Field	lazard	Data	Time	l l	# Of	200	Tercur		ECK	ECK	ECK	0C_1					
Sample ID	(sys_loc_code) RG_LISP24	Matrix WS	+	Date 2022/09/14	(24hr)		Cont.	1.5		1 1		F F			\vdash		J		
G_LISP24_WS_LAEMP_LCO_2022-09_N	KG_UI31.24			2022/03/14	14:55	G	7		1		1	1		1		Calga Wor	i ry k Orde	er Refei	rence 2665
											-				T. -				*
									-								W.		
			-		 	 					-	+	-	 	<u> </u>	Telephon	i ≣i wi e:+14		
		-	 	<u> </u>			<u> </u>			-		-	i -	 	†				
ADDITIONAL COMMENTS/SPEC	IAL INSTRUCTIONS		10	RELINQUISHE	D BY/AF	FILIATIO)N	DATI	E/TIME	ACC	EPTED	BY/AFF	ILIAT	ION	2 3	DA	TE/TI	ME	
Dissolved metals were field filtered a Total metals to be lab p				Jennifer	Ings/Mi	ппом	<u> </u>	######		#			a			/,	//	1	
												K	سإل			7/	/	2	5)
SERVICE REQUEST (rush - sub	ject to availability)	e es		W S			* 4		100		78 1.c	47	N,	1 × 11 × 1	- 11				*:
	Regular (c 3 business days) - 50% sur		-	Sampler's Na	me			Jennifer	Ings		Mo	bile#			5	1950034	44	1	
Emergency (1	Business Day) - 100% sur ASAP or Weekend - Conta	rcharge	s	ampler's Signa	ture	-		•	-		Date	/Time			Septe	mber 15	, 2022	D	

Environmental Division Calgary
Work Order Reference

WATER CHEMISTRY

ALS Laboratory Report CG2212821 (Finalized September 22, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2212821

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEM_LCO_2022-09_ALS

Sampler : ---Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 7

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 17-Sep-2022 11:38

Date Analysis Commenced : 20-Sep-2022

Issue Date : 22-Sep-2022 14:24

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta
Anthony Calero	Supervisor - Inorganic	Metals, Calgary, Alberta
Elke Tabora		Inorganics, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Summie Lo	Lab Assistant	Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

Page : 2 of 7 Work Order : CG2212821 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

Dissolved HG Arrived Broken for Fraction 4

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
HTA	Analytical holding time was exceeded.
RRV	Reported result verified by repeat analysis.

>: greater than.

Page : 3 of 7 Work Order : CG2212821

TKNI

Client : Teck Coal Limited
Project : REGIONAL EFFE

oject : REGIONAL EFFECTS PROGRAM

TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Page : 4 of 7
Work Order : CG2212821
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			C	lient sample ID	RG_LCUT_WS_ LAEMP_LCO_2 022-09_N	RG_RIVER_WS _LAEMP_LCO_ 2022-09_N	RG_FBLANK_W S_LAEMP_LCO _2022-09_N	RG_TRIP_WS_L AEMP_LCO_20 22-09_N	
			Client samp	oling date / time	15-Sep-2022 11:30	15-Sep-2022 11:30	15-Sep-2022 11:30	15-Sep-2022 11:30	
Analyte	CAS Number	Method	LOR	Unit	CG2212821-001	CG2212821-002	CG2212821-003	CG2212821-004	
					Result	Result	Result	Result	
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	225	231	<1.0	<1.0	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	274	282	<1.0	<1.0	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	225	231	<1.0	<1.0	
conductivity		E100	2.0	μS/cm	990	986	<2.0	<2.0	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	540	535	<0.50	<0.50	
oxidation-reduction potential [ORP]		E125	0.10	mV	283	281	506	463	
pH		E108	0.10	pH units	8.22	8.21	5.80	5.39	
solids, total dissolved [TDS]		E162	10	mg/L	761	743	<10	<10	
solids, total suspended [TSS]		E160-L	1.0	mg/L	5.4	<1.0	<1.0	<1.0	
turbidity		E121	0.10	NTU	0.22	0.19	<0.10	<0.10	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050	0.0273 RRV	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS	<0.250 DLDS	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	9.26	9.33	<0.10	<0.10	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.210	0.218	<0.020	<0.020	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	1.34 TKNI	<0.500 DLM, TKN	<0.050	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	14.2	14.3	<0.0050	<0.0050	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0050 DLDS	<0.0050 DLDS	<0.0010	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0023 HTA	0.0032 HTA	<0.0010 HTA	<0.0010 HTA	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0028	0.0022	<0.0020	<0.0020	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	308	307	<0.30	<0.30	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	<0.50		
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	<0.50	<0.50	

Page : 5 of 7
Work Order : CG2212821
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_LCUT_WS_ LAEMP_LCO_2 022-09_N	RG_RIVER_WS _LAEMP_LCO_ 2022-09_N	RG_FBLANK_W S_LAEMP_LCO _2022-09_N	RG_TRIP_WS_L AEMP_LCO_20 22-09_N	 -
			Client samp	ling date / time	15-Sep-2022 11:30	15-Sep-2022 11:30	15-Sep-2022 11:30	15-Sep-2022 11:30	
Analyte	CAS Number	Method	LOR	Unit	CG2212821-001	CG2212821-002	CG2212821-003	CG2212821-004	
					Result	Result	Result	Result	
Ion Balance									
anion sum		EC101	0.10	meq/L	12.2	12.3	<0.10	<0.10	
cation sum		EC101	0.10	meq/L	11.2	11.2	<0.10	<0.10	
ion balance (cations/anions)		EC101	0.010	%	91.8	91.0	100	100	
ion balance (APHA)		EC101	0.010	%	4.27	4.68	<0.010	<0.010	
Total Metals								,	
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0044	0.0050	<0.0030	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00033	0.00034	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00013	0.00017	<0.00010	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0542	0.0550	<0.00010	<0.00010	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.020	0.021	<0.010	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.514	0.508	<0.0050	<0.0050	
calcium, total	7440-70-2	E420	0.050	mg/L	114	114	<0.050	<0.050	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00020	0.00011	<0.00010	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0734	0.0717	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	57.6	58.2	<0.0050	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00020	0.00015	<0.00010	<0.00010	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	<0.000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00176	0.00171	<0.000050	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.0125	0.0125	<0.00050	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	1.83	1.83	<0.050	<0.050	
selenium, total	7782-49-2	E420	0.050	μg/L	62.4	62.7	<0.050	<0.050	
silicon, total	7440-21-3	E420	0.10	mg/L	2.24	2.26	<0.10	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	10.1	10.0	<0.050	<0.050	

Page : 6 of 7
Work Order : CG2212821
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	RG_LCUT_WS_ LAEMP_LCO_2 022-09_N	RG_RIVER_WS _LAEMP_LCO_ 2022-09_N	RG_FBLANK_W S_LAEMP_LCO _2022-09_N	RG_TRIP_WS_L AEMP_LCO_20 22-09_N	
			Client samp	ling date / time	15-Sep-2022 11:30	15-Sep-2022 11:30	15-Sep-2022 11:30	15-Sep-2022 11:30	
Analyte	CAS Number	Method	LOR	Unit	CG2212821-001	CG2212821-002	CG2212821-003	CG2212821-004	
Total Metals					Result	Result	Result	Result	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.244	0.240	<0.00020	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	112	111	<0.50	<0.50	
thallium, total	7440-28-0	E420	0.000010	mg/L	0.000018	0.000019	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00391	0.00401	<0.000010	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0204	0.0206	<0.0030	<0.0030	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00036	0.00035	<0.00010	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0573	0.0578	<0.00010	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.019	0.020	<0.010	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.530	0.554	<0.0050	<0.0050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	118	117	<0.050	<0.050	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00012	0.00012	<0.00010	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00034	0.00040	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0712	0.0724	<0.0010	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	59.5	59.0	<0.0050	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00012	0.00013	<0.00010	<0.00010	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00184	0.00181	<0.000050	0.000085 RRV	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.0121	0.0124	<0.00050	<0.00050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.84	1.81	<0.050	<0.050	

Page : 7 of 7 : CG2212821 Work Order Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_LCUT_WS_	RG_RIVER_WS	RG_FBLANK_W	RG_TRIP_WS_L	
(Matrix: Water)					LAEMP_LCO_2	_LAEMP_LCO_	S_LAEMP_LCO	AEMP_LCO_20	
					022-09_N	2022-09_N	_2022-09_N	22-09_N	
			Client samp	ling date / time	15-Sep-2022 11:30	15-Sep-2022 11:30	15-Sep-2022 11:30	15-Sep-2022 11:30	
Analyte	CAS Number	Method	LOR	Unit	CG2212821-001	CG2212821-002	CG2212821-003	CG2212821-004	
					Result	Result	Result	Result	
Dissolved Metals									
selenium, dissolved	7782-49-2	E421	0.050	μg/L	72.8	71.9	<0.050	<0.050	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.29	2.20	<0.050	<0.050	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	9.78	9.83	<0.050	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.254	0.249	<0.00020	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	110	106	<0.50	<0.50	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000020	0.000021	<0.000010	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00413	0.00412	<0.000010	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0220	0.0214	<0.0010	<0.0010	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field		
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212821** Page : 1 of 20

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Ave Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

 Telephone
 : --- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 17-Sep-2022 11:38

C-O-C number : REP_LAEM_LCO_2022-09_ALS Sampler : ----

Site : ---Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

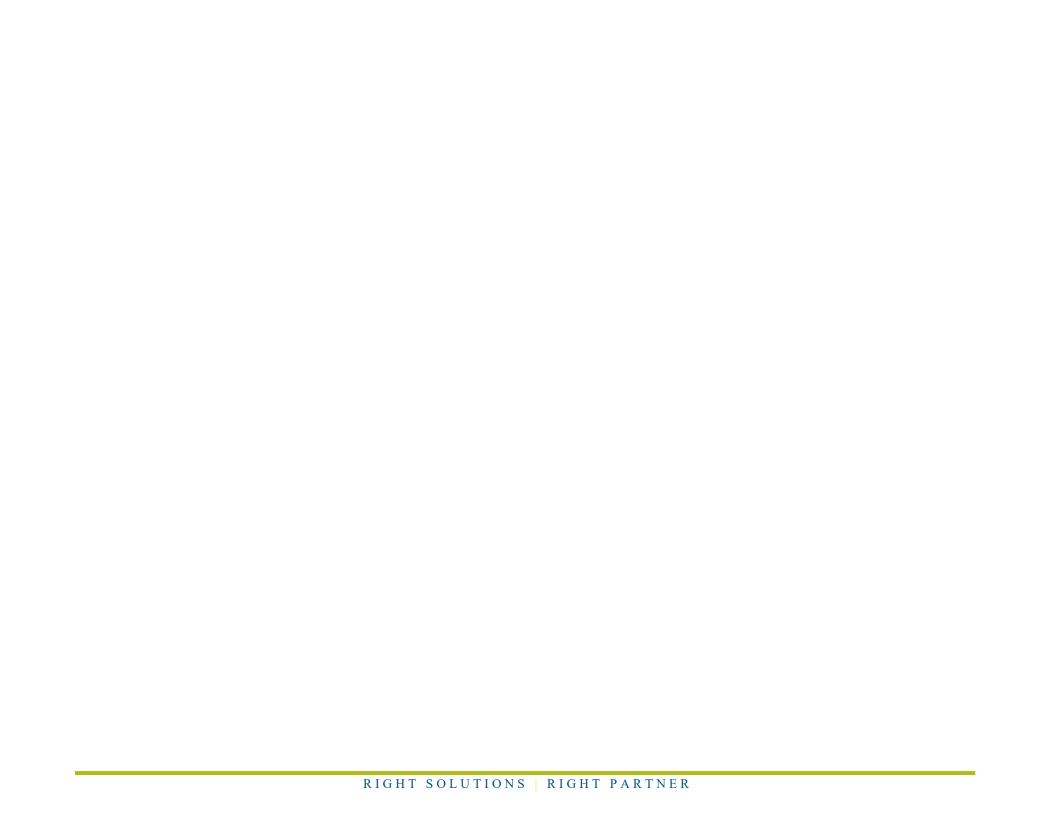
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

 Matrix: Water
 Evaluation: x = Holding time exceedance; √ = Within Holding Time

 Analyte Group
 Method
 Sampling Date
 Extraction / Preparation
 Analysis

 Container / Client Sample ID(s)
 Preparation
 Holding Times
 Eval
 Analysis Date
 Holding Times
 Eval

Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E298	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	√
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E298	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	√
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-09_N	E298	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	√
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	5000	45.0 0000								
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E298	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
nions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	5005 B .	45.0 0000						00.1		
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E235.Br-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
nions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	E235.Br-L	15-Sep-2022	20.0 2022				00 0 0000	20 4	C -1	✓
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E235.BI-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	•
nions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	E235.Br-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	E dovo	1
RG_RIVER_WS_LAEMP_LCO_2022-09_N	EZ33.BI-L	15-Sep-2022	20-3ep-2022				20-Sep-2022	∠o uays	5 days	*

Page : 4 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

					aluation. • –	Holding time exce	suarice , •	– vviuiiii	Holding
Method	Sampling Date	Ex	traction / Pi	reparation			Analys		
		Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
E235.Br-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
E235.CI-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
E235.CI-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
E235.CI-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
E235.CI-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
evel 0.001									
E378-U	15-Sep-2022	20-Sep-2022				20-Sep-2022	3 days	5 days	* EHT
evel 0.001									
E378-U	15-Sep-2022	20-Sep-2022				20-Sep-2022	3 days	5 days	* EHT
evel 0.001									
E378-U	15-Sep-2022	20-Sep-2022				20-Sep-2022	3 days	5 days	# EHT
evel 0.001									
E378-U	15-Sep-2022	20-Sep-2022				20-Sep-2022	3 days	5 days	*
	E235.CI-L E235.CI-L E235.CI-L E235.CI-L E235.CI-L evel 0.001 E378-U evel 0.001 E378-U evel 0.001	E235.Br-L 15-Sep-2022 E235.Cl-L 15-Sep-2022 E235.Cl-L 15-Sep-2022 E235.Cl-L 15-Sep-2022 E235.Cl-L 15-Sep-2022 evel 0.001 E378-U 15-Sep-2022 evel 0.001 E378-U 15-Sep-2022 evel 0.001	Preparation Date Preparation	Preparation Date Holdin Rec Preparation Date Holding Times Rec Actual	Preparation Holding Times Rec Actual	Preparation Date Holding Times Rec Actual Analysis Date	Preparation Holding Times Rec Actual Analysis Date Holding Rec Actual	Preparation Date Holding Times Rec Actual Eval Analysis Date Holding Times Rec Actual	

Page : 5 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						raidation. • -	noiding time exce	cuarioc ,	- vvicinii	riolaling rill
Analyte Group	Method	Method Sampling Date Extraction / Preparation Analy				Analys	sis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E235.F	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E235.F	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Fluoride in Water by IC									1	
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-09_N	E235.F	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E235.F	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E235.NO3-L	15-Sep-2022	20-Sep-2022	3 days	5 days	×	20-Sep-2022	3 days	0 days	✓
						EHT				
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E235.NO3-L	15-Sep-2022	20-Sep-2022	3 days	5 days	×	20-Sep-2022	3 days	0 days	✓
						EHT				
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-09_N	E235.NO3-L	15-Sep-2022	20-Sep-2022	3 days	5 days	æ	20-Sep-2022	3 days	0 days	✓
						EHT				
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E235.NO3-L	15-Sep-2022	20-Sep-2022	3 days	5 days	×	20-Sep-2022	3 days	0 days	✓
						EHT				
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E235.NO2-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	3 days	5 days	sc .
										EHT

Page : 6 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Madead	Committee Data	Eve	traction / Pr	congration			Analys	nio	
•	Method	Sampling Date				First.	Augustusia Data			E I
Container / Client Sample ID(s)			Preparation Date	Rec	g Times Actual	Eval	Analysis Date	Rec	g Times Actual	Eval
Anima and Nutricuta - Nitrita in Water build (Laure Laure)			Date	Nec	Actual			Nec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E235.NO2-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	3 days	5 days	3c
								, -	,-	EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG RIVER WS LAEMP LCO 2022-09 N	E235.NO2-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	3 days	5 days	se .
		· ·					,		-	EHT
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E235.NO2-L	15-Sep-2022	20-Sep-2022				20-Sep-2022	3 days	5 days	3 2
										EHT
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E235.SO4	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E235.SO4	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-09_N	E235.SO4	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E235.SO4	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)		45.0	04.0				0.0			
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E318	15-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2022-09_N	E318	15-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	0 4	
			フェートローフロンフ				71-Sen-2022	2VCD XV	n dave	✓

Page : 7 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						/aluation. ^ –	Holding time exce	euance, •	– vvitriiri	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-09_N	E318	15-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_TRIP_WS_LAEMP_LCO_2022-09_N	E318	15-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E372-U	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2022-09_N	E372-U	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-09_N	E372-U	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_TRIP_WS_LAEMP_LCO_2022-09_N	E372-U	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved) RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E421.Cr-L	15-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved) RG_LCUT_WS_LAEMP_LCO_2022-09_N	E421.Cr-L	15-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved) RG_RIVER_WS_LAEMP_LCO_2022-09_N	E421.Cr-L	15-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	6 days	✓

Page : 8 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viatrix: water						uluulion.	noiding time exce	oddiioo ,	***************************************	riolaling rill
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		,	Rec	Actual	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)									
HDPE - dissolved (lab preserved)										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E421.Cr-L	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E509	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E509	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-09_N	E509	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E421	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E421	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_RIVER_WS_LAEMP_LCO_2022-09_N	E421	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E421	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lov	v Level)								'	
Amber glass dissolved (sulfuric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E358-L	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	5 days	✓

Page : 9 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Group Container / Client Sample ID(s) Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2022-09_N E358-	od	Sampling Date	Ext. Preparation Date		Times	Eval	Analysis Date	Analys Holding		Eval
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level) Amber glass dissolved (sulfuric acid)						Eval	Analysis Date	Holding	Times	Eval
Amber glass dissolved (sulfuric acid)			Date	Dan						
Amber glass dissolved (sulfuric acid)			20.0	Rec	Actual			Rec	Actual	
RG_LCUT_WS_LAEMP_LCO_2022-09_N E358-										
	-L	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	5 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Level)										
Amber glass dissolved (sulfuric acid)	T									
RG RIVER WS LAEMP LCO 2022-09 N E358-	-L	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	5 davs	✓
		· ·					, .	,	-	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Leve	ol)									
Amber glass total (sulfuric acid)	ei <i>)</i>									
RG_FBLANK_WS_LAEMP_LCO_2022-09_N E355-	-1	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	5 days	✓
110_1 BB 1111_110_B 1E1111 _E00_E022 00_11	_	.0 00p 2022	20 000 2022				2. 339 2022	20 00,0	o days	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Leve	el)									
Amber glass total (sulfuric acid) RG LCUT WS LAEMP LCO 2022-09 N E355-	,	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	E dovo	✓
RG_LCUT_WS_LAEMP_LCO_2022-09_N E355-	-L	15-3ep-2022	20-3ep-2022				21-3ep-2022	20 uays	5 uays	•
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Leve	el)									
Amber glass total (sulfuric acid)		45.0 0000	00.0				04.0	00.1		,
RG_RIVER_WS_LAEMP_LCO_2022-09_N	-L	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	5 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Leve	el)									
Amber glass total (sulfuric acid)										
RG_TRIP_WS_LAEMP_LCO_2022-09_N E355-	-L	15-Sep-2022	20-Sep-2022				21-Sep-2022	28 days	5 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N E283	3	15-Sep-2022	20-Sep-2022				20-Sep-2022	14 days	5 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-09_N E283	3	15-Sep-2022	20-Sep-2022				20-Sep-2022	14 days	5 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-09_N E283	3	15-Sep-2022	20-Sep-2022				20-Sep-2022	14 days	5 days	✓
			•				·			

Page : 10 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

					aluation. • -	riolaling time excel	cuarice, .	- *************************************	riolaling riili	
Method	Sampling Date	Ext	traction / Pi	reparation		Analysis				
		Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval	
E283	15-Sep-2022	20-Sep-2022				20-Sep-2022	14 days	5 days	✓	
E290	15-Sep-2022	20-Sep-2022				20-Sep-2022	14 days	5 days	✓	
E290	15-Sep-2022	20-Sep-2022				20-Sep-2022	14 days	5 days	✓	
E290	15-Sep-2022	20-Sep-2022				20-Sep-2022	14 days	5 days	✓	
E290	15-Sep-2022	20-Sep-2022				20-Sep-2022	14 days	5 days	✓	
E100	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓	
E100	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓	
E100	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓	
E100	15-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	5 days	✓	
	E290 E290 E290 E100 E100	E283 15-Sep-2022 E290 15-Sep-2022 E290 15-Sep-2022 E290 15-Sep-2022 E100 15-Sep-2022 E100 15-Sep-2022	E283 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022	Preparation Date Holdin Rec E283 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022	Method Sampling Date Extraction / Preparation Preparation Preparation Date Holding Times Rec Actual E283 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022	Method Sampling Date Extraction / Preparation Preparation Rec Holding Times Rec Eval E283 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022	Method Sampling Date Extraction / Preparation Date Eval Analysis Date E283 15-Sep-2022 20-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 20-Sep-2022 E290 15-Sep-2022 20-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022 20-Sep-2022 E100 15-Sep-2022 20-Sep-2022	Method Sampling Date Extraction / Preparation Preparation Date Holding Times Rec Actual Eval Analysis Date Holding Rec E283 15-Sep-2022 20-Sep-2022 20-Sep-2022 14 days E290 15-Sep-2022 20-Sep-2022 20-Sep-2022 14 days E100 15-Sep-2022 20-Sep-2022 20-Sep-2022 28 days E100 15-Sep-2022 20-Sep-2022 20-Sep-2022 28 days E100 15-Sep-2022 20-Sep-2022 20-Sep-2022 28 days	Preparation Date Holding Times Rec Actual Analysis Date Holding Times Rec Actual	

Page : 11 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	eparation		Holding time excee				
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date	Holding Rec	g Times	Eval
Physical Tasks (ODD by Electrode			Date	Rec	Actual			Rec	Actual	
Physical Tests : ORP by Electrode HDPE							<u> </u>			
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E125	15-Sep-2022					21-Sep-2022	0.25 hrs	151 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_LCUT_WS_LAEMP_LCO_2022-09_N	E125	15-Sep-2022					21-Sep-2022	0.25 hrs	151 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_RIVER_WS_LAEMP_LCO_2022-09_N	E125	15-Sep-2022					21-Sep-2022	0.25 hrs	151 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_TRIP_WS_LAEMP_LCO_2022-09_N	E125	15-Sep-2022					21-Sep-2022	0.25 hrs	151 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E108	15-Sep-2022	20-Sep-2022				20-Sep-2022	0.25 hrs	0.28 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_LCUT_WS_LAEMP_LCO_2022-09_N	E108	15-Sep-2022	20-Sep-2022				20-Sep-2022	0.25 hrs	0.28 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_RIVER_WS_LAEMP_LCO_2022-09_N	E108	15-Sep-2022	20-Sep-2022				20-Sep-2022	0.25 hrs	0.28 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_TRIP_WS_LAEMP_LCO_2022-09_N	E108	15-Sep-2022	20-Sep-2022				20-Sep-2022	0.25 hrs	0.28 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E162	15-Sep-2022					21-Sep-2022	7 days	6 days	✓

Page : 12 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

watrix: water		1	_			aluation	Tolding time exce			Tiolding Til
Analyte Group	Method	Sampling Date		traction / Pr				Analys		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry								1		
HDPE RG_LCUT_WS_LAEMP_LCO_2022-09_N	E162	15-Sep-2022					21-Sep-2022	7 days	6 days	√
RG_ECU1_WS_LAEIMF_ECU_2022-09_N	L 102	13-3ер-2022					21-3ep-2022	1 days	0 days	•
Plant of Table 200 to 1										
Physical Tests : TDS by Gravimetry HDPE								I		
RG RIVER WS LAEMP LCO 2022-09 N	E162	15-Sep-2022					21-Sep-2022	7 days	6 days	✓
		, ,						, -	,	
Physical Tests : TDS by Gravimetry										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E162	15-Sep-2022					21-Sep-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E160-L	15-Sep-2022					21-Sep-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE	E400 I	45.0 0000					04.0			
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E160-L	15-Sep-2022					21-Sep-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)								1		
HDPE RG_RIVER_WS_LAEMP_LCO_2022-09_N	E160-L	15-Sep-2022					21-Sep-2022	7 days	6 days	1
NO_NVEN_VO_B\E\W\\ _E00_2022 00_\V	2100 2	10 000 2022					21 000 2022	, dayo	o dayo	•
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E160-L	15-Sep-2022					21-Sep-2022	7 days	6 days	✓
							·	-		
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E121	15-Sep-2022					20-Sep-2022	3 days	5 days	32
										EHT
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E121	15-Sep-2022					20-Sep-2022	3 days	5 days	36
										EHT

Page : 13 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analytic Consum	14.00	0 " 0 "	F	tua atia a 10a			Holding time exce			
Analyte Group	Method	Sampling Date		traction / Pr	•			Analys		
Container / Client Sample ID(s)			Preparation	Rec	g Times Actual	Eval	Analysis Date	Rec	g Times Actual	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Turbidity by Nephelometry							I			
HDPE	E121	15-Sep-2022					20-Sep-2022	2 days	5 days	×
RG_RIVER_WS_LAEMP_LCO_2022-09_N	EIZI	15-3ep-2022					20-3ep-2022	3 days	5 days	EHT
										EHI
Physical Tests : Turbidity by Nephelometry										
HDPE	E121	15-Sep-2022					20-Sep-2022	3 days	5 days	×
RG_TRIP_WS_LAEMP_LCO_2022-09_N	EIZI	15-3ep-2022					20-Sep-2022	3 days	5 days	EHT
										ENI
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)	E400.0-1	45 0 2000	04 6 0000				04 6 0000		0 4	,
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E420.Cr-L	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E420.Cr-L	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_RIVER_WS_LAEMP_LCO_2022-09_N	E420.Cr-L	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E420.Cr-L	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E508	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E508	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-09_N	E508	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓

Page : 14 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

							Tiolaing time exce			Troiding Till
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E508	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
RG_FBLANK_WS_LAEMP_LCO_2022-09_N	E420	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
RG_LCUT_WS_LAEMP_LCO_2022-09_N	E420	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
RG_RIVER_WS_LAEMP_LCO_2022-09_N	E420	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
RG_TRIP_WS_LAEMP_LCO_2022-09_N	E420	15-Sep-2022	21-Sep-2022				21-Sep-2022	180	6 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 15 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			С	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	656371	1	8	12.5	5.0	1
Alkalinity Species by Titration	E290	656374	1	13	7.6	5.0	✓
Ammonia by Fluorescence	E298	656499	1	19	5.2	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	656409	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	656405	1	20	5.0	5.0	1
Conductivity in Water	E100	656373	1	13	7.6	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	656670	1	20	5.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	659465	1	20	5.0	5.0	<u>√</u>
Dissolved Metals in Water by CRC ICPMS	E421	656671	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	656575	1	18	5.5	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	656519	2	29	6.9	5.0	✓
Fluoride in Water by IC	E235.F	656404	1	20	5.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	656406	2	23	8.7	5.0	<u>√</u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	656407	1	20	5.0	5.0	1
ORP by Electrode	E125	657900	1	20	5.0	5.0	1
pH by Meter	E108	656372	1	13	7.6	5.0	√
Sulfate in Water by IC	E235.SO4	656410	1	7	14.2	5.0	1
TDS by Gravimetry	E162	658682	1	20	5.0	5.0	<u>√</u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	656527	1	15	6.6	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	656663	1	4	25.0	5.0	1
Total Mercury in Water by CVAAS	E508	659455	1	19	5.2	5.0	1
Total Metals in Water by CRC ICPMS	E420	656528	1	17	5.8	5.0	1
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	656576	1	20	5.0	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	656497	1	11	9.0	5.0	1
Turbidity by Nephelometry	E121	656605	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	656371	1	8	12.5	5.0	1
Alkalinity Species by Titration	E290	656374	1	13	7.6	5.0	1
Ammonia by Fluorescence	E298	656499	1	19	5.2	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	656409	1	20	5.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	656405	1	20	5.0	5.0	1
Conductivity in Water	E100	656373	1	13	7.6	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	656670	1	20	5.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	659465	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	656671	1	20	5.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	656575	1	18	5.5	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	656519	2	29	6.9	5.0	1

Page : 16 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.

Quality Control Sample Type			Co	ount		Frequency (%,)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	656404	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	656406	2	23	8.7	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	656407	1	20	5.0	5.0	✓
ORP by Electrode	E125	657900	1	20	5.0	5.0	✓
pH by Meter	E108	656372	1	13	7.6	5.0	✓
Sulfate in Water by IC	E235.SO4	656410	1	7	14.2	5.0	✓
TDS by Gravimetry	E162	658682	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	656527	1	15	6.6	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	656663	1	4	25.0	5.0	✓
Total Mercury in Water by CVAAS	E508	659455	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	656528	1	17	5.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	656576	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	656497	1	11	9.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	658679	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	656605	1	20	5.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	656371	1	8	12.5	5.0	✓
Alkalinity Species by Titration	E290	656374	1	13	7.6	5.0	✓
Ammonia by Fluorescence	E298	656499	1	19	5.2	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	656409	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	656405	1	20	5.0	5.0	✓
Conductivity in Water	E100	656373	1	13	7.6	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	656670	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	659465	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	656671	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	656575	1	18	5.5	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	656519	2	29	6.9	5.0	✓
Fluoride in Water by IC	E235.F	656404	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	656406	2	23	8.7	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	656407	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	656410	1	7	14.2	5.0	✓
TDS by Gravimetry	E162	658682	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	656527	1	15	6.6	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	656663	1	4	25.0	5.0	✓
Total Mercury in Water by CVAAS	E508	659455	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	656528	1	17	5.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	656576	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	656497	1	11	9.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	658679	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	656605	1	20	5.0	5.0	✓

Page : 17 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

	i i		40090.	orion carona copi		a o moquement mi	op comoun.	
Quality Control Sample Type					Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	656499	1	19	5.2	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	656409	1	20	5.0	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	656405	1	20	5.0	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	656670	1	20	5.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	659465	1	20	5.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	656671	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	656575	1	18	5.5	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	656519	2	29	6.9	5.0	✓	
Fluoride in Water by IC	E235.F	656404	1	20	5.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	656406	2	23	8.7	5.0	√	
Nitrite in Water by IC (Low Level)	E235.NO2-L	656407	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	656410	1	7	14.2	5.0	√	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	656527	1	15	6.6	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	656663	1	4	25.0	5.0	√	
Total Mercury in Water by CVAAS	E508	659455	1	19	5.2	5.0	√	
Total Metals in Water by CRC ICPMS	E420	656528	1	17	5.8	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	656576	1	20	5.0	5.0	√	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	656497	1	11	9.0	5.0	✓	

Page : 18 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions					
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water					
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.					
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results					
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.					
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.					
	Calgary - Environmental								
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test					
TSS by Gravimetry (Low Level)	J ,	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.					
133 by Gravimeny (Low Lever)	E160-L	vvalei	AFHA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the					
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,					
				brackish waters) may produce a positive bias by this method. Alternate analysis					
				methods are available for these types of samples.					
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,					
	Calgary - Environmental			with gravimetric measurement of the residue.					
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.					
	Calgary - Environmental								
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.					
	Calgary - Environmental								
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.					
	Calgary - Environmental								
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.					
	Calgary - Environmental								
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.					
	Calgary - Environmental								
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.					
	Calgary - Environmental								
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3					
	Calgary - Environmental								

Page : 19 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 20 of 20 Work Order : CG2212821

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

QUALITY CONTROL REPORT

Work Order : CG2212821

Client : Teck Coal Limited
Contact : Cybele Heddle
Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ----

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEM_LCO_2022-09_ALS

Sampler : ---Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 17-Sep-2022 11:38

Date Analysis Commenced : 20-Sep-2022

Issue Date : 22-Sep-2022 14:25

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta	
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta	
Elke Tabora		Calgary Inorganics, Calgary, Alberta	
Mackenzie Lamoureux	Laboratory Analyst	Calgary Metals, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta	
Sara Niroomand		Calgary Inorganics, Calgary, Alberta	
Summie Lo	Lab Assistant	Calgary Metals, Calgary, Alberta	
Vladka Stamenova	Analyst	Calgary Inorganics, Calgary, Alberta	

 Page
 : 2 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Physical Tests (QC	C Lot: 656371)												
CG2212819-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	8.1	6.4	1.7	Diff <2x LOR			
Physical Tests (QC	C Lot: 656372)												
CG2212658-001	Anonymous	pH		E108	0.10	pH units	8.20	8.24	0.487%	4%			
Physical Tests (QC	C Lot: 656373)												
CG2212658-001	Anonymous	conductivity		E100	2.0	μS/cm	514	512	0.390%	10%			
Physical Tests (QC	C Lot: 656374)												
CG2212658-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	144	142	1.39%	20%			
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR			
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	144	142	1.39%	20%			
Physical Tests (QC	C Lot: 656605)												
CG2212821-001	RG_LCUT_WS_LAEMP_L CO_2022-09_N	turbidity		E121	0.10	NTU	0.22	0.19	0.03	Diff <2x LOR			
Physical Tests (QC	C Lot: 657900)												
CG2212821-001	RG_LCUT_WS_LAEMP_L CO_2022-09_N	oxidation-reduction potential [ORP]		E125	0.10	mV	283	282	0.425%	15%			
Physical Tests (QC	C Lot: 658682)												
CG2212792-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	644	636	1.09%	20%			
Anions and Nutrien	nts (QC Lot: 656404)												
CG2212694-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.076	0.076	0.0009	Diff <2x LOR			
Anions and Nutrien	nts (QC Lot: 656405)												
CG2212694-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	7.11	7.14	0.357%	20%			
Anions and Nutrien	nts (QC Lot: 656406)												
CG2212694-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.109	0.111	1.46%	20%			
Anions and Nutrien	nts (QC Lot: 656407)												
CG2212694-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR			
Anions and Nutrien	nts (QC Lot: 656409)												
CG2212694-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR			
Anions and Nutrien	nts (QC Lot: 656410)												
CG2212812-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	17.3	17.3	0.248%	20%			
Anions and Nutrien	nts (QC Lot: 656411)												
CG2212821-002	RG_RIVER_WS_LAEMP_ LCO 2022-09 N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	14.3	14.1	1.85%	20%			

 Page
 : 4 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Anions and Nutrien	ts (QC Lot: 656497)												
CG2212779-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0092	0.0076	0.0017	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 656499)												
CG2212779-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0238	0.0232	0.0006	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 656519)												
CG2212694-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0015	0.0015	0.00001	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 656520)												
CG2212821-003	RG_FBLANK_WS_LAEMP _LCO_2022-09_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR			
Anions and Nutrien	ts (QC Lot: 656663)												
CG2212821-001	RG_LCUT_WS_LAEMP_L CO_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	1.34	1.15	0.188	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 65657	5)											
CG2212821-001	RG_LCUT_WS_LAEMP_L CO_2022-09_N	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR			
Organic / Inorganic	Carbon (QC Lot: 65657)	6)											
CG2212821-001	RG_LCUT_WS_LAEMP_L CO_2022-09_N	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR			
Total Metals (QC Lo	ot: 656527)												
CG2212779-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00022	0.00021	0.00002	Diff <2x LOR			
Total Metals (QC Lo	ot: 656528)												
CG2212779-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0516	0.0504	2.50%	20%			
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00030	0.00031	0.00001	Diff <2x LOR			
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	0.00022	0.000003	Diff <2x LOR			
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0503	0.0504	0.176%	20%			
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR			
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR			
		boron, total	7440-42-8	E420	0.010	mg/L	0.017	0.017	0.0002	Diff <2x LOR			
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0812 μg/L	0.0000796	2.02%	20%			
		calcium, total	7440-70-2	E420	0.050	mg/L	50.9	49.9	1.91%	20%			
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.41 μg/L	0.00043	0.00002	Diff <2x LOR			
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00064	0.00069	0.00006	Diff <2x LOR			
		iron, total	7439-89-6	E420	0.010	mg/L	0.090	0.088	0.002	Diff <2x LOR			
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000121	0.000122	0.0000009	Diff <2x LOR			
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0199	0.0195	2.00%	20%			
		magnesium, total	7439-95-4	E420	0.0050	mg/L	23.2	23.4	0.885%	20%			
			I and the second	The second secon	1	-							
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00470	0.00496	5.42%	20%			

 Page
 : 5 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Fotal Metals (QC L	_ot: 656528) - continued										
CG2212779-001	Anonymous	nickel, total	7440-02-0	E420	0.00050	mg/L	0.00605	0.00613	1.31%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.21	1.22	0.764%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	9.52 µg/L	0.00978	2.62%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	1.65	1.59	3.75%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	2.78	2.81	1.07%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.104	0.106	1.62%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	35.5	35.6	0.289%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000024	0.000019	0.000005	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00073	0.00102	0.00029	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00129	0.00129	0.601%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00059	0.00059	0.0000004	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0046	0.0046	0.00005	Diff <2x LOR	
otal Metals (QC L	_ot: 659455)										
G2212779-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals ((QC Lot: 656670)										
CG2212779-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00013	0.00013	0.000003	Diff <2x LOR	
Dissolved Metals ((QC Lot: 656671)										
CG2212779-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0053	0.0054	0.00006	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421		,	0.00000	0.00030	0.000006	D:# .0 1.0D	
				C421	0.00010	mg/L	0.00030	0.0000	0.000000	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L mg/L	0.00030	0.00015	0.00004	Diff <2x LOR	
		arsenic, dissolved barium, dissolved	7440-38-2 7440-39-3			-					
				E421	0.00010	mg/L	0.00012	0.00015	0.00004	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421 E421	0.00010 0.00010	mg/L	0.00012 0.0496	0.00015 0.0496	0.00004 0.0986%	Diff <2x LOR 20%	
		barium, dissolved beryllium, dissolved	7440-39-3 7440-41-7	E421 E421 E421	0.00010 0.00010 0.000020	mg/L mg/L mg/L	0.00012 0.0496 <0.020 μg/L	0.00015 0.0496 <0.000020	0.00004 0.0986% 0	Diff <2x LOR 20% Diff <2x LOR	
		barium, dissolved beryllium, dissolved bismuth, dissolved	7440-39-3 7440-41-7 7440-69-9	E421 E421 E421 E421	0.00010 0.00010 0.000020 0.000050	mg/L mg/L mg/L mg/L	0.00012 0.0496 <0.020 µg/L <0.000050	0.00015 0.0496 <0.000020 <0.000050	0.00004 0.0986% 0	Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR	
		barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved	7440-39-3 7440-41-7 7440-69-9 7440-42-8	E421 E421 E421 E421 E421	0.00010 0.00010 0.000020 0.000050 0.010	mg/L mg/L mg/L mg/L mg/L	0.00012 0.0496 <0.020 μg/L <0.000050 0.016	0.00015 0.0496 <0.000020 <0.000050 0.017	0.00004 0.0986% 0 0 0.0002	Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR	
		barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved	7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-43-9	E421 E421 E421 E421 E421	0.00010 0.00010 0.000020 0.000050 0.010 0.0000050	mg/L mg/L mg/L mg/L mg/L mg/L	0.00012 0.0496 <0.020 μg/L <0.000050 0.016 0.0631 μg/L	0.00015 0.0496 <0.000020 <0.000050 0.017 0.0000666	0.00004 0.0986% 0 0 0.0002 5.35%	Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR 20%	
		barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved	7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-43-9 7440-70-2	E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.000020 0.000050 0.010 0.0000050 0.050	mg/L mg/L mg/L mg/L mg/L mg/L	0.00012 0.0496 <0.020 µg/L <0.000050 0.016 0.0631 µg/L 50.8	0.00015 0.0496 <0.000020 <0.000050 0.017 0.0000666 50.3	0.00004 0.0986% 0 0 0.0002 5.35% 0.983%	Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR 20% 20%	
		barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved cobalt, dissolved	7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-43-9 7440-70-2 7440-48-4	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.000020 0.000050 0.010 0.000050 0.050 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00012 0.0496 <0.020 µg/L <0.000050 0.016 0.0631 µg/L 50.8 0.26 µg/L	0.00015 0.0496 <0.000020 <0.000050 0.017 0.0000666 50.3 0.00024	0.00004 0.0986% 0 0 0.0002 5.35% 0.983% 0.00002	Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR 20% 20% Diff <2x LOR	
		barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved cobalt, dissolved copper, dissolved	7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-43-9 7440-70-2 7440-48-4 7440-50-8	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.000020 0.000050 0.010 0.000050 0.050 0.00010 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00012 0.0496 <0.020 µg/L <0.000050 0.016 0.0631 µg/L 50.8 0.26 µg/L	0.00015 0.0496 <0.000020 <0.000050 0.017 0.0000666 50.3 0.00024 0.00043	0.00004 0.0986% 0 0 0.0002 5.35% 0.983% 0.00002	Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR 20% 20% Diff <2x LOR Diff <2x LOR	
		barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved cobalt, dissolved copper, dissolved iron, dissolved	7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-43-9 7440-70-2 7440-48-4 7440-50-8 7439-89-6	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.000020 0.000050 0.010 0.000050 0.050 0.00010 0.00020 0.010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00012 0.0496 <0.020 μg/L <0.000050 0.016 0.0631 μg/L 50.8 0.26 μg/L 0.00041 <0.010	0.00015 0.0496 <0.000020 <0.000050 0.017 0.0000666 50.3 0.00024 0.00043 <0.010	0.00004 0.0986% 0 0 0.0002 5.35% 0.983% 0.00002 0	Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR 20% 20% 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR	
		barium, dissolved beryllium, dissolved bismuth, dissolved boron, dissolved cadmium, dissolved calcium, dissolved cobalt, dissolved copper, dissolved iron, dissolved lead, dissolved	7440-39-3 7440-41-7 7440-69-9 7440-42-8 7440-43-9 7440-70-2 7440-48-4 7440-50-8 7439-89-6 7439-92-1	E421 E421 E421 E421 E421 E421 E421 E421	0.00010 0.00010 0.000020 0.000050 0.010 0.000050 0.050 0.00010 0.00020 0.010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00012 0.0496 <0.020 µg/L <0.000050 0.016 0.0631 µg/L 50.8 0.26 µg/L 0.00041 <0.010	0.00015 0.0496 <0.000020 <0.000050 0.017 0.0000666 50.3 0.00024 0.00043 <0.010	0.00004 0.0986% 0 0 0.0002 5.35% 0.983% 0.00002 0.00002	Diff <2x LOR 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR 20% 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR Diff <2x LOR	

 Page
 : 6 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Dissolved Metals (QC Lot: 656671) - cor	ntinued										
CG2212779-001	Anonymous	molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00142	0.00141	0.615%	20%		
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00533	0.00539	1.11%	20%		
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.16	1.16	0.0793%	20%		
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	10.5 μg/L	0.0108	3.04%	20%		
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.60	1.58	1.15%	20%		
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.70	2.66	1.44%	20%		
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.108	0.108	0.0525%	20%		
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	35.6	35.4	0.487%	20%		
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000015	0.000015	0.0000003	Diff <2x LOR		
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00132	0.00129	1.94%	20%		
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0033	0.0033	0.00001	Diff <2x LOR		
Dissolved Metals(QC Lot: 659465)							1				
CG2212779-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		

 Page
 : 7 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 656371)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 656373)					
conductivity	E100	1	μS/cm	1.4	
Physical Tests (QCLot: 656374)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 656605)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 658679)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 658682)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 656404)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 656405)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 656406)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 656407)			-		
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 656409)	04050 07.0 5005 D. I	0.05		.0.050	
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 656410)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 656411)	44707 FF 0 F00F NO. I	0.005		±0.0050	
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 656497)	7702 44 0 5272 11	0.000	mall.	<0.0020	
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 656499)	7004 44 7 5000	0.005		10.0050	
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 656519)					

 Page
 : 8 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Me	thod	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 656519)	- continued					
phosphate, ortho-, dissolved (as P)	14265-44-2 E37	78-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 656520)						
phosphate, ortho-, dissolved (as P)	14265-44-2 E37	78-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 656663)						
Kjeldahl nitrogen, total [TKN]	E3	18	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot: 65	6575)					
carbon, dissolved organic [DOC]	E35	58-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 65	6576)					
carbon, total organic [TOC]	E35	55-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 656527)						
chromium, total	7440-47-3 E42	20.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 656528)					·	
aluminum, total	7429-90-5 E42	20	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E42	20	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E42	20	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E42	20	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E42	20	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E42	20	0.00005	mg/L	<0.000050	
poron, total	7440-42-8 E42	20	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E42	20	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E42	20	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E42	20	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E42	20	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E42	20	0.01	mg/L	<0.010	
lead, total	7439-92-1 E42	20	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E42	20	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E42	20	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E42	20	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E42	20	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E42	20	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E42	20	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E42	20	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E42	20	0.1	mg/L	<0.10	
silver, total	7440-22-4 E42	20	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E42	20	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E42	20	0.0002	mg/L	<0.00020	

 Page
 : 9 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 656528) - co	ontinued				
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 659455)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 656670)				
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 656671					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
ooron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	

 Page
 : 10 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 656671) - conti	nued				
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 659465)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.0000050	

Page : 11 of 18 Work Order : CG2212821 Client

: Teck Coal Limited

: REGIONAL EFFECTS PROGRAM Project

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co.	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 656371)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	106	85.0	115	
Physical Tests (QCLot: 656372)								
pH	E108		pH units	7 pH units	101	98.6	101	
Physical Tests (QCLot: 656373)								
conductivity	E100	1	μS/cm	146.9 μS/cm	98.8	90.0	110	
Physical Tests (QCLot: 656374)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	103	85.0	115	
Physical Tests (QCLot: 656605)								
turbidity	E121	0.1	NTU	200 NTU	110	85.0	115	
Physical Tests (QCLot: 657900)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	102	95.4	104	
Physical Tests (QCLot: 658679)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	98.4	85.0	115	
Physical Tests (QCLot: 658682)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	97.8	85.0	115	
Anions and Nutrients (QCLot: 656404)	16984-48-8 E235.F	0.02	200 Gr //	4 0	400	90.0	110	
	10904-40-8 E235.F	0.02	mg/L	1 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 656405)	16887-00-6 E235.CI-L	0.1	ma/l	400 //	400	90.0	110	
chloride	10867-00-0 E235.CFL	0.1	mg/L	100 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 656406) nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/l	100	90.0	110	
,	14797-33-0 E233.NO3-E	0.003	IIIg/L	2.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 656407)	14797-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/l	102	90.0	110	
,	14737-03-0	0.001	mg/L	0.5 mg/L	102	30.0	110	
Anions and Nutrients (QCLot: 656409)	24959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115	
	24000-01-3 E200.DI-E	0.00	mg/L	0.5 Hig/L	102	00.0	110	
Anions and Nutrients (QCLot: 656410) sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110	
,	1.000.00	0.0	9, _	100 Hig/L	101	55.6		
Anions and Nutrients (QCLot: 656411) nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	100	90.0	110	
		3.333	9,2	2.0 mg/L	130			
Anions and Nutrients (QCLot: 656497) phosphorus, total	7723-14-0 E372-U	0.002	mg/L	0.03 mg/L	102	80.0	120	
		1.002	9. =	0.00 mg/L	102			
Anions and Nutrients (QCLot: 656499)								

 Page
 : 12 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Sub-Matrix: Water				Report					
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 656499) - continued	d								
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	104	85.0	115	
Anions and Nutrients (QCLot: 656519)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	102	80.0	120	
Anions and Nutrients (QCLot: 656520)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	103	80.0	120	
Anions and Nutrients (QCLot: 656663)									
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	103	75.0	125	
Organic / Inorganic Carbon (QCLot: 656575)									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	91.8	80.0	120	
Organic / Inorganic Carbon (QCLot: 656576)									
carbon, total organic [TOC]		E355-L	0.5	mg/L	8.57 mg/L	98.8	80.0	120	
Total Metals (QCLot: 656527)									
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	92.7	80.0	120	
Total Metals (QCLot: 656528)									
aluminum, total	7429-90-5		0.003	mg/L	2 mg/L	93.1	80.0	120	
antimony, total	7440-36-0		0.0001	mg/L	1 mg/L	97.6	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	94.0	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	95.8	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	95.7	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	92.8	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	102	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	94.6	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	91.3	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	91.8	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	90.4	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	104	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	98.1	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	106	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	93.9	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	90.3	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	98.4	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	90.9	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	96.9	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	92.4	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	101	60.0	140	

 Page
 : 13 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Total Metals (QCLot: 656528) - con									
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	84.7	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	96.3	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	96.0	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	94.5	80.0	120	
hallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	95.6	80.0	120	
in, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	96.8	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	98.2	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	88.7	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	95.2	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	91.1	80.0	120	
Fotal Metals (QCLot: 659455)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	93.9	80.0	120	
Dissolved Metals (QCLot: 656670)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	92.9	80.0	120	
Dissolved Metals (QCLot: 656671)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	94.6	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	97.8	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	95.4	80.0	120	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	101	80.0	120	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	94.3	80.0	120	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	96.4	80.0	120	
poron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	102	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.00005	mg/L	0.1 mg/L	97.9	80.0	120	
calcium, dissolved	7440-70-2		0.05	mg/L	50 mg/L	92.8	80.0	120	
cobalt, dissolved	7440-48-4		0.0001	mg/L	0.25 mg/L	94.8	80.0	120	
copper, dissolved	7440-50-8		0.0002	mg/L	0.25 mg/L	92.6	80.0	120	
ron, dissolved	7439-89-6		0.01	mg/L	1 mg/L	103	80.0	120	
ead, dissolved	7439-92-1		0.00005	mg/L	0.5 mg/L	101	80.0	120	
ithium, dissolved	7439-93-2		0.001	mg/L	0.25 mg/L	104	80.0	120	
nagnesium, dissolved	7439-95-4		0.005	mg/L	50 mg/L	94.0	80.0	120	
nagnesium, dissolved	7439-96-5		0.0001	mg/L	0.25 mg/L	95.6	80.0	120	
nolybdenum, dissolved	7439-98-7		0.00005	mg/L		100	80.0	120	
nolybaenum, alssolvea nickel, dissolved	7439-98-7		0.0005		0.25 mg/L		80.0	120	
,				mg/L	0.5 mg/L	92.0			
potassium, dissolved	7440-09-7		0.05	mg/L	50 mg/L	97.0	80.0	120	
selenium, dissolved	7782-49-2		0.00005	mg/L	1 mg/L	92.3	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	101	60.0	140	

 Page
 : 14 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Dissolved Metals (QCLot: 656671) - cor	ntinued									
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	86.9	80.0	120		
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	99.1	80.0	120		
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	102	80.0	120		
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	105	80.0	120		
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	97.7	80.0	120		
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	93.5	80.0	120		
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	91.0	80.0	120		
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	93.3	80.0	120		
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	95.1	80.0	120		
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	98.0	80.0	120		
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	86.2	80.0	120		

Page : 15 of 18 Work Order : CG2212821 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	ents (QCLot: 656404)									
CG2212694-013	Anonymous	fluoride	16984-48-8	E235.F	0.980 mg/L	1 mg/L	98.0	75.0	125	
Anions and Nutri	ents (QCLot: 656405)									
CG2212694-013	Anonymous	chloride	16887-00-6	E235.CI-L	96.2 mg/L	100 mg/L	96.2	75.0	125	
Anions and Nutri	ents (QCLot: 656406)									
CG2212694-013	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.42 mg/L	2.5 mg/L	96.7	75.0	125	
nions and Nutri	ents (QCLot: 656407)									
CG2212694-013	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.490 mg/L	0.5 mg/L	97.9	75.0	125	
Anions and Nutri	ents (QCLot: 656409)									
CG2212694-013	Anonymous	bromide	24959-67-9	E235.Br-L	0.489 mg/L	0.5 mg/L	97.7	75.0	125	
Anions and Nutri	ents (QCLot: 656410)									
CG2212818-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125	
Anions and Nutri	ents (QCLot: 656411)									
CG2212821-003	RG_FBLANK_WS_LAEMP_ LCO_2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	2.37 mg/L	2.5 mg/L	94.6	75.0	125	
Anions and Nutri	ents (QCLot: 656497)									
CG2212818-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0448 mg/L	0.05 mg/L	89.6	70.0	130	
Anions and Nutri	ents (QCLot: 656499)									
CG2212792-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.112 mg/L	0.1 mg/L	112	75.0	125	
Anions and Nutri	ents (QCLot: 656519)									
CG2212694-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0525 mg/L	0.05 mg/L	105	70.0	130	
Anions and Nutri	ents (QCLot: 656520)									
CG2212821-004	RG_TRIP_WS_LAEMP_LC O_2022-09_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0552 mg/L	0.05 mg/L	110	70.0	130	
Anions and Nutri	ents (QCLot: 656663)									
CG2212821-002	RG_RIVER_WS_LAEMP_L CO_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	2.52 mg/L	2.5 mg/L	101	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 656	575)								
CG2212821-001	RG_LCUT_WS_LAEMP_LC O 2022-09 N	carbon, dissolved organic [DOC]		E358-L	5.07 mg/L	5 mg/L	101	70.0	130	

 Page
 : 16 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	nic Carbon (QCLot: 6565	576) - continued								
CG2212821-001	RG_LCUT_WS_LAEMP_LC O_2022-09_N	carbon, total organic [TOC]		E355-L	4.87 mg/L	5 mg/L	97.5	70.0	130	
Fotal Metals (QC	Lot: 656527)									
CG2212792-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.376 mg/L	0.4 mg/L	94.1	70.0	130	
Total Metals (QC	Lot: 656528)									
CG2212792-001	Anonymous	aluminum, total	7429-90-5	E420	1.83 mg/L	2 mg/L	91.7	70.0	130	
		antimony, total	7440-36-0	E420	0.183 mg/L	0.2 mg/L	91.6	70.0	130	
		arsenic, total	7440-38-2	E420	0.193 mg/L	0.2 mg/L	96.6	70.0	130	
		barium, total	7440-39-3	E420	0.199 mg/L	0.2 mg/L	99.6	70.0	130	
		beryllium, total	7440-41-7	E420	0.382 mg/L	0.4 mg/L	95.6	70.0	130	
		bismuth, total	7440-69-9	E420	0.0927 mg/L	0.1 mg/L	92.7	70.0	130	
		boron, total	7440-42-8	E420	0.951 mg/L	1 mg/L	95.1	70.0	130	
		cadmium, total	7440-43-9	E420	0.0401 mg/L	0.04 mg/L	100	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.193 mg/L	0.2 mg/L	96.6	70.0	130	
		copper, total	7440-50-8	E420	0.194 mg/L	0.2 mg/L	97.1	70.0	130	
		iron, total	7439-89-6	E420	19.6 mg/L	20 mg/L	97.8	70.0	130	
		lead, total	7439-92-1	E420	0.186 mg/L	0.2 mg/L	93.0	70.0	130	
		lithium, total	7439-93-2	E420	1.01 mg/L	1 mg/L	101	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.180 mg/L	0.2 mg/L	89.9	70.0	130	
		molybdenum, total	7439-98-7	E420	0.197 mg/L	0.2 mg/L	98.7	70.0	130	
		nickel, total	7440-02-0	E420	0.392 mg/L	0.4 mg/L	98.0	70.0	130	
		potassium, total	7440-09-7	E420	39.2 mg/L	40 mg/L	98.1	70.0	130	
		selenium, total	7782-49-2	E420	0.380 mg/L	0.4 mg/L	95.1	70.0	130	
		silicon, total	7440-21-3	E420	94.7 mg/L	100 mg/L	94.7	70.0	130	
		silver, total	7440-22-4	E420	0.0384 mg/L	0.04 mg/L	96.0	70.0	130	
		sodium, total	7440-23-5	E420	18.2 mg/L	20 mg/L	91.2	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.2 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	197 mg/L	200 mg/L	98.5	70.0	130	
		thallium, total	7440-28-0	E420	0.0358 mg/L	0.04 mg/L	89.5	70.0	130	
		tin, total	7440-31-5	E420	0.183 mg/L	0.2 mg/L	91.7	70.0	130	
		titanium, total	7440-32-6	E420	0.395 mg/L	0.4 mg/L	98.7	70.0	130	
		uranium, total	7440-61-1	E420	0.0373 mg/L	0.04 mg/L	93.2	70.0	130	
		vanadium, total	7440-62-2	E420	0.964 mg/L	1 mg/L	96.4	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Matrix Spike (MS) Report								
					Spi	ke	Recovery (%)	Recovery	Limits (%)					
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie				
otal Metals (QC	Lot: 659455)													
G2212792-001	Anonymous	mercury, total	7439-97-6	E508	0.000100 mg/L	0.0001 mg/L	100	70.0	130					
issolved Metals	(QCLot: 656670)													
G2212792-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.375 mg/L	0.4 mg/L	93.8	70.0	130					
issolved Metals	(QCLot: 656671)													
G2212792-001	Anonymous	aluminum, dissolved	7429-90-5	E421	1.92 mg/L	2 mg/L	96.1	70.0	130					
		antimony, dissolved	7440-36-0	E421	0.185 mg/L	0.2 mg/L	92.5	70.0	130					
		arsenic, dissolved	7440-38-2	E421	0.181 mg/L	0.2 mg/L	90.5	70.0	130					
		barium, dissolved	7440-39-3	E421	0.188 mg/L	0.2 mg/L	94.2	70.0	130					
		beryllium, dissolved	7440-41-7	E421	0.367 mg/L	0.4 mg/L	91.7	70.0	130					
		bismuth, dissolved	7440-69-9	E421	0.0893 mg/L	0.1 mg/L	89.3	70.0	130					
		boron, dissolved	7440-42-8	E421	0.970 mg/L	1 mg/L	97.0	70.0	130					
		cadmium, dissolved	7440-43-9	E421	0.0398 mg/L	0.04 mg/L	99.6	70.0	130					
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130					
		cobalt, dissolved	7440-48-4	E421	0.190 mg/L	0.2 mg/L	95.0	70.0	130					
		copper, dissolved	7440-50-8	E421	0.193 mg/L	0.2 mg/L	96.5	70.0	130					
		iron, dissolved	7439-89-6	E421	18.8 mg/L	20 mg/L	94.1	70.0	130					
		lead, dissolved	7439-92-1	E421	0.178 mg/L	0.2 mg/L	89.1	70.0	130					
		lithium, dissolved	7439-93-2	E421	0.985 mg/L	1 mg/L	98.5	70.0	130					
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130					
		manganese, dissolved	7439-96-5	E421	0.168 mg/L	0.2 mg/L	84.3	70.0	130					
		molybdenum, dissolved	7439-98-7	E421	0.199 mg/L	0.2 mg/L	99.3	70.0	130					
		nickel, dissolved	7440-02-0	E421	0.368 mg/L	0.4 mg/L	92.1	70.0	130					
		potassium, dissolved	7440-09-7	E421	37.2 mg/L	40 mg/L	93.0	70.0	130					
		selenium, dissolved	7782-49-2	E421	0.386 mg/L	0.4 mg/L	96.5	70.0	130					
		silicon, dissolved	7440-21-3	E421	92.8 mg/L	100 mg/L	92.8	70.0	130					
		silver, dissolved	7440-22-4	E421	0.0377 mg/L	0.04 mg/L	94.3	70.0	130					
		sodium, dissolved	7440-23-5	E421	17.8 mg/L	20 mg/L	89.0	70.0	130					
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.2 mg/L	ND	70.0	130					
		sulfur, dissolved	7704-34-9	E421	190 mg/L	200 mg/L	95.3	70.0	130					
		thallium, dissolved	7440-28-0	E421	0.0348 mg/L	0.04 mg/L	87.0	70.0	130					
		tin, dissolved	7440-31-5	E421	0.185 mg/L	0.2 mg/L	92.6	70.0	130					
		titanium, dissolved	7440-32-6	E421	0.379 mg/L	0.4 mg/L	94.8	70.0	130					
		uranium, dissolved	7440-61-1	E421	0.0359 mg/L	0.4 mg/L	89.7	70.0	130					
		vanadium, dissolved	7440-62-2	E421	0.947 mg/L	1 mg/L	94.7	70.0	130					
		zinc, dissolved	7440-66-6	E421	3.98 mg/L	4 mg/L	99.5	70.0	130					
iogolyod Metale	(QCLot: 659465)			- := :	2.30 mg/2	9, =								

 Page
 : 18 of 18

 Work Order
 : CG2212821

 Client
 : Teck Coal Limited

Sub-Matrix: Water		Matrix Spike (MS) Report								
		Spi	ke	Recovery (%)	Recovery Limits (%)					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals (QCLot: 659465) - continued										
CG2212792-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000920 mg/L	0.0001 mg/L	92.0	70.0	130	

Environmental Division Calgary
Work Order Reference
CG2212821

ieck	COC ID:	COC ID:				TURNAROUND TIME. 2-3				-3 Busin	5 Dusiness Days				JSH: Priorty					
	PROJECT/CLIENT		a ar set at a	W. News	The war is		i ku		IBORA	TORY	11 PUL	21.797	W11108	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		R INFO	_		
Facility Name /	Job# Regional Effects	Program				Lab Name	-				•			mat / Di	istributic	n	Excel	PDF	EDD	<u> </u>
	aget Cybele Heddle				La	b Contact						 -	ail 1:	Aqua	SciLab@Te	ck.com	X	X	X	↓
	mail Cybele.Heddle@teck.				<u> </u>	Email				iobai.com	!		ail 2:		al@equisor		ļ	ļ	. X	
Add	iress 421 Pine Avenu	.		<u>.</u>	ļ	Address	2559 29	Stre	et NE		-	 	ail 3:		b.Results@		X	X	Χ.	-
<u> </u>		·		T	<u> </u>							-	ail 4:		owron@mi		X	X	X	<u> </u>
	City Sparwood		Province				Calgary			Province		-	ail 5:	Tyler.	Mehler@mi	nnow.ca	X	X	X	ļ'
Postal (Code V0B 2G0			Canada		stal Code				Country	Canada		ail 6:	Hanna	h Penner@1		X	X	X	
Phone Nu	mber 1-250-865-3048				Phon	e Number	403 407			1 2 1 1	LYSIS RE		umber		-		816101		FL: Field &	<u> </u>
<u> </u>	SAMPLE	DETAILS	2584		T		T	1968 <u>2</u> 0		ANA	LYSIS RE	OUES I	LD ax	1	Transaction of	1100	erca - F: Fic	id, Li Lieb,	FL: Field &	Lab, N: No
Environmental Division			-					Œ	F	F	N	F	N	N	N					
	i					ľ		3	~											
Calgary Work Order Reference CG2212821			1.6		-	-,		PRESER	H2SO4	HCL	HCL	-			112804					
CGZZTZOZT			(Yes/No)								1	-j	اي	. Z						
			[]				l			_		Z	<u>E</u>	<u> </u>	l					
	1		eri;	-				2		<u>v</u> ec		五	₩	Ş		١.	ľ '			
医侧性皮肤 化二甲基甲二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲			- Jat					LYS		sso	ES ES	ادً	ادًا	اد	T.	-				
			Hazardous Material			G=Grab		YWY	<u>.</u>	Mercury_Dissolved	Mercury_Total	TECKCOAL_METNHG_D	TECKCOAL_METNHG.	TECKCOAL_ROUTINE	TOC_TKN_PT					
	Sample Loc	eation Field	, Dia		Time	C=Com	# Of		انا		5	<u>X</u>	15	X	1 5		ľ		,	
Telephone: +1 403 407 1600	/ (sys loc c		, E	Date	(24hr)	n	Cont.	šķā:	DOC	Mer	Λ <u>e</u>	E_	E L	Ě	2		-			
G_LCUT_WS_LAEMP_LCO_2022-09_N	RG_LCI			2022/09/15	11:30	G	7	X.	1	1	1	1	1	1	1		'			
G_RIVER_WS_LAEMP_LCO_2022-09_N	RG_RIV	ER WS		2022/09/15	11:30	G	7	R.	1	· 1	. 1	1	1	1	1					'
G_FBLANK_WS_LAEMP_LCO_2022-09_N	RG_FBLA	NK WS		2022/09/15	11:30	G	7	_	1	1	1	1	1	1	1 .	ļ.		-	ļ · ·	
G_TRIP_WS_LAEMP_LCO_2022-09_N	RG_TR	IP WS		2022/09/15	11:30	G	4				1		1	1	1			-		
							ļ.,							<u> </u>				-	-	<u> </u>
·		· _											ļ		-		:	<u> </u>	ļ	<u></u>
			_		,	 	<u> </u>		_			ļ		-			 	+	ļ	
					-							ļ		1	ļ			 		+
•									<u> </u>									<u> </u>		ļ
								Œ												
ADDITIONAL COMMENTS/S	PECIAL INSTRUCT	ONS -	The state of the s	RELINQUISHE	D BY/AF	FILIATIO)N	7 D	ATE/T	IME	ACC	EPTED	BY/AFF	ILIATI	ON		D,	ATE/TI	ME	
Dissolved metals were field filte			1	Jennifer				###	######	######	\bigcirc	^ .				M	2-	17	,	
Total metals to be		•						Γ			\rightarrow	01	V			U	l	1	-	7
•	•		-		<u></u> :							_~11	~ (111	20%	\	~	57
				- <u>·</u>							<u> </u>					110		W	÷	<u>ノ</u> ー
SERVICE REQUEST (rush	- subject to availabilit	y)	The same of the sa			The sale	die sit	1. 1/1	O. A.		Provide L	1000	W. Carrier	in the	ATAWAY.	Section	E. E.		447.3	44.
•		Regular (default)	(default) Sampler's Name		me			Jenn	ifer In	gs		Mobile #		5	1950034	144				
Priority (2-3 business days) - 50% surcharge X									-	7173000444										
Emerge	Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend - Contact ALS		s	Sampler's Signa	ture							Date	/Time			Septe	mber 1	6, 2022		
For Emergency <1	Day, ASAP or weeker	u - Contact ALS										<u> </u>								

Page

i of

WATER CHEMISTRY

ALS Laboratory Report CG2216667 (Finalized December 6, 2022)

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : **CG2216667** Page : 1 of 6

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

 Address
 : 421 Pine Ave
 Address
 : 2559 29th Street NE

Sparwood BC Canada Calgary AB Canada T1Y 7B5

Telephone : ---- Telephone : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 30-Nov-2022 09:55

 PO
 : VPO00816101
 Date Analysis Commenced
 : 01-Dec-2022

C-O-C number : REP_LAEMP_LCO_2022_December_AL Issue Date : 06-Dec-2022 14:21

Sampler : RS Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta	
Kevin Baxter	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Kevin Baxter	Team Leader - Inorganics	Metals, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Sonthuong Bui	Laboratory Analyst	Metals, Calgary, Alberta	
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta	
Zakieh Lalonde		Metals, Calgary, Alberta	

Page 2 of 6 Work Order CG2216667

Client **Teck Coal Limited**

Project REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLIS	Detection Limit Adjusted due to insufficient sample.
DTSE	Dissolved Se concentration exceeds total. Positive bias on D-Se suspected due to signal enhancement from volatile selenium species. Contact ALS if an alternative test to address this interference is needed.
RRV	Reported result verified by repeat analysis.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Page 3 of 6 Work Order CG2216667 Client

Teck Coal Limited

Project REGIONAL EFFECTS PROGRAM

Analytical Results

Analyte CAS Number Meta Physical Tests acidity (as CaCO3) E26	nod LOR	oling date / time Unit	29-Nov-2022 09:30 CG2216667-001 Result	29-Nov-2022 13:30 CG2216667-002	29-Nov-2022 12:30 CG2216667-003	29-Nov-2022 12:00	
Physical Tests		Unit		CG2216667-002	CG2216667 003		
	33 2.0		Result		CG2210007-003	CG2216667-004	
	33 2.0			Result	Result	Result	
acidity (as CaCO3)	33 2.0						
usially (as succes)		mg/L	<2.0	<2.0	<2.0	2.2 ^{RRV}	
alkalinity, bicarbonate (as CaCO3)	90 1.0	mg/L	197	195	<1.0	<1.0	
alkalinity, bicarbonate (as HCO3) 71-52-3 E2	90 1.0	mg/L	240	238	<1.0	<1.0	
alkalinity, carbonate (as CaCO3) E29	90 1.0	mg/L	7.2	4.4	<1.0	<1.0	
alkalinity, carbonate (as CO3) 3812-32-6 E29	90 1.0	mg/L	4.3	2.6	<1.0	<1.0	
alkalinity, hydroxide (as CaCO3) E29	90 1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH) 14280-30-9 E29	90 1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)	90 1.0	mg/L	204	199	<1.0	<1.0	
conductivity E10	00 2.0	μS/cm	815	933	<2.0	<2.0	
hardness (as CaCO3), dissolved EC1	00 0.50	mg/L	497	538	<0.50	<0.50	
oxidation-reduction potential [ORP] E13	25 0.10	mV	437	401	454	549	
pH E10	0.10	pH units	8.33	8.29	5.61	5.25	
solids, total dissolved [TDS] E10	62 10	mg/L	597	682	<10	<10	
solids, total suspended [TSS] E16	0-L 1.0	mg/L	<1.5 DLIS	1.4	<1.0	<1.0	
turbidity E13	21 0.10	NTU	0.52	0.16	<0.10	<0.10	
Anions and Nutrients							
ammonia, total (as N) 7664-41-7 E28	98 0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	
bromide 24959-67-9 E235.	Br-L 0.050	mg/L	<0.050	<0.050	<0.050	<0.050	
chloride 16887-00-6 E235.	CI-L 0.10	mg/L	4.67	15.2	<0.10	<0.10	
fluoride 16984-48-8 E23	5.F 0.020	mg/L	0.177	0.222	<0.020	<0.020	
Kjeldahl nitrogen, total [TKN] E3	18 0.050	mg/L	0.376 TKNI	0.739 TKNI	<0.050	<0.050	
nitrate (as N) 14797-55-8 E235.N	IO3-L 0.0050	mg/L	12.8	8.74	<0.0050	<0.0050	
nitrite (as N) 14797-65-0 E235.N	IO2-L 0.0010	mg/L	0.0024	0.0013	<0.0010	<0.0010	
phosphate, ortho-, dissolved (as P) 14265-44-2 E376	3-U 0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
phosphorus, total 7723-14-0 E373	2-U 0.0020	mg/L	<0.0020	0.0025	<0.0020	<0.0020	
sulfate (as SO4) 14808-79-8 E235.	SO4 0.30	mg/L	231	301	<0.30	<0.30	
Organic / Inorganic Carbon							
carbon, dissolved organic [DOC] E35	8-L 0.50	mg/L	<0.50	<0.50	<0.50		

Page 4 of 6 Work Order CG2216667 Client

Teck Coal Limited Project

REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			CI	ient sample ID	RG_FRUL_WS_	RG_LIDSL_WS_	RG_FBLANK_W	RG_TRIP_WS_L	
(Matrix: Water)					LCO_LAEMP_2	LCO_LAEMP_2	S_LCO_LAEMP	CO_LAEMP_20	
					022-12_N	022-12_N	_2022-12_NP	22-12_NP	
			Client samp	ling date / time	29-Nov-2022 09:30	29-Nov-2022 13:30	29-Nov-2022 12:30	29-Nov-2022 12:00	
Analyte	CAS Number	Method	LOR	Unit	CG2216667-001	CG2216667-002	CG2216667-003	CG2216667-004	
					Result	Result	Result	Result	
Organic / Inorganic Carbon									
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	<0.50	<0.50	
Ion Balance									
anion sum		EC101	0.10	meq/L	9.94	11.3	<0.10	<0.10	
cation sum		EC101	0.10	meq/L	10.1	11.2	<0.10	<0.10	
ion balance (cations/anions)		EC101	0.010	%	102	99.1	100	100	
ion balance (APHA)		EC101	0.01	%	0.80	-0.44	<0.01	<0.01	
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0030	0.0033	<0.0030	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00010	0.00027	<0.00010	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	0.00011	<0.00010	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0938	0.0586	<0.00010	0.00017 RRV	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	0.014	<0.010	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0083	0.136	<0.0050	<0.0050	
calcium, total	7440-70-2	E420	0.050	mg/L	100	118	<0.050	<0.050	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00011	0.00013	<0.00010	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0240	0.0482	<0.0010	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	46.2	60.5	<0.0050	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00031	0.00445	<0.00010	<0.00010	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000883	0.00297	<0.000050	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	0.00498	<0.00050	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	1.20	1.62	<0.050	<0.050	
selenium, total	7782-49-2	E420	0.050	μg/L	46.0 DTSE	46.5 DTSE	<0.050	<0.050	

Page : 5 of 6
Work Order : CG2216667
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

nb-Matrix: Water Client sample ID Matrix: Water)					RG_FRUL_WS_ LCO_LAEMP_2 022-12_N	RG_LIDSL_WS_ LCO_LAEMP_2 022-12_N	RG_FBLANK_W S_LCO_LAEMP _2022-12_NP	RG_TRIP_WS_L CO_LAEMP_20 22-12_NP	
			Client samp	ling date / time	29-Nov-2022 09:30	29-Nov-2022 13:30	29-Nov-2022 12:30	29-Nov-2022 12:00	
Analyte	CAS Number	Method	LOR	Unit	CG2216667-001	CG2216667-002	CG2216667-003	CG2216667-004	
					Result	Result	Result	Result	
Total Metals									
silicon, total	7440-21-3	E420	0.10	mg/L	2.45	2.24	<0.10	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, total	7440-23-5	E420	0.050	mg/L	3.07	9.20	<0.050	<0.050	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.157	0.224	<0.00020	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	79.1	124	<0.50	<0.50	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00232	0.00403	<0.000010	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0044	<0.0030	<0.0030	
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0018	<0.0010	<0.0010		
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00024	<0.00010		
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	0.00010	<0.00010		
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.103	0.0614	0.00010 RRV		
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020		
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050		
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.013	<0.010		
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0088	0.141	<0.0050		
calcium, dissolved	7440-70-2	E421	0.050	mg/L	110	114	<0.050	<0.050	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00011	0.00011	<0.00010		
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10		
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020		
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010		
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050		
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0258	0.0449	<0.0010		
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	53.9	61.4	<0.0050	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00029	0.00399	<0.00010		

Page : 6 of 6 Work Order : CG22

Work Order : CG2216667
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)		Client sample ID			RG_FRUL_WS_ LCO_LAEMP_2 022-12_N	RG_LIDSL_WS_ LCO_LAEMP_2 022-12_N	RG_FBLANK_W S_LCO_LAEMP _2022-12_NP	RG_TRIP_WS_L CO_LAEMP_20 22-12_NP	
			Client samp	ling date / time	29-Nov-2022 09:30	29-Nov-2022 13:30	29-Nov-2022 12:30	29-Nov-2022 12:00	
Analyte	CAS Number	Method	LOR	Unit	CG2216667-001	CG2216667-002	CG2216667-003	CG2216667-004	
					Result	Result	Result	Result	
Dissolved Metals									
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000979	0.00296	<0.000050		
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	0.00513	<0.00050		
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.41	1.68	<0.050	<0.050	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	70.7 DTSE	63.3 DTSE	<0.050		
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.59	2.31	<0.050		
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010		
sodium, dissolved	7440-23-5	E421	0.050	mg/L	3.47	9.42	0.107 RRV	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.178	0.224	<0.00020		
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	100	131	<0.50		
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010		
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010		
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030		
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00240	0.00399	<0.000010		
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050		
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	0.0050	<0.0010		
dissolved mercury filtration location		EP509	-	-	Laboratory	Field	Field		
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Laboratory	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2216667** Page : 1 of 21

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Cybele Heddle Account Manager : Lyudmyla Shyets

Contact : Cybele Heddle : Cybele Heddle : Lyudmyla Shvets
Address : 421 Pine Ave : Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 30-Nov-2022 09:55

 PO
 : VPO00816101
 Issue Date
 : 06-Dec-2022 14:21

C-O-C number : REP_LAEMP_LCO_2022_December_AL Sampler : RS

Site :----

Quote number : Teck Coal Master Quote

No. of samples received :4
No. of samples analysed :4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

Juniers . Quality Control Sample

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

 Page
 :
 3 of 21

 Work Order
 :
 CG2216667

Matrix: Water

Analyte Group

Container / Client Sample ID(s)

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Eval

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analysis Date

Analysis

Holding Times

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Sampling Date

Extraction / Preparation

Preparation

Holding Times

Eval

Method

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

• • • •			1 Toparation		,			,	
			Date	Rec	Actual		Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence									
Amber glass total (sulfuric acid) RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E298	29-Nov-2022	01-Dec-2022			01-Dec-2022	28 days	2 days	√
Anions and Nutrients : Ammonia by Fluorescence									
Amber glass total (sulfuric acid) RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E298	29-Nov-2022	01-Dec-2022			01-Dec-2022	28 days	2 days	1

Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E298	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	4
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E298	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence			11000							
Amber glass total (lab preserved) RG_FRUL_WS_LCO_LAEMP_2022-12_N	E298	29-Nov-2022	01-Dec-2022	3 days	2 days	4	01-Dec-2022	28 days	0 days	*
Anions and Nutrients : Bromide in Water by IC (Low Level)			1100							
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E235.Br-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)			1980							
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E235.Br-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	4
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E235.Br-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	*

Page : 4 of 21 Work Order : CG2216667

Client : Teck Coal Limited

latrix: Water	Evaluation: × = Holding time exceedance ; ✓ = Wit Method Sampling Date Extraction / Preparation Analysis									
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation		7 Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE				<u> </u>						
RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E235.Br-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)			11150							
HDPE										
RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E235.CI-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E235.CI-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)			1115/13							
HDPE										
RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E235.CI-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E235.CI-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001		111000							
HDPE										
RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E378-U	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE										
RG_FRUL_WS_LCO_LAEMP_2022-12_N	E378-U	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE										
RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E378-U	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓

 Page
 :
 5 of 21

 Work Order
 :
 CG2216667

Client : Teck Coal Limited

Matrix: Water				/aluation: × =	tion: × = Holding time exceedance ; √ = Within Holding Tir					
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace L	evel 0.001									
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E378-U	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC			111111							
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E235.F	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC			11150							
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E235.F	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC			11101							
HDPE RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E235.F	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC			1350							
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E235.F	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)			1100							
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E235.NO3-L	29-Nov-2022	01-Dec-2022	3 days	2 days	✓	01-Dec-2022	3 days	0 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E235.NO3-L	29-Nov-2022	01-Dec-2022	3 days	2 days	✓	01-Dec-2022	3 days	0 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)			111010							
RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E235.NO3-L	29-Nov-2022	01-Dec-2022	3 days	2 days	✓	01-Dec-2022	3 days	0 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)			11969							
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E235.NO3-L	29-Nov-2022	01-Dec-2022	3 days	2 days	√	01-Dec-2022	3 days	0 days	✓

 Page
 :
 6 of 21

 Work Order
 :
 CG2216667

Client : Teck Coal Limited

Matrix: Water					E۱	/aluation: 🗴 =	Holding time excee	edance ; 🕦	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E235.NO2-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E235.NO2-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)	111111111111111									
HDPE RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E235.NO2-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)	110000		111100							
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E235.NO2-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC	111111111111111111111111111111111111111		11100							
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E235.SO4	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC	100000		1100							
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E235.SO4	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC			1100							
HDPE RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E235.SO4	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC	111111111111111									
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E235.SO4	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)	111111111111111111111111111111111111111									
Amber glass total (sulfuric acid) RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E318	29-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	3 days	✓

 Page
 :
 7 of 21

 Work Order
 :
 CG2216667

Client : Teck Coal Limited

Matrix: Water					E	valuation: ≭ =	Holding time exce	edance ; •	✓ = Within	Holding Tir
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E318	29-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E318	29-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (lab preserved)										
RG_FRUL_WS_LCO_LAEMP_2022-12_N	E318	29-Nov-2022	02-Dec-2022	3 days	3 days	✓	02-Dec-2022	28 days	0 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E372-U	29-Nov-2022	01-Dec-2022				02-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E372-U	29-Nov-2022	02-Dec-2022				04-Dec-2022	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E372-U	29-Nov-2022	02-Dec-2022				04-Dec-2022	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (lab preserved)										
RG_FRUL_WS_LCO_LAEMP_2022-12_N	E372-U	29-Nov-2022	02-Dec-2022	3 days	3 days	✓	04-Dec-2022	28 days	2 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										,
RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E421.Cr-L	29-Nov-2022	02-Dec-2022				02-Dec-2022	180	3 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)	E464.6.1	00 N. 0000	00.0				00 D 222-			,
RG_FRUL_WS_LCO_LAEMP_2022-12_N	E421.Cr-L	29-Nov-2022	02-Dec-2022				02-Dec-2022	180	3 days	✓
								days		

Page : 8 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔻	= Within	Holding Ti
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved) RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E421.Cr-L	29-Nov-2022	02-Dec-2022				02-Dec-2022	180 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E509	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	4
Dissolved Metals : Dissolved Mercury in Water by CVAAS		100								
Glass vial - dissolved (lab preserved) RG_FRUL_WS_LCO_LAEMP_2022-12_N	E509	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	√
Dissolved Metals : Dissolved Mercury in Water by CVAAS		111111111111111111111111111111111111111								
Glass vial dissolved (hydrochloric acid) RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E509	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS			111100							
HDPE - dissolved (lab preserved) RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E421	29-Nov-2022	02-Dec-2022				02-Dec-2022	180 days	3 days	4
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) RG_FRUL_WS_LCO_LAEMP_2022-12_N	E421	29-Nov-2022	02-Dec-2022				02-Dec-2022	180 days	3 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS			11000							
HDPE - dissolved (lab preserved) RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E421	29-Nov-2022	02-Dec-2022				02-Dec-2022	180 days	3 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved) RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E421	29-Nov-2022	02-Dec-2022				02-Dec-2022	180 days	3 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E358-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓

Page : 9 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Matrix: Water					E۱	/aluation: ≭ =	Holding time exce	edance ; 🕦	/ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation		Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)			1	I					
Amber glass dissolved (sulfuric acid) RG_FRUL_WS_LCO_LAEMP_2022-12_N	E358-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)		1111111							
Amber glass dissolved (sulfuric acid) RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E358-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	n (Low Level)									
Amber glass total (sulfuric acid) RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E355-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)		111111							
Amber glass total (sulfuric acid) RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E355-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	on (Low Level)		1111111							
Amber glass total (sulfuric acid) RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E355-L	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)									
Amber glass total (lab preserved) RG_FRUL_WS_LCO_LAEMP_2022-12_N	E355-L	29-Nov-2022	01-Dec-2022	3 days	2 days	✓	01-Dec-2022	28 days	0 days	✓
Physical Tests : Acidity by Titration	111111111111111111111111111111111111111		110000							
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E283	29-Nov-2022	01-Dec-2022				01-Dec-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration									<u> </u>	
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E283	29-Nov-2022	01-Dec-2022				01-Dec-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration			11/1/19/06							
HDPE RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E283	29-Nov-2022	01-Dec-2022				01-Dec-2022	14 days	2 days	✓

Page : 10 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Physical Tests : Acidity by Titration										
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E283	29-Nov-2022	01-Dec-2022				01-Dec-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration			11159							
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E290	29-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration	13 11 11 12 22									
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E290	29-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E290	29-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration	13 11 11 12 22									
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E290	29-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E100	29-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	3 days	1
Physical Tests : Conductivity in Water			11000							
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E100	29-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E100	29-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	3 days	✓
Physical Tests : Conductivity in Water			11000							
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E100	29-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	3 days	✓

Page : 11 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Matrix: Water						aluation: 🗴 =	Holding time exce			Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr				Analys		
Container / Client Sample ID(s)			Preparation	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Dhusias Tasta - ODD by Flasterda			Date	Rec	Actual			Rec	Actual	
Physical Tests : ORP by Electrode HDPE										
RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E125	29-Nov-2022					01-Dec-2022	0.25	48 hrs	×
								hrs		EHTR-FM
Physical Tests : ORP by Electrode			1.10							
HDPE										
RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E125	29-Nov-2022					01-Dec-2022	0.25	54 hrs	3¢
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E125	29-Nov-2022					01-Dec-2022	0.25	54 hrs	*
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE	E125	29-Nov-2022					01-Dec-2022	0.05	57 hrs	×
RG_FRUL_WS_LCO_LAEMP_2022-12_N	L123	29-1107-2022					01-Dec-2022	0.25 hrs	37 1115	EHTR-FM
Physical Tests : pH by Meter								1113		
HDPE							<u> </u>			
RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E108	29-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.25	36
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter			119184							
HDPE										
RG_FRUL_WS_LCO_LAEMP_2022-12_N	E108	29-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.25	*
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE	F400	00.11	00 5 0000				00.5			
RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E108	29-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.25	# EHTR-FM
								hrs	hrs	LIIIIX-IIV
Physical Tests : pH by Meter HDPE							<u> </u>			
RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E108	29-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.26	*
								hrs	hrs	EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E162	29-Nov-2022					01-Dec-2022	7 days	2 days	✓

Page : 12 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Matrix: Water					Ev	/aluation: 🗴 =	Holding time excee	edance ; 🛚	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Physical Tests : TDS by Gravimetry										
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E162	29-Nov-2022					03-Dec-2022	7 days	4 days	✓
Physical Tests : TDS by Gravimetry			11100							
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E162	29-Nov-2022					03-Dec-2022	7 days	4 days	✓
Physical Tests : TDS by Gravimetry										
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E162	29-Nov-2022					03-Dec-2022	7 days	4 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_LIDSL_WS_LCO_LAEMP_2022-12_N	E160-L	29-Nov-2022					01-Dec-2022	7 days	2 days	✓
Physical Tests : TSS by Gravimetry (Low Level)			11100							
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E160-L	29-Nov-2022					03-Dec-2022	7 days	4 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E160-L	29-Nov-2022					03-Dec-2022	7 days	4 days	✓
Physical Tests : TSS by Gravimetry (Low Level)	1000		1100							
HDPE RG_TRIP_WS_LCO_LAEMP_2022-12_NP	E160-L	29-Nov-2022					03-Dec-2022	7 days	4 days	✓
Physical Tests : Turbidity by Nephelometry			11101							
HDPE RG_FBLANK_WS_LCO_LAEMP_2022-12_NP	E121	29-Nov-2022					01-Dec-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_FRUL_WS_LCO_LAEMP_2022-12_N	E121	29-Nov-2022					01-Dec-2022	3 days	2 days	✓

Page : 13 of 21 Work Order : CG2216667

Client : Teck Coal Limited

							, ,		Holding T
Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
		Preparation			Eval	Analysis Date			Eval
		Date	Rec	Actual			Rec	Actual	
E404	20 Nov 2022					04 D 0000	2 4	0 4	1
EIZI	29-INOV-2022					01-Dec-2022	3 days	2 days	•
E121	29-Nov-2022					01-Dec-2022	3 days	2 days	✓
F400 00 1	00 N 0000	00 D- 0000				00 D- 10000	4.5.5	0 4	1
E420.Cr-L	29-Nov-2022	02-Dec-2022				02-Dec-2022		3 days	✓
							days		
E420.Cr-L	29-Nov-2022	02-Dec-2022				03-Dec-2022	180	4 davs	1
								, -	
E420.Cr-L	29-Nov-2022	02-Dec-2022				03-Dec-2022	180	4 days	✓
							days		
F420.0* I	20 Nov 2022	00 D 0000				02 D 0000	400	4 -1	1
E420.GI-L	29-INOV-2022	02-Dec-2022				03-Dec-2022		4 days	•
							uays		
E508	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
E508	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
EE00	20 Nov 2022	04 De- 2020				04 De- 0000	20 4	0 45	,
E008	29-INOV-2022	01-Dec-2022				01-Dec-2022	∠8 days	∠ days	✓
	E121 E121 E420.Cr-L E420.Cr-L E420.Cr-L	E121 29-Nov-2022 E121 29-Nov-2022 E420.Cr-L 29-Nov-2022 E420.Cr-L 29-Nov-2022 E420.Cr-L 29-Nov-2022 E508 29-Nov-2022	E121 29-Nov-2022 E121 29-Nov-2022 E420.Cr-L 29-Nov-2022 02-Dec-2022 E420.Cr-L 29-Nov-2022 02-Dec-2022 E420.Cr-L 29-Nov-2022 02-Dec-2022 E420.Cr-L 29-Nov-2022 02-Dec-2022 E508 29-Nov-2022 01-Dec-2022	E121 29-Nov-2022 E121 29-Nov-2022 E420.Cr-L 29-Nov-2022 02-Dec-2022 E420.Cr-L 29-Nov-2022 02-Dec-2022 E420.Cr-L 29-Nov-2022 02-Dec-2022 E420.Cr-L 29-Nov-2022 02-Dec-2022 E508 29-Nov-2022 01-Dec-2022	Preparation Date Holding Times Rec Actual	Preparation Date Holding Times Rec Actual Eval Rec Actual Rec	Preparation Date Holding Times Eval Analysis Date Rec Actual	E121 29-Nov-2022 01-Dec-2022 3 days	Preparation Date Holding Times Rec Actual

Page : 14 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

						Trotaing and exceedance; Trotain Trot			
Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
		Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
		Date	Rec	Actual			Rec	Actual	
		11100							
E508	29-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	2 days	✓
		111150							
E420	29-Nov-2022	02-Dec-2022				02-Dec-2022	180	3 days	✓
							days		
E420	29-Nov-2022	02-Dec-2022				03-Dec-2022	180	4 days	✓
							days		
	1111111	11000							
E420	29-Nov-2022	02-Dec-2022				03-Dec-2022	180	4 days	✓
							days		
	111111111111111111111111111111111111111								
E420	29-Nov-2022	02-Dec-2022				03-Dec-2022	180	4 days	✓
							days		
	E420 E420	E508 29-Nov-2022 E420 29-Nov-2022 E420 29-Nov-2022	E508 29-Nov-2022 01-Dec-2022 E420 29-Nov-2022 02-Dec-2022 E420 29-Nov-2022 02-Dec-2022 E420 29-Nov-2022 02-Dec-2022	Preparation Date Holding Rec Rec	Preparation Date Holding Times Rec Actual	Method Sampling Date Extraction / Preparation Holding Times Eval Preparation Date Rec Actual Eval E508 29-Nov-2022 01-Dec-2022 E420 29-Nov-2022 02-Dec-2022 E420 29-Nov-2022 02-Dec-2022 E420 29-Nov-2022 02-Dec-2022	Method Sampling Date Extraction / Preparation Preparation Holding Times Rec Eval Analysis Date E508 29-Nov-2022 01-Dec-2022 01-Dec-2022 E420 29-Nov-2022 02-Dec-2022 02-Dec-2022 E420 29-Nov-2022 02-Dec-2022 03-Dec-2022 E420 29-Nov-2022 02-Dec-2022 03-Dec-2022	Method Sampling Date Extraction / Preparation Holding Times Eval Analysis Date Holding Rec Rec Actual	Method Sampling Date Extraction / Preparation Preparation Holding Times Rec Eval Analysis Date Holding Times Rec Actual E508 29-Nov-2022 01-Dec-2022 01-Dec-2022 28 days 2 days E420 29-Nov-2022 02-Dec-2022 02-Dec-2022 180 days 3 days days E420 29-Nov-2022 02-Dec-2022 03-Dec-2022 180 days 4 days days E420 29-Nov-2022 02-Dec-2022 03-Dec-2022 180 days 4 days days

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Page : 15 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	764294	2	33	6.0	5.0	1
Alkalinity Species by Titration	E290	765261	2	22	9.0	5.0	1
Ammonia by Fluorescence	E298	764370	2	40	5.0	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	764350	1	16	6.2	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	764351	1	16	6.2	5.0	1
Conductivity in Water	E100	765260	2	22	9.0	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	764258	1	5	20.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	764688	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	764257	1	16	6.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764391	1	13	7.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	764520	2	39	5.1	5.0	✓
Fluoride in Water by IC	E235.F	764349	1	16	6.2	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	764352	1	16	6.2	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	764353	1	16	6.2	5.0	1
ORP by Electrode	E125	764439	2	24	8.3	5.0	1
pH by Meter	E108	765262	2	24	8.3	5.0	1
Sulfate in Water by IC	E235.SO4	764354	1	16	6.2	5.0	1
TDS by Gravimetry	E162	764852	2	28	7.1	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	764234	2	4	50.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	764277	1	9	11.1	5.0	✓
Total Mercury in Water by CVAAS	E508	764628	1	16	6.2	5.0	✓
Total metals in Water by CRC ICPMS	E420	764235	2	4	50.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764392	1	14	7.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765461	1	21	4.7	5.0	×
Turbidity by Nephelometry	E121	764363	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	764294	2	33	6.0	5.0	1
Alkalinity Species by Titration	E290	765261	2	22	9.0	5.0	✓
Ammonia by Fluorescence	E298	764370	2	40	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	764350	1	16	6.2	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	764351	1	16	6.2	5.0	√
Conductivity in Water	E100	765260	2	22	9.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	764258	1	5	20.0	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	764688	1	20	5.0	5.0	<u>√</u>
Dissolved Metals in Water by CRC ICPMS	E421	764257	1	16	6.2	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764391	1	13	7.6	5.0	1

Page : 16 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Matrix: Water Quality Control Sample Type				ency outside spe		Frequency (%)	<u> </u>
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected (%)	Evaluation
Laboratory Control Samples (LCS) - Continued		Q 0 201 II			7.000	ZAPOCIOU	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	764520	2	39	5.1	5.0	
Fluoride in Water by IC	E378-U	764349	1	16	6.2	5.0	<u> </u>
Nitrate in Water by IC (Low Level)		764352	1	16	6.2	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO3-L	764353	1	16	6.2	5.0	
ORP by Electrode	E235.NO2-L	764439	2	24	8.3	5.0	√
pH by Meter	E125	764439	2	24	8.3	5.0	√
Sulfate in Water by IC	E108	763262	1	16	6.2	5.0	√
•	E235.SO4				-		<u>√</u>
TDS by Gravimetry	E162	764852	2	28	7.1	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	764234	2	4	50.0	5.0	<u>√</u>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	764277	1	9	11.1	5.0	<u>√</u>
Total Mercury in Water by CVAAS	E508	764628	1	16	6.2	5.0	✓
Total metals in Water by CRC ICPMS E4: Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E35		764235	2	4	50.0	5.0	✓
	E355-L	764392	1	14	7.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765461	1	21	4.7	5.0	Je .
TSS by Gravimetry (Low Level)	E160-L	764853	2	28	7.1	5.0	✓
Turbidity by Nephelometry	E121	764363	1	20	5.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	764294	2	33	6.0	5.0	✓
Alkalinity Species by Titration	E290	765261	2	22	9.0	5.0	✓
Ammonia by Fluorescence	E298	764370	2	40	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	764350	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	764351	1	16	6.2	5.0	✓
Conductivity in Water	E100	765260	2	22	9.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	764258	1	5	20.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	764688	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	764257	1	16	6.2	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764391	1	13	7.6	5.0	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	764520	2	39	5.1	5.0	
Fluoride in Water by IC	E235.F	764349	1	16	6.2	5.0	
Nitrate in Water by IC (Low Level)	E235.NO3-L	764352	1	16	6.2	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	764353	1	16	6.2	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	764354	1	16	6.2	5.0	<u> </u>
TDS by Gravimetry	E162	764852	2	28	7.1	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	764234	2	4	50.0	5.0	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	764277	1	9	11.1	5.0	<u> </u>
Total Mercury in Water by CVAAS	E508	764628	1	16	6.2	5.0	<u> </u>
Total metals in Water by CRC ICPMS	E420	764235	2	4	50.0	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764392	1	14	7.1	5.0	<u> </u>
Total Phosphorus by Colourimetry (0.002 mg/L)	E355-L E372-U	765461	1	21	4.7	5.0	

Page : 17 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Matrix: Water		Evaluatio	n: × = QC frequ	ency outside sp	ecification; ✓ = 0	QC frequency wit	hin specification
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
TSS by Gravimetry (Low Level)	E160-L	764853	2	28	7.1	5.0	✓
Turbidity by Nephelometry	E121	764363	1	20	5.0	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	764370	2	40	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	764350	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	764351	1	16	6.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	764258	1	5	20.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	764688	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	764257	1	16	6.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764391	1	13	7.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	764520	2	39	5.1	5.0	✓
Fluoride in Water by IC	E235.F	764349	1	16	6.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	764352	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	764353	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	764354	1	16	6.2	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	764234	1	4	25.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	764277	1	9	11.1	5.0	✓
Total Mercury in Water by CVAAS	E508	764628	1	16	6.2	5.0	✓
Total metals in Water by CRC ICPMS	E420	764235	1	4	25.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764392	1	14	7.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765461	1	21	4.7	5.0	3£

Page : 18 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			

Page : 19 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate,
				carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Calgary - Environmental			alkalinity values.
Ammonia by Fluorescence	E298	Water	Method Fialab 100,	Ammonia in water is determined by automated continuous flow analysis with membrane
	Calgary - Environmental		2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
Total Kjeldahl Nitrogen by Fluorescence (Low	E318	Water	Method Fialab 100.	This method is approved under US EPA 40 CFR Part 136 (May 2021)
Level)	E310	vvater	2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
1000)	Calgary - Environmental		2010	This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by	E355-L	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct
Combustion (Low Level)				measurement of TOC after an acidified sample has been purged to remove inorganic
	Calgary - Environmental			carbon (IC). Analysis is by high temperature combustion with infrared detection of CO 2.
				NPOC does not include volatile organic species that are purged off with IC. For
				samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e.
				TC minus TIC).
Dissolved Organic Carbon by Combustion	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a
(Low Level)				direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Calgary - Environmental			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion
				with infrared detection of CO2. NPOC does not include volatile organic species that are
				purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)				persulfate digestion of the sample.
	Calgary - Environmental	147.7	A D. I.A. 4500 D. E. (I)	
Dissolved Orthophosphate by Colourimetry	E378-U	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab
(Ultra Trace Level 0.001 mg/L)	Calgary - Environmental			or field filtered through a 0.45 micron membrane filter.
	July Zivii Jiiii			Field filtration is recommended to ensure test results represent conditions at time of
				sampling.
Total metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
	0.1		(mod)	Collision/Reaction Cell ICPMS.
	Calgary - Environmental			Mathematical Control (control of the control of the
				Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low	E420.Cr-L	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
Level)			(mod)	Collision/Reaction Cell ICPMS.
	Calgary - Environmental			

Page : 20 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.

Page : 21 of 21 Work Order : CG2216667

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Calgary - Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Calgary - Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : **CG2216667** Page : 1 of 22

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

:421 Pine Ave Address :2559 29th Street NE

Sparwood BC Canada

Calgary, Alberta Canada T1Y 7B5

Telephone
: Telephone : +1 403 407 1800

Project : REGIONAL EFFECTS PROGRAM Date Samples Received : 30-Nov-2022 09:55

Sampler : RS

Site :----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta
Kevin Baxter	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Kevin Baxter	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Shirley Li	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Sonthuong Bui	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Calgary Inorganics, Calgary, Alberta
Zakieh Lalonde		Calgary Metals, Calgary, Alberta

Page : 2 of 22 Work Order : CG2216667

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 :
 3 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Lim

Client : Teck Coal Limited
Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Physical Tests (QC	Lot: 764294)											
CG2216640-003	Anonymous	acidity (as CaCO3)		E283	10.0	mg/L	13.2	12.1	1.1	Diff <2x LOR		
Physical Tests (QC	Lot: 764347)											
CG2216663-001	Anonymous	acidity (as CaCO3)		E283	10.0	mg/L	26.8	23.4	3.4	Diff <2x LOR		
Physical Tests (QC	Lot: 764363)											
CG2216603-001	Anonymous	turbidity		E121	0.10	NTU	1.39	1.50	7.62%	15%		
Physical Tests (QC	Lot: 764439)		THE RESERVE									
CG2216667-002	RG_LIDSL_WS_LCO_LAE MP_2022-12_N	oxidation-reduction potential [ORP]		E125	0.10	mV	401	403	0.373%	15%		
Physical Tests (QC	Lot: 764519)											
CG2216648-007	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	414	415	0.169%	15%		
Physical Tests (QC	Lot: 764852)											
CG2216656-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	242	230	5.08%	20%		
Physical Tests (QC	Lot: 765145)											
CG2216657-002	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	304	300	1.33%	20%		
Physical Tests (QC	Lot: 765260)											
CG2216656-001	Anonymous	conductivity		E100	2.0	μS/cm	387	387	0.00%	10%		
Physical Tests (QC	Lot: 765261)											
CG2216656-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	2.0	mg/L	168	164	2.29%	20%		
		alkalinity, carbonate (as CaCO3)		E290	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR		
		alkalinity, hydroxide (as CaCO3)		E290	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR		
		alkalinity, total (as CaCO3)		E290	2.0	mg/L	168	164	2.29%	20%		
Physical Tests (QC	Lot: 765262)											
CG2216656-001	Anonymous	pH		E108	0.10	pH units	8.16	8.19	0.367%	4%		
Physical Tests (QC	Lot: 765266)											
CG2216664-003	Anonymous	pH		E108	0.10	pH units	7.63	7.65	0.262%	4%		
Physical Tests (QC	Lot: 765267)											
CG2216664-003	Anonymous	conductivity		E100	2.0	μS/cm	3810	3770	1.06%	10%		
Physical Tests (QC	Lot: 765268)		THE STATE OF THE S									
CG2216664-003	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	644	636	1.31%	20%		
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		

 Page
 :
 4 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

ALS

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 765268) - continue	d									
CG2216664-003	Anonymous	alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	644	636	1.31%	20%	
Anions and Nutrien	ts (QC Lot: 764277)										
CG2216662-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.50	mg/L	138	144	4.33%	20%	
Anions and Nutrien	ts (QC Lot: 764349)										
CG2216667-001	RG_FRUL_WS_LCO_LAE MP_2022-12_N	fluoride	16984-48-8	E235.F	0.020	mg/L	0.177	0.178	0.0004	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 764350)										
CG2216667-001	RG_FRUL_WS_LCO_LAE MP_2022-12_N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 764351)										
CG2216667-001	RG_FRUL_WS_LCO_LAE MP_2022-12_N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	4.67	4.77	2.03%	20%	
Anions and Nutrien	ts (QC Lot: 764352)										
CG2216667-001	RG_FRUL_WS_LCO_LAE MP_2022-12_N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	12.8	13.0	2.07%	20%	
Anions and Nutrien	ts (QC Lot: 764353)										
CG2216667-001	RG_FRUL_WS_LCO_LAE MP_2022-12_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0024	0.0022	0.0002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 764354)										
CG2216667-001	RG_FRUL_WS_LCO_LAE MP_2022-12_N	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	231	236	2.19%	20%	
Anions and Nutrien	ts (QC Lot: 764370)										
CG2216664-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.125	mg/L	2.55	2.54	0.400%	20%	
Anions and Nutrien	ts (QC Lot: 764520)										
CG2216616-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0236	0.0232	1.96%	20%	
Anions and Nutrien	ts (QC Lot: 764527)										
CG2216628-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0064	0.0062	0.0002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 764563)										
CG2216666-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.308	0.307	0.325%	20%	
Anions and Nutrien	ts (QC Lot: 765461)										
CG2216667-001	RG_FRUL_WS_LCO_LAE MP_2022-12_N	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 76439										
CG2216665-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 764392	2)									
CG2216665-001	Anonymous	carbon, total organic [TOC]		E355-L	1.00	mg/L	4.15	4.27	0.12	Diff <2x LOR	

 Page
 :
 5 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

ALS

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 764234)										
CG2216667-002	RG_LIDSL_WS_LCO_LAE MP_2022-12_N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00013	0.00012	0.00001	Diff <2x LOR	
Total Metals (QC Lo	ot: 764235)										
CG2216667-002	RG_LIDSL_WS_LCO_LAE MP_2022-12_N	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0033	<0.0030	0.0003	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00027	0.00027	0.0000010	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00011	<0.00010	0.000009	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0586	0.0605	3.18%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.014	0.014	0.0002	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.136 μg/L	0.000150	9.91%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	118	114	3.79%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0482	0.0449	6.92%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	60.5	61.7	2.01%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00445	0.00456	2.39%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00297	0.00294	0.877%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00498	0.00518	3.94%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.62	1.65	1.57%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	46.5 μg/L	0.0474	2.10%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.24	2.23	0.670%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	9.20	9.44	2.57%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.224	0.222	0.787%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	124	122	1.51%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00403	0.00397	1.54%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0044	0.0047	0.0003	Diff <2x LOR	

 Page
 :
 6 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

ALS

sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 764628)										
CG2216639-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 765478)										
CG2216667-001	RG_FRUL_WS_LCO_LAE MP_2022-12_N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00011	0.00014	0.00002	Diff <2x LOR	
Total Metals (QC Lo	ot: 765479)							1/1/2			
CG2216667-001	RG_FRUL_WS_LCO_LAE	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0030	<0.0030	0.00003	Diff <2x LOR	
	MP_2022-12_N	antimony, total	7440-36-0	E420	0.00010	mg/L	0.00010	0.00010	0.00000004	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0938	0.0880	6.41%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0083 µg/L	0.0000055	0.0000028	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	100	93.8	6.50%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0240	0.0226	6.36%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	46.2	43.4	6.05%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00031	0.00021	0.00010	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000883	0.000860	2.58%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.20	1.14	5.16%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	46.0 μg/L	0.0443	3.62%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.45	2.34	4.52%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	3.07	2.87	6.68%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.157	0.149	5.27%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	79.1	75.7	4.33%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00232	0.00219	5.72%	20%	

 Page
 :
 7 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

ALS

Laboratory sample D Clicent sample D Clicent sample D Analyte CAS Number Method LOR Unit Original Result Origina	ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Co2216667-091 Rg.Fill., Wg.LCQ_LAE Mg.P.2022-12_N min. Issist	aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	_				Qualifie
Page 22-12_N Zinc, total T440-86-8 E420 D.0030 mg/L -0.0030 D.0030	Total Metals (QC Lo	ot: 765479) - continue										
Part	CG2216667-001		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
Annymous Aluminum, dissolved 7429945 5421 0.0010 mg/L 0.00062 0.0006 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0		MP_2022-12_N	zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
antimony, dissolved 7440-36-0 E421 0.00010 mg/L -0.00010 0.00010 0.0 Diff-2x LOR arsenic, dissolved 7440-38-3 E421 0.00010 mg/L 0.00024 0.000024 0.000020 Diff-2x LOR barium, dissolved 7440-38-3 E421 0.00010 mg/L 0.00084 0.000020 0.0 Diff-2x LOR beryillum, dissolved 7440-41-7 E421 0.000020 mg/L -0.000000 -0.0000050 0.0 Diff-2x LOR bismulh, dissolved 7440-48-8 E421 0.000080 mg/L -0.0000000 -0.0000050 0.0 Diff-2x LOR cadmium, dissolved 7440-48-8 E421 0.0000 mg/L -0.0000000 -0.0000050 0.0 Diff-2x LOR cadmium, dissolved 7440-48-8 E421 0.0000 mg/L -0.0000000 0.0 Diff-2x LOR cadmium, dissolved 7440-48-8 E421 0.0000 mg/L -0.000000 0.0 Diff-2x LOR cadmium, dissolved 7440-48-8 E421 0.0000 mg/L -0.000000 0.0 Diff-2x LOR cadmium, dissolved 7440-48-8 E421 0.00010 mg/L -0.000010 0.0 Diff-2x LOR cadmium, dissolved 7440-48-8 E421 0.00010 mg/L -0.000000 0.0 Diff-2x LOR cadmium, dissolved 7430-88-8 E421 0.00010 mg/L -0.000000 0.0 Diff-2x LOR cadmium, dissolved 7430-89-3 E421 0.00000 mg/L -0.000000 0.0 Diff-2x LOR cadmium, dissolved 7430-89-3 E421 0.00000 mg/L -0.000000 0.0 Diff-2x LOR cadmium, dissolved 7430-89-5 E421 0.00010 mg/L -0.000000 0.0 Diff-2x LOR cadmium, dissolved 7430-89-5 E421 0.00010 mg/L -0.000000 0.0 Diff-2x LOR cadmium, dissolved 7430-89-5 E421 0.00010 mg/L -0.000000 0.0 Diff-2x LOR cadmium, dissolved 7430-89-5 E421 0.00010 mg/L -0.000000 0.0 Diff-2x LOR cadmium, dissolved 7430-89-5 E421 0.00010 mg/L -0.000010 0.00017 0.0000000 Diff-2x LOR cadmium, dissolved 7440-20-2 E421 0.00010 mg/L -0.000010 0.00017 0.0000000 Diff-2x LOR cadmium, dissolved 7440-20-2 E421 0.00000 mg/L -0.000010 0.00017 0.0000000 Diff-2x LOR cadmium, dissolved 7440-20-2 E421 0.00000 mg/L -0.000010 0.000010 Diff-2x LOR cadmium, dissolved 7440-20-2 E421 0.00000 mg/L -0.000010 0.000010 Diff-2x LOR cadmium, dissolved 7440-20-2 E421 0.000010 mg/L -0.000010 0.000010 Diff-2x LOR cadmium, dissolved 7440-20-2 E421 0.000010 mg/L -0.000010 0.000010 0.000000 Diff-2x LOR cadmium, dissolved 7440-20-2 E421 0.000010 mg/L -0.000010 0.000010 0.0000000 Diff-2x L	Dissolved Metals (C	QC Lot: 764257)										
arsenic, dissolved 7440-38-2 E421 0.00010 mg/L 0.00024 0.000020 Diff <2 LOR barium, dissolved 7440-39-3 E421 0.00010 mg/L 0.0084 0.00979 0.514% 220% Deryllium, dissolved 7440-89-4 E421 0.000020 mg/L <0.020 μg/L <0.020 μg/L <0.000020 0 Diff <2 LOR Diff <2 LOR Diff <0.000020 0 Diff <2 LOR Diff <0.000020 0 Diff <2 LOR Diff <0.000020 0 Diff <2 LOR Diff <0.000020 0 Diff <2 LOR Diff <0.000020 0 Diff <2 LOR Diff <0.000020 0 Diff <2 LOR Diff <0.000020 0 Diff <2 LOR Diff <0.000020 0 Diff <2 LOR Diff <0.000020 0 Diff <2 LOR Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 0 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.000020 Diff <0.0000020 Diff <0.000020 Diff <0.0000020 Diff <0.000020 Diff <0.00	CG2216665-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0062	0.0056	0.0006	Diff <2x LOR	
barfurn, dissolved 7440-39-3 E421 0.00010 mg/L 0.0884 0.0979 0.514% 20%			antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
beryllium, dissolved 7440-84-9 E421 0.000020 mg/L			arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00024	0.00024	0.000002	Diff <2x LOR	
bismuth, dissolved 7440-89-9 E421 0.000050 mg/L 0.000050 0.0 Diff <2x LOR 20% cadmium, dissolved 7440-42-8 E421 0.010 mg/L 0.318 0.341 6.67% 20% cadmium, dissolved 7440-43-9 E421 0.0000050 mg/L 0.0000050 wg/L 0.0000050 0.0 Diff <2x LOR 0.0000050 wg/L 0.0000050 wg/L 0.0000050 0.0 Diff <2x LOR 0.0000050 wg/L 0.0000050 wg/L 0.0000050 0.0 Diff <2x LOR 0.0000050 wg/L 0.0000050 wg/L 0.0000050 0.0 Diff <2x LOR 0.0000050 wg/L 0.0000050 0.0 Diff <2x LOR 0.0000050 wg/L 0.0000050 0.0 Diff <2x LOR 0.0000050 wg/L 0.0000050 0.0 Diff <2x LOR 0.0000050 wg/L 0.0000050 0.0 Diff <2x LOR 0.0000050 wg/L 0.0000050 0.0 Diff <2x LOR 0.0000050 wg/L 0.0000050 0.0 Diff <2x LOR 0.0000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.000000 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.000000 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.00000000 0.0 Diff <2x LOR 0.000050 wg/L 0.000050 0.000000 0.000000 0.000000 0.000000 0.000000			barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0984	0.0979	0.514%	20%	
boron, dissolved 7440-42-8 E421 0.010 mg/L 0.318 0.341 6.97% 20% cadimum, dissolved 7440-43-9 E421 0.0000050 mg/L <0.0000050 0 Diff <2z LOR cadimum, dissolved 7440-49-4 E421 0.050 mg/L 1.91 1.93 0.842% 20% cobalt, dissolved 7440-89-8 E421 0.0001 mg/L <0.00010			beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
cadmium, dissolved 7440-43-9 E421 0.0000050 mgl. <0.000050 µgl. <0.000050 0 Diff ≈2x LOR cobalt, dissolved 7440-70-2 E421 0.050 mgl. 1.91 1.93 0.842% 20% cobalt, dissolved 7440-84-8 E421 0.00010 mgl. <0.10 µgl.			bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
calcium, dissolved 7440-70-2 E421 0.050 mg/L 1.91 1.93 0.842% 20% cobalt, dissolved 7440-84-8 E421 0.00010 mg/L <0.010 μg/L			boron, dissolved	7440-42-8	E421	0.010	mg/L	0.318	0.341	6.97%	20%	
cobalt, dissolved 7440-48-4 E421 0.00010 mg/L <0.00010 0 Diff <2x LOR copper, dissolved 7440-50-8 E421 0.00020 mg/L <0.00020			cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
copper, dissolved 740-50-8 bits E421 0.00020 bits mg/L color <0.00020 color <0.00020 color 0 bitf <2x LOR iron, dissolved 7439-89-6 bits E421 0.000050 bits mg/L color <0.010 color			calcium, dissolved	7440-70-2	E421	0.050	mg/L	1.91	1.93	0.842%	20%	
iron, dissolved 7439-89-6 E421 0.010 mg/L <0.010 <0.010 0 Diff <2x LOR lead, dissolved (dissolved) 7439-92-1 E421 0.000050 mg/L <0.000050 <0.000050 0 Diff <2x LOR lithium, dissolved 7439-93-2 E421 0.0010 mg/L 0.426 0.441 3.84% 20% magnesium, dissolved 7439-95-4 E421 0.0050 mg/L 0.767 0.741 3.45% 20% manganese, dissolved 7439-96-5 E421 0.00010 mg/L 0.00986 0.00979 0.806% 20% molybdenum, dissolved 7439-96-7 E421 0.000050 mg/L 0.000147 0.000147 0.0000000 Diff <2x LOR nickel, dissolved 7440-02-0 E421 0.00050 mg/L 0.000147 0.000147 0.0000000 Diff <2x LOR sillicon, dissolved 7440-02-0 E421 0.00050 mg/L 0.0671 0.684 1.88% 20% selenium, dissolved 7440-02-1 E421 0.00050 mg/L 0.00050 0.00050 0.000000 Diff <2x LOR sillicon, dissolved 7440-21-3 E421 0.00050 mg/L 0.050 mg/L 0.00050 0.000000 Diff <2x LOR sillicon, dissolved 7440-22-4 E421 0.00050 mg/L 0.00050 0.000000 Diff <2x LOR sillicon, dissolved 7440-23-5 E421 0.000010 mg/L 0.00010 <0.000010 0 Diff <2x LOR sillicon, dissolved 7440-23-6 E421 0.000010 mg/L 0.00010 <0.000010 0 Diff <2x LOR sillicon, dissolved 7440-23-6 E421 0.000010 mg/L 0.00010 <0.000010 0 Diff <2x LOR sillicon, dissolved 7440-23-6 E421 0.000010 mg/L 0.00010 <0.00010 0 Diff <2x LOR sulfur, dissolved 7440-24-6 E421 0.000010 mg/L 0.00010 <0.00010 0 Diff <2x LOR sulfur, dissolved 7440-24-0 E421 0.000010 mg/L 0.00010 0 Diff <2x LOR thallium, dissolved 7440-24-0 E421 0.000010 mg/L 0.00010 0 Diff <2x LOR thallium, dissolved 7440-24-0 E421 0.000010 mg/L 0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-6 E421 0.000010 mg/L 0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-8 E421 0.000010 mg/L 0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-8 E421 0.000010 mg/L 0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-8 E421 0.000010 mg/L 0.000010 0 Diff <2x LOR thallium, dissolved 7440-32-8 E421 0.000010 mg/L 0.000010 0 Diff <2x LOR thallium, dissolved 7440-32-8 E421 0.000010 mg/L 0.000010 0 Diff <2x LOR thallium, dissolved 7440-32-8 E421 0.000010 mg/L 0.000010 0 Diff <2x LOR thallium, dissolved 7440-32-8 E421 0.0			cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
lead, dissolved 7439-92-1 E421 0.000050 mg/L <0.000050 <0.000050 0 Diff <2x LOR			copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
lithium, dissolved 7439-93-2 E421 0.0010 mg/L 0.426 0.441 3.64% 20% magnesium, dissolved 7439-95-4 E421 0.0060 mg/L 0.767 0.741 3.45% 20% manganese, dissolved 7439-96-5 E421 0.00010 mg/L 0.00986 0.00979 0.806% 20% molybdenum, dissolved 7439-98-7 E421 0.00050 mg/L 0.000147 0.000147 0.0000003 Diff <2x LOR nickel, dissolved 7440-02-0 E421 0.00050 mg/L 0.00050 vol.00050 0 Diff <2x LOR potassium, dissolved 7440-09-7 E421 0.00050 mg/L 0.671 0.684 1.88% 20% selenium, dissolved 7740-24-0 E421 0.00050 mg/L 0.052 µg/L <0.000050 0.000000 Diff <2x LOR sillor, dissolved 7440-21-3 E421 0.00050 mg/L 0.052 µg/L <0.000050 0.000000 Diff <2x LOR sillor, dissolved 7440-23-5 E421 0.00010 mg/L 0.00010 <0.000010 0.000010 Diff <2x LOR sodium, dissolved 7440-24-6 E421 0.0000 mg/L 213 214 0.570% 20% strontium, dissolved 7440-24-6 E421 0.0000 mg/L 0.156 0.157 0.860% 20% suffur, dissolved 7440-28-0 E421 0.000010 mg/L <0.00010 <0.00010 0.00010 0.00010 0.00010 Diff <2x LOR suffur, dissolved 7440-28-0 E421 0.0000 mg/L <0.00010 <0.00010 0			iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
magnesium, dissolved 7439-95-4 E421 0.0050 mg/L 0.767 0.741 3.45% 20% manganese, dissolved 7439-96-5 E421 0.00010 mg/L 0.00986 0.00979 0.806% 20% molybdenum, dissolved 7439-98-7 E421 0.000050 mg/L 0.000147 0.000147 0.0000000 D Diff <2x LOR			lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
manganese, dissolved 7439-96-5 E421 0.00010 mg/L 0.00986 0.00979 0.806% 20% molybdenum, dissolved 7439-98-7 E421 0.00050 mg/L 0.000147 0.000147 0.0000003 Diff <2x LOR nickel, dissolved 7440-02-0 E421 0.00050 mg/L <0.00050 <0.00050 0 Diff <2x LOR potassium, dissolved 7440-09-7 E421 0.050 mg/L 0.671 0.684 1.88% 20% selenium, dissolved 7782-49-2 E421 0.00050 mg/L 0.052 μg/L <0.00050 0.000002 Diff <2x LOR silicon, dissolved 7440-21-3 E421 0.050 mg/L 0.052 μg/L <0.00050 0.000002 Diff <2x LOR silver, dissolved 7440-22-4 E421 0.050 mg/L 3.39 3.48 2.54% 20% silver, dissolved 7440-22-4 E421 0.00010 mg/L <0.000010 <0.000010 0 Diff <2x LOR sodium, dissolved 7440-23-5 E421 0.050 mg/L 213 214 0.570% 20% strontium, dissolved 7440-24-6 E421 0.0000 mg/L 0.156 0.157 0.860% 20% sulfur, dissolved 7740-34-9 E421 0.50 mg/L <0.00010 clif <2x LOR thallium, dissolved 7440-28-0 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-28-0 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 Diff <2x LOR thallium, dissolved 7440-31-6 E421 0.00010 mg/L <0.000010 0 Diff <2x LOR thallium, dissolved 7440-31-6 E421 0.00010 mg/L <0.000010 0 Diff <2x LOR thallium, dissolved 7440-31-6 E421 0.00010 mg/L <0.000010 0 Diff <2x LOR thallium, dissolved 7440-31-6 E421 0.00010 mg/L <0.000010 0 Diff <2x LOR thallium, dissolved 7440-31-6 E421 0.00010 mg/L 0.000010 0 Diff <2x LOR thallium, dissolved 7440-31-6 E421 0.00010 mg/L 0.000010 0 Diff <2x LOR thallium, dissolved 7440-31-6 E421 0.00010 mg/L 0.000010 0 Diff <2x LOR thallium, dissolved 7440-31-6 E421 0.00010 mg/L 0.00001			lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.426	0.441	3.64%	20%	
molybdenum, dissolved 7439-98-7 E421 0.000050 mg/L 0.000147 0.0001003 Diff <2x LOR nickel, dissolved 7440-02-0 E421 0.00050 mg/L <0.00050 <0.00050 0 Diff <2x LOR potassium, dissolved 7440-09-7 E421 0.050 mg/L 0.671 0.684 1.88% 20% selenium, dissolved 7782-49-2 E421 0.00050 mg/L 0.052 µg/L <0.00050 0.000002 Diff <2x LOR silicon, dissolved 7440-21-3 E421 0.050 mg/L 0.050 µg/L 3.39 3.48 2.54% 20% silver, dissolved 7440-22-4 E421 0.00010 mg/L <0.00010 <0.000010 0 Diff <2x LOR sodium, dissolved 7440-23-5 E421 0.050 mg/L 213 214 0.570% 20% strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.156 0.157 0.860% 20% suffur, dissolved 7704-34-9 E421 0.500 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-28-0 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-28-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00010 mg/L <0.00030 <0.00030 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00010 mg/L <0.00030 <0.00030 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 0 Diff <2x LOR transmit dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 0 Diff <2x LOR transmit dissolved 0.00030 0 Diff <2x LOR transmit dissolved 0.00030 0 Diff <2x LOR transmit dissolved 0.00030 0 Diff <2x LOR transmit			magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	0.767	0.741	3.45%	20%	
nickel, dissolved 7440-02-0 E421 0.00050 mg/L <0.00050 <0.00050 0 Diff <2x LOR potassium, dissolved 7440-09-7 E421 0.050 mg/L 0.671 0.684 1.88% 20% selenium, dissolved 7782-49-2 E421 0.000050 mg/L 0.052 μg/L <0.000050 0.000002 Diff <2x LOR silicon, dissolved 7740-21-3 E421 0.050 mg/L 3.39 3.48 2.54% 20% silver, dissolved 7440-22-4 E421 0.00010 mg/L <0.00010 <0.000010 0 Diff <2x LOR sodium, dissolved 7440-23-5 E421 0.050 mg/L 213 214 0.570% 20% strontium, dissolved 7440-24-6 E421 0.0002 mg/L 0.156 0.157 0.860% 20% sulfur, dissolved 7704-34-9 E421 0.500 mg/L <0.500 d.50 d.50 0 Diff <2x LOR thallium, dissolved 7440-28-0 E421 0.00010 mg/L <0.00010 <0.00011 0 Diff <2x LOR dissolved 7440-28-0 E421 0.00010 mg/L <0.00010 <0.00011 0 Diff <2x LOR dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00011 0 Diff <2x LOR dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR dissolved 7440-32-6 E421 0.00010 mg/L <0.000010 0 Diff <2x LOR dissolved 7440-32-6 E421 0.00010 mg/L <0.000010 0 Diff <2x LOR dissolved 7440-61-1 E421 0.00010 mg/L <0.000010 0.000010 Diff <2x LOR dissolved 7440-61-1 E421 0.00010 mg/L <0.000024 0.000001 Diff <2x LOR dissolved 7440-61-1 E421 0.000010 mg/L 0.000024 0.000001 Diff <2x LOR dissolved 7440-61-1 E421 0.000010 mg/L 0.000024 0.000001 Diff <2x LOR dissolved 7440-61-1 E421 0.000010 mg/L 0.000004 0.000004 0.000001 Diff <2x LOR dissolved 7440-61-1 E421 0.000010 mg/L 0.000004 0.000004 0.000001 Diff <2x LOR dissolved 0.000001 Diff <2x LOR dissolved 0.000001 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.000010 Diff <0.00001			manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00986	0.00979	0.806%	20%	
potassium, dissolved 7440-09-7 E421 0.050 mg/L 0.671 0.684 1.88% 20% selenium, dissolved 7782-49-2 E421 0.000050 mg/L 0.052 μg/L <0.000050 0.000002 Diff <2x LOR silicon, dissolved 7440-21-3 E421 0.050 mg/L 3.39 3.48 2.54% 20% silver, dissolved 7440-22-4 E421 0.00010 mg/L <0.000010 <0.000010 0 Diff <2x LOR sodium, dissolved 7440-23-5 E421 0.050 mg/L 213 214 0.570% 20% strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.156 0.157 0.860% 20% sulfur, dissolved 7704-34-9 E421 0.50 mg/L <0.50 <0.50 0 Diff <2x LOR thallium, dissolved 7440-28-0 E421 0.00010 mg/L <0.00010 <0.000010 0 Diff <2x LOR thallium, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR titanium, dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR titanium, dissolved 7440-32-6 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR titanium, dissolved 7440-32-6 E421 0.00010 mg/L <0.00030 <0.00030 0 Diff <2x LOR titanium, dissolved 7440-61-1 E421 0.00010 mg/L 0.000024 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.00010 mg/L 0.000024 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.00010 mg/L 0.000024 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.00010 mg/L 0.000024 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000024 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000024 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000014 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000024 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000014 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000014 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000014 0.000001 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000014 0.000001 Diff <2x LOR uranium, dissolved 0.000010 mg/L 0.000010 Diff <2x LOR uranium, dissolved 0.000010 mg/L 0.000010 Diff <2x			molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000147	0.000147	0.00000003	Diff <2x LOR	
selenium, dissolved 7782-49-2 E421 0.000050 mg/L 0.052 μg/L <0.000050				7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
silicon, dissolved 7440-21-3 E421 0.050 mg/L 3.39 3.48 2.54% 20% silver, dissolved 7440-22-4 E421 0.000010 mg/L <0.000010			potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.671	0.684	1.88%	20%	
silver, dissolved 7440-22-4 E421 0.000010 mg/L <0.000010			selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.052 µg/L	<0.000050	0.000002	Diff <2x LOR	
silver, dissolved 7440-22-4 E421 0.000010 mg/L <0.000010 <0.000010 0 Diff <2x LOR sodium, dissolved 7440-23-5 E421 0.050 mg/L 213 214 0.570% 20% strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.156 0.157 0.860% 20% sulfur, dissolved 7704-34-9 E421 0.50 mg/L <0.50 <0.50 <0.50 0 Diff <2x LOR mg/L <0.00010 mg/L <0.00010 mg/L <0.00010 0 Diff <2x LOR mg/L <0.00010 <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 0 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <2x LOR <0.00010 Diff <0.00010 Diff <2x LOR <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010 Diff <0.00010												
sodium, dissolved 7440-23-5 E421 0.050 mg/L 213 214 0.570% 20% strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.156 0.157 0.860% 20% sulfur, dissolved 7704-34-9 E421 0.50 mg/L <0.50 <0.50 0 Diff <2x LOR thallium, dissolved 7440-28-0 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 0 Diff <2x LOR titanium, dissolved 7440-61-1 E421 0.00030 mg/L 0.00024 0.00024 0.000001 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LO			· ·		E421	0.000010	_	<0.000010	<0.000010	0	Diff <2x LOR	
strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.156 0.157 0.860% 20% sulfur, dissolved 7704-34-9 E421 0.50 mg/L <0.50 <0.50 0 Diff <2x LOR thallium, dissolved 7440-28-0 E421 0.000010 mg/L <0.000010 <0.000010 0 Diff <2x LOR tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 0 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.00010 mg/L 0.000024 0.000021 Diff <2x LOR 0.00010 0.000010 Diff <2x LOR 0.00010 Diff <2x LOR 0			,		E421	0.050		213	214	0.570%	20%	
sulfur, dissolved 7704-34-9 E421 0.50 mg/L <0.50 <0.50 0 Diff <2x LOR thallium, dissolved 7440-28-0 E421 0.000010 mg/L <0.000010 <0.000010 0 Diff <2x LOR tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 0 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.00010 mg/L 0.000024 0.000024 0.000001 Diff <2x LOR 0.00030 0.000024 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.00030 0.000001 Diff <2x LOR 0.000001 Diff <2x LOR 0.000001 Diff <2x LOR 0.000001 Diff <2x LOR 0.000001 Diff <2x LOR 0.0000001 Diff <2x LOR 0.000001 Diff <2x LOR 0.0000			· ·									
thallium, dissolved 7440-28-0 E421 0.000010 mg/L <0.000010 0 Diff <2x LOR tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 0 Diff <2x LOR 0.00010 0.00030 0 Diff <2x LOR 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 0 Diff <2x LOR 0.00030 0.00030 Diff <2x LOR 0.00030 0.00030 Diff <2x LOR 0.00030 0.00030 Diff <2x LOR 0.00030 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00030 Diff <2x LOR 0.00					E421		_	<0.50	<0.50		Diff <2x LOR	
tin, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR titanium, dissolved uranium, dissolved 7440-61-1 E421 0.00010 mg/L 0.000024 0.000024 0.000001 Diff <2x LOR			· ·									
titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 0 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000024 0.000024 0.000001 Diff <2x LOR							_					
uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000024 0.000001 Diff <2x LOR												
			· ·									
			vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
zinc, dissolved 7440-66-6 E421 0.0010 mg/L <0.0010 0 Diff <2x LOR			· ·				_					

Page 8 of 22 CG2216667 Work Order: Client

Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (DU	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	QC Lot: 764258)										
CG2216665-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 764688)										
CG2216639-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

 Page
 :
 9 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

Client : Teck Coal Limited
Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 764294)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 764347)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 764363)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 764852)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 764853)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 765141)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 765145)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 765260)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 765261)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
hysical Tests (QCLot: 765267)					
conductivity	E100	1	μS/cm	1.2	
hysical Tests (QCLot: 765268)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
nions and Nutrients (QCLot: 764277)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 764349)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	

 Page
 :
 10 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

ALS

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 764350) -	- continued				
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 764351)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 764352)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 764353)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 764354)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 764370)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
nions and Nutrients (QCLot: 764520)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 764527)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
nions and Nutrients (QCLot: 764563)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
nions and Nutrients (QCLot: 765461)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot: 764					
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 764					
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 764234)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
otal Metals (QCLot: 764235)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	

 Page
 :
 11 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Project

Analyte	CAS Number	Method		LOR	Unit	Result	Qualifier
otal Metals (QCLot: 764235) - o	continued						
cobalt, total	7440-48-4	E420	(0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	(0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420		0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420		0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420		0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	(0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	(0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420		0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420		0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420		0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	(0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420		0.5	mg/L	<0.50	
thallium, total	7440-28-0	E420	0	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	(0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	(0.0003	mg/L	<0.00030	
uranium, total	7440-61-1	E420	0	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	(0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420		0.003	mg/L	<0.0030	
otal Metals (QCLot: 764628)							
mercury, total	7439-97-6	E508	0.	.000005	mg/L	<0.0000050	
otal Metals (QCLot: 765478)							
chromium, total	7440-47-3	E420.Cr-L	(0.0001	mg/L	<0.00010	
otal Metals (QCLot: 765479)							
aluminum, total	7429-90-5	E420		0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	(0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	C	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	(0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420		0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.	.000005	mg/L	<0.0000050	

 Page
 :
 12 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

ALS

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
otal Metals (QCLot: 765479) - co	ontinued					
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
issolved Metals (QCLot: 764257))					
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	

 Page
 :
 13 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

ALS

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

nalyte	CAS Number	Method	LOR	Unit	Result	Qualifier
issolved Metals (QCLot: 764257)	- continued					
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
issolved Metals (QCLot: 764258)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
issolved Metals (QCLot: 764688)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	

 Page
 :
 14 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Cor	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 764294)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	106	85.0	115	
Physical Tests (QCLot: 764347)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	108	85.0	115	
Physical Tests (QCLot: 764363)								
turbidity	E121	0.1	NTU	200 NTU	101	85.0	115	
Physical Tests (QCLot: 764439)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	100	95.4	104	
Physical Tests (QCLot: 764519)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	101	95.4	104	
Physical Tests (QCLot: 764852)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	102	85.0	115	
Physical Tests (QCLot: 764853)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	94.0	85.0	115	
Physical Tests (QCLot: 765141)								1
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	91.2	85.0	115	
Physical Tests (QCLot: 765145)		40						1
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	90.2	85.0	115	
Physical Tests (QCLot: 765260)	E100							1
conductivity	E100	1	μS/cm	146.9 μS/cm	100	90.0	110	
Physical Tests (QCLot: 765261)	5000	4				05.0	445	
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	102	85.0	115	
Physical Tests (QCLot: 765262)	E400		ad Louite		400	00.0	404	ı
	E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 765266)	- E108		ad Louite		101	00.0	404	ı
	E108		pH units	7 pH units	101	98.6	101	
Physical Tests (QCLot: 765267)	- E100	4	118/200	440.0.01	404	00.0	140	
	E 100	1	μS/cm	146.9 μS/cm	101	90.0	110	
Physical Tests (QCLot: 765268)	E200	4	me/l	500 "	400	95.0	145	
alkalinity, total (as CaCO3)	- E290	1	mg/L	500 mg/L	103	85.0	115	
Anions and Nutrients (QCLot: 764277)	- E318	0.05	mg/L	4 m = //	102	75.0	125	
Kjeldahl nitrogen, total [TKN]	2310	0.05	mg/L	4 mg/L	102	10.0	120	

 Page
 :
 15 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Met	thod	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 764349)									
fluoride	16984-48-8 E23	35.F	0.02	mg/L	1 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 764350)									
bromide	24959-67-9 E23	35.Br-L	0.05	mg/L	0.5 mg/L	105	85.0	115	
Anions and Nutrients (QCLot: 764351)									
chloride	16887-00-6 E23	35.CI-L	0.1	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 764352)	44707.55.0								
nitrate (as N)	14797-55-8 E23	35.NO3-L	0.005	mg/L	2.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 764353)	44707.05.0 500	OF NOO!	0.004	/I		101	00.0	440	
nitrite (as N)	14797-65-0 E23	55.NU2-L	0.001	mg/L	0.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 764354)	14808-79-8 E23	05.004	0.0	/I	400 #	101	00.0	440	
sulfate (as SO4)	14808-79-8 E23	35.504	0.3	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 764370)	7664-41-7 E29	20	0.005	ma m/l	0.0	400	95.0	115	
ammonia, total (as N)	7004-41-7 E29	10	0.005	mg/L	0.2 mg/L	102	85.0	115	
Anions and Nutrients (QCLot: 764520)	14265-44-2 E37	78 11	0.001	ma/l	0.03 ma/l	402	80.0	120	
phosphate, ortho-, dissolved (as P)	14203-44-2 E37	76-0	0.001	mg/L	0.03 mg/L	102	80.0	120	
Anions and Nutrients (QCLot: 764527) phosphate, ortho-, dissolved (as P)	14265-44-2 E37	78-11	0.001	mg/L	0.03 ma/l	98.3	80.0	120	
	14200-44-2 201	0-0	0.001	mg/L	0.03 mg/L	96.3	00.0	120	
Anions and Nutrients (QCLot: 764563) ammonia, total (as N)	7664-41-7 E29	98	0.005	mg/L	0.2 mg/L	105	85.0	115	
	7004-41-7 [220		0.000	mg/L	0.2 mg/L	105	00.0	113	
Anions and Nutrients (QCLot: 765461) phosphorus, total	7723-14-0 E37	72-U	0.002	mg/L	0.03 mg/L	98.4	80.0	120	
prioception do, total	20 0 20.	2.0	0.002	9/_	0.03 Hig/L	30.4	00.0	.20	
Organic / Inorganic Carbon (QCLot: 764391)									
carbon, dissolved organic [DOC]	E35	58-L	0.5	mg/L	8.57 mg/L	110	80.0	120	
Organic / Inorganic Carbon (QCLot: 764392)									
carbon, total organic [TOC]	E35	55-L	0.5	mg/L	8.57 mg/L	113	80.0	120	
Total Metals (QCLot: 764234)									
chromium, total	7440-47-3 E42	20.Cr-L	0.0001	mg/L	0.25 mg/L	99.3	80.0	120	
Total Metals (QCLot: 764235)									
aluminum, total	7429-90-5 E42	20	0.003	mg/L	2 mg/L	112	80.0	120	
antimony, total	7440-36-0 E42	20	0.0001	mg/L	1 mg/L	98.4	80.0	120	
arsenic, total	7440-38-2 E42	20	0.0001	mg/L	1 mg/L	100	80.0	120	
barium, total	7440-39-3 E42		0.0001	mg/L	0.25 mg/L	98.0	80.0	120	
beryllium, total	7440-41-7 E42	20	0.00002	mg/L	0.1 mg/L	102	80.0	120	

 Page
 :
 16 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Lin

Project

Teck Coal Limited
REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 764235) - continue	ed								
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	99.0	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	92.6	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	96.6	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	103	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	99.2	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	97.6	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	98.7	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	102	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	110	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	101	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	99.6	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	108	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	89.9	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	99.4	60.0	140	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	97.6	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	104	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	101	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	105	80.0	120	
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	98.6	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	98.0	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	93.4	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	102	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	97.4	80.0	120	
Total Metals (QCLot: 764628)									I
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	102	80.0	120	
Total Metals (QCLot: 765478)									
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	102	80.0	120	
Total Metals (QCLot: 765479)									1
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	103	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	98.6	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	96.1	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	100	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	102	80.0	120	

 Page
 :
 17 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

ALS

Amalyto		Report	ontrol Sample (LCS)	Laboratory Co						Sub-Matrix: Water
Total Motals (QCLot: 765479) - continued Diamoth, total 7440-696 E420		/ Limits (%)	Recovery	Recovery (%)	Spike					
Samuth, total 740-898 E420 0.00005 mgl. 1 mgl. 1 mgl. 80.0 120	Qualifier	High	Low	LCS	Concentration	Unit	LOR	Method	CAS Number	Analyte
Samuth, total 740-898 E420 0.00005 mgl. 1 mgl. 1 mgl. 80.0 120									ntinued	Total Metals (QCLot: 765479) - continued
Searchium, total Company Compa		120	80.0	101	1 mg/L	mg/L	0.00005	E420	7440-69-9	bismuth, total
calcium, total 7440-702 6420 0.05 mg/L 50 mg/L 102 80.0 120 cobalt, total 7440-844 6420 0.0001 mg/L 0.25 mg/L 98.9 80.0 120 cobalt, total 7440-808 6420 0.0005 mg/L 0.25 mg/L 98.9 80.0 120 coton, total 7489-808 6420 0.0005 mg/L 0.5 mg/L 101 80.0 120 lead, total 7489-804 6420 0.0005 mg/L 0.5 mg/L 103 80.0 120 lead, total 7489-804 6420 0.0001 mg/L 0.25 mg/L 103 80.0 120 lithium, total 7489-805 6420 0.0005 mg/L 0.25 mg/L 108 80.0 120 lithium, total 7489-805 6420 0.0005 mg/L 0.25 mg/L 108 80.0 120 lithium, total 7489-805 6420 0.0005 mg/L 0.25 mg/L 108 80.0 120 lithium, total 7480-807 6420 0.0005 mg/L 0.25 mg/L 98.7 80.0 120 lithium, total 7440-020 6420 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 lithium, total 7440-020 6420 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 lithium, total 7440-020 6420 0.0005 mg/L 0.5 mg/L 105 80.0 120 lithium, total 7440-020 6420 0.0005 mg/L 0.5 mg/L 105 80.0 120 lithium, total 7440-240 6420 0.0005 mg/L 1 mg/L 10 mg/L 10 mg/L lithium, total 7440-240 6420 0.00001 mg/L 0.1 mg/L 10 mg/L 100 mg/L lithium, total 7440-240 6420 0.00001 mg/L 0.1 mg/L 10 mg/L 100 mg/L lithium, total 7440-340 6420 0.00001 mg/L 0.5 mg/L 101 80.0 120 lithium, total 7440-340 6420 0.0001 mg/L 0.5 mg/L 101 80.0 120 lithium, total 7440-340 6420 0.0001 mg/L 0.5 mg/L 101 80.0 120 lithium, total 7440-340 6420 0.0001 mg/L 0.5 mg/L 101 80.0 120 lithium, total 7440-840 6420 0.0001 mg/L 0.5 mg/L 101 80.0 120 lithium, total 7440-840 6420 0.0001 mg/L 0.5 mg/L 103 80.0 120 lithium, total 7440-840 6420 0.0001 mg/L 0.5 mg/L 0.5 mg/L 103 80.0 120 lithium, total 7440-840 6420 0.0001 mg/L 0.5 mg/L 0.5 mg/L 103 80.0 120 lithium, total 7440-840 6420 0.0001 mg		120	80.0	88.8	1 mg/L	mg/L	0.01	E420	7440-42-8	boron, total
cobalt total 7440-484 E420 0.0001 mg/L 0.25 mg/L 88.9 80.0 120 copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 98.9 80.0 120 copper, total 743-98-86 E420 0.01 mg/L 0.5 mg/L 103 80.0 120 lead, total 743-98-8 E420 0.001 mg/L 0.5 mg/L 103 80.0 120 without, total 743-98-8 E420 0.001 mg/L 0.5 mg/L 103 80.0 120 mangeneium, total 7439-98-8 E420 0.001 mg/L 0.25 mg/L 108 80.0 120 mangeneium, total 7439-98-8 E420 0.0001 mg/L 0.25 mg/L 108 80.0 120 macket, total 7440-02-7 E420 0.0005 mg/L 0.25 mg/L 98.7 80.0 120 selenium, total 7440-02-7 E420 0.05 mg/L 0.5 mg/L <td></td> <td>120</td> <td>80.0</td> <td>94.2</td> <td>0.1 mg/L</td> <td>mg/L</td> <td>0.000005</td> <td>E420</td> <td>7440-43-9</td> <td>cadmium, total</td>		120	80.0	94.2	0.1 mg/L	mg/L	0.000005	E420	7440-43-9	cadmium, total
copper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 95.2 80.0 120 tron, total 7439-89-6 E420 0.01 mg/L 1 mg/L 101 80.0 120 lead, total 7439-89-1 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 lithium, total 7439-95-2 E420 0.001 mg/L 50 mg/L 103 80.0 120 magnesium, total 7439-95-5 E420 0.005 mg/L 50 mg/L 108 80.0 120 magnesium, total 7439-96-5 E420 0.0005 mg/L 0.25 mg/L 108 80.0 120 make, total 7439-96-5 E420 0.0005 mg/L 0.5 mg/L 108 80.0 120 polassium, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 polassium, total 7440-22-3 E420 0.0005 mg/L 50 mg/L		120	80.0	102	50 mg/L	mg/L	0.05	E420	7440-70-2	calcium, total
rion, total 7439-89-6 [2420 0.01 mg/L 1 mg/L 101 80.0 120 lead, total 7439-92-1 [2420 0.00005 mg/L 0.5 mg/L 103 80.0 120 lithium, total 7439-93-2 [2420 0.001 mg/L 0.5 mg/L 103 80.0 120 manganesium, total 7439-95-5 [2420 0.005 mg/L 0.5 mg/L 105 80.0 120 manganese, total 7439-96-5 [2420 0.0001 mg/L 0.5 mg/L 105 80.0 120 manganese, total 7439-96-5 [2420 0.0001 mg/L 0.5 mg/L 105 80.0 120 manybdenum, total 7439-96-5 [2420 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 molybdenum, total 7440-02-0 [2420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 potassium, total 7440-04-7 [2420 0.0005 mg/L 0.5 mg/L 105 80.0 120 molybdenum, total 7782-49-2 [2420 0.0005 mg/L 0.5 mg/L 105 80.0 120 molybdenum, total 7782-49-2 [2420 0.005 mg/L 10 mg		120	80.0	98.9	0.25 mg/L	mg/L	0.0001	E420	7440-48-4	cobalt, total
lead, total 7439-92-1		120	80.0	95.2	0.25 mg/L	mg/L	0.0005	E420	7440-50-8	copper, total
lithium, total 7439-93-2 E420 0.001 mg/L 0.25 mg/L 103 80.0 120 magnesium, total 7439-93-5 E420 0.005 mg/L 50 mg/L 108 80.0 120 manganese, total 7439-96-5 E420 0.0005 mg/L 0.25 mg/L 105 80.0 120 molybdenum, total 7439-98-7 E420 0.0005 mg/L 0.25 mg/L 98.7 80.0 120 nickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 potassium, total 7440-02-0 E420 0.05 mg/L 50 mg/L 105 80.0 120 selenium, total 7740-02-1 E420 0.0005 mg/L 1 mg/L 85.0 80.0 120 selenium, total 7440-22-2 E420 0.0005 mg/L 1 mg/L 85.0 80.0 120 silver, total 7440-22-4 E420 0.000 mg/L 10 mg/L 107 60.0 140 silver, total 7440-22-5 E420 0.0001 mg/L 0.1 mg/L 97.4 80.0 120 sodium, total 7440-23-5 E420 <		120	80.0	101	1 mg/L	mg/L	0.01	E420	7439-89-6	iron, total
magnesium, total 7439-95-4 E420 0.005 mg/L 0.25 mg/L 105 80.0 120 manganese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 105 80.0 120 molybdenum, total 7439-96-5 E420 0.0005 mg/L 0.25 mg/L 99.7 80.0 120 molybdenum, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 potassium, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 potassium, total 7440-02-1 E420 0.0005 mg/L 105 80.0 120 selenium, total 7440-02-1 E420 0.0005 mg/L 105 80.0 120 selenium, total 7440-02-1 E420 0.0005 mg/L 10 mg/L 1		120	80.0	103	0.5 mg/L	mg/L	0.00005	E420	7439-92-1	lead, total
magnesium, total 7439-95-4 E420 0.005 mg/L 50 mg/L 108 80.0 120 manganese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 105 80.0 120 molybdenum, total 7439-98-7 E420 0.00005 mg/L 0.55 mg/L 99.9 80.0 120 molybdenum, total 7440-020 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 molybdenum, total 7440-020 E420 0.0005 mg/L 105 80.0 120 molybdenum, total 7440-020 E420 0.005 mg/L 105 80.0 120 molybdenum, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 85.0 80.0 120 molybdenum, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 107 60.0 140 mg/L 10 mg/L 107 60.0 140 mg/L 101 mg/L 107 60.0 140 mg/L 101 mg/L		120	80.0	103	0.25 mg/L	mg/L	0.001	E420	7439-93-2	lithium, total
molybdenum, total 7439-98-7 [8420		120	80.0	108		mg/L	0.005	E420	7439-95-4	magnesium, total
molybdenum, total 7439-98-7 [420		120	80.0	105	, and the second	mg/L	0.0001	E420	7439-96-5	manganese, total
nickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 99.9 80.0 120 potassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 105 80.0 120 selenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 85.0 80.0 120 selenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 85.0 80.0 120 silicon, total 7440-21-3 E420 0.0001 mg/L 10 mg/L 107 60.0 140 siliver, total 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 97.4 80.0 120 sodium, total 7440-23-5 E420 0.0001 mg/L 50 mg/L 105 80.0 120 strontium, total 7440-24-6 E420 0.05 mg/L 50 mg/L 105 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 101 80.0 120 strontium, total 7440-24-6 E420 0.0001 mg/L 50 mg/L 92.4 80.0 120 thallium, total 7440-24-6 E420 0.0001 mg/L 1 mg/L 101 80.0 120 thallium, total 7440-24-6 E420 0.0001 mg/L 1 mg/L 101 80.0 120 thallium, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 transium, total 7440-32-6 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 transium, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 transium, total 7440-81-6 E420 0.0003 mg/L 0.25 mg/L 100 80.0 120 transium, total 7440-81-6 E420 0.0003 mg/L 0.5 mg/L 100 80.0 120 transium, total 7440-81-6 E420 0.0003 mg/L 0.5 mg/L 103 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 transium, total 7440-86-6 E420 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 transium, total 7440-86-6 E		120	80.0	98.7		mg/L	0.00005	E420	7439-98-7	molybdenum, total
potassium, total 7440-09-7		120	80.0	99.9		mg/L	0.0005	E420	7440-02-0	nickel, total
selenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 85.0 80.0 120 silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 10 mg/L 107 60.0 140 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 97.4 80.0 120 sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 105 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 101 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 92.4 80.0 120 thallium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 101 80.0 120 thallium, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 thallium, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 thanlium, total 7440-61-1 E420 0.0001 mg/L 0.5 mg/L 100 80.0 120 transium, total 7440-61-1 E420 0.00001 mg/L 0.05 mg/L 107 80.0 120 transium, total 7440-66-6 E420 0.0001 mg/L 0.5 mg/L 103 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 94.1 80.0 120 transium, total 94.1 80.0 120 transium, total 94.1 80.0 120 transium, total 94.1 80.0 120 transium, total 94.1 80.0 120 transium, total 94.1 80.0 120 transium, total 94.1 80.0 120 transium, total 94.1 80.0 120 transium, total 94.1 80.0 120 tr		120	80.0				0.05	E420	7440-09-7	potassium, total
silicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 107 60.0 140 silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 97.4 80.0 120 sodium, total 7440-23-5 E420 0.000 mg/L 0.25 mg/L 105 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 101 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 92.4 80.0 120 thallium, total 7440-32-6 E420 0.0001 mg/L 1 mg/L 101 80.0 120 thallium, total 7440-32-6 E420 0.0001 mg/L 1 mg/L 101 80.0 120 thallium, total 7440-32-6 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 thallium, total 7440-32-6 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 thallium, total 7440-32-6 E420 0.0003 mg/L 0.25 mg/L 100 80.0 120 thanlium, total 7440-61-1 E420 0.0003 mg/L 0.0005 mg/L 107 80.0 120 thanlium, total 7440-62-2 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 thanlium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanlium, total 98.7 80.0 120 thanliu		120	80.0	85.0	, and the second	mg/L	0.00005	E420	7782-49-2	selenium, total
silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 97.4 80.0 120 sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 105 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 101 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 92.4 80.0 120 sulfur, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 101 80.0 120 sulfur, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 sitantium, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 sitantium, total 7440-32-6 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 sitantium, total 7440-61-1 E420 0.0003 mg/L 0.25 mg/L 100 80.0 120 surantium, total 7440-66-6 E420 0.0001 mg/L 0.5 mg/L 107 80.0 120 surantium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 surantium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 surantium, dissolved 8440-86-6 E421 0.001 mg/L 2 mg/L 103 80.0 120 surantium, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 1 mg/L 98.7 80.0 120 surantium, dissolved 7440-86-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 surantium, dissolved 7440-86-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 surantium, dissolved 7440-86-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 surantium, dissolved 7440-86-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 surantium, dissolved 7440-86-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 surantium, dissolved 7440-86-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 surantium, dissolved 7440-86-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 surantium, dissolved 7440-86-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 surantium, dissolved 7440-86-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 surantium mg/L 1 mg/L 98.7 80.0 120 su		140	60.0		_	_	0.1	E420	7440-21-3	
sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 105 80.0 120 strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 101 80.0 120 sulfur, total 7740-34-9 E420 0.0001 mg/L 1 mg/L 101 80.0 120 thallium, total 7440-34-5 E420 0.0001 mg/L 1 mg/L 101 80.0 120 thallium, total 7440-34-5 E420 0.0001 mg/L 0.5 mg/L 92.4 80.0 120 thallium, total 7440-34-6 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 thallium, total 7440-34-6 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 thallium, total 7440-34-6 E420 0.0003 mg/L 0.25 mg/L 100 80.0 120 transium, total 7440-64-1 E420 0.0001 mg/L 0.005 mg/L 107 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 0.5 mg/L 103 80.0 120 transium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 0.5 mg/L 94.1 80.0 120 transium, total 7440-66-6 E420 0.000 mg/L 0.5 mg/L 0.5 mg/L 94.1 80.0 120 transium, dissolved Metals (QCLot: 764257) aluminum, dissolved 7429-90-5 E421 0.001 mg/L 0.001 mg/L 1 mg/L 98.7 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 antimony, dissolved		120	80.0		, and the second	_	0.00001	E420	7440-22-4	
strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 101 80.0 120 sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 92.4 80.0 120 thallium, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 101 80.0 120 tin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 titanium, total 7440-32-6 E420 0.0001 mg/L 0.5 mg/L 100 80.0 120 tranium, total 7440-61-1 E420 0.0003 mg/L 0.25 mg/L 100 80.0 120 tranium, total 7440-62-2 E420 0.0001 mg/L 0.005 mg/L 107 80.0 120 tranium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 tranium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 tranium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 tranium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 tranium, total 7440-66-6 E420 0.0001 mg/L 0.5 mg/L 94.1 80.0 120 tranium, dissolved 87429-90-5 E421 0.001 mg/L 2 mg/L 103 80.0 120 tranium, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 tranium, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 tranium, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 tranium, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 tranium tran		120	80.0			-	0.05	E420	7440-23-5	
sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 92.4 80.0 120 thallium, total 7440-28-0 E420 0.00001 mg/L 1 mg/L 101 80.0 120 tin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 titanium, total 7440-32-6 E420 0.0003 mg/L 0.25 mg/L 100 80.0 120 tranium, total 7440-61-1 E420 0.0001 mg/L 0.005 mg/L 107 80.0 120 tranium, total 7440-62-2 E420 0.0005 mg/L 0.5 mg/L 107 80.0 120 tranium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 tranium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 tranium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 94.1 80.0 120 tranium, dissolved Metals (QCLot: 764257) tranium, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 1 mg/L 98.7 80.0 120 tranium, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 tranium, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120 tranium, dissolved					-					
thallium, total thin, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 101 80.0 120 titn, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 titanium, total 7440-32-6 E420 0.0003 mg/L 0.25 mg/L 100 80.0 120 tranium, total 7440-61-1 E420 0.0001 mg/L 0.005 mg/L 107 80.0 120 tranium, total 7440-62-2 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 tranium, total 7440-66-6 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 tranium, total 7440-66-6 E420 0.003 mg/L 0.5 mg/L 94.1 80.0 120 tranium, total 7440-66-6 E420 0.003 mg/L 0.5 mg/L 94.1 80.0 120 tranium, dissolved Metals (QCLot: 764257) aluminum, dissolved 7440-36-0 E421 0.001 mg/L 2 mg/L 103 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120					Ĭ ,	_				,
tin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 97.8 80.0 120 titanium, total 7440-32-6 E420 0.0003 mg/L 0.25 mg/L 100 80.0 120 uranium, total 7440-61-1 E420 0.0001 mg/L 0.005 mg/L 107 80.0 120 vanadium, total 7440-62-2 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 zinc, total 7440-66-6 E420 0.003 mg/L 0.5 mg/L 94.1 80.0 120 Dissolved Metals (QCLot: 764257) aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 1 mg/L 98.7 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 1 mg/L 98.7 80.0 120					, and the second	_				
titanium, total 7440-32-6 E420 0.0003 mg/L 0.25 mg/L 100 80.0 120 uranium, total vanadium, total 7440-61-1 E420 0.00001 mg/L 0.005 mg/L 107 80.0 120 vanadium, total 7440-62-2 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 zinc, total 7440-66-6 E420 0.003 mg/L 0.5 mg/L 94.1 80.0 120 vanadium, dissolved Metals (QCLot: 764257) Dissolved Metals (QCLot: 764257) aluminum, dissolved 7440-36-0 E421 0.001 mg/L 2 mg/L 103 80.0 120 vanadium, dissolved					_					·
uranium, total 7440-61-1 E420 0.00001 mg/L 0.0005 mg/L 107 80.0 120 vanadium, total 7440-62-2 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 zinc, total 7440-66-6 E420 0.003 mg/L 0.5 mg/L 94.1 80.0 120 Dissolved Metals (QCLot: 764257) aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 103 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120										
vanadium, total 7440-62-2 E420 0.0005 mg/L 0.5 mg/L 103 80.0 120 zinc, total 7440-66-6 E420 0.003 mg/L 0.5 mg/L 94.1 80.0 120 Dissolved Metals (QCLot: 764257) aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 103 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120						_				,
zinc, total 7440-66-6 E420 0.003 mg/L 0.5 mg/L 94.1 80.0 120 Dissolved Metals (QCLot: 764257) aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 103 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120					ı -	-				
Dissolved Metals (QCLot: 764257) aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 103 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120					ı -	-				
aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 103 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120		120	00.0	94.1	0.5 mg/L	mg/L	0.000	L420	7440-00-0	zino, totai
aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 103 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.7 80.0 120										Dissolved Metals (QCLot: 764257)
		120	80.0	103	2 mg/L	mg/L	0.001	E421		
arsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 97.3 80.0 120		120	80.0	98.7	1 mg/L	mg/L	0.0001	E421	7440-36-0	antimony, dissolved
		120	80.0	97.3	1 mg/L	mg/L	0.0001	E421	7440-38-2	arsenic, dissolved
barium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120		120	80.0	96.5	-	mg/L	0.0001	E421	7440-39-3	barium, dissolved
beryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 99.0 80.0 120		120	80.0			_	0.00002	E421	7440-41-7	beryllium, dissolved
bismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 100 80.0 120		120	80.0		, and the second	_	0.00005	E421	7440-69-9	
boron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 85.4 80.0 120					_	-				
cadmium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 96.8 80.0 120					_	_				

 Page
 :
 18 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

ALS

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 764257)	- continued								
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	99.7	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	100	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	97.6	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	97.3	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	99.2	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	109	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	105	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	102	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	103	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	98.6	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	104	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	86.6	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	93.1	60.0	140	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	100	80.0	120	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	103	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	104	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	107	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	97.5	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	98.5	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	87.9	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	102	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	101	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	99.7	80.0	120	
Dissolved Metals (QCLot: 764258)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	99.1	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	98.9	0.08	120	
I									

 Page
 :
 19 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							-	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ients (QCLot: 764277)									
CG2216667-001	RG_FRUL_WS_LCO_LAEM P_2022-12_N	Kjeldahl nitrogen, total [TKN]		E318	2.33 mg/L	2.5 mg/L	93.1	70.0	130	
Anions and Nutr	ients (QCLot: 764349)									
CG2216667-003	RG_FBLANK_WS_LCO_LA EMP_2022-12_NP	fluoride	16984-48-8	E235.F	1.01 mg/L	1 mg/L	101	75.0	125	
Anions and Nutr	ients (QCLot: 764350)									
CG2216667-003	RG_FBLANK_WS_LCO_LA EMP_2022-12_NP	bromide	24959-67-9	E235.Br-L	0.518 mg/L	0.5 mg/L	104	75.0	125	
Anions and Nutr	ients (QCLot: 764351)									
CG2216667-003	RG_FBLANK_WS_LCO_LA EMP_2022-12_NP	chloride	16887-00-6	E235.CI-L	103 mg/L	100 mg/L	103	75.0	125	
Anions and Nutr	ients (QCLot: 764352)									
CG2216667-003	RG_FBLANK_WS_LCO_LA EMP_2022-12_NP	nitrate (as N)	14797-55-8	E235.NO3-L	2.57 mg/L	2.5 mg/L	103	75.0	125	
Anions and Nutr	ients (QCLot: 764353)									
CG2216667-003	RG_FBLANK_WS_LCO_LA EMP_2022-12_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.520 mg/L	0.5 mg/L	104	75.0	125	
Anions and Nutr	ients (QCLot: 764354)									
CG2216667-003	RG_FBLANK_WS_LCO_LA EMP_2022-12_NP	sulfate (as SO4)	14808-79-8	E235.SO4	103 mg/L	100 mg/L	103	75.0	125	
Anions and Nutr	ients (QCLot: 764370)									
CG2216664-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125	
Anions and Nutr	ients (QCLot: 764520)									
CG2216616-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0501 mg/L	0.05 mg/L	100	70.0	130	
Anions and Nutr	ients (QCLot: 764527)									
CG2216628-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0514 mg/L	0.05 mg/L	103	70.0	130	
Anions and Nutr	ients (QCLot: 764563)									
CG2216666-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125	
Anions and Nutr	ients (QCLot: 765461)									
CG2216667-003	RG_FBLANK_WS_LCO_LA EMP_2022-12_NP	phosphorus, total	7723-14-0	E372-U	0.0476 mg/L	0.05 mg/L	95.2	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 7643	391)								

 Page
 :
 20 of 22

 Work Order
 :
 CG2216667

 Client
 :
 Teck Coal Limited

ALS

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Organic / Inorga	nic Carbon (QCLot: 764	391) - continued	111111111111111111111111111111111111111							
CG2216665-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.08 mg/L	5 mg/L	102	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 764	392)								
CG2216665-001	Anonymous	carbon, total organic [TOC]		E355-L	5.26 mg/L	5 mg/L	105	70.0	130	
Total Metals (QC	Lot: 764628)		17 (1)							
CG2216640-010	Anonymous	mercury, total	7439-97-6	E508	0.0000979 mg/L	0.0001 mg/L	97.9	70.0	130	
Total Metals (QC	Lot: 765478)		11111111							
CG2216667-003	RG_FBLANK_WS_LCO_LA EMP_2022-12_NP	chromium, total	7440-47-3	E420.Cr-L	0.438 mg/L	0.4 mg/L	109	70.0	130	
Total Metals (QC	CLot: 765479)									
CG2216667-003	RG_FBLANK_WS_LCO_LA	aluminum, total	7429-90-5	E420	2.14 mg/L	2 mg/L	107	70.0	130	
	EMP_2022-12_NP	antimony, total	7440-36-0	E420	0.221 mg/L	0.2 mg/L	111	70.0	130	
		arsenic, total	7440-38-2	E420	0.209 mg/L	0.2 mg/L	105	70.0	130	
		barium, total	7440-39-3	E420	0.223 mg/L	0.2 mg/L	111	70.0	130	
		beryllium, total	7440-41-7	E420	0.437 mg/L	0.4 mg/L	109	70.0	130	
		bismuth, total	7440-69-9	E420	0.115 mg/L	0.1 mg/L	115	70.0	130	
		boron, total	7440-42-8	E420	0.958 mg/L	1 mg/L	95.8	70.0	130	
		cadmium, total	7440-43-9	E420	0.0435 mg/L	0.04 mg/L	109	70.0	130	
		calcium, total	7440-70-2	E420	44.5 mg/L	40 mg/L	111	70.0	130	
		cobalt, total	7440-48-4	E420	0.218 mg/L	0.2 mg/L	109	70.0	130	
		copper, total	7440-50-8	E420	0.209 mg/L	0.2 mg/L	104	70.0	130	
		iron, total	7439-89-6	E420	21.0 mg/L	20 mg/L	105	70.0	130	
		lead, total	7439-92-1	E420	0.231 mg/L	0.2 mg/L	116	70.0	130	
		lithium, total	7439-93-2	E420	1.06 mg/L	1 mg/L	106	70.0	130	
		magnesium, total	7439-95-4	E420	11.8 mg/L	10 mg/L	118	70.0	130	
		manganese, total	7439-96-5	E420	0.220 mg/L	0.2 mg/L	110	70.0	130	
		molybdenum, total	7439-98-7	E420	0.209 mg/L	0.2 mg/L	104	70.0	130	
		nickel, total	7440-02-0	E420	0.442 mg/L	0.4 mg/L	110	70.0	130	
		potassium, total	7440-09-7	E420	43.6 mg/L	40 mg/L	109	70.0	130	
		selenium, total	7782-49-2	E420	0.401 mg/L	0.4 mg/L	100	70.0	130	
		silicon, total	7440-21-3	E420	106 mg/L	100 mg/L	106	70.0	130	
		silver, total	7440-22-4	E420	0.0484 mg/L	0.04 mg/L	121	70.0	130	
		sodium, total	7440-23-5	E420	21.7 mg/L	20 mg/L	109	70.0	130	
		strontium, total	7440-24-6	E420	0.214 mg/L	0.2 mg/L	107	70.0	130	
		sulfur, total	7704-34-9	E420	195 mg/L	200 mg/L	97.5	70.0	130	
•	T.	thallium, total	7440-28-0	E420	0.0453 mg/L	0.04 mg/L	113	70.0	130	

Page 21 of 22 CG2216667 Work Order: Client

Teck Coal Limited

Sub-Matrix: Water	Matrix: Water					Matrix Spil	ke (MS) Report			
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	Lot: 765479) - continue	d								
CG2216667-003	RG_FBLANK_WS_LCO_LA	tin, total	7440-31-5	E420	0.216 mg/L	0.2 mg/L	108	70.0	130	
	EMP_2022-12_NP	titanium, total	7440-32-6	E420	0.433 mg/L	0.4 mg/L	108	70.0	130	
		uranium, total	7440-61-1	E420	0.0470 mg/L	0.04 mg/L	118	70.0	130	
		vanadium, total	7440-62-2	E420	1.10 mg/L	1 mg/L	110	70.0	130	
		zinc, total	7440-66-6	E420	4.25 mg/L	4 mg/L	106	70.0	130	
Dissolved Metals	(QCLot: 764257)		100							
CG2216665-002	Anonymous	aluminum, dissolved	7429-90-5	E421	1.98 mg/L	2 mg/L	98.9	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.194 mg/L	0.2 mg/L	96.8	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.190 mg/L	0.2 mg/L	94.9	70.0	130	
		barium, dissolved	7440-39-3	E421	0.160 mg/L	0.2 mg/L	80.0	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.369 mg/L	0.4 mg/L	92.2	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0959 mg/L	0.1 mg/L	95.9	70.0	130	
		boron, dissolved	7440-42-8	E421	0.862 mg/L	1 mg/L	86.2	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0368 mg/L	0.04 mg/L	91.9	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.193 mg/L	0.2 mg/L	96.4	70.0	130	
		copper, dissolved	7440-50-8	E421	0.185 mg/L	0.2 mg/L	92.4	70.0	130	
		iron, dissolved	7439-89-6	E421	17.7 mg/L	20 mg/L	88.4	70.0	130	
		lead, dissolved	7439-92-1	E421	0.186 mg/L	0.2 mg/L	92.9	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.897 mg/L	1 mg/L	89.7	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.192 mg/L	0.2 mg/L	96.1	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.377 mg/L	0.4 mg/L	94.3	70.0	130	
		potassium, dissolved	7440-09-7	E421	38.4 mg/L	40 mg/L	95.9	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.363 mg/L	0.4 mg/L	90.8	70.0	130	
		silicon, dissolved	7440-21-3	E421	83.2 mg/L	100 mg/L	83.2	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0418 mg/L	0.04 mg/L	104	70.0	130	
		sodium, dissolved	7440-23-5	E421	18.8 mg/L	20 mg/L	93.9	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	191 mg/L	200 mg/L	95.5	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0380 mg/L	0.04 mg/L	95.1	70.0	130	
		tin, dissolved	7440-31-5	E421	0.179 mg/L	0.2 mg/L	89.7	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.354 mg/L	0.4 mg/L	88.5	70.0	130	
	T	uranium, dissolved	7440-61-1	E421	0.0378 mg/L	0.04 mg/L	94.5	70.0	130	I

Page : 22 of 22 Work Order : CG2216667

Client : Teck Coal Limited

Sub-Matrix: Water	Sub-Matrix: Water						Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery Limits (%)						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
Dissolved Metals	Dissolved Metals (QCLot: 764257) - continued													
CG2216665-002	Anonymous	vanadium, dissolved	7440-62-2	E421	0.947 mg/L	1 mg/L	94.7	70.0	130					
		zinc, dissolved	7440-66-6	E421	3.84 mg/L	4 mg/L	96.1	70.0	130					
Dissolved Metals	(QCLot: 764258)													
CG2216665-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.370 mg/L	0.4 mg/L	92.6	70.0	130					
Dissolved Metals	(QCLot: 764688)													
CG2216640-010	Anonymous	mercury, dissolved	7439-97-6	E509	0.000104 mg/L	0.0001 mg/L	104	70.0	130					

Teck	Teck COCH KEP_UAENIP_DCU_2022																	L	
•	COC ID:			1.0	December_A	1016		Ó TIMÉ:			Regula						ल के . व्यक्त		
	PROJECT/CLIENT, IN	<u> </u>		**************************************	na a main mana se Sa i a a			LABO ALS Calgar		and Millian							Excel	DDC	EDI
	Regional Effects Program	FICOLA	EMP.		``			Lyudmyla 5						ormat /]			EXCEL	PDI	بالزايا
Project Manager	Cybele Heddle@Teck.com					Lau				SCiobal co	-m		Email 1: aquascilab@teck.com Email 2: reckcoal@equisonline.com				X	X	
	421 Pine Ave					Email Lyudmyla.Shvets@ALSGlobal.com Address 2559 29 Street NE					 	ail 3:				1		12	
Address	421 Pine Ave						Addiess	2007 47 011				 	ail 4:	hannah.	Results à		1	X	- A
City	Sparwoo			Province BC	····	·	City	Calgary		Province	AB		ail 5:			n@minnow.ca	2	X	- A
Postal Code				Country Can		Pos		TIY 7B5		Country	Canada	1	ail 6:		@minnow		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	10
Phone Number	·			Jeourne, Jean				403 407 17)4	Touring	Joanna		швьег	TOOWIGH	agnumbw	VP0008	16101	1/3	- 124
	SAMPLE D	ETAILS					4 6			YSIS REO	UESTED				386.7	Filtered - F. Fie		. Field &	Lab. N
											1		1						
		1		ĺ				Ž F	N	F	N	Г	N	N			1	j. je	
					1			اد		1			1	1					
•			_		1			H2SO4	H2SO4	HCL	NONE	HNO3	HNO3	NONE	٠		9.7 29	S	
			l ĝ					2	\$3.00							4 4 6			1
			Hazardous Material (Yes/No)		1				-	A 17		-	d						
		1	ے ا		-						1	Ġ	1						
		Ì	<u>"</u>									13				1			
•			ate		•		1	S C	<u> </u>	}	~	Σ	, 烎	. 4					
		1	Σ	1				AT SE	55	A F	1 4	1	7 :	173					
			i			0.01	,	₹ ¥	350	6	>	9	8≌.	92				}	1
		Pi-13	ard			G=Grab) F,	45	4	1 7	🕺	XZ	X E					
Č. LID	Sample Location	Field	laz		25. (24)	C=Com		ALS_Package-DOC	ALS Package- TKN/TOC	HG-D-CVAF-VA	HG-T-CVAF-VA	TECKCOAL-MET-D. VA	TECKCOAL- METNIIG-T-CL	TECKCOAL. ROUTINE-VA					
Sample ID	(sys loc code)	Matrix_	+	Date	Time (24hr)	, p	Cont.	34				= >	- 2	1			 	<u> </u>	
G_FRUL_WS_LCO_LAEMP_2022-12_N	RG_FRUL	WS	NO	29-Nov-22	9:30	G	7			<u> </u>	1	1 1	1	1		Enviror	mont	al Div	vieir
G_LIDSL_WS_ECO_LAEMP_2022-12_N	RG_LIÐSL	ws	NO	29-Nov-22	13;30	G	7		1	1	1	1	1	1					
G_FBLANK_WS_LCO_LAEMP_2022-12_NP	RG_FBLANK	WS	NO	29-Nov-22	12:30:00	G	7	1	1	11	i]	1	1	-	Calgary Work	Order l	Refere	ence
G_TRIP_WS_LCO_LAEMP_2022-12_NP	RG_TRIP	WS	NO	29-Nov-22	12:00:00	G	4	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	- 1	ļ	I		1	1	_	CG	322	16	66
		ws	NO			G			-						-				
		ws	NO			G		"	1.			ļ	<u> </u>	ļ	-			ΛW	
		ws	NO.			G				<u> </u>	1				_			扎肌	
		ws	NO			G		72		<u> </u>					_			X = X	
		ws	NO			G									_			ריוווי	
		ws	NO			G									_	Telephone	: +1 403	407 180	00
·		ws	NO			G										7:	,	ı	
	-	ws	NO			G			İ										
		ws	NO	_		G													
ADDITIONAL COMMENTS/SPE				RELINQUIS	SHED BY/AFFILI	ATION		DATE	TIME 1	1 ACC	EPTED I	BY/AFF	HJATI	ON-32	Acres in the	DA DA	FE/TIME	البردالا	
lease preserve all metals samples when they	arrive to the lab. Rush a	nalysis of)	Rick Smit	t/Lotic Environm	ental	:	Novembe	r 29, 2022		·			ND	NO	V/30/2	2	09	1:5
RG-LIDSL			<u> </u>																
•										ļ.							O'C	,	
								-	,										
SERVICE REQUEST (rush - su	bject to availability) 🐫 🗻	-1-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1396024			77						* 6 7 1	Gago a Mi	Translation .	- 15 m	- 3 -27			30 5
	Regular (d	lefault) X	300.000			The second representation of the second	TERRET COMPANY	Rick Sn		<u> 1,766</u>	1		7,87 - 1 2	ىتىلىشىلاقى <u>مىرىن</u>		103-586-324			4 0 600
Paris (2	1 hesiress days) - 500/ se	charge.		Sampler's	name			AICK SII			Mob	ше#	<u> </u>		4	•03-300-324	ti Vuudedele		
	Business Dav) - 100% sur																		

Page Lof

WATER CHEMISTRY

ALS Laboratory Report CG2216689 (Finalized December 7, 2022)

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : CG2216689 Page : 1 of 6

Client : Teck Coal Limited Laboratory : Calgary - Environmental **Account Manager** Contact : Cvbele Heddle : Lyudmyla Shvets Address : 421 Pine Ave Address : 2559 29th Street NE

Sparwood BC Canada

Calgary AB Canada T1Y 7B5 Telephone Telephone : +1 403 407 1800

Project : Regional Effects Program Date Samples Received : 01-Dec-2022 09:00

PO : VPO00816101 **Date Analysis Commenced** : 01-Dec-2022 C-O-C number : 07-Dec-2022 17:58

: REP_LAEMP_LCO_2022_DECEMBER_AL Issue Date Sampler : Rick Smit

Site

Quote number : Teck Coal Master Quote

No. of samples received : 2 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Metals, Calgary, Alberta	
Sonthuong Bui	Laboratory Analyst	Metals, Calgary, Alberta	
Zakieh Lalonde		Metals, Calgary, Alberta	

 Page
 :
 2 of 6

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Page : 3 of 6
Work Order : CG2216689
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Analytical Results								
Sub-Matrix: Water			CI	lient sample ID	RG_LI24_WS_L	RG_SLINE_WS_	 	
(Matrix: Water)					CO_LAEMP_20	LCO_LAEMP_2		
					22-12_N	022-12_N		
			Olivert a server	tion of the Address				
			Client samp	oling date / time	30-Nov-2022 09:40	30-Nov-2022 12:30	 	
Analysis	C4 C 4/	Method	LOR	Unit	CG2216689-001	CG2216689-002	 	
Analyte	CAS Number	Wethou	LOK	Offic	Result	Result	 	
Physical Tests					rtesuit	result		
Physical Tests acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	127	147	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	155	179	 	
alkalinity, carbonate (as CaCO3)		E290	1.0		<1.0	5.4	 	
alkalinity, carbonate (as CO3)	2012 22 6	E290	1.0	mg/L	<1.0	3.2	 	
	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as CaCO3)				mg/L				
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	127	152	 	
conductivity		E100	2.0	μS/cm	374	377	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	208	214	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	307	439	 	
pH		E108	0.10	pH units	8.24	8.33	 	
solids, total dissolved [TDS]		E162	10	mg/L	208	209	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	 	
turbidity		E121	0.10	NTU	0.13	0.25	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.35	0.50	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.401	0.368	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.500 DLM	<0.500 DLM	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.251	0.142	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0021	0.0024	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	85.3	71.4	 	
Organic / Inorganic Carbon					1000	1 1 1 1 1 1 1 1 1 1 1 1		
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	 	
I control of the cont	1		•	1 1		1	ı	ı

Page : 4 of 6
Work Order : CG2216689
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_LI24_WS_L CO_LAEMP_20 22-12_N	RG_SLINE_WS_ LCO_LAEMP_2 022-12_N	 	
			Client samp	ling date / time	30-Nov-2022 09:40	30-Nov-2022 12:30	 	
Analyte C.	AS Number	Method	LOR	Unit	CG2216689-001	CG2216689-002	 	
					Result	Result	 	
Organic / Inorganic Carbon								
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	 	
Ion Balance								
anion sum		EC101	0.10	meq/L	4.36	4.57	 	
cation sum		EC101	0.10	meq/L	4.23	4.33	 	
ion balance (cations/anions)		EC101	0.010	%	97.0	94.7	 	
ion balance (APHA)		EC101	0.01	%	-1.51	-2.70	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0033	0.0074	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	<0.00010	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0470	0.0435	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0088	0.0127	 	
calcium, total	7440-70-2	E420	0.050	mg/L	51.0	53.3	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00021	0.00050	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	0.019	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0044	0.0040	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	14.9	17.2	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	0.00023	 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00108	0.00146	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	 	
potassium, total	7440-09-7	E420	0.050	mg/L	0.311	0.408	 	
selenium, total	7782-49-2	E420	0.050	μg/L	3.91	1.81	 	

Page : 5 of 6
Work Order : CG2216689
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LI24_WS_L	RG_SLINE_WS_	 	
(Matrix: Water)				, , , , ,	CO_LAEMP_20 22-12_N	LCO_LAEMP_2 022-12_N		
			Client samp	ling date / time	30-Nov-2022 09:40	30-Nov-2022 12:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2216689-001	CG2216689-002	 	
					Result	Result	 	
Total Metals								
silicon, total	7440-21-3	E420	0.10	mg/L	1.96	2.38	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total	7440-23-5	E420	0.050	mg/L	1.42	0.935	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.199	0.173	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	31.8	24.9	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00184	0.00205	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	 	
Dissolved Metals					11101			
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0011	<0.0010	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00015	0.00011	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0468	0.0407	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0084	0.0146	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	56.5	56.0	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00018	0.00011	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0039	0.0033	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	16.2	18.1	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
	1400-30-0		1	9, –				l l

Page : 6 of 6
Work Order : CG2216689
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_LI24_WS_L	RG_SLINE_WS_	 	
(Matrix: Water)					CO_LAEMP_20	LCO_LAEMP_2		
(22-12_N	022-12_N		
			Client samp	ling date / time	30-Nov-2022 09:40	30-Nov-2022 12:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2216689-001	CG2216689-002	 	
					Result	Result	 	
Dissolved Metals								
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00111	0.00148	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.302	0.389	 	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	4.07	1.92	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.75	2.12	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	1.54	0.962	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.208	0.176	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	29.8	25.0	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00185	0.00202	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0029	0.0027	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

:CG2216689 **Work Order** Page : 1 of 16

Client Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle **Account Manager** : Lyudmyla Shvets

Address Address :421 Pine Ave : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

Telephone Telephone : +1 403 407 1800

Project : Regional Effects Program **Date Samples Received** : 01-Dec-2022 09:00 PO : VPO00816101 Issue Date : 07-Dec-2022 17:58

C-O-C number :REP LAEMP LCO 2022 DECEMBER AL

Sampler : Rick Smit

Site

Quote number : Teck Coal Master Quote

No. of samples received :2 No. of samples analysed :2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit). RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ● Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

 Page
 :
 3 of 16

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E۱	/aiuation: 🗴 =	Holding time exce	edance ; 🔻	= vvitnin	Holding I im
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LI24_WS_LCO_LAEMP_2022-12_N	E298	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_SLINE_WS_LCO_LAEMP_2022-12_N	E298	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_LI24_WS_LCO_LAEMP_2022-12_N	E235.Br-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_SLINE_WS_LCO_LAEMP_2022-12_N	E235.Br-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LI24_WS_LCO_LAEMP_2022-12_N	E235.CI-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)			11000							
HDPE RG_SLINE_WS_LCO_LAEMP_2022-12_N	E235.CI-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓

 Page
 :
 4 of 16

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Wallix: water							nolding time excel			
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation	·	Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Lo	evel 0.001		11980							
HDPE										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E378-U	30-Nov-2022	02-Dec-2022				02-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001		119808							
HDPE										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E378-U	30-Nov-2022	02-Dec-2022				02-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_LI24_WS_LCO_LAEMP_2022-12_N	E235.F	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC HDPE										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E235.F	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)			119898							
HDPE RG_LI24_WS_LCO_LAEMP_2022-12_N	E235.NO3-L	30-Nov-2022	01-Dec-2022	3 days	1 days	√	01-Dec-2022	3 days	0 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E235.NO3-L	30-Nov-2022	01-Dec-2022	3 days	1 days	✓	01-Dec-2022	3 days	0 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E235.NO2-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG SLINE WS LCO LAEMP 2022-12 N	E235.NO2-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	3 days	1 days	✓
								, -	,.	
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_LI24_WS_LCO_LAEMP_2022-12_N	E235.SO4	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
	1	1						1	1 1	

Page 5 of 16 Work Order : CG2216689 Client Teck Coal Limited Regional Effects Program

Project

Matrix: Water Evaluation: x = Holding time exceedance · ✓ = Within Holding Time

Matrix: Water					E۱	/aluation: 🗴 =	Holding time excee	edance ; 🕦	= Within	Holding Tir
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E235.SO4	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Leve	el)									
Amber glass total (sulfuric acid)										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E318	30-Nov-2022	03-Dec-2022				03-Dec-2022	28 days	3 days	✓
Anions and Nutrients: Total Kjeldahl Nitrogen by Fluorescence (Low Leve	el)									
Amber glass total (sulfuric acid)										,
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E318	30-Nov-2022	03-Dec-2022				03-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	F070 II	00 N 0000					07.5	00.1		,
RG_LI24_WS_LCO_LAEMP_2022-12_N	E372-U	30-Nov-2022	02-Dec-2022				07-Dec-2022	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	F272.11	20 Nov. 2022	00 D 0000				07 D 0000	00 4	7 -1	1
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E372-U	30-Nov-2022	02-Dec-2022				07-Dec-2022	28 days	7 days	•
Dissolved Metals: Dissolved Chromium in Water by CRC ICPMS (Low Lev	vel)									
HDPE - dissolved (lab preserved) RG LI24 WS LCO LAEMP 2022-12 N	E421.Cr-L	30-Nov-2022	05-Dec-2022				05-Dec-2022	180	5 days	1
NG_LIZ4_W3_LCO_LALIVIF_2022-12_N	E+21.01-E	00-1404-2022	00-Dec-2022				00-Dec-2022	days	Juays	·
Discoulated Matella Discoulated Characters in Water In CDC IODMS (I am I am	D							days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Lev HDPE - dissolved (lab preserved)	vei)									
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E421.Cr-L	30-Nov-2022	05-Dec-2022				05-Dec-2022	180	5 days	✓
								days	J, -	
Dissolved Metals : Dissolved Mercury in Water by CVAAS								,-		
Glass vial dissolved (hydrochloric acid)										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E509	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	1
								,	,	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E509	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
					1					

 Page
 :
 6 of 16

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water						raiuation. * =	Holding time exce	euance,	= \vitiiii	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E421	30-Nov-2022	05-Dec-2022				05-Dec-2022	180	5 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E421	30-Nov-2022	05-Dec-2022				05-Dec-2022	180	5 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E358-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve		11111111111								
Amber glass dissolved (sulfuric acid)										
RG SLINE WS LCO LAEMP 2022-12 N	E358-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
									1	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Level)									
Amber glass total (sulfuric acid)	l (LOW Level)									
RG_LI24_WS_LCO_LAEMP_2022-12_N	E355-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 davs	✓
· · · · · · · · · · · · · · · · · · ·										
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	on (Low Lovel)									
Amber glass total (sulfuric acid)	l (LOW Level)									
RG SLINE WS LCO LAEMP 2022-12 N	E355-L	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 davs	✓
									, -	
Physical Tests : Acidity by Titration										
HDPE										
RG LI24 WS LCO LAEMP 2022-12 N	E283	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
110_1121_110_100_1111111_1012112_11		00 1101 2022	02 200 2022				02 200 2022		2 44,5	
Physical Tests : Acidity by Titration HDPE							I			
RG SLINE WS LCO LAEMP 2022-12 N	E283	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
1.0_0Lii4L_VV0_L00_LALIVIF_2022-12_IV		JU-14UV-ZUZZ	02-060-2022				02-060-2022	1+ days	2 uays	•
Physical Tests : Alkalinity Species by Titration										
HDPE	E290	30-Nov-2022	02-Dec-2022				02 Dog 2022	14 days	2 days	✓
RG_LI24_WS_LCO_LAEMP_2022-12_N	E290	30-1100-2022	02-Dec-2022				02-Dec-2022	14 days	∠ uays	•

Page : 7 of 16
Work Order : CG2216689
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E290	30-Nov-2022	02-Dec-2022				02-Dec-2022	14 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E100	30-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E100	30-Nov-2022	02-Dec-2022				02-Dec-2022	28 days	2 days	✓
Physical Tests : ORP by Electrode										
HDPE										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E125	30-Nov-2022					03-Dec-2022	0.25	70 hrs	*
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E125	30-Nov-2022					03-Dec-2022	0.25	72 hrs	30
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E108	30-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.26	se
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E108	30-Nov-2022	02-Dec-2022				02-Dec-2022	0.25	0.26	*
								hrs	hrs	EHTR-FM
Physical Tests : TDS by Gravimetry			1 1 1 1 1 1							
HDPE										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E162	30-Nov-2022					03-Dec-2022	7 days	3 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E162	30-Nov-2022					03-Dec-2022	7 days	3 days	✓

Page 8 of 16 CG2216689

Work Order : Client Teck Coal Limited Regional Effects Program Project

Matrix: Water					E	/aluation: <mark>≭</mark> =	Holding time excee	edance ; •	/ = Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LI24_WS_LCO_LAEMP_2022-12_N	E160-L	30-Nov-2022					06-Dec-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)			119898							
HDPE										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E160-L	30-Nov-2022					06-Dec-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										,
RG_LI24_WS_LCO_LAEMP_2022-12_N	E121	30-Nov-2022					02-Dec-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE	E404	00 Nov. 0000					00 5 0000			,
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E121	30-Nov-2022					02-Dec-2022	3 days	2 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)	E400 C- I	20 Nov. 2022	04 D 0000				04 D 0000		4 -1	1
RG_LI24_WS_LCO_LAEMP_2022-12_N	E420.Cr-L	30-Nov-2022	04-Dec-2022				04-Dec-2022	180 days	4 days	•
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E420.Cr-L	30-Nov-2022	04-Dec-2022				04-Dec-2022	180	4 days	✓
								days		
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)	E508	30-Nov-2022	01-Dec-2022				01-Dec-2022	20 days	1 days	✓
RG_LI24_WS_LCO_LAEMP_2022-12_N	E308	3U-INOV-2U22	01-Dec-2022				01-Dec-2022	28 days	1 days	•
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_SLINE_WS_LCO_LAEMP_2022-12_N	E508	30-Nov-2022	01-Dec-2022				01-Dec-2022	28 days	1 days	✓
Total Metals : Total metals in Water by CRC ICPMS			119808							
HDPE - total (lab preserved)	E400	00 Nov. 0000	0.4.15				0.4.5			,
RG_LI24_WS_LCO_LAEMP_2022-12_N	E420	30-Nov-2022	04-Dec-2022				04-Dec-2022	180 days	4 days	✓

 Page
 :
 9 of 16

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Matrix: Water

Evaluation: **x** = Holding time exceedance : ✓ = Within Holding Time

Maurix. Water		_				valuation. •• –	i lolding time excee	Juanice ,	- vviti iii	Holding Hill
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total metals in Water by CRC ICPMS										
HDPE - total (lab preserved) RG_SLINE_WS_LCO_LAEMP_2022-12_N	E420	30-Nov-2022	04-Dec-2022				04-Dec-2022	180 days	4 days	√

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

 Page
 :
 10 of 16

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type		Evaluati	ion: × = QC frequ		= 0.111CatiOff, • = 0		
	Method	QC Lot #	QC	ount Regular	Actual	Frequency (%) Expected) Evaluation
Analytical Methods	Metriod	QC Lot #	40	Regulai	Actual	Expected	Lvaidation
Laboratory Duplicates (DUP)		705400		00		5.0	
Acidity by Titration	E283	765406	1	20	5.0	5.0	√
Alkalinity Species by Titration	E290	765606	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	764773	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	764810	1	9	11.1	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	764811	1	9	11.1	5.0	✓
Conductivity in Water	E100	765605	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767106	1	18	5.5	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	764816	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	767107	1	18	5.5	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764778	1	19	5.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	765529	1	7	14.2	5.0	✓
Fluoride in Water by IC	E235.F	764809	1	9	11.1	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	764812	1	9	11.1	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	764813	1	9	11.1	5.0	✓
ORP by Electrode	E125	764759	1	6	16.6	5.0	✓
pH by Meter	E108	765604	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	764814	1	9	11.1	5.0	✓
TDS by Gravimetry	E162	766414	1	20	5.0	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	766892	1	17	5.8	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	765498	1	20	5.0	5.0	1
Total Mercury in Water by CVAAS	E508	764755	1	19	5.2	5.0	1
Total metals in Water by CRC ICPMS	E420	766893	1	20	5.0	5.0	1
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764779	1	20	5.0	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765467	1	20	5.0	5.0	1
Turbidity by Nephelometry	E121	765700	1	20	5.0	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	765406	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	765606	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	764773	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	764810	1	9	11.1	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	764811	1	9	11.1	5.0	<u> </u>
Conductivity in Water	E100	765605	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767106	1	18	5.5	5.0	√
Dissolved Mercury in Water by CVAAS	E509	764816	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	767107	1	18	5.5	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764778	1	19	5.2	5.0	√

 Page
 :
 11 of 16

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Matrix: Water Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.									
Quality Control Sample Type				ount		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Control Samples (LCS) - Continued									
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	765529	1	7	14.2	5.0	✓		
Fluoride in Water by IC	E235.F	764809	1	9	11.1	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	764812	1	9	11.1	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	764813	1	9	11.1	5.0	✓		
ORP by Electrode	E125	764759	1	6	16.6	5.0	✓		
pH by Meter	E108	765604	1	20	5.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	764814	1	9	11.1	5.0	✓		
TDS by Gravimetry	E162	766414	1	20	5.0	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	766892	1	17	5.8	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	765498	1	20	5.0	5.0	√		
Total Mercury in Water by CVAAS	E508	764755	1	19	5.2	5.0	✓		
Total metals in Water by CRC ICPMS	E420	766893	1	20	5.0	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764779	1	20	5.0	5.0	✓		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765467	1	20	5.0	5.0	√		
TSS by Gravimetry (Low Level)	E160-L	766409	1	20	5.0	5.0	√		
Turbidity by Nephelometry	E121	765700	1	20	5.0	5.0	√		
Method Blanks (MB)									
Acidity by Titration	E283	765406	1	20	5.0	5.0	1		
Alkalinity Species by Titration	E290	765606	1	20	5.0	5.0			
Ammonia by Fluorescence	E298	764773	1	20	5.0	5.0			
Bromide in Water by IC (Low Level)	E235.Br-L	764810	1	9	11.1	5.0			
Chloride in Water by IC (Low Level)	E235.CI-L	764811	1	9	11.1	5.0	<u> </u>		
Conductivity in Water	E100	765605	1	20	5.0	5.0			
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767106	1	18	5.5	5.0			
Dissolved Mercury in Water by CVAAS	E509	764816	1	20	5.0	5.0			
Dissolved Metals in Water by CRC ICPMS	E421	767107	1	18	5.5	5.0	<u> </u>		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764778	1	19	5.2	5.0	<u> </u>		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	765529	1	7	14.2	5.0	<u> </u>		
Fluoride in Water by IC	E235.F	764809	1	9	11.1	5.0			
Nitrate in Water by IC (Low Level)	E235.NO3-L	764812	1	9	11.1	5.0			
Nitrite in Water by IC (Low Level)	E235.NO2-L	764813	1	9	11.1	5.0			
Sulfate in Water by IC	E235.SO4	764814	1	9	11.1	5.0	<u> </u>		
TDS by Gravimetry	E162	766414	1	20	5.0	5.0	<u> </u>		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	766892	1	17	5.8	5.0	<u> </u>		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	765498	1	20	5.0	5.0	<u> </u>		
Total Mercury in Water by CVAAS	E508	764755	1	19	5.2	5.0			
Total metals in Water by CRC ICPMS	E420	766893	1	20	5.0	5.0	<u> </u>		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764779	1	20	5.0	5.0	<u> </u>		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765467	1	20	5.0	5.0			

 Page
 :
 12 of 16

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Matrix: Water Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.

Quality Control Sample Type			Co	unt	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued								
TSS by Gravimetry (Low Level)	E160-L	766409	1	20	5.0	5.0	✓	
Turbidity by Nephelometry	E121	765700	1	20	5.0	5.0	✓	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	764773	1	20	5.0	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	764810	1	9	11.1	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	764811	1	9	11.1	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767106	1	18	5.5	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	764816	1	20	5.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	767107	1	18	5.5	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	764778	1	19	5.2	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	765529	1	7	14.2	5.0	✓	
Fluoride in Water by IC	E235.F	764809	1	9	11.1	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	764812	1	9	11.1	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	764813	1	9	11.1	5.0	✓	
Sulfate in Water by IC	E235.SO4	764814	1	9	11.1	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	766892	1	17	5.8	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	765498	1	20	5.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	764755	1	19	5.2	5.0	✓	
Total metals in Water by CRC ICPMS	E420	766893	1	20	5.0	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	764779	1	20	5.0	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	765467	1	20	5.0	5.0	✓	

 Page
 :
 13 of 16

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Calgary - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
pH by Meter	E108	Water	APHA 4500-H (mod)	sample. Conductivity measurements are temperature-compensated to 25°C. pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Page 14 of 16 Work Order · CG2216689 Client Teck Coal Limited Regional Effects Program

Project

Analytical Methods Method / Lab Matrix Acidity by Titration APHA 2310 B (mod) E283 Water Acidity is determined by potentiometric titration to pH endpoint of 8.3 Calgary - Environmental Alkalinity Species by Titration Water APHA 2320 B (mod) F290 Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total Calgary - Environmental alkalinity values. Ammonia by Fluorescence E298 Water Method Fialab 100. Ammonia in water is determined by automated continuous flow analysis with membrane 2018 diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). Calgary - Environmental This method is approved under US EPA 40 CFR Part 136 (May 2021) Water Total Kjeldahl Nitrogen by Fluorescence (Low E318 Method Fialab 100. TKN in water is determined by automated continuous flow analysis with membrane Level) 2018 diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). Calgary - Environmental This method is approved under US EPA 40 CFR Part 136 (May 2021). Total Organic Carbon (Non-Purgeable) by E355-L Water APHA 5310 B (mod) Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic Combustion (Low Level) Calgary - Environmental carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC). Water APHA 5310 B (mod) Dissolved Organic Carbon by Combustion E358-L Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and (Low Level) Calgary - Environmental purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC). Water APHA 4500-P E (mod). Total Phosphorus by Colourimetry (0.002 E372-U Total Phosphorus is determined colourimetrically using a discrete analyzer after heated mg/L) persulfate digestion of the sample. Calgary - Environmental APHA 4500-P F (mod) Dissolved Orthophosphate by Colourimetry E378-U Water Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab (Ultra Trace Level 0.001 mg/L) or field filtered through a 0.45 micron membrane filter. Calgary - Environmental Field filtration is recommended to ensure test results represent conditions at time of sampling. Total metals in Water by CRC ICPMS F420 Water FPA 200 2/6020B Water samples are digested with nitric and hydrochloric acids, and analyzed by (mod) Collision/Reaction Cell ICPMS. Calgary - Environmental Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. Water Total Chromium in Water by CRC ICPMS (Low E420.Cr-L FPA 200 2/6020B Water samples are digested with nitric and hydrochloric acids, and analyzed by Level) (mod) Collision/Reaction Cell ICPMS.

Calgary - Environmental

 Page
 :
 15 of 16

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Lim

ALS

Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	АРНА 2340В	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.

 Page
 :
 16 of 16

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Calgary - Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Calgary - Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : CG2216689 Page : 1 of 18

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

:421 Pine Ave Address :2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Telephone : Telephone :+1 403 407 1800

Project :Regional Effects Program Date Samples Received :01-Dec-2022 09:00

PO :VPO00816101 Date Analysis Commenced :01-Dec-2022

C-O-C number : REP_LAEMP_LCO_2022_DECEMBER_AL Issue Date :07-Dec-2022_17:58

Sampler : Rick Smit

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Address

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta	
Elke Tabora		Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Shirley Li	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Sonthuong Bui	Laboratory Analyst	Calgary Metals, Calgary, Alberta	
Zakieh Lalonde		Calgary Metals, Calgary, Alberta	

 Page
 2 of 18

 Work Order
 CG2216689

 Client
 Teck Coal Limited

 Project
 Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 :
 3 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 764759)										
CG2216683-005	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	243	237	2.33%	15%	
Physical Tests (QC	Lot: 765406)										
CG2216683-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 765604)										
CG2216684-001	Anonymous	рН		E108	0.10	pH units	8.09	8.10	0.124%	4%	
Physical Tests (QC	Lot: 765605)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P 2022-12 N	conductivity		E100	2.0	μS/cm	374	372	0.536%	10%	
Physical Tests (QC	Lot: 765606)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	127	124	2.71%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	127	124	2.71%	20%	
Physical Tests (QC	Lot: 765700)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	turbidity		E121	0.10	NTU	0.13	0.13	0.004	Diff <2x LOR	
Physical Tests (QC	Lot: 766414)										
CG2216688-001	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	2420	2520	4.17%	20%	
Anions and Nutrien	ts (QC Lot: 764773)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 764809)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	fluoride	16984-48-8	E235.F	0.020	mg/L	0.401	0.396	1.38%	20%	
Anions and Nutrien	ts (QC Lot: 764810)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 764811)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.35	0.34	0.004	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 764812)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.251	0.252	0.159%	20%	

 Page
 :
 4 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	ts (QC Lot: 764813)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 764814)							1/4			
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	85.3	84.8	0.593%	20%	
Anions and Nutrien	ts (QC Lot: 765467)										
CG2216679-004	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 765498)										
CG2216666-008	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.325	0.312	0.014	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 765529)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 76477	8)									
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 76477	9)									
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 764755)							124			
CG2216666-013	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 766892)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00021	0.00029	0.00007	Diff <2x LOR	
Total Metals (QC Lo	ot: 766893)										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0033	0.0061	0.0028	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00021	0.00013	0.00007	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0470	0.0477	1.53%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0088 µg/L	<0.0000050	0.000038	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	51.0	53.1	4.00%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
	T. Control of the Con	T. Control of the con	I	I	1		I	1	I	ı	

 Page
 :
 5 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 766893) - continued										
CG2216689-001	RG_LI24_WS_LCO_LAEM P_2022-12_N	lithium, total	7439-93-2	E420	0.0010	mg/L	0.0044	0.0041	0.0003	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	14.9	15.6	4.47%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00108	0.00108	0.0389%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	0.00051	0.00001	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.311	0.307	0.004	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	3.91 μg/L	0.00379	2.99%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	1.96	1.96	0.0285%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	1.42	1.48	3.96%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.199	0.203	1.84%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	31.8	31.5	1.11%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00184	0.00189	2.44%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 764816)										
CG2216679-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
issolved Metals (C	QC Lot: 767106)										
CG2216672-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
issolved Metals (C	QC Lot: 767107)										
CG2216672-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0022	0.0024	0.0003	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00037	0.00034	0.00003	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	0.00013	0.00003	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0583	0.0616	5.42%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000406	0.0000412	0.0000006	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	78.2	80.7	3.17%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00018	0.00018	0.000004	Diff <2x LOR	

 Page
 :
 6 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
issolved Metals (QC Lot: 767107) - con	tinued									
CG2216672-001	Anonymous	iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0085	0.0090	0.0005	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	28.4	29.0	2.33%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0550	0.0557	1.18%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00224	0.00229	2.39%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00092	0.00094	0.00002	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.774	0.793	2.36%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.0354	0.0379	6.75%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.59	1.63	2.54%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	3.10	3.16	1.99%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.149	0.150	1.26%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	57.2	58.4	2.11%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	0.00048	0.00050	0.00002	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00105	0.00106	0.235%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0080	0.0081	0.0001	Diff <2x LOR	

 Page
 :
 7 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 765406)					
acidity (as CaCO3)	E283	2	mg/L	2.2	
Physical Tests (QCLot: 765605)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 765606)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 765700)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 766409)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 766414)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 764773)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 764809)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 764810)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 764811)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 764812)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 764813)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 764814)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 765467)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 765498)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	

 Page
 :
 8 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 765529)						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
Organic / Inorganic Carbon (QCLot: 76	64778)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 76	64779)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
otal Metals (QCLot: 764755)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.0000050	
otal Metals (QCLot: 766892)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
otal Metals (QCLot: 766893)		100000				
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	

 Page
 :
 9 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 766893) - co	ntinued					
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
issolved Metals (QCLot: 764816)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	
issolved Metals (QCLot: 767106)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 767107)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	

 Page
 :
 10 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 767107) - continued					
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
					I .	I .

 Page
 :
 11 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 764759)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	100	95.4	104	
Physical Tests (QCLot: 765406)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	107	85.0	115	
Physical Tests (QCLot: 765604)								
рН	E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 765605)								
conductivity	E100	1	μS/cm	146.9 μS/cm	99.5	90.0	110	
Physical Tests (QCLot: 765606)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	102	85.0	115	
Physical Tests (QCLot: 765700)						/-		
turbidity	E121	0.1	NTU	200 NTU	100	85.0	115	
Physical Tests (QCLot: 766409)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	98.2	85.0	115	
Physical Tests (QCLot: 766414)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	94.4	85.0	115	
Anions and Nutrients (QCLot: 764773)	7664-41-7 E298	0.005	ma/l	0.0	404	85.0	115	
ammonia, total (as N)	7004-41-7 E290	0.005	mg/L	0.2 mg/L	101	65.0	115	
Anions and Nutrients (QCLot: 764809)	16984-48-8 E235.F	0.02	mg/L	4 //	102	90.0	110	
	10304-40-0 [2233.]	0.02	IIIg/L	1 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 764810)	24959-67-9 E235.Br-L	0.05	mg/l	0.5 mg/l	101	85.0	115	
	24939-07-9 E233.BI-E	0.03	mg/L	0.5 mg/L	101	65.0	113	
Anions and Nutrients (QCLot: 764811)	16887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	100	90.0	110	
	10007-00-0	0.1	mg/L	100 Hig/L	100	30.0	110	
Anions and Nutrients (QCLot: 764812) nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110	
	14737-33-6 [2233.1403-2	0.003	mg/L	2.5 mg/L	101	30.0	110	
Anions and Nutrients (QCLot: 764813) nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	101	90.0	110	
	14707 00 0 12200.1102-2	0.001	mg/L	0.5 mg/L	101	30.0	110	
Anions and Nutrients (QCLot: 764814) sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/l	102	90.0	110	
	14000-75-0 1200.004	0.3	IIIg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 765467) phosphorus, total	7723-14-0 E372-U	0.002	mg/L	0.02//	102	80.0	120	
priospriorus, total	1123-14-0 [2312-0	0.002	IIIg/L	0.03 mg/L	102	60.0	120	

 Page
 :
 12 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

ub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 765498)											
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	105	75.0	125			
Anions and Nutrients (QCLot: 765529)											
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	98.7	80.0	120			
Organic / Inorganic Carbon (QCLot: 764778											
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	97.7	80.0	120			
Organic / Inorganic Carbon (QCLot: 764779	9)										
carbon, total organic [TOC]		E355-L	0.5	mg/L	8.57 mg/L	104	80.0	120			
Total Metals (QCLot: 764755)											
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	99.2	80.0	120			
Total Metals (QCLot: 766892)											
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	101	80.0	120			
Total Metals (QCLot: 766893)											
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	106	80.0	120			
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	100	80.0	120			
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	98.4	80.0	120			
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120			
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	97.5	80.0	120			
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	100	80.0	120			
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	91.1	0.08	120			
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	99.9	0.08	120			
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	97.2	80.0	120			
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	97.4	80.0	120			
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	100	80.0	120			
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	106	80.0	120			
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	105	0.08	120			
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	101	80.0	120			
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	99.5	80.0	120			
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	113	80.0	120			
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	99.4	80.0	120			
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	98.0	80.0	120			
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	105	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	94.7	80.0	120			
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	102	60.0	140			
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	95.2	80.0	120			

 Page
 :
 13 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie		
Total Metals (QCLot: 766893) - continued				Mark the second							
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	101	80.0	120			
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	101	80.0	120			
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	107	80.0	120			
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	102	80.0	120			
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	101	80.0	120			
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	97.8	80.0	120			
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	104	80.0	120			
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	103	80.0	120			
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	91.4	80.0	120			
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	101	80.0	120			
Dissolved Metals (QCLot: 767106)											
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	100	80.0	120			
Dissolved Metals (QCLot: 767107)											
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	104	80.0	120			
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	103	80.0	120			
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	97.3	80.0	120			
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	95.8	80.0	120			
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	104	80.0	120			
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	100	80.0	120			
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	90.6	80.0	120			
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	100	80.0	120			
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	104	80.0	120			
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	98.1	80.0	120			
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	96.5	80.0	120			
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	98.2	80.0	120			
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	96.6	80.0	120			
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	110	80.0	120			
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	104	80.0	120			
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	99.2	80.0	120			
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	103	80.0	120			
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	98.8	80.0	120			
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	106	80.0	120			
selenium, dissolved	7782-49-2		0.00005	mg/L	1 mg/L	97.9	80.0	120			
silicon, dissolved	7440-21-3		0.05	mg/L	10 mg/L	99.9	60.0	140			
silver, dissolved	7440-22-4		0.00001	mg/L	0.1 mg/L	95.1	80.0	120			

 Page
 :
 14 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water	p-Matrix: Water						Laboratory Control Sample (LCS) Report							
					Spike Recovery (%) Recovery Limit		(%) Recovery Limits (%)		Recovery (%) Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier					
Dissolved Metals (QCLot: 767107) - c	continued						/2							
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	103	80.0	120						
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	106	80.0	120						
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	94.0	80.0	120						
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	96.4	80.0	120						
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	101	80.0	120						
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	98.2	80.0	120						
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	99.1	80.0	120						
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	102	80.0	120						
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	89.6	80.0	120						
ı														

 Page
 :
 15 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	ub-Matrix: Water				Matrix Spike (MS) Report							
					Sp	ike	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Anions and Nutr	ients (QCLot: 764773)											
CG2216689-002	RG_SLINE_WS_LCO_LAE MP_2022-12_N	ammonia, total (as N)	7664-41-7	E298	0.105 mg/L	0.1 mg/L	105	75.0	125			
Anions and Nutr	ients (QCLot: 764809)											
CG2216689-002	RG_SLINE_WS_LCO_LAE MP_2022-12_N	fluoride	16984-48-8	E235.F	0.970 mg/L	1 mg/L	97.0	75.0	125			
Anions and Nutr	ients (QCLot: 764810)											
CG2216689-002	RG_SLINE_WS_LCO_LAE MP_2022-12_N	bromide	24959-67-9	E235.Br-L	0.479 mg/L	0.5 mg/L	95.8	75.0	125			
Anions and Nutr	ients (QCLot: 764811)											
CG2216689-002	RG_SLINE_WS_LCO_LAE MP_2022-12_N	chloride	16887-00-6	E235.CI-L	96.3 mg/L	100 mg/L	96.3	75.0	125			
Anions and Nutr	ients (QCLot: 764812)											
CG2216689-002	RG_SLINE_WS_LCO_LAE MP_2022-12_N	nitrate (as N)	14797-55-8	E235.NO3-L	2.42 mg/L	2.5 mg/L	96.7	75.0	125			
Anions and Nutr	ients (QCLot: 764813)											
CG2216689-002	RG_SLINE_WS_LCO_LAE MP_2022-12_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.488 mg/L	0.5 mg/L	97.7	75.0	125			
Anions and Nutr	ients (QCLot: 764814)											
CG2216689-002	RG_SLINE_WS_LCO_LAE MP_2022-12_N	sulfate (as SO4)	14808-79-8	E235.SO4	94.5 mg/L	100 mg/L	94.5	75.0	125			
Anions and Nutr	ients (QCLot: 765467)											
CG2216681-001	Anonymous	phosphorus, total	7723-14-0	E372-U	ND mg/L	0.05 mg/L	ND	70.0	130			
Anions and Nutr	ients (QCLot: 765498)											
CG2216666-009	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.68 mg/L	2.5 mg/L	107	70.0	130			
Anions and Nutr	ients (QCLot: 765529)											
CG2216689-002	RG_SLINE_WS_LCO_LAE MP_2022-12_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0482 mg/L	0.05 mg/L	96.5	70.0	130			
Organic / Inorga	nic Carbon (QCLot: 7647	778)										
CG2216689-001	RG_LI24_WS_LCO_LAEMP _2022-12_N	carbon, dissolved organic [DOC]		E358-L	5.43 mg/L	5 mg/L	108	70.0	130			
Organic / Inorga	nic Carbon (QCLot: 7647	779)										
CG2216689-001	RG_LI24_WS_LCO_LAEMP 2022-12 N	carbon, total organic [TOC]		E355-L	5.51 mg/L	5 mg/L	110	70.0	130			

 Page
 :
 16 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water	o-Matrix: Water				Matrix Spike (MS) Report						
					Spi	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Total Metals (QC	CLot: 764755)										
CG2216677-001	Anonymous	mercury, total	7439-97-6	E508	0.000101 mg/L	0.0001 mg/L	101	70.0	130		
Total Metals (QC	Lot: 766892)		1111111								
CG2216689-002	RG_SLINE_WS_LCO_LAE MP 2022-12 N	chromium, total	7440-47-3	E420.Cr-L	0.388 mg/L	0.4 mg/L	96.9	70.0	130		
Total Metals (QC			11111								
CG2216689-002	RG_SLINE_WS_LCO_LAE	aluminum, total	7429-90-5	E420	2.27 mg/L	2 mg/L	113	70.0	130		
	MP_2022-12_N	antimony, total	7440-36-0	E420	0.199 mg/L	0.2 mg/L	99.6	70.0	130		
		arsenic, total	7440-38-2	E420	0.190 mg/L	0.2 mg/L	95.0	70.0	130		
		barium, total	7440-39-3	E420	0.198 mg/L	0.2 mg/L	98.8	70.0	130		
		beryllium, total	7440-41-7	E420	0.394 mg/L	0.4 mg/L	98.6	70.0	130		
		bismuth, total	7440-69-9	E420	0.108 mg/L	0.1 mg/L	108	70.0	130		
		boron, total	7440-42-8	E420	0.904 mg/L	1 mg/L	90.4	70.0	130		
		cadmium, total	7440-43-9	E420	0.0404 mg/L	0.04 mg/L	101	70.0	130		
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130		
		cobalt, total	7440-48-4	E420	0.186 mg/L	0.2 mg/L	92.8	70.0	130		
		copper, total	7440-50-8	E420	0.199 mg/L	0.2 mg/L	99.7	70.0	130		
		iron, total	7439-89-6	E420	20.0 mg/L	20 mg/L	100	70.0	130		
		lead, total	7439-92-1	E420	0.199 mg/L	0.2 mg/L	99.6	70.0	130		
		lithium, total	7439-93-2	E420	0.923 mg/L	1 mg/L	92.3	70.0	130		
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130		
		manganese, total	7439-96-5	E420	0.204 mg/L	0.2 mg/L	102	70.0	130		
		molybdenum, total	7439-98-7	E420	0.195 mg/L	0.2 mg/L	97.7	70.0	130		
		nickel, total	7440-02-0	E420	0.373 mg/L	0.4 mg/L	93.2	70.0	130		
		potassium, total	7440-09-7	E420	40.3 mg/L	40 mg/L	101	70.0	130		
		selenium, total	7782-49-2	E420	0.399 mg/L	0.4 mg/L	99.7	70.0	130		
		silicon, total	7440-21-3	E420	101 mg/L	100 mg/L	101	70.0	130		
		silver, total	7440-22-4	E420	0.0436 mg/L	0.04 mg/L	109	70.0	130		
		sodium, total	7440-23-5	E420	18.6 mg/L	20 mg/L	93.0	70.0	130		
		strontium, total	7440-24-6	E420	0.196 mg/L	0.2 mg/L	98.0	70.0	130		
		sulfur, total	7704-34-9	E420	188 mg/L	200 mg/L	94.0	70.0	130		
		thallium, total	7440-28-0	E420	0.0410 mg/L	0.04 mg/L	102	70.0	130		
		tin, total	7440-31-5	E420	0.197 mg/L	0.2 mg/L	98.7	70.0	130		
		titanium, total	7440-32-6	E420	0.382 mg/L	0.4 mg/L	95.5	70.0	130		
		uranium, total	7440-61-1	E420	0.0419 mg/L	0.04 mg/L	105	70.0	130		
1	I	vanadium, total	7440-62-2	E420	0.958 mg/L	1 mg/L	95.8	70.0	130		

 Page
 :
 17 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water	-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ike	Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
	Lot: 766893) - continue	d			110000								
CG2216689-002	RG_SLINE_WS_LCO_LAE	zinc, total	7440-66-6	E420	3.53 mg/L	4 mg/L	88.4	70.0	130				
Dissolved Metals	(QCLot: 764816)		111111111111111111111111111111111111111										
CG2216679-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.000101 mg/L	0.0001 mg/L	101	70.0	130				
Dissolved Metals	(QCLot: 767106)												
CG2216672-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.385 mg/L	0.4 mg/L	96.2	70.0	130				
Dissolved Metals	(QCLot: 767107)												
CG2216672-002	Anonymous	aluminum, dissolved	7429-90-5	E421	1.98 mg/L	2 mg/L	99.0	70.0	130				
		antimony, dissolved	7440-36-0	E421	0.202 mg/L	0.2 mg/L	101	70.0	130				
		arsenic, dissolved	7440-38-2	E421	0.192 mg/L	0.2 mg/L	96.0	70.0	130				
		barium, dissolved	7440-39-3	E421	0.177 mg/L	0.2 mg/L	88.5	70.0	130				
		beryllium, dissolved	7440-41-7	E421	0.385 mg/L	0.4 mg/L	96.3	70.0	130				
		bismuth, dissolved	7440-69-9	E421	0.102 mg/L	0.1 mg/L	102	70.0	130				
		boron, dissolved	7440-42-8	E421	0.830 mg/L	1 mg/L	83.0	70.0	130				
		cadmium, dissolved	7440-43-9	E421	0.0393 mg/L	0.04 mg/L	98.2	70.0	130				
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130				
		cobalt, dissolved	7440-48-4	E421	0.194 mg/L	0.2 mg/L	96.9	70.0	130				
		copper, dissolved	7440-50-8	E421	0.188 mg/L	0.2 mg/L	94.2	70.0	130				
		iron, dissolved	7439-89-6	E421	19.3 mg/L	20 mg/L	96.4	70.0	130				
		lead, dissolved	7439-92-1	E421	0.195 mg/L	0.2 mg/L	97.7	70.0	130				
		lithium, dissolved	7439-93-2	E421	0.916 mg/L	1 mg/L	91.6	70.0	130				
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130				
		manganese, dissolved	7439-96-5	E421	0.184 mg/L	0.2 mg/L	92.2	70.0	130				
		molybdenum, dissolved	7439-98-7	E421	0.200 mg/L	0.2 mg/L	100	70.0	130				
		nickel, dissolved	7440-02-0	E421	0.386 mg/L	0.4 mg/L	96.5	70.0	130				
		potassium, dissolved	7440-09-7	E421	39.2 mg/L	40 mg/L	98.0	70.0	130				
		selenium, dissolved	7782-49-2	E421	0.405 mg/L	0.4 mg/L	101	70.0	130				
		silicon, dissolved	7440-21-3	E421	94.0 mg/L	100 mg/L	94.0	70.0	130				
		silver, dissolved	7440-22-4	E421	0.0405 mg/L	0.04 mg/L	101	70.0	130				
		sodium, dissolved	7440-23-5	E421	20.2 mg/L	20 mg/L	101	70.0	130				
		strontium, dissolved	7440-24-6	E421	0.209 mg/L	0.2 mg/L	104	70.0	130				
		sulfur, dissolved	7704-34-9	E421	178 mg/L	200 mg/L	89.0	70.0	130				
		thallium, dissolved	7440-28-0	E421	0.0388 mg/L	0.04 mg/L	96.9	70.0	130				
		tin, dissolved	7440-31-5	E421	0.192 mg/L	0.2 mg/L	96.2	70.0	130				
		titanium, dissolved	7440-32-6	E421	0.375 mg/L	0.4 mg/L	93.7	70.0	130				

 Page
 :
 18 of 18

 Work Order
 :
 CG2216689

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spike Recovery (%) Recovery Limits (%)			Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	(QCLot: 767107) - cont	tinued										
CG2216672-002	Anonymous	uranium, dissolved	7440-61-1	E421	0.0394 mg/L	0.04 mg/L	98.4	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.968 mg/L	1 mg/L	96.8	70.0	130			
		zinc, dissolved	7440-66-6	E421	3.68 mg/L	4 mg/L	91.9	70.0	130			

Teck REP LAENIP LCU_2022 December_A TURNAROUND TIME: RUSH: N/A COC ID: PROJECT/CLIENTINE - he 24-1 CM-144 Lab Name ALS Calgary 囜 Report Format / Distribution Project Manager Cybele Heddle Lab Contact Lyudinyla Shvets Email 1: Email Lyudmyla.Shvets@ALSGlobal.com Email Cybele Heddle@Teck.com Email 2: Address 2559 29 Street NE Address 421 Pine Ave Email 3: eck.Lab.Results@teck.com Email 4: hannah.penner@teck.com City Sparwood Province BC City Calgary Province AB Email 5: Postal Code V0B 2G0 Country Canada Postal Code T1Y 7B5 Country Email 6: Phone Number 403 407 1794 Phone Number 250-910-8755 PO number VPO0081610 SAMPLE DETAILS ANALYSIS REQUESTED Filtered F. Field, L. La HCL H2SO4 H2SO4 NONE HNO3 HNO3 NONE Hazardous Material (Yes/No) G=Grab Sample Location Field C=Com Matrix Date Time (24hr) Cont 96-1724 Lis Lio-LAEMP - 272-12-N RG-L124 7 WS NO G く 1622-11-30 09:11 ٨ 4 RG SEINELIS LO LA EMP 9422 YOU RG SIINE 12:301 1 Λ WS 11-2K X ď G WS NO G WS WS G NO **Environmental Division** WS NO Calgary Work Order Reference G V WS NO CG2216689 G WS NO WS NO WS G NO WS \mathbf{G} NO WS G NO WS RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION CIAL INSTRUCTIONS Rick Smit/ Lotic environmental 2022-11-35/60 3°0 SERVICE REQUEST (rush - subject to availability) Sampler's Name 403-586-3241 Rick Smit Mobile # Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge 2022-11-30 1600 Sampler's Signature Rick Smit Date/Time For Emergency < 1 Day, ASAP or Weekend - Contact ALS

WATER CHEMISTRY

ALS Laboratory Report CG2216739 (Finalized December 8, 2022)

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Calgary AB Canada T1Y 7B5

Work Order : **CG2216739** Page : 1 of 7

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

 Address
 : 421 Pine Ave
 Address
 : 2559 29th Street NE

Sparwood BC Canada

Telephone : +1 403 407 1800

Project : Regional Effects Program Date Samples Received : 02-Dec-2022 08:50
PO : VPO00816101 Date Analysis Commenced : 02-Dec-2022

Sampler : Rick Smit

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 5
No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta	
Anthony Calero	Supervisor - Inorganic	Metals, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta	
Kevin Baxter	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Metals, Calgary, Alberta	

 Page
 :
 2 of 7

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
CG2216739-001	RG_LILC3_WS_LAEMP_LCO_ 2022-12_N	Sample(s) 1-5: Sample Received Unpreserved. Results may be biased either high or low for indicated parameter(s).
CG2216739-002	RG_LCUT_WS_LAEMP_LCO_ 2022-12_N	Sample(s) 1-5: Sample Received Unpreserved. Results may be biased either high or low for indicated parameter(s).
CG2216739-003	RG_LISP24_WS_LAEMP_LCO _2022-12_N	Sample(s) 1-5: Sample Received Unpreserved. Results may be biased either high or low for indicated parameter(s).
CG2216739-004	RG_RIVER_WS_LAEMP_LCO _2022-12_N	Sample(s) 1-5: Sample Received Unpreserved. Results may be biased either high or low for indicated parameter(s).

>: greater than.

Page

3 of 7 CG2216739 Work Order Client

Teck Coal Limited
Regional Effects Program Project

CG2216739-005	RG_LIDCOM_WS_LAEMP_LC	Sample(s) 1-5: Sample Received Unpreserved. Results may be biased either high or low for indicated parameter(s).
	O_2022-12_N	

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
DTSE	Dissolved Se concentration exceeds total. Positive bias on D-Se suspected due to
	signal enhancement from volatile selenium species. Contact ALS if an alternative test
	to address this interference is needed.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

 Page
 :
 4 of 7

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analytical Results

Sub-Matrix: Water (Matrix: Water)	ient sample ID	RG_LILC3_WS_ LAEMP_LCO_2 022-12_N	RG_LCUT_WS_ LAEMP_LCO_2 022-12_N	RG_LISP24_WS _LAEMP_LCO_ 2022-12_N	RG_RIVER_WS _LAEMP_LCO_ 2022-12_N	RG_LIDCOM_W S_LAEMP_LCO _2022-12_N			
			Client samp	ling date / time	01-Dec-2022 09:45	01-Dec-2022 11:20	01-Dec-2022 13:30	01-Dec-2022 13:00	01-Dec-2022 15:00
Analyte	CAS Number	Method	LOR	Unit	CG2216739-001	CG2216739-002	CG2216739-003	CG2216739-004	CG2216739-005
					Result	Result	Result	Result	Result
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	<2.0	<2.0
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	207	212	189	184	180
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	253	258	231	225	219
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	8.6	8.8	13.4	14.2	16.8
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	5.2	5.3	8.0	8.5	10.1
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	216	221	203	199	196
conductivity		E100	2.0	μS/cm	1050	978	930	927	837
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	624	542	508	531	477
oxidation-reduction potential [ORP]		E125	0.10	mV	430	426	413	416	410
рН		E108	0.10	pH units	8.33	8.33	8.41	8.41	8.44
solids, total dissolved [TDS]		E162	10	mg/L	769	706	678	672	597
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
turbidity		E121	0.10	NTU	0.17	0.23	0.18	0.17	<0.10
Anions and Nutrients					1100.0				
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS	<0.250 DLDS	<0.050	<0.250 DLDS	<0.050
chloride	16887-00-6	E235.CI-L	0.10	mg/L	19.1	8.79	15.2	15.4	12.5
fluoride	16984-48-8	E235.F	0.020	mg/L	0.200	0.203	0.198	0.201	0.195
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	1.08	1.25 TKNI	1.48	0.863 TKNI	0.801
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	10.6	13.3	8.50	8.70	7.16
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0050 DLDS	<0.0050 DLDS	0.0021	<0.0050 DLDS	0.0018
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0025	0.0034	0.0022	0.0022	0.0032
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0027	0.0035 DLM	0.0031	0.0021	0.0040
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	367	316	296	305	255
Organic / Inorganic Carbon		100			1959-8				
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	<0.50	<0.50	<0.50

 Page
 :
 5 of 7

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LILC3_WS_	RG_LCUT_WS_	RG_LISP24_WS	RG_RIVER_WS	RG_LIDCOM_W
(Matrix: Water)				·	LAEMP_LCO_2 022-12_N	LAEMP_LCO_2 022-12_N	_LAEMP_LCO_ 2022-12_N	_LAEMP_LCO_ 2022-12_N	S_LAEMP_LCO _2022-12_N
			Client samp	ling date / time	01-Dec-2022 09:45	01-Dec-2022 11:20	01-Dec-2022 13:30	01-Dec-2022 13:00	01-Dec-2022 15:00
Analyte	CAS Number	Method	LOR	Unit	CG2216739-001	CG2216739-002	CG2216739-003	CG2216739-004	CG2216739-005
					Result	Result	Result	Result	Result
Organic / Inorganic Carbon									
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Ion Balance									
anion sum		EC101	0.10	meq/L	13.3	12.2	11.3	11.4	10.1
cation sum		EC101	0.10	meq/L	13.0	11.3	10.6	11.0	9.90
ion balance (cations/anions)		EC101	0.010	%	97.7	92.6	93.8	96.5	98.0
ion balance (APHA)		EC101	0.01	%	-1.14	-3.83	-3.20	-1.78	-1.00
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	0.0042	0.0030	0.0032
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00030	0.00037	0.00026	0.00026	0.00020
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00010	0.00010	0.00013	0.00012	0.00010
barium, total	7440-39-3	E420	0.00010	mg/L	0.0577	0.0563	0.0569	0.0552	0.0676
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	0.017	0.018	0.015	0.015	0.014
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.194	0.320	0.171	0.160	0.118
calcium, total	7440-70-2	E420	0.050	mg/L	138	128	121	120	108
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00011	0.00012	0.00015	0.00012	0.00014
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	<0.10
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
iron, total	7439-89-6	E420	0.010	mg/L	0.024	<0.010	0.016	0.017	<0.010
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0595	0.0649	0.0504	0.0499	0.0411
magnesium, total	7439-95-4	E420	0.0050	mg/L	72.6	61.6	62.2	61.7	53.0
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0141	0.00014	0.00875	0.00933	0.00240
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00358	0.00185	0.00302	0.00311	0.00247
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00854	0.0100	0.00642	0.00647	0.00372
potassium, total	7440-09-7	E420	0.050	mg/L	2.04	1.98	1.72	1.70	1.38
selenium, total	7782-49-2	E420	0.050	μg/L	49.2 DTSE	64.6	41.5	42.6	40.4
Lance of Assessment	1102402	-	1	F-3·-				l '	1

Page : 6 of 7
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_LILC3_WS_	RG_LCUT_WS_	RG_LISP24_WS	RG_RIVER_WS	RG_LIDCOM_W
(Matrix: Water)					LAEMP_LCO_2	LAEMP_LCO_2	_LAEMP_LCO_	_LAEMP_LCO_	S_LAEMP_LCO
					022-12_N	022-12_N	2022-12_N	2022-12_N	_2022-12_N
			Client samp	ling date / time	01-Dec-2022 09:45	01-Dec-2022 11:20	01-Dec-2022 13:30	01-Dec-2022 13:00	01-Dec-2022 15:00
Analyte	CAS Number	Method	LOR	Unit	CG2216739-001	CG2216739-002	CG2216739-003	CG2216739-004	CG2216739-005
					Result	Result	Result	Result	Result
Total Metals									
silicon, total	7440-21-3	E420	0.10	mg/L	2.28	2.36	2.32	2.24	2.35
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	11.5	9.95	9.41	9.47	7.89
strontium, total	7440-24-6	E420	0.00020	mg/L	0.229	0.230	0.212	0.222	0.206
sulfur, total	7704-34-9	E420	0.50	mg/L	142	127	118	116	104
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	0.000016	<0.000010	<0.000010	<0.000010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00483	0.00459	0.00433	0.00426	0.00365
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0076	0.0106	0.0053	0.0060	0.0036
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0011
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00031	0.00039	0.00025	0.00025	0.00020
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00010	0.00011	0.00013	<0.00010	<0.00010
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0583	0.0538	0.0528	0.0574	0.0680
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.017	0.018	0.015	0.015	0.014
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.217	0.320	0.168	0.159	0.117
calcium, dissolved	7440-70-2	E421	0.050	mg/L	135	122	112	115	108
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	<0.00010	0.00016	0.00012
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	<0.10
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00026	0.00031	0.00021	0.00020	<0.00020
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0612	0.0638	0.0482	0.0498	0.0415
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	69.7	57.6	55.5	59.2	50.3
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0138	0.00011	0.00627	0.00680	0.00149
I and the second			I .	_		I	I	I .	I

Page : 7 of 7
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water	Client sample					RG_LISP24_WS	RG_RIVER_WS	RG_LIDCOM_W
(Matrix: Water)				LAEMP_LCO_2	LAEMP_LCO_2	_LAEMP_LCO_	_LAEMP_LCO_	S_LAEMP_LCO
				022-12_N	022-12_N	2022-12_N	2022-12_N	_2022-12_N
		Client comm	oling date / time	0.4 5 0000	0.4 5 0000	0.4 5 0000	0.4 5 0000	0.4 D 0000
		Ciletit Samp	ning date / time	01-Dec-2022 09:45	01-Dec-2022 11:20	01-Dec-2022 13:30	01-Dec-2022 13:00	01-Dec-2022 15:00
Analyte CAS Num	hor Method	Method LOR Unit C		CG2216739-001	CG2216739-002	CG2216739-003	CG2216739-004	CG2216739-005
Analyte CAS Num	Der Weiriod	LON	Ome	Result	Result	Result	Result	Result
				Result	Result	Result	Result	Result
Dissolved Metals mercury, dissolved 7439-9	7-6 E509	0.0000050	mg/L	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050
molybdenum, dissolved 7439-9		0.000050	mg/L	0.00357	0.00180	0.00305	0.00308	0.00248
	·	0.00050	mg/L	0.00808	0.00907	0.00566	0.00604	0.00246
,	- 1	0.0000		2.04	1.87	1.54	1.69	1.40
,			mg/L	68.3 DTSE				
selenium, dissolved 7782-4		0.050	μg/L "		72.8	49.2	49.0	53.2
silicon, dissolved 7440-2		0.050	mg/L	2.36	2.17	2.26	2.31	2.38
silver, dissolved 7440-2		0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved 7440-2		0.050	mg/L	11.4	9.23	8.56	9.27	7.83
strontium, dissolved 7440-2	1-6 E421	0.00020	mg/L	0.230	0.230	0.208	0.216	0.214
sulfur, dissolved 7704-3	1-9 E421	0.50	mg/L	150	128	134	127	105
thallium, dissolved 7440-2	3-0 E421	0.000010	mg/L	0.000011	0.000015	<0.000010	<0.000010	<0.000010
tin, dissolved 7440-3	1-5 E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, dissolved 7440-3	2-6 E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
uranium, dissolved 7440-6	1-1 E421	0.000010	mg/L	0.00483	0.00429	0.00413	0.00419	0.00358
vanadium, dissolved 7440-6	2-2 E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved 7440-6	6-6 E421	0.0010	mg/L	0.0081	0.0106	0.0052	0.0055	0.0036
dissolved mercury filtration location	EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location	EP421	-	-	Field	Field	Field	Field	Field

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

:CG2216739 **Work Order** Page : 1 of 24

Client Teck Coal Limited Laboratory : Calgary - Environmental Contact : Cybele Heddle **Account Manager** : Lyudmyla Shvets

Address Address :421 Pine Ave : 2559 29th Street NE

> Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

Telephone Telephone : +1 403 407 1800

Project : Regional Effects Program **Date Samples Received** : 02-Dec-2022 08:50 PO : VPO00816101 Issue Date : 08-Dec-2022 17:12

C-O-C number :REP LAEMP LCO 2022 December AL

Sampler : Rick Smit

Site

Quote number : Teck Coal Master Quote

No. of samples received :5 No. of samples analysed :5

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit). RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ● Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

 Page
 :
 3 of 24

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Holding Til	= vvitnin	edance; •	Holding time excee	/aluation: × =	E					Matrix: water
	Analysis				reparation	traction / Pr	Ext	Sampling Date	Method	Analyte Group
Eval	Times	Holding	Analysis Date	Eval	g Times	Holding	Preparation			Container / Client Sample ID(s)
ı	Actual	Rec			Actual	Rec	Date			
										Anions and Nutrients : Ammonia by Fluorescence
										Amber glass total (sulfuric acid)
✓	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E298	RG_LCUT_WS_LAEMP_LCO_2022-12_N
										Anions and Nutrients : Ammonia by Fluorescence
										Amber glass total (sulfuric acid)
✓	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E298	RG_LIDCOM_WS_LAEMP_LCO_2022-12_N
										Anions and Nutrients : Ammonia by Fluorescence
	i									Amber glass total (sulfuric acid)
✓	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E298	RG_LILC3_WS_LAEMP_LCO_2022-12_N
										Anions and Nutrients : Ammonia by Fluorescence
		00.1						04.5	5000	Amber glass total (sulfuric acid)
✓	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E298	RG_LISP24_WS_LAEMP_LCO_2022-12_N
						1				Anions and Nutrients : Ammonia by Fluorescence
1	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E298	Amber glass total (sulfuric acid) RG RIVER WS LAEMP LCO 2022-12 N
•	i uays	20 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	LZ90	NG_NIVER_WS_LAEIVIF_LCO_2022-12_IV
										A CONTRACTOR OF THE WAY IN TO THE TOTAL OF T
√	1 davs	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E235.Br-l	
	,	20 44,0	02 200 2022				02 200 2022	0.2002022	2200.2. 2	NO_E001_NO_E1ENII _E00_E012 12_N
										Aniona and Nutrianta - Bramida in Mater by IC / Lavy Laval
1	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E235.Br-L	
	, 1									
		28 days	02-Dec-2022 02-Dec-2022				02-Dec-2022 02-Dec-2022	01-Dec-2022 01-Dec-2022	E235.Br-L E235.Br-L	Anions and Nutrients: Bromide in Water by IC (Low Level) HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N Anions and Nutrients: Bromide in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N

 Page
 :
 4 of 24

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Matrix: Water						aluation. ^ -	Holding time exce	euarice , •	- vvitiiiii	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date Holding Times			Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E235.Br-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E235.Br-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E235.Br-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)		111111111111								
HDPE										
RG LCUT WS LAEMP LCO 2022-12 N	E235.CI-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
									-	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E235.CI-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
RG LILC3 WS LAEMP LCO 2022-12 N	E235.CI-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 davs	✓
110_11200_110_1 121111									, -	
Aniana and Nutrianta - Chlorida in Water by IC / and a scall										
Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE										
RG LISP24 WS LAEMP LCO 2022-12 N	E235.CI-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
110_E101 24_110_E11E1111 _E00_2022=12_11	2200.012	01 200 2022	02 800 2022				02 800 2022	20 dayo	raayo	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE PG PIVER WS LAEMR LCO 2022 12 N	E235.CI-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	√
RG_RIVER_WS_LAEMP_LCO_2022-12_N	LZJJ.CI-L	01-060-2022	02-060-2022				02-066-2022	20 uays	i uays	•
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001									
HDPE	1	1								
RG LCUT WS LAEMP LCO 2022-12 N	E378-U	01-Dec-2022	03-Dec-2022				03-Dec-2022	3 days	2 days	✓
110_L001_W0_LALIWIF_L00_2022-12_IV	2070-0	01-060-2022	03-060-2022				00-060-2022	Juays	2 uays	•

 Page
 :
 5 of 24

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Matrix: Water	1					raidation. +	Holding time exce			riolaling rillie
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001									
HDPE	<u> </u>									
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E378-U	01-Dec-2022	03-Dec-2022				03-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001									
HDPE	1			I			<u> </u>			
RG LILC3 WS LAEMP LCO 2022-12 N	E378-U	01-Dec-2022	03-Dec-2022				03-Dec-2022	3 days	2 days	√
No_11200_No_1121111 _1200_1012	20.00	0. 200 2022	00 200 2022				00 200 2022	o days		
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001									
								1		
HDPE	E378-U	01-Dec-2022	03-Dec-2022				03-Dec-2022	0 4	0 4	✓
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E378-U	01-Dec-2022	03-Dec-2022				03-Dec-2022	3 days	2 days	•
Anima and National Biochard Orthorn and the Colombia to William Translation										
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	evel 0.001		11 00 11 50							
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E378-U	01-Dec-2022	03-Dec-2022				03-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC			1980							
HDPE	5005 5	0.4 5 0000								,
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E235.F	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E235.F	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC		THE PARTY OF THE P	11189							
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E235.F	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE	F05	04.5	00 D 2225				00 B 2225			,
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E235.F	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓

 Page
 :
 6 of 24

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Method Sampling Date Propagation Pro	Matrix: Water					E	/aluation. 🔻 –	Holding time exce	edance,	– vvitriiri	Holding Time
Actions and Nutrients : Fluoride in Water by IC	Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Nations and Nutrients : Fluoride in Water by IC Rec Actual	Container / Client Sample ID(s)			Preparation	Holding	,	Eval	Analysis Date	Holding	g Times	Eval
HOPE RG_RIVE_WS_LAEMP_LCO_2022-12_N				Date	Rec	Actual			Rec	Actual	
RG_RIVER_WS_LAEMP_LCO_2022-12_N	Anions and Nutrients : Fluoride in Water by IC										
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235 NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days											
HOPE RG_LCUT_WS_LAEMP_LCO_2022.12_N	RG_RIVER_WS_LAEMP_LCO_2022-12_N	E235.F	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
HOPE RG_LCUT_WS_LAEMP_LCO_2022.12_N											
RG_LCUT_WS_LAEMP_LCO_2022-12_N	Anions and Nutrients : Nitrate in Water by IC (Low Level)										
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_LIC3_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_RCUT_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-	HDPE										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_LILC3_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_LISP24_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 02-Dec-2022	RG_LCUT_WS_LAEMP_LCO_2022-12_N	E235.NO3-L	01-Dec-2022	02-Dec-2022	3 days	1 days	✓	02-Dec-2022	3 days	0 days	✓
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_LILC3_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_LISP24_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 02-Dec-2022											
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_LILC3_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ 02-Dec-2022 3 days 0 days ✓ 02-Dec-2022 3 days 0 days ✓ Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ 02-Dec-2022 3 days 0 days ✓ Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days	Anions and Nutrients : Nitrate in Water by IC (Low Level)										
Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE RG_LILC3_WS_LAEMP_LC0_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days											
## PIPE RG_LILC3_WS_LAEMP_LCO_2022-12_N	RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E235.NO3-L	01-Dec-2022	02-Dec-2022	3 days	1 days	✓	02-Dec-2022	3 days	0 days	✓
## PIPE RG_LILC3_WS_LAEMP_LCO_2022-12_N											
RG_LILC3_WS_LAEMP_LCO_2022-12_N	Anions and Nutrients : Nitrate in Water by IC (Low Level)										
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_LISP24_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days Anions and Nutrients : Nitrite in Water by IC (Low Level)	HDPE										
HDPE RG_LISP24_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ 02-Dec-2022 3 days 1 days ✓	RG_LILC3_WS_LAEMP_LCO_2022-12_N	E235.NO3-L	01-Dec-2022	02-Dec-2022	3 days	1 days	✓	02-Dec-2022	3 days	0 days	✓
HDPE RG_LISP24_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ 02-Dec-2022 3 days 1 days ✓											
RG_LISP24_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ Anions and Nutrients: Nitrate in Water by IC (Low Level) HDPE RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ 02-Dec-2022 3 days 1 days ✓	Anions and Nutrients : Nitrate in Water by IC (Low Level)										
Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days 02-Dec-2022 3 days 0 days Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days Anions and Nutrients: Nitrite in Water by IC (Low Level) Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N Anions and Nutrients: Nitrite in Water by IC (Low Level)	HDPE										
HDPE RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓	RG_LISP24_WS_LAEMP_LCO_2022-12_N	E235.NO3-L	01-Dec-2022	02-Dec-2022	3 days	1 days	✓	02-Dec-2022	3 days	0 days	✓
HDPE RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓											
RG_RIVER_WS_LAEMP_LCO_2022-12_N E235.NO3-L 01-Dec-2022 02-Dec-2022 3 days 1 days ✓ 02-Dec-2022 3 days 0 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE	Anions and Nutrients : Nitrate in Water by IC (Low Level)										
Anions and Nutrients: Nitrite in Water by IC (Low Level) HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO2-L O1-Dec-2022 O2-Dec-2022 O2-Dec-2022 3 days 1 days Anions and Nutrients: Nitrite in Water by IC (Low Level) E235.NO2-L O1-Dec-2022 O2-Dec-2022											
HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓	RG_RIVER_WS_LAEMP_LCO_2022-12_N	E235.NO3-L	01-Dec-2022	02-Dec-2022	3 days	1 days	✓	02-Dec-2022	3 days	0 days	✓
HDPE RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓											
RG_LCUT_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE Image: Regular color of the properties of the prop	Anions and Nutrients : Nitrite in Water by IC (Low Level)										
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE	HDPE										
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE Image: Image	RG_LCUT_WS_LAEMP_LCO_2022-12_N	E235.NO2-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	3 days	1 days	✓
HDPE RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE Image: Image											
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E235.NO2-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 3 days 1 days ✓ Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE Image: Company of the comp	Anions and Nutrients : Nitrite in Water by IC (Low Level)										
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE											
HDPE	RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E235.NO2-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	3 days	1 days	✓
HDPE											
	Anions and Nutrients : Nitrite in Water by IC (Low Level)										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	1										
	RG_LILC3_WS_LAEMP_LCO_2022-12_N	E235.NO2-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	3 days	1 days	✓

 Page
 :
 7 of 24

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Matrix: Water					E\	/aluation. 🔻 –	Holding time exce	euance , v	– vvitriili	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E235.NO2-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E235.NO2-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E235.SO4	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E235.SO4	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC			1111111111							
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E235.SO4	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E235.SO4	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC			1115							
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E235.SO4	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Le	vel)									
Amber glass total (sulfuric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E318	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Le	vel)	11 11 11 11 11 11								
Amber glass total (sulfuric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E318	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓

Page : 8 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E318	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E318	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)	E318	01-Dec-2022	04-Dec-2022				04-Dec-2022	00 4	0 4	√
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E318	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	•
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	E372-U	01-Dec-2022	08-Dec-2022				08-Dec-2022	28 days	7 days	√
RG_LCUT_WS_LAEMP_LCO_2022-12_N	L372-0	01-Dec-2022	06-Dec-2022				06-Dec-2022	20 uays	7 uays	•
A transfer IN (15 to T (18) to 1 to 1 to 1 (2000 to 1)										
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid)										
RG LIDCOM WS LAEMP LCO 2022-12 N	E372-U	01-Dec-2022	08-Dec-2022				08-Dec-2022	28 days	7 days	1
1.0_E15561M_116_E1.E1M1 _E555_E522 12_11	20.20	0. 200 2022	00 200 2022				00 200 2022	20 44,0	,	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG LILC3 WS LAEMP LCO 2022-12 N	E372-U	01-Dec-2022	08-Dec-2022				08-Dec-2022	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E372-U	01-Dec-2022	08-Dec-2022				08-Dec-2022	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E372-U	01-Dec-2022	08-Dec-2022				08-Dec-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E421.Cr-L	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		

Page : 9 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water					Εν	/aluation: 🗴 =	Holding time excee	edance ; 🕦	✓ = Within	Holding Tir
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E421.Cr-L	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E421.Cr-L	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E421.Cr-L	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E421.Cr-L	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E509	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E509	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										_
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E509	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)	5500	0.4 D 0000	0.4.0				0.4.15 00000	00.1		,
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E509	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)	E509	01-Dec-2022	04-Dec-2022				04 Dec 2022	28 days	2 days-	✓
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E909	01-Dec-2022	04-Dec-2022				04-Dec-2022	∠ซ days	3 days	•

Page : 10 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water					Ev	/aluation: ≍ =	Holding time excee	edance ;	✓ = Within	Holding Ti
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analy	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holdin	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E421	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E421	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E421	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E421	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E421	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E358-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid)										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E358-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)			1		ı		1		
Amber glass dissolved (sulfuric acid)	F050 !	04 D 0005	00 D. 0000				00 D. 0000	00 :		,
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E358-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid)	F050 I	04 D 0000	00 D. 0000				00 D. 0000	00 :		,
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E358-L	01-Dec-2022	02-Dec-2022				02-Dec-2022	28 days	1 days	✓

Page : 11 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Container / Client Sample ID(s) Container / Client Sample ID(s) Preparation Pr	Till Holding Till	/ = vvitnir	edance ; 🗸	Holding time excee	/aluation: × =	E					Matrix: Water
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 01-Dec-2022 02-Dec-2022		is	Analys			reparation	raction / Pr	Ext	Sampling Date	Method	Analyte Group
Date Rec Actual	s <i>Eval</i>	g Times	Holding	Analysis Date	Eval	g Times	Holding	Preparation			Container / Client Sample ID(s)
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E358-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days	a/	Actual	Rec			Actual	Rec	Date			
RG_RIVER_WS_LAEMP_LCO_2022-12_N										el)	Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (suffuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (suffuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_R											Amber glass dissolved (sulfuric acid)
Amber glass total (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RG_RISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Physical Tests : Acidity by Titration	/s √	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E358-L	RG_RIVER_WS_LAEMP_LCO_2022-12_N
Amber glass total (sulfuric acid) RG_LCUT_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Physical Tests : Acidity by Titration HDPE											
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 01-Dec-2022 02-Dec-2022										n (Low Level)	Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Physical Tests : Acidity by											Amber glass total (sulfuric acid)
Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days	/s √	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E355-L	RG_LCUT_WS_LAEMP_LCO_2022-12_N
Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days											
Amber glass total (sulfuric acid) RG_LIDCOM_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days									111111111111	n (Low Level)	Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Physical Tests : Acidity by Titration HDPE											
Amber glass total (sulfuric acid) RG_LILC3_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Physical Tests : Acidity by Titration E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days	/s √	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E355-L	RG_LIDCOM_WS_LAEMP_LCO_2022-12_N
Amber glass total (sulfuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Physical Tests : Acidity by Titration HDPE Indicated the physical Tests in the physica											
RG_LILC3_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Physical Tests : Acidity by Titration HDPE 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days									- 11 11 181	n (Low Level)	Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L O1-Dec-2022 O2-Dec-2022 O2-Dec-2022 28 days 1 days Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L O1-Dec-2022 O2-Dec-2022 O2-Dec-2022 28 days 1 days Physical Tests : Acidity by Titration HDPE											Amber glass total (sulfuric acid)
Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 01-Dec-2022 02-Dec-2022	/s √	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E355-L	RG_LILC3_WS_LAEMP_LCO_2022-12_N
Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022											
Amber glass total (sulfuric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022									11 11 11 11	n (Low Level)	Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustion (Low Level) Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N E355-L 01-Dec-2022 02-Dec-2022 02-Dec-2022 02-Dec-2022 03-Dec-2022											
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Physical Tests: Acidity by Titration HDPE Image: Color of the color of th	/s √	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E355-L	RG_LISP24_WS_LAEMP_LCO_2022-12_N
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Physical Tests: Acidity by Titration HDPE Image: Color of the color o											
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N 01-Dec-2022 02-Dec-2022 02-Dec-2022 28 days 1 days Physical Tests: Acidity by Titration HDPE Image: Color of the color o									- 11 1 1 1 1 1 1	n (Low Level)	Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic
Physical Tests : Acidity by Titration HDPE											
HDPE	/s √	1 days	28 days	02-Dec-2022				02-Dec-2022	01-Dec-2022	E355-L	RG_RIVER_WS_LAEMP_LCO_2022-12_N
HDPE											
											Physical Tests : Acidity by Titration
RG LCLIT WS LAFMP LCO 2022-12 N E283 01-Dec-2022 03-Dec-2022 03-Dec-2022 14 days 2 days											
o_200o_1200_2022	/s √	2 days	14 days	03-Dec-2022				03-Dec-2022	01-Dec-2022	E283	RG_LCUT_WS_LAEMP_LCO_2022-12_N
Physical Tests : Acidity by Titration											Physical Tests : Acidity by Titration
HDPE											
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	/s √	2 days	14 days	03-Dec-2022				03-Dec-2022	01-Dec-2022	E283	RG_LIDCOM_WS_LAEMP_LCO_2022-12_N
Physical Tests : Acidity by Titration								11157	111111111111		Physical Tests : Acidity by Titration
HDPE											
RG_LILC3_WS_LAEMP_LCO_2022-12_N	/s √	2 days	14 days	03-Dec-2022				03-Dec-2022	01-Dec-2022	E283	RG_LILC3_WS_LAEMP_LCO_2022-12_N
											_

Page : 12 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding Tir
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Acidity by Titration										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E283	01-Dec-2022	03-Dec-2022				03-Dec-2022	14 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E283	01-Dec-2022	03-Dec-2022				03-Dec-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E290	01-Dec-2022	03-Dec-2022				03-Dec-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E290	01-Dec-2022	03-Dec-2022				03-Dec-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E290	01-Dec-2022	03-Dec-2022				03-Dec-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E290	01-Dec-2022	03-Dec-2022				03-Dec-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E290	01-Dec-2022	03-Dec-2022				03-Dec-2022	14 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE		1								
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E100	01-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E100	01-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	2 days	✓
					1					

Page : 13 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E100	01-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E100	01-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	2 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E100	01-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	2 days	✓
Physical Tests : ORP by Electrode										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E125	01-Dec-2022					05-Dec-2022	0.25	92 hrs	*
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E125	01-Dec-2022					05-Dec-2022	0.25	93 hrs	30
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E125	01-Dec-2022					05-Dec-2022	0.25	94 hrs	×
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E125	01-Dec-2022					05-Dec-2022	0.25	95 hrs	*
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E125	01-Dec-2022					05-Dec-2022	0.25	97 hrs	æ
								hrs		EHTR-FM
Physical Tests : pH by Meter			11151							
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E108	01-Dec-2022	03-Dec-2022				03-Dec-2022	0.25	0.26	*
								hrs	hrs	EHTR-FM
					1					

Page : 14 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water					E۱	/aluation: × =	Holding time excee	edance ;	✓ = Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E108	01-Dec-2022	03-Dec-2022				03-Dec-2022	0.25	0.26	*
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E108	01-Dec-2022	03-Dec-2022				03-Dec-2022	0.25	0.26	*
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E108	01-Dec-2022	03-Dec-2022				03-Dec-2022	0.25	0.26	*
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E108	01-Dec-2022	03-Dec-2022				03-Dec-2022	0.25	0.26	*
								hrs	hrs	EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E162	01-Dec-2022					05-Dec-2022	7 days	4 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E162	01-Dec-2022					05-Dec-2022	7 days	4 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E162	01-Dec-2022					05-Dec-2022	7 days	4 days	✓
Physical Tests : TDS by Gravimetry										
HDPE	5400	04.0					05 D. 0000	- ,	4.1	
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E162	01-Dec-2022					05-Dec-2022	7 days	4 days	✓
Physical Tests : TDS by Gravimetry										
HDPE	F460	04 D 0000					05 D 0000	7.1	4.1	
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E162	01-Dec-2022					05-Dec-2022	7 days	4 days	✓

Page : 15 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water						raiuation. * =	Holding time excee	euance , ·	- vvitiiiii	riolaling rillie
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E160-L	01-Dec-2022					06-Dec-2022	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E160-L	01-Dec-2022					06-Dec-2022	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LISP24_WS_LAEMP_LCO_2022-12_N	E160-L	01-Dec-2022					06-Dec-2022	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E160-L	01-Dec-2022					07-Dec-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E160-L	01-Dec-2022					07-Dec-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E121	01-Dec-2022					03-Dec-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry		THE STREET								
HDPE										
RG LIDCOM WS LAEMP LCO 2022-12 N	E121	01-Dec-2022					03-Dec-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE							1			
RG LILC3 WS LAEMP LCO 2022-12 N	E121	01-Dec-2022					03-Dec-2022	3 days	2 days	✓
									,	
Physical Tests : Turbidity by Nephelometry		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
HDPE	1 11 11 11 11 11 11 11 11 11 11 11 11 1									
RG LISP24 WS LAEMP LCO 2022-12 N	E121	01-Dec-2022					03-Dec-2022	3 days	2 days	✓
								, ,-	,-	

 Page
 :
 16 of 24

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

ALS

Project : Regional Effects Program

trix: Water							Holding time excee			
nalyte Group	Method	Sampling Date		raction / Pr				Analys		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
hysical Tests : Turbidity by Nephelometry										
HDPE	F404	04 D 0000					00 0 0000			,
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E121	01-Dec-2022					03-Dec-2022	3 days	2 days	✓
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E420.Cr-L	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	1
								days	,	
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E420.Cr-L	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)	E400.0-1	04 D 0000	05 D 0000				05 D 0000		4 1	,
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E420.Cr-L	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)				<u> </u>						
HDPE - total (lab preserved) RG LISP24 WS LAEMP LCO 2022-12 N	E420.Cr-L	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	1
NG_LIGF24_WG_LALIWIF_LCC_2022-12_N	L420.01-L	01-060-2022	00-Dec-2022				00-Dec-2022	days	4 days	•
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)								days		
HDPE - total (lab preserved)										
RG_RIVER_WS_LAEMP_LCO_2022-12_N	E420.Cr-L	01-Dec-2022	05-Dec-2022				05-Dec-2022	180	4 days	✓
								days		
otal Metals : Total Mercury in Water by CVAAS		THE STREET	1100							
Glass vial total (hydrochloric acid)										
RG_LCUT_WS_LAEMP_LCO_2022-12_N	E508	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)	5500	04.5	0.4.15				04.5			,
RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E508	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)		The second secon								
RG_LILC3_WS_LAEMP_LCO_2022-12_N	E508	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
								,-	'	

Page 17 of 24 Work Order: CG2216739 Client

Teck Coal Limited Regional Effects Program Project

rix: Water		_			Ev	/aluation: 🗴 =	Holding time exce	edance ; 🛚	= Within	Holding T
alyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
tal Metals : Total Mercury in Water by CVAAS										
lass vial total (hydrochloric acid) RG_LISP24_WS_LAEMP_LCO_2022-12_N	E508	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
tal Metals : Total Mercury in Water by CVAAS										
lass vial total (hydrochloric acid) RG_RIVER_WS_LAEMP_LCO_2022-12_N	E508	01-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	3 days	✓
tal Metals : Total metals in Water by CRC ICPMS										
DPE - total (lab preserved) RG_LCUT_WS_LAEMP_LCO_2022-12_N	E420	01-Dec-2022	05-Dec-2022				05-Dec-2022	180 days	4 days	✓
tal Metals : Total metals in Water by CRC ICPMS										
DPE - total (lab preserved) RG_LIDCOM_WS_LAEMP_LCO_2022-12_N	E420	01-Dec-2022	05-Dec-2022				05-Dec-2022	180 days	4 days	✓
tal Metals : Total metals in Water by CRC ICPMS										
DPE - total (lab preserved) RG_LILC3_WS_LAEMP_LCO_2022-12_N	E420	01-Dec-2022	05-Dec-2022				05-Dec-2022	180 days	4 days	✓
tal Metals : Total metals in Water by CRC ICPMS										
DPE - total (lab preserved) RG_LISP24_WS_LAEMP_LCO_2022-12_N	E420	01-Dec-2022	05-Dec-2022				05-Dec-2022	180 days	4 days	✓
RG_LISP24_WS_LAEMP_LCO_2022-12_N tal Metals : Total metals in Water by CRC ICPMS	E420	01-Dec-2022	05-Dec-2022				05-Dec-2022		4 days	

01-Dec-2022

05-Dec-2022

E420

Legend & Qualifier Definitions

HDPE - total (lab preserved)

RG_RIVER_WS_LAEMP_LCO_2022-12_N

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

4 days

180 days ✓

05-Dec-2022

 Page
 :
 18 of 24

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluat	ion: × = <i>QC frequ</i>	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specification
Quality Control Sample Type			C	ount			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	766661	1	18	5.5	5.0	✓
Alkalinity Species by Titration	E290	766664	1	18	5.5	5.0	✓
Ammonia by Fluorescence	E298	766148	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	766118	1	19	5.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	766119	1	19	5.2	5.0	✓
Conductivity in Water	E100	766663	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767686	1	15	6.6	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	766822	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	767685	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	766112	1	7	14.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	766382	1	16	6.2	5.0	✓
Fluoride in Water by IC	E235.F	766117	1	19	5.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	766120	1	19	5.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	766121	1	19	5.2	5.0	✓
ORP by Electrode	E125	766946	1	20	5.0	5.0	✓
pH by Meter	E108	766662	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	766122	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	767360	2	40	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	767051	1	17	5.8	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	766522	1	14	7.1	5.0	✓
Total Mercury in Water by CVAAS	E508	766824	1	20	5.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	767050	1	17	5.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	766113	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	767870	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	766367	2	29	6.9	5.0	✓
Laboratory Control Samples (LCS)	I TO MINE SOURCE MAN						
Acidity by Titration	E283	766661	1	18	5.5	5.0	✓
Alkalinity Species by Titration	E290	766664	1	18	5.5	5.0	<u>√</u>
Ammonia by Fluorescence	E298	766148	1	20	5.0	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	766118	1	19	5.2	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	766119	1	19	5.2	5.0	<u>√</u>
Conductivity in Water	E100	766663	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767686	1	15	6.6	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	766822	1	20	5.0	5.0	<u>√</u>
Dissolved Metals in Water by CRC ICPMS	E421	767685	1	19	5.2	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	766112	1	7	14.2	5.0	<u>√</u>

Page : 19 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Cantral Cample Type					T		nin specification
Quality Control Sample Type	Method	QC Lot #	QC	ount Regular	Actual	Frequency (%) Expected	Evaluation
Analytical Methods	Metrioa	QC Lot #	QC	Regulai	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued				10			
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	766382	1	16	6.2	5.0	<u> </u>
Fluoride in Water by IC	E235.F	766117	1	19	5.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	766120	1	19	5.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	766121	1	19	5.2	5.0	✓
ORP by Electrode	E125	766946	1	20	5.0	5.0	✓
pH by Meter	E108	766662	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	766122	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	767360	2	40	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	767051	1	17	5.8	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	766522	1	14	7.1	5.0	✓
Total Mercury in Water by CVAAS	E508	766824	1	20	5.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	767050	1	17	5.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	766113	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	767870	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	767355	2	40	5.0	5.0	✓
Turbidity by Nephelometry	E121	766367	2	29	6.9	5.0	√
Method Blanks (MB)							
Acidity by Titration	E283	766661	1	18	5.5	5.0	√
Alkalinity Species by Titration	E290	766664	1	18	5.5	5.0	√
Ammonia by Fluorescence	E298	766148	1	20	5.0	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	766118	1	19	5.2	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	766119	1	19	5.2	5.0	<u> </u>
Conductivity in Water	E100	766663	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767686	1	15	6.6	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	766822	1	20	5.0	5.0	<u>√</u>
Dissolved Metals in Water by CRC ICPMS	E421	767685	1	19	5.2	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	766112	1	7	14.2	5.0	<u>√</u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	766382	1	16	6.2	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	766117	1	19	5.2	5.0	<u> </u>
Nitrate in Water by IC (Low Level)	E235.NO3-L	766120	1	19	5.2	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	766121	1	19	5.2	5.0	<u>√</u>
Sulfate in Water by IC	E235.SO4	766122	1	19	5.2	5.0	<u> </u> ✓
TDS by Gravimetry	E162	767360	2	40	5.0	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	767051	1	17	5.8	5.0	<u> </u>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	766522	1	14	7.1	5.0	<u>√</u>
Total Mercury in Water by CVAAS	E508	766824	1	20	5.0	5.0	<u> </u>
Total metals in Water by CRC ICPMS	E420	767050	1	17	5.8	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)		766113	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E355-L E372-U	767870	1	20	5.0	5.0	<u>√</u>

Page 20 of 24 CG2216739 Work Order : Client

Teck Coal Limited Regional Effects Program Project

Matrix: Water		<u>E</u> valuatio	on: × = QC freque	ency outside sp	ecification; ✓ = 0	QC frequency wit	hin specificati
Quality Control Sample Type			Co	ount		5.0 5.0 6.9 5.0 5.0 5.0 5.2 5.0 5.2 5.0 6.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.2 5.0	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
TSS by Gravimetry (Low Level)	E160-L	767355	2	40	5.0	5.0	✓
Turbidity by Nephelometry	E121	766367	2	29	6.9	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	766148	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	766118	1	19	5.2	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	766119	1	19	5.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767686	1	15	6.6	5.0	√
Dissolved Mercury in Water by CVAAS	E509	766822	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	767685	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	766112	1	7	14.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	766382	1	16	6.2	5.0	✓
Fluoride in Water by IC	E235.F	766117	1	19	5.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	766120	1	19	5.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	766121	1	19	5.2	5.0	✓
Sulfate in Water by IC	E235.SO4	766122	1	19	5.2	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	767051	1	17	5.8	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	766522	1	14	7.1	5.0	✓
Total Mercury in Water by CVAAS	E508	766824	1	20	5.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	767050	1	17	5.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	766113	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	767870	1	20	5.0	5.0	1

 Page
 :
 21 of 24

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

ALS

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
				measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 \pm 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light
	Calgary - Environmental			scatter under defined conditions.
ORP by Electrode	, , , , , , , , , , , , , , , , , , ,	Water	ASTM D1498 (mod)	Ovidation radiation notantial is reported as the evidation radiation notantial of the
ON by Electrode	E125	vvatei	AOTIVI D 1430 (IIIOd)	Oxidation redution potential is reported as the oxidation-reduction potential of the
	Calgary - Environmental			platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	0 7	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravillietry (Low Lever)	E160-L	vvatei	AFTIA 2340 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Caigary - Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Crovimetry	F400	Water	APHA 2540 C (mod)	
TDS by Gravimetry	E162	vvalei	APRIA 2540 C (IIIOU)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
Bromide in Water by IC (Low Level)	0 ,	Water	EPA 300.1 (mod)	with gravimetric measurement of the residue.
Bioinide in Water by iC (Low Level)	E235.Br-L	vvalei	EPA 300.1 (IIIou)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Incomparing a serious and a serious description of the serious description and the ser
Chiloride in Water by IC (Low Lever)	E235.CI-L	vvatei	LFA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
Thuonde in Water by 10	E235.F	vvatei	Li A 300.1 (mod)	detection.
	Calgary - Environmental			detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
With the in Water by 10 (Low Level)	E235.NO2-L	vvatei	Li A 300.1 (mod)	detection.
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	L200.INO0-L			detection.
	Calgary - Environmental			dottotion.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	L233.004			detection.
	Calgary - Environmental			dottolion.
	calgary 2c.miontar			

Page : 22 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

ALS

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate,
	2200		(/	carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Calgary - Environmental			alkalinity values.
Ammonia by Fluorescence	E298	Water	Method Fialab 100,	Ammonia in water is determined by automated continuous flow analysis with membrane
	Calgary Environmental		2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
T + 110 11 11 11 11 11 11 11 11 11 11 11 11	Calgary - Environmental	Water	14 11 15:11 100	This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	vvalei	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
Level)	Calgary - Environmental		2010	This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by	E355-L	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct
Combustion (Low Level)				measurement of TOC after an acidified sample has been purged to remove inorganic
	Calgary - Environmental			carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2.
				NPOC does not include volatile organic species that are purged off with IC. For
				samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e.
				TC minus TIC).
Dissolved Organic Carbon by Combustion	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a
(Low Level)				direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Calgary - Environmental			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion
				with infrared detection of CO2. NPOC does not include volatile organic species that are
				purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)				persulfate digestion of the sample.
Pinchal Other Land to La Otherina to	Calgary - Environmental	Water	APHA 4500-P F (mod)	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	vvalei	APHA 4500-P F (IIIOQ)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter.
(Olda Trace Level 0.001 mg/L)	Calgary - Environmental			or held intered through a 0.45 micron membrane litter.
				Field filtration is recommended to ensure test results represent conditions at time of
				sampling.
Total metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
	Calgary - Environmental		(mod)	Collision/Reaction Cell ICPMS.
	Jaigary - Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Total Chromium in Water by CRC ICPMS (Low	E420.Cr-L	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
Level)			(mod)	Collision/Reaction Cell ICPMS.
	Calgary - Environmental			

 Page
 :
 23 of 24

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analytical Methods Method / Lab Matrix Dissolved Metals in Water by CRC ICPMS E421 Water APHA 3030B/EPA Water samples are filtered (0.45 um), preserved with nitric acid. 6020B (mod) Collision/Reaction Cell ICPMS. Calgary - Environmental Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. Water Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Dissolved Chromium in Water by CRC ICPMS E421.Cr-L APHA 3030 B/EPA 6020B (mod) Collision/Reaction Cell ICPMS (Low Level) Calgary - Environmental Total Mercury in Water by CVAAS Water EPA 1631E (mod) F508 Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS Calgary - Environmental Dissolved Mercury in Water by CVAAS E509 Water APHA 3030B/EPA Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation 1631E (mod) using bromine monochloride prior to reduction with stannous chloride, and analyzed by Calgary - Environmental CVAAS APHA 2340B Dissolved Hardness (Calculated) Water "Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and EC100 Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers Calgary - Environmental to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Ion Balance using Dissolved Metals APHA 1030E FC101 Water Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are Calgary - Environmental used where available. Minor ions are included where data is present. lon Balance cannot be calculated accurately for waters with very low electrical conductivity (EC). Preparation Methods Method / Lab Matrix Preparation for Ammonia Water Sample preparation for Preserved Nutrients Water Quality Analysis. EP298 Calgary - Environmental Digestion for TKN in water FP318 Water APHA 4500-Norg D Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, (mod) which converts organic nitrogen sources to Ammonia, which is then quantified by the Calgary - Environmental analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be Preparation for Total Organic Carbon by EP355 Water Preparation for Total Organic Carbon by Combustion Combustion Calgary - Environmental FP358 Water APHA 5310 B (mod) Preparation for Dissolved Organic Carbon Preparation for Dissolved Organic Carbon for Combustion Calgary - Environmental Digestion for Total Phosphorus in water Water APHA 4500-P E (mod). Samples are heated with a persulfate digestion reagent. FP372 Calgary - Environmental

Page : 24 of 24
Work Order : CG2216739
Client : Teck Coal Limited
Project : Regional Effects Program

Method / Lab Matrix Method Reference Preparation Methods Method Descriptions Dissolved Metals Water Filtration Water samples are filtered (0.45 um), and preserved with HNO3. Water APHA 3030B EP421 Calgary - Environmental Dissolved Mercury Water Filtration Water samples are filtered (0.45 um), and preserved with HCl. Water APHA 3030B EP509 Calgary - Environmental

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : CG2216739 Page : 1 of 18

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Ave Address : 2559 29th Street NE
Sparwood BC Canada C

Telephone : Telephone : +1 403 407 1800

Project : Regional Effects Program Date Samples Received : 02-Dec-2022 08:50
PO : VPO00816101 Date Analysis Commenced : 02-Dec-2022

C-O-C number : REP LAEMP LCO 2022 December AL Issue Date : 08-Dec-2022 17:12

Sampler : Rick Smit

Site :----

Quote number : Teck Coal Master Quote

No. of samples received : 5
No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta	
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta	
Elke Tabora		Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta	
Kevin Baxter	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta	
Maria Tuguinay	Lab Assistant	Calgary Inorganics, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Calgary Metals, Calgary, Alberta	

 Page
 2 of 18

 Work Order
 CG2216739

 Client
 Teck Coal Limited

 Project
 Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 :
 3 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water	p-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Physical Tests (QC	Lot: 766367)											
CG2216726-001	Anonymous	turbidity		E121	0.10	NTU	1.76	1.80	2.25%	15%		
Physical Tests (QC	Lot: 766370)											
CG2216735-004	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR		
Physical Tests (QC	Lot: 766661)											
CG2216734-001	Anonymous	acidity (as CaCO3)		E283	10.0	mg/L	<10.0	<10.0	0	Diff <2x LOR		
Physical Tests (QC	Lot: 766662)											
CG2216734-001	Anonymous	рН		E108	0.10	pH units	8.13	8.15	0.246%	4%		
Physical Tests (QC	Lot: 766663)											
CG2216734-001	Anonymous	conductivity		E100	2.0	μS/cm	1800	1800	0.278%	10%		
Physical Tests (QC	Lot: 766664)											
CG2216734-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	428	436	1.78%	20%		
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	428	436	1.78%	20%		
Physical Tests (QC	Lot: 766946)											
CG2216735-004	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	545	547	0.220%	15%		
Physical Tests (QC	Lot: 767360)											
CG2216734-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	1520	1540	1.01%	20%		
Physical Tests (QC	Lot: 767361)											
CG2216739-004	RG_RIVER_WS_LAEMP_ LCO_2022-12_N	solids, total dissolved [TDS]		E162	20	mg/L	672	673	0.223%	20%		
Anions and Nutrien	ts (QC Lot: 766117)											
CG2216726-001	Anonymous	fluoride	16984-48-8	E235.F	0.400	mg/L	<0.400	<0.400	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 766118)											
CG2216726-001	Anonymous	bromide	24959-67-9	E235.Br-L	1.00	mg/L	<1.00	<1.00	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 766119)											
CG2216726-001	Anonymous	chloride	16887-00-6	E235.CI-L	2.00	mg/L	11.5	11.7	0.15	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 766120)											
CG2216726-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.100	mg/L	188	189	0.403%	20%		
Anions and Nutrien	ts (QC Lot: 766121)											

 Page
 :
 4 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 766121) - co	ontinued									
CG2216726-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0200	mg/L	0.779	0.779	0.0128%	20%	
Anions and Nutrient	s (QC Lot: 766122)										
CG2216726-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	6.00	mg/L	1400	1410	0.329%	20%	
Anions and Nutrient	s (QC Lot: 766148)										
CG2216732-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0079	0.0068	0.0011	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 766382)										
CG2216734-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0019	0.0017	0.0002	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 766522)										
CG2216735-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	<0.500	<0.500	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 767870)										
CG2216735-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0055	0.0044	0.0011	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 766112	2)									
CG2216739-001	RG_LILC3_WS_LAEMP_L CO 2022-12 N	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 76611	3)									
CG2216739-001	RG_LILC3_WS_LAEMP_L CO_2022-12_N	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC Lo	t: 766824)										
CG2216729-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	t: 767050)										
CG2216729-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0176	0.0146	0.0030	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00033	0.00038	0.00005	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0557	0.0551	0.957%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
l		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0160 μg/L	0.0000078	0.0000082	Diff <2x LOR	
l		calcium, total	7440-70-2	E420	0.050	mg/L	44.6	43.7	1.91%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.018	0.018	0.0002	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
i				E 400		_		0.000		D.W. 0. 1.0D	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0032	0.0032	0.00003	Diff <2x LOR	

 Page
 :
 5 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

p-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Total Metals (QC Lo	t: 767050) - continued											
CG2216729-001	Anonymous	manganese, total	7439-96-5	E420	0.00010	mg/L	0.00250	0.00250	0.171%	20%		
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000765	0.000738	3.51%	20%		
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		potassium, total	7440-09-7	E420	0.050	mg/L	0.654	0.658	0.607%	20%		
		selenium, total	7782-49-2	E420	0.000050	mg/L	1.92 µg/L	0.00191	0.482%	20%		
		silicon, total	7440-21-3	E420	0.10	mg/L	2.09	2.01	4.15%	20%		
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium, total	7440-23-5	E420	0.050	mg/L	4.84	4.97	2.61%	20%		
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.169	0.165	1.93%	20%		
		sulfur, total	7704-34-9	E420	0.50	mg/L	15.0	14.9	0.787%	20%		
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000013	<0.000010	0.000003	Diff <2x LOR		
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	0.00011	0.000007	Diff <2x LOR		
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	0.00030	0.0000006	Diff <2x LOR		
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000861	0.000870	1.10%	20%		
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR		
otal Metals (QC Lo	ot: 767051)											
CG2216729-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	0.00016	0.00004	Diff <2x LOR		
Dissolved Metals (Q	C L ot: 766822)											
CG2216729-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Dissolved Metals (Q	C L ot: 767685)											
CG2216732-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0018	0.0019	0.00009	Diff <2x LOR		
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00047	0.00042	0.00004	Diff <2x LOR		
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0465	0.0467	0.447%	20%		
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR		
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.015	0.016	0.001	Diff <2x LOR		
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0050 μg/L	<0.0000050	0	Diff <2x LOR		
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	41.9	42.0	0.294%	20%		
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 μg/L	<0.00010	0	Diff <2x LOR		
		copper, dissolved	7440-50-8	E421	0.00010	mg/L	<0.00020	<0.00010	0	Diff <2x LOR		
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
		lead, dissolved	7439-09-0	E421	0.000050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		

 Page
 :
 6 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
issolved Metals (QC Lot: 767685) - con	tinued									
CG2216732-001	Anonymous	lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0021	0.0021	0.000006	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	14.7	14.5	1.39%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00273	0.00263	3.63%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000695	0.000707	1.77%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.756	0.758	0.268%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.584 μg/L	0.000529	9.96%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.68	2.60	2.92%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	7.36	7.23	1.70%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.183	0.184	0.740%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	17.5	17.6	0.133%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000854	0.000843	1.29%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0014	0.0011	0.0003	Diff <2x LOR	
issolved Metals (QC Lot: 767686)										
G2216732-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	

 Page
 :
 7 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 766367)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 766370)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 766661)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
hysical Tests (QCLot: 766663)					
conductivity	E100	1	μS/cm	<1.0	
hysical Tests (QCLot: 766664)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	1.4	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	1.4	
hysical Tests (QCLot: 767355)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
hysical Tests (QCLot: 767356)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
hysical Tests (QCLot: 767360)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
hysical Tests (QCLot: 767361)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
nions and Nutrients (QCLot: 766117)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 766118)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
nions and Nutrients (QCLot: 766119)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
nions and Nutrients (QCLot: 766120)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
nions and Nutrients (QCLot: 766121)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
nions and Nutrients (QCLot: 766122)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	

 Page
 :
 8 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analyte	CAS Number	Method	LO	R Unit	Result	Qualifier
Anions and Nutrients (QCLot: 766148						
ammonia, total (as N)	7664-41-7 I	E298	0.0	05 mg/L	<0.0050	
Anions and Nutrients (QCLot: 766382)					
phosphate, ortho-, dissolved (as P)	14265-44-2 I	E378-U	0.0)1 mg/L	<0.0010	
Anions and Nutrients (QCLot: 766522						
Kjeldahl nitrogen, total [TKN]	[E318	0.0	5 mg/L	<0.050	
Anions and Nutrients (QCLot: 767870						
phosphorus, total	7723-14-0 I	E372-U	0.0	02 mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot: 7						
carbon, dissolved organic [DOC]	[E358-L	0.	5 mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 7						
carbon, total organic [TOC]	E	E355-L	0.	5 mg/L	<0.50	
otal Metals (QCLot: 766824)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
mercury, total	7439-97-6 I	E508	0.000	005 mg/L	<0.0000050	
otal Metals (QCLot: 767050)						
aluminum, total	7429-90-5 E		0.0		<0.0030	
antimony, total	7440-36-0 E		0.00		<0.00010	
arsenic, total	7440-38-2 F		0.00		<0.00010	
barium, total	7440-39-3 I	E420	0.00		<0.00010	
beryllium, total	7440-41-7 I	E420	0.00	002 mg/L	<0.000020	
bismuth, total	7440-69-9 I	E420	0.00	005 mg/L	<0.000050	
boron, total	7440-42-8 I	E420	0.0	1 mg/L	<0.010	
cadmium, total	7440-43-9 I	E420	0.000	005 mg/L	<0.0000050	
calcium, total	7440-70-2 I	E420	0.0	5 mg/L	<0.050	
cobalt, total	7440-48-4 I	E420	0.00	01 mg/L	<0.00010	
copper, total	7440-50-8 E	E420	0.00	05 mg/L	<0.00050	
iron, total	7439-89-6 I	E420	0.0	1 mg/L	<0.010	
lead, total	7439-92-1 I	E420	0.00	005 mg/L	<0.000050	
lithium, total	7439-93-2 I	E420	0.0)1 mg/L	<0.0010	
magnesium, total	7439-95-4 l	E420	0.0	05 mg/L	<0.0050	
manganese, total	7439-96-5 I	E420	0.00	01 mg/L	<0.00010	
molybdenum, total	7439-98-7 I	E420	0.00	005 mg/L	<0.000050	
nickel, total	7440-02-0 I	E420	0.00	05 mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.0	5 mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00	005 mg/L	<0.000050	
silicon, total	7440-21-3 E	E420	0.	l mg/L	<0.10	

 Page
 :
 9 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 767050) - co	ontinued					
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 767051)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 766822	2)					
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 767685						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	

 Page
 :
 10 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 767685) -	continued					
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 767686)		110000				
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	

 Page
 :
 11 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	-Matrix: Water					Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Physical Tests (QCLot: 766367)												
turbidity	E121	0.1	NTU	200 NTU	103	85.0	115					
Physical Tests (QCLot: 766370)												
turbidity	E121	0.1	NTU	200 NTU	105	85.0	115					
Physical Tests (QCLot: 766661)												
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	104	85.0	115					
Physical Tests (QCLot: 766662)												
pH	E108		pH units	7 pH units	101	98.6	101					
Physical Tests (QCLot: 766663)												
conductivity	E100	1	μS/cm	146.9 μS/cm	99.7	90.0	110					
Physical Tests (QCLot: 766664)												
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	104	85.0	115					
Physical Tests (QCLot: 766946)												
oxidation-reduction potential [ORP]	E125		mV	220 mV	99.5	95.4	104					
Physical Tests (QCLot: 767355)												
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	102	85.0	115					
Physical Tests (QCLot: 767356)												
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	97.2	85.0	115					
Physical Tests (QCLot: 767360)												
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	97.4	85.0	115					
Physical Tests (QCLot: 767361)												
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	97.2	85.0	115					
Anions and Nutrients (QCLot: 766117)	10001 10 0 5005 5											
fluoride	16984-48-8 E235.F	0.02	mg/L	1 mg/L	101	90.0	110					
Anions and Nutrients (QCLot: 766118)	0.000.000.0000.000											
bromide	24959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	101	85.0	115					
Anions and Nutrients (QCLot: 766119)	10007.00.0						140					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	99.9	90.0	110					
Anions and Nutrients (QCLot: 766120)												
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	100	90.0	110					
Anions and Nutrients (QCLot: 766121)												
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	98.9	90.0	110					

 Page
 :
 12 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

ub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Anions and Nutrients (QCLot: 766122)							7.4 (4)			
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110		
Anions and Nutrients (QCLot: 766148)										
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	103	85.0	115		
Anions and Nutrients (QCLot: 766382)				f Hall Committee						
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	99.1	80.0	120		
Anions and Nutrients (QCLot: 766522)										
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	114	75.0	125		
Anions and Nutrients (QCLot: 767870)										
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.03 mg/L	100	80.0	120		
Organic / Inorganic Carbon (QCLot: 766112)										
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	94.3	80.0	120		
Organic / Inorganic Carbon (QCLot: 766113)										
carbon, total organic [TOC]		E355-L	0.5	mg/L	8.57 mg/L	94.8	80.0	120		
Total Metals (QCLot: 766824)										
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	111	80.0	120		
Total Metals (QCLot: 767050)										
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	112	80.0	120		
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	100	80.0	120		
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	102	80.0	120		
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120		
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	103	80.0	120		
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	102	80.0	120		
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	92.1	80.0	120		
cadmium, total	7440-43-9		0.000005	mg/L	0.1 mg/L	101	80.0	120		
calcium, total	7440-70-2		0.05	mg/L	50 mg/L	106	80.0	120		
cobalt, total	7440-48-4		0.0001	mg/L	0.25 mg/L	103	80.0	120		
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	101	80.0	120		
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	107	80.0	120		
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	104	80.0	120		
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	103	80.0	120		
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	104	80.0	120		
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120		
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	96.4	80.0	120		
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	101	80.0	120		

 Page
 :
 13 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

b-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie	
Total Metals (QCLot: 767050) - continued										
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	105	80.0	120		
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	92.1	80.0	120		
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	106	60.0	140		
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	94.8	80.0	120		
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	105	80.0	120		
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	103	80.0	120		
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	109	80.0	120		
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	101	80.0	120		
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	100	80.0	120		
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	100	80.0	120		
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	106	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	107	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	100	80.0	120		
Total Metals (QCLot: 767051)										
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	104	80.0	120		
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	94.5	80.0	120		
Dissolved Metals (QCLot: 767685)										
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	117	80.0	120		
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	101	80.0	120		
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	102	80.0	120		
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	100.0	80.0	120		
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	104	80.0	120		
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	97.7	80.0	120		
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	93.1	80.0	120		
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	102	80.0	120		
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	103	80.0	120		
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	102	80.0	120		
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	99.8	80.0	120		
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	102	80.0	120		
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	100	80.0	120		
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	105	80.0	120		
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	108	80.0	120		
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	106	80.0	120		
molybdenum, dissolved	7439-98-7		0.00005	mg/L	0.25 mg/L	99.3	80.0	120		
nickel, dissolved	7440-02-0		0.0005	mg/L	0.5 mg/L	101	80.0	120		

 Page
 :
 14 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery			
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Dissolved Metals (QCLot: 767685) -	continued								
potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	107	80.0	120		
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	89.8	80.0	120		
silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	102	60.0	140		
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	94.5	80.0	120		
sodium, dissolved	7440-23-5 E421	0.05	mg/L	50 mg/L	107	80.0	120		
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	104	80.0	120		
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	50 mg/L	104	80.0	120		
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	1 mg/L	98.4	80.0	120		
tin, dissolved	7440-31-5 E421	0.0001	mg/L	0.5 mg/L	102	80.0	120		
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	0.25 mg/L	104	80.0	120		
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	0.005 mg/L	105	80.0	120		
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	0.5 mg/L	105	80.0	120		
zinc, dissolved	7440-66-6 E421	0.001	mg/L	0.5 mg/L	104	80.0	120		
Dissolved Metals (QCLot: 767686)							1		
chromium, dissolved	7440-47-3 E421.Cr-	L 0.0001	mg/L	0.25 mg/L	105	80.0	120		

 Page
 :
 15 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	y Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Anions and Nutr	ients (QCLot: 766117)											
CG2216726-004	Anonymous	fluoride	16984-48-8	E235.F	0.961 mg/L	1 mg/L	96.1	75.0	125			
Anions and Nutr	ients (QCLot: 766118)											
CG2216726-004	Anonymous	bromide	24959-67-9	E235.Br-L	0.472 mg/L	0.5 mg/L	94.4	75.0	125			
Anions and Nutr	ients (QCLot: 766119)											
CG2216726-004	Anonymous	chloride	16887-00-6	E235.CI-L	93.7 mg/L	100 mg/L	93.7	75.0	125			
Anions and Nutr	ients (QCLot: 766120)											
CG2216726-004	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.36 mg/L	2.5 mg/L	94.2	75.0	125			
Anions and Nutr	ients (QCLot: 766121)											
CG2216726-004	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.476 mg/L	0.5 mg/L	95.2	75.0	125			
Anions and Nutr	ients (QCLot: 766122)											
CG2216726-004	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	95.1 mg/L	100 mg/L	95.1	75.0	125			
Anions and Nutr	ients (QCLot: 766148)											
CG2216732-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.105 mg/L	0.1 mg/L	105	75.0	125			
Anions and Nutr	ients (QCLot: 766382)											
CG2216734-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0516 mg/L	0.05 mg/L	103	70.0	130			
Anions and Nutr	ients (QCLot: 766522)											
CG2216735-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.55 mg/L	2.5 mg/L	102	70.0	130			
Anions and Nutr	ients (QCLot: 767870)											
CG2216735-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0471 mg/L	0.05 mg/L	94.2	70.0	130			
Organic / Inorga	nic Carbon (QCLot: 7661	12)										
CG2216739-001	RG_LILC3_WS_LAEMP_LC O_2022-12_N	carbon, dissolved organic [DOC]		E358-L	5.19 mg/L	5 mg/L	104	70.0	130			
Organic / Inorga	nic Carbon (QCLot: 7661	13)										
CG2216739-001	RG_LILC3_WS_LAEMP_LC O_2022-12_N	carbon, total organic [TOC]		E355-L	5.63 mg/L	5 mg/L	112	70.0	130			
Total Metals (Q0	CLot: 766824)											
CG2216729-002	Anonymous	mercury, total	7439-97-6	E508	0.000110 mg/L	0.0001 mg/L	110	70.0	130			
Total Metals (Q	CLot: 767050)											
CG2216729-002	Anonymous											

 Page
 :
 16 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

ub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
	Lot: 767050) - continu	ed	The second								
CG2216729-002	Anonymous	aluminum, total	7429-90-5	E420	2.08 mg/L	2 mg/L	104	70.0	130		
		antimony, total	7440-36-0	E420	0.193 mg/L	0.2 mg/L	96.5	70.0	130		
		arsenic, total	7440-38-2	E420	0.194 mg/L	0.2 mg/L	96.8	70.0	130		
		barium, total	7440-39-3	E420	0.201 mg/L	0.2 mg/L	100	70.0	130		
		beryllium, total	7440-41-7	E420	0.382 mg/L	0.4 mg/L	95.6	70.0	130		
		bismuth, total	7440-69-9	E420	0.0999 mg/L	0.1 mg/L	99.9	70.0	130		
		boron, total	7440-42-8	E420	0.864 mg/L	1 mg/L	86.4	70.0	130		
		cadmium, total	7440-43-9	E420	0.0402 mg/L	0.04 mg/L	100	70.0	130		
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130		
		cobalt, total	7440-48-4	E420	0.200 mg/L	0.2 mg/L	100	70.0	130		
		copper, total	7440-50-8	E420	0.200 mg/L	0.2 mg/L	99.9	70.0	130		
		iron, total	7439-89-6	E420	20.3 mg/L	20 mg/L	102	70.0	130		
		lead, total	7439-92-1	E420	0.197 mg/L	0.2 mg/L	98.4	70.0	130		
		lithium, total	7439-93-2	E420	0.935 mg/L	1 mg/L	93.5	70.0	130		
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130		
		manganese, total	7439-96-5	E420	0.192 mg/L	0.2 mg/L	96.0	70.0	130		
		molybdenum, total	7439-98-7	E420	0.184 mg/L	0.2 mg/L	92.2	70.0	130		
		nickel, total	7440-02-0	E420	0.388 mg/L	0.4 mg/L	96.9	70.0	130		
		potassium, total	7440-09-7	E420	39.8 mg/L	40 mg/L	99.6	70.0	130		
		selenium, total	7782-49-2	E420	0.389 mg/L	0.4 mg/L	97.2	70.0	130		
		silicon, total	7440-21-3	E420	97.8 mg/L	100 mg/L	97.8	70.0	130		
		silver, total	7440-22-4	E420	0.0410 mg/L	0.04 mg/L	102	70.0	130		
		sodium, total	7440-23-5	E420	19.5 mg/L	20 mg/L	97.3	70.0	130		
		strontium, total	7440-24-6	E420	0.183 mg/L	0.2 mg/L	91.7	70.0	130		
		sulfur, total	7704-34-9	E420	198 mg/L	200 mg/L	99.3	70.0	130		
		thallium, total	7440-28-0	E420	0.0391 mg/L	0.04 mg/L	97.8	70.0	130		
		tin, total	7440-31-5	E420	0.190 mg/L	0.2 mg/L	95.0	70.0	130		
		titanium, total	7440-32-6	E420	0.387 mg/L	0.4 mg/L	96.8	70.0	130		
		uranium, total	7440-61-1	E420	0.0418 mg/L	0.04 mg/L	104	70.0	130		
		vanadium, total	7440-62-2	E420	1.00 mg/L	1 mg/L	100	70.0	130		
		zinc, total	7440-66-6	E420	3.89 mg/L	4 mg/L	97.3	70.0	130		
otal Metals (QC	Lot: 767051)										
CG2216729-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.401 mg/L	0.4 mg/L	100	70.0	130		
Dissolved Metals	(QCLot: 766822)										
CG2216729-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.000106 mg/L	0.0001 mg/L	106	70.0	130		

 Page
 :
 17 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	Spike Recovery (%) Recovery Limits (
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	(QCLot: 767685)											
CG2216732-002	Anonymous	aluminum, dissolved	7429-90-5	E421	2.01 mg/L	2 mg/L	100	70.0	130			
		antimony, dissolved	7440-36-0	E421	0.200 mg/L	0.2 mg/L	100	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.198 mg/L	0.2 mg/L	99.2	70.0	130			
		barium, dissolved	7440-39-3	E421	0.193 mg/L	0.2 mg/L	96.6	70.0	130			
		beryllium, dissolved	7440-41-7	E421	0.385 mg/L	0.4 mg/L	96.2	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.0991 mg/L	0.1 mg/L	99.1	70.0	130			
		boron, dissolved	7440-42-8	E421	0.930 mg/L	1 mg/L	93.0	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.0388 mg/L	0.04 mg/L	97.1	70.0	130			
		calcium, dissolved	7440-70-2	E421	41.0 mg/L	40 mg/L	102	70.0	130			
		cobalt, dissolved	7440-48-4	E421	0.198 mg/L	0.2 mg/L	99.1	70.0	130			
		copper, dissolved	7440-50-8	E421	0.197 mg/L	0.2 mg/L	98.4	70.0	130			
		iron, dissolved	7439-89-6	E421	20.0 mg/L	20 mg/L	100	70.0	130			
		lead, dissolved	7439-92-1	E421	0.204 mg/L	0.2 mg/L	102	70.0	130			
		lithium, dissolved	7439-93-2	E421	0.919 mg/L	1 mg/L	91.9	70.0	130			
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130			
		manganese, dissolved	7439-96-5	E421	0.203 mg/L	0.2 mg/L	101	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.189 mg/L	0.2 mg/L	94.4	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.393 mg/L	0.4 mg/L	98.2	70.0	130			
		potassium, dissolved	7440-09-7	E421	40.6 mg/L	40 mg/L	101	70.0	130			
		selenium, dissolved	7782-49-2	E421	0.391 mg/L	0.4 mg/L	97.7	70.0	130			
		silicon, dissolved	7440-21-3	E421	95.5 mg/L	100 mg/L	95.5	70.0	130			
		silver, dissolved	7440-22-4	E421	0.0409 mg/L	0.04 mg/L	102	70.0	130			
		sodium, dissolved	7440-23-5	E421	20.0 mg/L	20 mg/L	99.8	70.0	130			
		strontium, dissolved	7440-24-6	E421	0.200 mg/L	0.2 mg/L	100	70.0	130			
		sulfur, dissolved	7704-34-9	E421	185 mg/L	200 mg/L	92.7	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.0387 mg/L	0.04 mg/L	96.7	70.0	130			
		tin, dissolved	7440-31-5	E421	0.189 mg/L	0.2 mg/L	94.5	70.0	130			
		titanium, dissolved	7440-32-6	E421	0.395 mg/L	0.4 mg/L	98.8	70.0	130			
		uranium, dissolved	7440-61-1	E421	0.0413 mg/L	0.04 mg/L	103	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.995 mg/L	1 mg/L	99.5	70.0	130			
		zinc, dissolved	7440-66-6	E421	4.07 mg/L	4 mg/L	102	70.0	130			
Dissolved Metals	(QCLot: 767686)											
CG2216732-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.398 mg/L	0.4 mg/L	99.4	70.0	130			

 Page
 :
 18 of 18

 Work Order
 :
 CG2216739

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

WATER CHEMISTRY

ALS Laboratory Report CG2216778 (Finalized December 9, 2022)

ALS Canada Ltd.

Address

CERTIFICATE OF ANALYSIS

Address

: 2559 29th Street NE

Work Order : CG2216778 Page : 1 of 6

Client : Teck Coal Limited Laboratory : Calgary - Environmental **Account Manager** Contact : Cvbele Heddle : Lyudmyla Shvets

: 421 Pine Ave

Sparwood BC Canada Calgary AB Canada T1Y 7B5 Telephone Telephone : +1 403 407 1800

Project : Regional Effects Program Date Samples Received : 03-Dec-2022 11:40

PO : VPO00816101 **Date Analysis Commenced** : 03-Dec-2022

C-O-C number : REP_LAEMP_LCO_2022_December_AL Issue Date : 09-Dec-2022 17:49

Sampler : Rick Smit

Site ----

Quote number : Teck Coal Master Quote

No. of samples received : 2 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta	
Elke Tabora		Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta	
Kevin Baxter	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Kevin Baxter	Team Leader - Inorganics	Metals, Calgary, Alberta	
Mackenzie Lamoureux	Laboratory Analyst	Metals, Calgary, Alberta	
Parker Sgarbossa	Laboratory Analyst	Metals, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta	

Page : 2 of 6

Work Order : CG2216778
Client : Teck Coal Limited

Project : Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Page : 3 of 6
Work Order : CG2216778
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Analytical Results								
Sub-Matrix: Water			CI	lient sample ID	RG_FO23_WS_	RG_LI8_WS_LA	 	
(Matrix: Water)					LAEMP_LCO_2	EMP_LCO_202		
					022-12_N	2-12_N		
			Oliant aanu	olina, alaka /kimaa				
			Client samp	oling date / time	02-Dec-2022 08:30	02-Dec-2022 09:45	 	
Analysis	C4 C 4/	Method	LOR	Unit	CG2216778-001	CG2216778-002	 	
Analyte	CAS Number	Wethou	LOK	Offic	Result	Result	 	
Physical Tests					rtesuit	result		
Physical Tests acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	200	183	 	
alkalinity, bicarbonate (as HCO3)		E290	1.0	mg/L	244	223	 	
alkalinity, carbonate (as CaCO3)	71-52-3	E290	1.0	mg/L	<1.0	9.2	 	
alkalinity, carbonate (as CO3)	2012 22 6	E290	1.0	-	<1.0	9.2 5.5	 	
	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as CaCO3)				mg/L				
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	200	192	 	
conductivity		E100	2.0	μS/cm	805	802	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	456	453	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	360	311	 	
рН		E108	0.10	pH units	8.23	8.33	 	
solids, total dissolved [TDS]		E162	10	mg/L	598	589	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	 	
turbidity		E121	0.10	NTU	0.20	0.18	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	7.20	12.1	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.215	0.278	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050 TKNI	<0.500 DLM, TKN	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	10.9	7.01	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0014	0.0013	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0043	0.0026	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	240	255	 	
Organic / Inorganic Carbon					1111111			
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	 	
I control of the cont	1		•	1 1		'	ı	ı

Page : 4 of 6
Work Order : CG2216778
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

California Marker California Marker California Marker California Marker California Ca	Sub-Matrix: Water			CI	ient sample ID	RG_FO23_WS_	RG_LI8_WS_LA		
Client sampling date / Ismo Cas Number Method LOR Unit Cas	(Matrix: Water)								
CAS Number Method LOR Unit CG2216778-001 CG2216778-002						022-12_N	2-12_N		
Organic / Inorganic Carbon Result Result Result No. 100 Carbon, total organic [TOC] — E355-L 0.50 mg/L <0.50 <0.50 — Long Balance — EC101 0.10 meq/L 9.99 10.0 — — Cation sum — EC101 0.10 meq/L 9.99 10.0 — — Ion balance (cations/anions) — EC101 0.10 % 93.4 94.0 — — Ion balance (APHA) — EC101 0.01 % 93.4 94.0 — — Total Metals — EC101 0.01 % 3.42 -3.09 — — atuminum, total 7429-90-5 E420 0.00010 mg/L -0.0037 — — artimony, total 7440-38-2 E420 0.00010 mg/L -0.00011 0.00013 — — — — — — — — — — — — — —				Client samp	ling date / time				
Carbon, lotal organic (TOC)	Analyte	CAS Number	Method	LOR	Unit	CG2216778-001	CG2216778-002		
Carbon, total organic (TOC) E355-L. 0.50 mg/L. <0.50 <0.50						Result	Result		
Designation Cation sum	Organic / Inorganic Carbon								
Section Sum	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50		
Cation sum	Ion Balance								
In balance (cations/anions)	anion sum		EC101	0.10	meq/L	9.99	10.0		
Ion balance (APHA)	cation sum		EC101	0.10	meq/L	9.33	9.40		
Total Metals aluminum, total 7429-90.5 E420 0.0030 mg/L 0.0043 0.0037 antimony, total 7440-36-0 E420 0.00010 mg/L <0.00010 0.00015 arsenic, total 7440-38-2 E420 0.00010 mg/L 0.00011 0.00013 berlium, total 7440-39-3 E420 0.00010 mg/L <0.020 <0.020 <th>ion balance (cations/anions)</th> <th></th> <th>EC101</th> <th>0.010</th> <th>%</th> <th>93.4</th> <th>94.0</th> <th></th> <th> </th>	ion balance (cations/anions)		EC101	0.010	%	93.4	94.0		
Section Composition Comp	ion balance (APHA)		EC101	0.01	%	-3.42	-3.09		
artimony, total 7440-36-0 E420 0.00010 mg/L <0.00010 0.00015 .	Total Metals							17 12 1 1	
arsenic, total 7440-38-2 E420 0.00010 mg/L 0.00011 0.00013	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0043	0.0037		
barium, total 7440-9-3 E420 0.00010 mg/L 0.0903 0.0657 .	antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	0.00015		
Deryllium, total T440-41-7 E420 0.020 μg/L <0.020 <0.020	arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00011	0.00013		
bismuth, total 7440-69-9 E420 0.00050 mg/L <0.00050 <0.000050	barium, total	7440-39-3	E420	0.00010	mg/L	0.0903	0.0657		
Doron, total T440-42-8	beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020		
cadmium, total 7440-43-9 E420 0.0050 µg/L 0.0220 0.0812 <th< th=""><td>bismuth, total</td><td>7440-69-9</td><td>E420</td><td>0.000050</td><td>mg/L</td><td><0.000050</td><td><0.000050</td><td></td><td> </td></th<>	bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050		
calcium, total 7440-70-2 E420 0.050 mg/L 112 107 <th>boron, total</th> <th>7440-42-8</th> <th>E420</th> <th>0.010</th> <th>mg/L</th> <th><0.010</th> <th>0.011</th> <th></th> <th> </th>	boron, total	7440-42-8	E420	0.010	mg/L	<0.010	0.011		
chromium, total 7440-47-3 E420.Cr-L 0.00010 mg/L 0.00018 0.00024	cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0220	0.0812		
cobalt, total 7440-48-4 E420 0.10 µg/L < 0.10	calcium, total	7440-70-2	E420	0.050	mg/L	112	107		
copper, total 7440-50-8 iron, total E420 0.00050 mg/L <0.00050 mg/L	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00018	0.00024		
iron, total 7439-89-6 E420 0.010 mg/L <0.010 <0.010 lead, total 7439-92-1 E420 0.00050 mg/L <0.00050	cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10		
lead, total 7439-92-1 E420 0.000050 mg/L <0.000050	copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050		
lithium, total 7439-93-2 E420 0.0010 mg/L 0.0250 0.0335	iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010		
magnesium, total 7439-95-4 E420 0.0050 mg/L 52.2 53.0	lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050		
manganese, total 7439-96-5 E420 0.00010 mg/L 0.00057 0.00094	lithium, total	7439-93-2	E420	0.0010	mg/L	0.0250	0.0335		
mercury, total 7439-97-6 E508 0.0000050 mg/L <0.000050	magnesium, total	7439-95-4	E420	0.0050	mg/L	52.2	53.0		
molybdenum, total 7439-98-7 E420 0.00050 mg/L 0.00136 0.00260 nickel, total 7440-02-0 E420 0.00050 mg/L 0.00100 0.00372	manganese, total	7439-96-5	E420	0.00010	mg/L	0.00057	0.00094		
molybdenum, total 7439-98-7 E420 0.000050 mg/L 0.00136 0.00260	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.000050		
nickel, total 7440-02-0 E420 0.00050 mg/L 0.00100 0.00372	molybdenum, total	7439-98-7	E420	0.000050		0.00136	0.00260		
	nickel, total	7440-02-0	E420	0.00050		0.00100	0.00372		
	potassium, total			0.050		1.25	1.30		
selenium, total 7782-49-2 E420 0.050 μg/L 51.5 40.8	selenium, total		E420	0.050		51.5	40.8		

Page : 5 of 6
Work Order : CG2216778
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

California Water) California Sampling date / Intro California Sampling date / In	Sub-Matrix: Water			Cl	ient sample ID	RG_FO23_WS_	RG_LI8_WS_LA	 	
Client sampling date / fame	(Matrix: Water)					LAEMP_LCO_2	EMP_LCO_202		
CAS Number Method LOR Unit CG2216778-002 CG221678-002 CG						022-12_N	2-12_N		
Total Metals silicon, total 7440-21-3 E420 0.10 mgl. 2.235 2.23				Client samp	ling date / time			 	
Pressult Pressult	Analyte	CAS Number	Method	LOR	Unit	CG2216778-001	CG2216778-002	 	
Silcon, total 7440-213 E420 0.10 mg/L 2.35 2.23						Result	Result	 	
silver, total 7440-22-4 E420 0,000010 mg/L <0,000010	Total Metals								
sodium, total 7440-23-5 E420 0.080 mg/L 4.66 7.54 strontium, total 7440-24-6 E420 0.50 mg/L 0.190 0.210 thallium, total 7740-34-9 E420 0.00010 mg/L <0.000010	silicon, total	7440-21-3	E420	0.10	mg/L	2.35	2.23	 	
strontium, total 7440-24-6 E420 0.00020 mgl. 0.190 0.210 suffur, total 7744-34-9 E420 0.00010 mgl. 90.3 93.6 tin, total 7440-31-5 E420 0.00010 mgl. <0.00010	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sufur, total 7704-34-9 E420 0.50 mg/L 90.3 93.6	sodium, total	7440-23-5	E420	0.050	mg/L	4.66	7.54	 	
thallium, total 7440-28-0 E420 0.000010 mg/L <0.00010 -0.00010	strontium, total	7440-24-6	E420	0.00020	mg/L	0.190	0.210	 	
tin, total 7440-31-5 E420 0.00010 mg/L <0.00010	sulfur, total	7704-34-9	E420	0.50	mg/L	90.3	93.6	 	
titanium, total 7440-32-6 E420 0.00030 mg/L <0.00030 <0.00030	thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	 	
uranium, total 7440-61-1 E420 0.00010 mg/L 0.00271 0.00330	tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
uranium, total 7440-61-1 E420 0.000010 mg/L 0.00271 0.00330	titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	 	
Dissolved Metals Mark Ma	uranium, total		E420	0.000010	mg/L	0.00271	0.00330	 	
Dissolved Metals Saluminum, dissolved T429-90-5	vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
aluminum, dissolved	zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0037	 	
antimony, dissolved 7440-36-0 E421 0.00010 mg/L <0.00010 0.00017	Dissolved Metals					11101			
arsenic, dissolved 7440-38-2 E421 0.00010 mg/L <0.00010		7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	 	
barium, dissolved 7440-39-3 E421 0.00010 mg/L 0.0968 0.0699	antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00017	 	
Deryllium, dissolved T440-41-7 E421 0.020 μg/L <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020	arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	0.00013	 	
bismuth, dissolved 7440-69-9 E421 0.000050 mg/L <0.000050	barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0968	0.0699	 	
boron, dissolved 7440-42-8 E421 0.010 mg/L <0.010	beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
cadmium, dissolved 7440-43-9 E421 0.0050 μg/L 0.0196 0.0594	bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
calcium, dissolved 7440-70-2 E421 0.050 mg/L 106 105	boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	0.013	 	
chromium, dissolved 7440-47-3 E421.Cr-L 0.00010 mg/L 0.00010 0.00016	cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0196	0.0594	 	
cobalt, dissolved 7440-48-4 E421 0.10 μg/L <0.10	calcium, dissolved	7440-70-2	E421	0.050	mg/L	106	105	 	
cobalt, dissolved 7440-48-4 E421 0.10 μg/L <0.10	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00010	0.00016	 	
iron, dissolved 7439-89-6 E421 0.010 mg/L <0.010 <0.010 1ead, dissolved 7439-92-1 E421 0.000050 mg/L <0.000050 <0.000050 1ithium, dissolved 7439-93-2 E421 0.0010 mg/L 0.0277 0.0392 magnesium, dissolved 7439-95-4 E421 0.0050 mg/L 46.4 46.4	cobalt, dissolved	7440-48-4	E421	0.10		<0.10	<0.10	 	
lead, dissolved 7439-92-1 E421 0.000050 mg/L <0.000050	copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	 	
lithium, dissolved 7439-93-2 E421 0.0010 mg/L 0.0277 0.0392	iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
magnesium, dissolved 7439-95-4 E421 0.0050 mg/L 46.4 46.4	lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
	lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0277	0.0392	 	
	magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	46.4	46.4	 	
1403-30-0 1119/L 0.00000 0.00010	manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00035	0.00070	 	

Page : 6 of 6
Work Order : CG2216778
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			Cl	ient sample ID	RG_FO23_WS_	RG_LI8_WS_LA	 	
(Matrix: Water)					LAEMP_LCO_2	EMP_LCO_202		
					022-12_N	2-12_N		
			Client samp	ling date / time	02-Dec-2022 08:30	02-Dec-2022 09:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2216778-001	CG2216778-002	 	
					Result	Result	 	
Dissolved Metals								
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00129	0.00243	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00089	0.00323	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.22	1.25	 	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	49.5	41.8	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.61	2.45	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	4.36	7.20	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.186	0.214	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	90.2	97.0	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00266	0.00351	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	0.0038	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2216778** Page : 1 of 16

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Cybele Heddle Account Manager : Lyudmyla Shyets

Contact : Cybele Heddle : Cybele Heddle : Lyudmyla Shvets
Address : 421 Pine Ave : Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

Telephone :--- Telephone :+1 403 407 1800

 Project
 : Regional Effects Program
 Date Samples Received
 : 03-Dec-2022 11:40

 PO
 : VPO00816101
 Issue Date
 : 09-Dec-2022 17:50

C-O-C number : REP LAEMP LCO 2022 December AL

Sampler : Rick Smit
Site : ----

Quote number : Teck Coal Master Quote

No. of samples received :2
No. of samples analysed :2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ● Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

 Page
 :
 3 of 16

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

atrix: **Water** Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time

Matrix: Water						/aluation. ^ –	Holding time exce	euance,	- vviti iii i	Holding 1
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_FO23_WS_LAEMP_LCO_2022-12_N	E298	02-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_LI8_WS_LAEMP_LCO_2022-12_N	E298	02-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)	10.00		11000							
HDPE RG_FO23_WS_LAEMP_LCO_2022-12_N	E235.Br-L	02-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)	10000									
HDPE RG_LI8_WS_LAEMP_LCO_2022-12_N	E235.Br-L	02-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_FO23_WS_LAEMP_LCO_2022-12_N	E235.CI-L	02-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2022-12_N	E235.CI-L	02-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	1 days	✓

Page : 4 of 16
Work Order : CG2216778
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					EV	/aluation: 🔻 =	Holding time excee	edance; v	= vvitnin	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_FO23_WS_LAEMP_LCO_2022-12_N	E378-U	02-Dec-2022	04-Dec-2022				04-Dec-2022	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_LI8_WS_LAEMP_LCO_2022-12_N	E378-U	02-Dec-2022	04-Dec-2022				04-Dec-2022	3 days	2 days	√
Anions and Nutrients : Fluoride in Water by IC			1100							
HDPE RG_FO23_WS_LAEMP_LCO_2022-12_N	E235.F	02-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_LI8_WS_LAEMP_LCO_2022-12_N	E235.F	02-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)			11000							
HDPE RG_FO23_WS_LAEMP_LCO_2022-12_N	E235.NO3-L	02-Dec-2022	03-Dec-2022	3 days	1 days	✓	03-Dec-2022	3 days	0 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11000							
HDPE RG_LI8_WS_LAEMP_LCO_2022-12_N	E235.NO3-L	02-Dec-2022	03-Dec-2022	3 days	1 days	√	03-Dec-2022	3 days	0 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)	111115		111000							
HDPE RG_FO23_WS_LAEMP_LCO_2022-12_N	E235.NO2-L	02-Dec-2022	03-Dec-2022				03-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_LI8_WS_LAEMP_LCO_2022-12_N	E235.NO2-L	02-Dec-2022	03-Dec-2022				03-Dec-2022	3 days	1 days	✓
Anions and Nutrients : Sulfate in Water by IC			1100							
HDPE RG_FO23_WS_LAEMP_LCO_2022-12_N	E235.SO4	02-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	1 days	✓

Page : 5 of 16
Work Order : CG2216778
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding Tir
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E235.SO4	02-Dec-2022	03-Dec-2022				03-Dec-2022	28 days	1 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E318	02-Dec-2022	05-Dec-2022				05-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)	1 110 110 110									
Amber glass total (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E318	02-Dec-2022	05-Dec-2022				05-Dec-2022	28 days	3 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E372-U	02-Dec-2022	07-Dec-2022				09-Dec-2022	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E372-U	02-Dec-2022	07-Dec-2022				09-Dec-2022	28 days	7 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E421.Cr-L	02-Dec-2022	05-Dec-2022				05-Dec-2022	180	3 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E421.Cr-L	02-Dec-2022	05-Dec-2022				05-Dec-2022	180	3 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS									, , , , , , , , , , , , , , , , , , ,	
Glass vial dissolved (hydrochloric acid)										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E509	02-Dec-2022	06-Dec-2022				06-Dec-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E509	02-Dec-2022	06-Dec-2022				06-Dec-2022	28 days	4 days	✓

Page : 6 of 16
Work Order : CG2216778
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E۱	/aluation: 🗴 =	Holding time excee	edance ; •	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	ing Times Eval		Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E421	02-Dec-2022	05-Dec-2022				05-Dec-2022	180	3 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E421	02-Dec-2022	05-Dec-2022				05-Dec-2022	180	3 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low L	_evel)									
Amber glass dissolved (sulfuric acid)										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E358-L	02-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low L	_evel)									
Amber glass dissolved (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E358-L	02-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combu	stion (Low Level)									
Amber glass total (sulfuric acid)										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E355-L	02-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	2 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combu	stion (Low Level)									
Amber glass total (sulfuric acid)										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E355-L	02-Dec-2022	04-Dec-2022				04-Dec-2022	28 days	2 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_F023_WS_LAEMP_LC0_2022-12_N	E283	02-Dec-2022	06-Dec-2022				06-Dec-2022	14 days	4 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E283	02-Dec-2022	06-Dec-2022				06-Dec-2022	14 days	4 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E290	02-Dec-2022	06-Dec-2022				06-Dec-2022	14 days	4 days	✓
	-									

 Page
 :
 7 of 16

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water	1					/aluation. ^ =	Holding time exce			Holding Tilli
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	<u> </u>	Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E290	02-Dec-2022	06-Dec-2022				06-Dec-2022	14 days	4 days	✓
Physical Tests : Conductivity in Water			111111							
HDPE										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E100	02-Dec-2022	06-Dec-2022				06-Dec-2022	28 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E100	02-Dec-2022	06-Dec-2022				06-Dec-2022	28 days	4 days	1
									,	
Physical Tests : ORP by Electrode										
HDPE										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E125	02-Dec-2022					06-Dec-2022	0.25	96 hrs	×
110_E10_VVO_E11EIMI	2.20	02 200 2022					00 000 2022	hrs	001110	EHTR-FM
								1113		
Physical Tests : ORP by Electrode				<u> </u>	l l			1		
HDPE	E125	02-Dec-2022					06-Dec-2022	0.05	98 hrs	×
RG_FO23_WS_LAEMP_LCO_2022-12_N	E125	02-Det-2022					00-Dec-2022	0.25	901115	EHTR-FM
								hrs		EU I K-LIN
Physical Tests : pH by Meter										
HDPE	5 400	00 5 0000								
RG_FO23_WS_LAEMP_LCO_2022-12_N	E108	02-Dec-2022	06-Dec-2022				06-Dec-2022	0.25	0.27	*
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E108	02-Dec-2022	06-Dec-2022				06-Dec-2022	0.25	0.27	*
								hrs	hrs	EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E162	02-Dec-2022					06-Dec-2022	7 days	4 days	✓
Physical Tests : TDS by Gravimetry			11777							
HDPE										
RG LI8 WS LAEMP LCO 2022-12 N	E162	02-Dec-2022					06-Dec-2022	7 days	4 days	✓

Page : 8 of 16
Work Order : CG2216778
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E160-L	02-Dec-2022					08-Dec-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E160-L	02-Dec-2022					08-Dec-2022	7 days	6 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE	E121	02-Dec-2022					04-Dec-2022	3 days	2 days	√
RG_FO23_WS_LAEMP_LCO_2022-12_N	E121	02-Dec-2022					04-Dec-2022	3 days	2 days	•
Physical Tests : Turbidity by Nephelometry HDPE										
RG LI8 WS LAEMP LCO 2022-12 N	E121	02-Dec-2022					04-Dec-2022	3 days	2 days	1
NO_LIO_WO_LALIWII _LOO_2022-12_N	2.2.	02 500 2022					04-000-2022	o days	2 days	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_F023_WS_LAEMP_LC0_2022-12_N	E420.Cr-L	02-Dec-2022	05-Dec-2022				06-Dec-2022	180	4 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_LI8_WS_LAEMP_LCO_2022-12_N	E420.Cr-L	02-Dec-2022	05-Dec-2022				06-Dec-2022	180	4 days	✓
								days		
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_FO23_WS_LAEMP_LCO_2022-12_N	E508	02-Dec-2022	06-Dec-2022				06-Dec-2022	28 days	4 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)	E508	02-Dec-2022	06-Dec-2022				06 Dec 2022	20 day:-	1 days	√
RG_LI8_WS_LAEMP_LCO_2022-12_N	E508	02-Dec-2022	06-Dec-2022				06-Dec-2022	28 days	4 days	•
Total Metals : Total metals in Water by CRC ICPMS HDPE - total (lab preserved)										
RG FO23 WS LAEMP LCO 2022-12 N	E420	02-Dec-2022	05-Dec-2022				06-Dec-2022	180	4 days	1
NO_1 020_110_L1 (L1111 _L00_2022-12_14	0	32 233 2322	00 200 2022				00 200 2022	days	, days	•
								aayo		

 Page
 :
 9 of 16

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Matrix: Water

Evaluation: **x** = Holding time exceedance : ✓ = Within Holding Time

Evaluation. Walter								Holding Hill		
Analyte Group	Method	Sampling Date	Ext	xtraction / Preparation			Analysis			
Container / Client Sample ID(s)			Preparation Holding		lding Times Eval		Analysis Date	e Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total metals in Water by CRC ICPMS										
HDPE - total (lab preserved) RG_LI8_WS_LAEMP_LCO_2022-12_N	E420	02-Dec-2022	05-Dec-2022				06-Dec-2022	180 days	4 days	√

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

 Page
 :
 10 of 16

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Pagings Inffects D

Project : Regional Effects Program

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluat	ion: × = QC frequ		ecification; ✓ =		
Quality Control Sample Type				ount)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	769508	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	769012	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	767032	1	15	6.6	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	766812	1	10	10.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	766813	1	10	10.0	5.0	✓
Conductivity in Water	E100	769010	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767926	1	16	6.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	768827	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	767925	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	767104	1	18	5.5	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	766872	1	9	11.1	5.0	✓
Fluoride in Water by IC	E235.F	766807	1	11	9.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	766814	1	10	10.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	766815	1	10	10.0	5.0	✓
ORP by Electrode	E125	767048	1	20	5.0	5.0	✓
pH by Meter	E108	769011	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	766809	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	768525	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	768003	1	18	5.5	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	767030	1	10	10.0	5.0	✓
Total Mercury in Water by CVAAS	E508	768869	1	19	5.2	5.0	✓
Total metals in Water by CRC ICPMS	E420	768004	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	767105	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	770193	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	766870	1	18	5.5	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	769508	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	769012	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	767032	1	15	6.6	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	766812	1	10	10.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	766813	1	10	10.0	5.0	✓
Conductivity in Water	E100	769010	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767926	1	16	6.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	768827	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	767925	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	767104	1	18	5.5	5.0	✓

 Page
 :
 11 of 16

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Matrix: Water	rix: Water Evaluation: × = QC frequency outside specification; ✓ = QC frequency within s _i								
Quality Control Sample Type				Count Frequer			ency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Control Samples (LCS) - Continued									
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	766872	1	9	11.1	5.0	✓		
Fluoride in Water by IC	E235.F	766807	1	11	9.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	766814	1	10	10.0	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	766815	1	10	10.0	5.0	✓		
ORP by Electrode	E125	767048	1	20	5.0	5.0	✓		
pH by Meter	E108	769011	1	20	5.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	766809	1	19	5.2	5.0	✓		
TDS by Gravimetry	E162	768525	1	20	5.0	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	768003	1	18	5.5	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	767030	1	10	10.0	5.0	✓		
Total Mercury in Water by CVAAS	E508	768869	1	19	5.2	5.0	✓		
Total metals in Water by CRC ICPMS	E420	768004	1	20	5.0	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	767105	1	20	5.0	5.0	✓		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	770193	1	20	5.0	5.0	✓		
TSS by Gravimetry (Low Level)	E160-L	768530	1	20	5.0	5.0	✓		
Turbidity by Nephelometry	E121	766870	1	18	5.5	5.0	✓		
Method Blanks (MB)									
Acidity by Titration	E283	769508	1	20	5.0	5.0	✓		
Alkalinity Species by Titration	E290	769012	1	20	5.0	5.0	√		
Ammonia by Fluorescence	E298	767032	1	15	6.6	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	766812	1	10	10.0	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	766813	1	10	10.0	5.0	✓		
Conductivity in Water	E100	769010	1	20	5.0	5.0	✓		
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767926	1	16	6.2	5.0	✓		
Dissolved Mercury in Water by CVAAS	E509	768827	1	20	5.0	5.0	✓		
Dissolved Metals in Water by CRC ICPMS	E421	767925	1	20	5.0	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	767104	1	18	5.5	5.0	✓		
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	766872	1	9	11.1	5.0	✓		
Fluoride in Water by IC	E235.F	766807	1	11	9.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	766814	1	10	10.0	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	766815	1	10	10.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	766809	1	19	5.2	5.0	✓		
TDS by Gravimetry	E162	768525	1	20	5.0	5.0	✓		
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	768003	1	18	5.5	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	767030	1	10	10.0	5.0	✓		
Total Mercury in Water by CVAAS	E508	768869	1	19	5.2	5.0	✓		
Total metals in Water by CRC ICPMS	E420	768004	1	20	5.0	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	767105	1	20	5.0	5.0	✓		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	770193	1	20	5.0	5.0	✓		

 Page
 :
 12 of 16

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Matrix: **Water** Evaluation: **x** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type					Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
TSS by Gravimetry (Low Level)	E160-L	768530	1	20	5.0	5.0	1
Turbidity by Nephelometry	E121	766870	1	18	5.5	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	767032	1	15	6.6	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	766812	1	10	10.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	766813	1	10	10.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	767926	1	16	6.2	5.0	√
Dissolved Mercury in Water by CVAAS	E509	768827	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	767925	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	767104	1	18	5.5	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	766872	1	9	11.1	5.0	√
Fluoride in Water by IC	E235.F	766807	1	11	9.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	766814	1	10	10.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	766815	1	10	10.0	5.0	✓
Sulfate in Water by IC	E235.SO4	766809	1	19	5.2	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	768003	1	18	5.5	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	767030	1	10	10.0	5.0	✓
Total Mercury in Water by CVAAS	E508	768869	1	19	5.2	5.0	√
Total metals in Water by CRC ICPMS	E420	768004	1	20	5.0	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	767105	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	770193	1	20	5.0	5.0	1

 Page
 :
 13 of 16

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			

 Page
 :
 14 of 16

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

ALS

Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate,
randaning openio 2) rindanin	L230		/ u / u / 2020 2 (ou)	carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Calgary - Environmental			alkalinity values.
Ammonia by Fluorescence	E298	Water	Method Fialab 100,	Ammonia in water is determined by automated continuous flow analysis with membrane
	Calgary - Environmental		2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
T-4-1 1/:-1d-b1 Nitus b.: [] //	<u> </u>	Water	Mathad Field 400	This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	vvatei	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Calgary - Environmental		2010	This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by	E355-L	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct
Combustion (Low Level)				measurement of TOC after an acidified sample has been purged to remove inorganic
	Calgary - Environmental			carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2.
				NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common),
				this method is more accurate and more reliable than the TOC by subtraction method (i.e.
				TC minus TIC).
Dissolved Organic Carbon by Combustion	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a
(Low Level)	Calgary Environmental			direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Calgary - Environmental			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion
				with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)	Calgary - Environmental			persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry	E378-U	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab
(Ultra Trace Level 0.001 mg/L)	2010 0		,	or field filtered through a 0.45 micron membrane filter.
,	Calgary - Environmental			
				Field filtration is recommended to ensure test results represent conditions at time of
Total matela in Water by CDC ICDMC		\\/-t		sampling.
Total metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Calgary - Environmental		(mod)	Componitive action Centrol MC.
				Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Total Chromium in Water by CRC ICPMS (Low	E420.Cr-L	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
Level)	Calgary - Environmental		(mod)	Collision/Reaction Cell ICPMS.
	Jaigary - Environmental			

 Page
 :
 15 of 16

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limit

ALS

Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	АРНА 2340В	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.

 Page
 :
 16 of 16

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Calgary - Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Calgary - Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : CG2216778 Page : 1 of 18

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

:421 Pine Ave Address :2559 29th Street NE

Sparwood BC Canada

Calgary, Alberta Canada T1Y 7B5

Telephone
: Telephone : +1 403 407 1800

Project : Regional Effects Program Date Samples Received : 03-Dec-2022 11:40
PO : VPO00816101 Date Analysis Commenced : 03-Dec-2022

C-O-C number : REP_LAEMP_LCO_2022_December_AL | Issue_Date : 09-Dec-2022_17:49

Sampler : Rick Smit

Site :----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta
Kevin Baxter	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Kevin Baxter	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Vladka Stamenova	Analyst	Calgary Inorganics, Calgary, Alberta

 Page
 2 of 18

 Work Order
 CG2216778

 Client
 Teck Coal Limited

 Project
 Regional Effects Program

ALS

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 :
 3 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water	ub-Matrix: Water						Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 766870)										
CG2216768-002	Anonymous	turbidity		E121	0.10	NTU	1.37	1.34	1.77%	15%	
Physical Tests (QC	Lot: 767048)										
CG2216774-009	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	406	407	0.222%	15%	
Physical Tests (QC	Lot: 768525)										
CG2216768-014	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	1500	1480	1.07%	20%	
Physical Tests (QC	Lot: 769010)										
CG2216774-001	Anonymous	conductivity		E100	2.0	μS/cm	630	627	0.477%	10%	
Physical Tests (QC	Lot: 769011)										
CG2216774-001	Anonymous	рН		E108	0.10	pH units	8.01	8.08	0.870%	4%	
Physical Tests (QC	Lot: 769012)										
CG2216774-001	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	147	144	2.34%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	147	144	2.34%	20%	
Physical Tests (QC	Lot: 769508)										
CG2216773-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	15.8	14.7	1.1	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 766807)										
CG2216761-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.025	0.024	0.001	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 766809)										
CG2216761-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	14.2	14.0	1.52%	20%	
Anions and Nutrien	its (QC Lot: 766812)										
CG2216770-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 766813)										
CG2216770-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.95	0.97	0.02	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 766814)										
CG2216770-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 766815)										
CG2216770-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 766872)										
CG2216770-004	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	

 Page
 :
 4 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water	***						Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	ts (QC Lot: 767030)										
CG2216774-007	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	1.00	mg/L	1.28	1.36	0.081	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 767032)										
CG2216774-014	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0847	0.0837	1.19%	20%	
Anions and Nutrient	ts (QC Lot: 770193)										
CG2216774-004	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0048	0.0037	0.0011	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 76710	4)									
CG2216773-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	3.89	4.02	0.13	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 76710	5)									
CG2216773-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	5.62	5.66	0.708%	20%	
Total Metals (QC Lo	ot: 768003)										
CG2216773-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00089	0.00093	0.00004	Diff <2x LOR	
Total Metals (QC Lo	ot: 768004)										
CG2216773-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.220	0.248	12.1%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00029	0.00030	0.000007	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00075	0.00070	0.00005	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.999	0.975	2.40%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	0.032 μg/L	0.000041	0.000009	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.037	0.038	0.0006	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0722 μg/L	0.0000816	12.2%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	99.4	108	8.81%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.25 μg/L	0.00028	0.00002	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00109	0.00110	0.000010	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	1.30	1.34	3.02%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000431	0.000424	0.000007	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.712	0.719	0.981%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	37.6	39.0	3.56%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.212	0.214	1.22%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000272	0.000261	0.000011	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00116	0.00110	0.00006	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	8.18	8.07	1.30%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.546 μg/L	0.000514	5.99%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	3.41	3.55	3.83%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	0.000012	0.000014	0.000002	Diff <2x LOR	

 Page
 :
 5 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

b-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 768004) - continued										
CG2216773-001	Anonymous	sodium, total	7440-23-5	E420	0.050	mg/L	34.3	36.4	5.83%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.610	0.644	5.26%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	14.1	14.3	1.60%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000014	0.000016	0.000002	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00083	0.00084	0.000002	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00261	0.00297	0.00036	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000353	0.000379	7.10%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00194	0.00206	0.00012	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0071	0.0074	0.0003	Diff <2x LOR	
Total Metals (QC Lo	ot: 768869)										
CG2216774-011	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 767925)										
CG2216773-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0041	0.0047	0.0006	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00037	0.00037	0.000001	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	1.74	1.71	1.66%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.025	0.025	0.0007	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0050 µg/L	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	105	109	4.14%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	0.994	0.993	0.127%	20%	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.492	0.494	0.367%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	39.9	39.1	2.11%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.183	0.184	0.501%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	9.75	9.76	0.0242%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	3.23 µg/L	0.00297	8.56%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.85	3.95	2.61%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	

 Page
 :
 6 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (DI	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 767925) - cont	nued									
CG2216773-001	Anonymous	sodium, dissolved	7440-23-5	E421	0.050	mg/L	42.2	42.3	0.272%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.740	0.730	1.45%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	22.0	23.0	4.66%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	0.00044	0.00040	0.00004	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000242	0.000232	4.01%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	0.00055	0.00056	0.000008	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 767926)										
CG2216773-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00017	0.00017	0.000001	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 768827)										
CG2216774-011	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

 Page
 :
 7 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 766870)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 768525)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 768530)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 769010)					
conductivity	E100	1	μS/cm	<1.0	
hysical Tests (QCLot: 769012)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 769508)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
nions and Nutrients (QCLot: 766807)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 766809)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 766812)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
nions and Nutrients (QCLot: 766813)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
nions and Nutrients (QCLot: 766814)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
nions and Nutrients (QCLot: 766815)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
nions and Nutrients (QCLot: 766872)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
nions and Nutrients (QCLot: 767030)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
nions and Nutrients (QCLot: 767032)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	

 Page
 :
 8 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water

nalyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 7701	93)				
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
rganic / Inorganic Carbon (QCLot:	: 767104)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
rganic / Inorganic Carbon (QCLot:	: 767105)				
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
otal Metals (QCLot: 768003)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
otal Metals (QCLot: 768004)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E420	0.01	mg/L	<0.010	
lead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	

 Page
 :
 9 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
otal Metals (QCLot: 768004) - co	ontinued					
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
otal Metals (QCLot: 768869)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 767925)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	

 Page
 :
 10 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 767925) -	continued					
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 767926)		10000				
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 768827)		10000				
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.0000050	

 Page
 :
 11 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co	ontrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 766870)								
turbidity	E121	0.1	NTU	200 NTU	100.0	85.0	115	
Physical Tests (QCLot: 767048)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	99.0	95.4	104	
Physical Tests (QCLot: 768525)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	100.0	85.0	115	
Physical Tests (QCLot: 768530)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	93.7	85.0	115	
Physical Tests (QCLot: 769010)								1
conductivity	E100	1	μS/cm	146.9 μS/cm	98.7	90.0	110	
Physical Tests (QCLot: 769011)		A THE STREET					101	
рн	E108		pH units	7 pH units	101	98.6	101	
Physical Tests (QCLot: 769012)	5000					05.0	445	
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	101	85.0	115	
Physical Tests (QCLot: 769508)	F002		77.7/	50 "	100	05.0	445	
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	106	85.0	115	
Anions and Nutrients (QCLot: 766807)	16984-48-8 E235.F	0.02	mg/L	1 mg/L	105	90.0	110	
	10001 10 0 2200	0.02	9/2	T mg/E	100			
Anions and Nutrients (QCLot: 766809) sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	106	90.0	110	
				100 mg/2				
Anions and Nutrients (QCLot: 766812) bromide	24959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	106	85.0	115	
Anions and Nutrients (QCLot: 766813)								
chloride	16887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	105	90.0	110	
Anions and Nutrients (QCLot: 766814)								
nitrate (as N)	14797-55-8 E235.NO3-L	. 0.005	mg/L	2.5 mg/L	105	90.0	110	
Anions and Nutrients (QCLot: 766815)								
nitrite (as N)	14797-65-0 E235.NO2-L	. 0.001	mg/L	0.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 766872)			A LONG TO SERVICE AND A SERVIC					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.03 mg/L	102	80.0	120	
Anions and Nutrients (QCLot: 767030)								
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	101	75.0	125	
I control of the cont	· ·	I I	1	I .	I		I	1

 Page
 :
 12 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Anions and Nutrients (QCLot: 767032)							/						
ammonia, total (as N)	7664-41-7 E	E298	0.005	mg/L	0.2 mg/L	102	85.0	115					
Anions and Nutrients (QCLot: 770193)													
phosphorus, total	7723-14-0 E	E372-U	0.002	mg/L	0.03 mg/L	102	80.0	120					
Organic / Inorganic Carbon (QCLot: 767104)		7050 1	0.5				00.0	400					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	93.1	80.0	120					
Organic / Inorganic Carbon (QCLot: 767105)			0.5				00.0	400					
carbon, total organic [TOC]	E	E355-L	0.5	mg/L	8.57 mg/L	97.4	80.0	120					
Total Metals (QCLot: 768003) chromium, total	7440-47-3	=420 Cr I	0.0001	mg/l	0.05 "	04.7	80.0	120					
chromium, total	7440-47-3	E420.Gr-L	0.0001	mg/L	0.25 mg/L	94.7	80.0	120					
Total Metals (QCLot: 768004)	7429-90-5	T420	0.003	ma a //	0 "	00.4	80.0	120					
aluminum, total	7440-36-0 E		0.003	mg/L	2 mg/L	98.4	80.0	120 120					
antimony, total	7440-38-2		0.0001	mg/L	1 mg/L	102	80.0	120					
arsenic, total	7440-39-3 E		0.0001	mg/L	1 mg/L	96.1	80.0	120					
barium, total	7440-41-7		0.0001	mg/L mg/L	0.25 mg/L	93.9	80.0	120					
beryllium, total bismuth, total	7440-69-9		0.00005	mg/L	0.1 mg/L	93.3 92.6	80.0	120					
boron, total	7440-42-8		0.00	mg/L	1 mg/L		80.0	120					
	7440-43-9		0.000005	mg/L	1 mg/L	82.8 95.1	80.0	120					
cadmium, total calcium, total	7440-70-2		0.05	mg/L	0.1 mg/L	97.1	80.0	120					
cobalt, total	7440-48-4		0.0001	mg/L	50 mg/L 0.25 mg/L	94.0	80.0	120					
copper, total	7440-50-8		0.0005	mg/L	0.25 mg/L	95.4	80.0	120					
iron, total	7439-89-6		0.01	mg/L	1 mg/L	93.3	80.0	120					
lead, total	7439-92-1		0.00005	mg/L	0.5 mg/L	93.6	80.0	120					
lithium, total	7439-93-2		0.001	mg/L	0.25 mg/L	92.0	80.0	120					
magnesium, total	7439-95-4		0.005	mg/L	50 mg/L	104	80.0	120					
manganese, total	7439-96-5 E		0.0001	mg/L	0.25 mg/L	97.8	80.0	120					
molybdenum, total	7439-98-7 E		0.00005	mg/L	0.25 mg/L	97.4	80.0	120					
nickel, total	7440-02-0 E	E420	0.0005	mg/L	0.5 mg/L	96.6	80.0	120					
potassium, total	7440-09-7 E	E420	0.05	mg/L	50 mg/L	97.9	80.0	120					
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	92.2	80.0	120					
silicon, total	7440-21-3 E	E420	0.1	mg/L	10 mg/L	94.7	60.0	140					
silver, total	7440-22-4 E	E420	0.00001	mg/L	0.1 mg/L	88.4	80.0	120					
sodium, total	7440-23-5 E	E420	0.05	mg/L	50 mg/L	96.5	80.0	120					
strontium, total	7440-24-6 E	E420	0.0002	mg/L	0.25 mg/L	93.5	80.0	120					

 Page
 :
 13 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number N	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie				
Total Metals (QCLot: 768004) - continued													
sulfur, total	7704-34-9 E	420	0.5	mg/L	50 mg/L	113	80.0	120					
thallium, total	7440-28-0 E	E420	0.00001	mg/L	1 mg/L	96.5	80.0	120					
tin, total	7440-31-5 E	420	0.0001	mg/L	0.5 mg/L	93.3	80.0	120					
titanium, total	7440-32-6 E	420	0.0003	mg/L	0.25 mg/L	94.7	80.0	120					
uranium, total	7440-61-1 E	420	0.00001	mg/L	0.005 mg/L	95.5	80.0	120					
vanadium, total	7440-62-2 E	420	0.0005	mg/L	0.5 mg/L	97.2	80.0	120					
zinc, total	7440-66-6 E	E420	0.003	mg/L	0.5 mg/L	83.0	80.0	120					
Total Metals (QCLot: 768869)													
mercury, total	7439-97-6 E	508	0.000005	mg/L	0.0001 mg/L	106	80.0	120					
Dissolved Metals (QCLot: 767925)	7400 00 5		0.004					400	1				
aluminum, dissolved	7429-90-5 E		0.001	mg/L	2 mg/L	102	80.0	120					
antimony, dissolved	7440-36-0 E		0.0001	mg/L	1 mg/L	97.0	80.0	120					
arsenic, dissolved	7440-38-2 E		0.0001	mg/L	1 mg/L	96.3	80.0	120					
barium, dissolved	7440-39-3 E		0.0001	mg/L	0.25 mg/L	96.6	80.0	120					
beryllium, dissolved	7440-41-7 E		0.00002	mg/L	0.1 mg/L	103	80.0	120					
bismuth, dissolved	7440-69-9 E	421	0.00005	mg/L	1 mg/L	95.2	80.0	120					
boron, dissolved	7440-42-8 E	421	0.01	mg/L	1 mg/L	94.4	80.0	120					
cadmium, dissolved	7440-43-9 E	421	0.000005	mg/L	0.1 mg/L	99.1	80.0	120					
calcium, dissolved	7440-70-2 E	421	0.05	mg/L	50 mg/L	103	80.0	120					
cobalt, dissolved	7440-48-4 E	421	0.0001	mg/L	0.25 mg/L	97.2	80.0	120					
copper, dissolved	7440-50-8 E	421	0.0002	mg/L	0.25 mg/L	95.6	80.0	120					
iron, dissolved	7439-89-6 E	421	0.01	mg/L	1 mg/L	104	80.0	120					
lead, dissolved	7439-92-1 E	421	0.00005	mg/L	0.5 mg/L	98.8	80.0	120					
lithium, dissolved	7439-93-2 E	421	0.001	mg/L	0.25 mg/L	107	80.0	120					
magnesium, dissolved	7439-95-4 E	421	0.005	mg/L	50 mg/L	102	80.0	120					
manganese, dissolved	7439-96-5 E	421	0.0001	mg/L	0.25 mg/L	97.3	80.0	120					
molybdenum, dissolved	7439-98-7 E	421	0.00005	mg/L	0.25 mg/L	92.9	80.0	120					
nickel, dissolved	7440-02-0 E	421	0.0005	mg/L	0.5 mg/L	95.0	80.0	120					
potassium, dissolved	7440-09-7 E	421	0.05	mg/L	50 mg/L	102	80.0	120					
selenium, dissolved	7782-49-2 E	421	0.00005	mg/L	1 mg/L	91.5	80.0	120					
silicon, dissolved	7440-21-3 E	421	0.05	mg/L	10 mg/L	105	60.0	140					
silver, dissolved	7440-22-4 E	421	0.00001	mg/L	0.1 mg/L	90.3	80.0	120					
sodium, dissolved	7440-23-5 E	421	0.05	mg/L	50 mg/L	100	80.0	120					
strontium, dissolved	7440-24-6 E		0.0002	mg/L	0.25 mg/L	98.0	80.0	120					
sulfur, dissolved	7704-34-9 E		0.5	mg/L	50 mg/L	98.3	80.0	120					

 Page
 :
 14 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 767925)	continued								
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	97.7	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	95.4	80.0	120	
itanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	100	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	104	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.0	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	104	80.0	120	
Dissolved Metals (QCLot: 767926)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	99.7	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	102	80.0	120	

 Page
 :
 15 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutri	ents (QCLot: 766807)									
CG2216770-006	Anonymous	fluoride	16984-48-8	E235.F	1.03 mg/L	1 mg/L	103	75.0	125	
Anions and Nutri	ents (QCLot: 766809)									
CG2216761-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	102 mg/L	100 mg/L	102	75.0	125	
Anions and Nutri	ents (QCLot: 766812)									
CG2216770-006	Anonymous	bromide	24959-67-9	E235.Br-L	0.526 mg/L	0.5 mg/L	105	75.0	125	
Anions and Nutri	ents (QCLot: 766813)									
CG2216770-006	Anonymous	chloride	16887-00-6	E235.CI-L	104 mg/L	100 mg/L	104	75.0	125	
Anions and Nutri	ents (QCLot: 766814)									
CG2216770-006	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.61 mg/L	2.5 mg/L	104	75.0	125	
Anions and Nutri	ents (QCLot: 766815)									
CG2216770-006	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.540 mg/L	0.5 mg/L	108	75.0	125	
Anions and Nutri	ents (QCLot: 766872)									
CG2216770-005	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0500 mg/L	0.05 mg/L	100	70.0	130	
Anions and Nutri	ents (QCLot: 767030)									
CG2216774-008	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.58 mg/L	2.5 mg/L	103	70.0	130	
Anions and Nutri	ents (QCLot: 767032)									
CG2216774-015	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.110 mg/L	0.1 mg/L	110	75.0	125	
Anions and Nutri	ents (QCLot: 770193)									
CG2216774-005	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0448 mg/L	0.05 mg/L	89.7	70.0	130	
Organic / Inorgar	ic Carbon (QCLot: 76	7104)								
CG2216773-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	6.16 mg/L	5 mg/L	123	70.0	130	
Organic / Inorgar	ic Carbon (QCLot: 76	7105)								
CG2216773-001	Anonymous	carbon, total organic [TOC]		E355-L	ND mg/L	5 mg/L	ND	70.0	130	
Total Metals (QC	Lot: 768003)									
CG2216773-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.362 mg/L	0.4 mg/L	90.6	70.0	130	
Total Metals (QC	Lot: 768004)									
CG2216773-002	Anonymous	aluminum, total	7429-90-5	E420	1.84 mg/L	2 mg/L	92.2	70.0	130	

 Page
 :
 16 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	Lot: 768004) - cont	inued								
CG2216773-002	Anonymous	antimony, total	7440-36-0	E420	0.193 mg/L	0.2 mg/L	96.4	70.0	130	
		arsenic, total	7440-38-2	E420	0.191 mg/L	0.2 mg/L	95.7	70.0	130	
		barium, total	7440-39-3	E420	0.176 mg/L	0.2 mg/L	88.0	70.0	130	
		beryllium, total	7440-41-7	E420	0.376 mg/L	0.4 mg/L	94.0	70.0	130	
		bismuth, total	7440-69-9	E420	0.0914 mg/L	0.1 mg/L	91.4	70.0	130	
		boron, total	7440-42-8	E420	0.827 mg/L	1 mg/L	82.7	70.0	130	
		cadmium, total	7440-43-9	E420	0.0372 mg/L	0.04 mg/L	92.9	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.188 mg/L	0.2 mg/L	93.9	70.0	130	
		copper, total	7440-50-8	E420	0.182 mg/L	0.2 mg/L	91.0	70.0	130	
		iron, total	7439-89-6	E420	18.2 mg/L	20 mg/L	91.0	70.0	130	
		lead, total	7439-92-1	E420	0.180 mg/L	0.2 mg/L	89.8	70.0	130	
		lithium, total	7439-93-2	E420	0.912 mg/L	1 mg/L	91.2	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.190 mg/L	0.2 mg/L	95.1	70.0	130	
		molybdenum, total	7439-98-7	E420	0.180 mg/L	0.2 mg/L	89.8	70.0	130	
		nickel, total	7440-02-0	E420	0.377 mg/L	0.4 mg/L	94.2	70.0	130	
		potassium, total	7440-09-7	E420	37.6 mg/L	40 mg/L	94.0	70.0	130	
		selenium, total	7782-49-2	E420	0.371 mg/L	0.4 mg/L	92.8	70.0	130	
		silicon, total	7440-21-3	E420	86.9 mg/L	100 mg/L	86.9	70.0	130	
		silver, total	7440-22-4	E420	0.0382 mg/L	0.04 mg/L	95.5	70.0	130	
		sodium, total	7440-23-5	E420	18.5 mg/L	20 mg/L	92.6	70.0	130	
		strontium, total	7440-24-6	E420	0.181 mg/L	0.2 mg/L	90.4	70.0	130	
		sulfur, total	7704-34-9	E420	195 mg/L	200 mg/L	97.7	70.0	130	
		thallium, total	7440-28-0	E420	0.0369 mg/L	0.04 mg/L	92.2	70.0	130	
		tin, total	7440-31-5	E420	0.176 mg/L	0.2 mg/L	88.3	70.0	130	
		titanium, total	7440-32-6	E420	0.369 mg/L	0.4 mg/L	92.3	70.0	130	
		uranium, total	7440-61-1	E420	0.0346 mg/L	0.04 mg/L	86.6	70.0	130	
		vanadium, total	7440-62-2	E420	0.930 mg/L	1 mg/L	93.0	70.0	130	
		zinc, total	7440-66-6	E420	3.43 mg/L	4 mg/L	85.8	70.0	130	
otal Metals (QC	Lot: 768869)									
CG2216774-012	Anonymous	mercury, total	7439-97-6	E508	0.000110 mg/L	0.0001 mg/L	110	70.0	130	
issolved Metals	(QCLot: 767925)									
CG2216773-002	Anonymous	aluminum, dissolved	7429-90-5	E421	1.87 mg/L	2 mg/L	93.7	70.0	130	
	•	antimony, dissolved	7440-36-0	E421	0.198 mg/L	0.2 mg/L	99.3	70.0	130	

 Page
 :
 17 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Water						Matrix Spi	ke (MS) Report			
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 767925) - con	ntinued								
CG2216773-002	Anonymous	arsenic, dissolved	7440-38-2	E421	0.201 mg/L	0.2 mg/L	100	70.0	130	
		barium, dissolved	7440-39-3	E421	0.199 mg/L	0.2 mg/L	99.6	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.390 mg/L	0.4 mg/L	97.4	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.105 mg/L	0.1 mg/L	105	70.0	130	
		boron, dissolved	7440-42-8	E421	0.902 mg/L	1 mg/L	90.2	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0414 mg/L	0.04 mg/L	103	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.200 mg/L	0.2 mg/L	100	70.0	130	
		copper, dissolved	7440-50-8	E421	0.199 mg/L	0.2 mg/L	99.3	70.0	130	
		iron, dissolved	7439-89-6	E421	20.5 mg/L	20 mg/L	102	70.0	130	
		lead, dissolved	7439-92-1	E421	0.206 mg/L	0.2 mg/L	103	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.944 mg/L	1 mg/L	94.4	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.206 mg/L	0.2 mg/L	103	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.185 mg/L	0.2 mg/L	92.4	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.392 mg/L	0.4 mg/L	98.0	70.0	130	
		potassium, dissolved	7440-09-7	E421	41.9 mg/L	40 mg/L	105	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.377 mg/L	0.4 mg/L	94.3	70.0	130	
		silicon, dissolved	7440-21-3	E421	96.6 mg/L	100 mg/L	96.6	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0409 mg/L	0.04 mg/L	102	70.0	130	
		sodium, dissolved	7440-23-5	E421	19.6 mg/L	20 mg/L	97.8	70.0	130	
		strontium, dissolved	7440-24-6	E421	0.190 mg/L	0.2 mg/L	95.1	70.0	130	
		sulfur, dissolved	7704-34-9	E421	164 mg/L	200 mg/L	81.9	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0393 mg/L	0.04 mg/L	98.3	70.0	130	
		tin, dissolved	7440-31-5	E421	0.191 mg/L	0.2 mg/L	95.6	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.394 mg/L	0.4 mg/L	98.4	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.0418 mg/L	0.04 mg/L	104	70.0	130	
		vanadium, dissolved	7440-62-2	E421	1.00 mg/L	1 mg/L	100	70.0	130	
		zinc, dissolved	7440-66-6	E421	4.28 mg/L	4 mg/L	107	70.0	130	
Dissolved Metals	(QCLot: 767926)									
CG2216773-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.410 mg/L	0.4 mg/L	102	70.0	130	
Dissolved Metals	(QCLot: 768827)									
CG2216774-012	Anonymous	mercury, dissolved	7439-97-6	E509	0.000102 mg/L	0.0001 mg/L	102	70.0	130	

 Page
 :
 18 of 18

 Work Order
 :
 CG2216778

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Page 1 of

IECK	COC ID: REP_LA	EMP_1	LCO_Z022_1	December_A	TUDNI	DOUN	D TIME			·								
			21		1_			,		Regu	ilar Taggi Ta gg	Tarita di Sandini		RUSH		Charles the	va sosa ndi i	রুক ভিত্ত তারিকার। বুকি
interior and the state of the s	Megasta de la company				La	h Name	ALS Cale	ary		No. 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				Distributio				EDD
Project Manager	Cybele Heddle					Contact	byudinyl	e tereta						1.04		172	2	
	Cybele.Heddle@Teck.com								ALSGloba	l.com	Em	ail 2:	teckcoal@	equisonline.c	om			X
Address	421 Pine Ave					Address	2559-29-8	treet_NE_			-	ail 3:	Teck Lab.	Results@teck	com	X	x	X
City	Sparwood		Province BC		+	Cin	Calgary		Danima	AB	_	ail 4:	hannah.p	enner@tecl	.com	X	X .	_X
Postal Code	V0B 2G0		Country Can	nada .	Post		T1Y 7B5		Province Country	Canada	 	ail 5:		hodgson@n	ninnow.ca	<u>x</u>	<u>X</u>	- X
Phone Number			Country				403 407 1	794	Country	Canada		umber	Ibowrong	ominnow.ca	VPO0081	X 6101	<u>X</u>	<u> X</u>
	SAMPLE_DETAI	LS			Krak-ger				LYSIS RE	QUESTI				File			Fleld &	Lab. N: None
							F F	N	F	N	F	N	N					
							500 1420	+		<u>!</u>								+
				3	i		HISO.	H2SO4	HCL	NONE	HNO3	HNO3	NONE					
		<u> </u>		7	<u>'</u>		LESO.	1 12304	HCL	arion	пиоз	111103	NOME	1				
 		x F. F. Hazardous Material (Yes/No)		}				7			< -	7 h	낦					
·		ے ا	· ,		ļ.			10T			D-V	H						
	1.5	eria		, ,				🔀	_	ا ر ا	E	EL	50					
		Mat					S. S.	-se-T		-CVAF-VA	Σ -5	N I	J-R					
	*	sno		1 . 1		ļ	इ है	Ckag	VAI	VAI	I V	OAI	OAI					
	Sample Location Fi	ard Par			G=Grab	" " "	a a	P &) d	r-C	Ž į	, KC	KČ					
Sample ID	(sys loc code) Ma	eld E	Date	Time (24hr)	C=Com	# Of Cont.	ALS_Package-DOC	ALS_Package-TKN/TOC	HG-D-CVAF-VA	HG-T	TECKCOAL-MET-D-VA	TECKCOAL-METNHG- T-CL	TECKCOAL-ROUTINE- VA					
RG_FO23-WS/10 UK-MP2022- RG-LIB-WS-LCO-LACMP2022-P-N	2 A) RC F/503 V		2023 P-03	08:30 !	G	7	1	×		برو								+
26 170 de la la la la la la la la la la la la la	RCITO V	S NO	7 -	09:45	G	7					. eq	A.	. ex	<u></u>				+
NO-LIB-WS.LCO-LAS-MY-2022-12-N			PAR IN OX	04. 10			_ <u> </u>	:5×4	2	×	_A_	4	٠					
	· ·		 	!	G			-			·-	[_		
		S NO	<u> </u>		, G		ä	-	·.					ıtal Div				1
	v	'S NO			G							Calga	ry k Ordel	r Refere	nce			
	v	'S NO	٠.		G	_						Õ	G2	216	778	`		
	v	'S NO		į	G	ĺ							U L.		•	-		
	V	s NO			G						-			ula Mila				\Box
	·	'S NO			G	· -		: 748								7	<u>-</u>	
	V	'S NO			G			1.05.0	£ 5 2,		.		l tree	ባብ ዘነኝ		• 🕇		
	V	'S NO			G		1	+ +			-				2	+		
·		's NO	· ·		G		-	 			-	Telenho	ne · + 1 4	03 407 180	0	-		
							<u> </u>	}			7 .	relepho				`		
ADDITIONAL COMMENTS/SPEC	CHAIL TAICCEPT COME	S NO	PELINOUIS	HED BY/AFFILI	G G	हैं। तुः गास्त्रका	DATE/	TING C	ACCE	DEL M	VŽA GIG			e celturar o	5.5 (D.47)	- COST - FE	JE - E 11 13 N	
ADDITIONAL COMMENTS/SPEA	COAD INDIRECTIONS.	R.Ju.	Smil /lotic env		A TOIL	5	1027-12-	02/12	.a T	711	LAFF	LIATIO	IN -70 11 2		DATI	E/TIME		1
1		1,100	JAN 17 ZOLLES	10 (11 0(10)				3.10	- - /.	H^-		<u> </u>		15/	1-7	-		10
·	•									/				(4	<u>`</u>		\ -	
				;		-+				I							Pa	<u></u>
SERVICE REQUEST (rush - su				A THE CO. T. S.	Profits in	1570		e de la composition della composition della comp	one of the second						77. 20	्रमध्य १८२	(3)	TO THE
Dei-sis (2)	Regular (defaul 3 business days) - 50% surcharg) X	Sampler's	Name		1	Rick Smi	t		Mobi	ile#	<u> </u>			586-3241			reason
	Business Day) - 100% surcharg				 								<u> </u>					
	SAP or Weekend - Contact AL		Sampler's Sig	gnature	<u> </u>		Riek Smi	t		Date/1	lime	200	8 - 12 -	08/	K:00			

Environmental Division Calgary
Work Order Reference

SELENIUM SPECIATION

BAL Final Report 2205163 (Finalized May 27, 2022)

18804 North Creek Parkway, Ste 100, Bothell, WA 98011 • USA • T: 206 632 6206 F: 206 632 6017 • info@brooksapplied.com

May 27, 2022

Teck Resources Limited – Vancouver Cybele Heddle 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 cybele.heddle@teck.com

Re: Regional Effects Program – LCO LAEMP

Dear Cybele Heddle,

On May 12, 2022, Brooks Applied Labs (BAL) received twenty-two (22) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) forms.

The Sample ID values listed on the chain-of-custody (COC) forms did not exactly match the corresponding Sample ID values on the container labels for 2205163-47, 2205163-50, and 2205163-59. The discrepancies are described in the table below.

Laboratory ID	Sample ID (on COC form)	Sample ID (on container label)
2205163-47	RG_LILC3_WS_LAEMP_LCO_2022-04_NP	RG_LILC3_WS_LAEMP_EVO_2021-04_NP
2205163-50	RG_LCUT_WS_LAEMP_LCO_2022-04_NP	RG_LCUT_WS_LAEMP_EVO_2021-04_NP
2205163-59	RG_FRUL_WS_LAEMP_LCO_2022-04_NP	RG_FRUL_WS_LAEMP_EVO_2021-04_NP

The sample fractions 2205163-47, 2205163-50, and 2205163-59 were logged in and reported using the **Sample ID** values described on the COC form (column 2 in the table above).

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the Interference Reduction Technology section on our website, brooksapplied.com.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively Confidential BAL Final Report 2205163

coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute Senior Project Manager Brooks Applied Labs Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163

Client PM: Cybele Heddle

Client Project: Regional Effects Program -

LCO LAEMP

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 PM: Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program -

LCO LAEMP

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)
EPA 1638 Mod EPA 200.8 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn
EPA 6020 Mod		
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)
EPA 1631E Mod	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury
BAL-3100	, ,	
EPA 1630 Mod	Non-Potable Waters, Solids/Chemicals	Methyl Mercury
BAL-3200	Biological	,
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)
BAL-3300	Biological/Food	In annualis Arabasis (190 Only)
	Solids/Chemicals	Inorganic Arsenic (ISO Only)
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb
B	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)
SM2340B	Non-Potable Waters	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_RIVER_WS_LAEMP_LCO_2022 -04_NP	2205163-33	WS	Sample	05/03/2022	05/12/2022
RG_RIVER_WS_LAEMP_LCO_2022 -04_NP-NAL	2205163-34	WS	Sample	05/03/2022	05/12/2022
RG_RIVER_WS_LAEMP_LCO_2022 -04_NP-NAL	2205163-35	WS	Sample	05/03/2022	05/12/2022
RG_SLINE_WS_LAEMP_LCO_2022 -04_NP	2205163-36	WS	Sample	05/03/2022	05/12/2022
RG_SLINE_WS_LAEMP_LCO_2022 -04_NP-NAL	2205163-37	WS	Sample	05/03/2022	05/12/2022
RG_SLINE_WS_LAEMP_LCO_2022 -04 NP-NAL	2205163-38	WS	Sample	05/03/2022	05/12/2022
RG_LI24_WS_LAEMP_LCO_2022_0 4 NP-NAL	2205163-39	WS	Sample	05/03/2022	05/12/2022
 RG_LI24_WS_LAEMP_LCO_2022_0 4 NP-NAL	2205163-40	WS	Sample	05/03/2022	05/12/2022
 RG_LI24_WS_LAEMP_LCO_2022-0 4_NP	2205163-41	WS	Sample	05/03/2022	05/12/2022
 RG_LISP24_WS_LAEMP_LCO_202 2-04_NP-NAL	2205163-42	WS	Sample	05/03/2022	05/12/2022

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_LISP24_WS_LAEMP_LCO_202 2-04_NP-NAL	2205163-43	WS	Sample	05/03/2022	05/12/2022
RG_LISP24_WS_LAEMP_LCO_202 2-04_NP	2205163-44	WS	Sample	05/03/2022	05/12/2022
RG_LILC3_WS_LAEMP_LCO_2022- 04_NP-NAL	2205163-45	WS	Sample	05/02/2022	05/12/2022
RG_LILC3_WS_LAEMP_LCO_2022- 04_NP-NAL	2205163-46	WS	Sample	05/02/2022	05/12/2022
RG_LILC3_WS_LAEMP_LCO_2022- 04_NP	2205163-47	WS	Sample	05/02/2022	05/12/2022
RG_LCUT_WS_LAEMP_LCO_2022- 04_NP-NAL	2205163-48	WS	Sample	05/02/2022	05/12/2022
RG_LCUT_WS_LAEMP_LCO_2022- 04_NP-NAL	2205163-49	WS	Sample	05/02/2022	05/12/2022
RG_LCUT_WS_LAEMP_LCO_2022- 04_NP	2205163-50	WS	Sample	05/02/2022	05/12/2022
_ RG_LI8_WS_LAEMP_LCO_2022-04 _NP-NAL	2205163-51	WS	Sample	05/04/2022	05/12/2022
_ RG_LI8_WS_LAEMP_LCO_2022-04 _NP-NAL	2205163-52	WS	Sample	05/04/2022	05/12/2022
_ RG_LI8_WS_LAEMP_LCO_2022-04 _NP	2205163-53	WS	Sample	05/04/2022	05/12/2022
_ RG_FO23_WS_LAEMP_LCO_2022- 04_NP-NAL	2205163-54	WS	Sample	05/04/2022	05/12/2022
_ RG_FO23_WS_LAEMP_LCO_2022- 04_NP-NAL	2205163-55	WS	Sample	05/04/2022	05/12/2022
 RG_FO23_WS_LAEMP_LCO_2022- 04_NP	2205163-56	WS	Sample	05/04/2022	05/12/2022
 RG_FRUL_WS_LAEMP_LCO_2022- 04_NP-NAL	2205163-57	WS	Sample	05/02/2022	05/12/2022
RG_FRUL_WS_LAEMP_LCO_2022- 04_NP-NAL	2205163-58	WS	Sample	05/02/2022	05/12/2022
RG_FRUL_WS_LAEMP_LCO_2022- 04_NP	2205163-59	WS	Sample	05/02/2022	05/12/2022
RG_LIDCOM_WS_LAEMP_LCO_20 22-04_NP-NAL	2205163-60	WS	Sample	05/04/2022	05/12/2022
RG_LIDCOM_WS_LAEMP_LCO_20 22-04_NP-NAL	2205163-61	WS	Sample	05/04/2022	05/12/2022
RG_LIDCOM_WS_LAEMP_LCO_20 22-04_NP	2205163-62	WS	Sample	05/04/2022	05/12/2022
RG_FBLANK_WS_LAEMP_LCO_20 22-04_NP-NAL	2205163-63	WS	Sample	05/03/2022	05/12/2022

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program -

LCO LAEMP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_FBLANK_WS_LAEMP_LCO_20 22-04_NP-NAL	2205163-64	WS	Sample	05/03/2022	05/12/2022
RG_FBLANK_WS_LAEMP_LCO_20 22-04_NP	2205163-65	WS	Sample	05/03/2022	05/12/2022

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	05/13/2022	05/14/2022	B221051	S220544
MeSe(IV)	Water	SOP BAL-4201	05/13/2022	05/14/2022	B221051	S220544
MeSe(VI)	Water	SOP BAL-4201	05/13/2022	05/14/2022	B221051	S220544
Se	Water	EPA 1638 Mod	05/16/2022	05/17/2022	B221065	S220549
Se(IV)	Water	SOP BAL-4201	05/13/2022	05/14/2022	B221051	S220544
Se(VI)	Water	SOP BAL-4201	05/13/2022	05/14/2022	B221051	S220544
SeCN	Water	SOP BAL-4201	05/13/2022	05/14/2022	B221051	S220544
SeMet	Water	SOP BAL-4201	05/13/2022	05/14/2022	B221051	S220544
SeSO3	Water	SOP BAL-4201	05/13/2022	05/14/2022	B221051	S220544
Unk Se Sp	Water	SOP BAL-4201	05/13/2022	05/14/2022	B221051	S220544

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence	
RG_RIVER_W	S_LAEMP_LCC	D_2022-04_NP									
2205163-33	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-33	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-33	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-33	Se(IV)	WS	D	0.028	J	0.010	0.075	μg/L	B221051	S220544	
2205163-33	Se(VI)	WS	D	1.01		0.010	0.055	μg/L	B221051	S220544	
2205163-33	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221051	S220544	
2205163-33	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-33	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221051	S220544	
2205163-33	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221051	S220544	
RG_RIVER_WS_LAEMP_LCO_2022-04_NP-NAL											
2205163-34	Se	WS	D	1.18		0.165	0.528	μg/L	B221065	S220549	
RG_RIVER_W	RG_RIVER_WS_LAEMP_LCO_2022-04_NP-NAL										
2205163-35	Se	WS	TR	1.37		0.165	0.528	μg/L	B221065	S220549	
RG_SLINE_WS			Б.	< 0.040	- 11	0.040	0.005	/1	D204054	0000544	
2205163-36	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-36	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-36	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-36	Se(IV)	WS	D	0.031	J	0.010	0.075	μg/L	B221051	S220544	
2205163-36	Se(VI)	WS	D	1.03		0.010	0.055	μg/L	B221051	S220544	
2205163-36	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221051	S220544	
2205163-36	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-36	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221051	S220544	
2205163-36	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221051	S220544	
RG SLINE WS	S LAEMP LCC)_2022-04_NP-NA	L								
2205163-37	Se	WS	D	1.14		0.165	0.528	μg/L	B221065	S220549	
								. 0			
RG_SLINE_WS	S_LAEMP_LCC)_2022-04_NP-NA	L								
2205163-38	Se	WS	TR	1.19		0.165	0.528	μg/L	B221065	S220549	
		2022_04_NP-NAL									
2205163-39	Se	WS	D	1.56		0.165	0.528	μg/L	B221065	S220549	
DO 1104 WO	LAEMB LOO	2022 04 ND NA									
		2022_04_NP-NAL	TD	1 EF		0.465	0 F20	uc/I	D224065	S220540	
2205163-40	Se	WS	TR	1.55		0.165	0.528	μg/L	B221065	S220549	

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence	
RG_LI24_WS_LAEMP_LCO_2022-04_NP											
2205163-41	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-41	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-41	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-41	Se(IV)	WS	D	0.024	J	0.010	0.075	μg/L	B221051	S220544	
2205163-41	Se(VI)	WS	D	1.40		0.010	0.055	μg/L	B221051	S220544	
2205163-41	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221051	S220544	
2205163-41	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-41	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221051	S220544	
2205163-41	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221051	S220544	
RG_LISP24_WS_LAEMP_LCO_2022-04_NP-NAL											
2205163-42	Se _	- ws	D	42.6		0.165	0.528	μg/L	B221065	S220549	
RG LISP24 W	RG LISP24 WS LAEMP LCO 2022-04 NP-NAL										
2205163-43	Se _	- ws	TR	40.0		0.165	0.528	μg/L	B221065	S220549	
								. •			
RG LISP24 W	S LAEMP LC	O 2022-04 NP									
2205163-44	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-44	MeSe(IV)	WS	D	0.013	J	0.010	0.025	μg/L	B221051	S220544	
2205163-44	MeSe(VI)	WS	D	0.028		0.010	0.025	μg/L	B221051	S220544	
2205163-44	Se(IV)	WS	D	0.178		0.010	0.075	μg/L	B221051	S220544	
2205163-44	Se(VI)	WS	D	37.7		0.010	0.055	μg/L	B221051	S220544	
2205163-44	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221051	S220544	
2205163-44	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-44	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221051	S220544	
2205163-44	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221051	S220544	
	-										
RG LILC3 WS	S LAEMP LCO	2022-04 NP-NAI	<u>L</u>								
2205163-45	Se	WS WS	D	57.4		0.165	0.528	μg/L	B221065	S220549	
								. 3			
PG III C3 W/S	S LAEMD LCO	2022-04 NP-NAI	,								
2205163-46	S_LAEWP_LCO Se	2022-04_NP-NAI WS	TR	58.1		0.165	0.528	ua/l	B221065	S220549	
2200100-40	Se	VVO	ır	56.1		0.100	0.320	μg/L	DZZ 1003	3220349	

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence		
RG_LILC3_WS	LAEMP LCO	2022-04 NP										
2205163-47	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-47	MeSe(IV)	WS	D	0.015	J	0.010	0.025	μg/L	B221051	S220544		
2205163-47	MeSe(VI)	WS	D	0.046		0.010	0.025	μg/L	B221051	S220544		
2205163-47	Se(IV)	WS	D	0.263		0.010	0.075	μg/L	B221051	S220544		
2205163-47	Se(VI)	WS	D	57.1		0.010	0.055	μg/L	B221051	S220544		
2205163-47	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221051	S220544		
2205163-47	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-47	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221051	S220544		
2205163-47	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221051	S220544		
PC I CUT WS	I AEMB I CO	_2022-04_NP-NAL										
2205163-48	_LAEMP_LCO Se	_2022-04_NF-NAL WS	D	69.2		0.165	0.528	μg/L	B221065	S220549		
2203103-40	Se	WS	U	09.2		0.103	0.320	µg/L	D22 1003	3220349		
RG_LCUT_WS	RG_LCUT_WS_LAEMP_LCO_2022-04_NP-NAL											
2205163-49	Se	WS	TR	64.7		0.165	0.528	μg/L	B221065	S220549		
DO LOUT INC	. A EMB	2022 04 NB										
RG_LCUT_WS	_LAEMP_LCO DMSeO	_2022-04_NP WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	\$220E44		
2205163-50 2205163-50	MeSe(IV)	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B221051 B221051	S220544 S220544		
2205163-50	MeSe(VI)	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B221051 B221051	S220544 S220544		
2205163-50	Se(IV)	WS	D	0.065	J	0.010	0.025	μg/L μg/L	B221051	S220544		
2205163-50	Se(VI)	ws	D	55.0	U	0.010	0.055	μg/L	B221051	S220544		
2205163-50	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221051	S220544		
2205163-50	SeMet	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B221051	S220544		
2205163-50	SeSO3	WS	D	≤ 0.010	Ü	0.010	0.055	μg/L	B221051	S220544		
2205163-50	Unk Se Sp	WS	D	≤ 0.010	Ü	0.010	0.075	μg/L	B221051	S220544		
	J 22 2p							1-3/				
		022-04_NP-NAL										
2205163-51	Se	WS	D	27.0		0.165	0.528	μg/L	B221065	S220549		
RG LI8 WS L	AEMP LCO 20	022-04 NP-NAL										
2205163-52	Se	WS	TR	26.9		0.165	0.528	μg/L	B221065	S220549		

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence	
RG_LI8_WS_L	AEMP LCO 2	022-04 NP									
2205163-53	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-53	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-53	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-53	Se(IV)	WS	D	0.106		0.010	0.075	μg/L	B221051	S220544	
2205163-53	Se(VI)	WS	D	27.5		0.010	0.055	μg/L	B221051	S220544	
2205163-53	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221051	S220544	
2205163-53	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544	
2205163-53	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221051	S220544	
2205163-53	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221051	S220544	
PC EO22 WS	LAEMP LCO	_2022-04_NP-NAL									
2205163-54	_LAEWF_LCO_ Se	_2022-04_NP-NAL WS	D	40.4		0.165	0.528	μg/L	B221065	S220549	
2200100-04	Se	WS	D	40.4		0.103	0.320	µg/L	D22 1003	3220349	
RG_FO23_WS_LAEMP_LCO_2022-04_NP-NAL											
2205163-55	Se	WS	TR	40.5		0.165	0.528	μg/L	B221065	S220549	
DO 5000 WO	/ AEMD / CO	2022 04 ND									
RG_FO23_WS_	_LAEMP_LCO_ DMSeO	_2022-04_NP WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	\$220E44	
2205163-56 2205163-56	MeSe(IV)	WS	D	0.015	J	0.010	0.025	μg/L μg/L	B221051 B221051	S220544 S220544	
2205163-56	MeSe(VI)	WS	D	0.013 ≤ 0.010	IJ	0.010	0.025	μg/L μg/L	B221051 B221051	S220544 S220544	
2205163-56	Se(IV)	WS	D	0.214	U	0.010	0.025	μg/L μg/L	B221051	S220544	
2205163-56	Se(VI)	WS	D	41.4		0.010	0.055	μg/L	B221051	S220544	
2205163-56	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221051	S220544	
2205163-56	SeMet	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B221051	S220544	
2205163-56	SeSO3	WS	D	≤ 0.010	Ü	0.010	0.055	μg/L	B221051	S220544	
2205163-56	Unk Se Sp	WS	D	≤ 0.010	Ü	0.010	0.075	μg/L	B221051	S220544	
	,				-			13			
RG_FRUL_WS		_2022-04_NP-NAL									
2205163-57	Se	WS	D	48.3		0.165	0.528	μg/L	B221065	S220549	
RG FRUL WS	LAEMP LCO	2022-04 NP-NAL	_								
2205163-58	Se		TR	44.8		0.165	0.528	μg/L	B221065	S220549	

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program -

LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence		
RG FRUL WS	LAEMP LCO	2022-04 NP										
2205163-59	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-59	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-59	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-59	Se(IV)	WS	D	0.228		0.010	0.075	μg/L	B221051	S220544		
2205163-59	Se(VI)	WS	D	39.7		0.010	0.055	μg/L	B221051	S220544		
2205163-59	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221051	S220544		
2205163-59	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-59	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221051	S220544		
2205163-59	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221051	S220544		
PC LIDCOM M	/C I AEMD I /	CO_2022-04_NP-N	IAI									
2205163-60	Se		D D	33.7		0.165	0.528	μg/L	B221065	S220549		
2203103-00	36	WS	Ь	33.7		0.103	0.320	ру/с	D22 1003	3220349		
RG_LIDCOM_W	RG LIDCOM WS LAEMP LCO 2022-04 NP-NAL											
2205163-61	Se	WS	TR	32.8		0.165	0.528	μg/L	B221065	S220549		
		CO_2022-04_NP	Б.	< 0.010		0.040	0.005	/1	D004054	0000544		
2205163-62	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-62	MeSe(IV)	WS	D D	≤ 0.010	U J	0.010	0.025 0.025	μg/L	B221051	S220544		
2205163-62	MeSe(VI)	WS WS	D	0.013 0.136	J	0.010 0.010	0.025	μg/L	B221051 B221051	S220544		
2205163-62	Se(IV)	WS	D	30.2		0.010	0.075	μg/L μg/L	B221051 B221051	S220544		
2205163-62 2205163-62	Se(VI) SeCN	WS	D	30.2 ≤ 0.010	U	0.010	0.055	μg/L μg/L	B221051 B221051	S220544 S220544		
2205163-62	SeMet	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.030	μg/L μg/L	B221051 B221051	S220544 S220544		
2205163-62	SeSO3	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B221051	S220544 S220544		
2205163-62	Unk Se Sp	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.035	μg/L μg/L	B221051	S220544		
2203103-02	Olik Se Sp	WS	D	⊒ 0.010	O	0.010	0.073	μg/L	D221031	3220344		
RG_FBLANK_V	VS_LAEMP_L	CO_2022-04_NP-N	IAL									
2205163-63	Se	WS	D	≤ 0.165	U	0.165	0.528	μg/L	B221065	S220549		
RG FRI ANK V	VS I AFMP I	CO 2022-04 NP-N	ΙΔΙ									
2205163-64	Se	WS	TR	≤ 0.165	U	0.165	0.528	μg/L	B221065	S220549		

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program -

LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence		
RG_FBLANK_WS_LAEMP_LCO_2022-04_NP												
2205163-65	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-65	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-65	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-65	Se(IV)	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221051	S220544		
2205163-65	Se(VI)	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221051	S220544		
2205163-65	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221051	S220544		
2205163-65	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221051	S220544		
2205163-65	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221051	S220544		
2205163-65	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221051	S220544		

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Accuracy & Precision Summary

Batch: B221051 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B221051-BS1	Blank Spike, (2124033)		5.005	5.000	/1	4000/ 75 405	
	MeSe(IV)		5.095	5.390	μg/L	106% 75-125	
	Se(IV)		5.000	5.004	μg/L	100% 75-125	
	Se(VI)		5.000	4.846	μg/L	97% 75-125	
	SeCN		5.015	4.718	μg/L	94% 75-125	
	SeMet		4.932	5.049	μg/L	102% 75-125	
B221051-DUP5	Duplicate, (2205163-59)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		0.014	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.228		0.226	μg/L		0.8% 25
	Se(VI)	39.67		39.01	μg/L		2% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B221051-MS5	Matrix Spike, (2205163-5	(9)					
	Se(IV)	0.228	4.900	4.858	μg/L	94% 75-125	
	Se(VI)	39.67	5.100	43.59	μg/L	NR 75-125	
	SeCN	ND	1.962	1.692	μg/L	86% 75-125	
	SeMet	ND	1.977	1.764	μg/L	89% 75-125	
B221051-MSD5	Matrix Spike Duplicate,(2205462 50	`				
D22 103 1-W3D3	Se(IV)	0.228	, 4.900	4.862	μg/L	95% 75-125	0.09% 25
	Se(VI)	39.67	5.100	43.71	μg/L μg/L	NR 75-125	N/C 25
	Se(VI) SeCN	39.07 ND	1.962	1.691		86% 75-125	0.007% 25
					µg/L		
	SeMet	ND	1.977	1.777	μg/L	90% 75-125	0.7% 25

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Accuracy & Precision Summary

Batch: B221051 Lab Matrix: Water Method: SOP BAL-4201

Cample	Analuta	Notivo	Cniko	Popult	Unito	DEC 9 Limite	RPD & Limits
Sample B221051-DUP6	Analyte Duplicate, (2205165-09)	Native	Spike	Result	Units	REC & Limits	RPD & LIMITS
B221031-D0F6	Duplicate, (2205165-09)	0.017		0.022	ua/l		29% 25
					µg/L		
	MeSe(IV)	0.092		0.110	μg/L		18% 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.810		0.795	μg/L		2% 25
	Se(VI)	0.265		0.248	μg/L		6% 25
	SeCN	2.252		2.125	μg/L		6% 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	0.044		0.028	μg/L		45% 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B221051-MS6	Matrix Spike, (2205165-	09)					
DZZ 1001 IIIO0	Se(IV)	0.810	4.900	5.211	μg/L	90% 75-125	
	Se(VI)	0.265	5.100	5.223	μg/L	97% 75-125	
	SeCN	2.252	1.962	3.983		88% 75-125	
					µg/L		
	SeMet	ND	1.977	1.736	μg/L	88% 75-125	
B221051-MSD6	Matrix Spike Duplicate,	(2205165-09)				
	Se(IV)	0.810	4.900	5.185	μg/L	89% 75-125	0.5% 25
	Se(VI)	0.265	5.100	5.241	μg/L	98% 75-125	0.3% 25
	SeCN	2.252	1.962	3.955	μg/L	87% 75-125	0.7% 25
	SeMet	ND	1.977	1.737	μg/L	88% 75-125	0.02% 25

BAL Final Report 2205163

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Accuracy & Precision Summary

Batch: B221065 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC &	Limits	RPD & Lii	mits
B221065-BS1	Blank Spike, (2128022) Se		200.0	181.7	μg/L	91%	75-125		
B221065-BS2	Blank Spike, (2128022) Se		200.0	183.4	μg/L	92%	75-125		
B221065-BS3	Blank Spike, (2128022) Se		200.0	193.9	μg/L	97%	75-125		
B221065-SRM1	Reference Material (214501	11, TMDA 5	1.5 Reference 14.30	e Standard	- Bottle 10	-	75-125		
					. •				
B221065-SRM2	Reference Material (214501 Se	11, TMDA 5	1.5 Referenc 14.30	e Standard - 12.78	- Bottle 10 - μg/L		75-125		
B221065-SRM3	Reference Material (214501	11, TMDA 5				•	75 405		
	Se		14.30	13.27	μg/L	93%	75-125		
B221065-DUP1	Duplicate, (2205163-35) Se	1.368		1.184	μg/L			14%	20
	00	1.000		1.104	µg/∟			1470	20
B221065-MS1	Matrix Spike, (2205163-35) Se	1.368	220.0	207.4	μg/L	94%	75-125		
B221065-MSD1	Matrix Spike Duplicate, (22	205163-35) 1.368	220.0	209.8	μg/L	95%	75-125	1%	20
B221065-DUP2	Duplicate , (2205163-43) Se	39.97		41.64	μg/L			4%	20
B221065-MS2	Matrix Spike, (2205163-43) Se	39.97	220.0	248.0	μg/L	95%	75-125		

BAL Final Report 2205163

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Accuracy & Precision Summary

Batch: B221065 Lab Matrix: Water Method: EPA 1638 Mod

Sample B221065-MSD2	Analyte Matrix Spike Duplicate, (2)	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B221003-W3D2	Se	39.97	220.0	249.8	μg/L	95% 75-125	0.7% 20
B221065-DUP3	Duplicate, (2205163-58) Se	44.78		45.66	μg/L		2% 20
B221065-MS3	Matrix Spike , (2205163-58) Se	44.78	220.0	257.1	μg/L	96% 75-125	
B221065-MSD3	Matrix Spike Duplicate, (22	205163-58) 44.78	220.0	272.7	μg/L	104% 75-125	6% 20

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Method Blanks & Reporting Limits

Batch: B221051 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B221051-BLK1	0.00	μg/L
B221051-BLK2	0.00	μg/L
B221051-BLK3	0.00	μg/L
B221051-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B221051-BLK1	0.00	μg/L
B221051-BLK2	0.00	μg/L
B221051-BLK3	0.00	μg/L
B221051-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B221051-BLK1	0.00	μg/L
B221051-BLK2	0.00	μg/L
B221051-BLK3	0.00	μg/L
B221051-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program LCO LAEMP

Method Blanks & Reporting Limits

	Analyte:	Se	(IV)	
--	----------	----	------	--

Sample	Result	Units
B221051-BLK1	0.003	μg/L
B221051-BLK2	0.00	μg/L
B221051-BLK3	0.00	μg/L
B221051-BLK4	0.00	μg/L

Average: 0.001 **MDL:** 0.002 **Limit:** 0.015 **MRL:** 0.015

Analyte: Se(VI)

Sample	Result	Units
B221051-BLK1	0.00	μg/L
B221051-BLK2	0.00	μg/L
B221051-BLK3	0.00	μg/L
B221051-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B221051-BLK1	0.00	μg/L
B221051-BLK2	0.00	μg/L
B221051-BLK3	0.00	μg/L
B221051-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B221051-BLK1	0.00	μg/L
B221051-BLK2	0.00	μg/L
B221051-BLK3	0.00	μg/L
B221051-BLK4	0.00	ua/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B221051-BLK1	0.00	μg/L
B221051-BLK2	0.00	μg/L
B221051-BLK3	0.00	μg/L
B221051-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.011 **MRL:** 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B221051-BLK1	0.00	μg/L
B221051-BLK2	0.00	μg/L
B221051-BLK3	0.00	μg/L
B221051-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Method Blanks & Reporting Limits

Batch: B221065 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B221065-BLK1	0.104	μg/L
B221065-BLK2	0.077	μg/L
B221065-BLK3	0.029	μg/L
B221065-BLK4	0.050	μg/L

 Average: 0.065
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program -

LCO LAEMP

Sample Containers

Lab ID : 2205163-33			Report Matrix: WS			Collected: 05/03/2022		
Sam RG_	IPIE: RIVER_WS_LAEMP_LCO_2	022-04_NP	Sample Type: Sample + Sum			Rece	ived: 05/12/2022	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 8 - 2205163	
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 8 - 2205163	
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 8 - 2205163	

Project ID: TRL-VC2101 **PM**: Jeremy Maute

Client-Provided - TM

40 mL

BAL Final Report 2205163

Client PM: Cybele Heddle

Client Project: Regional Effects Program -

LCO LAEMP

Sample Containers

Lab ID: 2205163-34 Report Matrix: WS Collected: 05/03/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG RIVER WS LAEMP LCO 2022-04 NP-NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 40 mL na 2152004 <2 Cooler 9 -2205163 Lab ID: 2205163-35 Report Matrix: WS Collected: 05/03/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG_RIVER_WS_LAEMP_LCO_2022-04_NP-NAL рΗ **Des Container Preservation** P-Lot Size Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2152004 <2 Cooler 9 na 2205163 Lab ID: 2205163-36 Report Matrix: WS Collected: 05/03/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG_SLINE_WS_LAEMP_LCO_2022-04_NP **Des Container** P-Lot Size Lot **Preservation** pH Ship. Cont. Cent Tube 15mL Se-Sp 15 mL na none na na Cooler 8 -2205163 В XTRA_VOL 15 mL na none na na Cooler 8 -2205163 Cooler 8 -С XTRA_VOL 125 mL na none na na 2205163 Lab ID: 2205163-37 Report Matrix: WS Collected: 05/03/2022 Sample: Sample Type: Sample + Sum Received: 05/12/2022 RG_SLINE_WS_LAEMP_LCO_2022-04_NP-NAL Container Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) <2 na 2152004 Cooler 9 -2205163 Lab ID: 2205163-38 Collected: 05/03/2022 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 05/12/2022 RG SLINE WS LAEMP LCO 2022-04 NP-NAL рΗ **Des Container Preservation** P-Lot Ship. Cont. Size Lot

na

10% HNO3 (BAL)

2152004

<2

Cooler 9 -

2205163

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163

Client PM: Cybele Heddle

Client Project: Regional Effects Program -

LCO LAEMP

Sample Containers

Lab ID: 2205163-39 Report Matrix: WS Collected: 05/03/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG LI24 WS LAEMP LCO 2022 04 NP-NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 40 mL na 2152004 <2 Cooler 9 -2205163 Lab ID: 2205163-40 Report Matrix: WS Collected: 05/03/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG_LI24_WS_LAEMP_LCO_2022_04_NP-NAL рΗ **Des Container Preservation** P-Lot Size Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2152004 <2 Cooler 9 na 2205163 Lab ID: 2205163-41 Report Matrix: WS Collected: 05/03/2022 Sample: RG LI24 WS LAEMP LCO 2022-04 NP Sample Type: Sample + Sum Received: 05/12/2022 **Des Container** Size **Preservation** P-Lot Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Α none Cooler 8 na na na 2205163 В XTRA VOL 15 mL na none na na Cooler 8 -2205163 С XTRA_VOL Cooler 8 -125 mL na none na na 2205163 Lab ID: 2205163-42 Collected: 05/03/2022 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 05/12/2022 RG_LISP24_WS_LAEMP_LCO_2022-04_NP-NAL **Des Container Size** Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) 2152004 <2 Cooler 9 na 2205163 Lab ID: 2205163-43 Report Matrix: WS Collected: 05/03/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG LISP24 WS LAEMP LCO 2022-04 NP-NAL Ship. Cont. Container Size **Preservation** P-Lot Lot Ha Client-Provided - TM 40 mL na 10% HNO3 (BAL) 2152004 <2 Cooler 9 -2205163

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163
Client PM: Cybele Heddle
Client Project: Regional Effects Program -

LCO LAEMP

Sample Containers

Sam	ID: 2205163-44 ple: LISP24_WS_LAEMP_LCO_2	022-04 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/03/2022 ived: 05/12/2022
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 8 - 2205163
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 8 - 2205163
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 8 - 2205163
Sam	ID: 2205163-45 ple: LILC3_WS_LAEMP_LCO_20	22-04 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/02/2022 ived: 05/12/2022
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2152004	<2	Cooler 9 - 2205163
Sam	ID: 2205163-46 ple: LILC3_WS_LAEMP_LCO_20	22-01 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/02/2022 ived: 05/12/2022
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2152004	<2	Cooler 9 - 2205163
Sam	ID: 2205163-47 ple: LILC3_WS_LAEMP_LCO_20	22.04.ND		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/02/2022 ived: 05/12/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 8 - 2205163
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 8 - 2205163
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 8 - 2205163

Project ID: TRL-VC2101 **PM**: Jeremy Maute

Client-Provided - TM

40 mL

BAL Final Report 2205163

Client PM: Cybele Heddle

Client Project: Regional Effects Program -

LCO LAEMP

Sample Containers

Lab ID: 2205163-48 Report Matrix: WS Collected: 05/02/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG LCUT WS LAEMP LCO 2022-04 NP-NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 40 mL na 2152004 <2 Cooler 9 -2205163 Lab ID: 2205163-49 Report Matrix: WS Collected: 05/02/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG_LCUT_WS_LAEMP_LCO_2022-04_NP-NAL рΗ **Des Container Preservation** P-Lot Size Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2152004 <2 Cooler 9 na 2205163 Lab ID: 2205163-50 Report Matrix: WS Collected: 05/02/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG_LCUT_WS_LAEMP_LCO_2022-04_NP P-Lot **Des Container** Size Lot **Preservation** pH Ship. Cont. Cent Tube 15mL Se-Sp 15 mL na none na na Cooler 8 -2205163 В XTRA_VOL 15 mL na none na na Cooler 8 -2205163 Cooler 8 -С XTRA_VOL 125 mL na none na na 2205163 Lab ID: 2205163-51 Report Matrix: WS Collected: 05/04/2022 Sample: Sample Type: Sample + Sum Received: 05/12/2022 RG_LI8_WS_LAEMP_LCO_2022-04_NP-NAL Container Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) <2 na 2152004 Cooler 9 -2205163 Lab ID: 2205163-52 Collected: 05/04/2022 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 05/12/2022 RG LI8 WS LAEMP LCO 2022-04 NP-NAL рΗ **Des Container Preservation** P-Lot Ship. Cont. Size Lot

na

10% HNO3 (BAL)

2152004

<2

Cooler 9 -

2205163

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163 Client PM: Cybele Heddle Client Project: Regional Effects Program -

LCO LAEMP

Sample Containers

	ID: 2205163-53 ple: RG_LI8_WS_LAEMP_L0	CO_2022-04_NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/04/2022 ived: 05/12/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 8 - 2205163
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 8 - 2205163
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 8 - 2205163
Lab Sam	ID: 2205163-54 ple:			Report Matrix: WS Sample Type: Sample + Sum			cted: 05/04/2022 ived: 05/12/2022
	FO23_WS_LAEMP_LCO_20.	22-04_NP-NAL					
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2152004	<2	Cooler 9 - 2205163
	ID: 2205163-55			Report Matrix: WS			cted: 05/04/2022
Sam	ple:	22-04 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/04/2022 ived: 05/12/2022
Sam RG_		22-04_NP-NAL Size	Lot	-	P-Lot		ived: 05/12/2022
Sam RG_	ple: FO23_WS_LAEMP_LCO_20.	_	Lot na	Sample Type: Sample + Sum	P-Lot 2152004	Recei	
Sam RG_ Des A	ple: FO23_WS_LAEMP_LCO_20. Container Client-Provided - TM ID: 2205163-56 ple:	Size 40 mL		Sample Type: Sample + Sum Preservation		PH <2	Ship. Cont. Cooler 9 -
Sam RG_ Des A Lab Sam RG_	ple: FO23_WS_LAEMP_LCO_20. Container Client-Provided - TM	Size 40 mL		Preservation 10% HNO3 (BAL) Report Matrix: WS		PH <2	Ship. Cont. Cooler 9 - 2205163 cted: 05/04/2022 ived: 05/12/2022
Sam RG_ Des A Lab Sam RG_	ple: FO23_WS_LAEMP_LCO_20. Container Client-Provided - TM ID: 2205163-56 ple: FO23_WS_LAEMP_LCO_20.	Size 40 mL 22-04_NP	na	Preservation 10% HNO3 (BAL) Report Matrix: WS Sample Type: Sample + Sum	2152004	PH <2	Ship. Cont. Cooler 9 - 2205163
Sam RG_Des A Lab Sam RG_Des	ple: FO23_WS_LAEMP_LCO_20. Container Client-Provided - TM ID: 2205163-56 ple: FO23_WS_LAEMP_LCO_20. Container	Size 40 mL 22-04_NP Size	na	Preservation 10% HNO3 (BAL) Report Matrix: WS Sample Type: Sample + Sum Preservation	2152004 P-Lot	PH <2 Collect Receiph	Ship. Cont. Cooler 9 - 2205163 cted: 05/04/2022 ived: 05/12/2022 Ship. Cont. Cooler 8 -

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2205163

Client PM: Cybele Heddle

Client Project: Regional Effects Program -

LCO LAEMP

2205163

Sample Containers

Lab ID: 2205163-57 Report Matrix: WS Collected: 05/02/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG FRUL WS LAEMP LCO 2022-04 NP-NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 40 mL na 2152004 <2 Cooler 9 -2205163 Lab ID: 2205163-58 Report Matrix: WS Collected: 05/02/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG_FRUL_WS_LAEMP_LCO_2022-04_NP-NAL рΗ **Des Container Preservation** P-Lot Size Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2152004 <2 Cooler 9 na 2205163 Lab ID: 2205163-59 Report Matrix: WS Collected: 05/02/2022 Sample: Received: 05/12/2022 Sample Type: Sample + Sum RG_FRUL_WS_LAEMP_LCO_2022-04_NP **Des Container** P-Lot Size Lot **Preservation** pH Ship. Cont. Cent Tube 15mL Se-Sp 15 mL na none na na Cooler 8 -2205163 В XTRA_VOL 15 mL na none na na Cooler 8 -2205163 Cooler 8 -С XTRA_VOL 125 mL na none na na 2205163 Lab ID: 2205163-60 Report Matrix: WS Collected: 05/04/2022 Sample: Sample Type: Sample + Sum Received: 05/12/2022 RG_LIDCOM_WS_LAEMP_LCO_2022-04_NP-NAL Container Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) <2 na 2152004 Cooler 9 -2205163 Lab ID: 2205163-61 Collected: 05/04/2022 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 05/12/2022 RG LIDCOM WS LAEMP LCO 2022-04 NP-NAL рΗ **Des Container Preservation** P-Lot Ship. Cont. Size Lot Client-Provided - TM 40 mL 10% HNO3 (BAL) 2152004 <2 Cooler 9 na

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2205163 Client PM: Cybele Heddle Client Project: Regional Effects Program -

LCO LAEMP

Sample Containers

Sam	ID: 2205163-62 ple: LIDCOM_WS_LAEMP_LCO_2	2022-04 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/04/2022 ived: 05/12/2022
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 8 - 2205163
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 8 - 2205163
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 8 - 2205163
Sam	ID: 2205163-63 ple: FBLANK_WS_LAEMP_LCO_:	2022-04 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/03/2022 ived: 05/12/2022
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2152004	<2	Cooler 9 - 2205163
Sam	ID: 2205163-64 ple: FBLANK_WS_LAEMP_LCO_:	2022-04 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/03/2022 ived: 05/12/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2152004	<2	Cooler 9 - 2205163
Sam	ID: 2205163-65 ple: FBLANK WS LAEMP LCO 2	2022-04 NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 05/03/2022 ived: 05/12/2022
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 8 - 2205163
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 8 - 2205163
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 8 - 2205163

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2205163

Client PM: Cybele Heddle

Client Project: Regional Effects Program -

LCO LAEMP

Shipping Containers

Cooler 8 - 2205163

Received: May 12, 2022 7:20

Tracking No: PAPS# RWHV92276 via Courier

Coolant Type: Blue Ice Temperature: -1.2 °C

Cooler 9 - 2205163

Received: May 12, 2022 7:20

Tracking No: PAPS# RWHV92276 via Courier

Coolant Type: Blue Ice Temperature: 1.8 °C Description:

Damaged in transit? No Returned to client? No Comments: IR#33

Description: Large Cooler Damaged in transit? No Returned to client? No Comments: IR#33 Custody seals present? No Custody seals intact? No COC present? Yes

Custody seals present? No Custody seals intact? No COC present? No

BAL Final Report 2205163 KEP LAEMP LCU 2022 APR BROOK TURNAROUND TIME: COC ID: RUSH-N/A Regular OTHER INFO PROJECT/CLIENT INFO LABORATORY Facility Name / Job# Regional Effects Program - LCO LAEMP Lab Name Brooks Applied Labs Report Format / Distribution Excel PDF EDD Project Manager Cybele Heddle Lab Contact Ben Wozniak Email 1: aguascilab@teck.com Email Ben@brooksapplied.com Email Cybele.Heddle@Teck.com Email 2; teckcoal@equisonline.com Address 18804 North Creek Parkway Address 421 Pine Ave Email 3: Teck.Lab.Results@teck.com Suite 100 Email 4: Jessica.Ritz@Teck.com BC City Bothell City Sparwood Province Province WA Email 5: Tyler.Mehler@Minnow.ca V0B 2G0 Canada Postal Code 98011 Postal Code Country Country United Email 6: lbowron@minnow.ca Phone Number 250-910-8755 Phone Number (206) 753-6158 PO number VPO00817033 SAMPLE DETAILS Filtered - F: Field, L: Lab, FL: Field & Lab, N: Non ANALYSIS REQUESTED H HNO3 HNO3 Hazardous Material (Yes/No) Brooks Se Speciation Brooks_Se_D G=Grab Sample Location Field C=Com #Of Sample ID Matrix Time (24hr) (sys loc code) Date Cont ws 22 05 03 NO X RG-1124-45 LAEMP_LCO.1012-64-11P 11:15 G 1 RG-L124 22/05/03 11:15 WS 2 RA-L124 RG- L124- WS-LAEMP LCO - 2012-04-NP- NAL X 22/05/03 15:30 1 NO G X RG. RIVER RA-RIVER-WS_LAEMP-LCO_2021-04-NP 2 22/05/03 15:30 RG-RIVER NO G X X RG-RIVER-WS-LAEMP LCO_2022-04-NP-NAI NO 22105/03 09:00 RG-LISP24 G X RG-LISPZ4_WS-LAEMP_LCO 2022-04-NP 22/05/03 09:00 2 RG-LISP24 WS X X KG. LISPZYWS LAEMP-LCO 2022-04-NP-NAL X RG_SLINE 13:30 12/05/03 RG. SLINEWS. LAEMP. LCO. 2022-04-ND 22/05/03 13:30 2 RG_SLINE WS G X NO X RG-SINE-WS-LAENP-LCO 2012-04-NP-NAL 13:00 NO 22/05/02 RG - LCUT X RG-LCUT-WG-LAEMP-LCO-2022 04-NP 13:00 RG-LCUT 2 NO 22/05/02 X G X RG-LCUT-WS-LAEMP-LCO-2012-04-NP-NAL RG-LILC3 NO 22/05/2 14:30 X RGILLICS-WS-LAEMP-LCO-2022-04-NP-NAL RGLIKCS-WS-LAEMPLCU-2022-04-NP-MA RG-LIKC3 NO 22/05/02 14:30 G 2 X X NO 22/05/02 RG- FRUL X 10:20 G RG. FRUL -WS. LAEMP. LCU-2022-04-NP 122/05/02 X PG_FRUL-WS-LAEMP-LCO_2022-04-NP-NIL RG- FRUL 10:20 X DATE/TIME ACCEPTED BY/AFFILIATION 1/W BAT 1:20 5112122 SERVICE REQUEST (rush - subject to availability) Regular (default) X Sampler's Name Emma Thompson Mobile # 250 421 3572 Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time 2022 /05/04 14:00 For Emergency <1 Day, ASAP or Weekend - Contact ALS

Confi Cak BAL Final Report 2205163 KEP LAENIP LCU_2022 APR BROUK TURNAROUND TIME: COC ID: RUSH N/A Regular OTHER INFO LABORATORY PROJECT/CLIENT INFO Facility Name / Job# Regional Effects Program - LCO LAEMP Lab Name Brooks Applied Labs Report Format / Distribution Excel PDF EDD Lab Contact Ben Wozniak Project Manager Cybele Heddle Email 1: aguascilab@teck.com Email Cybele.Heddle@Teck.com Email Ben@brooksapplied.com Email 2: teckcoal@equisonline.com Address 421 Pine Ave Address 18804 North Creek Parkway Email 3: Teck.Lab.Results@teck.com Suite 100 Email 4: Jessica.Ritz@Teck.com Province BC City Bothell WA City Sparwood Province Email 5: Tyler.Mehler@Minnow.ca V0B 2G0 Canada Postal Code 98011 Country United ! Postal Code Country Email 6: (bowron@minnow.ca Phone Number 250-910-8755 Phone Number (206) 753-6158 PO number VPO00817033 SAMPLE DETAILS ANALYSIS REQUESTED Filtered - F: Field, L.; Lab, FL; Field & Lab, N; Non-HNO3 HNO3 Hazardous Material (Yes/No) Brooks_Se_Speciation Brooks Se_T G=Grab Sample Location Field C=Com # Of Sample ID (sys loc code) Matrix Date Time (24hr) Cont. 22/05/04 10:30 WS NO X \mathbf{G} RG-LIDCOM- WS-LAEMP-LCO-2022-04-NP RG. LIDCOM 1 NO 22/05/04 10:30 2 RG. LIDCOM, WS-LAEMP-LCO. 2022-04-NP-NAL RG- LIDOM WS G X X 22/05/04 09:30 RG_ L18 WS X RG-LIB_WG.LAENP-LCO_2022-04-NP RG-LIB 22/05/04 09:30 2 G X RG. LIB-WG. LAEMP LCO. 2022-CH-NP-NAL WS X 22/05/04 07:30 G RGL FO23 WS X RG. FO23_WS. LAEMP_LCO. 2022-04_NP RG- FO23 72/05/04 07:30 2 WS G X RG. TO23. NS_LAEUP_ LCO. 2022_04_ NP. NA 12/05/03 16:00 RG-FBLANK ws G X RG_FBLANK_WS-LAEMP-LCO- 2022-UH-NP 22 05/03 16:00 WS NO G 2 X RG. FOLANK WS. LAEMPLLCO 2022 OY. NP. WAL RG. PBLANK X WS NO G WS NO G WS NO G WS NO \mathbf{G} WS NO G WS NO \mathbf{G} DATE/TIME ACCEPTED BY/AFFILIATION DATE/TIME LIW IBAL 7:20 5/12/22 SERVICE REQUEST (rush - subject to availability) Regular (default) X Sampler's Name Emma Thompson Mobile # 250 3572 Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge 202/05/04 Sampler's Signature Date/Time 14:00 For Emergency <1 Day, ASAP or Weekend - Contact ALS

STRAIGHT BILL OF LADING NOT NEGOTIABLE

No. 92276

Sparwood, BC

Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, ÅB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT Tumbler Ridge, BC Hinton, AB Gillette, WY

Red Deer, AB	Montreal, QC	> Spoka	ie, wa	Sliciby, i-ii	
INVOICE TO		27		,	DATE
BILL OF LADING # /-		45.2	PURCHASE ORDER N	IUMBEP	٤,
SHIPPER (FROM)		7. 1	CONSIGNEE (TO)		
TOTAL TOTAL			STREET	***	
STREET		***	CITY/PROVINCE.	1 1	POSTAL CODE
CITY/PROVINCE	, * POS	TAL CODE 4	OH IN ROUND S		
SPECIAL INSTRUCTIONS	- į *		The state of the s		FREIGHT CHARGES SHIPPER TO CHECK
PACKAGES	DESCRIPTION OF ARTICLES	ND SPECIAL MARKS	· W ·	WEIGHT (Subject to Correction)	PREPAID COLLECT
	1 1 1	144	,	1	If not indicated, shipping will automatically move collect
	7.2	- 1	* * * *	-	FEE
4	- 3	·	4 4 45		WAITING
		ı			WAITING CO.
Y		1	1	The state of the s	XPU
DAGO	21 11 11	200	71	France .	CHARGES
PAPA#		9//	b		4.2 %
1/110.1	INALIA			4 14	FSC
3		1	· ·		US
JNIT#		DECLARED VAL liability of carrier is \$ kilogram) unless de otherwise.	UATION: Maximum 2.00 per lb. (\$4.41 per clared valuation states	\$. ~	SUB TOTAL
	PICK UP TIME		IRE - DELIVERY BY	FINISH TIME	
DRIVER'S SIGNATURE - PICK UP BY	PICK OF THE	1 11 12		x Mil	GST
IOTICE OF CLAIM: (a) No carrier is liable for loss, damage or detay	of any goods under the Bill of Lading unless notice	e, thecefor setting out particulars of the	he origin, destination and date of shipm s, oin the case of failure to make delive	ent of the goods and the estimated amount of ry within nine (9) months from the date of ship	aimed in
NOTICE OF CLAIM: (a) No carrier is liable for loss, damage or delay is given in writing to the origin of the origin of the origin of the origin of the origin of the origin of the origin of the origin of the origin of the origin of the origin of the origin of the origin or the origin origin or origin or origin	one (9) months from the date of one of the date of one of the date of one of the consignation and to deliver to the consignation and the date of the consignation and the date of the consignation and the date of the consignation and the date of the consignation and the date of the consignation and the date of the consignation and the date of	shipment together with a coed in apparent good order, except; at the said destination, as to each party of any time interests	opy of the paid freight by es noted (contents and condition of con bject to the rates and classified in all or any of the goods, that every	tents of package unknown) marked, consigned lation in effect on the date of shipm service to be performed beraunder shall be su	d and total \$
is mutually agreed, as to each camer of all of any of the goods ove if the conditions standard Bill of Lading, in power at the date of issuit he date of issuing, which are hereby agreed by the he Contract for the camage of the goods listed in the Bill of Lading	ng, which are hereto agreed by the consignor and a consignor and accepted for himself and s governed by regulation in force in the jurisdiction	accepted for himself and his assigns d his assigns at the time and place of shipment a	Printed or written, including conditions and is subject to the conditions set out it	n such conditions.	1F AT OWNER'S RISK, WRITE ORD HERE
HIPPER		PRINT AND	ais Gentil.	homme	X 5/12/22: (4
SHIPPER SIGN'S STATE OF THE STA		CONSIGNÉE	link	1	TIME 7:20
WHITE Office, YELLOW:	Carrier PINK: Consignee	GOŁDENROAD: Ship	per GST#8	64540398RT0001	NUMBER OF PIECES RECEIVED
GOS PRINTING					
·		2'			i i i

Đ	-d -	4.2	
Cooler ID: Cooles 9	COC (Y/N) Temperature	:.\.8	IR: 33
Coolant Type: Ice	Blue Ice Ambient	All the second s	r y ^t
Notes:		A COLOR	**
Sampling Locations:	EV. DC 1	SP T/D SP	T/D SE
Sample Types:	Up me work work work	126 11	,,,,
Container Types:	glass garre brack gail	Smil plain	
Opened By: \ \	Date: 5hun	**	

Effective 7/29/20

항

FE UW Ships

STRAIGHT BILL OF LADING NOT NEGOTIABLE

250-425-7447 24 Howr Hot Shot Service

No. 92276

Sparwood, BC

Vancouver, BC Calgary, AB

Prince George, BC Edmonton, ÅB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

					DATE
ILL OF LADING # / .		A Comment	PURCHASE ORDER N	UMBER	٤,
HIPPER (FROM)		3	CONSIGNEE (TO)	,	
REET			STREET		POSTALCODE
TY/PROVINCE	, * P	OSTAL CODE	CITY/PROVINCE.		
PECIAL INSTRUCTIONS	- 1		A Property of the second		FREIGHT CHARGES SHIPPER TO CHECK
PACKAGES	DESCRIPTION OF ARTICLE	ND SPECIAL MARKS	- 1/4 mg	WEIGHT (Subject to Correction	
	54			1	FEE
				4.	
1 2	7 7		-		WAITING
	•			· main	XPU
	1	0	γ	-	***
DADC#1	21 ILL	1922	71	The same of the sa	CHARGES
PAPS#1	HWF	1922	76		FSC
PAPS#1	MHM	922	76		4.5 48
PAPS#1	RWHV	DECLARED VAL liability of carrier is skilogram) unless de otherwise.	UATION: Maximum 52.00 per lb. (\$4.41 per clared valuation states	\$	FSC 45
IT#	PICK UP TIME	kilogram) unless de otherwise. DRIVER'S SIGNATU	Clared valuation states URE - DELIVERY BY	S FINISH TIME	FSC US SUB TOTAL GST
IT# IVER'S SIGNATURE - PICK UP BY		kilogram) unless de otherwise. DRIVER'S SIGNATU	Clared valuation states URE - DELIVERY BY	S FINISH TIME	FSC US SUB TOTAL GST
T# IVER'S SIGNATURE - PICK UP BY		kilogram) unless de otherwise. DRIVER'S SIGNATU	Clared valuation states URE - DELIVERY BY	S FINISH TIME	FSC US SUB TOTAL GST
Т#		kilograma) unless de otherwise. DRIVER'S SIGNATU A proper setting out particulars of the control of the contr	IRE - DELIVERY BY The origin, destination sanddets of shipm to the property of the paid freight bill, as noted (contents and contident Bright and the property of the paid freight bill, as noted (contents and contents and its subject to the rates and classified principles of the property of the p	S FINISH TIME	FSC US SUB TOTAL GST. TOTAL \$ silipment. be subject in power at if AT OWNER'S RISK, WRITE ORD HERE DATE DATE S/12/1/2 L
IVER'S SIGNATURE - PICK UP BY IVER'S SIGNATURE - PICK UP BY ICE OF CLAM: (a) No carrier is liable for loss, damage or deleted of such loss, damage or deleted of such loss, damage or deleted of such loss, damage or deleted of such loss, damage or deleted of such loss, damage or deleted of such loss, damage or deleted of such loss, damage of the deleted of such loss, damage of the deleted of such loss, damage of the goods listed in the But of Lading or the carriage of the goods listed in the But of Lading OPER		kilograma) unless de otherwise. DRIVER'S SIGNATU A proper setting out particulars of the control of the contr	the origin, destination states JRE DELIVERY BY The origin, destination and date of simple so that the case of failure to make delive to go of the paid freight by the case of failure to make delive as noted contents and consort elessified in all or any of the goods, that every printed or writing, including conditions and is subject to her dewerence of the case of	FINISH TIME emble the goods and the estimated arm y within nihe (3) months from the date lents of package unknown) marked, cot storn in effect and herounder shall set apade by the standard Bill-of Lading, in such conditions.	FSC US SUB TOTAL GST

	44.4	, "}	14			
Cooler ID: COOLER &	CQC (Y)N)	Temperature: /.	2		IR: 3	3
Coolant Type: Ice	Blue Ice Ambient			-	: '	. x.
Notes:	(1) RG1	A MILL	1	*]		
Sampling Locations:	ELOCATAN KO	-/2 (60)	T/D	SP	T/D	SP
Sample Types:	T/D SP T/D SP	T/D SP	T/D	31	1,0	
Container Types:		Line olain			Į	
Opened By: WW	Date: 5/12/	21 '		***	•	

Effective 7/29/20

77.

OCE LEW S/12/22

SELENIUM SPECIATION

BAL Final Report 2207261 (Finalized August 4, 2022)

Confidential BAL Final Report 2207261

August 4, 2022

Teck Resources Limited – Vancouver Cybele Heddle 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 cybele.heddle@teck.com

Re: Regional Effects Program - LCO LAEMP

Dear Cybele Heddle,

On July 21, 2022, Brooks Applied Labs (BAL) received twenty-two (22) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) form.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, <u>brooksapplied.com</u>.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

Confidential BAL Final Report 2207261

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Brooks Applied Labs

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261 Client PM: Cybele Heddle Client Project: Regional Effects Program -

LCO LAEMP

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch.
 Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2207261 Client PM: Cybele Heddle Client Project: Regional Effects Program -

LCO LAEMP

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)
Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BROOKS APPLIED LABS BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)
SM2340B	Non-Potable Waters	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_RIVER_WS_LAEMP_LCO_2022 -07_NP_NAL	2207261-33	WS	Sample	07/12/2022	07/21/2022
RG_RIVER_WS_LAEMP_LCO_2022 -07_N	2207261-34	WS	Sample	07/12/2022	07/21/2022
RG_RIVER_WS_LAEMP_LCO_2022 -07_N	2207261-35	WS	Sample	07/12/2022	07/21/2022
RG_SLINE_WS_LAEMP_LCO_2022 -07_NP_NAL	2207261-36	WS	Sample	07/12/2022	07/21/2022
RG_SLINE_WS_LAEMP_LCO_2022 -07_N	2207261-37	WS	Sample	07/12/2022	07/21/2022
RG_SLINE_WS_LAEMP_LCO_2022 -07_N	2207261-38	WS	Sample	07/12/2022	07/21/2022
RG_LI24_WS_LAEMP_LCO_2022_0 7_NP_NAL	2207261-39	WS	Sample	07/11/2022	07/21/2022
RG_LI24_WS_LAEMP_LCO_2022-0 7_N	2207261-40	WS	Sample	07/11/2022	07/21/2022
RG_LI24_WS_LAEMP_LCO_2022-0 7_N	2207261-41	WS	Sample	07/11/2022	07/21/2022
RG_LISP24_WS_LAEMP_LCO_202 2-07_NP_NAL	2207261-42	WS	Sample	07/13/2022	07/21/2022

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_LISP24_WS_LAEMP_LCO_202 2-07_NP	2207261-43	WS	Sample	07/13/2022	07/21/2022
RG_LISP24_WS_LAEMP_LCO_202 2-07_N	2207261-44	WS	Sample	07/13/2022	07/21/2022
RG_LILC3_WS_LAEMP_LCO_2022- 07_NP_NAL	2207261-45	WS	Sample	07/12/2022	07/21/2022
RG_LILC3_WS_LAEMP_LCO_2022- 07_N	2207261-46	WS	Sample	07/12/2022	07/21/2022
RG_LILC3_WS_LAEMP_LCO_2022-	2207261-47	WS	Sample	07/12/2022	07/21/2022
07_N RG_LCUT_WS_LAEMP_LCO_2022- 07_NP_NAL	2207261-48	WS	Sample	07/12/2022	07/21/2022
RG_LCUT_WS_LAEMP_LCO_2022- 07_N	2207261-49	WS	Sample	07/12/2022	07/21/2022
RG_LCUT_WS_LAEMP_LCO_2022- 07_N	2207261-50	WS	Sample	07/12/2022	07/21/2022
RG_LI8_WS_LAEMP_LCO_2022-07 _NP_NAL	2207261-51	WS	Sample	07/14/2022	07/21/2022
RG_LI8_WS_LAEMP_LCO_2022-07 _N	2207261-52	WS	Sample	07/14/2022	07/21/2022
`` RG_LI8_WS_LAEMP_LCO_2022-07 _N	2207261-53	WS	Sample	07/14/2022	07/21/2022
^ RG_FO23_WS_LAEMP_LCO_2022- 07_NP_NAL	2207261-54	WS	Sample	07/11/2022	07/21/2022
RG_FO23_WS_LAEMP_LCO_2022- 07_N	2207261-55	WS	Sample	07/11/2022	07/21/2022
07_N RG_F023_WS_LAEMP_LC0_2022- 07_N	2207261-56	WS	Sample	07/11/2022	07/21/2022
OT_N RG_FRUL_WS_LAEMP_LCO_2022- 07_NP_NAL	2207261-57	WS	Sample	07/13/2022	07/21/2022
RG_FRUL_WS_LAEMP_LCO_2022-	2207261-58	WS	Sample	07/13/2022	07/21/2022
07_N RG_FRUL_WS_LAEMP_LCO_2022- 07_N	2207261-59	ws	Sample	07/13/2022	07/21/2022
RG_LIDCOM_WS_LAEMP_LCO_20 22-07_NP_NAL	2207261-60	WS	Sample	07/14/2022	07/21/2022
RG_LIDCOM_WS_LAEMP_LCO_20 22-07_N	2207261-61	WS	Sample	07/14/2022	07/21/2022
RG_LIDCOM_WS_LAEMP_LCO_20 22-07_N	2207261-62	WS	Sample	07/14/2022	07/21/2022
RG_FBLANK_WS_LAEMP_LCO_20 22-07_NP_NAL	2207261-63	WS	Sample	07/11/2022	07/21/2022

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_FBLANK_WS_LAEMP_LCO_20	2207261-64	WS	Sample	07/11/2022	07/21/2022
22-07_N RG FBLANK WS LAEMP LCO 20	2207261-65	WS	Sample	07/11/2022	07/21/2022

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	07/26/2022	07/29/2022	B221623	S220791
MeSe(IV)	Water	SOP BAL-4201	07/26/2022	07/29/2022	B221623	S220791
MeSe(VI)	Water	SOP BAL-4201	07/26/2022	07/29/2022	B221623	S220791
Se	Water	EPA 1638 Mod	07/26/2022	07/28/2022	B221657	S220779
Se(IV)	Water	SOP BAL-4201	07/26/2022	07/29/2022	B221623	S220791
Se(VI)	Water	SOP BAL-4201	07/26/2022	07/29/2022	B221623	S220791
SeCN	Water	SOP BAL-4201	07/26/2022	07/29/2022	B221623	S220791
SeMet	Water	SOP BAL-4201	07/26/2022	07/29/2022	B221623	S220791
SeSO3	Water	SOP BAL-4201	07/26/2022	07/29/2022	B221623	S220791
Unk Se Sp	Water	SOP BAL-4201	07/26/2022	07/29/2022	B221623	S220791

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG RIVER W	S LAEMP LCC	D_2022-07_NP_N	4 <i>L</i>							
2207261-33	DMSeO	- ws	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-33	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-33	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-33	Se(IV)	WS	D	0.079		0.020	0.075	μg/L	B221623	S220791
2207261-33	Se(VI)	WS	D	33.2		0.010	0.055	μg/L	B221623	S220791
2207261-33	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791
2207261-33	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-33	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221623	S220791
2207261-33	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791
DC DIVED W	C LAEMD LOC	2022 07 N								
RG_RIVER_WS	S_ <i>LAEINF_LCC</i> Se)_2022-07_N WS	D	35.1		0.165	0.528	ua/l	B221657	\$220770
2207261-34	Se	VVS	D	35.1		0.105	0.526	μg/L	D221001	S220779
RG_RIVER_W	S_LAEMP_LCC	D_2022-07_N								
2207261-35	Se	WS	TR	35.8		0.165	0.528	μg/L	B221657	S220779
)_2022-07_NP_NA								
2207261-36	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-36	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-36	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-36	Se(IV)	WS	D	≤ 0.020	U	0.020	0.075	μg/L	B221623	S220791
2207261-36	Se(VI)	WS	D	0.636		0.010	0.055	μg/L	B221623	S220791
2207261-36	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791
2207261-36	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-36	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221623	S220791
2207261-36	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791
RG SLINE WS	S LAEMP LCC) 2022-07 N								
2207261-37	Se	WS	D	0.943		0.165	0.528	μg/L	B221657	S220779
	_									
RG_SLINE_WS								_		
2207261-38	Se	WS	TR	0.957		0.165	0.528	μg/L	B221657	S220779

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG LI24 WS	LAEMP LCO	2022 07 NP NAL								
2207261-39	DMSeO	- WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-39	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-39	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-39	Se(IV)	WS	D	≤ 0.020	U	0.020	0.075	μg/L	B221623	S220791
2207261-39	Se(VI)	WS	D	1.70		0.010	0.055	μg/L	B221623	S220791
2207261-39	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791
2207261-39	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-39	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221623	S220791
2207261-39	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791
DC 1124 WC	LAEMB LCO	2022 07 N								
RG_LI24_WS_		_	D	1 01		0.465	0.500	/1	D2246E7	0000770
2207261-40	Se	WS	U	1.81		0.165	0.528	µg/L	B221657	S220779
RG LI24 WS	LAEMP LCO	2022-07 N								
2207261-41	Se	WS	TR	1.87		0.165	0.528	μg/L	B221657	S220779
								. •		
RG_LISP24_W	S_LAEMP_LC	O_2022-07_NP_N	A <i>L</i>							
2207261-42	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-42	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-42	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-42	Se(IV)	WS	D	0.054	J	0.020	0.075	μg/L	B221623	S220791
2207261-42	Se(VI)	WS	D	23.2		0.010	0.055	μg/L	B221623	S220791
2207261-42	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791
2207261-42	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-42	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221623	S220791
2207261-42	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791
DC 115D24 M	'S LAEMD LO	O 2022-07 NP								
2207261-43	Se	WS	D	26.9		0.165	0.528	μg/L	B221657	S220779
ZZU1Z01-43	Ŭ€	VVO	U	20.9		0.103	0.320	µg/L	DZZ 103 <i>1</i>	3220119
RG_LISP24_W	S_LAEMP_LC	O_2022-07_N								
2207261-44	Se	WS	TR	24.6		0.165	0.528	μg/L	B221657	S220779

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG LILC3 WS	LAEMP LCO	2022-07 NP NA	L							
2207261-45	DMSeO	ws -	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-45	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-45	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-45	Se(IV)	WS	D	0.068	J	0.020	0.075	μg/L	B221623	S220791
2207261-45	Se(VI)	WS	D	30.5		0.010	0.055	μg/L	B221623	S220791
2207261-45	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791
2207261-45	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-45	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221623	S220791
2207261-45	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791
70										
RG_LILC3_WS			5	05.0		0.405	0.500		D004057	0000770
2207261-46	Se	WS	D	35.2		0.165	0.528	μg/L	B221657	S220779
RG LILC3 WS	LAEMD ICO	2022 07 N								
2207261-47	Se		TR	34.5		0.165	0.528	μg/L	B221657	S220779
2207201-47	36	WS	110	34.3		0.103	0.320	ру/с	D22 1037	3220119
RG LCUT WS	LAEMP LCO	_2022-07_NP_NA	L							
2207261-48	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-48	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-48	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-48	Se(IV)	WS	D	0.069	J	0.020	0.075	μg/L	B221623	S220791
2207261-48	Se(VI)	WS	D	21.9		0.010	0.055	μg/L	B221623	S220791
2207261-48	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791
2207261-48	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-48	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221623	S220791
2207261-48	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791
DO LOUT WO		2022 07 14								
RG_LCUT_WS			_	22.0		0.405	0.500	/1	D004057	0000770
2207261-49	Se	WS	D	23.9		0.165	0.528	µg/L	B221657	S220779
RG LCUT WS	LAEMP LCO	2022-07 N								
2207261-50	Se	WS	TR	24.3		0.165	0.528	μg/L	B221657	S220779

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG LI8 WS L	AEMP LCO 2	022-07 NP NAL								
2207261-51	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-51	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-51	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-51	Se(IV)	WS	D	0.048	J	0.020	0.075	μg/L	B221623	S220791
2207261-51	Se(VI)	WS	D	20.0		0.010	0.055	μg/L	B221623	S220791
2207261-51	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791
2207261-51	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-51	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221623	S220791
2207261-51	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791
RG_LI8_WS_L	AEMP ICO 2	022-07 N								
2207261-52	Se	WS	D	21.9		0.165	0.528	μg/L	B221657	S220779
2201201-32	00	VVO	D	21.5		0.100	0.020	µg/L	D22 1007	3220119
RG_LI8_WS_L	AEMP_LCO_2	022-07_N								
2207261-53	Se	WS	TR	20.6		0.165	0.528	μg/L	B221657	S220779
DC FO22 WC	LAEMB LCO	2022 07 ND NA								
2207261-54	_ <i>LAEMP_LCO</i> _ DMSeO	_ 2022-07_NP_NAI WS	- D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-54	MeSe(IV)	WS	D	0.010	J	0.010	0.025	μg/L μg/L	B221623	S220791 S220791
2207261-54	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L μg/L	B221623	S220791
2207261-54	Se(IV)	WS	D	0.100	O	0.020	0.075	μg/L	B221623	S220791
2207261-54	Se(VI)	WS	D	19.5		0.010	0.055	μg/L	B221623	S220791
2207261-54	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791
2207261-54	SeMet	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B221623	S220791
2207261-54	SeSO3	WS	D	≤ 0.010	Ü	0.010	0.055	μg/L	B221623	S220791
2207261-54	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791
RG_FO23_WS								_		
2207261-55	Se	WS	D	22.8		0.165	0.528	μg/L	B221657	S220779
RG FO23 WS	LAEMP LCO	2022-07 N								
2207261-56	Se	WS	TR	22.1		0.165	0.528	μg/L	B221657	S220779

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_FRUL_WS	_LAEMP_LCO	_2022-07_NP_NA	L							
2207261-57	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-57	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-57	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-57	Se(IV)	WS	D	0.100		0.020	0.075	μg/L	B221623	S220791
2207261-57	Se(VI)	WS	D	20.7		0.010	0.055	μg/L	B221623	S220791
2207261-57	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791
2207261-57	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-57	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221623	S220791
2207261-57	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791
50 5544 140										
RG_FRUL_WS			Г.	04.0		0.465	0.500	/1	D004057	0000770
2207261-58	Se	WS	D	24.3		0.165	0.528	μg/L	B221657	S220779
RG_FRUL_WS	LAEMP LCO	2022-07 N								
2207261-59	Se	WS	TR	24.2		0.165	0.528	μg/L	B221657	S220779
								. •		
RG LIDCOM V	VS LAEMP LO	CO_2022-07_NP_I	VAL							
2207261-60	DMSeO	_ ws	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-60	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-60	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-60	Se(IV)	WS	D	0.052	J	0.020	0.075	μg/L	B221623	S220791
2207261-60	Se(VI)	WS	D	21.7		0.010	0.055	μg/L	B221623	S220791
2207261-60	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791
2207261-60	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791
2207261-60	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221623	S220791
2207261-60	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791
DC LIDCOM N	VC LAEMD LA	20 2022 07 84								
RG_LIDCOM_V			_	22.5		0.465	0.500	/1	D004057	0000770
2207261-61	Se	WS	D	23.5		0.165	0.528	μg/L	B221657	S220779
RG LIDCOM V	VS LAEMP LO	CO 2022-07 N								
2207261-62	Se	ws	TR	22.6		0.165	0.528	μg/L	B221657	S220779

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261 Client PM: Cybele Heddle Client Project: Regional Effects Program -

LCO LAEMP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence		
RG_FBLANK_WS_LAEMP_LCO_2022-07_NP_NAL												
2207261-63	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791		
2207261-63	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791		
2207261-63	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791		
2207261-63	Se(IV)	WS	D	≤ 0.020	U	0.020	0.075	μg/L	B221623	S220791		
2207261-63	Se(VI)	WS	D	0.021	J	0.010	0.055	μg/L	B221623	S220791		
2207261-63	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B221623	S220791		
2207261-63	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B221623	S220791		
2207261-63	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B221623	S220791		
2207261-63	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B221623	S220791		
RG FBLANK	WS LAEMP L	CO 2022-07 N										
2207261-64	Se	WS	D	≤ 0.165	U	0.165	0.528	μg/L	B221657	S220779		
RG_FBLANK_	WS_LAEMP_L	CO_2022-07_N										
2207261-65	Se	WS	TR	≤ 0.165	U	0.165	0.528	μg/L	B221657	S220779		

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Accuracy & Precision Summary

Batch: B221623 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B221623-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.469	μg/L	107% 75-125	
	Se(IV)		5.000	4.902	μg/L	98% 75-125	
	Se(VI)		5.000	4.762	μg/L	95% 75-125	
	SeCN		5.015	4.616	μg/L	92% 75-125	
	SeMet		4.932	4.937	μg/L	100% 75-125	
B221623-DUP7	Duplicate, (2207261-51)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		ND	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.048		0.047	μg/L		0.3% 25
	Se(VI)	20.01		20.18	μg/L		0.8% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B221623-MS7	Matrix Spike, (2207261-5	1)					
	Se(IV)	0.048	4.900	4.660	μg/L	94% 75-125	
	Se(VI)	20.01	5.100	24.92	μg/L	96% 75-125	
	SeCN	ND	1.962	1.692	μg/L	86% 75-125	
	SeMet	ND	1.977	1.897	μg/L	96% 75-125	
B221623-MSD7	Matrix Spike Duplicate, (2207261-51)				
	Se(IV)	0.048	4.900	4.636	μg/L	94% 75-125	0.5% 25
	Se(VI)	20.01	5.100	24.97	μg/L	97% 75-125	0.2% 25
	SeCN	ND	1.962	1.653	μg/L	84% 75-125	2% 25
	SeMet	ND	1.977	1.912	μg/L	97% 75-125	0.8% 25

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Accuracy & Precision Summary

Batch: B221623 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC 8	Limits	RPD & Li	mits
B221623-DUP6	Duplicate, (2207351-10)								
	DMSeO	0.017		0.019	μg/L			11%	25
	MeSe(IV)	0.013		ND	μg/L			N/C	25
	MeSe(VI)	ND		ND	μg/L			N/C	25
	Se(IV)	4.106		3.824	μg/L			7%	25
	Se(VI)	121.3		110.2	μg/L			10%	25
	SeCN	ND		ND	μg/L			N/C	25
	SeMet	ND		ND	μg/L			N/C	25
	SeSO3	ND		ND	μg/L			N/C	25
	Unk Se Sp	ND		ND	μg/L			N/C	25
B221623-MS6	Matrix Spike, (2207351-1	0)							
	Se(IV)	4.106	4.900	8.060	μg/L	81%	75-125		
	Se(VI)	121.3	5.100	116.1	μg/L	NR	75-125		
	SeCN	ND	1.962	1.803	μg/L	92%	75-125		
	SeMet	ND	1.977	1.961	μg/L	99%	75-125		
B221623-MSD6	Matrix Spike Duplicate, (2207351-10)						
	Se(IV)	4.106	4.900	8.030	μg/L	80%	75-125	0.4%	25
	Se(VI)	121.3	5.100	115.2	μg/L	NR	75-125	N/C	25
	SeCN	ND	1.962	1.777	μg/L	91%	75-125	1%	25
	SeMet	ND	1.977	1.970	μg/L	100%	75-125	0.4%	25

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Accuracy & Precision Summary

Batch: B221657 Lab Matrix: Water Method: EPA 1638 Mod

Sample B221657-BS1	Analyte Blank Spike, (2137005)	Native	Spike	Result	Units	REC 8	& Limits	RPD & Lin	nits
B221097-B31	Se		200.0	177.6	μg/L	89%	75-125		
B221657-BS2	Blank Spike, (2137005) Se		200.0	193.5	μg/L	97%	75-125		
B221657-BS3	Blank Spike, (2137005) Se		200.0	205.0	μg/L	102%	75-125		
B221657-SRM1	Reference Material (221401 Se	8, TMDA 5	1.5 Reference 14.30	Standard 13.02	- Bottle 10 µg/L	-	75-125		
B221657-SRM2	Reference Material (221401 Se	8, TMDA 5	1.5 Reference 14.30	Standard 12.82	- Bottle 10 μg/L		75-125		
B221657-SRM3	Reference Material (221401 Se	8, TMDA 5	1.5 Reference 14.30	Standard 12.61	- Bottle 10 μg/L		75-125		
B221657-DUP3	Duplicate, (2207259-05) Se	51.98		52.68	μg/L			1%	20
B221657-MS3	Matrix Spike, (2207259-05) Se	51.98	220.0	264.1	μg/L	96%	75-125		
B221657-MSD3	Matrix Spike Duplicate, (22 Se	2 07259-05) 51.98	220.0	268.0	μg/L	98%	75-125	1%	20
B221657-DUP4	Duplicate, (2207261-35) Se	35.75		34.69	μg/L			3%	20
B221657-MS4	Matrix Spike, (2207261-35) Se	35.75	220.0	239.4	μg/L	93%	75-125		

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Accuracy & Precision Summary

Batch: B221657 Lab Matrix: Water Method: EPA 1638 Mod

Sample B221657-MSD4	Analyte Matrix Spike Duplicate (2)	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B221637-W3D4	Matrix Spike Duplicate, (22 Se	35.75	220.0	245.3	μg/L	95% 75-125	2% 20
B221657-DUP5	Duplicate, (2207261-53) Se	20.61		20.38	μg/L		1% 20
B221657-MS5	Matrix Spike , (2207261-53) Se	20.61	220.0	234.6	μg/L	97% 75-125	
B221657-MSD5	Matrix Spike Duplicate, (22 Se	207261-53) 20.61	220.0	237.9	μg/L	99% 75-125	1% 20

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Method Blanks & Reporting Limits

Batch: B221623 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B221623-BLK1	0.00	μg/L
B221623-BLK2	0.00	μg/L
B221623-BLK3	0.00	μg/L
B221623-BLK4	0.00	ua/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B221623-BLK1	0.00	μg/L
B221623-BLK2	0.00	μg/L
B221623-BLK3	0.00	μg/L
B221623-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B221623-BLK1	0.00	μg/L
B221623-BLK2	0.00	μg/L
B221623-BLK3	0.00	μg/L
B221623-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B221623-BLK1	0.0006	μg/L
B221623-BLK2	0.00	μg/L
B221623-BLK3	0.00	μg/L
B221623-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.004 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B221623-BLK1	0.00	μg/L
B221623-BLK2	0.00	μg/L
B221623-BLK3	0.00	μg/L
B221623-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B221623-BLK1	0.00	μg/L
B221623-BLK2	0.00	μg/L
B221623-BLK3	0.00	μg/L
B221623-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B221623-BLK1	0.00	μg/L
B221623-BLK2	0.00	μg/L
B221623-BLK3	0.00	μg/L
B221623-BI K4	0.00	ua/l

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B221623-BLK1	0.00	μg/L
B221623-BLK2	0.00	μg/L
B221623-BLK3	0.00	μg/L
B221623-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.011 **MRL:** 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B221623-BLK1	0.00	μg/L
B221623-BLK2	0.00	μg/L
B221623-BLK3	0.00	μg/L
B221623-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Method Blanks & Reporting Limits

Batch: B221657 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B221657-BLK1	-0.069	μg/L
B221657-BLK2	-0.006	μg/L
B221657-BLK3	-0.029	μg/L
B221657-BLK4	-0.033	μg/L

Average: -0.034 **MDL:** 0.150 **Limit:** 0.480 **MRL:** 0.480

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261 Client PM: Cybele Heddle Client Project: Regional Effects Program -

LCO LAEMP

Lab	ID : 2207261-33		Rep	oort Matrix: WS		Colle	cted: 07/12/2022			
Sam	ple:		San	nple Type: Sample + Sum		Received: 07/21/2022				
$RG_{}$	RIVER_WS_LAEMP_LCO_2	2022-07_NP_NAL	-							
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 2 - 2207261			
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 2 - 2207261			
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 2 - 2207261			

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261 Client PM: Cybele Heddle Client Project: Regional Effects Program -

LCO LAEMP

	ID: 2207261-34 ple: RG_RIVER_WS_LAEMP_ Container Client-Provided - TM	LCO_2022-07_N Size 40 mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2218038		cted: 07/12/2022 ved: 07/21/2022 Ship. Cont. Cooler 2 - 2207261
Sam	ID: 2207261-35 ple: RG_RIVER_WS_LAEMP_ Container Client-Provided - TM	LCO_2022-07_N Size 40 mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2218038		cted: 07/12/2022 ved: 07/21/2022 Ship. Cont. Cooler 2 - 2207261
Sam	ID: 2207261-36 ple: SLINE_WS_LAEMP_LCO_202	22-07 NP NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 07/12/2022 ved: 07/21/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 2 - 2207261
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 2 - 2207261
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 2 - 2207261
Sam	ID: 2207261-37 ple: RG_SLINE_WS_LAEMP_ Container Client-Provided - TM	LCO_2022-07_N Size 40 mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2218038		cted: 07/12/2022 ved: 07/21/2022 Ship. Cont. Cooler 2 - 2207261
Sam	ID: 2207261-38 ple: RG_SLINE_WS_LAEMP_ Container Client-Provided - TM	LCO_2022-07_N Size 40 mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2218038		cted: 07/12/2022 ved: 07/21/2022 Ship. Cont. Cooler 2 - 2207261

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261 Client PM: Cybele Heddle Client Project: Regional Effects Program -

LCO LAEMP

Sam	ID: 2207261-39 ple: LI24_WS_LAEMP_LCO_2022	O7 NP NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 07/11/2022 ved: 07/21/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 2 - 2207261
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 2 - 2207261
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 2 - 2207261
Sam	ID: 2207261-40 ple: RG_LI24_WS_LAEMP_L Container Client-Provided - TM	CO_2022-07_N Size 40 mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2218038		cted: 07/11/2022 ved: 07/21/2022 Ship. Cont. Cooler 2 - 2207261
Sam	ID: 2207261-41 ple: RG_LI24_WS_LAEMP_L Container Client-Provided - TM	CO_2022-07_N Size 40 mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2218038		cted: 07/11/2022 ved: 07/21/2022 Ship. Cont. Cooler 2 - 2207261
Sam	ID: 2207261-42 ple: LISP24_WS_LAEMP_LCO_20	022-07_NP_NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 07/13/2022 ved: 07/21/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 2 - 2207261
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 2 - 2207261
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 2 - 2207261

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program -

LCO LAEMP

Sample Containers

Lab ID: 2207261-43 Report Matrix: WS Collected: 07/13/2022 Sample: Received: 07/21/2022 Sample Type: Sample + Sum RG LISP24 WS LAEMP LCO 2022-07 NP **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 40 mL 2218038 <2 Cooler 2 na 2207261 Lab ID: 2207261-44 Report Matrix: WS Collected: 07/13/2022 Sample: Received: 07/21/2022 Sample Type: Sample + Sum RG_LISP24_WS_LAEMP_LCO_2022-07_N **Des Container Preservation** P-Lot рΗ **Size** Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2218038 <2 Cooler 2 na 2207261 Lab ID: 2207261-45 Report Matrix: WS Collected: 07/12/2022 Sample: Sample Type: Sample + Sum Received: 07/21/2022 RG_LILC3_WS_LAEMP_LCO_2022-07_NP_NAL P-Lot **Des Container** Size Lot **Preservation** pH Ship. Cont. 15 mL Cent Tube 15mL Se-Sp na none na na Cooler 2 -2207261 В XTRA_VOL 15 mL na none na na Cooler 2 -2207261 С XTRA_VOL 125 mL na na Cooler 2 none na 2207261 Lab ID: 2207261-46 Report Matrix: WS Collected: 07/12/2022 Sample: RG LILC3 WS LAEMP LCO 2022-07 N Sample Type: Sample + Sum Received: 07/21/2022 **Des Container** Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) 2218038 <2 Cooler 2 na 2207261 Lab ID: 2207261-47 Report Matrix: WS Collected: 07/12/2022 Sample: RG LILC3 WS LAEMP LCO 2022-07 N Received: 07/21/2022 Sample Type: Sample + Sum **Des Container Size Preservation** Lot P-Lot pΗ Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) 2218038 <2 Cooler 2 na 2207261

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Sam	ID: 2207261-48 ple: LCUT_WS_LAEMP_LCO_202	2-07 NP NAI		Report Matrix: WS Sample Type: Sample + Sum		Collected: 07/12/202 Received: 07/21/202					
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.				
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 2 - 2207261				
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 2 - 2207261				
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 2 - 2207261				
Sam	ID: 2207261-49 ple: RG_LCUT_WS_LAEMP_I Container Client-Provided - TM	LCO_2022-07_N Size 40 mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2218038		cted: 07/12/2022 ived: 07/21/2022 Ship. Cont. Cooler 2 - 2207261				
Sam	ID: 2207261-50 ple: RG_LCUT_WS_LAEMP_I Container Client-Provided - TM	LCO_2022-07_N Size 40 mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2218038		cted: 07/12/2022 ived: 07/21/2022 Ship. Cont. Cooler 2 - 2207261				
Sam	ID: 2207261-51 ple: LI8_WS_LAEMP_LCO_2022-(07_NP_NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 07/14/2022 (ved: 07/21/2022				
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.				
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 2 - 2207261				
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 2 - 2207261				
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 2 - 2207261				

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261 Client PM: Cybele Heddle Client Project: Regional Effects Program -

LCO LAEMP

	D: 2207261-52 ple: RG_LI8_WS_LAEMP_LC	O_2022-07_N		Report Matrix: WS Sample Type: Sample + Sum			ted: 07/14/2022 ved: 07/21/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2218038	<2	Cooler 2 - 2207261
	D : 2207261-53			Report Matrix: WS			ted: 07/14/2022
	ple: RG_LI8_WS_LAEMP_LC	_		Sample Type: Sample + Sum	51.4		ved: 07/21/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2218038	<2	Cooler 2 - 2207261
	D : 2207261-54			Report Matrix: WS			ted: 07/11/2022
Sam	pie: FO23 WS LAEMP LCO 2022	2-07 NP NAI		Sample Type: Sample + Sum		Recei	ved: 07/21/2022
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 2 - 2207261
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 2 - 2207261
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 2 - 2207261
Sam	D: 2207261-55 ple: RG_FO23_WS_LAEMP_L Container	.CO_2022-07_N Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot		eted: 07/11/2022 ved: 07/21/2022 Ship. Cont.
A	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2218038	<2	Cooler 2 - 2207261
	D: 2207261-56 ple: RG FO23 WS LAEMP L	.CO 2022-07 N		Report Matrix: WS Sample Type: Sample + Sum			eted: 07/11/2022 ved: 07/21/2022
	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2218038	<2	Cooler 2 - 2207261

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Sam	ID: 2207261-57 ple: FRUL_WS_LAEMP_LCO_202	2-07 NP NAI		Report Matrix: WS Sample Type: Sample + Sum		Collected: 07/13/2023 Received: 07/21/2023						
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.					
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 2 - 2207261					
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 2 - 2207261					
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 2 - 2207261					
Sam	ID: 2207261-58 ple: RG_FRUL_WS_LAEMP_I Container Client-Provided - TM	LCO_2022-07_N Size 40 mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2218038		cted: 07/13/2022 ived: 07/21/2022 Ship. Cont. Cooler 2 - 2207261					
Sam	ID: 2207261-59 ple: RG_FRUL_WS_LAEMP_I Container Client-Provided - TM	LCO_2022-07_N Size 40 mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2218038		cted: 07/13/2022 (ved: 07/21/2022 Ship. Cont. Cooler 2 - 2207261					
Sam	ID: 2207261-60 ple: LIDCOM_WS_LAEMP_LCO_2	2022-07_NP_NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 07/14/2022 (ved: 07/21/2022					
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.					
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 2 - 2207261					
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 2 - 2207261					
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 2 - 2207261					

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261 Client PM: Cybele Heddle Client Project: Regional Effects Program -

LCO LAEMP

2207261

Sample Containers

Lab ID: 2207261-61 Report Matrix: WS Collected: 07/14/2022 Sample: Received: 07/21/2022 Sample Type: Sample + Sum RG LIDCOM WS LAEMP LCO 2022-07 N **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 40 mL 2218038 <2 Cooler 2 na 2207261 Lab ID: 2207261-62 Report Matrix: WS Collected: 07/14/2022 Received: 07/21/2022 Sample: Sample Type: Sample + Sum RG_LIDCOM_WS_LAEMP_LCO_2022-07_N **Des Container Preservation** P-Lot рΗ **Size** Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2218038 <2 Cooler 2 na 2207261 Lab ID: 2207261-63 Report Matrix: WS Collected: 07/11/2022 Sample: Sample Type: Sample + Sum Received: 07/21/2022 RG_FBLANK_WS_LAEMP_LCO_2022-07_NP_NAL **Des Container** P-Lot Size Lot **Preservation** pH Ship. Cont. Cent Tube 15mL Se-Sp 15 mL na none na na Cooler 2 -2207261 В XTRA_VOL 15 mL na none na na Cooler 2 -2207261 С XTRA_VOL 125 mL na none na na Cooler 2 -2207261 Lab ID: 2207261-64 Report Matrix: WS Collected: 07/11/2022 Sample: Sample Type: Sample + Sum Received: 07/21/2022 RG_FBLANK_WS_LAEMP_LCO_2022-07_N Container Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) <2 na 2218038 Cooler 2 -2207261 Lab ID: 2207261-65 Collected: 07/11/2022 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 07/21/2022 RG FBLANK WS LAEMP LCO 2022-07 N рΗ **Des Container Preservation** P-Lot Ship. Cont. Size Lot Client-Provided - TM 40 mL 10% HNO3 (BAL) 2218038 <2 Cooler 2 na

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2207261

Client PM: Cybele Heddle

Client Project: Regional Effects Program
LCO LAEMP

Shipping Containers

Cooler 2 - 2207261

Received: July 21, 2022 7:41

Tracking No: PAPS#RWHV94532 via Courier

Coolant Type: Ice Temperature: 2.5 °C Description: Cooler 2
Damaged in transit? No
Returned to client? No
Comments: IR #33

Custody seals present? No Custody seals intact? No COC present? Yes

	COC ID:	LAEN	IP_L	KS ZUZZ JU	LY_BROO	TURNA	ROUND	TIME:			Regula	ur.	I	RUSH N/A			
P	ROJECT/CLIENT INFO					-		LABOR	ATORY		A Spart		-	OTHER INFO)		
·	egional Effects Program - I	LCO LAE	MP			-		Brooks Ap		S		Report Fo	rmat / Dis	tribution	Excel	PDF	EDD
Project Manager C						Lab (_	Ben Wozn				Email 1:	aquascilat	(@teck.com	X	X	X
	ybele.Heddle@Teck.com						_	Ben@bro				Email 2:	teckcoal(a)	quisonline.com			X
Address 4	21 Pine Ave					A	_	3751 Lak	e City Wa	ay NE		Email 3:	Teck.Lab.R	esults@teck.com	X	X	X
21				- Inc				Suite 108			1	Email 4:	-	itz@Teck.com	X	X	X
City	Sparwood			Province BC		-	City S			Province	WA	Email 5:		ler@Minnow.ca	X	X	X
Postal Code	V0B 2G0			Country Canada		_	l Code		61.60	Country	United :	Email 6:	Ibowrong	minnow.ca	X	X	X
Phone Number 2	SAMPLE DET	AILS				Phone N	umber (206) 753-		LYSIS RE	OHESTE	PO number	1	Filtered - F: 1	0081703		& Lab No. 2
	SAMPLE DET	AILS						7	AINA	LISIS RE	QUESTE	L/	1	rmereu · r;	r dejut, iC: Cint	LE: Lien e	1, 1, 10, 14; j
								F	F				1				
			(6)					Freser Frozen	HNO3	HNO3							
			erial (Yes/l					iation									
Sample ID	Sample Location (sys loc code)	Field Matrix	Hazardous Material (Yes/No)	Date	Time (24hr)	G=Grab C=Com		Brooks Se Speciation	Brooks_Se_D	Brooks_Se_T							
KG.FRYL_US_LAEMP_LLO_2622-57	UP NA OC COLL	ws		2021-07-13	09:3b	G	1	X	1 11								
Control of the Hollo Table	MI-PAIL NO TRAIL		-			+		W.							-		+
G-FRUL WS-LAEMP-LLO2022-9-N	RG-FRUL	WS	NO	2012-07-13	09:30	G	2		X	a							
G_F023_WS_LAEMP_LCO-2022-07_NP_NAL	RG-F023	WS	NO	2022-07-11	15:30	G	1	X									
G_F023-WS_LAEMP_LCO-2022-07-N	RG-FO23	ws	NO	2022-07-11	15:30	G	2		X	X							
G_SLINE_WS_LAEMP_LCO_2022-07_NP_NE		ws	NO	2022-07-12	14:00	G	1	×	1								
			-			+		_~	1	-	+		1		-	+	_
G_SLINE_WS_LAEMP_LCO_2082-07_N	RG_SLINE	ws	NO	2022-07-12	14:00	G	2		X	X	_						-
CG_LIZY_WS_LAEMP_LCO-ZONZ-07_NP_M	- RG_L124	ws	NO	2022-07-11	11:10	G	1	X									
16-L124-WS-LAEMP_LCO-2022-07-N	RG_L124	ws	NO	2022-07-11	11:10	G	2		x	×							
RG-FBLANK-WS-LAEMP-LCO-2022-07		W ws	NO		09:00	G	21				1		1				
				2022-07-11		_		X		1	-						+
CG_FBLANK_WS_LAEMP_LCO_2022-07	N RG_FBLANK	ws	NO	2022-07-1	09:00	G	12		X	×							
RG_LCUT_WS_LAEMP_LCO_2022-07_N	P-NAL RG-LCUT	ws	NO	2022-07-12	09:30	G	71	×									
RG_LCUT_WS_LAEMP_LCO_2022-07_	V RG-LCUT	ws	NO	2022-07-12	09:30	G	12		x	×							
Man - nat anament in the annu and Alm	1/N- Mari			2022 01-12	01.30	1			~	1			-		+	-	
		WS	NO			G	2	P-1-7	CHIEF AND		OUDDAN	200 / 1 4 ET 200 C 1	FION		mar name	WW. 8 AV	
		1	19.1	1 < 1 / 1		LA	-		TIME		_	BY/AFFILIA	HUN		QATE!		11
			KIC	hSmil/Lol	ic endian	mimal		17-0	14/14	1.30	100	(BAZ		7121	122	7:4	
SERVICE REQUEST (rush - subje			1			-	-			**		-					
p. 12.0		default) X		Sampler's	Name			Rick S	nit		Mo	bile#		403-58	6-3241		
	-3 business days) - 50% su		-	•		-	-	7			-		_				
Emergency (1 Business Day) - 100% su	ircharge	-1	Sampler's Si			N 1	1000				e/Time		-07-14		14:3	-

Page 2 of 2

BAL Final Report 2207261

" TECK	REP	LAEN	IP L	CO ZUZZ JU	LY BROO	T					•	•			1	D, (L !	iii Cai i tt	port	
	COC ID:			KS		TURNA	ROUNI			rons:		Regula	r		RUSH	1 - 2 1 - 2			
	Regional Effects Program -	LCO LAE	MP			Lah	Name 1			FORY ied Labs			Dancet D	remot / F	_	R INFO	Excel	PDE	EDD
Project Manager							Contact						Report Fo		ilab@teck.		EXCEI	X Y	EDD
	Cybele.Heddle@Teck.com						Email				d.com		Email 2:		(a) equisonlir	-	A	Α	X
Address	421 Pine Ave						Address	13751 1	Lake (City Wa	y NE		Email 3:		b.Results@t		X	X	X
								Suite 10	08				Email 4:		.Ritz@Tec		X	X	X
City	Sparwood			Province BC			City	Seattle			Province	WA	Email 5:	Tyler,M	lehler@Min	now.ca	X	Х	X
Postal Code	V0B 2G0			Country Canada			al Code				Country	United	Email 6:	Ibowro	n@minno		X	X	X
Phone Number	250-910-8755 SAMPLE DE'I	6 TT C				Phone N	Number	(206) 7	753-61		MOTO DE	CATE CATE	PO number				817033		
	SAMILE DE	AILS						T		ANAI	YSIS RE	QUESTE	D		1 1	tered - F: Fi	id, L; Lab, P	L; Field &	Lab, N; Ne
				1				證 !	F	F									
				1				.×.	- 1										
			~					Freeky.	ozen	HNO3	HNO3								
			Š.					_											
Sample ID	Sample Location (sys_loc_code)	Field Matrix	Hazardous Material (Yes/No)	Date	Time (24hr)	G=Grab C=Com		ANALYSIS	Brooks_Se_Speciation	Brooks_Se_D	Brooks_Se_T								
RG_LILC3_WS_LAEMP_LCO_2022-07_	NP_NAL PG_LIZE	ws	NO	2022-07-12	11:45	G	1	1	×										
RG_LILC3-WS_LAEMP_LCO-2022-07_/	1 RG_LILC3	ws	NO	2022-07-12	11:45	G	2			×	×								
RG-RIVER - WS-LAEMP-LCO-2022-07		ws	NO	2022-07-12	10:00	G	1	,	×										
RG-RIVER-WS-LAEMP_LCO_2022-07		ws	NO	2022-07-12	00:01	G	2			×	×							1	l.
RG_LISP24_WS-LAEMP. LCO_Z022-0		24WS	NO	2022-07-13	12:45	G	1		×										
RG_LISP24_WS_LAEMP_LCO-2022-07		ws	NO	2022-07-13	12:45	G	2			×	×			4					
RG-LIDCOM-WS-LAFMP-LCO-2022-07-A		ws	NO	2022-07-14	13:00	G	1		×	•									
RG-LIDCOM-WS-LAEMP-LCO-2022-07-N		ws	NO	2022-07-14	13:00	G	2			×	X						1		
RG_L18_WS_LAEMP_LCO_2022-07_N		ws	NO	2022-07-14	09:48	G	81				^	+						1	
		ws				-		1	X			1		+	+	1	1	-	+
RG_LI8_WS-LAEMP_LCO_2022-07_N	RG-418		NO	2022-07-14	09:45	G	5		-	X	×	4		-		-	4	-	
		WS	NO			G	#1												
		ws	NO			G	+2		- 1										
		ws	NO			G	3							1					
								DA	VIE/I	TIME	AC	CEPTED	BY/AFFILIA	TION		ľ	ATE/TI	ME	
			Rich	2 SmillLotic	environ me	ntal		2022	-07-	14/1	436	As	6/BAL			7/2/	122	7:4	1
										17						-			
	8 18		0																
SERVICE REQUEST (rush - subj		default) X			- 4	1						1		-					
Priority (2-3 business days) - 50% su			Sampler's I	Name		-	Rick	k Smit	t		Moi	bile #		4	03-586-	3241		
Emergency	1 Business Day) - 100% su	rcharge		Sampler's Sig	nature	(00%					Date	Time 20	m	7-14	1	14	2	
For Emergency <1 Day,	ASAP or Weekend - Conta	ect ALS		Dampier o Dig	,	1	100	_				Date	70)ZZ _ 2	>4-1-4	/	14.	50	

INVOICE TO

STRAIGHT BILL OF LADING NOT NEGOTIABLE

HOT SHOT SERVICE INC. 250-425-7447 24 Hour Hot Skot Service

N BAL Final Report 2207261

Sparwood, BC Terrace, BC Red Deer, AB Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA Elkford, BC Ft. McMurray, AB Shelby, MT

DATE

Tumbler Ridge, BC Hinton, AB Gillette, WY

BILL OF LADING #	PURCHASE ORDE	R NUMBER	
SHIPPER (FROM)	CONSIGNEE (TO)	S. A. Solie A.	
STREET	STREET	Tollar by	A LECALE LA
CITY/PROVINCE	POSTAL CODE CITY/PROVINCE	A WA	POSTAL CODE
SPECIAL INSTRUCTIONS	THE DOTALL DESC		FREIGHT CHARGES
PACKAGES DESCRIPT	TION OF ARTICLES AND SPECIAL MARKS	WEIGHT (Subject to Correction)	SHIPPER TO CHECK
7 Committee Am	DESCRIPTION OF THE PARTY OF THE	(Subject to Consection)	If not indicates, snioping well automatically move collect
L CONSICIO VA			FEE
			WAITING
DAG- 01 1	IL COLLEGE		XPU
TANA # KIN	HV/4455)		CHARGES
I WIO HAA	INTIDAL		FSC
JNIT#			US
	DECLARED VALUATION: Maximum liability of carrier is \$2.00 per lb. (\$4.41 per kilogram) unless declared valuation states	\$	
DRIVER'S SIGNATURE - PICK UP BY	otherwise. DRIVER'S SIGNATURE - DELIVERY BY	FINISH TIME	SUB TOTAL
PICK UP 3	DAVENS SIGNATURE - DEEVEN DI	, il doi! Think	GST
OTICE OF CLAIM: (a) No carrier is liable for loss, damage or delay of any goods under the sayed of such loss, damage or delay a given in writing to the commating carrier or the delive	Bit of Lading unless notice, therefor setting out particulars of the origin, destination and date of the ring carrier within starty (60) days after the delivery of the goods, bit he case of fature to make de the carrier within starty (60) days after the delivery of the goods, bit he case of fature to make de the carrier within starty (60) days after the delivery of the goods, bit he case of fature to the carrier of the	rpment of the goods and the estimated amount claims livery within nine (9) morabs from the date of shipment	TOTAL \$
ECEIVED at the point of origin on the date specified from the consignor mentioned herein, relatined as midicated below, which the carrier agrees to carry and to do is mutually agreed, as to each carrier of all or any of the gloch over all or any portion of the ill the conditions standard Bid of Lading, in power at the date of listing, which are herefore which are the controlled to the controlled of the controlled of the controlled or the controlled or the conditions standard Bid of Lading, in power at the date of listing, which are herefore the conditions the controlled or the controlled or the controlled or the conditions of the controlled or the controlled or the controlled or the controlled or the controlled or the controlled or the Bit of Lading unless notice, therefor setting out particulars of the origin, destination and date of shange carrier within stary (50) days after the delivery of the goods, oith the case of failure to make delivery of the case of the case of failure to make delivery of the case of failure to make delivery of the paid failure of the case of failure to make deliver to the consigned at the said destination, subject to the rates and class route to destination, and carrier and class route to destination, and as to each party of any time interested in all or arriver to the consigned at the said destination, subject to the rates and class route to destination, and as to each party of any time interested in all or arrivers of the party of the consistency of the carrier	conients of package unknown) markes, consigned an infication in effect on the date of shipment my service to be performed hereunder shall be subjec- ons set aside by the standard Bill of Lading, in power a	IF AT OWNER'S RISK, WRITE ORD HERE.	
HIPPER	In force in the jurisdiction at the time and place of shipment and is suspect to the conditions set of CONSIGNEE PRINT	ui in such conactoris	DATE
RINT	CONSIGNEE		TIME
HIPPER IGN	SIGN		NUMBER OF PIECES RECEIVED
	K: Consignee GOLDENROAD: Shipper GST#	# 864540398RT0001	NUMBER OF FIELES RECEIVED
OS FRATING			4 7 au
Cooler ID: Couler 2	COC (Y/N) Temperate	urg: ,5	IR: 🐒
Coolant Type: (Ice) Blue	e Ice Ambient		
Notes:	. 06	.1	
Sampling Locations:	16 6	HIEV	LC
771	D) SP T/D SP T/D	SP) T/D	SP T/D SP L
Sample Types:	125ml 45rl 125rl	12574	SP T/D SP L 25nL 125nL Plestic Plestic
Container Types:	X Noario di Dico	gless 1	Please

Effective 7/29/20

© EE E PL 7/21/22

Opened By: ERL

Revision 004

SELENIUM SPECIATION

BAL Final Report 2209188 (Finalized September 21, 2022) Confidential BAL Final Report 2209188

September 21, 2022

Teck Resources Limited – Vancouver Cybele Heddle 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 cybele.heddle@teck.com

Re: Regional Effects Program

Dear Cybele Heddle,

On September 15, 2022, Brooks Applied Labs (BAL) received six (6) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) form.

The sample fractions for total recoverable Se and dissolved Se were not preserved in the field. The samples were preserved (pH < 2) upon receipt at BAL. All sample fractions for total recoverable Se and dissolved Se were preserved within the (14 calendar day) preservation holding time.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable Se and Dissolved Se

Each aqueous sample fraction for dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Selenium Speciation

Each aqueous sample was analyzed for selenium speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate $[SeSO_3]$, and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk SeSp].

Confidential BAL Final Report 2209188

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional selenium species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting selenium species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

In cases when either the native sample concentration was non-detectable (reported as less than or equal to the MDL) and/or the corresponding DUP result was also non-detectable, the RPD between the two values was not calculated (**N/C**).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Brooks Applied Labs

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209188

Client PM: Cybele Heddle

Client Project: Regional Effects Program

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)
SM2340B	Non-Potable Waters	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_FO23_WS_LAEMP_LCO_2022-	2209188-01	WS	Sample	09/09/2022	09/15/2022
09_N	0000400 00	14/0	0	00/00/0000	00/45/0000
RG_FO23_WS_LAEMP_LCO_2022- 09 NP-NAL	2209188-02	WS	Sample	09/09/2022	09/15/2022
RG_FO23_WS_LAEMP_LCO_2022-	2209188-03	WS	Sample	09/09/2022	09/15/2022
09_NP-NAL					
RG_FRUL_WS_LAEMP_LCO_2022-	2209188-04	WS	Sample	09/10/2022	09/15/2022
09_N					
RG_FRUL_WS_LAEMP_LCO_2022-	2209188-05	WS	Sample	09/10/2022	09/15/2022
09_NP-NAL					
RG_FRUL_WS_LAEMP_LCO_2022-	2209188-06	WS	Sample	09/10/2022	09/15/2022
09_NP-NAL					
RG_LILC3_WS_LAEMP_LCO_2022-	2209188-07	WS	Sample	09/08/2022	09/15/2022
09_N					
RG_LILC3_WS_LAEMP_LCO_2022-	2209188-08	WS	Sample	09/08/2022	09/15/2022
09_NP-NAL					
RG_LILC3_WS_LAEMP_LCO_2022- 09 NP-NAL	2209188-09	WS	Sample	09/08/2022	09/15/2022
00_/V/ /V/L					

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	09/14/2022	09/16/2022	B222056	S220953
MeSe(IV)	Water	SOP BAL-4201	09/14/2022	09/16/2022	B222056	S220953
MeSe(VI)	Water	SOP BAL-4201	09/14/2022	09/16/2022	B222056	S220953
Se	Water	EPA 1638 Mod	09/16/2022	09/20/2022	B222134	S220972
Se(IV)	Water	SOP BAL-4201	09/14/2022	09/16/2022	B222056	S220953
Se(VI)	Water	SOP BAL-4201	09/14/2022	09/16/2022	B222056	S220953
SeCN	Water	SOP BAL-4201	09/14/2022	09/16/2022	B222056	S220953
SeMet	Water	SOP BAL-4201	09/14/2022	09/16/2022	B222056	S220953
SeSO3	Water	SOP BAL-4201	09/14/2022	09/16/2022	B222056	S220953
Unk Se Sp	Water	SOP BAL-4201	09/14/2022	09/16/2022	B222056	S220953

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_FO23_WS_	LAEMP LCO	2022-09 N								
2209188-01	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209188-01	MeSe(IV)	WS	D	0.011	J	0.010	0.025	μg/L	B222056	S220953
2209188-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209188-01	Se(IV)	WS	D	0.197		0.020	0.075	μg/L	B222056	S220953
2209188-01	Se(VI)	WS	D	36.5		0.010	0.055	μg/L	B222056	S220953
2209188-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222056	S220953
2209188-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209188-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222056	S220953
2209188-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222056	S220953
PC FO22 IVS	LAEMD LCO	2022-09 NP-NAL								
2209188-02	_LAEMP_LCO_ Se	_2022-09_NP-NAL WS	D	32.2		0.165	0.528	ua/l	B222134	S220972
2209100-02	36	WS	U	32.2		0.103	0.320	μg/L	D22213 4	3220912
RG_FO23_WS_	_LAEMP_LCO_	_2022-09_NP-NAL								
2209188-03	Se	WS	TR	35.6		0.165	0.528	μg/L	B222134	S220972
RG_FRUL_WS			Б.	10010		0.040	0.005		Booosso	
2209188-04	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209188-04	MeSe(IV)	WS	D	0.014	J	0.010	0.025	μg/L	B222056	S220953
2209188-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209188-04	Se(IV)	WS	D	0.248		0.020	0.075	μg/L	B222056	S220953
2209188-04	Se(VI)	WS WS	D D	40.1 ≤ 0.010	U	0.010 0.010	0.055 0.050	μg/L	B222056 B222056	S220953
2209188-04	SeCN SeMet	WS WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.030	μg/L	B222056	S220953
2209188-04	SeSO3	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B222056	S220953
2209188-04	Unk Se Sp	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.035	μg/L μg/L	B222056	S220953
2209188-04	Olik Se Sp	VVS	D	≥ 0.010	U	0.010	0.075	µg/L	D222030	S220953
RG_FRUL_WS	_LAEMP_LCO	_2022-09_NP-NAL								
2209188-05	Se	WS	D	36.5		0.165	0.528	μg/L	B222134	S220972
PG FRIII WS	I AEMP I CO	2022-09 NP-NAL								
2209188-06	_LALIMF_LCO _. Se	_2022-09_NF-NAL WS	TR	38.2		0.165	0.528	μg/L	B222134	S220972

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LILC3_WS	_LAEMP_LCO	_2022-09_N								
2209188-07	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209188-07	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209188-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209188-07	Se(IV)	WS	D	0.122		0.020	0.075	μg/L	B222056	S220953
2209188-07	Se(VI)	WS	D	43.4		0.010	0.055	μg/L	B222056	S220953
2209188-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222056	S220953
2209188-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222056	S220953
2209188-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222056	S220953
2209188-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222056	S220953
RG_LILC3_WS	_LAEMP_LCO	_2022-09_NP-NAL	_							
2209188-08	Se	WS	D	39.5		0.165	0.528	μg/L	B222134	S220972
RG_LILC3_WS	_LAEMP_LCO	_2022-09_NP-NAL	-							
2209188-09	Se	WS	TR	39.3		0.165	0.528	μg/L	B222134	S220972

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B222056 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B222056-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.504	μg/L	108% 75-125	
	Se(IV)		5.000	4.917	μg/L	98% 75-125	
	Se(VI)		5.000	4.657	μg/L	93% 75-125	
	SeCN		5.015	4.709	μg/L	94% 75-125	
	SeMet		4.932	4.821	μg/L	98% 75-125	
B222056-DUP6	Duplicate, (2209188-07)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		ND	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.122		0.118	μg/L		4% 25
	Se(VI)	43.38		43.03	μg/L		0.8% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B222056-MS6	Matrix Spike, (2209188-0	7)					
	Se(IV)	0.122	4.900	4.574	μg/L	91% 75-125	
	Se(VI)	43.38	5.100	47.43	μg/L	NR 75-125	
	SeCN	ND	1.962	1.758	μg/L	90% 75-125	
	SeMet	ND	1.977	1.811	μg/L	92% 75-125	
B222056-MSD6	Matrix Spike Duplicate, (2209188-07)				
	Se(IV)	0.122	4.900	4.537	μg/L	90% 75-125	0.8% 25
	Se(VI)	43.38	5.100	46.76	μg/L	NR 75-125	N/C 25
	SeCN	ND	1.962	1.735	μg/L	88% 75-125	1% 25
	SeMet	ND	1.977	1.821	μg/L	92% 75-125	0.5% 25

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B222134 Lab Matrix: Water Method: EPA 1638 Mod

Sample B222134-BS1	Analyte Blank Spike, (2128023)	Native	Spike	Result	Units	REC &	Limits	RPD & Lir	mits
	Se		200.0	163.3	μg/L	82%	75-125		
B222134-BS2	Blank Spike , (2128023) Se		200.0	159.2	μg/L	80%	75-125		
B222134-BS3	Blank Spike, (2128023) Se		200.0	160.1	μg/L	80%	75-125		
B222134-SRM1	Reference Material (221401 Se	4, TMDA 5	1.5 Reference 14.30	Standard 11.78	- Bottle 6 - \$ µg/L		75-125		
B222134-SRM2	Reference Material (221401 Se	4, TMDA 5	1.5 Reference 14.30	Standard 12.50	- Bottle 6 - \$ µg/L		75-125		
B222134-SRM3	Reference Material (221401 Se	4, TMDA 5	1.5 Reference 14.30	Standard 11.52	- Bottle 6 - S µg/L		75-125		
B222134-DUP2	Duplicate, (2209182-14) Se	85.48		84.60	μg/L			1%	20
B222134-MS2	Matrix Spike, (2209182-14) Se	85.48	220.0	277.7	μg/L	87%	75-125		
B222134-MSD2	Matrix Spike Duplicate, (22 Se	2 09182-14) 85.48	220.0	267.1	μg/L	83%	75-125	4%	20
B222134-DUP4	Duplicate, (2209188-02) Se	32.17		32.24	μg/L			0.2%	20
B222134-MS4	Matrix Spike, (2209188-02) Se	32.17	220.0	223.3	μg/L	87%	75-125		

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B222134 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B222134-MSD4	Matrix Spike Duplicate,	(2209188-02)					
	Se	32.17	220.0	223.2	ua/L	87% 75-125	0.06% 20

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B222056 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.004 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BI K4	0.00	ua/l

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.011 **MRL:** 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B222056-BLK1	0.00	μg/L
B222056-BLK2	0.00	μg/L
B222056-BLK3	0.00	μg/L
B222056-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.015 **MRL:** 0.015

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B222134 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B222134-BLK1	0.023	μg/L
B222134-BLK2	0.073	μg/L
B222134-BLK3	0.041	μg/L
B222134-BLK4	-0.013	μg/L

 Average: 0.031
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

2209188

Sample Containers

Lab ID: 2209188-01 Sample: RG_FO23_WS_LAEMP_LCO_2022-09_N				Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/09/2022 Received: 09/15/2022			
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2209188		
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2209188		
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 4 - 2209188		
Lab Sam	ID: 2209188-02			Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/09/2022 Received: 09/15/2022			
	FO23_WS_LAEMP_LCO_202	2-09 NP-NAL		Sample Type. Sample 1 Sum		IXECE	1000. 03/13/2022		
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Client-Provided - TM	125 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 2 - 2209188		
Sam	=			Report Matrix: WS Sample Type: Sample + Sum			cted: 09/09/2022 ived: 09/15/2022		
_	FO23_WS_LAEMP_LCO_2023 Container	2-09_NP-NAL Size	Lot	Preservation	P-Lot	mI.I	Chin Cont		
A	Client-Provided - TM	125 mL	na	10% HNO3 (BAL)	2230023	pH <2	Ship. Cont. Cooler 2 - 2209188		
Sam	I D : 2209188-04 ple: RG_FRUL_WS_LAEMP_I			Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/10/2022 Received: 09/15/2022			
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2209188		
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2209188		
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 4 -		

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

2209188

Sample Containers

Sam	I D : 2209188-05 I ple: FRUL_WS_LAEMP_LCO_202	22-09 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/10/2022 ived: 09/15/2022	
	Container Client-Provided - TM	Size 125 mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 2230023	pH <2	Ship. Cont. Cooler 2 - 2209188	
Lab ID: 2209188-06 Sample: RG_FRUL_WS_LAEMP_LCO_2022-09_NP-NAL			Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/10/2022 Received: 09/15/2022			
Des		Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Client-Provided - TM	125 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 2 - 2209188	
Lab ID: 2209188-07 Sample: RG_LILC3_WS_LAEMP_LCO_2022-09_N Des Container Size Lot			Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot	Collected: 09/08/2022 Received: 09/15/2022 pH Ship. Cont.			
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2209188	
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2209188	
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 4 - 2209188	
Sam	ID: 2209188-08 ple: LILC3_WS_LAEMP_LCO_202	22-09 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/08/2022 Received: 09/15/2022		
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Client-Provided - TM	125 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 2 - 2209188	
Lab ID: 2209188-09 Sample: RG_LILC3_WS_LAEMP_LCO_2022-09_NP-NAL			Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/08/2022 Received: 09/15/2022			
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Client-Provided - TM	125 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 2 -	

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2209188
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Shipping Containers

Cooler 2 - 2209188

Received: September 15, 2022 7:10 **Tracking No:** RWHV95580 via Courier

Coolant Type: Ice Temperature: 5.3 °C

Cooler 4 - 2209188

Received: September 15, 2022 7:10 **Tracking No:** RWHV95580 via Courier

Coolant Type: Ice Temperature: 2.4 °C Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#:1

Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#:2 Custody seals present? No Custody seals intact? No COC present? Yes

Custody seals present? No Custody seals intact? No COC present? Yes

BAL Final Report 2209188

ICCK	COC ID:			PROOKS			TURNAROUND TIME: Rush RUSH;						JSH: Priority						
	PROJECT/CLIENT	NFO	DD	OOKE		150			DRATO						OTHER INFO				7
Facility Name / Job# R	legional Effects Program					Lab	Name	Brooks	Applied 1	Labs		Rej	ort For	mat / Dis	stributio	n	Excel	PDF	EDD
Project Manager C	Cybele Heddle					Lab C	ontact	Ben Wo	ozniak			Ema	ul 1:	AguitSe	ciLab@Te	ck.com	X	X	X
Email ©	bele.Heddle Teck.com						Email	Ben@b	rooksap	plied.com		Ema	ail 2:	teckcoal	mequison.	line.com			X
Address 4	21 Pine Avenune					A			Lake City	Way		-	ail 3:	Teck.Lab	Results	teck.com	X	X	X
								Suite 10	08			-	ail 4:	Lisa, Bo	wron@mir	nnow.ca	X	X	X
City	Sparw	ood		Province B0				Seattle		Provin	_	_	ail 5:	Tyler.M	iehler@10	ckidom	X	X	X
Postal Code	V0B 2	G1		Country Ca	ınada		l Code			Countr	y United	+	ail 6:	Haddatt	Pennenti I		X	X	X
Phone Number 1						Phone N	lumber	(206) 7			DECLEOT		umber			VPO008			
	SAMPLE	DETAILS				1			A	NALYSIS	REQUEST	ED	1		- FOILE	red - F: Field	dy Les Linthy I	LE FORD &	Liab, Sylve
			Hazardous Material (Yes/No)			G=Grab		PRISTRY	Brooks Se Speciation										
Sample ID	Sample Location (sys loc code)	Field Matrix	Haza	Date	Time (24hr)	C=Com	# Of Cont.		Broo	Broom Broom									
G_FO23_WS_LAEMP_LCO_2022-09_N	RG_FO23	ws		2022/09/09	8:05	G	1		1										
G_FO23_WS_LAEMP_LCO_2022-09_NP- AL	RG_FO23	ws		2022/09/09	8:05	G	2			1 1									
G_FRUL_WS_LAEMP_LCO_2022-09_N	RG_FRUL	ws		2022/09/10	8:45	G	1		1										
G_FRUL_WS_LAEMP_LCO_2022-09_NP- AL	RG_FRUL	ws		2022/09/10	8:45	G	2			1 1									
G_LILC3_WS_LAEMP_LCO_2022-09_N	RG_LILC3	ws		2022/09/08	9:30	G	1		1			1							
G_LILC3_WS_LAEMP_LCO_2022-09_NP-	RG_LILC3	ws		2022/09/08	9:30	G	2			1 1									
ADDITIONAL COMMENTS/	SPECIAL INSTRUCTION	INS		RELINOUIS	HED BY/AFF	ILIATION		DA	TE/TIM	E	VCCEPTE	BY/AE	FILIAT	ION		D	ATE/I	ME	
ADDIMALASMINISTER	THE PROPERTY OF THE PARTY OF TH				fer Ings/Mini			_	#######		NW	IBA	12		O,	1/15/		7:	10
SERVICE REQUEST (riss						_				Į,	1								
	(2-3 business days) - 50 (2) (1 Business Day) - 10			Sampler's					fer Ings		-	obile#	-			19-500-3			
For Emergency <1 Da	y, ASAP or Weekend -	Contact ALS		Sampler's Si	gnature						Da	te/Time			Sept	tember 1	2, 202	4	

NOT NEGOTIABLE

250-425-7447 24 Hour Hot Shot Service

חסככל יחגו

Gillette, WY

Confidential

Sparwood, BC Terrace, BC Red Deer, AB Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA Elkford, BC Ft. McMurray, AB Shelby, MT BAL Final Report 2209188

Tumbler Ridge, BC

Hinton, AB

INVOICE TO			ATT STORY	DA	TE TO THE TENT OF	
BILL OF LADING #			PURCHASE ORDER	NUMBER		
CHIDDED (EDOM)	Tilka P		CONSIGNEE (TO)			
SHIPPER (FROM)	V-12-1		LICENCE	s milled L	<u> </u>	
STREET		Fredhi	STREET	Color City	Section 1	
CITY/PROVINCE		POSTAL CODE	CITY/PROVINCE	No. of the second	POSTAL CODE	
SPECIAL INSTRUCTIONS					FREIGHT CHARGES	
PACKAGES	DESCRIPTION OF ARTICI	ES AND SPECIAL MARKS		WEIGHT	SHIPPER TO CHECK	
PAUNAUEO				(Subject to Correction)	□ PREPAID □ COLLECT If not indicated, shipping will automatically move collect	
1 Cours	-WAGNET			Masilles.	FEE	
					Baralli Long de la la	
					WAITING	
			Town Allendar		XPU	
A	10-					
MIL	11/02	58A			CHARGES	
IVALL	IV		ALC: THE RESERVE	THE SHIP OF THE	FSC	
UNIT#		DECLARED VALI	JATION: Maximum 2.00 per lb. (\$4.41 per		US	
		kilogram) unless der otherwise	clared valuation states	\$	SUB TOTAL	
DRIVER'S SIGNATURE - PICK UP BY	PICK UP TIME	DRIVER'S SIGNATU	RE - DELIVERY BY	FINISH TIME		
DRIVER O GIGNATORE.					GST	
NOTICE OF CLAIM: (a) No carrier is liable for ices, damage or delay of	of any goods under the Bill of Lading unler und carrier or the delivering carrier within	ss notice, therefor setting out particulars of the sixty (60) days after the delivery of the good	e onger sestination and date of shi om the care of failure to make def	prinent of the goods and the estimated amount claime livers within nine (9) months from the date of shipmen	d	
NOTICE OF CLAIM: (a) No carrier is list: for ices, damage or delay regret (r such loss, damage or delay is given in writing the original regret (r such loss, damage or delay is given in writing to filled with RECEIVED at the point of origin on the date specified from the consignation of the carrier agrees is in sumutially agreed as to each carrier of air or any of the goods down the date of the confidence is standard for it I lading in privare at the other dates in the date of the confidence is the date of the confidence in the carrier agrees. It is the confidence in the carrier agree of the goods lasted in the Bill of (see it) is the confidence in the carrier agree of the goods lasted in the Bill of (see it) is	in nine (9) months from the day nor mentioned heren, the property herein o carry and to deliver to the co all or any portion of the roof, to destinatio	te of shipment together with a co- described in apparent good order. a set a nsigned at the said destination sul n, and as to each party of any time interests.	one of the paid freight bill s noted (contents and condition of c bject to the rates and classi d in all or any of the goods, that eve	contents of package unknown; marked, consigned an ification in effect on the date of shipment my service to be performed hereunder shall be subject.	TOTAL \$	
all the conditions standard Bill of Lading, in power at the date of issuing the date of issuing which are hereby agreed by the of the Contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the contract for the carriage of the goods listed in the Bill of the carriage of the goods listed in the g	which are hereto agreed by the consign consignor and accepted for himse governed by regulation in force in the jung	or and accepted for himself and his annights alf and his assigns adiction at the time and place or shipment at	nd is subject to alle conditions set of	ut in such conditions	IF AT OWNER'S RISK, WRITE ORD HERE	
SHIPPER PRINT		CONSIGNEE PRINT			DATE	
SHIPPER		CONSIGNEE SIGN	TALF		TIME	
SIGN	DINIO C	e GOLDENROAD: Ship	GST #	# 864540398RT0001	NUMBER OF PIECES RECEIVED	
WHITE: Office YELLOW Co	arrier PINK: Consigne	e GOLDENKOAD: Ship	po:			

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler ID: Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 2

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Cooler 3

Coole

ion 004

250-425-7447 24 Howr Hot Skot Serwice

140. 22200

Confidential

Sparwood, BC Terrace, BC Red Deer, AB Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA Elkford, BC Ft. McMurray, AB Shelby, MT BAL Final Report 2209188 Tumbler Ridge, BC Hinton, AB Gillette, WY

INVOICE TO				Lett (Edinesia
BILL OF LADING #		PURCHASE ORDER	NUMBER	
SHIPPER (FROM)		CONSIGNEE (TO)	- Property to	a laboratoria
STREET		STREET	10-10-1	
CITY/PROVINCE	POSTAL CODE	CITY/PROVINCE		POSTAL CODE
SPECIAL INSTRUCTIONS				FREIGHT CHARGES
PACKAGES DESCRIPTION OF	F ARTICLES AND SPECIAL MARKS		WEIGHT (Subject to Correction)	SHIPPER TO CHECK □PREPAID □COLLECT
			(Subject to Correspond	If not indicated shipping will automatically move collect
LIST CONTRACTOR				FEE
				WAITING
MANAGEM AND THE STATE OF THE ST				XPU
0				Aro
KILLIVO	5580			CHARGES
1/10/14	2200			FSC
SHEET WESTERN TO SEE	Townson Williams	HATION: Maximum		US
UNIT#	liability of carrier is	JUATION: Maximum \$2,00 per lb. (\$4,41 per aclared valuation states	\$	SUB TOTAL
DRIVER'S SIGNATURE - PICK UP BY PICK UP TIME	DRIVER'S SIGNATI	JRE - DELIVERY BY	FINISH TIME	GST
			MA THE	
MOTICE OF CLAMS: (a) No camer is table for loss, damage or delay of any goods under the Bill of respect of such loss, damage or delay is given in writing to the originating carrier or the delivering carrier (b) The Israel statement of the claim must feel from the consignor mentioned herian, the prop RCCENVCD state of the claim of the contract of the consignor mentioned herian, the prop RCCENVCD state of the claim of the loss of the contract o	ading unless notice, therefor setting out particulars of river within sixty (60) days after the delivery of the good to the date of shipment logather with userly herein described, in apparent good order, except	the ongin lestination and date of ships is, ohn the case of failure to make delivi- copy of the paid freight bill as noted (contents and condition of con- plants to the rates and classifi-	went of the goods and the estimated anison claims my within nine (9) months from the dath of shipmen strents of package unknown; marked, consigned an cation in effect on the date of shipment	TOTAL \$
Restrined as indicated below, which the carrier agrees to carry and to deliver it is mutually spreed, as to ach carrier of all or any of the goods over all or any portion of the norte is all the conditions standard Bill of Lading, in power at the date of issuing, which are hereto agreed the date of issuing, which are hereto agreed by the consignor, and all of the date of issuing. Which are hereto agreed by the consignor and all only the consignor and the consignor and the consignor and all only the consignor and the consignor and all only the consignor and the consignor and all only the consignor and the consignor and the consignor and all only the consignor and the consignor and all only the consignor and the consignor an	o the consigned at the earl occurrence of obstimation, and as to each party of any time interest he consignor and accepted for himself and his assigns for himself and his assigns in the jurisdiction at the time and place of shipment	ed in all or any of the goods, that every Printed or written including conditions and is subject to the conditions set out	service to be performed herounder sharibe subject set aside by the standard Bill of Lading in nower a m such conditions	IF AT OWNER'S RISK WRITE ORD HERE
The Contract for the carriage of the goods system in the tim or Learning in governor and a system of the SHIPPER PRINT	CONSIGNEE			DATE
SHIPPER	CONSIGNEE SIGN	a later		TIME
WHITE: Office YELLOW: Carrier PINK: Co	onsignee GOLDENROAD: Ship	oper GST#8	864540398RT0001	NUMBER OF PIECES RECEIVED
WITTE. SINCE		Sign of the		
Cooler ID: Cocler 4	coc (9/n)	Temperatu	ire: 2_4 ^e C	IR: 2.

Ambient Blue Ice **Coolant Type:** Notes: EV **Sampling Locations:** SP T/D T/D SP 125mh Sample Types: 40 M Plastic **Container Types:** Date: 9/1 Opened By: AM

Revision 004

SELENIUM SPECIATION

BAL Final Report 2209288 (Finalized September 28, 2022) Confidential BAL Final Report 2209288

September 28, 2022

Teck Resources Limited – Vancouver Cybele Heddle 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 cybele.heddle@teck.com

Re: Regional Effects Program

Dear Cybele Heddle,

On September 22, 2022, Brooks Applied Labs (BAL) received sixteen (16) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) form.

The sample fractions for total recoverable Se and dissolved Se were not preserved in the field. The samples were preserved (pH < 2) upon receipt at BAL. All sample fractions for total recoverable Se and dissolved Se were preserved within the (14 calendar day) preservation holding time.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable Se and Dissolved Se

Each aqueous sample fraction for dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Selenium Speciation

Each aqueous sample was analyzed for selenium speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(IV)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(IV)], selenomethionine [SeMet], selenosulfate $[SeSO_3]$, and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk SeSp].

Confidential BAL Final Report 2209288

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional selenium species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting selenium species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

In cases when either the native sample concentration was non-detectable (reported as less than or equal to the MDL) and/or the corresponding DUP result was also non-detectable, the RPD between the two values was not calculated (**N/C**).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209288

Client PM: Cybele Heddle

Client Project: Regional Effects Program

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)

Issued on: July 1, 2021; Valid to: June 30, 2022 Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)				
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn				
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn				
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn				
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn				
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness				
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn				
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, N Pb, Sb, Se, Sn, Tl, V, Zn				
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn				
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury				
EPA 1630	Non-Potable Waters	Methyl Mercury				
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury				
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs				
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)				
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)				
SM2340B	Non-Potable Waters	Hardness				

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)						
EPA 1638 Mod		Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn,						
EPA 200.8 Mod	Non-Potable Waters	Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn						
EPA 6020 Mod		Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn,						
BAL-5000	Solids/Chemicals & Biological	Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)						
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)						
EPA 1631E Mod	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury						
BAL-3100								
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury						
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)						
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)						
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb						
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs						
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)						
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)						
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet						
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)						
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)						
SM2340B	Non-Potable Waters	Hardness						
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight						

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_LIDCOM_WS_LAEMP_LCO_20 22-09_N	2209288-01	WS	Sample	09/12/2022	09/22/2022
RG_LIDCOM_WS_LAEMP_LCO_20 22-09_NP-NAL	2209288-02	WS	Sample	09/12/2022	09/22/2022
RG_LIDCOM_WS_LAEMP_LCO_20 22-09_NP-NAL	2209288-03	WS	Sample	09/12/2022	09/22/2022
RG_LISP24_WS_LAEMP_LCO_202 2-09_N	2209288-04	WS	Sample	09/14/2022	09/22/2022
RG_LISP24_WS_LAEMP_LCO_202 2-09_NP-NAL	2209288-05	WS	Sample	09/14/2022	09/22/2022
RG_LISP24_WS_LAEMP_LCO_202 2-09_NP-NAL	2209288-06	WS	Sample	09/14/2022	09/22/2022
RG_LCUT_WS_LAEMP_LCO_2022- 09_N	2209288-07	WS	Sample	09/15/2022	09/22/2022
_ RG_LCUT_WS_LAEMP_LCO_2022- 09_NP-NAL	2209288-08	WS	Sample	09/15/2022	09/22/2022
_ RG_LCUT_WS_LAEMP_LCO_2022- 09_NP-NAL	2209288-09	WS	Sample	09/15/2022	09/22/2022
RG_SLINE_WS_LAEMP_LCO_2022 -09_N	2209288-10	WS	Sample	09/16/2022	09/22/2022
RG_SLINE_WS_LAEMP_LCO_2022 -09_NP-NAL	2209288-11	WS	Sample	09/16/2022	09/22/2022
RG_SLINE_WS_LAEMP_LCO_2022 -09_NP-NAL	2209288-12	WS	Sample	09/16/2022	09/22/2022
RG_LI24_WS_LAEMP_LCO_2022-0 9_N	2209288-13	WS	Sample	09/17/2022	09/22/2022
RG_LI24_WS_LAEMP_LCO_2022-0 9_NP-NAL	2209288-14	WS	Sample	09/17/2022	09/22/2022
RG_LI24_WS_LAEMP_LCO_2022-0 9_NP-NAL	2209288-15	WS	Sample	09/17/2022	09/22/2022
RG_LI8_WS_LAEMP_LCO_2022-09 _N	2209288-16	WS	Sample	09/17/2022	09/22/2022
RG_LI8_WS_LAEMP_LCO_2022-09 _NP-NAL	2209288-17	WS	Sample	09/17/2022	09/22/2022
RG_LI8_WS_LAEMP_LCO_2022-09 _NP-NAL	2209288-18	WS	Sample	09/17/2022	09/22/2022
RG_RIVER_WS_LAEMP_LCO_2022 -09_NP	2209288-19	WS	Sample	09/15/2022	09/22/2022
RG_RIVER_WS_LAEMP_LCO_2022 -09_NP-NAL	2209288-20	WS	Sample	09/15/2022	09/22/2022
RG_RIVER_WS_LAEMP_LCO_2022 -09_NP-NAL	2209288-21	WS	Sample	09/15/2022	09/22/2022

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_FBLANK_WS_LAEMP_LCO_20 22-09_NP	2209288-22	WS	Sample	09/15/2022	09/22/2022
RG_FBLANK_WS_LAEMP_LCO_20 22-09_NP-NAL	2209288-23	WS	Sample	09/15/2022	09/22/2022
RG_FBLANK_WS_LAEMP_LCO_20 22-09_NP-NAL	2209288-24	WS	Sample	09/15/2022	09/22/2022

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	09/20/2022	09/23/2022	B222130	S220995
MeSe(IV)	Water	SOP BAL-4201	09/20/2022	09/23/2022	B222130	S220995
MeSe(VI)	Water	SOP BAL-4201	09/20/2022	09/23/2022	B222130	S220995
Se	Water	EPA 1638 Mod	09/26/2022	09/27/2022	B222222	S221004
Se(IV)	Water	SOP BAL-4201	09/20/2022	09/23/2022	B222130	S220995
Se(VI)	Water	SOP BAL-4201	09/20/2022	09/23/2022	B222130	S220995
SeCN	Water	SOP BAL-4201	09/20/2022	09/23/2022	B222130	S220995
SeMet	Water	SOP BAL-4201	09/20/2022	09/23/2022	B222130	S220995
SeSO3	Water	SOP BAL-4201	09/20/2022	09/23/2022	B222130	S220995
Unk Se Sp	Water	SOP BAL-4201	09/20/2022	09/23/2022	B222130	S220995

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence			
RG LIDCOM	WS LAEMP LO	CO 2022-09 N											
2209288-01	DMSeO	- ws	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995			
2209288-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995			
2209288-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995			
2209288-01	Se(IV)	WS	D	0.120		0.020	0.075	μg/L	B222130	S220995			
2209288-01	Se(VI)	WS	D	34.4		0.010	0.055	μg/L	B222130	S220995			
2209288-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222130	S220995			
2209288-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995			
2209288-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222130	S220995			
2209288-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222130	S220995			
RG LIDCOM WS LAEMP LCO 2022-09 NP-NAL													
2209288-02	VV3_LAEIVIP_LC Se		D	31.8		0.165	0.528	μg/L	B222222	S221004			
2209200-02	36	WS	D	31.0		0.103	0.320	μg/L	DZZZZZZ	3221004			
RG_LIDCOM_I	WS_LAEMP_LO	CO_2022-09_NP-N	IAL										
2209288-03	Se	WS	TR	35.3		0.165	0.528	μg/L	B222222	S221004			
RG_LISP24_W	/S_LAEMP_LC												
2209288-04	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995			
2209288-04	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995			
2209288-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995			
2209288-04	Se(IV)	WS	D	0.130		0.020	0.075	μg/L	B222130	S220995			
2209288-04	Se(VI)	WS	D	38.4		0.010	0.055	μg/L	B222130	S220995			
2209288-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222130	S220995			
2209288-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995			
2209288-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222130	S220995			
2209288-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222130	S220995			
RG LISP24 W	RG LISP24 WS LAEMP LCO 2022-09 NP-NAL												
2209288-05	Se	WS	D	36.4		0.165	0.528	μg/L	B222222	S221004			
													
		O_2022-09_NP-NA		00.5		0.405	0.500	/1	Booocc				
2209288-06	Se	WS	TR	39.5		0.165	0.528	μg/L	B222222	S221004			

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LCUT_WS	LAEMP LCO	2022-09 N								
2209288-07	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-07	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-07	Se(IV)	WS	D	0.083		0.020	0.075	μg/L	B222130	S220995
2209288-07	Se(VI)	WS	D	63.0		0.010	0.055	μg/L	B222130	S220995
2209288-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222130	S220995
2209288-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222130	S220995
2209288-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222130	S220995
DC LCUT WE	LAEMB LCO	2022 00 NB NAI								
	_LAEMP_LCO Se	_ 2022-09_NP-NAL WS	D	61.2		0.165	0.528	ua/l	B222222	5224004
2209288-08	Se	VVS	D	01.2		0.103	0.326	µg/L	DZZZZZZ	S221004
RG LCUT WS LAEMP LCO 2022-09 NP-NAL										
2209288-09	Se	ws	TR	60.8		0.165	0.528	μg/L	B222222	S221004
RG_SLINE_WS	S_LAEMP_LCC	_2022-09_N								
2209288-10	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-10	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-10	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-10	Se(IV)	WS	D	0.021	J	0.020	0.075	μg/L	B222130	S220995
2209288-10	Se(VI)	WS	D	1.43		0.010	0.055	μg/L	B222130	S220995
2209288-10	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222130	S220995
2209288-10	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-10	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222130	S220995
2209288-10	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222130	S220995
RG SLINE WS	S LAFMP LCC) 2022-09 NP-NA	Ī							
2209288-11	Se	WS	D	1.41		0.165	0.528	μg/L	B222222	S221004
2200200-11		****	5	1.71		3.100	0.020	M9/ -	JLLLLL	322 100 1
RG_SLINE_WS		_2022-09_NP-NA								
2209288-12	Se	WS	TR	1.63		0.165	0.528	μg/L	B222222	S221004

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG LI24 WS L	LAEMP LCO	2022-09 N								
2209288-13	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-13	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-13	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-13	Se(IV)	WS	D	≤ 0.020	U	0.020	0.075	μg/L	B222130	S220995
2209288-13	Se(VI)	WS	D	2.80		0.010	0.055	μg/L	B222130	S220995
2209288-13	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222130	S220995
2209288-13	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-13	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222130	S220995
2209288-13	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222130	S220995
PC 1124 W/S 1	AEMP ICO	2022-09 NP-NAL								
2209288-14	Se	2022-09_NF-NAL WS	D	2.87		0.165	0.528	μg/L	B222222	S221004
2209200-14	36	WS	D	2.07		0.103	0.320	µg/L	DZZZZZZ	3221004
RG_LI24_WS_LAEMP_LCO_2022-09_NP-NAL										
2209288-15	Se	WS	TR	3.02		0.165	0.528	μg/L	B222222	S221004
RG_LI8_WS_L		_	_			0.040	0.005		D000400	
2209288-16	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L "	B222130	S220995
2209288-16	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-16	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-16	Se(IV)	WS	D	0.087		0.020	0.075	μg/L "	B222130	S220995
2209288-16	Se(VI)	WS	D	31.8		0.010	0.055	μg/L	B222130	S220995
2209288-16	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222130	S220995
2209288-16	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-16	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L "	B222130	S220995
2209288-16	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	µg/L	B222130	S220995
RG_LI8_WS_L	AEMP_LCO_2	022-09_NP-NAL								
2209288-17	Se	WS	D	30.6		0.165	0.528	μg/L	B222222	S221004
RG LI8 WS L	AFMP I CO 2	022-09 NP-NAL								
2209288-18	Se	WS	TR	30.3		0.165	0.528	μg/L	B222222	S221004

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_RIVER_WS	LAEMP LCC	2022-09 NP								
2209288-19	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-19	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-19	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-19	Se(IV)	WS	D	0.077		0.020	0.075	μg/L	B222130	S220995
2209288-19	Se(VI)	WS	D	56.7		0.010	0.055	μg/L	B222130	S220995
2209288-19	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B222130	S220995
2209288-19	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-19	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222130	S220995
2209288-19	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222130	S220995
RG_RIVER_WS_LAEMP_LCO_2022-09_NP-NAL										
2209288-20	_LAEMF_LCC Se	WS	D	64.5		0.165	0.528	μg/L	B222222	S221004
2209286-20	36	WS	U	04.5		0.103	0.320	µg/L	DZZZZZZ	3221004
RG_RIVER_WS_LAEMP_LCO_2022-09_NP-NAL										
2209288-21	Se	WS	TR	61.2		0.165	0.528	μg/L	B222222	S221004
		CO_2022-09_NP	5	40.040		0.040	0.005	/1	D000400	000005
2209288-22	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-22	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-22	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B222130	S220995
2209288-22	Se(IV)	WS	D	≤ 0.020	U	0.020	0.075	μg/L	B222130	S220995
2209288-22	Se(VI)	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222130	S220995
2209288-22	SeCN	WS	D D	≤ 0.010	U U	0.010	0.050	μg/L	B222130	S220995
2209288-22	SeMet	WS		≤ 0.010		0.010	0.025	μg/L	B222130	S220995
2209288-22	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B222130	S220995
2209288-22	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B222130	S220995
RG_FBLANK_V	VS_LAEMP_L	CO_2022-09_NP-N	IAL							
2209288-23	Se	WS	D	≤ 0.165	U	0.165	0.528	μg/L	B222222	S221004
RG FRI ANK V	VS I AFMD I	CO 2022-09 NP-N	ΙΔΙ							
2209288-24	Se	WS	TR	≤ 0.165	U	0.165	0.528	μg/L	B222222	S221004

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B222130 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B222130-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	6.159	μg/L	121% 75-125	
	Se(IV)		5.000	5.689	μg/L	114% 75-125	
	Se(VI)		5.000	5.231	μg/L	105% 75-125	
	SeCN		5.015	5.177	μg/L	103% 75-125	
	SeMet		4.932	5.459	μg/L	111% 75-125	
B222130-DUP4	Duplicate, (2209285-19)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		ND	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	ND		ND	μg/L		N/C 25
	Se(VI)	0.156		0.152	μg/L		3% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B222130-MS4	Matrix Spike, (2209285-1	9)					
	Se(IV)	ND	4.900	4.994	μg/L	102% 75-125	
	Se(VI)	0.156	5.100	5.181	μg/L	99% 75-125	
	SeCN	ND	1.962	1.798	μg/L	92% 75-125	
	SeMet	ND	1.977	1.917	μg/L	97% 75-125	
B222130-MSD4	Matrix Spike Duplicate, (2209285-19)				
	Se(IV)	ND	4.900	5.055	μg/L	103% 75-125	1% 25
	Se(VI)	0.156	5.100	5.198	μg/L	99% 75-125	0.3% 25
	SeCN	ND	1.962	1.818	μg/L	93% 75-125	1% 25
	SeMet	ND	1.977	1.875	μg/L	95% 75-125	2% 25

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B222130 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC 8	k Limits	RPD & Li	mite
B222130-DUP3	Duplicate, (2209286-01)	Native	Оріке	Nesuit	Office	IXEO 0	k Ellillits	INI D & LII	iiits
2222100 201 0	DMSeO	ND		ND	μg/L			N/C	25
	MeSe(IV)	ND		ND	μg/L			N/C	25
	MeSe(VI)	ND		ND	μg/L			N/C	25
	Se(IV)	0.215		0.235	μg/L			9%	25
	Se(VI)	144.4		147.6	μg/L			2%	25
	SeCN	ND		ND	μg/L			N/C	25
	SeMet	ND		ND	μg/L			N/C	25
	SeSO3	ND		ND	μg/L			N/C	25
	Unk Se Sp	ND		ND	μg/L			N/C	25
	·				10				
B222130-MS3	Matrix Spike, (2209286-0	14\							
D222 130-W33	Se(IV)	0.215	4.900	5.010	μg/L	98%	75-125		
	Se(VI)	144.4	5.100	156.6	μg/L μg/L	NR			
	SeCN	ND	1.962	1.876		96%	75-125 75-125		
	SeMet	ND	1.902	2.046	µg/L	104%			
	Selviet	ND	1.977	2.040	μg/L	10470	73-123		
B222130-MSD3	Matrix Spike Duplicate,	(2209286-01))						
	Se(IV)	0.215	4.900	5.056	μg/L	99%	75-125	0.9%	25
	Se(VI)	144.4	5.100	156.1	μg/L	NR	75-125	N/C	25
	SeCN	ND	1.962	1.875	μg/L	96%	75-125	0.06%	25
	SeMet	ND	1.977	1.986	μg/L	100%	75-125	3%	25

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B222222 Lab Matrix: Water Method: EPA 1638 Mod

Sample B222222-BS1	Analyte	Native	Spike	Result	Units	REC 8	& Limits	RPD & Lin	mits
B222222-BS1	Blank Spike, (2128023) Se		200.0	188.8	μg/L	94%	75-125		
B222222-BS2	Blank Spike, (2128023) Se		200.0	189.0	μg/L	95%	75-125		
B222222-BS3	Blank Spike, (2128023) Se		200.0	197.7	μg/L	99%	75-125		
B222222-SRM1	Reference Material (22140	16, TMDA 5				-			
	Se		14.30	13.47	μg/L	94%	75-125		
B222222-SRM2	Reference Material (22140 ^o Se	16, TMDA 5	1.5 Reference 14.30	e Standard 14.06	- Bottle 8 - µg/L		75-125		
B222222-SRM3	Reference Material (22140	16, TMDA 5				•			
	Se		14.30	13.53	μg/L	95%	75-125		
B222222-DUP1	Duplicate, (2209288-12)	4 00 4		4 404	4			440/	
	Se	1.634		1.461	μg/L			11%	20
B222222-MS1	Matrix Spike, (2209288-12) Se) 1.634	220.0	224.4	μg/L	1010/	75-125		
	Se	1.034	220.0	224.4	µg/L	10176	73-123		
B222222-MSD1	Matrix Spike Duplicate, (2)	209288-12) 1.634	220.0	225.3	μg/L	102%	75-125	0.4%	20
B222222-DUP2	Duplicate, (2209289-04) Se	20.41		20.39	μg/L			0.08%	20
B222222-MS2	Matrix Spike, (2209289-04) Se) 20.41	220.0	234.7	μg/L	97%	75-125		

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B222222 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B222222-MSD2	Matrix Spike Duplicate,	(2209289-04)					
	Se	20.41	220.0	236.1	ua/L	98% 75-125	0.6% 20

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B222130 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B222130-BLK1	0.00	μg/L
B222130-BLK2	0.00	μg/L
B222130-BLK3	0.00	μg/L
B222130-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B222130-BLK1	0.00	μg/L
B222130-BLK2	0.00	μg/L
B222130-BLK3	0.00	μg/L
B222130-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B222130-BLK1	0.00	μg/L
B222130-BLK2	0.00	μg/L
B222130-BLK3	0.00	μg/L
B222130-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B222130-BLK1	0.00	μg/L
B222130-BLK2	0.00	μg/L
B222130-BLK3	0.00	μg/L
B222130-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.004 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B222130-BLK1	0.00	μg/L
B222130-BLK2	0.00	μg/L
B222130-BLK3	0.00	μg/L
B222130-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Result	Units
0.00	μg/L
0.00	μg/L
0.00	μg/L
0.00	μg/L
	0.00 0.00 0.00

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B222130-BLK1	0.00	μg/L
B222130-BLK2	0.00	μg/L
B222130-BLK3	0.00	μg/L
B222130-BLK4	0.00	ua/l

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B222130-BLK1	0.00	μg/L
B222130-BLK2	0.00	μg/L
B222130-BLK3	0.00	μg/L
B222130-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.011 **MRL:** 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B222130-BLK1	0.00	μg/L
B222130-BLK2	0.00	μg/L
B222130-BLK3	0.00	μg/L
B222130-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B222222 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B222222-BLK1	0.107	μg/L
B222222-BLK2	0.054	μg/L
B222222-BLK3	0.052	μg/L
B222222-BLK4	0.008	μg/L

 Average: 0.055
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

2209288

Sample Containers

Sam	ID: 2209288-01 ple: LIDCOM_WS_LAEMP_LCO_2		cted: 09/12/2022 ived: 09/22/2022							
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 7 - 2209288			
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 7 - 2209288			
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 7 - 2209288			
Sam	ID: 2209288-02 ple: LIDCOM WS LAEMP LCO 2	2022-09 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/12/2022 ived: 09/22/2022			
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Client-Provided - TM			2230023	<2	Cooler 1 - 2209288				
Sam	ID: 2209288-03 ple: LIDCOM WS LAEMP LCO 2	2022-09 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/12/2022 Received: 09/22/2022				
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 1 - 2209288			
Sam	ID: 2209288-04 ple: LISP24_WS_LAEMP_LCO_20	022-09 N		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/14/2022 ived: 09/22/2022			
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 7 - 2209288			
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 7 - 2209288			
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 7 -			

BAL Final Report 2209288

Client PM: Cybele Heddle

Client Project: Regional Effects Program

2209288

Sample Containers

Lab ID: 2209288-05 Report Matrix: WS Collected: 09/14/2022 Sample: Received: 09/22/2022 Sample Type: Sample + Sum RG LISP24 WS LAEMP LCO 2022-09 NP-NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 40 mL na 2230023 <2 Cooler 1 -2209288 Lab ID: 2209288-06 Report Matrix: WS Collected: 09/14/2022 Sample: Received: 09/22/2022 Sample Type: Sample + Sum RG_LISP24_WS_LAEMP_LCO_2022-09_NP-NAL **Des Container Preservation** P-Lot рΗ Size Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2230023 <2 Cooler 1 na 2209288 Lab ID: 2209288-07 Report Matrix: WS Collected: 09/15/2022 Sample: RG LCUT WS LAEMP LCO 2022-09 N Sample Type: Sample + Sum Received: 09/22/2022 **Des Container Preservation** P-Lot Size Lot pН Ship. Cont. 15 mL Cent Tube 15mL Se-Sp none Cooler 7 na na na 2209288 В XTRA VOL 15 mL na none na Cooler 7 na 2209288 С XTRA_VOL Cooler 7 -125 mL na none na na 2209288 Collected: 09/15/2022 Lab ID: 2209288-08 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 09/22/2022 RG_LCUT_WS_LAEMP_LCO_2022-09_NP-NAL **Des Container** Size Lot **Preservation** P-Lot рΗ Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) 2230023 <2 Cooler 1 na 2209288 Lab ID: 2209288-09 Report Matrix: WS Collected: 09/15/2022 Sample: Received: 09/22/2022 Sample Type: Sample + Sum RG LCUT WS LAEMP LCO 2022-09 NP-NAL Container Size **Preservation** P-Lot Ship. Cont. Lot Ha Client-Provided - TM 40 mL 10% HNO3 (BAL) 2230023 <2 Cooler 1 na

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Containers

Sam	I D: 2209288-10 ple: RG_SLINE_WS_LAEMP_			Report Matrix: WS Sample Type: Sample + Sum			ted: 09/16/2022 ved: 09/22/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 7 - 2209288
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 7 - 2209288
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 7 - 2209288
Sam	I D: 2209288-11 ple: SLINE_WS_LAEMP_LCO_202	22-09 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum			ted: 09/16/2022 ved: 09/22/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 1 - 2209288
Lab ID: 2209288-12 Sample: RG_SLINE_WS_LAEMP_LCO_2022-09_NP-NAL				Report Matrix: WS Sample Type: Sample + Sum			ted: 09/16/2022 ved: 09/22/2022
_	Container	Size	Lot	Preservation	P-Lot	На	Ship. Cont.
A	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 1 - 2209288
Sam	ID: 2209288-13 ple: RG_LI24_WS_LAEMP_LC Container	CO_2022-09_N Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot		ted: 09/17/2022 ved: 09/22/2022 Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 7 - 2209288
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 7 - 2209288
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 7 - 2209288

BAL Final Report 2209288

Client PM: Cybele Heddle

Client Project: Regional Effects Program

2209288

Sample Containers

Lab ID: 2209288-14 Report Matrix: WS Collected: 09/17/2022 Sample: Received: 09/22/2022 Sample Type: Sample + Sum RG LI24 WS LAEMP LCO 2022-09 NP-NAL **Des Container** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 40 mL na 2230023 <2 Cooler 1 -2209288 Lab ID: 2209288-15 Report Matrix: WS Collected: 09/17/2022 Received: 09/22/2022 Sample: Sample Type: Sample + Sum RG_LI24_WS_LAEMP_LCO_2022-09_NP-NAL **Des Container** Size **Preservation** P-Lot рΗ Lot Ship. Cont. Client-Provided - TM 40 ml 10% HNO3 (BAL) 2230023 <2 Cooler 1 na 2209288 Lab ID: 2209288-16 Report Matrix: WS Collected: 09/17/2022 Sample: RG LI8 WS LAEMP LCO 2022-09 N Sample Type: Sample + Sum Received: 09/22/2022 Size **Des Container Preservation** P-Lot Lot pН Ship. Cont. Cent Tube 15mL Se-Sp Α 15 mL none Cooler 7 na na na 2209288 В XTRA VOL 15 mL na none na na Cooler 7 -2209288 С XTRA_VOL Cooler 7 -125 mL na none na na 2209288 Lab ID: 2209288-17 Collected: 09/17/2022 Report Matrix: WS Sample: Sample Type: Sample + Sum Received: 09/22/2022 RG_LI8_WS_LAEMP_LCO_2022-09_NP-NAL **Des Container** Size Lot **Preservation** P-Lot рΗ Ship. Cont. Client-Provided - TM 40 mL 10% HNO3 (BAL) 2230023 <2 Cooler 1 na 2209288 Lab ID: 2209288-18 Report Matrix: WS Collected: 09/17/2022 Sample: Received: 09/22/2022 Sample Type: Sample + Sum RG LI8 WS LAEMP LCO 2022-09 NP-NAL **Des Container** Size **Preservation** P-Lot Ship. Cont. Lot Ha Client-Provided - TM 40 mL 10% HNO3 (BAL) 2230023 <2 Cooler 1 na

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Containers

Sam	ID: 2209288-19 ple: RIVER_WS_LAEMP_LCO_20	Collected: 09/15/2022 Received: 09/22/2022								
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 7 - 2209288			
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 7 - 2209288			
С	XTRA_VOL	125 mL	na	none	na	na	Cooler 7 - 2209288			
Sam	I D : 2209288-20 ple: RIVER_WS_LAEMP_LCO_20	22-09 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/15/2022 ived: 09/22/2022			
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 1 - 2209288			
Sam	ID: 2209288-21 ple: RIVER WS LAEMP LCO 20	22-09 NP-NAI		Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/15/2022 Received: 09/22/2022				
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Client-Provided - TM	40 mL	na	10% HNO3 (BAL)	2230023	<2	Cooler 1 - 2209288			
Sam	ID: 2209288-22 ple: FBLANK_WS_LAEMP_LCO_2	2022 OO ND		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/15/2022 ived: 09/22/2022			
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 7 - 2209288			
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 7 - 2209288			
С	C XTRA_VOL 125 mL na		none	none na						

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2209288
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Containers

Lab ID: 2209288-23 Report Matrix: WS Collected: 09/15/2022

Sample: Sample Type: Sample + Sum Received: 09/22/2022
RG FBLANK WS LAEMP LCO 2022-09 NP-NAL

Des Container Size Lot Preservation P-Lot pH Ship. Cont.

A Client-Provided - TM 40 mL na 10% HNO3 (BAL) 2230023 <2 Cooler 1 - 2209288

Lab ID: 2209288-24 Report Matrix: WS Collected: 09/15/2022

Sample: Sample Type: Sample + Sum Received: 09/22/2022 RG_FBLANK_WS_LAEMP_LCO_2022-09_NP-NAL

Des Container Size Lot Preservation P-Lot pH Ship. Cont.

A Client-Provided - TM 40 ml na 10% HNO3 (BAL) 2230023 <2 Cooler 1 -

40 mL na 10% HNO3 (BAL) 2230023 <2 Cooler 1 - 2209288

Shipping Containers

Cooler 1 - 2209288

Received: September 22, 2022 7:37

Description: Styrofoam Cooler

Custody seals present? No

Custody seals intact? No

Coolant Type: Blue Ice

Damaged in transit? No

Custody seals intact? No

Custody seals intact? No

Custody seals intact? No

CoC present? No

Temperature: 9.5 °C Comments: IR#:1

Cooler 7 - 2209288

Received: September 22, 2022 7:37Description: Styrofoam CoolerCustody seals present? NoTracking No: RWHV95583 via CourierDamaged in transit? NoCustody seals intact? No

Coolant Type: Blue Ice Returned to client? No Custody seals intact? No Coordinate Coordi

Tools						Page	1 (of	E								DAI	Final	Danan	+ 2200
Teck	COC ID:			P_LCO_20	22-	TURNA	ROUNI) TIM	E:			Rus	h			RUSH	Priority	- Final	Кероі	1 2208
	PROJECT/CLIENT IN	VEO A	O DE	OOKE		1011111			ORATO	ORV		Nus	11				RINEO		-	
Facility Name / Job# R	Regional Effects Program	110				Lat	Name						Ret	ort For	mat / Di			Excel	PDF	EDD
Project Manager C							Contact						Ema			ciLab (hT		*	v.	v
	ybele.Heddle@Teck.com						Email			applie	d.com		Ema			Maquiso	-			v
	21 Pine Avenune					A	ddress	13751 I	Lake Ci	ity Wa	y		Ema		-	17. 20.00	Steck com	v	X	X
								Suite 10	08				Ema	il 4:		wron		X	X	X
City	Sparwo	od		Province B	С		City	Seattle			Province	WA	Ema	il 5:		lehler DT		X	X	X
Postal Code	V0B 20	31		Country C	anada	Posta	al Code	98125			Country	United 5	Ema	il 6:	Hennah	Penner@	Teck com	X	X	X
Phone Number 1						Phone N	Number	(206) 7					PO nu	ımber			VPO00			
	SAMPLE	DETAILS		1	y	·			- 1	ANAL	YSIS RE	QUESTI	D			Fit	tered - F. Fie	d, L. Lub, J	L: Field &	Lab. No. 7
								E E	F	N	N	6								
								ERV.												
			Hazardous Material (Yes/No)					PRES												
			(Yes						E .											
			erial					40	Brooks_Se_Speciation											
			Ma					ENSI	Sp.						1					
			l sn	l .				ANA.	ايُو	ا او	او						}			
			9			G=Grab			g	S	83									
	Sample Location	Field	aza		Time	C=Com	# Of		00	Brooks_Se_D	Brooks_Se_T									
Sample ID	(sys loc code)	Matrix	Ï	Date	(24hr)	р	Cont.		ž –	ğ	ğ								-	1
RG_LIDCOM_WS_LAEMP_LCO_2022-09_N	RG_LIDCOM	WS		2022/09/12	14:40	G	1		1											
RG_LIDCOM_WS_LAEMP_LCO_2022- 09 NP-NAL	RG_LIDCOM	ws	H	2022/09/12	14:40	G	2			1	1									
RG_LISP24_WS_LAEMP_LCO_2022-09_N	RG_LISP24	ws		2022/09/14	14:55	G	1		1											
RG_LISP24_WS_LAEMP_LCO_2022-09_NP- NAL	RG_LISP24	ws		2022/09/14	14:55	G	2			1	1									
RG_LCUT_WS_LAEMP_LCO_2022-09_N	RG_LCUT	ws		2022/09/15	11:30	G	1		1											
RG_LCUT_WS_LAEMP_LCO_2022-09_NP- NAL	RG_LCUT	ws		2022/09/15	11:30	G	2			1	1									
RG_SLINE_WS_LAEMP_LCO_2022-09_N	RG_SLINE	ws		2022/09/16	8:50	G	1		1											
RG_SLINE_WS_LAEMP_LCO_2022-09_NP- NAL	RG_SLINE	ws		2022/09/16	8:50	G	2			1	1									
RG_LI24_WS_LAEMP_LCO_2022-09_N	RG_LI24	WS		2022/09/17	8:45	G	1		1											
RG_LI24_WS_LAEMP_LCO_2022-09_NP- NAL	RG_LI24	ws		2022/09/17	8:45	G	2			1	1									
ADDITIONAL COMMENTS/	SPECIAL INSTRUCTION	VS		RELINQUIS	HED BY/AFF	ILIATION		DA	TETH	ME	ACC	CEPTED	BY/AFI	ILIAT	ION			ATE/TI		
				Jenni	fer Ings/Min	now		####	#####	#####		Lku	1131	te		9	1221	22	7:3	37
SERVICE REQUEST (rus	h - subject to availability	-												-						
		gular (default) Samplar's D			Name			Jennif	er Ings	s		Mo	Mobile #				519-500-3444			
Emergenc	y (1 Business Day) - 100% y, ASAP or Weekend - C	6 surcharge		Sampler's Si	gnature			James J.	1,	1		Date/Time				September 19, 2022				

Tee e																Е	BAL Fin	al Repo	ort 220	9288
	COC ID: REP	LAEMP	_LC	O_2022-09_1	BROOKS	TURNA	ROUNI	TT C	ME:			Rus	h				Priority	,		
	PROJECT/CLIENT IN	FO						14000.10		TORY							RINFO		_	_
	Regional Effects Program						Name 1				S				rmat / Di	stributi	on	Excel	PDF	EDD
Project Manager	-					Lab (Contact							ail 1:	AnuaS	SpiLabouT	eck.com	X	X	X
	Cybele, Heddle@Teck,com									ksapplie				ail 2:	- 1		nline.com			X
Address 4	121 Pine Avenune					F	Address			City Wa	ıy			ail 3:	2.000		mteck.com	X	X	X
						-			108			J		ail 4:	-	ow/on@m	-	X	X	X
City	Sparwood			Province BC		-	City				Province	_		ail 5:	The state of the s	Mehler@T		X	X	X
Postal Code	V0B 2G1			Country Canad	a		al Code				Country	United 5		ail 6:	Hannat	h Eenner@	A STATE OF THE PARTY OF THE PAR	X	X	X
Phone Number 1	1-250-865-3048 SAMPLE	DETAILS				Phone r	Number	(200) /33-0		LYSIS RE	OUESTE		umber		704	VPO00		2 - 65/64 /0	Eate No No.
	SAME LE	DE CALLEY.		i				100		100		QUESTE				1				
1								É	E	N	N									
			I (Yes/No)					PRESERV.	ion											
Sample ID	Sample Location (sys loc code)	Field Matrix	Hazardous Material (Yes/No)	Date	Time (24hr)	G=Grab C=Com		ANALYSIS	Brooks_Se_Speciation	Brooks_Se_D	Brooks_Se_T									
RG_LIS WS LAEMP LCO 2022-09 N	RG_LI8	WS		2022/09/17	14:15	G	1		1											
		_	- 0			+								+	+	-		-	+	+
RG_LI8_WS_LAEMP_LCO_2022-09_NP-NAL	RG_LI8	WS		2022/09/17	14:15	G	2			1	1	-		-					-	-
RG_RIVER_WS_LAEMP_LCO_2022-09_NP	RG_RIVER	WS		2022/09/15	11:30	G	1		1											
RG_RIVER_WS_LAEMP_LCO_2022-09_NP-	RG_RIVER	ws		2022/09/15	11:30	G	2			1	1									
NAL RG_FBLANK_WS_LAEMP_LCO_2022-	RG_FBLANK	ws		2022/09/15	11:30	G	1		1						_	1				_
09 NP RG_FBLANK_WS_LAEMP_LCO_2022-		_				_	_		•	-		-		+	-	-	-	-	-	+
09 NP-NAL	RG_FBLANK	ws		2022/09/15	11:30	G	2			1	1									
ADDITIONAL COMMENTS/	SPECIAL INSTRUCTIONS			RELINQUIS	HED BY/AFFIL	LATION		1	DATE/	TIME	AC	CEPTED	BY/AF	FILIAT	ION		D	ATE/TI	ME	
0.000				Jenni			_		1#####	V	VW 18.12			9	12212	122 7:3		37		
SERVICE REQUEST (rus	h - subject to availability)											7.								
		(default) surcharge X		Sampler's I	Name				nifer I	•		Mobile #				519-500-3444				
	Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend - Contact ALS			Sampler's Sig	gnature			, e' . m	E.	1.0		Date	/Time			Sep	tember 1	9, 2022		

STRAIGHT BILL OF LADING NOT NEGOTIABLE

BAL Final Report 2209288

No. 95583

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

INVOICE TO	100 22	904270				DATE
BILL OF LADING	3#			PURCHASE ORDE	R NUMBER	
SHIPPER (FROM	M)	A		CONSIGNEE (TO)	A	
STREET	B. Jai Parke	-1		STREET	Martine tel	
C/TY/PROVINCE	Line Street	4		13751		IN NE
CITTIPROVINCE	cod BC	PC	OSTAL CODE	CITY/PROVINCE	te la	POSTAL CODE
SPECIAL INSTRI	UCTIONS					FREIGHT CHARGES
PACKAGES		DESCRIPTION OF ARTICLES	AND SPECIAL MARKS		WEIGHT (Subject to Correction)	SHIPPER TO CHECK □PREPAID □COLLECT
			1 1 1 1 1 1 1	141	1 1 2 7 1 L	If not indicated, shipping will automatically move collect.
7 7	Ton Leve		The same of	1 /	7111	FEE
NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,		100 100		163	OVOID IND	
						WAITING
	0					XPU
	KIAI	11100	507	2		
	1110	FV	330)	The same same of	CHARGES
		4			7. 7.0 - 1 - 1	FSC
JNIT#			DECLARED VALUE	TION: NO.		US
			liability of carrier is \$2. kilogram) unless decla	00 per lb. (\$4,41 per		Fram and
DE COLONAT			otherwise.		\$	SUB TOTAL
DRIVER'S SIGNAL	URE - PICK UP BY	PICK UP TIME	DRIVER'S SIGNATURI	E - DELIVERY BY	FINISH TIME	GST
OTICE OF CLAIM: (a) No c	carner is Nable for loss, damage or class of an	DOO'S LINES: the Rift of Lading unless notice	# there! - United and audiousless of the			
espect of such lose, damage b) The final statement IECEIVED at the point of on estined as indicated by	of detay is given in writing to the confinate, as of the claim must be filled """ in gin on the date specified from the cart. I im the claim which the carrier agrees to call	artier or the lilivering carrier within sixty (60 ine (9) months from the date of sentioned herein, the property herein description of the consigned try and to delive, to the consigned	Il days after the delivery of the coods, of shipment together with a copy sed, in apparent cond order, except as in a state of at the said destination.	n the case of feiture to make defive of the paid freight bill ted (contents and condition of cor	ment of the goods and the estimated amount claims and within nee (9) months from the date of shipmen within nee (9) months from the date of shipmen claim in effect on thir date of shipmen sorvice to be performed because the date of shipmen sorvice to be performed because the dating in sover in such conditions:	TOTAL \$
it mutually agreed, as to early the conditions standard Bill the date of issuing, which Contract for the carriage of the contract for the carriage of the contract for the carriage of the contract for the carriage of the contract for the carriage of the c	ich carner of all or any of the goods over all or I of Lading, in power at the date of issuing, what sich are hereby agreed by the consort of the goods listed in the Bill of Lading gover	any portion of the route to destination, and a min are herelo agreed by the consignor and a gno: and accepted for himself and med by regulation in force in the jurisdiction	es to each party of any time interested in accepted for himself and his assigns. Print I his assigns at the time and place of chimment and in	all or any of the goods, that every ded or written including conditions	service to be performed hereunder shall be subject service to be performed hereunder shall be subject sel asige by the standard But of Lading in yower in the standard But of Lading in yower in the standard But of Lading	IF AT OWNER'S RISK WRITE'ORD HERE
HIPPER RINT			CONSIGNEE PRINT	amples to the continue of the	** SOCI CURURA II	DATE
HIPPER		7715	CONSIGNEE			TIME
IGN						
WHITE IOS PHILITIMO	E: Office YELLOW: Carrie	PINK: Consignee	GOLDENROAD: Shipper		864540398RT0001	NUMBER OF PIECES RECEIVED
		The The The	The latest war and the latest wa	V.	Believe is the	
w.	rid: (00/ex 1	E	COC (YAN)	Tommoret	TO 6	in f
COOICI	100101	-	200 (17/11)	Temperatu	re: 7.5	IR:

Cooler ID: (00/64)	£-		COC (Y/N)	Te	mperatu	re: 9.5	_		iR:	ſ
Coolant Type: Ice	Blue Ice	Ami	bient							
Notes:			* /- oi	·	Marine Service	4 44			And parties of	
Sampling Locations:	E	V	KG	A /				W Î		
Sample Types:	(T/D)	SP	(T/D)	SP	T/D	SP	T/D	SP	T/D	SP
Container Types:	125mc		12 5 mil							
Opened By: My	1.		Date: 0/	7.217.	3 2 1	X ^{0,00} 12			Arresta (Carlos)	· · · . =

Effective 7/29/20

STRAIGHT BILL OF LADING NOT NEGOTIABLE

BAL Final Report 2209288
No. 95583

Sparwood, BC Terrace, BC Red Deer, AB Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT Tumbler Ridge, BC Hinton, AB Gillette, WY

INVOICE TO	ATE								
BILL OF LADING#	2010 00 100								
SHIPPER (FROM)	CONSIGNEE (TO)								
STREET	ET XXIII COMPANIE COM			ALL NEWS					
CITY/PROVINCE	DVINCE POSTAL CODE			POSTAL CODE					
SPECIAL INSTRUCTIONS FREIGHT CHARGES									
PACKAGES DESCRIPTION OF ARTICLES A	AGES DESCRIPTION OF ARTICLES AND SPECIAL MARKS			SHIPPER TO CHECK OPREPAID OCULLECT					
" Coolers - Links	Toolers - water cools Dulo US								
0	XPU								
KINILLIAGE	KINIUN OSS83								
1110111	111011111000								
UNIT#									
DECLARED VALUATION: Maximum liability of carrier is \$2,00 per lb. (\$4.41 per				US					
DRIVER'S SIGNATURE - PICK UP BY PICK UP TIME	otherwise.		\$	SUB TOTAL					
	DRIVER'S SIGNATURE		FINISH TIME	GST					
NOTICE OF CLAME: (a) No carrier is hable for loss, damage or delay of any goods under the Bell of Lacing unless notice, respect of such loss, damage or delay is given in writing to the origination center or the delivening carrier within sulv; (60) [b) the final statement of the claim must be filled within nine (9) months from the date of the claim must be filled within nine (9) months from the date of the claim must be filled within nine (9) months from the date of the claim of the consignation of the claim of the consignation of the claim of the consignation of the glaim of the consignation of the claim of the consignation of the consignation of the consignation of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its architecture of the claim of its order of the claim of the claim of the claim of the claim of its architecture of the claim of the	thereto, setting out particulars of the organization of the organization of the delivery of the goods, on the shipment together with a copy of the apparent good order, except as note at the said destination, subject	destination and date of ship the case of failure to make delive of the paid freight bill of (contents and condition of co to the rates and classif	ment of the goods and the estimated amount claim very within nine (9) months from the date of shipmen very mitten of package unknown marked, on square lication, in effect on the date of shipmen	TOTAL \$					
all the conditions standard Bird Learner or as or any or me product over all of any portion of the route to destination, and as the conditions standard Bird Learner, and the standard standard of sauing, which are harted agreed by the consignor and as the condition of the carriage of the goods issed in the Bird Clading is governed by regulation in force in the jurisdiction at	IF AT OWNER'S RISK WRITE ORD HERE								
IPPER CONSIGNEE PRINT			DATE						
SHIPPER BIGN	CONSIGNEE SIGN								
WHITE: Office YELLOW: Carrier PINK: Consignee	GOLDENROAD: Shipper	GST#	864540398RT0001	NUMBER OF PIECES RECEIVED					
CCE PRINTING	THE RESERVE		AR PLANT						

Cooler ID: ('ooler 7	COC (Y)N) Temperature: ~ C &						IR: Z	
Coolant Type: Ice	Blue Ice Ambient							
Notes:		I.f.						
Sampling Locations:	RG	LC	614					
Sample Types:	T/D (SP)	T/D 1252L 0/c5tic	T/D SP CONL Plestic	T/D	SP	T/D	SP	
Container Types:	Plestie	Plestic	Plestic					
Opened By: ERL	125m4.	ate: 9/22/22		,				

Effective 7/29/20

Revision 004

SELENIUM SPECIATION

BAL Final Report 2212177 (Finalized January 10, 2023) Confidential BAL Final Report 2212177

January 10, 2023

Teck Resources Limited – Vancouver Cybele Heddle 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 cybele.heddle@teck.com

Re: Regional Effects Program

Dear Cybele Heddle,

On December 9, 2022, Brooks Applied Labs (BAL) received twenty-four (24) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) forms.

The **Sample Location** (**sys_loc_code**) values provided on the chain-of-custody (COC) forms did not match corresponding fields in the **Sample IDs** for 2212177-34, 2212177-35, and 2212177-36. Since the **Sample Location** (**sys_loc_code**) values usually agree with the associated field IDs, the **Sample Location** (**sys_loc_code**) values for 2212177-34, 2212177-35, and 2212177-36 were amended for reporting. The changes enacted are described in the table below.

Changes to Sample Location (sys_loc_code) values

Laboratory ID	Sample ID (On COC form)	Sample Location (sys_loc_code) (On COC form)	Sample Location (sys_loc_code) (Used for reporting)		
2212177-34	RG_LIDSL_WS_LCO_2022-12_N	RG_FBLANK	RG_LIDSL		
2212177-35	RG_LIDSL_WS_LCO_2022-12_N_NAL	RG_FBLANK	RG_LIDSL		
2212177-36	RG_LIDSL_WS_LCO_2022-12_N_NAL	RG_FBLANK	RG_LIDSL		

For 2212177-34, 2212177-35, and 2212177-36, the **Sample Location (sys_loc_code)** values in (*column 4 in the table above*) were used for reporting. These **Sample Location (sys_loc_code)** values are included in the EDD associated with this report.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL; sample fractions for total recoverable and dissolved Se had also been preserved by the client prior to receipt. All samples were stored according to BAL SOPs.

Total Recoverable Se and Dissolved Se

Each aqueous sample fraction for total recoverable and dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Confidential BAL Final Report 2212177

Selenium Speciation

Each aqueous sample was analyzed for selenium speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(IV)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate $[SeSO_3]$, and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified in the report as [Unk SeSp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional selenium species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting selenium species.

MeSe(VI) was observed at a concentration above the MDL in sample 2212177-01. 2212177-01 was subsequently analyzed with an MeSe(VI) spike on top of the sample and the presence of MeSe(VI) was confirmed. With the confirmation that the MeSe(VI) peak was appropriately assigned, the selenium speciation results are reported from the initial injection in batch B223031.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

In cases when either the native sample concentration was non-detectable (reported as less than or equal to the MDL) and/or the corresponding DUP result was also non-detectable, the RPD between the two values was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL verifies that the reported results of all analyses for which the laboratory is accredited meet the requirements of the accrediting body, unless otherwise noted in the report narrative. For more information

Confidential BAL Final Report 2212177

regarding accreditations please see the *Report Information* and *Batch Summary* pages. This report must be used in its entirety for interpretation of results.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Report Information

General Disclaimers

Test results are based solely upon the sample submitted to Brooks Applied Labs in the condition it was received. This report shall not be reproduced or copied, except in full, without written approval of the laboratory. Brooks Applied Labs is not responsible for the consequences arising from the use of a partial report.

Laboratory Accreditation

BAL maintains accreditation with various state and national agencies for select test methods. For a current list of BAL accreditations, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/. The reported analyte/matrix/method combination shall be considered outside BAL's scopes of accreditation unless otherwise identified as ISO, TNI, or ISO,TNI in the tables. It is the responsibility of the client to verify whether a specific accreditation is required for the intended data use.

ISO: ISO/IEC 17025:2017 accredited test method. Issued by ANSI National Accreditation Board (ANAB), #ADE-1447.02

TNI: NELAP accredited test method. Issued by the State of Florida Department of Health, #E87982.

ISO,TNI: Test method is accredited under both the ISO/IEC 17025:2017 and NELAP accreditations referenced above.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- N Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch.

 Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_RIVER_WS_LCO_2022-12_NP	2212177-01	WS	Sample	12/01/2022	12/09/2022
RG_RIVER_WS_LCO_2022-12_NP_ NAL	2212177-02	WS	Sample	12/01/2022	12/09/2022
RG_RIVER_WS_LCO_2022-12_NP_ NAL	2212177-03	WS	Sample	12/01/2022	12/09/2022
RG_SLINE_WS_LCO_2022-12_N	2212177-04	WS	Sample	11/30/2022	12/09/2022
RG_SLINE_WS_LCO_2022-12_N_N AL	2212177-05	WS	Sample	11/30/2022	12/09/2022
RG_SLINE_WS_LCO_2022-12_N_N AL	2212177-06	WS	Sample	11/30/2022	12/09/2022
RG_LI24_WS_LCO_2022_12_N	2212177-07	WS	Sample	11/30/2022	12/09/2022
RG_LI24_WS_LCO_2022-12_N_NA L	2212177-08	WS	Sample	11/30/2022	12/09/2022
RG_LI24_WS_LCO_2022-12_N_NA L	2212177-09	WS	Sample	11/30/2022	12/09/2022
	2212177-10	WS	Sample	12/01/2022	12/09/2022
RG_LISP24_WS_LCO_2022-12_N_ NAL	2212177-11	WS	Sample	12/01/2022	12/09/2022
RG_LISP24_WS_LCO_2022-12_N_ NAL	2212177-12	WS	Sample	12/01/2022	12/09/2022
RG_LILC3_WS_LCO_2022-12_N	2212177-13	WS	Sample	12/01/2022	12/09/2022
RG_LILC3_WS_LCO_2022-12_N_N AL	2212177-14	WS	Sample	12/01/2022	12/09/2022
RG_LILC3_WS_LCO_2022-12_N_N AL	2212177-15	WS	Sample	12/01/2022	12/09/2022
RG_LCUT_WS_LCO_2022-12_N	2212177-16	WS	Sample	12/01/2022	12/09/2022
RG_LCUT_WS_LCO_2022-12_N_N AL	2212177-17	WS	Sample	12/01/2022	12/09/2022
RG_LCUT_WS_LCO_2022-12_N_N AL	2212177-18	WS	Sample	12/01/2022	12/09/2022
RG_LI8_WS_LCO_2022-12_N	2212177-19	WS	Sample	12/02/2022	12/09/2022
RG_LI8_WS_LCO_2022-12_N_NAL	2212177-20	WS	Sample	12/02/2022	12/09/2022
RG_LI8_WS_LCO_2022-12_N_NAL	2212177-21	WS	Sample	12/02/2022	12/09/2022
RG_F023_WS_LCO_2022-12_N	2212177-22	WS	Sample	12/02/2022	12/09/2022
RG_F023_WS_LCO_2022-12_N_N AL	2212177-23	WS	Sample	12/02/2022	12/09/2022
RG_F023_WS_LCO_2022-12_N_N AL	2212177-24	WS	Sample	12/02/2022	12/09/2022
RG_FRUL_WS_LCO_2022-12_N	2212177-25	WS	Sample	11/29/2022	12/09/2022
RG_FRUL_WS_LCO_2022-12_N_N AL	2212177-26	WS	Sample	11/29/2022	12/09/2022

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_FRUL_WS_LCO_2022-12_N_N AL	2212177-27	WS	Sample	11/29/2022	12/09/2022
RG_LIDCOM_WS_LCO_2022-12_N	2212177-28	WS	Sample	12/01/2022	12/09/2022
RG_LIDCOM_WS_LCO_2022-12_N _NAL	2212177-29	WS	Sample	12/01/2022	12/09/2022
RG_LIDCOM_WS_LCO_2022-12_N _NAL	2212177-30	WS	Sample	12/01/2022	12/09/2022
RG_FBLANK_WS_LCO_2022-12_N P	2212177-31	WS	Sample	12/01/2022	12/09/2022
RG_FBLANK_WS_LCO_2022-12_N P_NAL	2212177-32	WS	Sample	12/01/2022	12/09/2022
RG_FBLANK_WS_LCO_2022-12_N P_NAL	2212177-33	WS	Sample	12/01/2022	12/09/2022
RG_LIDSL_WS_LCO_2022-12_N	2212177-34	WS	Sample	11/29/2022	12/09/2022
RG_LIDSL_WS_LCO_2022-12_N_N AL	2212177-35	WS	Sample	11/29/2022	12/09/2022
RG_LIDSL_WS_LCO_2022-12_N_N AL	2212177-36	WS	Sample	11/29/2022	12/09/2022

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Batch Summary

Analyte	Lab Matrix	Method	Accred.	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201		12/12/22	12/14/22	B223031	S221297
MeSe(IV)	Water	SOP BAL-4201		12/12/22	12/14/22	B223031	S221297
MeSe(VI)	Water	SOP BAL-4201		12/12/22	12/14/22	B223031	S221297
Se	Water	EPA 1638 Mod		12/13/22	12/14/22	B223038	S221310
Se(IV)	Water	SOP BAL-4201	ISO,TNI	12/12/22	12/14/22	B223031	S221297
Se(VI)	Water	SOP BAL-4201	ISO,TNI	12/12/22	12/14/22	B223031	S221297
SeCN	Water	SOP BAL-4201	ISO	12/12/22	12/14/22	B223031	S221297
SeMet	Water	SOP BAL-4201	ISO	12/12/22	12/14/22	B223031	S221297
SeSO3	Water	SOP BAL-4201		12/12/22	12/14/22	B223031	S221297
Unk Se Sp	Water	SOP BAL-4201		12/12/22	12/14/22	B223031	S221297

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_RIVER_WS	LCO 2022-1	2 NP								
2212177-01	DMSeO	- WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-01	MeSe(VI)	WS	D	0.016	J	0.010	0.025	μg/L	B223031	S221297
2212177-01	Se(IV)	WS	D	0.202		0.020	0.075	μg/L	B223031	S221297
2212177-01	Se(VI)	WS	D	31.8		0.010	0.055	μg/L	B223031	S221297
2212177-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
DO DU/ED 14/0		0 ND NA								
RG_RIVER_WS			Б.	20.0		0.405	0.500	/1	Daggaga	0004040
2212177-02	Se	WS	D	33.3		0.165	0.528	μg/L	B223038	S221310
RG RIVER WS	S LCO 2022-1.	2 NP NAL								
2212177-03	Se	 ws	TR	34.2		0.165	0.528	μg/L	B223038	S221310
RG SLINE WS	LCO 2022-12	2 N								
2212177-04	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-04	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-04	Se(IV)	WS	D	0.026	J	0.020	0.075	μg/L	B223031	S221297
2212177-04	Se(VI)	WS	D	1.51		0.010	0.055	μg/L	B223031	S221297
2212177-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
DC SUNE WO	100 2022 4	2 N NAI								
RG_SLINE_WS			Ь	4 4 4		0.165	0 F20	ua/I	Dagange	6004040
2212177-05	Se	WS	D	1.44		0.165	0.528	μg/L	B223038	S221310
RG_SLINE_WS	_LCO_2022-12	2_N_NAL								
2212177-06	 Se	 WS	TR	1.44		0.165	0.528	μg/L	B223038	S221310

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LI24_WS_	LCO 2022 12	N								
2212177-07	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-07	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-07	Se(IV)	WS	D	0.025	J	0.020	0.075	μg/L	B223031	S221297
2212177-07	Se(VI)	WS	D	2.87		0.010	0.055	μg/L	B223031	S221297
2212177-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
RG_LI24_WS_	I CO 2022-12	Ν ΝΔΙ								
2212177-08	Se	WS	D	2.58		0.165	0.528	μg/L	B223038	S221310
2212111-00	00	****	J	2.00		0.100	0.020	M9/L	DZZOOOO	0221010
RG_LI24_WS_	LCO_2022-12_	N_NAL								
2212177-09	Se	WS	TR	2.61		0.165	0.528	μg/L	B223038	S221310
RG LISP24 W	/S I CO 2022-1	12 N								
2212177-10	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-10	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-10	MeSe(VI)	WS	D	0.016	J	0.010	0.025	μg/L	B223031	S221297
2212177-10	Se(IV)	WS	D	0.193	ŭ	0.020	0.075	μg/L	B223031	S221297
2212177-10	Se(VI)	WS	D	28.7		0.010	0.055	μg/L	B223031	S221297
2212177-10	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-10	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-10	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-10	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
DO 110001 111	/O. I. O.O. 00000 :	40 N NA								
RG_LISP24_W			_	22.0		0.465	0.500	/1	Daggaga	0004040
2212177-11	Se	WS	D	33.0		0.165	0.528	μg/L	B223038	S221310
RG_LISP24_W	'S_LCO_2022-1	12_N_NAL								
2212177-12	Se	WS	TR	31.9		0.165	0.528	μg/L	B223038	S221310

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LILC3_WS	LCO 2022-12	2 N								
2212177-13	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-13	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-13	MeSe(VI)	WS	D	0.033		0.010	0.025	μg/L	B223031	S221297
2212177-13	Se(IV)	WS	D	0.249		0.020	0.075	μg/L	B223031	S221297
2212177-13	Se(VI)	WS	D	46.8		0.010	0.055	μg/L	B223031	S221297
2212177-13	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-13	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-13	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-13	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
RG_LILC3_WS	100 2022 12	D NI NIAI								
2212177-14	_LCO_2022-12 Se	WS	D	38.8		0.165	0.528	ua/l	B223038	S221310
2212177-14	36	WS	D	30.0		0.103	0.320	μg/L	D223030	3221310
RG_LILC3_WS	_LCO_2022-12	2_N_NAL								
2212177-15	Se	WS	TR	40.9		0.165	0.528	μg/L	B223038	S221310
DO 1 01/T 14/0		,								
RG_LCUT_WS_	-	_	Г.	- 0 040		0.040	0.005	/1	D000004	0004007
2212177-16	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-16	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-16	MeSe(VI)	WS WS	D D	≤ 0.010 0.087	U	0.010	0.025 0.075	μg/L	B223031	S221297
2212177-16	Se(IV)	WS	D	51.6		0.020 0.010	0.075	μg/L	B223031	S221297
2212177-16	Se(VI) SeCN	WS	D	51.0 ≤ 0.010	U	0.010	0.055	μg/L μg/L	B223031 B223031	S221297
2212177-16	SeMet	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.030	μg/L μg/L	B223031 B223031	S221297
2212177-16 2212177-16	SeSO3	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B223031 B223031	S221297 S221297
	Unk Se Sp	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.035		B223031 B223031	S221297 S221297
2212177-16	Olik Se Sp	VVS	D	≥ 0.010	U	0.010	0.075	μg/L	D223031	5221291
RG_LCUT_WS_	_LCO_2022-12	P_N_NAL								
2212177-17	Se	WS	D	52.0		0.165	0.528	μg/L	B223038	S221310
RG_LCUT_WS_	LCO 2022-12	ΝΝΔΙ								
2212177-18	_LOO_2022-12 Se	WS	TR	50.5		0.165	0.528	μg/L	B223038	S221310

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_LI8_WS_LC	CO 2022-12 N	I								
2212177-19	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-19	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-19	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-19	Se(IV)	WS	D	0.024	J	0.020	0.075	μg/L	B223031	S221297
2212177-19	Se(VI)	WS	D	27.8		0.010	0.055	μg/L	B223031	S221297
2212177-19	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-19	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-19	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-19	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
RG_LI8_WS_LC	CO 2022 12 A	LNAL								
2212177-20	.0_2022-12_N Se	WS	D	28.8		0.165	0.528	ua/l	B223038	S221310
2212177-20	36	VVS	D	20.0		0.100	0.526	μg/L	D223030	3221310
RG_LI8_WS_LC	CO_2022-12_N	I_NAL								
2212177-21	Se	WS	TR	29.0		0.165	0.528	μg/L	B223038	S221310
RG_FO23_WS_			_			0.040	0.005	,,	D000004	
2212177-22	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-22	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-22	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-22	Se(IV)	WS	D	0.124		0.020	0.075	μg/L	B223031	S221297
2212177-22	Se(VI)	WS	D	40.2		0.010	0.055	μg/L	B223031	S221297
2212177-22	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-22	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-22	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-22	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
RG_FO23_WS_	LCO_2022-12	_N_NAL								
2212177-23	Se	 WS	D	36.8		0.165	0.528	μg/L	B223038	S221310
RG_FO23_WS_	100 2022 42	N NAI								
2212177-24	Se	_ N_NAL WS	TR	36.0		0.165	0.528	μg/L	B223038	S221310

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_FRUL_WS	LCO 2022-12	? N								
2212177-25	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-25	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-25	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-25	Se(IV)	WS	D	0.152		0.020	0.075	μg/L	B223031	S221297
2212177-25	Se(VI)	WS	D	45.7		0.010	0.055	μg/L	B223031	S221297
2212177-25	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-25	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-25	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-25	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
RG FRUL WS	. 100 2022 12) NI NIAI								
	Se	:_N_NAL WS	D	39.3		0.165	0.528	ua/l	B223038	\$221210
2212177-26	Se	VVS	D	39.3		0.103	0.526	μg/L	D223030	S221310
RG_FRUL_WS	S_LCO_2022-12	P_N_NAL								
2212177-27	Se	WS	TR	39.9		0.165	0.528	μg/L	B223038	S221310
RG_LIDCOM_I		_	_			0.040	0.005		D000004	
2212177-28	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L "	B223031	S221297
2212177-28	MeSe(IV)	WS	D	0.012	J 	0.010	0.025	μg/L	B223031	S221297
2212177-28	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-28	Se(IV)	WS	D	0.149		0.020	0.075	μg/L "	B223031	S221297
2212177-28	Se(VI)	WS	D	33.7		0.010	0.055	μg/L	B223031	S221297
2212177-28	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-28	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-28	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-28	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
RG_LIDCOM	WS_LCO_2022	-12_N_NAL								
2212177-29	Se	WS	D	30.9		0.165	0.528	μg/L	B223038	S221310
BC LIDCOM	WS LCO 2022	12 N NAI								
2212177-30	VS_LCO_2022 Se	-12_N_NAL WS	TR	30.5		0.165	0.528	μg/L	B223038	S221310
22 12 111-00		***		00.0		5.100	0.020	M9′ –	5220000	322 13 10

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_FBLANK_	WS LCO 2022	?-12 NP								
2212177-31	DMSeO	- WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-31	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-31	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-31	Se(IV)	WS	D	≤ 0.020	U	0.020	0.075	μg/L	B223031	S221297
2212177-31	Se(VI)	WS	D	0.015	J	0.010	0.055	μg/L	B223031	S221297
2212177-31	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-31	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-31	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-31	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
RG_FBLANK_	WS 1 CO 2022	O 12 ND NAI								
2212177-32	VV3_LCO_2022 Se	WS	D	≤ 0.165	U	0.165	0.528	μg/L	B223038	S221310
2212177-32	Se	WS	D	≥ 0.103	U	0.103	0.320	µg/L	D223030	3221310
RG_FBLANK_	WS_LCO_2022	?-12_NP_NAL								
2212177-33	Se	WS	TR	≤ 0.165	U	0.165	0.528	μg/L	B223038	S221310
RG LIDSL WS	S I CO 2022 4	2 N								
2212177-34	DMSeO	2_ N WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297
2212177-34	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B223031	S221297 S221297
2212177-34	MeSe(VI)	WS	D	0.014	J	0.010	0.025	μg/L	B223031	S221297
2212177-34	Se(IV)	WS	D	0.181	Ū	0.020	0.075	μg/L	B223031	S221297
2212177-34	Se(VI)	WS	D	39.6		0.010	0.055	μg/L	B223031	S221297
2212177-34	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B223031	S221297
2212177-34	SeMet	WS	D	≤ 0.010	Ū	0.010	0.025	μg/L	B223031	S221297
2212177-34	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B223031	S221297
2212177-34	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B223031	S221297
RG_LIDSL_WS			_							
2212177-35	Se	WS	D	35.5		0.165	0.528	μg/L	B223038	S221310
RG LIDSL WS	S LCO 2022-12	2 N NAL								
2212177-36	Se	 WS	TR	34.8		0.165	0.528	μg/L	B223038	S221310

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B223031 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B223031-BS1	Blank Spike, (2236035)						
	MeSe(IV)		5.095	6.284	μg/L	123% 75-125	
	Se(IV)		5.000	5.643	μg/L	113% 75-125	
	Se(VI)		5.000	5.283	μg/L	106% 75-125	
	SeCN		5.015	5.509	μg/L	110% 75-125	
	SeMet		4.982	5.566	μg/L	112% 75-125	
B223031-DUP3	Duplicate, (2212177-16)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	ND		ND	μg/L		N/C 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.087		0.111	μg/L		24% 25
	Se(VI)	51.62		54.64	μg/L		6% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B223031-MS3	Matrix Spike, (2212177-1	6)					
	Se(IV)	0.087	4.900	4.608	μg/L	92% 75-125	
	Se(VI)	51.62	5.100	57.99	μg/L	NR 75-125	
	SeCN	ND	1.962	1.812	μg/L	92% 75-125	
	SeMet	ND	1.977	1.852	μg/L	94% 75-125	
B223031-MSD3	Matrix Spike Duplicate, (2212177-16)				
	Se(IV)	0.087	4.900	4.702	μg/L	94% 75-125	2% 25
	Se(VI)	51.62	5.100	59.25	μg/L	NR 75-125	N/C 25
	SeCN	ND	1.962	1.847	μg/L	94% 75-125	2% 25
	SeMet	ND	1.977	1.972	μg/L	100% 75-125	6% 25

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B223031 Lab Matrix: Water Method: SOP BAL-4201

Cample	Amalusta	Netive	Cmiles	Dogulf	Unito	DEC 9	Limite		
Sample B223031-DUP4	Analyte Duplicate (2242470.02)	Native	Spike	Result	Units	REC 6	Limits	RPD & Li	mits
D223031-DUP4	Duplicate , (2212179-02) DMSeO	ND		ND	ua/l			N/C	25
					μg/L			N/C	
	MeSe(IV)	ND		ND	μg/L			N/C	25
	MeSe(VI)	ND		ND	μg/L			N/C	25
	Se(IV)	0.386		0.392	μg/L			1%	25
	Se(VI)	225.2		222.3	μg/L			1%	25
	SeCN	ND		ND	μg/L			N/C	25
	SeMet	ND		ND	μg/L			N/C	25
	SeSO3	ND		ND	μg/L			N/C	25
	Unk Se Sp	ND		ND	μg/L			N/C	25
B223031-MS4	Matrix Spike, (2212179-	02)							
222000101	Se(IV)	0.386	4.900	4.700	μg/L	88%	75-125		
	Se(VI)	225.2	5.100	237.8	μg/L				
	SeCN	ND	1.962	2.003	μg/L	102%	75-125		
	SeMet	ND	1.977	2.054			75-125		
	Selviet	ND	1.911	2.034	μg/L	104 /0	75-125		
B223031-MSD4	Matrix Spike Duplicate,	(2212179-02))						
	Se(IV)	0.386	4.900	4.617	μg/L	86%	75-125	2%	25
	Se(VI)	225.2	5.100	237.1	μg/L	NR	75-125	N/C	25
	SeCN	ND	1.962	1.983	μg/L	101%	75-125	1%	25
	SeMet	ND	1.977	1.936	μg/L	98%	75-125	6%	25

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B223038 Lab Matrix: Water Method: EPA 1638 Mod

Sample B223038-BS1	Analyte Blank Spike, (2146024)	Native	Spike	Result	Units	REC & Limits	RPD & Limits
	Se		200.0	170.7	μg/L	85% 75-125	
B223038-BS2	Blank Spike, (2146024) Se		200.0	176.0	μg/L	88% 75-125	
B223038-SRM1	Reference Material (21280 Se	18, T221)	3.800	3.630	μg/L	96% 75-125	
B223038-SRM2	Reference Material (21280 Se	18, T221)	3.800	3.110	μg/L	82% 75-125	
B223038-DUP2	Duplicate, (2212177-03) Se	34.17		33.55	μg/L		2% 20
B223038-MS2	Matrix Spike, (2212177-03 Se) 34.17	220.0	227.0	μg/L	88% 75-125	
B223038-MSD2	Matrix Spike Duplicate, (2 Se	212177-03) 34.17	220.0	221.3	μg/L	85% 75-125	3% 20
B223038-DUP3	Duplicate, (2212177-18) Se	50.50		51.06	μg/L		1% 20
B223038-MS3	Matrix Spike, (2212177-18 Se) 50.50	220.0	250.5	μg/L	91% 75-125	
B223038-MSD3	Matrix Spike Duplicate, (2 Se	212177-18) 50.50	220.0	241.9	μg/L	87% 75-125	4% 20
B223038-DUP4	Duplicate, (2212177-36) Se	34.76		36.34	μg/L		4% 20

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Accuracy & Precision Summary

Batch: B223038 Lab Matrix: Water Method: EPA 1638 Mod

Sample B223038-MS4	Analyte Matrix Spike, (2212177-36	Native 3)	Spike	Result	Units	REC & Limits	RPD & Limits
	Se	34.76	220.0	222.2	μg/L	85% 75-125	
B223038-MSD4	Matrix Spike Duplicate, (2 Se	2212177-36) 34.76	220.0	224.9	μg/L	86% 75-125	1% 20

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B223031 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B223031-BLK1	0.00	μg/L
B223031-BLK2	0.00	μg/L
B223031-BLK3	0.00	μg/L
B223031-BLK4	0.00	ua/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B223031-BLK1	0.00	μg/L
B223031-BLK2	0.00	μg/L
B223031-BLK3	0.00	μg/L
B223031-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B223031-BLK1	0.00	μg/L
B223031-BLK2	0.00	μg/L
B223031-BLK3	0.00	μg/L
B223031-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

	Analyte:	Se	(IV)	
--	----------	----	------	--

Sample	Result	Units
B223031-BLK1	0.00	μg/L
B223031-BLK2	0.00	μg/L
B223031-BLK3	0.00	μg/L
B223031-BLK4	0.00	μg/L

Average: 0.000 MDL: 0.004 Limit: 0.015 MRL: 0.015

Analyte: Se(VI)

Sample	Result	Units
B223031-BLK1	0.00	μg/L
B223031-BLK2	0.00	μg/L
B223031-BLK3	0.00	μg/L
B223031-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B223031-BLK1	0.00	μg/L
B223031-BLK2	0.00	μg/L
B223031-BLK3	0.00	μg/L
B223031-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B223031-BLK1	0.00	μg/L
B223031-BLK2	0.00	μg/L
B223031-BLK3	0.00	μg/L
B223031-BLK4	0.00	ua/l

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B223031-BLK1	0.00	μg/L
B223031-BLK2	0.00	μg/L
B223031-BLK3	0.00	μg/L
B223031-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.011 **MRL:** 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B223031-BLK1	0.00	μg/L
B223031-BLK2	0.00	μg/L
B223031-BLK3	0.00	μg/L
B223031-BLK4	0.00	µg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Method Blanks & Reporting Limits

Batch: B223038 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B223038-BLK1	-0.032	μg/L
B223038-BLK2	-0.067	μg/L
B223038-BLK3	-0.032	μg/L
B223038-BLK4	-0.107	μg/L

Average: -0.060 **MDL:** 0.150 **Limit:** 0.480 **MRL:** 0.480

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

	ID: 2212177-01 ple: RG_RIVER_WS_LCO_20	22-12_NP		Report Matrix: WS Sample Type: Sample + Sum			cted: 12/01/2022 ived: 12/09/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177
Sam	ID: 2212177-02 ple: RG_RIVER_WS_LCO_20 Container	22-12_NP_NAL Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot		cted: 12/01/2022 ived: 12/09/2022 Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
	ID: 2212177-03 ple: RG_RIVER_WS_LCO_20	22-12_NP_NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 12/01/2022 ived: 12/09/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
	ID : 2212177-04			Report Matrix: WS		Colle	cted: 11/30/2022
	ple: RG_SLINE_WS_LCO_202			Sample Type: Sample + Sum			ived: 12/09/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177
Sam	ID: 2212177-05 ple: RG_SLINE_WS_LCO_20: Container	22-12_N_NAL Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot		cted: 11/30/2022 ived: 12/09/2022 Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

	ID: 2212177-06 ple: RG_SLINE_WS_LCO_20:	22-12_N_NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/30/2022 ved: 12/09/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
Sam	ID: 2212177-07 ple: RG_LI24_WS_LCO_2022 Container	_12_N Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P. Lot	Recei	cted: 11/30/2022 ved: 12/09/2022
			Lot		P-Lot	рН	Ship. Cont.
А	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177
Sam Des	ID: 2212177-08 ple: RG_LI24_WS_LCO_2022 Container	Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot	Recei pH	cted: 11/30/2022 ved: 12/09/2022 Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
	ID: 2212177-09 ple: RG_Ll24_WS_LCO_2022	-12 N NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 11/30/2022 ved: 12/09/2022
	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
	ID: 2212177-10 ple: RG_LISP24_WS_LCO_20)22-12 N		Report Matrix: WS Sample Type: Sample + Sum			ted: 12/01/2022 ved: 12/09/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

	ID: 2212177-11 ple: RG_LISP24_WS_LCO_20	22-12_N_NAL		Report Matrix: WS Sample Type: Sample + Sum			ted: 12/01/2022 ved: 12/09/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
	ID : 2212177-12			Report Matrix: WS			ted: 12/01/2022
	ple: RG_LISP24_WS_LCO_20			Sample Type: Sample + Sum		Receiv	ved: 12/09/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
Lab	ID : 2212177-13			Report Matrix: WS		Collec	ted: 12/01/2022
	ple: RG_LILC3_WS_LCO_202	2-12 N		Sample Type: Sample + Sum			ved: 12/09/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177
	ID: 2212177-14	0.40 N. N.A.		Report Matrix: WS			ted: 12/01/2022
	ple: RG_LILC3_WS_LCO_202 Container		1.66	Sample Type: Sample + Sum	D.I. of		ved: 12/09/2022
		Size	Lot	Preservation	P-Lot	pН	Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
Sam	ID: 2212177-15 ple: RG_LILC3_WS_LCO_202			Report Matrix: WS Sample Type: Sample + Sum		Receiv	ted: 12/01/2022 ved: 12/09/2022
Des A	Container Client-Provided - TM	Size 40mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 2244016	pH <2	Ship. Cont. Cooler 4 - 2212177

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sam	ID: 2212177-16 ple : RG_LCUT_WS_LCO_202	_		Report Matrix: WS Sample Type: Sample + Sum			cted: 12/01/2022 ived: 12/09/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177
	ID: 2212177-17 ple: RG_LCUT_WS_LCO_202	22-12 N NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 12/01/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
Sam	ID: 2212177-18 ple: RG_LCUT_WS_LCO_202	22-12_N_NAL Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot		cted: 12/01/2022 ived: 12/09/2022 Ship. Cont.
A	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	< 2	Cooler 4 - 2212177
	ID: 2212177-19	40 N		Report Matrix: WS			cted: 12/02/2022
	ple: RG_LI8_WS_LCO_2022- Container	Size	Lot	Sample Type: Sample + Sum Preservation	P-Lot		ived: 12/09/2022
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	pH na	Ship. Cont. Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177
Sam	ID: 2212177-20 ple: RG_LI8_WS_LCO_2022- Container	12_N_NAL Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot		cted: 12/02/2022 ived: 12/09/2022 Ship. Cont.
A	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	9H <2	Cooler 4 - 2212177

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

	ID: 2212177-21 ple: RG_LI8_WS_LCO_2022-			Report Matrix: WS Sample Type: Sample + Sum			cted: 12/02/2022 ved: 12/09/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
	ID: 2212177-22 ple: RG_FO23_WS_LCO_202	2-12_N		Report Matrix: WS Sample Type: Sample + Sum			cted: 12/02/2022 ved: 12/09/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177
Sam	ID: 2212177-23 ple: RG_FO23_WS_LCO_202 Container	2-12_N_NAL Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot		cted: 12/02/2022 ved: 12/09/2022 Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
	ID: 2212177-24 ple: RG_FO23_WS_LCO_202	2 12 N. NAI		Report Matrix: WS	Collected: 12/02/2022 Received: 12/09/2022		
	Container	Size	Lot	Sample Type: Sample + Sum Preservation	P-Lot	pH	Ship. Cont.
A	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
Sam	ID: 2212177-25 ple: RG_FRUL_WS_LCO_202		1 -4	Report Matrix: WS Sample Type: Sample + Sum	D.L.	Recei	cted: 11/29/2022 (ved: 12/09/2022
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

	ID: 2212177-26 ple: RG FRUL WS LCO 202	2-12 N NAL		Report Matrix: WS Sample Type: Sample + Sum			ted: 11/29/2022 ved: 12/09/2022	
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177	
Lab ID: 2212177-27 Sample: RG_FRUL_WS_LCO_2022-12_N_NAL		Report Matrix: WS Sample Type: Sample + Sum		Collected: 11/29/2022 Received: 12/09/2022				
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177	
	ID: 2212177-28	0022 12 N		Report Matrix: WS			ted: 12/01/2022	
	ple: RG_LIDCOM_WS_LCO_2 Container	Size	Lot	Sample Type: Sample + Sum Preservation	P-Lot	pH	ved: 12/09/2022 Ship. Cont.	
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 -	
A	Cent rube rome se-sp	13 IIIL	Па	none	Па	Па	2212177	
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177	
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177	
	ID: 2212177-29 ple: RG LIDCOM WS LCO 2	2022 12 N. NAI		Report Matrix: WS Sample Type: Sample + Sum			ted: 12/01/2022 ved: 12/09/2022	
	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.	
A	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177	
Sam	ID: 2212177-30 ple: RG_LIDCOM_WS_LCO_2 Container Client-Provided - TM	2022-12_N_NAL Size 40mL	Lot na	Report Matrix: WS Sample Type: Sample + Sum Preservation 10% HNO3 (BAL)	P-Lot 2244016		ted: 12/01/2022 ved: 12/09/2022 Ship. Cont. Cooler 4 -	
							2212177	

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sam	ID: 2212177-31 ple: RG_FBLANK_WS_LCO_2 Container	2022-12_NP Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot		cted: 12/01/2022 ved: 12/09/2022 Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177
	ID: 2212177-32 ple: RG_FBLANK_WS_LCO_2	2022-12_NP_NAL		Report Matrix: WS Sample Type: Sample + Sum			cted: 12/01/2022 ved: 12/09/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177
Sam	ID: 2212177-33 ple: RG_FBLANK_WS_LCO_2			Report Matrix: WS Sample Type: Sample + Sum	.	Recei	cted: 12/01/2022 ved: 12/09/2022
A	Container Client-Provided - TM	Size 40mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 2244016	pH <2	Ship. Cont. Cooler 4 - 2212177
	ID: 2212177-34	20.40.11		Report Matrix: WS			cted: 11/29/2022
	ple: RG_LIDSL_WS_LCO_202 Container	22-12_N Size	Lot	Sample Type: Sample + Sum Preservation	P-Lot	Recei pH	ved: 12/09/2022
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Ship. Cont. Cooler 4 - 2212177
В	XTRA_VOL	15 mL	na	none	na	na	Cooler 4 - 2212177
С	XTRA_VOL	125mL	na	none	na	na	Cooler 4 - 2212177
	ID: 2212177-35 ple: RG_LIDSL_WS_LCO_202	22-12_N_NAL Size	Lot	Report Matrix: WS Sample Type: Sample + Sum Preservation	P-Lot		cted: 11/29/2022 ved: 12/09/2022 Ship. Cont.
A	Client-Provided - TM	40mL	na	10% HNO3 (BAL)	2244016	<2	Cooler 4 - 2212177

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2212177
Client PM: Cybele Heddle
Client Project: Regional Effects Program

Sample Containers

Lab ID: 2212177-36

Sample: RG_LIDSL_WS_LCO_2022-12_N_NAL

Des Container

Client-Provided - TM

Size 40mL Report Matrix: WS

Sample Type: Sample + Sum

Lot Preservation

na 10% HNO3 (BAL)

P-Lot

2244016

Collected: 11/29/2022 **Received:** 12/09/2022

pH Ship. Cont. <2 Cooler 4 -

2212177

Shipping Containers

Cooler 4 - 2212177

Received: December 9, 2022 7:07 **Tracking No:** RWHV97351 via Courier

Coolant Type: Blue Ice Temperature: -2.4 °C Description: Cooler 4
Damaged in transit? No
Returned to client? No
Comments: R-IR-2

Custody seals present? No Custody seals intact? No COC present? Yes

RUSH ROA Final Report 2212177 KEP LAEMP LUU 2022 December BRU TURNAROUND TIME: COC ID: Regular LABORATORY PROJECT/CLIENT INFO Excel PDF EDD Lab Name Brooks Applied Labs Facility Name / Job# Regional Effects Program Report Format / Distribution Project Manager Cybele Heddle Lab Contact Ben Wozniak Email 1: Email Ben@brooksapplied.com Email Cybele.Heddle@Teck.com Email 2: teckcoal@equisonline.com Address 18804 North Creek Parkway Email 3: Address 421 Pine Ave Teck.Lab.Results@teck.com Suite 100 Email 4: Province BC City Bothell Province WA Email 5: City Sparwood Postal Code 98011 Country Canada Postal Code V0B 2G0 Country United Email 6: owron@minnow.ca Phone Number 250-910-8755 Phone Number (206) 753-6158 PO number VPO00817033 University Fr. Field, L. Lah, Ph.: Fleid & Lah, N. Non-ANALYSIS REQUESTED SAMPLE DETAILS HNO3 HNO3 Hazardous Material (Yes/No) Brooks_Se_Speciation Brooks_Se_T Brooks_Se_D G=Grab Sample Location Field C=Com #Of Matrix Cont. Sample ID (sys loc code) Date Time (24hr) RG_RIVER NO RG_RIVER_WS_LCO_2022-12_NP WS 1/Dec/22 13:00 G 1 1 RG_RIVER_WS_LCO_2022-12_NP_NAL RG RIVER WS NO 1/Dec/22 13:00 G 2 1 1 RG_SLINE_WS_LCO_2022-12_N RG SLINE WS NO 30/Nov/22 12:30 \mathbf{G} 1 1 RG_SLINE_WS_LCO_2022-12_N_NAL RG_SLINE WS NO 30/Nov/22 G 2 12:30 1 1 RG_LI24_WS_LCO_2022_12_N **RG L124** WS NO 30/Nov/22 9:40 G 1 1 RG_LI24_WS_LCO_2022-12_N_NAL RG_L124 WS 30/Nov/22 G 2 NO 9:40 1 1 RG_LISP24_WS_LCO_2022-12_N_ RG_LISP24 WS G NO 1/Dec/22 13:30 1 1 RG_LISP24_WS_LCO_2022-12_N_NAL RG_LISP24 G 2 WS NO 1/Dec/22 13:30 1 1 RG_LILC3_WS_LCO_2022-12_N RG_LILC3 WS 1/Dec/22 G 1 NO 9:15 1 RG LILC3 WS LCO 2022-12 N NAL RG_LILC3 WS NO 1/Dec/22 9:15 G 2 1 ACCEPTED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS RELINQUISHED BY/AFFILIATION DATE/TIME DATE/TIME Rick Smit/Lotic Environmental December 2, 2022 SERVICE REQUEST (rush - subject to availability) Regular (default) X Rick Smit 403-586-3241 Sampler's Name Mobile # Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Rick Smit Date/Time Sampler's Signature December 2, 2022 For Emergency <1 Day, ASAP or Weekend - Contact ALS

RUSH N/A KEP LAEVIP LCO 2022 December BR TURNAROUND TIME: COC ID: Regula OOKS PROJECT/CLIENT INFO LABORATORY Lab Name Brooks Applied Labs Facility Name / Job# Regional Effects Program Excel PDF EDD Report Format / Distribution Lab Contact Ben Wozniak Project Manager Cybele Heddle Email 1: Email Ben@brooksapplied.com Email 2: Email Cybele.Heddle@Teck.com teckcoal@equisonline.com Address 18804 North Creek Parkway Email 3: Address 421 Pine Ave Teck.Lab.Results@teck.com Suite 100 Email 4: hannah.pennen@teck.com Province BC City Bothell Province WA Email 5: Sparwood City rhiannon hodgson@minnow.ca Postal Code 98011 United Canada Country Email 6: Postal Code V0B 2G0 Country Phone Number (206) 753-6158 PO number VPO00817033 Phone Number 250-910-8755 Filtered F: Field, L. Lash F1 : Field & Lass, N: Non SAMPLE DETAILS ANALYSIS REQUESTED HNO3 HNO3 Hazardous Material (Yes/No) Brooks_Se_Speciation Brooks_Se_D Brooks_Se_T G=Grab Field Time C=Com #Of Sample Location (24hr) Cont. Sample ID (sys loc code) Matrix Date RG LCUT WS LCO 2022-12 N RG LCUT WS NO 1/Dec/22 11:20 G 1 1 RG_LCUT_WS_LCO_2022-12_N_NAL RG LCUT WS NO 1/Dec/22 11:20 G 2 RG_LI8_WS_LCO_2022-12_N RG_LI8 WS NO 2/Dec/22 9:45 G 1 1 RG_LI8_WS_LCO_2022-12_N_NAL RG_LI8 WS NO 2/Dec/22 G 2 1 1 9:45 RG FO23 WS LCO 2022-12 N \mathbf{G} RG_FO23 WS NO 2/Dec/22 8:30 1 1 RG_FO23_WS_LCO_2022-12_N_NAL RG FO23 WS NO 2/Dec/22 8:30 G 2 1 RG_FRUL_WS_LCO_2022-12_N RG FRUL WS 29/Nov/22 G 9:30 1 1 NO RG FRUL WS LCO 2022-12 N NAL RG FRUL WS 29/Nov/22 G 2 1 1 NO 9:30 RG_LIDCOM_WS_LCO_2022-12_N RG_LIDCOM WS 1/Dec/22 G NO 15:00 1 RG_LIDCOM_WS_LCO_2022-12_N_NAL RG_LIDCOM WS NO 1/Dec/22 15:00 G 2 12/9/22 7:07 DATE/TIME ACCEPTED BY/AFFILIATION RELINQUISHED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTION ERU/BAL Rick Smit/Lotic Environmental December 2, 2022 SERVICE REQUEST (rush a subject to availability). Regular (default) X 403-586-3241 Sampler's Name Rick Smit Mobile # Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Sampler's Signature Rick Smit Date/Time December 2, 2022 For Emergency <1 Day, ASAP or Weekend - Contact ALS

Teck						Page	3	of 3											
Confluential	COC ID:	EP_LAE			ecember_bk	TURNA	AROUN	D TIME:			22 50			R	USH: N/A	BAL F	inal F	teport	22121
	PROJECT/CLIENT IN	18(1)		MAC				LABOR	ATORY		Regula				OTHER				
Facility Name / Joh#	Regional Effects Progra					Lal	b Name	Brooks Appl				R.	enort F	ormat / Di			Excel	PDF	EDD
Project Manager						Lab	Contact	Ben Wozniał	ς			Emai		1	Meck com		v	v	v
	Cybele.Heddle@Teck.co	m					Email	Ben@brook	sapplied.c	om		Emai		-	uisonline.com	, /		^	v
	421 Pine Ave							13751 Lake				Emai			sults@teck.co		4	v	v
7 Idal 633								Suite 108				Emai		A section of the section of	ner@teck.co		7		N.
City	Sparw	nod	P	ovince BC			City	Seattle		Province	WA	Emai	_		odgson@mir	-	V	v.	A V
Postal Code				ountry Canad	la	Poet	al Code			Country	United 5	Emai		Ibowron@m		nnow.ca	A.	A.	X
Phone Number		.00	10	January Canac	14			(206) 753-61		Country	Omicu :	PO nu		ibowrongen		PO0081	7022	N.	X
Phone Number	SAMPLE 1	DETAILS				I hone :	Vuilloci	(200) 755-01		YSIS REC	DESTEE		illoci			red - F: Field.		L. Field &	Lab. N: Non
	SOCIETY BALL	TANADINA.			T				CELTORES	LUIS PERIO	A A STATE OF THE S				1000		10.100.40		
			No)					Frozen	HNO3	HNO3									
Sample ID	Sample Location (sys loc code)	Field Matrix	Hazardous Material (Yes/No)	Date	Time (24hr)	G=Grab C=Com		Brooks_Se_Speciation	Brooks_Se_D	Brooks_Se_T									
G_FBLANK_WS_LCO_2022-12_NP	RG_FBLANK	WS	NO	1-Dec-22	9:00	G	1	1	1										
G_FBLANK_WS_LCO_2022-12_NP_NAL	RG FBLANK	ws	NO	1-Dec-22	9:00	G	2		1	1									
G_LIDSL_WS_LCO_2022-12_N	RG FBLANK	ws	NO	29-Nov-22	13:30	G	1	1	Sea.						-			+-	
G_LIDSL_WS_LCO_2022-12_N_NAL	RG_FBLANK	ws	NO	29-Nov-22	13:30	G	2		1	1	+							-	
	KO_FDEATIK	***3	110	29-1101-22	13.30	G	4	DATE			TENTER	BY/AFF	T. F. 6 (P)	(CAN)		200 A 210	E/TIM		
				Rick Sm	it/Lotic Environme	ental		Decembe		ERI	10	44	1014411		12/9/			720	7
SERVICE REQUEST (rush - sub	lect to availability)					1										->-			
SERVICE REQUEST (1988 - 500)	AND DESCRIPTION OF THE PARTY OF	ar (default) X		2		*						1			30-5				
	2-3 business days) - 50% (1 Business Day) - 100%	surcharge	1	Sampler'				Rick Sm	uit		Mo	bile#			403	-586-324	1		
For Emergency < 1 Day				Sampler's	Signature			Rick Sm	it		Date	/Time			Decen	nber 2, 2	022		

24 Hour Hot Shot Service

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

DILL OF LABINO	**		L DISPOSIANE OPPERA	CHADED	B B ON WORK
BILL OF LADING	"JAIC ALOUT		PURCHASE ORDER N	OWREK	
SHIPPER (FROM	A)		CONSIGNEE (TO)		THE RESERVE OF THE PARTY OF THE
Company of the last of the las	La Carela		Photos v	pol ad lat	
STREET		L III C	STREET		
	COLOR DE COLOR DE DATE DE LA COLOR DE C			thought the las	
CITY/PROVINCE	mad Pro	POSTAL CODE	CITY/PROVINCE	A A	POSTAL CODE
SPECIAL INSTRU	JCTIONS				FREIGHT CHARGES
PACKAGES	DESCRIPTION OF ART	CLES AND SPECIAL MARKS		WEIGHT (Subject to Correction)	SHIPPER TO CHECK □PREPAID □COLLECT
4	Turille Garen	14 1 - FI	Mark A		if not indicated shipping will automatically move 20.8
					FEE
				10/3 16	WAITING
		101 101) []	1232	
	KINHA	4-1-		-	XPU
		1-1-	1 1		CHARGES
					FSC
NIT #		DECLARED VA	LUATION: Maximum		US
		liability of carrier is kilogram) unless of	\$2.00 per lb. (\$4.41 per feclared v. Salion states		STATE OF THE PARTY OF
		otherwise		A A TOTAL	SUB TOTAL
ET PERSONAL	45 Thinking - Arena and the	- John dan	A STATE OF THE PARTY.		4
		No. of the last	and special and	AND IN AND	
TICE OF CLAIM: (a No coeff of such loss, damage	amer is lable for loss daturage or retain of any gonos and the Bir of Lajang uni- or delays a given in witing to the informatic carrier or the deviening carrier within the data must be filled within, this of youngest come which go to the data specifies from the consignor mentional trends the property here- tions which the carrier agrees to any and it addits to the si- tions which the carrier agrees to any and it addits to the si- tions which the carrier agrees to any and it addits to the si- tions which the carrier agrees to any and it addits to the si- ot Laoning, in power all the data of issuing which are never agreed by the car- cillation, in power all the data of issuing which are never agreed by the carrier are freely agreed by the consistion and accepted in name of the goods listed in the Biff or Lading is governed by regulation in face in the just	ss notice therefor setting	Shipment	of the goods and the estimated amount claimed within nine (9) months from the date of size month.	C 1 FM 1
CEIVED at the point of the times as indicated to	The search must be they within hine (9) months from the de- grow the date specified from the consignor members a the property here erow which the carrier agrees to carry and to delive to the	ite or ship went logether with a news noted in apparent good order, excep- insigned at the said destination is	t as noted (co and condition of coments subject to the rules and classification	of package un violing, marken, consigned and in its effect on the date of shipment	TOTAL \$
multary syreed as to earle or fitions star tain Bit date of issuing wh	as camer of all or elly of the goods over all or any porter, or the route to distinct of Lading, in power at the date of issuing, which are herent agreed by the closing for any hereby agreed by the consignor and accapited for nims	on, and as to each party of any tave interest nor and accepted for himself and his assign alf and his assign	sted in ail or any of the goods. Hat every servins Printed or written including multitions set a	ce to be performed hereunder shall be subject to side by the standard Bill of Lading in power at	IF AT OWNER'S RISK WRITE ORD HERE
PPER	If the goods listed in the Bill of Labing is governed by regulation for face in the jur	CONSIGNEE	and is subject to the condition of out or so	cii cundiliori)	
NT		PRINT	1900 BA		DATE
PPER N		CONSIGNEE SIGN	- Net		TIM
WHITE	E: Office YELLOW, Carrier PINK: Consigne	e GOLDENROAD: Shi	pper GST # 864:	540398RT0001	NUMBER OF PIECES RECEIVED
Finance:			U CONTRACTOR OF THE PARTY OF TH		

Cooler ID: (001614

COC((Y)N)

Temperature: - 64

IR: K-1K-4

SP

Coolant Type:

Ice

Ambient

Notes:

Sampling Locations:

Sample Types:

Container Types:

T/D

SP

T/D

Opened By: Ell

Date: 12/9/22

Effective 7/29/20

OEE ERL 12/9/22

Revision 004

BENTHIC COMMUNITY

Cordillera Methods and QC Report 22-13

Methods and QC Report 2022

Project ID: LCO LAEMP (22-13)

Client: Minnow Environmental

P: 250.494.7553

F: 250.494.7562

Prepared by:

Cordillera Consulting Inc. Summerland, BC © 2022

Table of Contents

Sample Reception	3
Sample Sorting	4
Sorting Quality Control - Sorting Efficiency	5
Sorting Quality Control - Sub-Sampling QC	6
Taxonomic Effort	9
Taxonomists	9
Taxonomic QC	10
Error Summary	11
Error Rationale	11
References	15
Taxonomic Keys	15

Sample Reception

On September 27, 2022, Cordillera Consulting received 30 benthic samples from Minnow Environmental. When samples arrived to Cordillera Consulting, exterior packaging was initially inspected for damage or wet spots that would have indicated damage to the interior containers.

Samples were logged into a proprietary software database (INSTAR1) where the clients assigned sample name was recorded along with a Cordillera Consulting (CC) number for cross-reference. Each sample was checked to ensure that all sites and replicates recorded on field sheets or packing lists were delivered intact and with adequate preservative. Any missing, mislabelled or extra samples were reported to the client immediately to confirm the total numbers and correct names on the sample jars. The client representative was notified of the arrival of the shipment and provided a sample inventory once intake was completed.

See table below for sample inventory:

Table 1: Summary of sample information including Cordillera Consulting (CC) number

Sample	CC#	Date	Size	# of Jars
RG_FO23_BIC-1_2022-09-09_N	CC231107	9/9/2022	400μΜ	1
RG_FO23_BIC-2_2022-09-09_N	CC231108	9/9/2022	400μΜ	1
RG_FO23_BIC-3_2022-09-09_N	CC231109	9/9/2022	400μΜ	1
RG_FO23_BIC-4_2022-09-09_N	CC231110	9/9/2022	400μΜ	1
RG_FO23_BIC-5_2022-09-10_N	CC231111	9/10/2022	400μΜ	1
RG_FRUL_BIC-1_2022-09-10_N	CC231112	9/10/2022	400μΜ	1
RG_FRUL_BIC-2_2022-09-10_N	CC231113	9/10/2022	400μΜ	1
RG_FRUL_BIC-3_2022-09-10_N	CC231114	9/10/2022	400μΜ	1
RG_LCUT_BIC-1_2022-09-15_N	CC231115	9/15/2022	400μΜ	1
RG_LCUT_BIC-2_2022-09-15_N	CC231116	9/15/2022	400μΜ	1
RG_LCUT_BIC-3_2022-09-15_N	CC231117	9/15/2022	400μΜ	1
RG_LIDCOM_BIC-1_2022-09-12_N	CC231118	9/12/2022	400μΜ	3
RG_LIDSL_BIC-1_2022-09-13_N	CC231119	9/13/2022	400μΜ	1
RG_LIDSL_BIC-2_2022-09-13_N	CC231120	9/13/2022	400μΜ	1
RG_LIDSL_BIC-3_2022-09-13_N	CC231121	9/13/2022	400μΜ	1
RG_LIDSL_BIC-4_2022-09-14_N	CC231122	9/14/2022	400μΜ	1
RG_LIDSL_BIC-5_2022-09-14_N	CC231123	9/14/2022	400μΜ	1
RG_LILC3_BIC-1_2022-09-08_N	CC231124	9/8/2022	400μΜ	3
RG_LILC3_BIC-2_2022-09-08_N	CC231125	9/8/2022	400μΜ	2
RG_LILC3_BIC-3_2022-09-08_N	CC231126	9/8/2022	400μΜ	2
RG_SLINE_BIC-1_2022-09-16_N	CC231127	9/16/2022	400μΜ	1
RG_SLINE_BIC-2_2022-09-16_N	CC231128	9/16/2022	400μΜ	1
RG_SLINE_BIC-3_2022-09-16_N	CC231129	9/16/2022	400μΜ	1
RG_LI24_BIC-1_2022-09-17_N	CC231130	9/17/2022	400μΜ	1
RG_LI24_BIC-2_2022-09-17_N	CC231131	9/17/2022	400μΜ	1
RG_LI24_BIC-3_2022-09-17_N	CC231132	9/17/2022	400μΜ	1
RG_LI8_BIC-1_2022-09-17_N	CC231133	9/17/2022	400μΜ	1

RG_LI8_BIC-2_2022-09-17_N	CC231134	9/17/2022	400μΜ	1
RG_LI8_BIC-3_2022-09-17_N	CC231135	9/17/2022	400μΜ	1
RG LISP24 BIC-1 2022-09-14 N	CC231136	9/14/2022	400μΜ	1

Sample Sorting

- Using a gridded Petri dish, fine forceps and a low power stereo-microscope (Olympus, Nikon, Leica) the sorting technicians removed the invertebrates and sorted them into family/orders.
- The sorting technician kept a running tally of total numbers excluding organisms from Porifera, Nemata, Platyhelminthes, Ostracoda, Copepoda, Cladocera and terrestrial drop-ins such as aphids. These organisms were marked for their presence (given a value of 1) only and left in the sample. They were not included towards the 300-organism subsample count.
- Where specimens are broken or damaged, only heads were counted.
- Subsampling was conducted with the use of a Marchant Box.
- When using the Marchant box, cells were extracted at the same time in the order indicated by a random number table. If the 300th organism was found part way into sorting a cell then the balance of that cell was sorted. If the organism count had not reached 300 by the 50th cell then the entire sample was sorted.
- The total number of cells sorted and the number of organisms removed were recorded manually on a bench sheet and then recorded into INSTAR1
- Organisms were stored in vials containing 80% ethanol and an interior label indicating the site names, date of sampling, site code numbers and portion subsampled. This information was also recorded on the laboratory bench sheet and on INSTAR1.
- The sorted portion of the debris was preserved and labeled separately from the unsorted portion and was tested for sorting efficiency (Sorting Quality Control – Sorting Efficiency). The unsorted portion was also labeled and preserved in separate jars.

Percent sub-sampled and total countable invertebrates pulled from the samples were summarized in the table below.

Table 2: Percent sub-sample and invertebrate count for each sample

Sample	Date	CC#	400 micron fraction	
			% Sampled	# Invertebrates
RG_FO23_BIC-1_2022-09-09_N	09-Sep-22	CC231107	5%	317
RG_FO23_BIC-2_2022-09-09_N	09-Sep-22	CC231108	20%	471
RG_FO23_BIC-3_2022-09-09_N	09-Sep-22	CC231109	7%	327
RG_FO23_BIC-4_2022-09-09_N	09-Sep-22	CC231110	10%	318
RG_FO23_BIC-5_2022-09-10_N	10-Sep-22	CC231111	5%	326

RG_FRUL_BIC-1_2022-09-10_N	10-Sep-22	CC231112	6%	352
RG_FRUL_BIC-2_2022-09-10_N	10-Sep-22	CC231113	8%	329
RG_FRUL_BIC-3_2022-09-10_N	10-Sep-22	CC231114	8%	334
RG_LCUT_BIC-1_2022-09-15_N	15-Sep-22	CC231115	5%	425
RG_LCUT_BIC-2_2022-09-15_N	15-Sep-22	CC231116	5%	451
RG_LCUT_BIC-3_2022-09-15_N	15-Sep-22	CC231117	5%	370
RG_LIDCOM_BIC-1_2022-09-12_N	12-Sep-22	CC231118	5%	1113
RG_LIDSL_BIC-1_2022-09-13_N	13-Sep-22	CC231119	5%	560
RG_LIDSL_BIC-2_2022-09-13_N	13-Sep-22	CC231120	5%	351
RG_LIDSL_BIC-3_2022-09-13_N	13-Sep-22	CC231121	6%	331
RG_LIDSL_BIC-4_2022-09-14_N	14-Sep-22	CC231122	6%	329
RG_LIDSL_BIC-5_2022-09-14_N	14-Sep-22	CC231123	5%	364
RG_LILC3_BIC-1_2022-09-08_N	08-Sep-22	CC231124	5%	1125
RG_LILC3_BIC-2_2022-09-08_N	08-Sep-22	CC231125	5%	743
RG_LILC3_BIC-3_2022-09-08_N	08-Sep-22	CC231126	10%	1158
RG_SLINE_BIC-1_2022-09-16_N	16-Sep-22	CC231127	20%	351
RG_SLINE_BIC-2_2022-09-16_N	16-Sep-22	CC231128	5%	394
RG_SLINE_BIC-3_2022-09-16_N	16-Sep-22	CC231129	14%	349
RG_LI24_BIC-1_2022-09-17_N	17-Sep-22	CC231130	9%	353
RG_LI24_BIC-2_2022-09-17_N	17-Sep-22	CC231131	5%	313
RG_LI24_BIC-3_2022-09-17_N	17-Sep-22	CC231132	9%	364
RG_LI8_BIC-1_2022-09-17_N	17-Sep-22	CC231133	5%	447
RG_LI8_BIC-2_2022-09-17_N	17-Sep-22	CC231134	10%	338
RG_LI8_BIC-3_2022-09-17_N	17-Sep-22	CC231135	5%	408
RG_LISP24_BIC-1_2022-09-14_N	14-Sep-22	CC231136	5%	348

Sorting Quality Control - Sorting Efficiency

As a part of Cordillera's laboratory policy, all projects undergo sorting efficiency checks.

- As sorting progresses, 10% of samples were randomly chosen by senior members of the sorting team for resorting.
- All sorters working on a project had at least 1 sample resorted by another sorter.
- An efficiency of 90 % was expected (95% for CABIN samples).
- If 90/95% efficiency was not met, samples from that sorter were resorted.
- To calculated sorting efficiency the following formula was used:

$$\frac{\#OrganismsMissed}{TotalOrganismsFound}*100 = \%OM$$

Table 3 Summary of sorting efficiency

			Total from Sample	Percent Efficiency
Site - QC, Sample - QC 1, CC# - CC231107, Pe	rcent			
sampled = 5%, Sieve size = 400				
No Invertebrates Found		0		
	Total:	0	317	100%
Site - QC, Sample - QC 2, CC# - CC231121, Pe sampled = 6%, Sieve size = 400	rcent			
Ephemerellidae		1		
	Total:	1	331	100%
Site - QC, Sample - QC 3, CC# - CC231129, Pe	rcent			
sampled = 14%, Sieve size = 400				
Plecoptera		2		
Trichoptera		1		
Diptera		1		
	Total:	4	349	99%

Sorting Quality Control - Sub-Sampling QC

Certain Provincial and Mining projects require additional sorting checks in the form of sub-sampling QC, (Environmental Effects Monitoring (EEM) protocol). This ensured that any fraction of the total sample that was examined was actually an accurate representation of the number of total organisms. Organisms from the additional sub-samples were not identified; rather total organism count only was compared.

Sub-Sampling efficiency was measured on 10% of the number of sub-sampled samples in the project. Ex. In a project where 50 of 100 total samples were processed through subsampling using a Marchant box, then 10% of 50; or 5 samples were used for sub sampling efficiency.

Sub-Sampling efficiency was performed by fractioning the entire sample into subsample percentages. On each sub-sampled portion, a total organism count was recorded and compared to the rest of the sub-samples. In order to pass, all fractions were required to be within 20% of total organism count.

Example: If 300 organisms are found in 10% of the sample, the sorter will continue to sample in 10% fractions until the entire sample is separated. They will then count the

total number of organisms in each of the 10 fractions of 10% and compare the organism count.

When divergence is >20% the sorting manager examines for the source of the problem and takes steps to correct it. With the Marchant box, the problem typically rested with how the box is flipped back to the upright position. For this reason, subsampling was performed by experienced employees only. Another common source of error would be the type of debris in the sample. Samples with algae or heavy with periphyton have a higher incident of failure due to clumping than clear samples.

Table 4 Summary of Sub Sample efficiency

9	Station ID									0	lama l	n Cuba						Sc	orter		Pre	cision	Acc	uracy
CC#	Comple Nome		Organisms in Subsample									- D.	Time	Actual Total	Dorsor	at Dange	Min	May						
CC#	Sample Name	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20						20	Ву	Time		Percent Range		Min	Max									
231127	RG_SLINE_BIC- 1_2022-09- 16_N	355	322	313	353	311												СВ	300	1654	0.56	12.39	2.66	7.32
231136	RG_LISP24_BIC- 1_2022-09- 14_N	349	340	310	335	304												AR	215	1638	1.47	12.89	2.26	7.20
231108	RG_FO23_BIC- 2_2022-09- 09_N	469	448	478	547	451												TS	550	2393	0.67	18.10	0.13	14.29

Taxonomic Effort

The next procedure was the identification to genus-species level where possible of all the organisms in the sample.

- Identifications were made at the genus/species level for all insect organisms found including Chironomidae (Based on CABIN protocol).
- Non-insect organisms (except those not included in CABIN count) were identified to genus/species where possible and to a minimum of family level with intact and mature specimens.
- The Standard Taxonomic Effort lists compiled by the CABIN manual¹, SAFIT², and PNAMP³ were used as a guide line for what level of identification to achieve where the condition and maturity of the organism enabled.
- Organisms from the same families/order were kept in separate vials with 80% ethanol and an interior label of printed laser paper.
- Chironomidae was identified to genus/species level where possible and was aided by slide mounts. CMC-10 was used to clear and mount the slide.
- Oligochaetes was identified to family/genus level with the aid of slide mounts. CMC-10 was used to clear and mount the slide.
- Other Annelida (leeches, polychaetes) were identified to the family/genus/species level with undamaged, mature specimens.
- Mollusca was identified to family and genus/species where possible
- Decapoda, Amphipoda and Isopoda were identified at family/genus/species level where possible.
- Bryozoans and Nemata remained at the phylum level
- Hydrachnidae and Cnidaria were identified at the family/genus level where possible.
- When requested, reference collections were made containing at least one individual from each taxa listed. Organisms represented will have been identified to the lowest practical level.
- Reference collection specimens were stored in 55 mm glass vials with screw-cap lids with polyseal inserts (museum quality). They were labeled with taxa name, site code, date identified and taxonomist name. The same information was applied to labels on the slide mounts.

Taxonomists

The taxonomists for this project were certified by the Society of Freshwater Science (SFS) Taxonomic Certification Program at level 2 which is the required certification for CABIN projects:

Scott Finlayson: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae (East/West); Group 4 Oligochaeta

Adam Bliss: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae

Rita Avery: Group 1 General Arthropods (East/West); Group 2 EPT (East/West)

Taxonomic QC

Taxonomic QC was performed in house by someone other than the original taxonomist.

- Quality control protocol involved complete, blind re-identification and reenumeration of at least 10% of samples by a second SFS-certified taxonomist.
- Samples for taxonomic quality control were randomly selected and quality control procedures were conducted as the project progresses through the laboratories.
- The second (QC) taxonomist will calculate and record four types of errors:
 - 1. Misidentification error
 - 2. Enumeration error
 - 3. Questionable taxonomic resolution error
 - 4. Insufficient taxonomic resolution error

The QC coordinator then calculates the following estimates of taxonomic precision.

1. The percent total identification error rate is calculated as:

$$\frac{Sum\ of\ incorrect\ identifications}{total\ or\ ganisms\ counted\ in\ audit}*(100)$$

The average total identification error rate of audited samples did not exceed 5%. All samples that exceed a 5% error rate were re-evaluated to determine whether repeated errors or patterns in error contributed.

2. The percent difference in enumeration (PDE) to quantify the consistency of specimen counts.

$$PDE = \frac{|n_1 - n_2|}{n_1 + n_2} x 100$$

3. The percent taxonomic disagreement (PTD) to quantify the shared precision between two sets of identifications.

$$PTD = \left(1 - \left[\frac{a}{N}\right]\right) x100$$

4. Bray Curtis dissimilarity Index to quantify the differences in identifications.

$$BC_{ij} = 1 - \frac{2C_{ij}}{S_j + S_i}$$

Error Summary

All samples report errors within the acceptable limits for CABIN Laboratory methods (less than 5% error).

Table 5 Summary of taxonomic error following QC

Site	Taxa Identified	% Error	PDE	PTD	Bray - Curtis Dissimilarity index
Site - 2022, Sample - RG_FO23_BIC-3_2022-09-					
09_N, CC# - CC231109, Percent sampled = 7%,					
Sieve size = 400	328	0.00	0.15267176	0.6097561	0.00458015
Site - 2022, Sample - RG_LCUT_BIC-3_2022-09-					
15_N, CC# - CC231117, Percent sampled = 5%,					
Sieve size = 400	370	0.27	0	0.27027027	0.0027027
Site - 2022, Sample - RG_LI24_BIC-2_2022-09-					
17_N, CC# - CC231131, Percent sampled = 5%,					
Sieve size = 400	311	0.00	0.32051282	0.63897764	0.00320513

There will always be disagreements between taxonomists regarding the degree of taxonomic resolution in immature specimens and when laboratories make use of different keys for certain groups (Mollusks is an especially disputed group). It is always possible that some taxa found by the original taxonomist were overlooked in QC.

All of the Taxonomic QC samples that were observed passed testing according to the CABIN misidentification protocols. See the tables below for results from taxonomic QC audit.

Error Rationale

Site - 2022, Sample - RG_FO23_BIC-3_2022-09- 09_N, CC# - CC231109, Percent sampled = 7%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Acentrella	1	1						
Agathon	1	1						

Arctopsyche	2	2			
Baetis	4	5	No	Х	
Baetis rhodani group	54	53	No	Х	
Capniidae	12	12			
Chironomidae	11	11			
Chloroperlidae	8	8			
Drunella	1	1			
Drunella doddsii	11	11			
Empididae	1	1			
Epeorus	1	1			
Eukiefferiella	1	1			
Glossosomatidae	2	2			
Heptageniidae	62	62			
Hesperoperla	2	2			
Hexatoma	1	1			
Lebertia	3	3			
Lumbriculidae	1	1			
Micrasema	1	1			
Micropsectra	10	10			
Oligochaeta	2	2			
Oribatida	1	1			
Orthocladius complex	3	3			
Pagastia	1	1			
Paraleuctra	1	1			
Pericoma/Telmatoscopus	46	46			
Perlidae	4	4			
Rhithrogena	4	4			
Rhyacophila	2	2			
Rhyacophila atrata complex	4	4			
Rhyacophila betteni group	1	1			
Rhyacophila					
brunnea/vemna group	1	1			
Rhyacophila narvae	1	1			
Simuliidae	2	2			
Simulium	18	19	No	Х	
Stygothrombium	1	1			
Sweltsa	14	14			
Taeniopterygidae	20	20			
Tvetenia	5	5			
Zapada	2	2			
Zapada cinctipes	3	3			
Zapada columbiana	1	1			

Total:	327	328						
					0	3	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						
Site - 2022, Sample - RG_LCUT_BIC-3_2022-09- 15_N, CC# - CC231117, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Baetis rhodani group	1	1						
Capniidae	6	6						<u> </u>
Chironomidae	49	49						
Diamesa	24	25	No			Χ		
Diplocladius cultriger	2	2						<u> </u>
Ecclisomyia	6	6						
Eukiefferiella	46	45	No	1		Χ		
Hydropsychidae	2	2						
Kogotus	1	1						
Lebertia	6	6						
Limnephilidae	1	1						
Megarcys	2	2						
Mesocapnia	1	1						
Orthocladius complex	183	183						
Pagastia	19	19						
Parapsyche elsis	2	2						
Perlodidae	1	1						
Rheocricotopus	3	3						
Rhyacophila hyalinata group	2	2						
Sperchon	5	5						
Trichoptera	1	1						
Tvetenia	6	6						
Zapada columbiana	1	1						
Total:	370	370						
					0	2	0	
	misidentifications		0.27	Pass				

% Total Misidentification Rate =	total number	x100 =						
Site - 2022, Sample - RG_LI24_BIC-2_2022-09- 17_N, CC# - CC231131, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Ameletus	2	2						
Baetis rhodani group	1	1						
Capniidae	4	4						
Chironomidae	5	5						
Chloroperlidae	5	5						
Cinygmula	4	4						
Clostoeca disjuncta	1	1						
Diamesa	1	1						
Drunella	3	3						
Drunella doddsii	8	8						
Epeorus	2	2						
Ephemerellidae	6	6						
Eukiefferiella	3	3						
Heptageniidae	92	90	No			Χ		
Leuctridae	1	1						
Megarcys	13	13						
Nemouridae	1	1						
Orthocladius complex	3	3						
Paraleuctra	2	2						
Parorthocladius	2	2						
Perlodidae	2	2						
Plumiperla	1	1						
Rheocricotopus	1	1						
Rhithrogena	8	8						
Rhyacophila	2	2						
Rhyacophila								
brunnea/vemna group	2	2						
Rhyacophila hyalinata								
group	1	1						
Sweltsa	17	17						
Taeniopterygidae	54	54						
Tvetenia	7	7						
Visoka cataractae	1	1						
Zapada columbiana	58	58						

Total:	313	311						
					0	1	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						

References

¹ McDermott, H., Paull, T., Strachan, S. (May 2014). Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples, Environment Canada. ISBN: 978-1-100-25417-3

Taxonomic Keys

Below is a reference list of taxonomic keys utilized by taxonomists at Cordillera Consulting. Cordillera taxonomists routinely seek out new literature to ensure the most accurate identification keys are being utilized. This is not reflective of the exhaustive list of resources that we use for identification. A more complete list of taxonomic resources can be found at Southwest Association of Freshwater Invertebrate Taxonomists. (2015).

http://www.safit.org/Docs/SAFIT_Taxonomic_Literature_Database_1_March_2011.enl

Brook, Arthur R. and Leonard A. Kelton. 1967. Aquatic and semiaquatic Heteroptera of Alberta, Saskatchewan and Manitoba (Hemiptera) Memoirs of the Entomological Society of Canada. No. 51.

Brown HP & White DS (1978) Notes on Seperation and Identification of North American Riffle Beetles (Coleoptera: Dryopidea: Elmidae). Entomological News 89 (1&2): 1-13

Clifford, Hugh F. 1991. Aquatic Invertebrates of Alberta. University of Alberta Press Edmonton, Alberta.

Epler, John. 2001 The Larval Chironomids of North and South Carolina. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Water Beetles of Florida. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Aquatic and Semi-aquatic Heteroptera of Florida. http://home.earthlink.net/~johnepler/

Trond Andersen, Peter S. Cranston & John H. Epler (Eds) (2013) Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. *Insect Systematics and Evolution Supplements* 66: 1-571.

Jacobus, Luke and Pat Randolph. 2005. Northwest Ephemeroptera Nymphs. Manual from Northwest Biological Assessment Working Group. Moscow Idaho 2005. Not Published.

Jacobus LM, McCafferty WP (2004) Revisionary Contributions to the Genus Drunella (Ephemeroptera : Ephemerellidae). Journal of the New York Entomological Society 112: 127-147

² Southwest Association of Freshwater Invertebrate Taxonomists. (2015). www.safit.org

³ Pacific Northwest Aquatic Monitoring Partnership (Accessed 2015). www.pnamp.org

Jacobus LM, McCafferty WP (2003) Revisionary Contributions to North American Ephemerella and Serratella (Ephemeroptera: Ephemerellidae). Journal of the New York Entomological Society 111 (4): 174-193.

Kathman, R.D., R.O. Brinkhurst. 1999. Guide to the Freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, Tennessee.

Larson, D.J., Y. Alarie, R.E. Roughly. 2005. Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Neararctic Region. NRC-CNRC Research Press. Ottawa.

Merritt, R.W., K.W. Cummins, M. B. Berg. (eds.). 2007. An introduction to the aquatic insects of North America, 4th. Kendall/Hunt, Dubuque, IA

Morihara DK, McCafferty WP (1979) The Baetis Larvae of North American (Ephemeroptera: Baetidae). Transactions of the American Entomological Society 105: 139-221.

Needham, James, M. May, M. Westfall Jr. 2000. Dragonflies of North America. Scientific Publishers. Gainsville FL.

Prescott David, R.C.and Medea M. Curteanu.2004. Survey of Aquatic Gastropods of Alberta. Species at Risk Report No. 104. ISSN: 1496-7146 (Online Edition)

Needham, K. 1996. An Identification Guide to the Nymphal Mayflies of British Columbia. Publication #046 Resource Inventory Committee, Government of British Columbia.

Oliver, Donald R. and Mary E. Roussel. 1983. The Insects and Arachnids of Canada Part 11. The Genera of larval midges of Canada. Biosystematics Research Institute. Ottawa, Ontario. Research Branch, Agriculture Canada. Publication 1746.

Proctor, H. The 'Top 18' Water Mite Families in Alberta. Zoology 351. University of Alberta, Edmonton, Alberta.

Rogers, D.C. and M. Hill, 2008. Key to the Freshwater Malacostraca (Crustacea) of the mid-Atlantic Region. EPA-230-R-08-017. US Environmental Protection Agency, Office of Environmental Information, Washington, DC.

Stewart, Kenneth W. and Bill Stark. 2002. The Nymphs of North American Stonefly Genera (Plecoptera). The Caddis Press. Columbus Ohio.

Stewart, Kenneth W. and Mark W. Oswood. 2006 The Stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press.

Stonedahl, Gary and John D. Lattin. 1986. The Corixidae of Oregon and Washington (Hemiptera: Heteroptera). Technical Bulletin 150. Oregon State University, Corvalis Oregon.

Thorpe, J. H. and A. P. Covich [Eds.] 1991. Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego.

Tinerella, Paul P. and Ralph W. Gunderson. 2005. The Waterboatmen (Insecta: Heteroptera: Corixidae) of Minisota. Publication No. 23 Dept. Of Entomology, North Dakota State University, Fargo, North Dakota, USA.

Weiderholm, Torgny (Ed.) 1983. The larvae of Chironomidae (Diptera) of the Holartic region. Entomologica Scaninavica. Supplement No. 19.

Westfall, Minter J. Jr. and May, Michael L. 1996. Damselflies of North America. Scientific Publishers, Gainesville, FL.

Wiggins, Glenn B. 1998. Larvae of the North American Caddisfly Genera (Tricoptera) 2nd ed. University of Toronto Press. Toronto Ontario.

BENTHIC COMMUNITY DATA

Cordillera Raw Data from Kick & Sweep Samples (September 2022)

Site:	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
Sample:	RG_FO23_BIC-	RG_FO23_BIC-	RG_FO23_BIC-	RG_FO23_BIC-	RG_FO23_BIC-	RG_FRUL_BIC-	RG_FRUL_BIC-	RG_FRUL_BIC-	RG_LCUT_BIC-	RG_LCUT_BIC-	RG_LCUT_BIC-	RG_LIDCOM_BIC-			
Sample.	1_2022-09-09_N	2_2022-09-09_N	3_2022-09-09_N	4_2022-09-09_N	5_2022-09-10_N	1_2022-09-10_N	2_2022-09-10_N	3_2022-09-10_N	1_2022-09-15_N	2_2022-09-15_N	3_2022-09-15_N	1_2022-09-12_N	1_2022-09-13_N	2_2022-09-13_N	3_2022-09-13_N
Sample Collection Date:	09-Sep-22	09-Sep-22	09-Sep-22	09-Sep-22	10-Sep-22	10-Sep-22	10-Sep-22	10-Sep-22	15-Sep-22	15-Sep-22	15-Sep-22	12-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231107	CC231108	CC231109	CC231110	CC231111	CC231112	CC231113	CC231114	CC231115	CC231116	CC231117	CC231118	CC231119	CC231120	CC231121
Phylum: Arthropoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Ameletidae Ameletus	0	0 50	0	0 20	0 20	0	0	0	0	0	0	0 60	0 100	0 160	0 33
Family: Baetidae	60	45	0	10	0	50	12	25	20	0	0	240	60	40	0
Acentrella	00	5	14	0	0	0	0	0	0	0	0	0	00	0	0
Baetis	440	95	57	20	100	133	125	225	0	0	0	120	160	100	50
Baetis rhodani group	1.140	685	771	700	840	500	412	412	80	60	20	1.980	360	460	517
Baetis bicaudatus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Ephemerellidae	0	0	0	0	0	0	0	0	0	0	0	140	740	240	133
<u>Drunella</u>	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0
<u>Drunella doddsii</u>	20	80	157	40	40	50	38	12	20	0	0	660	220	120	183
<u>Drunella spinifera</u>	20	20	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Heptageniidae	760	275	886	560	920	1,417	825	462	180	120	0	3,280	4,060	2,560	2,100
<u>Cinygmula</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	20	0
Epeorus	20	5	14	40	20	0	0	12	0	0	0	180	60	80	133
Rhithrogena	0	5	57	120	40	0	50	12	0	0	0	0	0	0	0
Order: Plecoptera Family: Capniidae	20 120	0 90	0 171	10 260	0 180	17 150	25 275	0 112	40 100	0 40	0 120	160 80	20 20	0 100	0 33
Mesocapnia	0	90	0	0	0	0	0	0	20	40	20	0	0	0	33 0
Family: Chloroperlidae	20	5	114	30	40	100	38	12	0	20	0	20	40	0	17
Haploperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Plumiperla	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Suwallia</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Sweltsa</u>	60	30	200	140	20	200	25	12	40	60	0	40	20	80	0
Family: Leuctridae	0	0	0	30	0	83	75	0	0	0	0	0	0	0	0
<u>Paraleuctra</u>	0	0	14	0	0	17	12	0	0	0	0	20	0	0	0
Family: Nemouridae	0	5	0	0	0	150	12	12	0	0	0	120	60	20	0
<u>Amphinemura</u> Malenka	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Maierika</u> Visoka cataractae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zapada	100	5	29	20	80	0	38	38	0	0	0	40	100	60	50
Zapada oregonensis group	60	0	0	0	0	0	0	0	80	20	0	60	200	160	50
Zapada cinctipes	480	70	43	60	400	217	38	175	0	20	0	0	20	0	17
Zapada columbiana	20	0	14	10	20	0	0	0	40	20	20	120	260	100	133
Family: Peltoperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Yoraperla</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Perlidae	180	130	57	0	0	33	50	38	0	0	0	0	0	0	0
<u>Hesperoperla</u>	0	35	29	80	240	200	138	88	0	0	0	0	0	0	0
Family: Perlodidae	40	10	0	10	80	0	25	0	20	20	20	0	20	60	17
Isoperla Kagatus	100	0	0	0	0	0	12	0	0	0	0	0	0	0	0
<u>Kogotus</u> <u>Megarcys</u>	100 40	10 0	0	20 0	20 100	0	12 0	0	40 40	60 100	20 40	60 80	40 0	0 40	17 50
Setvena	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Skwala</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Pteronarcyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Taeniopterygidae	200	165	286	180	1,040	667	488	100	0	20	0	1,220	600	120	150
Order: Trichoptera	0	0	0	0	0	0	0	0	0	0	20	100	0	20	0
Family: Apataniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Apatania</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Brachycentridae	200	30	0	0	40	50	0	12	0	0	0	0	0	0	0
Brachycentrus americanus	20	0	0	0	20	17	0	25	0	0	0	0	0	0	0
Micrasema	40	0	14	0	0	0	0	0	0	0	0	0	0	0	0
Family: Glossosomatidae	0	0	29	0	0	0	12	0	0	0	0	0	0	20	17
Glossosoma Family: Hydropsychidae	0 20	0	0	0	20	0 17	0	0	0	0 20	0 40	20 320	20 500	100	17 150
Arctopsyche	20 60	5	29	10	0	0	0	12	0	0	0	0	0	0	0
Parapsyche elsis	0	0	0	0	0	0	0	0	80	60	40	100	0	20	100
Family: Hydroptilidae	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydroptila	20	5	0	0	0	0	0	0	0	0	0	0	0	0	0
,			,	,			,			-	-	,	-		J

Site:	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
Sample:												RG_LIDCOM_BIC-			
Sample:			3_2022-09-09_N												
Sample Collection Date:	09-Sep-22	09-Sep-22	09-Sep-22	09-Sep-22	10-Sep-22	10-Sep-22	10-Sep-22	10-Sep-22	15-Sep-22	15-Sep-22	15-Sep-22	12-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231107	CC231108	CC231109	CC231110	CC231111	CC231112	CC231113	CC231114	CC231115	CC231116	CC231117	CC231118	CC231119	CC231120	CC231121
Family: Limnephilidae	0	0	0	0	0	0	0	0	0	0	20	20	0	0	0
Clostoeca disjuncta	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Ecclisomyia</u>	0	0	0	0	0	0	0	0	0	0	120	0	0	0	0
Family: Rhyacophilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rhyacophila Rhyacophila	60	5	29	10	20	0	12	12	0	0	0	140	20	20	17
Rhyacophila betteni group	20	0	14	0	0	0	0	0	0	0	0	40	0	20	33
Rhyacophila brunnea/vemna group	40	5	14	0	40	0	0	0	0	0	0	20	20	20	17
Rhyacophila hyalinata group Rhyacophila vetina complex	0	0	0	0	0	0	0	0	60	20	40 0	60	0	40 0	100 0
Rhyacophila vofixa group	0	0	0	0	0	0	0	0	0	0	0	20	0	40	33
Rhyacophila atrata complex	0	0	57	0	0	17	12	0	0	0	0	0	0	0	0
Rhyacophila atrata complex Rhyacophila narvae	20	0	14	0	0	0	0	0	0	0	0	0	0	40	17
Rhyacophila rotunda group	0	0	0	0	0	0	0	0	0	0	0	320	60	0	0
Family: Uenoidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Neothremma	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Coleoptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Elmidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Heterlimnius	0	5	0	0	0	0	12	0	0	0	0	0	0	0	0
Order: Diptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Atherix</u>	0	15	0	0	20	0	12	12	0	0	0	0	0	0	0
Family: Blephariceridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Agathon</u>	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0
Family: Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Mallochohelea</u>	20	0	0	0	0	17	0	0	0	0	0	0	0	0	0
Family: Chironomidae	80	55	157	60	100	67	0	50	1,620	1,640	980	1,900	1,360	480	200
Subfamily: Chironominae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tribe: Tanytarsini	20	0	0	0	0 20	0	0 12	0	0	0	0	0	0	0	0
<u>Constempellina sp. C</u> Micropsectra	0 180	0 20	0 143	0 90	60	50	62	0 25	0	0	0	0	0 80	0	0
Subfamily: Diamesinae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tribe: Diamesini	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Diamesa	0	0	0	0	0	0	0	0	440	500	480	3,300	0	80	50
Pagastia	0	10	14	0	0	0	0	12	380	280	380	180	100	200	67
Pseudodiamesa	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0
Subfamily: Orthocladiinae	0	0	0	0	0	0	0	0	0	20	0	0	20	0	0
<u>Brillia</u>	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0
<u>Corynoneura</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Diplocladius cultriger</u>	0	0	0	0	0	0	0	0	120	40	40	0	20	0	0
<u>Eukiefferiella</u>	40	20	14	10	120	0	12	0	780	800	920	400	100	40	83
<u>Hydrobaenus</u>	0	10	0	0	0	0	0	0	0	40	0	20	40	0	0
Orthocladius complex	520	40	43	20	380	17	0	25	3,520	4,080	3,660	5,580	640	960	717
<u>Parorthocladius</u>	0	0	0	0	0	0	0	0	40	60	0	0	0	0	0
Rheocricotopus	0	25	0	10	60	17	0	25	220	220	60	140	340	60	50
Tvetenia	40 0	20 0	71	0	120 0	83 0	38	0	140	180 0	120 0	60	260	40	17 0
Subfamily: Tanypodinae Tribe: Pentaneurini	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thienemannimyia group	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0
Family: Empididae	0	0	14	0	20	0	0	0	20	0	0	0	0	0	0
Clinocera	0	5	0	0	0	0	12	25	20	0	0	0	0	0	0
Neoplasta Neoplasta	0	0	0	10	20	0	12	12	0	0	0	20	0	0	0
Oreogeton	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0
Trichoclinocera	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0
Family: Pelecorhynchidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glutops	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0
Family: Psychodidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pericoma/Telmatoscopus	420	130	657	410	640	383	588	188	0	0	0	240	180	80	33
Family: Simuliidae	0	20	29	20	220	17	75	38	0	0	0	40	40	20	0
<u>Simulium</u>	100	35	257	30	280	1,050	400	1,875	0	0	0	400	120	40	50
Family: Tipulidae	20	0	0	0	20	0	0	0	0	0	0	0	0	0	0
<u>Dicranota</u>	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0
<u>Hexatoma</u>	40	0	14	0	0	33	50	25	0	0	0	0	0	0	0

Site:	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
Sample:	RG_FO23_BIC-	RG_FO23_BIC-	RG_FO23_BIC-									RG_LIDCOM_BIC-			
		2_2022-09-09_N										1_2022-09-12_N			
Sample Collection Date:	09-Sep-22	09-Sep-22	09-Sep-22	09-Sep-22	10-Sep-22	10-Sep-22	10-Sep-22	10-Sep-22	15-Sep-22	15-Sep-22	15-Sep-22	12-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22
CC#:	CC231107	CC231108	CC231109	CC231110	CC231111	CC231112	CC231113	CC231114	CC231115	CC231116	CC231117	CC231118	CC231119	CC231120	CC231121
<u>Pedicia</u>	0	0	0	0	20	0	0	0	0	0	0	0	0	0	0
Subphylum: Chelicerata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Arachnida	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Trombidiformes	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0
Family: Feltriidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Feltria	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Hydryphantidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Albertathyas Family: Hygrobatidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Atractides</u> Hygrobates	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Lebertiidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lebertia	280	55	43	60	60	33	50	25	100	140	120	40	40	0	0
Family: Sperchontidae	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0
Sperchon	40	15	0	0	0	17	0	0	220	280	100	60	60	160	67
Family: Torrenticolidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Testudacarus	40	0	0	20	0	0	0	12	0	0	0	0	0	0	0
Suborder: Prostigmata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stygothrombium	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0
Order: Sarcoptiformes	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Oribatida	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0
Phylum: Mollusca	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Phylum: Annelida	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	29	0	0	0	0	0	0	0	0	0	0	0	0
Order: Lumbriculida	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Lumbriculidae	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0
<u>Rhynchelmis</u>	0	0	0	40	0	0	0	0	20	0	0	0	0	0	0
Order: Tubificida	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Enchytraeus</u>	20	0	0	0	0	0	0	0	0	20	0	0	0	0	0
Family: Naididae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Nais</u>	60	0	0	0	20	0	0	0	0	0	0	0	0	0	0
Phylum: Cnidaria	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Hydrozoa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Anthoathecatae		Ŭ		0	· ·	0	0	0	0	0	0	0		·	
Family: Hydridae Hydra	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Totals:	6.340	2.355	4,668	3,180	6,520	0 5.869	0 4.108	4.169	8.500	9.020	7,400	0 22.260	11,200	7.020	5,518
Taxa present but not included:	0,340	4,333	4,008	3,100	0,320	5,005	4,100	4,103	0,300	3,020	7,400	22,20U	11,200	7,020	3,318
<u> </u>					0	0	0				0	0		0	0
Phylum: Arthropoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subphylum: Crustacea	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Ostracoda	20	5	14	10	20	17	12	12	20	20	20	20	20	20	17
Class: Branchiopoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Cladocera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Phylum: Nemata	0	0	0	0	20	17	12	12	20	20	20	20	20	20	0
		-													
Phylum: Platyhelminthes	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Turbellaria	0	5	0	0	20	0	0	0	20	0	20	20	20	20	17
Totals:	20	10	14	10	60	34	24	24	60	40	60	60	60	60	34
					1	1	l .		1		1	l .		1	

	2022	2022	0000	2022	0000	2000	00	00	00	0000	00	00	00	00	0000
Site:	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
Sample:	KG_LIDSL_BIC-	KG_LIDSL_BIC-	KG_LILC3_BIC-		RG_LILC3_BIC-					RG_LI24_BIC-	RG_LI24_BIC-	RG_LI8_BIC-	RG_LI8_BIC-		RG_LISP24_BIC-
0		5_2022-09-14_N			3_2022-09-08_N						3_2022-09-17_N			3_2022-09-17_N	
Sample Collection Date:	14-Sep-22	14-Sep-22	08-Sep-22	08-Sep-22	08-Sep-22	16-Sep-22	16-Sep-22	16-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	14-Sep-22
CC#:	CC231122	CC231123	CC231124	CC231125	CC231126	CC231127	CC231128	CC231129	CC231130	CC231131	CC231132	CC231133	CC231134	CC231135	CC231136
Phylum: Arthropoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Ameletidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ameletus	0	20	0	0	0	55	0	71	111 0	40	89	20	10	80	20
Family: Baetidae	0	0	0	0	0	5	0	0	0	0	0	0	10 0	0	0
Acentrella	33	0	40	0	0	0 20	0 140	0	0	0	0 11	40	~	0	0
Baetis	150	260	0	20	10 20	65	120	21	0	20	11	300	10 130	120 140	80 500
<u>Baetis rhodani group</u> Baetis bicaudatus	0	0	0	0	0	00	180	21 57	22	0	22	0	0	0	0
Family: Ephemerellidae	167	380	20	0	0	130	680	50	111	120	178	60	0	60	280
Drunella	17	20	0	0	0	0	20	21	44	60	67	20	0	0	40
<u>Drunella</u> Drunella doddsii	100	100	60	40	10	120	260	129	67	160	89	720	120	360	180
Drunella spinifera	0	0	40	0	30	0	0	0	0	0	09	0	0	0	0
Family: Heptageniidae	2,200	2,200	240	60	110	575	1,880	979	1,433	1,840	1,211	2,460	1.080	2,420	2,020
Cinygmula	0	40	0	0	0	5	0	14	1,433	80	22	0	0	0	0
Epeorus	50	20	0	0	0	45	260	29	44	40	144	100	90	140	300
Rhithrogena	0	0	0	0	0	55	80	186	22	160	111	0	10	60	40
Order: Plecoptera	33	0	0	0	0	5	40	0	44	0	11	60	0	60	0
Family: Capniidae	67	40	0	20	0	5	0	7	11	80	144	80	70	60	60
Mesocapnia	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0
Family: Chloroperlidae	17	0	0	0	20	45	0	14	0	100	56	0	0	0	20
Haploperla	0	0	0	0	0	70	0	7	11	0	0	0	0	0	20
Plumiperla	0	0	0	0	0	0	0	0	0	20	11	0	0	0	0
Suwallia	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0
Sweltsa	0	60	20	0	40	30	140	114	89	340	122	0	0	0	40
Family: Leuctridae	0	0	0	0	0	5	20	0	0	20	11	0	0	0	0
Paraleuctra	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0
Family: Nemouridae	33	20	20	20	20	0	0	7	0	20	33	0	0	20	40
Amphinemura	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0
Malenka	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0
Visoka cataractae	0	0	0	0	0	5	40	21	11	20	56	0	0	0	0
Zapada	33	120	0	0	0	0	20	0	11	0	33	260	100	260	40
Zapada oregonensis group	217	340	240	120	130	20	160	14	0	0	0	120	70	380	100
Zapada cinctipes	0	0	40	0	0	0	0	0	0	0	0	40	10	100	0
Zapada columbiana	117	220	100	40	70	80	940	271	767	1,160	567	120	50	320	180
Family: Peltoperlidae	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0
<u>Yoraperla</u>	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0
Family: Perlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Hesperoperla</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Perlodidae	0	0	40	60	70	5	320	43	33	40	22	60	0	40	20
<u>Isoperla</u>	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0
Kogotus	0	0	120	40	80	0	0	7	0	0	0	0	0	40	0
<u>Megarcys</u>	100	40	20	0	10	45	280	21	33	260	289	120	60	80	120
<u>Setvena</u>	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0
<u>Skwala</u>	0	0	0	0	20	0	0	0	0	0	0	0	0	0	0
Family: Pteronarcyidae	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0
Family: Taeniopterygidae	283	200	0	0	0	15	20	64	733	1,080	400	2,140	690	1,640	300
Order: Trichoptera	0	20	60	0	90	0	20	7	0	0	0	100	20	80	0
Family: Apataniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apatania	0	0	20	0	0	0	0	0	0	0	0	40	0	40	0
Family: Brachycentridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Brachycentrus americanus	0	0	0	20	0	0	0	0	0	0	0	0	0	40	0
Micrasema	0	0	0	0	0	0	0	0 7	0	0	0	0	0	0	0
Family: Glossosomatidae	0	0	0	0	0	5	0	7	0	0	0	0	10	20	20 0
Glossosoma	150	20 280	0	0	0 10	45 15	80 40	0	0	0	22	20 480	0 110	0 120	
Family: Hydropsychidae															80
Arctopsyche	0	0	0	0 160	0	0	0	0	0	0	0	0	0	0	0
Parapsyche elsis	133 0	60 0	40		120 0	5	0	14 0	0	0	0	20 0	40	80 0	20
Family: Hydroptilidae	0	0	0	0		0	0	0			0	0	0	0	0
<u>Hydroptila</u>	U	U	0	0	0	U	U	U	0	0	U	U	U	U	0

0:41	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
Site:	2022	2022 RG_LIDSL_BIC-	2022 RG LII C3 BIC-	2022 RG LILC3 RIC-	2022 RG LILC3 BIC-	2022 RG SLINE BIC-	2022 RG SLINE BIC-	2022	2022 RG_LI24_BIC-	2022 RG LI24 BIC-	2022 RG LI24 BIC-	2022 RG LI8 BIC-	2022 RG LI8 BIC-	2022 RG LI8 BIC-	2022 RG LISP24 BIC-
Sample:	4 2022-09-14 N	5 2022-09-14 N	1 2022-09-08 N	2 2022-09-08 N	3 2022-09-08 N	1 2022-09-16 N	2 2022-09-16 N	3 2022-09-16 N	1 2022-09-17 N						1_2022-09-14_N
Sample Collection Date:	14-Sep-22	14-Sep-22	08-Sep-22	08-Sep-22	08-Sep-22	16-Sep-22	16-Sep-22	16-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	14-Sep-22
CC#:	CC231122	CC231123	CC231124	CC231125	CC231126	CC231127	CC231128	CC231129	CC231130	CC231131	CC231132	CC231133	CC231134	CC231135	CC231136
Family: Limnephilidae	0	0	0	20	0	5	0	7	0	0	0	0	0	0	0
Clostoeca disjuncta	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0
<u>Ecclisomyia</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Rhyacophilidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rhyacophila	0	120	0	0	0	105	120	79	44	40	0	120	160	40	20
Rhyacophila betteni group	0	20	0	0	20	10	0	0	0	0	0	20	40	120	0
Rhyacophila brunnea/vemna group Rhyacophila hyalinata group	0 100	20 100	0 80	20 0	0 20	5 40	140 120	21 29	0	40	0	140 60	40 0	60 40	20 20
Rhyacophila vetina complex	0	0	0	0	0	40 5	0	0	0	20 0	0	0	0	0	0
Rhyacophila vofixa group	33	0	0	0	0	25	40	7	0	0	0	0	0	0	0
Rhyacophila atrata complex	0	0	0	0	0	0	0	0	0	0	0	60	0	0	0
Rhyacophila narvae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rhyacophila rotunda group	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Uenoidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Neothremma</u>	0	0	0	0	0	5	40	14	33	0	33	0	0	0	0
Order: Coleoptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Elmidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Heterlimnius Order: Diptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Atherix	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Blephariceridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Agathon</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Ceratopogonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Mallochohelea</u>	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Chironomidae	350	660	3,620	2,540	1,530	25	340	29	11	100	22	260	60	180	780
Subfamily: Chironominae Tribe: Tanytarsini	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Constempellina sp. C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micropsectra	0	20	120	40	70	0	20	0	0	0	0	0	0	0	0
Subfamily: Diamesinae	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0
Tribe: Diamesini	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Diamesa</u>	33	140	1,180	600	400	0	140	0	0	20	56	20	0	0	120
<u>Pagastia</u>	100	160	820	900	430	0	0	0	0	0	0	0	0	0	60
<u>Pseudodiamesa</u>	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0
Subfamily: Orthocladiinae Brillia	0	0	60 0	0	20 0	0	0	0	0	0	0	0	0	0	0
Corynoneura	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0
Diplocladius cultriger	0	0	200	100	150	0	0	0	0	0	0	0	0	0	0
Eukiefferiella	117	140	3,100	1,080	1,010	10	620	0	0	60	22	220	80	80	60
<u>Hydrobaenus</u>	0	0	40	180	30	0	0	0	0	0	0	20	10	20	0
Orthocladius complex	633	1,000	9,240	7,260	5,070	5	260	0	0	60	11	220	50	160	840
<u>Parorthocladius</u>	17	0	20	0	10	0	0	0	22	40	22	0	0	0	20
Rheocricotopus	83	140	420	280	440	0	40	14	44	20	22	20	0	20	200
Tvetenia	17	20	1,240	420	700	15	120	36	78	140	56	40	0	20	120
Subfamily: Tanypodinae Tribe: Pentaneurini	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thienemannimyia group	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Empididae	0	20	0	0	20	0	0	0	0	0	0	0	0	0	0
Clinocera	0	0	0	60	40	0	0	0	0	0	0	0	0	0	0
Neoplasta	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Oreogeton</u>	0	0	0	0	0	5	0	14	0	0	11	0	0	0	20
<u>Trichoclinocera</u>	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0
Family: Pelecorhynchidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glutops	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Psychodidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pericoma/Telmatoscopus Family: Simuliidae	33 0	100 20	60 0	0	20 0	0	20 0	0	11 0	0	0	180	170 0	420 0	80
Simulium	0	40	360	60	0	0	0	0	0	0	0	40	10	100	60
Family: Tipulidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dicranota	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexatoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			<u>-</u>	·		-			·	-	-	·			

	Site:	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
									RG_SLINE_BIC-			RG LI24 BIC-	RG LI8 BIC-	RG LI8 BIC-		RG LISP24 BIC
	Sample:										2_2022-09-17_N			2 2022-09-17 N	3 2022-09-17 N	
Sample Collect	tion Date:	14-Sep-22	14-Sep-22	08-Sep-22	08-Sep-22	08-Sep-22	16-Sep-22	16-Sep-22	16-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	17-Sep-22	14-Sep-22
	CC#:	CC231122	CC231123	CC231124	CC231125	CC231126	CC231127	CC231128	CC231129	CC231130	CC231131	CC231132	CC231133	CC231134	CC231135	CC231136
Pedicia		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subphylum: Chelicerata	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Arachnida		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Trombidiforme:	s	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Feltriidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Feltria		0	0	80	40	10	0	0	0	0	0	0	0	0	0	0
Family: Hydryphantid	lae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Albertathyas		0	0	0	0	0	0	20	7	0	0	0	0	0	0	0
Family: Hygrobatidae)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Atractides</u>		0	0	0	0	0	5	20 0	0	0	0	0	0	0	0	0
Hygrobates Family: Lebertiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lebertia		0	0	140	180	270	5	0	7	11	0	22	0	0	20	0
Family: Sperchontida	ie.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sperchon		33	60	480	400	410	5	40	0	22	0	22	100	30	120	20
Family: Torrenticolida	ae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Testudacarus		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Suborder: Prostigmata		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Stygothrombi	idiidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Stygothrombium</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Sarcoptiformes	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Oribatida		0	0	0	0	0	0	0	0	11	0	0	20	10	0	0
Phylum: Mollusca		17	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Phylum: Annelida		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subphylum: Clitellata		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Oligochaeta Order: Lumbriculida		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Lumbriculidae	_	0	0	0	0	0	0	0	0	0	0	0	0	30	0	0
Rhynchelmis	6	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0
Order: Tubificida		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Enchytraeidae	е	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enchytraeus		0	0	100	0	30	0	0	0	0	0	0	0	0	0	0
Family: Naididae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Nais</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Phylum: Cnidaria		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Hydrozoa		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Anthoathecatae	е	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Hydridae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Hydra</u>		0	0	0	0	0	0	0	0	0	0	11	0	0	0	0
T	Totals:	5,483	7,280	22,500	14,860	11,580	1,755	7,880	2,488	3,917	6,260	4,042	8,940	3,380	8,160	6,960
Taxa present but not inc	ciuaea:				1 -							_	_		_	_
Phylum: Arthropoda		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subphylum: Crustacea		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Ostracoda		17	0	20	20	10	5	20	7	11	20	11	0	10	20	0
Class: Branchiopoda		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Cladocera		0	0	0	0	0	0	0	0	0	0	0	0	10	0	0
Phylum: Nemata		0	0	20	20	10	0	20	7	0	0	0	20	0	20	20
y.a ivoillata		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dhylum: Distubalminths				1.7		U	U	U	U	U	U	U	1 0	U	U	U
Phylum: Platyhelminthe	es	-				_		00				^	-	40	00	00
Phylum: Platyhelminthe Class: Turbellaria	Totals:	17 34	20 20	0 40	20 60	0	5 10	20 60	0	0	0 20	0	0 20	10 30	20 60	20 40

BENTHIC COMMUNITY FAMILY LEVEL DATA & BIOMASS

ZEAS No.69 2218 Raw Data (September 2022)

Area	Date	Sample ID	Taxa	Count	Total Biomass (g/m² w.w.)
RG_LI24	17-Sep-22	RG_LI24_HESS-1_2022-09-17_N	Nemata	4	0.0020
RG_LI24	17-Sep-22	RG_LI24_HESS-1_2022-09-17_N	Lebertiidae	2	0.0010
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-1_2022-09-17_N RG_LI24_HESS-1_2022-09-17_N	Ostracoda Ameletidae	1 25	0.0001 0.0206
RG LI24	17-Sep-22	RG LI24 HESS-1 2022-09-17 N	Baetidae	1	0.0019
RG_LI24	17-Sep-22	RG_LI24_HESS-1_2022-09-17_N	Ephemerellidae	4	0.0221
RG_LI24	17-Sep-22	RG_LI24_HESS-1_2022-09-17_N	Heptageniidae	110	0.2812
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-1_2022-09-17_N RG_LI24_HESS-1_2022-09-17_N	Capniidae Chloroperlidae	5 24	0.0069 0.0528
RG LI24	17-Sep-22	RG LI24 HESS-1 2022-09-17 N	Nemouridae	13	0.0246
RG_LI24	17-Sep-22	RG_LI24_HESS-1_2022-09-17_N	Perlodidae	1	0.0003
RG_LI24	17-Sep-22	RG_LI24_HESS-1_2022-09-17_N	Taeniopterygidae	12	0.0078
RG_LI24	17-Sep-22	RG_LI24_HESS-1_2022-09-17_N	Uenoidae	1	0.0001
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-1_2022-09-17_N RG_LI24_HESS-1_2022-09-17_N	Chironomidae Psychodidae	5 1	0.0019 0.0002
RG LI24	17-Sep-22	RG LI24 HESS-2 2022-09-17 N	Nemata	2	0.0001
RG_LI24	17-Sep-22	RG_LI24_HESS-2_2022-09-17_N	Lebertiidae	2	0.0011
RG_LI24	17-Sep-22	RG_LI24_HESS-2_2022-09-17_N	Ostracoda	23	0.0058
RG_LI24 RG_LI24	17-Sep-22	RG_LI24_HESS-2_2022-09-17_N RG_LI24_HESS-2_2022-09-17_N	Ameletidae	4	0.0054 0.0242
RG LI24	17-Sep-22 17-Sep-22	RG LI24 HESS-2 2022-09-17 N	Ephemerellidae Heptageniidae	196	0.4010
RG_LI24	17-Sep-22	RG_LI24_HESS-2_2022-09-17_N	Capniidae	3	0.0040
RG_LI24	17-Sep-22	RG_LI24_HESS-2_2022-09-17_N	Chloroperlidae	75	0.1284
RG_LI24	17-Sep-22	RG_LI24_HESS-2_2022-09-17_N	Leuctridae	5	0.0064
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-2_2022-09-17_N RG_LI24_HESS-2_2022-09-17_N	Nemouridae Peltoperlidae	22 1	0.0343 0.0034
RG LI24	17-Sep-22	RG LI24 HESS-2 2022-09-17 N	Taeniopterygidae	2	0.0034
RG_LI24	17-Sep-22	RG_LI24_HESS-2_2022-09-17_N	Hydropsychidae	1	0.0375
RG_LI24	17-Sep-22	RG_LI24_HESS-2_2022-09-17_N	Limnephilidae	1	0.0003
RG_LI24	17-Sep-22	RG_LI24_HESS-2_2022-09-17_N	Uenoidae	7 10	0.0044
RG_LI24 RG LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-2_2022-09-17_N RG_LI24_HESS-3_2022-09-17_N	Chironomidae Nemata	10	0.0024 0.0004
RG_LI24	17-Sep-22	RG_LI24_HESS-3_2022-09-17_N	Lebertiidae	1	0.0004
RG_LI24	17-Sep-22	RG_LI24_HESS-3_2022-09-17_N	Sperchontidae	1	0.0010
RG_LI24	17-Sep-22	RG_LI24_HESS-3_2022-09-17_N	Ostracoda	29	0.0064
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-3_2022-09-17_N RG_LI24_HESS-3_2022-09-17_N	Ameletidae Ephemerellidae	53 1	0.0577 0.0001
RG LI24	17-Sep-22	RG LI24 HESS-3 2022-09-17 N	Heptageniidae	119	0.5579
RG_LI24	17-Sep-22	RG_LI24_HESS-3_2022-09-17_N	Capniidae	14	0.0198
RG_LI24	17-Sep-22	RG_LI24_HESS-3_2022-09-17_N	Chloroperlidae	36	0.0894
RG_LI24	17-Sep-22	RG_LI24_HESS-3_2022-09-17_N	Leuctridae	9	0.0141
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-3_2022-09-17_N RG_LI24_HESS-3_2022-09-17_N	Nemouridae Taeniopterygidae	21 5	0.0240 0.0018
RG LI24	17-Sep-22	RG LI24 HESS-3 2022-09-17 N	Limnephilidae	12	0.0947
RG_LI24	17-Sep-22	RG_LI24_HESS-3_2022-09-17_N	Uenoidae	3	0.0019
RG_LI24	17-Sep-22	RG_LI24_HESS-3_2022-09-17_N	Chironomidae	31	0.0129
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-3_2022-09-17_N RG_LI24_HESS-3_2022-09-17_N	Empididae Psychodidae	3 1	0.0042 0.0003
RG LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Lumbriculidae	1	0.0036
RG_LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Hygrobatidae	1	0.0001
RG_LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Lebertiidae	1	0.0006
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-4_2022-09-17_N RG_LI24_HESS-4_2022-09-17_N	Sperchontidae Ostracoda	5 9	0.0029 0.0023
RG LI24	17-Sep-22	RG LI24 HESS-4 2022-09-17 N	Ameletidae	22	0.0250
RG_LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Baetidae	2	0.0001
RG_LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Ephemerellidae	3	0.0064
RG_LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Heptageniidae	151	0.3199
RG_LI24 RG LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-4_2022-09-17_N RG_LI24_HESS-4_2022-09-17_N	Capniidae Chloroperlidae	4 18	0.0057 0.0463
RG LI24	17-Sep-22	RG LI24 HESS-4 2022-09-17 N	Leuctridae	4	0.0067
RG_LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Nemouridae	60	0.0814
RG_LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Perlodidae	5	0.1985
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-4_2022-09-17_N RG_LI24_HESS-4_2022-09-17_N	Taeniopterygidae Limnephilidae	33	0.0268 0.0002
RG_LI24	17-Sep-22	RG LI24_HESS-4_2022-09-17_N	Rhyacophilidae	1	0.0002
RG_LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Uenoidae	4	0.0019
RG_LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Chironomidae	37	0.0137
RG_LI24	17-Sep-22	RG_LI24_HESS-4_2022-09-17_N	Empididae	1	0.0031
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-4_2022-09-17_N RG_LI24_HESS-5_2022-09-17_N	Psychodidae Nemata	1	0.0002 0.0002
RG_LI24	17-Sep-22	RG_LI24_HESS-5_2022-09-17_N	Lebertiidae	1	0.0002
RG_LI24	17-Sep-22	RG_LI24_HESS-5_2022-09-17_N	Sperchontidae	1	0.0004
RG_LI24	17-Sep-22	RG_LI24_HESS-5_2022-09-17_N	Ostracoda	3	0.0008
RG_LI24 RG LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-5_2022-09-17_N RG_LI24_HESS-5_2022-09-17_N	Collembola Ameletidae	6	0.0005 0.0143
RG LI24	17-Sep-22	RG LI24 HESS-5 2022-09-17 N	Ephemerellidae	6	0.0143
RG_LI24	17-Sep-22	RG_LI24_HESS-5_2022-09-17_N	Heptageniidae	115	0.2339
RG_LI24	17-Sep-22	RG_LI24_HESS-5_2022-09-17_N	Capniidae	4	0.0049
RG_LI24	17-Sep-22	RG_LI24_HESS-5_2022-09-17_N RG_LI24_HESS-5_2022-09-17_N	Chloroperlidae Leuctridae	16	0.0280
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-5_2022-09-17_N RG_LI24_HESS-5_2022-09-17_N	Nemouridae	3 45	0.0055 0.0582
RG_LI24	17-Sep-22	RG_LI24_HESS-5_2022-09-17_N	Perlodidae	7	0.3221
RG_LI24	17-Sep-22	RG_LI24_HESS-5_2022-09-17_N	Taeniopterygidae	22	0.0164
RG_LI24	17-Sep-22	RG_LI24_HESS-5_2022-09-17_N	Hydropsychidae	1	0.1303
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG_LI24_HESS-5_2022-09-17_N RG_LI24_HESS-5_2022-09-17_N	Uenoidae Chironomidae	3 11	0.0020 0.0024
RG_LI24 RG_LI24	17-Sep-22 17-Sep-22	RG LI24 HESS-5 2022-09-17 N	Psychodidae	1	0.0024
RG_SLINE	16-Sep-22	RG_SLINE_HESS-1_2022-09-16_N	Planariidae	7	0.0002
RG_SLINE	16-Sep-22	RG_SLINE_HESS-1_2022-09-16_N	Lumbriculidae	16	0.1059
RG_SLINE	16-Sep-22	RG_SLINE_HESS-1_2022-09-16_N	Ostracoda	14	0.0095
RG_SLINE RG_SLINE	16-Sep-22 16-Sep-22	RG_SLINE_HESS-1_2022-09-16_N RG_SLINE_HESS-1_2022-09-16_N	Ameletidae Ephemerellidae	11 55	0.0752 0.0512
RG_SLINE RG_SLINE	16-Sep-22 16-Sep-22	RG_SLINE_HESS-1_2022-09-16_N RG_SLINE_HESS-1_2022-09-16_N	Heptageniidae	143	0.0512
RG_SLINE	16-Sep-22	RG_SLINE_HESS-1_2022-09-16_N	Chloroperlidae	77	0.1129
RG_SLINE	16-Sep-22	RG_SLINE_HESS-1_2022-09-16_N	Leuctridae	29	0.0217
RG_SLINE	16-Sep-22	RG_SLINE_HESS-1_2022-09-16_N	Nemouridae	7	0.0135
RG_SLINE RG_SLINE	16-Sep-22 16-Sep-22	RG_SLINE_HESS-1_2022-09-16_N RG_SLINE_HESS-1_2022-09-16_N	Peltoperlidae Perlodidae	1 8	0.0082 0.1625
RG_SLINE RG_SLINE	16-Sep-22 16-Sep-22	RG_SLINE_HESS-1_2022-09-16_N RG_SLINE_HESS-1_2022-09-16_N	Taeniopterygidae	1	0.1625
	16-Sep-22	RG SLINE HESS-1 2022-09-16 N	Glossosomatidae	36	0.1236

RG SLINE 16-Sep-22 RG SLINE 1858-1, 2002-01-6 N. Phytopophilates 1	Area	Date	Sample ID	Taxa	Count	Total Biomass (g/m² w.w.)
RG SLINE 16-58p-22 ROS SLINE 1655-1 2002-016 N. Obernordina 17 0.0021 GO SLINE 16-58p-22 ROS SLINE 1655-1 2002-016 N. Obernordina 17 0.0021 GO SLINE 16-58p-22 ROS SLINE 1655-1 2002-016 N. Demonstrate 37 0.0173 GO SLINE 16-58p-22 ROS SLINE 1655-1 2002-016 N. Demonstrate 1 0.0020 RG SLINE 16-58p-22 ROS SLINE 1655-1 2002-016 N. Demonstrate 1 0.0020 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0020 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-58p-22 ROS SLINE 1655-2 2002-016 N. Demonstrate 1 0.0030 RG SLINE 16-5		16-Sep-22		Hydropsychidae	1	0.1962
RG SLINE 16-Sep-22 RG SLINE 1658-1 2002-00-16 N Empidides 9						
60 Stu.Me. 16-Seny-22 ROS LINE HESS-1-2022-00-16 N. Perphodide 9 0.0988 60 Stu.Me. 16-Seny-22 ROS LINE HESS-1-2022-00-16 N. Perphodide 2 0.0028 60 Stu.Ne. 16-Seny-22 ROS LINE HESS-2-2022-00-16 N. Despendent of the state of						
RG SLINE 16-58p-22						
RG_SLINE 16-Sep-22 RG_SLINE 1955-2 2020-016 N. Lumbricidiste 11						
RG SLINE 19-Sep-22 RG SLINE HESS-2 (2022-09-16 N						
RG, SLINE 16-Sep-22 RG, SLINE HESS-2, 2022-09-16, N	RG_SLINE	16-Sep-22		Lumbriculidae		0.0338
RG SLINE 15-Sep-22 RG SLINE 15-Sep-22 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Hepfagminishe 17 0.0401 RG SLINE 15-Sep-22 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Hepfagminishe 42 0.0371 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Hepfagminishe 42 0.0371 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Hepfagminishe 19 0.0461 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Perboridiae 1 0.0461 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Perboridiae 1 0.0456 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Perboridiae 1 0.0456 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Perboridiae 1 0.0456 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Perboridiae 1 0.0458 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Perboridiae 1 0.0481 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Perboridiae 1 0.0048 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Perboridiae 1 0.0024 RG SLINE 15-Sep-22 RG SLINE HESS-2 (2022-00-16 N. Perboridiae 1 0.0024 RG SLINE 15-Sep-22 RG SLINE HESS-3 (2022-00-16 N. Perboridiae 1 0.0026 RG SLI						
RG SLINE 16-Sep-22 RG SLINE 16-Sep-22 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Pethopamidiae 17 0.0071 RG SLINE 16-Sep-22 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Caprildiae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Caprildiae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Caprildiae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Perfoldidae 1 0.0052 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Perfoldidae 1 0.0043 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Talenopatingidae 1 0.0043 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Talenopatingidae 1 0.0043 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Talenopatingidae 1 0.0043 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Talenopatingidae 1 0.0043 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Talenopatingidae 1 0.0092 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Talenopatingidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Talenopatingidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HISSS-2 (2022-09-16 N. Talenopatingidae 1 0.0002<						
RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perplagenidae 42 0.0371 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Conjoides 11 0.0001 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Collectoperidae 13 0.0441 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0451 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0452 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0453 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0453 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-2, 2022-09-16 N Perployeridae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 4 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 4 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 4 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 4 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3, 2022-09-16 N Perployeridae 4 0.0008 RG SLINE 16-Sep-22 RG SLINE H						
RG SLINE 16-Sep-22 RG SLINE 1855-2 (2022-09-16 N Cherbogeridae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE 1855-2 (2022-09-16 N Lauctridae 3 0.0062 RG SLINE 16-Sep-22 RG SLINE 1855-2 (2022-09-16 N Lauctridae 3 0.0062 RG SLINE 16-Sep-22 RG SLINE 1855-2 (2022-09-16 N Periodiciae 1 0.0033 RG SLINE 16-Sep-22 RG SLINE						
RG SLINE 16-Sep-22 RG SLINE HESS-2 (2022-09-16 N Perloperidae 1 0.0050 16 16 16 16 16 16 16 1						
RG SLINE 16 Sep-22 RG SLINE HESS-2 (2022-09-16 N Perlopediace 1 0.0055 RG SLINE 16 Sep-22 RG SLINE HESS-2 (2022-09-16 N Temple/propriate 1 0.0015 RG SLINE 16 Sep-22 RG SLINE HESS-2 (2022-09-16 N Temple/propriate 1 0.0011 RG SLINE 16 Sep-22 RG SLINE HESS-2 (2022-09-16 N RG SLINE RG SLINE HESS-3 (2022-09-16 N RG SLINE RG SLINE RG SLINE HESS-3 (2022-09-16 N RG SLINE RG						0.0461
RG. SLINE 16-Sep-22 RG. SLINE LSS-2022-04-16 N Periodidate 1 0.0435 RG. SLINE 18-Sep-22 RG. SLINE LSS-2022-04-16 N Closeopomidate 2 0.1150 RG. SLINE 18-Sep-22 RG. SLINE LISS-2022-04-16 N Closeopomidate 2 0.1150 RG. SLINE 16-Sep-22 RG. SLINE LISS-2022-04-16 N Chronionidae 11 0.000 RG. SLINE 16-Sep-22 RG. SLINE LISS-2022-04-16 N Emplidate 10 0.0022 RG. SLINE 16-Sep-22 RG. SLINE LISS-3022-04-16 N Periodiverage 0 0.0182 RG. SLINE 16-Sep-22 RG. SLINE LISS-3022-04-16 N Periodiverage 0 0.0182 RG. SLINE 16-Sep-22 RG. SLINE LISS-3022-04-16 N Translate 1 0.0022 RG. SLINE 16-Sep-22 RG. SLINE LISS-3022-04-16 N Translate 1 0.012 RG.						
RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Tenenopterrydiste 1 0.0001 RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Rhypocophilade 20 0.1155 RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Rhypocophilade 31 0.0461 RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Rhypocophilade 31 0.0461 RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Rhypocophilade 31 0.0461 RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Representation 6 0.0162 RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Representation 6 0.0162 RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Lumbriculidae 1 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Lumbriculidae 1 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Lumbriculidae 1 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Lumbriculidae 1 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Labertidae 2 0.0013 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Labertidae 2 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Labertidae 2 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Labertidae 2 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 4 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 4 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 4 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 4 0.0086 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 4 0.0086 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 4 0.0086 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 4 0.0086 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 4 0.0086 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 4 0.0086 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022						
RG SLINE						
RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Rhysopphilade 19 0.4681 RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Empidide 10 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Empidide 10 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Empidide 10 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pelacorhyroide 6 0.0013 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pelacorhyroide 1 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pelacorhyroide 1 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pelacorhyroide 1 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pelacorhyroide 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pelacorhyroide 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Sep-chontidae 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Sep-chontidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Sep-chontidae 4 0.0018 RG SLINE						
RG SLINE 16-Sep-22 RG SLINE HESS-2 2022-09-16 N Penbordyricidae 1 0 0.0092 RG SLINE 18-Sep-22 RG SLINE HESS-3 2022-09-16 N Nematal 1 0.0002 RG SLINE 18-Sep-22 RG SLINE HESS-3 2022-09-16 N Nematal 1 0.0002 RG SLINE 18-Sep-22 RG SLINE HESS-3 2022-09-16 N Nematal 1 0.0002 RG SLINE 18-Sep-22 RG SLINE HESS-3 2022-09-16 N Nematal 2 0.0158 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Temptiditidae 2 0.0158 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Temptiditidae 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Temptiditidae 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Lebertidae 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Lebertidae 2 0.0003 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Lebertidae 5 0.0014 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N A Lebertidae 5 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N A Ametatedae 4 0.0408 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N A Ametatedae 4 0.0408 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N A International Activation of the Sep-22 RG SLINE HESS-3 2022-09-16 N Lebertidae 4 0.0408 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Leptridae 4 0.0408 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Leptridae 4 0.0408 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Leptridae 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Leuctridae 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Leuctridae 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Remortale 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Remortale 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Remortale 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Remortale 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Remortale 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Remortale 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Remortale 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Remortale 4 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Remortale 4 0.0038 RG SLI	RG_SLINE					
RG_SLINE 16-Sep-22 RG_SLINE_HESS-2_2022-09-16 N Nemata						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Planariidae 2						
RG SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Tumbricilidae 2 0.0158 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Tumbricilidae 1 0.0012 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Thrombidformes 1 0.0002 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Hyprobalidae 2 0.0002 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Labertildae 2 0.0154 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Labertildae 2 0.0154 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Ameletidae 4 0.0468 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Ameletidae 4 0.0468 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Ameletidae 4 0.0468 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Bendidae 1 0.0003 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Heptagenidae 79 0.0978 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Heptagenidae 79 0.0978 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Heptagenidae 79 0.0978 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Laucrididae 4 0.0368 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Laucrididae 4 0.0368 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Laucrididae 4 0.0368 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Revolution 4 0.0368 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Revolution 4 0.0368 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Revolution 4 0.0368 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Revolution 4 0.0368 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Revolution 4 0.0368 RG, SLINE 16-Sep-22 RG, SLINE HESS-3 2022-09-16 N Revolution 4 0.0368 RG, SLINE 16-Sep-22 RG, SLINE HESS-4 2022-09-16 N Revolution 4 0.0368 RG, SLINE 16-Sep-22 RG, SLINE HESS-4						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Trombdifformes 1 0.00012 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Trombdifformes 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Lebertidide 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Lebertidide 2 0.0013 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Control 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Control 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Control 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 2 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 2 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 2 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 2 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Representation 2 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Nemoundate 4 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Nemoundate 3 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Nemoundate 3 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perfodide 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perfodide 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perfodide 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perfodide 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perfodide 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perfodide 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perfodide 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perfodide 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perfodide 1 0.0008 RG SLINE 16-Sep-22 RG SLI						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Lebertidide 2						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Sperchomidae 2		16-Sep-22	RG_SLINE_HESS-3_2022-09-16_N			
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Ostracoda 5 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Ostracoda 5 0.0004 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Ameletidae 4 0.0488 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Beatidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Beatidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Heptagenidae 79 0.0978 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Heptagenidae 79 0.0978 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Heptagenidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 2 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 2 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 2 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 2 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 2 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 2 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Peltoperidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Peltoperidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Peltoperidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Peltoperidae 1 0.0007 RG SLINE						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Deletidae 4 0.0468 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Baetidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Endetidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Endetidae 79 0.0978 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Deletidae 79 0.0978 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Chromopridae 14 0.0258 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Chromopridae 14 0.0258 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Chromopridae 14 0.0258 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 1 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 31 0.0638 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 31 0.0638 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 31 0.0638 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Royacophilidae 28 1.4340 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 28 1.4340 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 20 0.0026 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 2 0.0026 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 2 0.0026 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 2 0.0026 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 2 0.0026 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Perlodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Ameletidae 4 0.0488 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Betaldae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Heptagenidae 43 0.0286 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Heptagenidae 79 0.0978 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Heptagenidae 14 0.0386 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Leuctridae 14 0.0386 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Leuctridae 14 0.0326 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Nemoundae 30 0.0858 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pettogenidae 31 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pettogenidae 31 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pettogenidae 31 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pettogenidae 31 0.0018 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Chironomidae 124 0.0722 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Pettogenidae 32 0.0028 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Physychodidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Physychodidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Physychodidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Physychodidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Physychodidae 2 0.0135 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Physychodidae 2 0.0136 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameledidae 4 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameledidae 4 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameledidae 4 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameledidae 4 0.0004 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reptogenidae 10 0.0004						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Ephemerellidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Ephemerellidae 79 0.0978 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Chloroperidae 14 0.0020 14 0.0386 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Chloroperidae 14 0.0020 14 0.0020 14 0.0020 15 0.0020 1						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Ephemerellidae 43 0.0286 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Hoptogenidae 79 0.0978 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Leuctridae 14 0.0386 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Leuctridae 30 0.0836 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Nemoundae 30 0.0836 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Perfodidae 31 0.0636 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Perfodidae 31 0.0636 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Glossoomadae 3 0.0636 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Glossoomadae 3 0.0636 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Royacophilidae 28 1.4340 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Climonomidae 124 0.0026 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Climonomidae 124 0.0026 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Climonomidae 124 0.0026 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Psychodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-90-16 N Psychodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-90-16 N Psychodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-90-16 N Psychodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-90-16 N Psychodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-90-16 N Lembrididae 2 0.0136 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-90-16 N Lembrididae 2 0.0136 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-90-16 N Ameleidae 4 0.0188 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-90-16 N Ameleidae 4 0.0188 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-90-16 N Repherelidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-90-16 N Repherelidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-90-16 N Repherelidae 1 0.0006 RG	RG_SLINE	16-Sep-22	RG_SLINE_HESS-3_2022-09-16_N	Baetidae	1	0.0008
RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Chioroperiidae 14 0.0388 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Nemouridae 30 0.0838 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Nemouridae 30 0.0836 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Neprolodiae 31 0.0836 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Perfoldiae 31 0.0836 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Perfoldiae 3 0.0084 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Perpolidiae 2 0.0024 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Perpolidiae 2 0.0024 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Perpolidiae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Lebertidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE LESS-4 2022-09-16 N Lebertidae		16-Sep-22	RG_SLINE_HESS-3_2022-09-16_N			
RG SLINE 16-Sep-22 RG SLINE 16-Sep-29-16 N Lecutridae 4 0.0028 RG SLINE 16-Sep-22 RG S						
RG SLINE 16-Sep-22 RG SLINE 18-Sep-22						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Petrodidae 1 0.0018 RG SLINE 16-Sep-22 RG SLINE 16-Sep-23 RG SLINE 16-Sep-24 RG SLINE 16-Sep-25 RG SLINE HESS-3 2022-09-16 N RG SLINE 16-Sep-25 RG SLINE 16-Sep-26 RG SLINE 16-Sep-26 RG SLINE 16-Sep-27 RG SLINE 16-Sep-27 RG SLINE 16-Sep-27 RG SLINE 16-Sep-28 RG SLINE 16-Sep-28 RG SLINE 16-Sep-28 RG SLINE 16-Sep-29 RG SLINE 16						
RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Periodidae 31 0.058 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N RINyacophilidae 28 1.4340 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Rhyacophilidae 28 1.4340 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Rhyacophilidae 2 0.0022 RG SLINE 16-Sep-22 RG SLINE LESS-3 2022-09-16 N Perphididae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE LESS-4 2022-09-16 N Perphididae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE LESS-4 2022-09-16 N Perphididae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE LESS-4 2022-09-16 N Lebertidae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE LESS-4 2022-09-16 N Machieum 2 0.0014 RG SLINE 16-Sep-22 RG SLINE LESS-4 2022-09-16 N A Cartacoda 18 0.0004 RG SLINE 16-Sep-22 RG SLINE LESS-4 2022-09-16 N A Cartacoda 18 0.0004 RG SLINE LESS-4 2022-09-16 N <						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Rhyacophilidae 28 1.4340 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Derinomidae 12 0.0026 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Persychodidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Persychodidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Persychodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Persychodidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Persychodidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameletidae 1 0.014 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Bentidae 4 0.018 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Depenmeneltidae 1<	RG_SLINE	16-Sep-22		Perlodidae		0.0636
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Chironomidae 124 0.0722 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Psychodidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pelharidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Lebertilidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Lebertilidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Hebertilidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameteldae 4 0.0188 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameteldae 4 0.0188 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Heptagenidae 1 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Cappilidae 2						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Empididae 2 0.0026 RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Persychodidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Lembrididee 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Lebertildee 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N N-Lebertildee 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N N-Ameletidae 2 0.0014 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Berberrellidae 4 0.0188 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Berberrellidae 12 0.0078 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 12 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 12 0.0032 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae						
RG SLINE 16-Sep-22 RG SLINE HESS-3 2022-09-16 N Psychodidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Lumbriculidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Lumbriculidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Lumbriculidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Detrocada 18 0.0004 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Optrocada 18 0.0004 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Detrocada 18 0.0004 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Beatidae 3 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Beatidae 3 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Beatidae 3 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ephemerellidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ephemerellidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ephemerellidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ephemerellidae 2 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capitidae 2 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Chioroperidae 50 0.0984 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Chioroperidae 50 0.0984 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perididae 2 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perididae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perididae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perididae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perididae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perididae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perididae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perididae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perididae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Limipshilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Limipshilidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Limipshilidae 1 0.0008 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-1						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Planaridae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Lumbriculidae 2 0.0135 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Lebertidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Lebertidae 2 0.0014 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Obtacoda 18 0.0000 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameteridae 4 0.0188 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameteridae 4 0.0188 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Baetidae 3 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Baetidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ephemerellidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 2 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 2 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 2 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N N Enduridae 50 0.0984 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N N Enduridae 2 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reverbidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reverbidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reverbidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reverbidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Perlodidae 2 0.0031 RG SLINE						
RG SLINE						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Hydryphantidae 2 0.0014 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameletidae 4 0.018 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameletidae 3 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Bettedae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ephemerellidae 13 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 2 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 5 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Leuctridae 5 0.0022 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Nemouridae 21 0.0170 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Nemouridae 21 0.0170 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Nemouridae 2						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ameletidae 4 0.0188 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Baetidae 3 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Baetidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ephemerelidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 13 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 13 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 2 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 2 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 2 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 12 0.0022 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 1 0.0032 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 1 0.0032 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 1 0.0032 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 1 0.0032 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpendidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Tarentopterygidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reprendidae 2 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reprendidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reprendidae 2 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reprendidae 2 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reprendidae 2 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reprendidae 2 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reprendidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Reprendidae 2 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Reprendidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Reprendidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Baetidae 4 0.0188 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Betidae 3 0.0038 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ephremerellidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Ephremerellidae 12 0.0076 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Leptridae 50 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Leptridae 50 0.0984 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Leptridae 50 0.0984 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Leptridae 50 0.0984 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Leptridae 2 0.0072 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Nemouridae 21 0.0170 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0032 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0032 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 6 0.1416 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 6 0.1416 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 6 0.1416 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 6 0.006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 6 0.006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N III Immerphilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N III Immerphilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N III Immerphilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N III Immerphilidae 8 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N III Immerphilidae 8 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N III Immerphilidae 8 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N III Immerphilidae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N III Immerphilidae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N III Immerphilidae 1 0.0001 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N III Immerphilidae 1 0.0003 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N III Immerphilidae 1 0.0003 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N III Immerphi						
RG SLINE						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Heptagemidae 130 0.2606 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capinidae 2 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Chloroperlidae 50 0.0984 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Leuctridae 2 0.0072 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Nemouridae 21 0.0170 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 1 0.0032 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 6 0.1416 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Teniopterygidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Teniopterygidae 1 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Rosiopaphilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpodidae		16-Sep-22				
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Capnidae 2 0.0035 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Leuciridae 2 0.0022 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Leuciridae 2 0.0022 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Nemouridae 21 0.0170 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pentoperidae 1 0.0032 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pentoperidae 1 0.0032 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pentodidae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pentodidae 6 0.1416 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pentodidae 1 0.0004 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pentodidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pentodidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 3 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 3 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 3 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Interphilidae 1 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Interphilidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Interphilidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Interphilidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Interphilidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Interphilidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Interphilidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Interphilidae 1 0.0008 RG SLINE 16-Sep-2						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Chloroperildae 50 0.0984 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N N Leuctridae 2 0.0027 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N N Nemouridae 21 0.0170 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Peltoperildae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Periddae 6 0.1416 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Periddae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Periddae 1 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Limnephilidae 3 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Rhyacophilidae 8 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Princomidae 2 0.0011 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RG SLINE						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Nemouridae 21 0.0170 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlidae 1 0.0034 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlidiae 1 0.0004 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perlodidae 6 0.1416 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Glossosomatidae 2 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Limnephilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Rysophilidae 8 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perpodidae 2 0.						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perilade 1 0.0004 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Perilodidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Glossosomatidae 2 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Glossosomatidae 2 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Chronordidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Uenoidae 2 0.0011 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pelecorhyncidae 2 0.0033 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pelecorhyncidae 1			RG_SLINE_HESS-4_2022-09-16_N		21	
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Periodidae 6 0.1416 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Taeniopterygidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Limpephilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Limpephilidae 3 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Uenoidae 2 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Derionomidae 3 0.0121 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Empididae 11 0.0013 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Pelecorhyncidae 2						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Taeniopterygidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Glossoomatidae 2 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Limnephilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Hyacophilidae 2 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Uenoidae 2 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Empididae 11 0.0314 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Empididae 11 0.0012 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Psychodidae 2 0.005 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Psychodidae 2 0.007 RG						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Glossosomatidae 2 0.0061 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Limnephilidae 3 0.0016 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Rhyacophilidae 8 0.0036 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Uenoidae 2 0.0010 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Empididae 11 0.0314 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pelecorhyncidae 2 0.0053 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pelecorhyncidae 2 0.0053 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pelecorhyncidae 2 0.0053 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Umbriculidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Lumbriculidae 5 0.027 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
RG_SLINE 16-Sep-22 RG_SLINE_HESS-4 2022-09-16_N Limnephilidae 3 0.0016 RG_SLINE 16-Sep-22 RG_SLINE_HESS-4 2022-09-16_N N Lenoidae 2 0.0010 RG_SLINE 16-Sep-22 RG_SLINE_HESS-4 2022-09-16_N N Uenoidae 2 0.0011 RG_SLINE 16-Sep-22 RG_SLINE_HESS-4 2022-09-16_N N Empididae 11 0.0314 RG_SLINE 16-Sep-22 RG_SLINE_HESS-4 2022-09-16_N Pelecorryncidae 2 0.0053 RG_SLINE 16-Sep-22 RG_SLINE_HESS-4 2022-09-16_N Pelecorryncidae 2 0.0053 RG_SLINE 16-Sep-22 RG_SLINE_HESS-4 2022-09-16_N Pelecorryncidae 2 0.0053 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5 2022-09-16_N N Lumbriculidae 5 0.0270 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5 2022-09-16_N Ameletidae 1 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5						
RG_SLINE 16-Sep-22 RG_SLINE HESS-4 2022-09-16 N N Rhyacophilidae 8 0.0036 RG_SLINE 16-Sep-22 RG_SLINE HESS-4 2022-09-16 N Uenoidae 2 0.0010 RG_SLINE 16-Sep-22 RG_SLINE HESS-4 2022-09-16 N Chironomidae 32 0.0121 RG_SLINE 16-Sep-22 RG_SLINE HESS-4 2022-09-16 N Empididae 11 0.0314 RG_SLINE 16-Sep-22 RG_SLINE HESS-4 2022-09-16 N Pelecorhyncidae 2 0.0053 RG_SLINE 16-Sep-22 RG_SLINE HESS-4 2022-09-16 N Psychodidae 2 0.0055 RG_SLINE 16-Sep-22 RG_SLINE HESS-5 2022-09-16 N Tipulidae 1 0.0005 RG_SLINE 16-Sep-22 RG_SLINE HESS-5 2022-09-16 N Lumbriculidae 5 0.0270 RG_SLINE 16-Sep-22 RG_SLINE HESS-5 2022-09-16 N Ameletidae 1 0.006 RG_SLINE 16-Sep-22 RG_SLINE HESS-5 2022-09-16 N He				Limnephilidae		
RG_SLINE 16-Sep-22 RG_SLINE_HESS-4_2022-09-16_N Chironomidae 32 0.0121 RG_SLINE 16-Sep-22 RG_SLINE_HESS-4_2022-09-16_N Empididae 11 0.0314 RG_SLINE 16-Sep-22 RG_SLINE_HESS-4_2022-09-16_N Pelecorhyncidae 2 0.0053 RG_SLINE 16-Sep-22 RG_SLINE_HESS-4_2022-09-16_N Psychodidae 2 0.0005 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Inpiriculidae 1 0.0007 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Unbriculidae 5 0.0270 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Unbriculidae 1 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Heletidae 1 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Heletidae 1 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Helptageniidae 114 0.1011 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_		16-Sep-22				
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Empididae 11 0.0314 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pelecorhyncidae 2 0.0053 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Psychodidae 2 0.0005 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Tipulidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Ameletidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Ameletidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Ameletidae 1 0.0468 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Leuctridae 17						
RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Pelecorhyncidae 2 0.0053 RG SLINE 16-Sep-22 RG SLINE HESS-4 2022-09-16 N Psychodidae 2 0.0005 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Tipulidae 1 0.0007 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Lumbriculidae 5 0.0270 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Ameletidae 1 0.0006 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Ameletidae 17 0.0468 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Heptagenidae 17 0.0468 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Chloroperidae 27 0.0409 RG SLINE 16-Sep-22 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RG_SLINE 16-Sep-22 RG_SLINE_HESS-4_2022-09-16_N Psychodidae 2 0.0005 RG_SLINE 16-Sep-22 RG_SLINE_HESS-4_2022-09-16_N Psychodidae 1 0.0007 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Lumbriculidae 5 0.0270 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Ameletidae 1 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Ameletidae 1 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Ephemerellidae 17 0.0468 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Ephemerellidae 17 0.0468 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Ephemerellidae 17 0.0468 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Ephemerellidae 27 0.0409 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Ephemerellidae 27 0.0409 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N						
RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Tipulidae 1 0.0007 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N Unabriculidae 5 0.0270 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Ostracoda 4 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Ameletidae 1 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Perpenerellidae 17 0.0468 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Heptageniidae 114 0.1011 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Heptageniidae 27 0.0409 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Clororperlidae 27 0.0409 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Nemounidae 4 0.0088 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Perlotidae 1 0.0550 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N	RG_SLINE	16-Sep-22	RG_SLINE_HESS-4_2022-09-16_N	Psychodidae	2	0.0005
RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Ostracoda 4 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Ameletidae 1 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Ameletidae 17 0.0468 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Heptageniidae 114 0.1011 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Heptageniidae 27 0.0409 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Heptageniidae 3 0.0011 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Hemouridae 4 0.088 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Herbodidae 7 0.1811 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Herbodidae 7 0.1811 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N T_Herbodidae 7 0.0181 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N R_Harronida						
RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Ameletidae 1 0.0006 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Ephemerellidae 17 0.0468 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Heptageniidae 114 0.1011 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Heptageniidae 27 0.0409 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Leuctridae 3 0.0011 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Nemouridae 4 0.0088 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Peltoperlidae 1 0.0550 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Perlodidae 7 0.1811 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Teniopterygidae 1 0.0002 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Teniopterygidae 1 0.0002 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Nelyaco						
RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Ephemerellidae 17 0.0468 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Heptageniidae 114 0.1011 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Chloroperlidae 27 0.0409 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Leuctridae 3 0.0011 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Nemouridae 4 0.088 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Perlodidae 7 0.1811 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Perlodidae 7 0.1811 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16						
RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Heptageniidae 114 0.1011 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Chloroperlidae 27 0.0409 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Leuctridae 3 0.0011 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Nemouridae 4 0.0888 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Perlotodidae 7 0.1811 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Taeniopterygidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Rhyacophilidae 6 0.0303 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N N						
RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Chloroperildae 27 0.0409 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N Chloroperildae 3 0.0011 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N Nemouridae 4 0.0088 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N Perloperildae 1 0.0550 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Perlodidae 7 0.1811 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Teniopterygidae 1 0.0002 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Teniopterygidae 1 0.0002 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Rosposmatidae 6 0.0303 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Uenoidae 2 0.0010 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Chironomidae 2 0.0155 RG_SLINE 16-Sep-22 <t< td=""><td>RG_SLINE</td><td></td><td>RG_SLINE_HESS-5_2022-09-16_N</td><td></td><td></td><td></td></t<>	RG_SLINE		RG_SLINE_HESS-5_2022-09-16_N			
RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Nemouridae 4 0.0088 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Peltoperlidae 1 0.0550 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Perlodidae 7 0.1811 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Taeniopterygidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Rhyacophilidae 7 0.0851 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Uenoidae 2 0.0010 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Chironomidae 20 0.0155 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Empididae 6 <	RG_SLINE	16-Sep-22	RG_SLINE_HESS-5_2022-09-16_N	Chloroperlidae	27	0.0409
RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Peltopertidae 1 0.0550 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Perfodidae 7 0.1811 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Taeniopterygidae 1 0.0002 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Glossosomatidae 6 0.0303 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Choidae 2 0.0651 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Choidae 2 0.0010 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Chironomidae 2 0.0155 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Emplidae 6 0.0416 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Emplidae 6 0.0416 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N N_Emplidae 1 0.0013 RG_SLINE 16-Sep-22 RG_SLINE_SS-5_2022-09-16_N N_Emplidae						
RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Perlodidae 7 0.1811 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Taeniopterygidae 1 0.0002 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Glossosomatidae 6 0.0303 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Rhyacophilidae 7 0.0651 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Uenoidae 2 0.0010 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Chironomidae 20 0.0155 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Empididae 6 0.0416 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Empididae 6 0.0416 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Pelecorhyncidae 1 0.0013 RG_SLINE 16-Sep-22 RG_SLINE_HESS-1_2022-09-08_N Nemata 10 0.0112 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Planariidae						
RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Taeniopterygidae 1 0.0002 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Glossosomatidae 6 0.0303 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Rhyacophilidae 7 0.0651 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Uenoidae 2 0.0010 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Chironomidae 0 0.0156 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Pelecorthyncidae 6 0.0416 RG SLINE HESS-5 2022-09-08 N Pelecorthyncidae 1 0.0013 RG LILC3 HESS-1 2022-09-08 N Nemata 10 0.0112 RG LILC3 HESS-1						
RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Glossosmatidae 6 0.0303 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Rhyacophilidae 7 0.0561 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Uenoidae 2 0.0010 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Chironomidae 20 0.0155 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Empididae 6 0.0416 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Pelecorrhyncidae 1 0.0013 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Pelecorrhyncidae 1 0.0013 RG_SLIC3 8-Sep-22 RG_SLIC3_HESS-1_2022-09-08_N N Nemata 10 0.0112 RG_SLIC3 8-Sep-22 RG_SLIC3_HESS-1_2022-09-08_N Enchytraeidae 2 0.008 RG_SLIC3 8-Sep-22 RG_SLIC3_HESS-1_2022-09-08_N Lebertiidae 11 0.0352 RG_SLIC3 8-Sep-22 RG_SLIC3_HESS-1_2022-09-08_N <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
RG_SLINE 16-Sep-22 RG_SLINE HESS-5_2022-09-16_N Uenoidae 2 0.0010 RG_SLINE 16-Sep-22 RG_SLINE HESS-5_2022-09-16_N Chironomidae 20 0.0155 RG_SLINE 16-Sep-22 RG_SLINE HESS-5_2022-09-16_N Empididae 6 0.0416 RG_SLINE 16-Sep-22 RG_SLINE HESS-5_2022-09-16_N Pelecortyncidae 1 0.0013 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Nemata 10 0.0112 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Planariidae 14 0.3584 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Enchytraeidae 2 0.0008 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Lebertiidae 11 0.0352 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Sperchontidae 17 0.0976 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Ostracoda 47 0.0944 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Ephemerellidae	RG_SLINE	16-Sep-22		Glossosomatidae		0.0303
RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Chironomidae 20 0.0155 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-16 N Empididae 6 0.0416 RG SLINE 16-Sep-22 RG SLINE HESS-5 2022-09-08 N Pelecorhyncidae 1 0.0013 RG LILC3 8-Sep-22 RG LILC3 HESS-1 2022-09-08 N Nemata 10 0.0112 RG LILC3 8-Sep-22 RG LILC3 HESS-1 2022-09-08 N Planariidae 14 0.3584 RG LILC3 8-Sep-22 RG LILC3 HESS-1 2022-09-08 N Lebertiidae 11 0.0352 RG LILC3 8-Sep-22 RG LILC3 HESS-1 2022-09-08 N Lebertiidae 17 0.0976 RG LILC3 8-Sep-22 RG LILC3						
RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Empididae 6 0.0416 RG_SLINE 16-Sep-22 RG_SLINE_HESS-5_2022-09-16_N Pelecorhyncidae 1 0.0013 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Nemata 10 0.0112 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Planariidae 14 0.3584 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Enchytraeidae 2 0.0008 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Lebertiidae 11 0.0352 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Sperchontidae 17 0.0976 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Ostracoda 47 0.0944 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Nephemerellidae 2 0.0104 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Nephemerellidae 5 0.0064						
RG_SLINE 16-Sep-22 RG_SLINE HESS-5_2022-09-16_N Pelecorhyncidae 1 0.0013 RG_SLILC3 8-Sep-22 RG_LILC3 HESS-1_2022-09-08_N Nemata 10 0.0112 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Planariidae 14 0.3584 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Enchytraeidae 2 0.0008 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Lebertiidae 11 0.0352 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Sperchontidae 17 0.0976 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Ostracoda 47 0.0944 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Ephemerellidae 2 0.0104 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Heptageniidae 5 0.0064						
RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Nemata 10 0.0112 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Planariidae 14 0.3584 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Enchytraeidae 2 0.0008 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Lebertiidae 11 0.0352 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Sperchontidae 17 0.0976 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Ostracoda 47 0.0944 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Ephemerellidae 2 0.0104 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Heptageniidae 5 0.0064						
RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Planariidae 14 0.3584 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Enchytraeidae 2 0.0008 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Lebertiidae 11 0.0352 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Sperchontidae 17 0.0976 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Ostracoda 47 0.0944 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Ephemerellidae 2 0.0104 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Heptageniidae 5 0.0064	RG_LILC3	8-Sep-22	RG_LILC3_HESS-1_2022-09-08_N	Nemata	10	0.0112
RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Lebertiidae 11 0.0352 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Sperchontidae 17 0.0976 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Ostracoda 47 0.0944 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Ephemerellidae 2 0.0104 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Heptageniidae 5 0.0064	RG_LILC3	8-Sep-22	RG_LILC3_HESS-1_2022-09-08_N	Planariidae	14	0.3584
RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Sperchontidae 17 0.0976 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Ostracoda 47 0.0944 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Ephemerellidae 2 0.0104 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Heptageniidae 5 0.0064						
RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Detracoda 47 0.0944 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Ephemerellidae 2 0.0104 RG_LILC3 8-Sep-22 RG_LILC3 HESS-1 2022-09-08 N Heptageniidae 5 0.0064						
RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Ephemerellidae 2 0.0104 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Heptageniidae 5 0.0064						
RG_LILC3						
RG LII C3 8-Sen-22 RG LII C3 HESS-1 2022-00-08 N Cappilidas 2 0.0400	RG_LILC3	8-Sep-22	RG_LILC3_HESS-1_2022-09-08_N	Heptageniidae	5	0.0064
	RG_LILC3	8-Sep-22	RG_LILC3_HESS-1_2022-09-08_N	Capniidae	2	0.0488
RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Chloroperlidae 3 0.0416 RG_LILC3 8-Sep-22 RG_LILC3_HESS-1_2022-09-08_N Nemouridae 2 0.1648						

Area	Date	Sample ID	Taxa	Count	Total Biomass (g/m² w.w.)
RG_LILC3	8-Sep-22	RG_LILC3_HESS-1_2022-09-08_N	Perlodidae	4	0.2384
RG_LILC3	8-Sep-22	RG_LILC3_HESS-1_2022-09-08_N	Hydropsychidae	9	1.0827
RG_LILC3	8-Sep-22	RG_LILC3_HESS-1_2022-09-08_N	Limnephilidae	2	0.0008
RG_LILC3	8-Sep-22	RG_LILC3_HESS-1_2022-09-08_N	Rhyacophilidae	2	0.1184
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-1_2022-09-08_N RG_LILC3_HESS-1_2022-09-08_N	Rhyacophilidae Chironomidae	1 582	0.1040 7.4648
RG LILC3	8-Sep-22	RG LILC3 HESS-1 2022-09-08 N	Empididae	2	0.0352
RG LILC3	8-Sep-22	RG LILC3 HESS-1 2022-09-08 N	Muscidae	1	0.3856
RG LILC3	8-Sep-22	RG LILC3 HESS-1 2022-09-08 N	Psychodidae	1	0.0016
RG_LILC3	8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N	Nemata	3	0.0128
RG_LILC3	8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N	Planariidae	10	0.1256
RG_LILC3	8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N	Lumbricidae	3	0.0008
RG_LILC3	8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N	Trombidiformes	1	0.0008
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N RG_LILC3_HESS-2_2022-09-08_N	Lebertiidae Sperchontidae	10 15	0.0288 0.0640
RG LILC3	8-Sep-22	RG LILC3 HESS-2 2022-09-08 N	Ostracoda	45	0.0920
RG LILC3	8-Sep-22	RG LILC3 HESS-2 2022-09-08 N	Heptageniidae	11	0.0288
RG LILC3	8-Sep-22	RG LILC3 HESS-2 2022-09-08 N	Chloroperlidae	2	0.0200
RG_LILC3	8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N	Nemouridae	1	0.0107
RG_LILC3	8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N	Nemouridae	2	0.0992
RG_LILC3	8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N	Perlodidae	11	0.0008
RG_LILC3	8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N	Hydropsychidae	7	0.8500
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N RG_LILC3_HESS-2_2022-09-08_N	Limnephilidae Chironomidae	1 438	0.0016 3.6688
RG LILC3	8-Sep-22	RG_LILC3_HESS-2_2022-09-08_N	Psychodidae	1	0.0016
RG LILC3	8-Sep-22	RG LILC3 HESS-3 2022-09-08 N	Nemata	24	0.0128
RG LILC3	8-Sep-22	RG LILC3 HESS-3 2022-09-08 N	Planariidae	25	0.4520
RG_LILC3	8-Sep-22	RG_LILC3_HESS-3_2022-09-08_N	Enchytraeidae	1	0.0008
RG_LILC3	8-Sep-22	RG_LILC3_HESS-3_2022-09-08_N	Lebertiidae	10	0.0344
RG_LILC3	8-Sep-22	RG_LILC3_HESS-3_2022-09-08_N	Sperchontidae	14	0.0624
RG_LILC3	8-Sep-22	RG_LILC3_HESS-3_2022-09-08_N	Ostracoda	183	0.3320
RG_LILC3	8-Sep-22	RG_LILC3_HESS-3_2022-09-08_N	Heptageniidae	13	0.0248
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-3_2022-09-08_N RG_LILC3_HESS-3_2022-09-08_N	Capniidae Nemouridae	20	0.0856 1.1856
RG_LILC3	8-Sep-22	RG_LILC3_HESS-3_2022-09-06_N RG_LILC3_HESS-3_2022-09-08_N	Hydropsychidae	5	6.3664
RG LILC3	8-Sep-22	RG LILC3 HESS-3 2022-09-08 N	Limnephilidae	1	0.0016
RG_LILC3	8-Sep-22	RG_LILC3_HESS-3_2022-09-08_N	Rhyacophilidae	6	2.5408
RG_LILC3	8-Sep-22	RG_LILC3_HESS-3_2022-09-08_N	Chironomidae	739	6.5832
RG_LILC3	8-Sep-22	RG_LILC3_HESS-3_2022-09-08_N	Psychodidae	5	0.0056
RG_LILC3	8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N	Nemata	7	0.0152
RG_LILC3	8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N	Planariidae	11	0.1648
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N RG_LILC3_HESS-4_2022-09-08_N	Enchytraeidae Lebertiidae	3 6	0.0008 0.0232
RG LILC3	8-Sep-22	RG LILC3 HESS-4 2022-09-08 N	Sperchontidae	3	0.0232
RG LILC3	8-Sep-22	RG LILC3 HESS-4 2022-09-08 N	Ostracoda	39	0.0800
RG LILC3	8-Sep-22	RG LILC3 HESS-4 2022-09-08 N	Baetidae	1	0.0640
RG_LILC3	8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N	Heptageniidae	4	0.0096
RG_LILC3	8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N	Chloroperlidae	2	0.0256
RG_LILC3	8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N	Nemouridae	3	0.1704
RG_LILC3	8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N	Perlodidae	1	0.0382
RG_LILC3 RG_LILC3	8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N RG_LILC3_HESS-4_2022-09-08_N	Perlodidae	<u>1</u> 8	0.0024
RG_LILC3	8-Sep-22 8-Sep-22	RG LILC3 HESS-4 2022-09-08 N	Hydropsychidae Rhyacophilidae	2	1.0295 0.2408
RG LILC3	8-Sep-22	RG LILC3 HESS-4 2022-09-08 N	Rhyacophilidae	4	0.9640
RG LILC3	8-Sep-22	RG LILC3 HESS-4 2022-09-08 N	Ceratopogonidae	1	0.0016
RG LILC3	8-Sep-22	RG LILC3 HESS-4 2022-09-08 N	Chironomidae	288	3.5744
RG_LILC3	8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N	Empididae	3	0.0528
RG_LILC3	8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N	Pelecorhyncidae	1	0.0308
RG_LILC3	8-Sep-22	RG_LILC3_HESS-4_2022-09-08_N	Pelecorhyncidae	1	0.0624
RG_LILC3	8-Sep-22	RG LILC3 HESS-4 2022-09-08 N RG LILC3 HESS-5 2022-09-08 N	Psychodidae	2	0.0008
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N RG_LILC3_HESS-5_2022-09-08_N	Nemata Planariidae	3 18	0.0016 0.5552
RG LILC3	8-Sep-22	RG LILC3 HESS-5 2022-09-08 N	Trombidiformes	1	0.0008
RG LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Lebertiidae	7	0.0256
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Sperchontidae	18	0.0672
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Ostracoda	75	0.1552
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Baetidae	1	0.0584
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Ephemerellidae	1	0.0096
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Heptageniidae	3	0.0192
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG LILC3 HESS-5 2022-09-08 N RG LILC3 HESS-5 2022-09-08 N	Capniidae Chloroperlidae	3	0.0256 0.0464
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-06_N RG_LILC3_HESS-5_2022-09-08_N	Nemouridae	3	0.1264
RG LILC3	8-Sep-22	RG LILC3 HESS-5 2022-09-08 N	Perlodidae	1	0.0689
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Hydropsychidae	15	2.1853
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Hydropsychidae	1	0.1232
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Rhyacophilidae	1	0.0978
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Rhyacophilidae	1	1.4008
RG_LILC3	8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N	Chironomidae	281	2.5888
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-5_2022-09-08_N RG_LILC3_HESS-6_2022-09-08_N	Empididae Nemata	1	0.0152 0.0016
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-6_2022-09-08_N RG_LILC3_HESS-6_2022-09-08_N	Nemata Planariidae	22	0.0016
RG LILC3	8-Sep-22	RG LILC3 HESS-6 2022-09-08 N	Enchytraeidae	1	0.0008
RG LILC3	8-Sep-22	RG LILC3 HESS-6 2022-09-08 N	Lumbriculidae	1	0.0056
RG_LILC3	8-Sep-22	RG_LILC3_HESS-6_2022-09-08_N	Lebertiidae	5	0.0200
RG_LILC3	8-Sep-22	RG_LILC3_HESS-6_2022-09-08_N	Sperchontidae	12	0.0632
RG_LILC3	8-Sep-22	RG_LILC3_HESS-6_2022-09-08_N	Ostracoda	74	0.1696
RG_LILC3	8-Sep-22	RG_LILC3_HESS-6_2022-09-08_N	Heptageniidae	2	0.0056
RG_LILC3	8-Sep-22	RG_LILC3_HESS-6_2022-09-08_N	Chloroperlidae	2	0.0152
RG_LILC3	8-Sep-22	RG_LILC3_HESS-6_2022-09-08_N	Nemouridae	1 260	0.0544
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-6_2022-09-08_N RG_LILC3_HESS-6_2022-09-08_N	Chironomidae Empididae	369 2	3.4512 0.0272
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-6_2022-09-08_N RG_LILC3_HESS-6_2022-09-08_N	Psychodidae Psychodidae	2	0.0272
RG_LILC3	8-Sep-22	RG_LILC3_HESS-6_2022-09-06_N RG_LILC3_HESS-7_2022-09-08_N	Nemata	3	0.0018
RG LILC3	8-Sep-22	RG LILC3 HESS-7 2022-09-08 N	Planariidae	14	0.2160
RG_LILC3	8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N	Enchytraeidae	3	0.0008
	8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N	Lumbriculidae	2	0.0648
RG_LILC3					
RG_LILC3 RG_LILC3	8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N	Lebertiidae	1	0.0008
	8-Sep-22 8-Sep-22 8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N RG_LILC3_HESS-7_2022-09-08_N RG_LILC3_HESS-7_2022-09-08_N	Sperchontidae Ostracoda	1 4 21	0.0008 0.0120 0.0448

RG_LILC3 RG_LILC3 RG_LILC3 RG_LILC3 RG_LILC3		Sample ID	Taxa	Count	Total Biomass (g/m² w.w.)
RG_LILC3 RG_LILC3	8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N	Ephemerellidae	1	0.0080
RG_LILC3	8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N	Heptageniidae	2	0.0008
	8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N	Chloroperlidae	1	0.0328
RG_LILU3 I	8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N	Nemouridae	4	0.3608
RG LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N RG_LILC3_HESS-7_2022-09-08_N	Hydropsychidae Hydropsychidae	16 2	2.6373 1.0584
RG LILC3	8-Sep-22	RG LILC3 HESS-7 2022-09-08 N	Rhyacophilidae	1	0.0517
RG LILC3	8-Sep-22	RG LILC3 HESS-7 2022-09-08 N	Rhyacophilidae	3	0.9816
RG LILC3	8-Sep-22	RG LILC3 HESS-7 2022-09-08 N	Chironomidae	319	3.4832
RG_LILC3	8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N	Muscidae	1	0.0104
RG_LILC3	8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N	Psychodidae	1	0.0016
RG_LILC3	8-Sep-22	RG_LILC3_HESS-7_2022-09-08_N	Simuliidae	1	0.0112
RG_LILC3	8-Sep-22	RG_LILC3_HESS-8_2022-09-08_N	Nemata	44	0.0296
RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-8_2022-09-08_N	Planariidae	5 3	0.0208 0.0032
RG_LILC3 RG_LILC3	8-Sep-22	RG_LILC3_HESS-8_2022-09-08_N RG_LILC3_HESS-8_2022-09-08_N	Enchytraeidae Lumbriculidae	2	0.0032
RG LILC3	8-Sep-22	RG LILC3 HESS-8 2022-09-08 N	Lebertiidae	10	0.0240
RG LILC3	8-Sep-22	RG LILC3 HESS-8 2022-09-08 N	Sperchontidae	6	0.0208
RG_LILC3	8-Sep-22	RG_LILC3_HESS-8_2022-09-08_N	Ostracoda	37	0.0624
RG_LILC3	8-Sep-22	RG_LILC3_HESS-8_2022-09-08_N	Heptageniidae	4	0.0024
RG_LILC3	8-Sep-22	RG_LILC3_HESS-8_2022-09-08_N	Nemouridae	3	0.1592
RG_LILC3	8-Sep-22	RG_LILC3_HESS-8_2022-09-08_N	Perlodidae	7	0.1000
RG_LILC3	8-Sep-22	RG_LILC3_HESS-8_2022-09-08_N	Hydropsychidae	8	1.1323
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-8_2022-09-08_N RG_LILC3_HESS-8_2022-09-08_N	Rhyacophilidae Rhyacophilidae	8	0.3446 1.3944
RG LILC3	8-Sep-22	RG LILC3 HESS-8 2022-09-08 N	Chironomidae	355	2.7928
RG LILC3	8-Sep-22	RG LILC3 HESS-8 2022-09-08 N	Empididae	3	0.0576
RG_LILC3	8-Sep-22	RG_LILC3_HESS-8_2022-09-08_N	Psychodidae	2	0.0008
RG_LILC3	8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N	Nemata	2	0.0004
RG_LILC3	8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N	Planariidae	5	0.0352
RG_LILC3	8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N	Enchytraeidae	3	0.0004
RG_LILC3	8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N	Lumbriculidae	1	0.0120
RG_LILC3	8-Sep-22	RG LILC3 HESS-9 2022-09-08 N RG LILC3 HESS-9 2022-09-08 N	Lebertiidae	4	0.0028
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N RG_LILC3_HESS-9_2022-09-08_N	Sperchontidae Ostracoda	13 7	0.0212 0.0056
RG_LILC3	8-Sep-22 8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N RG_LILC3_HESS-9_2022-09-08_N	Ephemerellidae	1	0.0056
RG_LILC3	8-Sep-22	RG LILC3 HESS-9 2022-09-08 N	Heptageniidae	2	0.0020
RG_LILC3	8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N	Chloroperlidae	2	0.0116
RG_LILC3	8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N	Nemouridae	5	0.1448
RG_LILC3	8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N	Perlodidae	2	0.0988
RG_LILC3	8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N	Hydropsychidae	1	0.1521
RG_LILC3	8-Sep-22	RG_LILC3_HESS-9_2022-09-08_N	Chironomidae	225	1.2756
RG_LILC3 RG_LILC3	8-Sep-22 8-Sep-22	RG LILC3 HESS-9 2022-09-08 N RG LILC3 HESS-9 2022-09-08 N	Empididae Psychodidae	3 2	0.0168 0.0012
RG LILC3	8-Sep-22	RG LILC3 HESS-10 2022-09-08 N	Nemata	6	0.012
RG LILC3	8-Sep-22	RG LILC3 HESS-10 2022-09-08 N	Planariidae	20	0.3736
RG LILC3	8-Sep-22	RG LILC3 HESS-10 2022-09-08 N	Enchytraeidae	5	0.0040
RG_LILC3	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N	Lumbriculidae	1	0.0712
RG_LILC3	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N	Naididae	1	0.0048
RG_LILC3	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N	Lebertiidae	8	0.0216
RG_LILC3	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N	Sperchontidae	26	0.1264
RG_LILC3 RG_LILC3	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N RG_LILC3_HESS-10_2022-09-08_N	Ostracoda Ephemerellidae	34 1	0.0712
RG_LILC3	8-Sep-22 8-Sep-22	RG LILC3 HESS-10 2022-09-08 N	Heptageniidae	1	0.0056 0.0024
RG LILC3	8-Sep-22	RG LILC3 HESS-10 2022-09-08 N	Chloroperlidae	5	0.0752
RG LILC3	8-Sep-22	RG LILC3 HESS-10 2022-09-08 N	Nemouridae	2	0.1280
RG_LILC3	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N	Perlodidae	1	0.0064
RG_LILC3	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N	Hydropsychidae	17	1.7726
RG_LILC3	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N	Hydropsychidae	1	0.0008
RG_LILC3	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N	Limnephilidae	1	0.0048
RG_LILC3	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N	Chironomidae	479	3.7728
RG_LILC3 RG_LIDSL	8-Sep-22	RG_LILC3_HESS-10_2022-09-08_N RG_LIDSL_HESS-1_2022-09-13_N	Empididae	5	0.0304
RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N RG_LIDSL_HESS-1_2022-09-13_N	Nemata Planariidae	8	0.0026 0.0176
RG LIDSL	13-Sep-22	RG LIDSL HESS-1 2022-09-13 N	Lumbricidae	1	0.0084
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Sperchontidae	1	0.0010
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Ameletidae	1	0.0008
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Baetidae	2	0.0068
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Ephemerellidae	5	0.0088
RG_LIDSL RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Heptageniidae Capniidae	114	0.0928
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N RG_LIDSL_HESS-1_2022-09-13_N	Capniidae	10	0.0014 0.0262
RG LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N RG_LIDSL_HESS-1_2022-09-13_N	Leuctridae	10	0.0204
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Nemouridae	11	0.0722
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Perlodidae	3	0.0914
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Perlodidae	1	0.0124
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Taeniopterygidae	8	0.0022
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Hydropsychidae	6	0.5434
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Hydropsychidae	3	0.0020
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N RG_LIDSL_HESS-1_2022-09-13_N	Rhyacophilidae Chironomidae	4 165	0.0110 0.5180
RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Empididae	7	0.0290
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-1_2022-09-13_N	Psychodidae	38	0.0194
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Nemata	2	0.0002
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Planariidae	5	0.0120
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Lumbricidae	1	0.0132
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Sperchontidae	4	0.0002
	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Ostracoda	3	0.0008
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Ameletidae	3	0.0002
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG LIDSL HESS-2_2022-09-13_N RG LIDSL HESS-2_2022-09-13_N	Baetidae Ephemerellidae	2 13	0.0218
RG_LIDSL RG_LIDSL RG_LIDSL			Heptageniidae	13	0.0084 0.0119
RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL		I RG HDSI HESS-9 9009-00-13 KI			
RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N RG_LIDSL_HESS-2_2022-09-13_N		87	
RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Heptageniidae	87 2	0.0924
RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22 13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N RG_LIDSL_HESS-2_2022-09-13_N		2	0.0924 0.0002
RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Heptageniidae Chloroperlidae		0.0924
RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22 13-Sep-22 13-Sep-22 13-Sep-22 13-Sep-22	RG LIDSL HESS-2 2022-09-13 N RG LIDSL HESS-2 2022-09-13 N RG_LIDSL HESS-2 2022-09-13 N RG_LIDSL HESS-2 2022-09-13 N RG_LIDSL HESS-2 2022-09-13 N	Heptageniidae Chloroperlidae Nemouridae Nemouridae Perlodidae	2 3 14 1	0.0924 0.0002 0.0128 0.1504 0.0129
RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22 13-Sep-22 13-Sep-22 13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N RG_LIDSL_HESS-2_2022-09-13_N RG_LIDSL_HESS-2_2022-09-13_N RG_LIDSL_HESS-2_2022-09-13_N	Heptageniidae Chloroperlidae Nemouridae Nemouridae	2 3 14	0.0924 0.0002 0.0128 0.1504

Area	Date	Sample ID	Taxa	Count	Total Biomass (g/m² w.w.)
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Hydropsychidae	1	0.1060
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Hydropsychidae	3	0.0022
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N RG_LIDSL_HESS-2_2022-09-13_N	Rhyacophilidae Rhyacophilidae	9 5	0.2483 0.0104
RG LIDSL	13-Sep-22	RG LIDSL HESS-2 2022-09-13 N	Chironomidae	5	0.0269
RG LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Chironomidae	232	0.4946
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Empididae	3	0.0098
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-2_2022-09-13_N	Psychodidae	38	0.0244
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N RG_LIDSL_HESS-3_2022-09-13_N	Nemata Planariidae	1 12	0.0002 0.0324
RG LIDSL	13-Sep-22	RG LIDSL HESS-3 2022-09-13 N	Lumbriculidae	3	0.0170
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Lebertiidae	1	0.0002
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Sperchontidae	3	0.0010
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Ostracoda	14	0.0068
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N RG_LIDSL_HESS-3_2022-09-13_N	Elmidae Ameletidae	2 8	0.0002 0.0076
RG LIDSL	13-Sep-22	RG LIDSL HESS-3 2022-09-13 N	Baetidae	4	0.0466
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Ephemerellidae	11	0.0080
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Heptageniidae	1	0.0120
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Heptageniidae	138	0.1606
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N RG_LIDSL_HESS-3_2022-09-13_N	Capniidae Chloroperlidae	1 18	0.0008 0.0528
RG LIDSL	13-Sep-22	RG LIDSL HESS-3 2022-09-13 N	Leuctridae	13	0.0266
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Nemouridae	2	0.0052
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Perlodidae	3	0.0054
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Taeniopterygidae	4	0.0002
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N RG_LIDSL_HESS-3_2022-09-13_N	Apataniidae Glossosomatidae	2	0.0020 0.0298
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Hydropsychidae	1	0.0296
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Hydropsychidae	4	0.0042
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Rhyacophilidae	2	0.0543
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Rhyacophilidae	6 2	0.0716
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N RG_LIDSL_HESS-3_2022-09-13_N	Chironomidae Chironomidae	232	0.0208 0.6790
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Empididae	5	0.0244
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Pelecorhyncidae	3	0.0124
RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-3_2022-09-13_N	Psychodidae	103	0.0534
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N RG_LIDSL_HESS-4_2022-09-13_N	Nemata Planariidae	3 10	0.0002 0.0486
RG LIDSL	13-Sep-22	RG LIDSL HESS-4 2022-09-13 N	Lumbricidae	2	0.0322
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N	Sperchontidae	5	0.0032
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N	Ostracoda	29	0.0118
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N RG_LIDSL_HESS-4_2022-09-13_N	Elmidae Ameletidae	1 29	0.0006
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N RG_LIDSL_HESS-4_2022-09-13_N	Baetidae	6	0.0232 0.0716
RG LIDSL	13-Sep-22	RG LIDSL HESS-4 2022-09-13 N	Ephemerellidae	7	0.0046
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N	Heptageniidae	147	0.3050
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N	Capniidae	2	0.0038
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N RG_LIDSL_HESS-4_2022-09-13_N	Chloroperlidae Leuctridae	20 10	0.0770 0.0180
RG LIDSL	13-Sep-22	RG LIDSL HESS-4 2022-09-13 N	Nemouridae	10	0.1188
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N	Taeniopterygidae	6	0.0008
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N	Hydropsychidae	4	0.4165
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N RG_LIDSL_HESS-4_2022-09-13_N	Limnephilidae Rhyacophilidae	1 11	0.0004 0.2446
RG_LIDSL	13-Sep-22	RG LIDSL HESS-4 2022-09-13 N	Chironomidae	1	0.0080
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N	Chironomidae	235	0.6358
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N	Empididae	3	0.0078
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N RG_LIDSL_HESS-4_2022-09-13_N	Psychodidae	58	0.0298
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-4_2022-09-13_N RG_LIDSL_HESS-5_2022-09-13_N	Limoniidae Nemata	2	0.3847 0.0004
RG LIDSL	13-Sep-22	RG LIDSL HESS-5 2022-09-13 N	Planariidae	7	0.0284
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Lumbriculidae	18	0.0940
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Sperchontidae	1	0.0002
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N RG_LIDSL_HESS-5_2022-09-13_N	Ostracoda Ameletidae	4 20	0.0032 0.0148
RG_LIDSL	13-Sep-22	RG LIDSL HESS-5 2022-09-13 N	Baetidae	20	0.0146
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Ephemerellidae	14	0.0202
RG_LIDSL	13-Sep-22	RG LIDSL HESS-5 2022-09-13 N	Heptageniidae	230	0.2774
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG LIDSL HESS-5 2022-09-13 N RG LIDSL HESS-5 2022-09-13 N	Capniidae	4	0.0044
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N RG_LIDSL_HESS-5_2022-09-13_N	Chloroperlidae Leuctridae	12	0.0340 0.0030
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Nemouridae	16	0.1286
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Perlodidae	1	0.0131
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Perlodidae	1	0.0008
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N RG_LIDSL_HESS-5_2022-09-13_N	Taeniopterygidae Apataniidae	6	0.0024 0.0010
RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N RG_LIDSL_HESS-5_2022-09-13_N	Hydropsychidae	15	2.0093
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Hydropsychidae	1	0.0006
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Rhyacophilidae	3	0.0825
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Rhyacophilidae	9	0.1868
RG_LIDSL RG_LIDSL	13-Sep-22 13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N RG_LIDSL_HESS-5_2022-09-13_N	Ceratopogonidae Chironomidae	2 82	0.0012 0.1962
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Empididae	5	0.0174
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Pelecorhyncidae	1	0.0132
RG_LIDSL	13-Sep-22	RG_LIDSL_HESS-5_2022-09-13_N	Psychodidae	21	0.0080
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Planariidae Lumbriculidae	8	0.0222 0.0129
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N RG_LIDSL_HESS-6_2022-09-13_N	Hydryphantidae	1	0.0129
RG LIDSL	14-Sep-22	RG LIDSL HESS-6 2022-09-13 N	Sperchontidae	6	0.0002
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Ostracoda	4	0.0024
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Ameletidae	7	0.0056
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Baetidae Enhamerallidae	15	0.1836
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N RG_LIDSL_HESS-6_2022-09-13_N	Ephemerellidae Ephemerellidae	10	0.0543 0.0220
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Heptageniidae	178	0.0220
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Capniidae	4	0.0060
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Chloroperlidae	14	0.0450
RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N RG_LIDSL_HESS-6_2022-09-13_N	Leuctridae	3	0.0064
RG LIDSL		EG LIDST HESS-6 2022-09-13 N	Nemouridae	4	0.0448

Area	Date	Sample ID	Taxa	Count	Total Biomass (g/m² w.w.)
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Perlodidae	2	0.0038
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Taeniopterygidae	1	0.0002
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N RG_LIDSL_HESS-6_2022-09-13_N	Apataniidae Glossosomatidae	2	0.0010 0.0148
RG LIDSL	14-Sep-22	RG LIDSL HESS-6 2022-09-13 N	Limnephilidae	2	0.0028
RG LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Rhyacophilidae	4	0.1306
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Rhyacophilidae	4	0.0250
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N RG_LIDSL_HESS-6_2022-09-13_N	Ceratopogonidae Chironomidae	1 91	0.0024 0.3712
RG LIDSL	14-Sep-22	RG LIDSL HESS-6 2022-09-13 N	Empididae	2	0.0066
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Psychodidae	15	0.0082
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N	Simuliidae	1	0.0064
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-6_2022-09-13_N RG_LIDSL_HESS-7_2022-09-13_N	Limoniidae Nemata	7	0.6798 0.0001
RG LIDSL	14-Sep-22	RG LIDSL HESS-7 2022-09-13 N	Planariidae	19	0.0552
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Enchytraeidae	6	0.0021
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Lumbriculidae	1	0.0009
RG_LIDSL RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N RG_LIDSL_HESS-7_2022-09-13_N	Lebertiidae	3	0.0009 0.0017
RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N RG_LIDSL_HESS-7_2022-09-13_N	Sperchontidae Ostracoda	15	0.0017
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Elmidae	38	0.0173
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Ameletidae	2	0.0014
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N RG_LIDSL_HESS-7_2022-09-13_N	Baetidae	7 14	0.0077 0.0109
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Ephemerellidae Heptageniidae	117	0.0669
RG LIDSL	14-Sep-22	RG LIDSL HESS-7 2022-09-13 N	Chloroperlidae	42	0.0231
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Leuctridae	17	0.0092
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Nemouridae	25	0.0932
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N RG_LIDSL_HESS-7_2022-09-13_N	Perlodidae Taeniopterygidae	5 5	0.0432 0.0003
RG_LIDSL	14-Sep-22	RG LIDSL HESS-7 2022-09-13 N	Glossosomatidae	1	0.0003
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Hydropsychidae	1	0.0002
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Limnephilidae	1	0.0002
RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N RG_LIDSL_HESS-7_2022-09-13_N	Rhyacophilidae	33 66	0.0478
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N RG_LIDSL_HESS-7_2022-09-13_N	Chironomidae Empididae	66	0.0497 0.0072
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Pelecorhyncidae	19	0.0992
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-7_2022-09-13_N	Psychodidae	33	0.0060
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N	Nemata	1	0.0001
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N RG_LIDSL_HESS-8_2022-09-13_N	Planariidae Enchytraeidae	38	0.0921 0.0012
RG LIDSL	14-Sep-22	RG LIDSL HESS-8 2022-09-13 N	Lumbricidae	3	0.0107
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N	Ostracoda	22	0.0055
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N	Elmidae	10	0.0122
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N RG_LIDSL_HESS-8_2022-09-13_N	Ameletidae Baetidae	1 5	0.0001 0.0387
RG LIDSL	14-Sep-22	RG LIDSL HESS-8 2022-09-13 N	Ephemerellidae	12	0.0145
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N	Heptageniidae	215	0.1065
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N	Capniidae	1	0.0002
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N RG_LIDSL_HESS-8_2022-09-13_N	Chloroperlidae Leuctridae	8 5	0.0064 0.0022
RG LIDSL	14-Sep-22	RG LIDSL HESS-8 2022-09-13 N	Nemouridae	30	0.0472
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N	Perlodidae	3	0.0532
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N	Taeniopterygidae	2	0.0002
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N RG_LIDSL_HESS-8_2022-09-13_N	Hydropsychidae Rhyacophilidae	2 52	0.0535 0.1266
RG LIDSL	14-Sep-22	RG LIDSL HESS-8 2022-09-13 N	Chironomidae	68	0.0640
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N	Empididae	9	0.0086
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N	Pelecorhyncidae	17	0.0806
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-8_2022-09-13_N RG_LIDSL_HESS-8_2022-09-13_N	Psychodidae	122 2	0.0256
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-0_2022-09-13_N RG_LIDSL_HESS-9_2022-09-13_N	Stratiomyidae Planariidae	5	0.0208 0.0202
RG LIDSL	14-Sep-22	RG LIDSL HESS-9 2022-09-13 N	Lumbriculidae	1	0.0132
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Lebertiidae	1	0.0002
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Sperchontidae	3	0.0020
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N RG_LIDSL_HESS-9_2022-09-13_N	Ameletidae Baetidae	14 2	0.0510 0.0108
RG LIDSL	14-Sep-22	RG LIDSL HESS-9 2022-09-13 N	Ephemerellidae	4	0.0054
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Heptageniidae	108	0.1014
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Capniidae	7	0.0034
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N RG_LIDSL_HESS-9_2022-09-13_N	Chloroperlidae Leuctridae	4	0.0268 0.0134
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Nemouridae	9	0.0634
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Perlodidae	3	0.0474
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Taeniopterygidae	3	0.0006
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N RG_LIDSL_HESS-9_2022-09-13_N	Glossosomatidae Hydropsychidae	3 2	0.0464 0.6740
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Limnephilidae	2	0.0010
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Rhyacophilidae	13	0.2772
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Uenoidae	2	0.0006
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N RG_LIDSL_HESS-9_2022-09-13_N	Chironomidae Empididae	51 1	0.1948 0.0036
RG LIDSL	14-Sep-22	RG LIDSL HESS-9 2022-09-13 N	Pelecorhyncidae	2	0.0426
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Psychodidae	15	0.0170
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-9_2022-09-13_N	Tipulidae	2	0.0088
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N RG_LIDSL_HESS-10_2022-09-13_N	Nemata Planariidae	3	0.0009 0.0037
RG_LIDSL	14-Sep-22 14-Sep-22	RG LIDSL HESS-10 2022-09-13 N	Lumbricidae	8	0.0037
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Lebertiidae	4	0.0016
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Sperchontidae	2	0.0007
RG_LIDSL RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Ostracoda Ameletidae	11 8	0.0029
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N RG_LIDSL_HESS-10_2022-09-13_N	Ameletidae Baetidae	9	0.0019 0.0520
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Ephemerellidae	29	0.1088
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Heptageniidae	336	0.2218
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Capniidae	7	0.0042
RG_LIDSL RG_LIDSL	14-Sep-22 14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N RG_LIDSL_HESS-10_2022-09-13_N	Chloroperlidae Leuctridae	28 4	0.0596 0.0044
RG_LIDSL	14-Sep-22	RG LIDSL HESS-10 2022-09-13 N	Nemouridae	14	0.0631
	14-Sep-22	RG LIDSL HESS-10 2022-09-13 N	Perlodidae	1	0.0141

Raw Benthic Invertebrate Family-Level Counts (organisms/sample) and Biomass for Samples Collected by Hess Sampler at Line Creek, September 2022

Area	Date	Sample ID	Taxa	Count	Total Biomass (g/m² w.w.)
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Taeniopterygidae	22	0.0052
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Apataniidae	2	0.0002
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Glossosomatidae	5	0.0144
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Hydropsychidae	3	0.2378
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Rhyacophilidae	18	0.2607
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Ceratopogonidae	1	0.0011
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Chironomidae	67	0.0634
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Empididae	9	0.0172
RG LIDSL	14-Sep-22	RG LIDSL HESS-10 2022-09-13 N	Psychodidae	43	0.0081
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Simuliidae	3	0.0080
RG_LIDSL	14-Sep-22	RG_LIDSL_HESS-10_2022-09-13_N	Limoniidae	2	0.2616
RG LIDSL	14-Sep-22	RG LIDSL HESS-10 2022-09-13 N	Pediciidae	1	0.0009

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2022-331 (Finalized May 20, 2022)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Tyler Mehler

Aquatic Scientist

Minnow Environmental

Phone: (587) 597-1612

Email: tyler.mehler@minnow.ca; cybele.heddle@teck.com;

Kbatchelar@minnow.ca; jessica.ritz@teck.com

Date Received: 13 May 2022

Date of Analysis: 16 May 2022

Final Report Date: 20 May 2022 Project No.: 2022-331

Method No.: MET-002.06

Client Project: Unspecified

Analytical Request: Invertebrate Tissue Microchemistry (total metals and moisture) - 50 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg)

Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards.

Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 102% (ranging from 101-106%).

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

Date

20 May 2022

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

Project No: 2022-331

Teck Coal Limited Tissue Analysis Results

		Client ID	RG_FO23_INV- 1_2022-05-04	RG_FO23_INV- 2_2022-05-04	RG_FO23_INV- 3_2022-05-04	RG_FO23_INV- 4_2022-05-04	RG_FO23_INV- 5_2022-05-04
Lab ID			201	202	203	204	205
Wet Weight (g)		1.3500	1.0399	1.7314	1.1576	0.8998	
	Dry Weight (g)		0.3172	0.2995	0.3002	0.2576	0.1895
Moisture (%)		76.5	71.2	82.7	77.7	78.9	
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.003	0.010	0.668	0.526	0.640	1.0	2.8
11B	0.066	0.220	2.1	1.6	2.1	4.2	9.7
23Na	0.981	3.3	3,148	2,774	2,444	2,684	3,117
24Mg	0.017	0.057	2,036	1,605	1,805	1,850	2,236
27Al	0.017	0.057	951	362	932	2,436	4,167
31P	59	197	12,876	11,656	10,483	11,517	11,217
39K	2.2	7.3	9,165	9,874	8,512	10,314	14,590
44Ca	7.5	25	5,025	2,795	5,151	5,397	14,194
49Ti	0.209	0.697	68	26	60	178	275
51V	0.072	0.240	1.7	0.572	1.5	3.3	7.3
52Cr	0.195	0.650	13	3.8	6.3	17	40
55Mn	0.007	0.023	26	30	37	37	67
57Fe	0.859	2.9	557	196	423	1,051	2,193
59Co	0.005	0.017	1.4	0.636	2.2	3.4	3.2
60Ni	0.028	0.093	21	6.3	12	28	58
63Cu	0.009	0.030	13	16	20	18	21
66Zn	0.354	1.2	559	251	550	408	376
75As	0.545	1.8	0.555	< 0.545	< 0.545	1.0	1.7
77Se	0.337	1.1	7.0	5.3	6.6	7.0	8.7
88Sr	0.001	0.003	5.4	4.0	5.8	8.5	15
95Mo	0.005	0.017	0.246	0.246	0.270	0.358	0.588
107Ag	0.001	0.003	0.092	0.066	0.093	0.090	0.168
111Cd	0.114	0.380	0.943	0.742	2.3	4.1	2.3
118Sn	0.057	0.190	0.245	0.352	0.491	0.604	0.725
121Sb	0.004	0.013	0.063	0.087	0.040	0.049	0.149
137Ba	0.001	0.003	30	24	28	54	92
202Hg	0.021	0.070	0.122	0.060	0.081	0.095	0.096
205Tl	0.001	0.003	0.030	0.020	0.026	0.042	0.059
208Pb	0.002	0.007	0.284	0.198	0.226	0.599	1.5
238U	0.001	0.003	0.054	0.043	0.068	0.095	0.192

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Teck Coal Limited Tissue Analysis Results

			RG_FRUL_INV-	RG_FRUL_INV-	RG_FRUL_INV-	RG_FRUL_INV-	RG_FRUL_INV-
Client ID			1_2022-05-02	2_2022-05-02	3_2022-05-02	4_2022-05-02	5_2022-05-02
Lab ID			206	207	208	209	210
		et Weight (g)	0.9207	0.6994	1.1125	1.1206	0.6672
		ry Weight (g)	0.1526	0.1396	0.1591	0.2680	0.1287
		Moisture (%)	83.4	80.0	85.7	76.1	80.7
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.003	0.010	0.774	0.699	1.0	0.572	1.0
11B	0.066	0.220	1.4	1.8	1.9	1.3	2.1
23Na	0.981	3.3	2,940	2,974	2,600	2,703	4,008
24Mg	0.017	0.057	2,066	1,550	2,009	2,689	1,656
27Al	0.017	0.057	703	910	998	624	1,009
31P	59	197	13,053	10,427	10,806	13,465	11,524
39K	2.2	7.3	7,748	10,054	6,752	7,723	9,758
44Ca	7.5	25	6,946	4,945	7,850	9,070	4,901
49Ti	0.209	0.697	39	59	64	38	70
51V	0.072	0.240	1.2	1.6	1.8	1.1	1.8
52Cr	0.195	0.650	6.2	9.2	12	7.1	8.6
55Mn	0.007	0.023	38	40	39	37	41
57Fe	0.859	2.9	390	500	591	394	547
59Co	0.005	0.017	0.686	0.863	0.970	0.477	0.960
60Ni	0.028	0.093	11	14	19	14	15
63Cu	0.009	0.030	20	16	19	24	16
66Zn	0.354	1.2	306	254	304	395	247
75As	0.545	1.8	< 0.545	< 0.545	< 0.545	< 0.545	0.618
77Se	0.337	1.1	7.8	7.4	7.7	7.8	7.9
88Sr	0.001	0.003	7.1	4.9	8.6	7.6	5.2
95Mo	0.005	0.017	0.346	0.286	0.310	0.342	0.350
107Ag	0.001	0.003	0.239	0.173	0.210	0.308	0.222
111Cd	0.114	0.380	1.9	1.1	1.5	0.863	1.3
118Sn	0.057	0.190	0.614	0.514	0.481	0.285	0.708
121Sb	0.004	0.013	0.046	0.077	0.050	0.036	0.079
137Ba	0.001	0.003	39	33	52	36	38
202Hg	0.021	0.070	0.077	0.071	0.087	0.077	0.093
205TI	0.001	0.003	0.021	0.023	0.020	0.016	0.029
208Pb	0.002	0.007	0.227	0.372	0.288	0.216	0.365
238U	0.001	0.003	0.056	0.076	0.081	0.045	0.109

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Teck Coal Limited Tissue Analysis Results

		Client ID	RG_LCUT_INV- 1_2022-05-02	RG_LCUT_INV- 2_2022-05-02	RG_LCUT_INV- 3_2022-05-02	RG_LCUT_INV- 4_2022-05-02	RG_LCUT_INV- 5_2022-05-02
Lab ID			211	212	213	214	215
Wet Weight (g)		1.3792	1.8716	1.6649	1.6392	1.4666	
	Dry Weight (g)		0.3017	0.3423	0.3593	0.3066	0.2751
	Moisture (%)		78.1	81.7	78.4	81.3	81.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.003	0.010	0.692	0.852	0.702	0.681	1.3
11B	0.066	0.220	2.6	2.9	2.3	2.5	3.9
23Na	0.981	3.3	2,372	2,470	2,889	2,273	3,432
24Mg	0.017	0.057	1,220	1,350	1,400	1,182	1,711
27Al	0.017	0.057	1,053	900	876	523	2,384
31P	59	197	9,237	8,057	12,321	9,826	13,281
39K	2.2	7.3	8,488	8,817	9,517	8,456	11,836
44Ca	7.5	25	2,046	2,891	1,969	2,406	4,699
49Ti	0.209	0.697	66	46	57	26	166
51V	0.072	0.240	2.0	1.5	1.5	1.0	3.9
52Cr	0.195	0.650	4.3	3.4	4.9	4.1	13
55Mn	0.007	0.023	24	21	22	26	35
57Fe	0.859	2.9	360	266	317	201	877
59Co	0.005	0.017	2.3	0.923	0.959	0.944	2.2
60Ni	0.028	0.093	14	13	15	13	30
63Cu	0.009	0.030	26	22	20	25	28
66Zn	0.354	1.2	351	270	220	277	275
75As	0.545	1.8	2.1	1.2	1.3	1.7	2.1
77Se	0.337	1.1	5.2	4.8	5.5	5.8	6.6
88Sr	0.001	0.003	4.0	4.5	3.9	3.9	8.0
95Mo	0.005	0.017	0.501	0.365	0.262	0.362	0.564
107Ag	0.001	0.003	0.045	0.029	0.027	0.047	0.064
111Cd	0.114	0.380	4.8	1.8	2.2	3.2	4.4
118Sn	0.057	0.190	0.355	0.344	0.187	0.378	0.416
121Sb	0.004	0.013	0.110	0.085	0.069	0.067	0.130
137Ba	0.001	0.003	57	39	40	43	85
202Hg	0.021	0.070	0.139	0.135	0.112	0.149	0.166
205TI	0.001	0.003	0.043	0.035	0.036	0.030	0.059
208Pb	0.002	0.007	0.549	0.362	0.511	0.421	1.0
238U	0.001	0.003	0.102	0.118	0.075	0.089	0.187

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

		Client ID	RG_LI8_INV- 1_2022-05-04	RG_LI8_INV- 2_2022-05-04	RG_LI8_INV- 3_2022-05-04	RG_LI8_INV- 4_2022-05-04	RG_LI8_INV- 5_2022-05-04
		Lab ID	216	217	218	219	220
	We	et Weight (g)	1.9484	2.6343	2.5137	2.0625	2.6700
		y Weight (g)	0.3942	0.5490	0.5489	0.4200	0.6274
		Moisture (%)	79.8	79.2	78.2	79.6	76.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.003	0.010	0.601	0.274	0.682	0.520	0.573
11B	0.066	0.220	2.2	0.945	2.8	1.6	1.9
23Na	0.981	3.3	2,647	2,657	2,807	2,916	2,818
24Mg	0.017	0.057	1,964	1,113	1,977	1,576	1,096
27Al	0.017	0.057	601	242	663	386	614
31P	59	197	11,873	9,875	11,077	9,674	11,330
39K	2.2	7.3	8,218	7,153	8,761	7,187	9,314
44Ca	7.5	25	6,383	1,571	4,883	2,646	2,613
49Ti	0.209	0.697	64	16	40	32	43
51V	0.072	0.240	1.3	0.459	1.1	0.618	0.940
52Cr	0.195	0.650	5.0	2.1	5.6	3.9	4.7
55Mn	0.007	0.023	90	76	100	59	93
57Fe	0.859	2.9	403	177	422	294	372
59Co	0.005	0.017	1.2	0.591	1.8	1.1	0.927
60Ni	0.028	0.093	24	8.7	30	21	18
63Cu	0.009	0.030	21	13	21	19	16
66Zn	0.354	1.2	473	322	645	414	300
75As	0.545	1.8	0.903	< 0.545	0.827	0.643	< 0.545
77Se	0.337	1.1	6.5	5.4	6.5	5.8	7.3
88Sr	0.001	0.003	9.1	2.7	7.0	4.6	4.7
95Mo	0.005	0.017	0.397	0.254	0.342	0.372	0.392
107Ag	0.001	0.003	0.039	0.023	0.039	0.027	0.027
111Cd	0.114	0.380	5.1	3.4	8.0	6.2	3.9
118Sn	0.057	0.190	0.405	0.130	0.288	0.415	0.289
121Sb	0.004	0.013	0.058	0.030	0.068	0.037	0.047
137Ba	0.001	0.003	35	16	28	18	27
202Hg	0.021	0.070	0.110	0.115	0.146	0.104	0.092
205Tl	0.001	0.003	0.042	0.019	0.036	0.031	0.016
208Pb	0.002	0.007	0.373	0.120	0.313	0.129	0.220
238U	0.001	0.003	0.143	0.049	0.085	0.078	0.114

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LI24_INV- 1_2022-05-02	RG_LI24_INV- 2_2022-05-02	RG_LI24_INV- 3_2022-05-02	RG_LI24_INV- 4_2022-05-02	RG_LI24_INV- 5_2022-05-02
		Lab ID	221	222	223	224	225
	We	et Weight (g)	1.8167	1.3315	1.6683	2.0050	0.9372
		y Weight (g)	0.2788	0.2349	0.2943	0.2895	0.1632
		Moisture (%)	84.7	82.4	82.4	85.6	82.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.003	0.010	0.295	0.302	0.179	0.195	0.387
11B	0.066	0.220	0.629	0.604	0.587	0.386	0.587
23Na	0.981	3.3	3,291	3,954	4,038	2,874	4,641
24Mg	0.017	0.057	1,757	1,297	1,244	1,577	1,760
27Al	0.017	0.057	145	165	88	75	142
31P	59	197	12,864	14,101	11,301	11,261	13,835
39K	2.2	7.3	10,208	13,895	11,824	9,521	14,225
44Ca	7.5	25	2,790	2,765	3,263	3,260	3,307
49Ti	0.209	0.697	10	9.9	6.3	4.2	9.9
51V	0.072	0.240	0.864	1.2	0.789	0.786	1.4
52Cr	0.195	0.650	2.7	2.4	2.2	2.0	2.5
55Mn	0.007	0.023	13	15	16	15	17
57Fe	0.859	2.9	125	133	125	112	166
59Co	0.005	0.017	0.305	0.417	0.517	0.362	0.509
60Ni	0.028	0.093	5.7	7.2	6.5	5.1	7.3
63Cu	0.009	0.030	13	12	12	14	15
66Zn	0.354	1.2	388	436	478	402	552
75As	0.545	1.8	1.7	1.5	2.0	1.5	1.9
77Se	0.337	1.1	5.4	7.2	7.1	6.1	7.2
88Sr	0.001	0.003	11	8.4	9.0	8.9	9.3
95Mo	0.005	0.017	0.297	0.277	0.251	0.352	0.327
107Ag	0.001	0.003	0.070	0.049	0.049	0.066	0.078
111Cd	0.114	0.380	1.8	2.2	2.2	2.4	2.6
118Sn	0.057	0.190	0.653	0.298	0.640	0.588	0.504
121Sb	0.004	0.013	0.036	0.037	0.029	0.023	0.042
137Ba	0.001	0.003	18	25	18	16	19
202Hg	0.021	0.070	0.073	0.092	0.115	0.096	0.104
205Tl	0.001	0.003	0.034	0.042	0.046	0.029	0.055
208Pb	0.002	0.007	0.088	0.140	0.142	0.088	0.189
238U	0.001	0.003	0.101	0.130	0.131	0.106	0.172

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LIDCOM_INV-	RG_LIDCOM_INV-	RG_LIDCOM_INV-	RG_LIDCOM_INV-	RG_LIDCOM_INV-
		Client ID	1_2022-05-03	2_2022-05-03	3_2022-05-03	4_2022-05-03	5_2022-05-03
		Lab ID	226	227	228	229	230
		et Weight (g)	2.4330	2.1627	2.5910	3.2406	2.2363
		ry Weight (g)	0.4523	0.5060	0.5492	0.5959	0.4707
		Moisture (%)	81.4	76.6	78.8	81.6	79.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.003	0.010	0.361	0.715	0.431	0.800	0.737
11B	0.066	0.220	1.5	2.1	1.4	2.8	2.9
23Na	0.981	3.3	1,975	2,323	2,816	3,205	2,858
24Mg	0.017	0.057	1,047	1,171	1,534	2,106	1,594
27Al	0.017	0.057	226	539	274	553	698
31P	59	197	6,294	9,702	10,672	11,767	9,573
39K	2.2	7.3	5,592	8,415	9,569	9,958	9,434
44Ca	7.5	25	1,532	2,896	2,062	4,434	3,897
49Ti	0.209	0.697	13	13	18	44	44
51V	0.072	0.240	0.360	0.437	0.398	0.973	1.1
52Cr	0.195	0.650	2.7	4.4	2.5	3.9	3.8
55Mn	0.007	0.023	58	73	182	106	165
57Fe	0.859	2.9	183	165	257	442	459
59Co	0.005	0.017	1.0	1.0	1.9	2.8	3.7
60Ni	0.028	0.093	13	11	21	22	21
63Cu	0.009	0.030	11	12	15	25	14
66Zn	0.354	1.2	254	244	390	574	443
75As	0.545	1.8	0.726	0.571	0.845	1.2	0.916
77Se	0.337	1.1	4.2	5.0	7.0	6.5	5.7
88Sr	0.001	0.003	2.6	3.4	3.2	6.5	6.1
95Mo	0.005	0.017	0.171	0.351	0.392	0.412	0.312
107Ag	0.001	0.003	0.015	0.024	0.032	0.049	0.029
111Cd	0.114	0.380	3.8	3.1	4.7	7.0	6.6
118Sn	0.057	0.190	0.267	0.186	0.250	0.459	0.319
121Sb	0.004	0.013	0.054	0.030	0.047	0.056	0.057
137Ba	0.001	0.003	11	12	20	27	40
202Hg	0.021	0.070	0.069	0.075	0.115	0.119	0.106
205Tl	0.001	0.003	0.032	0.027	0.032	0.038	0.032
208Pb	0.002	0.007	0.096	0.146	0.095	0.206	0.193
238U	0.001	0.003	0.031	0.036	0.055	0.096	0.103

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LIDSL_INV- 1_2022-05-04	RG_LIDSL_INV- 2_2022-05-04	RG_LIDSL_INV- 3_2022-05-04	RG_LIDSL_INV- 4_2022-05-04	RG_LIDSL_INV- 5_2022-05-04
		Lab ID	231	232	233	234	235
		et Weight (g)	1.6296	2.2819	1.9062	1.8094	2.7918
		y Weight (g)	0.3564	0.5180	0.3829	0.3966	0.5538
		Moisture (%)	78.1	77.3	79.9	78.1	80.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.003	0.010	0.678	0.472	0.494	0.291	0.681
11B	0.066	0.220	1.8	1.5	2.0	0.687	2.2
23Na	0.981	3.3	3,424	2,831	2,683	1,690	3,516
24Mg	0.017	0.057	1,461	1,369	1,032	907	1,471
27Al	0.017	0.057	205	231	127	124	507
31P	59	197	10,874	10,647	9,546	6,949	11,556
39K	2.2	7.3	11,680	10,754	8,307	4,402	10,676
44Ca	7.5	25	1,735	2,524	1,292	1,716	2,543
49Ti	0.209	0.697	11	16	9.0	7.2	30
51V	0.072	0.240	0.456	0.555	0.374	0.295	1.1
52Cr	0.195	0.650	3.2	4.1	2.2	1.9	3.3
55Mn	0.007	0.023	177	203	119	154	351
57Fe	0.859	2.9	369	403	279	198	602
59Co	0.005	0.017	3.5	2.5	2.3	1.8	3.9
60Ni	0.028	0.093	22	22	11	11	35
63Cu	0.009	0.030	13	16	13	10	25
66Zn	0.354	1.2	296	324	274	251	607
75As	0.545	1.8	0.625	0.583	0.547	< 0.545	0.743
77Se	0.337	1.1	4.3	4.7	4.8	3.6	6.7
88Sr	0.001	0.003	3.4	4.6	2.2	3.2	4.5
95Mo	0.005	0.017	0.362	0.342	0.382	0.282	0.503
107Ag	0.001	0.003	0.017	0.022	0.017	0.012	0.034
111Cd	0.114	0.380	5.3	5.8	4.0	4.0	6.8
118Sn	0.057	0.190	0.215	0.255	0.293	0.162	0.476
121Sb	0.004	0.013	0.060	0.059	0.052	0.025	0.082
137Ba	0.001	0.003	17	19	14	14	29
202Hg	0.021	0.070	0.073	0.071	0.073	0.054	0.145
205Tl	0.001	0.003	0.024	0.022	0.016	0.011	0.030
208Pb	0.002	0.007	0.091	0.075	0.074	0.052	0.200
238U	0.001	0.003	0.058	0.076	0.048	0.040	0.117

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LILC3_INV- 1_2022-05-02	RG_LILC3_INV- 2_2022-05-02	RG_LILC3_INV- 3_2022-05-02	RG_LILC3_INV- 4_2022-05-02	RG_LILC3_INV- 5_2022-05-02
		Lab ID	236	237	238	239	240
	We	et Weight (g)	1.0036	1.9762	1.5452	1.6879	1.1729
		y Weight (g)	0.2060	0.4532	0.2093	0.3042	0.2225
		Moisture (%)	79.5	77.1	86.5	82.0	81.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.003	0.010	0.665	1.0	1.1	0.923	0.997
11B	0.066	0.220	1.4	3.6	1.5	0.912	2.3
23Na	0.981	3.3	2,661	2,871	3,116	5,050	2,934
24Mg	0.017	0.057	1,546	1,983	1,495	1,309	1,400
27Al	0.017	0.057	417	1,262	344	288	1,002
31P	59	197	9,999	10,132	10,980	11,140	10,223
39K	2.2	7.3	7,826	10,911	8,898	14,385	8,759
44Ca	7.5	25	3,024	5,316	2,738	1,834	6,425
49Ti	0.209	0.697	27	98	19	15	64
51V	0.072	0.240	1.2	3.2	1.0	0.836	2.4
52Cr	0.195	0.650	3.9	7.8	2.4	2.5	6.1
55Mn	0.007	0.023	380	793	446	466	702
57Fe	0.859	2.9	970	2,214	767	1,037	2,081
59Co	0.005	0.017	8.7	6.7	4.7	3.8	7.6
60Ni	0.028	0.093	24	58	24	21	52
63Cu	0.009	0.030	28	24	12	21	20
66Zn	0.354	1.2	545	296	270	225	361
75As	0.545	1.8	1.6	1.7	1.5	1.6	1.6
77Se	0.337	1.1	7.1	11	9.3	12	10
88Sr	0.001	0.003	5.4	10	4.7	3.2	9.5
95Mo	0.005	0.017	0.629	1.7	0.839	0.719	0.803
107Ag	0.001	0.003	0.037	0.048	0.024	0.032	0.054
111Cd	0.114	0.380	21	5.6	3.0	3.5	6.6
118Sn	0.057	0.190	0.556	1.1	0.740	0.567	1.0
121Sb	0.004	0.013	0.135	0.243	0.177	0.149	0.192
137Ba	0.001	0.003	32	74	32	31	75
202Hg	0.021	0.070	0.150	0.106	0.097	0.130	0.130
205TI	0.001	0.003	0.050	0.050	0.036	0.040	0.054
208Pb	0.002	0.007	0.224	0.432	0.145	0.111	0.317
238U	0.001	0.003	0.131	0.316	0.123	0.129	0.200

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-
		Client ID	1_2022-05-03	2_2022-05-03	3_2022-05-03	4_2022-05-03	 5_2022-05-03
		Lab ID	241	242	243	244	245
	We	et Weight (g)	1.8140	2.1666	2.1853	1.8584	2.3376
	Di	ry Weight (g)	0.3677	0.4081	0.4403	0.3583	0.4979
		Moisture (%)	79.7	81.2	79.9	80.7	78.7
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.003	0.010	0.505	0.628	0.447	0.665	0.405
11B	0.066	0.220	0.748	0.979	0.691	1.4	0.783
23Na	0.981	3.3	2,606	2,902	3,058	3,423	2,367
24Mg	0.017	0.057	909	1,540	1,752	1,095	1,169
27Al	0.017	0.057	109	202	176	318	105
31P	59	197	9,326	10,002	12,326	9,131	10,224
39K	2.2	7.3	9,078	7,787	8,800	9,734	8,275
44Ca	7.5	25	1,526	2,669	2,146	2,290	1,991
49Ti	0.209	0.697	8.4	11	10	19	6.2
51V	0.072	0.240	0.402	0.662	0.555	0.939	0.390
52Cr	0.195	0.650	2.4	3.0	2.2	3.0	3.2
55Mn	0.007	0.023	215	355	585	488	216
57Fe	0.859	2.9	270	633	448	604	345
59Co	0.005	0.017	2.5	4.5	4.3	4.8	1.9
60Ni	0.028	0.093	15	19	22	33	15
63Cu	0.009	0.030	17	27	21	21	14
66Zn	0.354	1.2	223	439	532	384	278
75As	0.545	1.8	< 0.545	0.715	0.562	0.689	< 0.545
77Se	0.337	1.1	5.5	6.5	7.0	5.8	5.9
88Sr	0.001	0.003	2.4	4.3	6.4	3.8	2.9
95Mo	0.005	0.017	0.270	0.419	0.479	0.570	0.259
107Ag	0.001	0.003	0.031	0.026	0.034	0.042	0.017
111Cd	0.114	0.380	2.4	7.8	7.8	6.9	3.5
118Sn	0.057	0.190	0.309	0.439	0.499	0.551	0.233
121Sb	0.004	0.013	0.058	0.062	0.058	0.052	0.043
137Ba	0.001	0.003	15	26	31	28	11
202Hg	0.021	0.070	0.077	0.126	0.121	0.126	0.096
205Tl	0.001	0.003	0.013	0.032	0.023	0.033	0.016
208Pb	0.002	0.007	0.124	0.094	0.114	0.116	0.045
238U	0.001	0.003	0.041	0.091	0.093	0.065	0.035

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_SLINE_INV- 1_2022-05-03	RG_SLINE_INV- 2_2022-05-03	RG_SLINE_INV- 3_2022-05-03	RG_SLINE_INV- 4_2022-05-03	RG_SLINE_INV- 5_2022-05-03
		Lab ID	246	247	248	249	250
	W	et Weight (g)	1.5734	0.8357	1.2836	1.9576	2.5609
		y Weight (g)	0.2815	0.1582	0.2365	0.3833	0.4214
		Moisture (%)	82.1	81.1	81.6	80.4	83.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.003	0.010	0.484	0.585	0.373	0.554	0.412
11B	0.066	0.220	1.5	2.2	1.1	1.7	1.2
23Na	0.981	3.3	3,955	2,942	3,489	3,562	3,084
24Mg	0.017	0.057	1,769	1,572	1,502	1,176	1,200
27Al	0.017	0.057	636	809	332	812	523
31P	59	197	11,141	12,599	11,588	13,270	11,682
39K	2.2	7.3	12,147	11,234	10,478	11,349	10,343
44Ca	7.5	25	3,695	5,165	2,568	2,118	2,414
49Ti	0.209	0.697	41	58	20	56	35
51V	0.072	0.240	1.8	2.0	1.1	1.6	1.3
52Cr	0.195	0.650	4.7	11	3.1	3.8	3.1
55Mn	0.007	0.023	20	20	20	24	14
57Fe	0.859	2.9	353	493	209	315	248
59Co	0.005	0.017	0.882	0.492	0.479	0.246	0.298
60Ni	0.028	0.093	9.6	17	6.2	5.2	5.5
63Cu	0.009	0.030	22	19	16	13	16
66Zn	0.354	1.2	844	468	583	228	291
75As	0.545	1.8	1.9	1.7	1.6	0.696	1.3
77Se	0.337	1.1	8.5	6.9	9.1	6.5	6.8
88Sr	0.001	0.003	9.9	11	6.4	5.9	5.1
95Mo	0.005	0.017	0.440	0.518	0.324	0.654	0.375
107Ag	0.001	0.003	0.123	0.112	0.095	0.082	0.091
111Cd	0.114	0.380	8.4	2.6	5.9	0.936	2.5
118Sn	0.057	0.190	0.349	0.701	0.377	0.229	0.448
121Sb	0.004	0.013	0.026	0.034	0.022	0.029	0.018
137Ba	0.001	0.003	22	31	14	43	24
202Hg	0.021	0.070	0.197	0.141	0.156	0.111	0.116
205TI	0.001	0.003	0.069	0.043	0.084	0.046	0.048
208Pb	0.002	0.007	0.211	0.225	0.127	0.220	0.137
238U	0.001	0.003	0.130	0.163	0.122	0.123	0.064

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited
Tissue QA/QC Relative Percent Difference Results

(Client ID	RG_FO23	3_INV-5_202	22-05-04	RG_LI8_	_INV-3_2022	2-05-04	RG_LIDCC	M_INV-2_20	022-05-03
	Lab ID		205			218			227	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.003	2.8	1.9	38	0.682	0.856	23	0.715	0.704	1.6
11B	0.066	9.7	7.1	31	2.8	3.4	19	2.1	2.7	25
23Na	0.981	3,117	3,230	3.6	2,807	2,728	2.9	2,323	2,217	4.7
24Mg	0.017	2,236	2,297	2.7	1,977	1,811	8.8	1,171	805	37
27Al	0.017	4,167	4,216	1.2	663	768	15	539	584	8.0
31P	59	11,217	13,270	17	11,077	10,669	3.8	9,702	6,648	37
39K	2.2	14,590	12,226	18	8,761	9,966	13	8,415	6,088	32
44Ca	7.5	14,194	8,699	48	4,883	5,975	20	2,896	1,969	38
49Ti	0.209	275	317	14	40	46	14	13	14	7.4
51V	0.072	7.3	6.8	7.1	1.1	1.2	8.7	0.437	0.435	-
52Cr	0.195	40	42	4.9	5.6	4.9	13	4.4	3.1	35
55Mn	0.007	67	67	0.0	100	80	22	73	64	13
57Fe	0.859	2,193	1,719	24	422	418	1.0	165	218	28
59Co	0.005	3.2	3.1	3.2	1.8	1.3	32	1.0	1.0	0.0
60Ni	0.028	58	55	5.3	30	30	0.0	11	13	17
63Cu	0.009	21	20	4.9	21	21	0.0	12	10	18
66Zn	0.354	376	476	24	645	472	31	244	221	9.9
75As	0.545	1.7	1.1	-	0.827	1.0	-	0.571	< 0.545	-
77Se	0.337	8.7	8.3	4.7	6.5	5.6	15	5.0	4.5	11
88Sr	0.001	15	12	22	7.0	8.2	16	3.4	2.9	16
95Mo	0.005	0.588	0.429	31	0.342	0.382	11	0.351	0.272	25
107Ag	0.001	0.168	0.131	25	0.039	0.049	23	0.024	0.020	18
111Cd	0.114	2.3	2.6	12	8.0	5.4	39	3.1	2.6	18
118Sn	0.057	0.725	0.605	18	0.288	0.333	-	0.186	0.158	-
121Sb	0.004	0.149	0.106	34	0.051	0.068	29	0.030	0.042	33
137Ba	0.001	92	88	4.4	28	32	13	12	12	0.0
202Hg	0.021	0.096	0.108	-	0.146	0.108	-	0.075	0.104	-
205TI	0.001	0.059	0.055	7.0	0.036	0.041	13	0.027	0.028	3.6
208Pb	0.002	1.5	1.2	22	0.313	0.293	6.6	0.146	0.124	16
238U	0.001	0.192	0.183	4.8	0.085	0.119	33	0.036	0.038	5.4

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited
Tissue QA/QC Relative Percent Difference Results

(Client ID	RG_LIDS	L_INV-1_202	22-05-04	RG_LIDSI	_INV-5_202	22-05-04
	Lab ID		231		235		
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.003	0.678	0.671	1.0	0.681	0.624	8.7
11B	0.066	1.8	1.9	5.4	2.2	1.8	20
23Na	0.981	3,424	4,131	19	3,516	3,178	10
24Mg	0.017	1,461	1,573	7.4	1,471	1,520	3.3
27AI	0.017	205	241	16	507	440	14
31P	59	10,874	11,734	7.6	11,556	10,098	14
39K	2.2	11,680	12,560	7.3	10,676	8,328	25
44Ca	7.5	1,735	2,078	18	2,543	2,683	5.4
49Ti	0.209	11	15	31	30	24	22
51V	0.072	0.456	0.566	-	1.1	1.0	9.5
52Cr	0.195	3.2	3.7	15	3.3	2.9	13
55Mn	0.007	177	257	37	351	262	29
57Fe	0.859	369	371	0.5	602	600	0.3
59Co	0.005	3.5	4.5	25	3.9	4.1	5.0
60Ni	0.028	22	29	28	35	26	30
63Cu	0.009	13	17	27	25	22	13
66Zn	0.354	296	377	24	607	439	32
75As	0.545	0.625	0.845	-	0.743	0.736	-
77Se	0.337	4.3	5.1	17	6.7	6.4	4.6
88Sr	0.001	3.4	3.7	8.5	4.5	5.8	25
95Mo	0.005	0.362	0.473	27	0.503	0.407	21
107Ag	0.001	0.017	0.020	16	0.034	0.027	23
111Cd	0.114	5.3	7.8	38	6.8	6.7	1.5
118Sn	0.057	0.215	0.352	-	0.476	0.433	-
121Sb	0.004	0.060	0.067	11	0.082	0.090	9.3
137Ba	0.001	17	21	21	29	31	6.7
202Hg	0.021	0.073	0.111	-	0.145	0.099	-
205TI	0.001	0.024	0.032	29	0.030	0.028	6.9
208Pb	0.002	0.091	0.090	1.1	0.200	0.263	27
238U	0.001	0.058	0.064	9.8	0.117	0.091	25

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	S	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.003	1.21	1.2	96	7.7	1.4	114	3.2
11B	0.066	4.5	5.1	112	4.5	4.9	110	4.7
23Na	0.981	14,000	16,120	115	7.5	14,154	101	3.6
24Mg	0.017	910	1,002	110	7.8	989	109	2.8
27Al	0.017	197.2	215	109	8.2	180	91	4.6
31P	59	8,000	8,898	111	5.5	7,624	95	3.8
39K	2.2	15,500	17,359	112	9.7	15,647	101	4.2
44Ca	7.5	2,360	2,549	108	4.8	2,410	102	3.2
49Ti	0.209	12.24	14	116	18	12	101	9.2
51V	0.072	1.57	1.8	115	7.9	1.5	93	10
52Cr	0.195	1.87	2.3	121	7.4	1.9	100	6.1
55Mn	0.007	3.17	3.6	113	7.8	3.3	104	3.7
57Fe	0.859	343	387	113	5.4	344	100	3.8
59Co	0.005	0.25	0.310	124	7.7	0.258	103	4.9
60Ni	0.028	1.34	1.6	121	9.2	1.4	103	6.1
63Cu	0.009	15.7	19	122	6.8	16	104	5.5
66Zn	0.354	51.6	57	111	5.3	50	96	4.6
75As	0.545	6.87	7.8	114	5.4	6.6	97	4.2
77Se	0.337	3.45	3.7	106	3.1	3.5	101	3.5
88Sr	0.001	10.1	12	115	4.7	10	100	5.4
95Mo	0.005	0.29	0.320	110	5.9	0.298	103	6.1
107Ag	0.001	0.0252	0.031	121	8.5	0.024	96	7.4
111Cd	0.114	0.299	0.361	121	7.0	0.316	106	9.7
118Sn	0.057	0.061	0.062	101	1.1	0.063	104	7.9
121Sb	0.004	0.011	0.012	107	7.1	0.012	109	12
137Ba	0.001	8.6	9.6	112	4.2	8.5	99	1.7
202Hg	0.021	0.412	0.447	108	5.0	0.422	102	7.9
205TI	0.001	0.0013	-	-	-	-	-	-
208Pb	0.002	0.404	0.485	120	10	0.351	87	8.8
238U	0.001	0.05	0.050	101	11	0.044	88	5.9

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		03		04			
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	
7Li	0.003	1.21	1.2	102	9.2	1.1	93	7.5	
11B	0.066	4.5	4.1	91	3.6	4.6	102	2.8	
23Na	0.981	14,000	14,180	101	7.4	12,988	93	2.6	
24Mg	0.017	910	935	103	6.0	857	94	6.2	
27Al	0.017	197.2	178	90	1.3	199	101	8.2	
31P	59	8,000	8,013	100	3.6	7,679	96	4.9	
39K	2.2	15,500	14,956	96	3.7	15,056	97	8.4	
44Ca	7.5	2,360	2,359	100	4.6	2,208	94	3.5	
49Ti	0.209	12.24	11	87	9.4	13	105	6.5	
51V	0.072	1.57	1.7	106	11	1.6	103	12	
52Cr	0.195	1.87	1.9	100	5.8	1.9	100	4.5	
55Mn	0.007	3.17	3.4	108	4.9	3.0	95	4.3	
57Fe	0.859	343	356	104	4.6	329	96	5.1	
59Co	0.005	0.25	0.258	103	7.9	0.245	98	5.8	
60Ni	0.028	1.34	1.4	104	5.1	1.4	102	4.0	
63Cu	0.009	15.7	16	102	6.2	16	104	7.0	
66Zn	0.354	51.6	51	99	7.6	50	98	3.6	
75As	0.545	6.87	7.1	103	4.7	6.6	96	4.1	
77Se	0.337	3.45	3.5	101	6.6	3.5	101	5.3	
88Sr	0.001	10.1	10	101	7.2	9.7	96	8.6	
95Mo	0.005	0.29	0.298	103	4.4	0.286	99	6.1	
107Ag	0.001	0.0252	0.028	110	7.1	0.025	98	7.2	
111Cd	0.114	0.299	0.309	103	16	0.337	113	7.5	
118Sn	0.057	0.061	0.070	115	13	0.058	95	15	
121Sb	0.004	0.011	0.010	89	17	0.010	94	11	
137Ba	0.001	8.6	7.6	89	3.5	8.6	100	3.4	
202Hg	0.021	0.412	0.442	107	9.2	0.426	103	6.9	
205Tl	0.001	0.0013	-	-	-	-	-	-	
208Pb	0.002	0.404	0.451	112	15	0.449	111	18	
238U	0.001	0.05	0.052	104	7.8	0.049	99	12	

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_FO23_INV-1_2022-05-04	201	16 May 2022
	RG_FO23_INV-2_2022-05-04	202	
	RG_FO23_INV-3_2022-05-04	203	
	RG_FO23_INV-4_2022-05-04	204	
	RG_FO23_INV-5_2022-05-04	205	
	RG_FRUL_INV-1_2022-05-02	206	
	RG_FRUL_INV-2_2022-05-02	207	
	RG_FRUL_INV-3_2022-05-02	208	
	RG_FRUL_INV-4_2022-05-02	209	
	RG_FRUL_INV-5_2022-05-02	210	
	RG_LCUT_INV-1_2022-05-02	211	
	RG_LCUT_INV-2_2022-05-02	212	
	RG_LCUT_INV-3_2022-05-02	213	
	RG_LCUT_INV-4_2022-05-02	214	
	RG_LCUT_INV-5_2022-05-02	215	
	RG_LI8_INV-1_2022-05-04	216	
	RG_LI8_INV-2_2022-05-04	217	
02	RG_LI8_INV-3_2022-05-04	218	16 May 2022
	RG_LI8_INV-4_2022-05-04	219	
	RG_LI8_INV-5_2022-05-04	220	
	RG_LI24_INV-1_2022-05-02	221	
	RG_LI24_INV-2_2022-05-02	222	
	RG_LI24_INV-3_2022-05-02	223	
	RG_LI24_INV-4_2022-05-02	224	
	RG_LI24_INV-5_2022-05-02	225	
	RG_LIDCOM_INV-1_2022-05-03	226	
	RG_LIDCOM_INV-2_2022-05-03	227	
	RG_LIDCOM_INV-3_2022-05-03	228	
	RG_LIDCOM_INV-4_2022-05-03	229	
	RG_LIDCOM_INV-5_2022-05-03	230	
	RG_LIDSL_INV-1_2022-05-04	231	
	RG_LIDSL_INV-2_2022-05-04	232	
	RG_LIDSL_INV-3_2022-05-04	233	
	RG_LIDSL_INV-4_2022-05-04	234	
03	RG_LIDSL_INV-5_2022-05-04	235	16 May 2022
	RG_LILC3_INV-1_2022-05-02	236	
	RG_LILC3_INV-2_2022-05-02	237	
	RG_LILC3_INV-3_2022-05-02	238	
	RG_LILC3_INV-4_2022-05-02	239	
	RG_LILC3_INV-5_2022-05-02	240	

Teck Coal Limited Sample Group Information

Sample			Date of
Group ID	Client ID	Lab ID	Analysis
03	RG_LISP24_INV-1_2022-05-03 RG_LISP24_INV-2_2022-05-03 RG_LISP24_INV-3_2022-05-03 RG_LISP24_INV-4_2022-05-03	241 242 243 244	16 May 2022 16 May 2022
04	RG_LISP24_INV-4_2022-05-03 RG_SLINE_INV-1_2022-05-03 RG_SLINE_INV-2_2022-05-03 RG_SLINE_INV-3_2022-05-03 RG_SLINE_INV-4_2022-05-03 RG_SLINE_INV-5_2022-05-03 RG_SLINE_INV-5_2022-05-03	244 245 246 247 248 249 250	16 May 2022

204-1006 Fort Street Victoria, British Columbia V8V 3K4 MINNOW ENVIRONMENTAL INCORPORATED Telephone:(250) 595-1627 Facsmile:(250) 595-1625 CHAIN OF CUSTODY RECORD

Minnow Contact: Tyler Mehler tyler.mehler@minnow.ca Page of

Minnow Project #: Contact Email:

217202.0036

10

Laboratory: Trich Analytics

Phone: Contact: Tyler Mehler 587-597-1612 Fax: ; Kbatchelar@minnow.ca, Jessica.Ritz@teck.com Date Results Required By:

Samples F	Samples	15	14	. 13	12	12	- 11	10	9	8	7	6	205 5 .	204 4	253 3	202 2	_	CK ID Number	Sample
Samples Received in Lab By: (Lab Employee Signature)	(Minnow Employee Signature)	The late of the la											. RG FO23 INV-5 2022-05-04	RG FO23 INV-4 2022-05-04	RG FO23 INV-3 2022-05-04	RG FO23 INV-2 2022-05-04	RG FO23 INV-1 2022-05-04	Minnow Sample ID	
Alex Wate	风	13 1																	
vade Ct													04-May-22 Invertebrate tissue	04-May-22 Invertebrate tissue	04-May-22 Invertebrate tissue	04-May-22 Invertebrate tissue	04-May-22 Invertebrate tissue	Sampled Matrix	Date
1													×	× ×	× ×	×	×	(Freeze Drying)	Moisture
5 may 2012	Date: Time: Co Go	Time											>	· >	« »	c >	× ×	Hg	Full Metals
1 most on 1	Sample Condition	Shipment Metho						D						-		→	_	Containers 1	Number of
2	Sample Condition upon Receipt:	Shipment Method: Pacific Coastal cargo in local coordinates	and cooler				d) Kin	D T T T T T T T T T T T T T T T T T T T											Comments

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

(Lab Employee Signature)

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

Trick 10 211 214 613 212 215 Laboratory: Trich Analytics Report mailing list: tyler.mehler@minnow.ca; Cybele.Heddle@teck.com; Kbatchelar@minnow.ca, Jessica.Ritz@teck.com Phone: Contact: Samples Relinquished to Lab By: SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW Samples Received in Lab By: Number 12 -10 13 9 RG LCUT INV-5 2022-05-02 RG LCUT INV-2 2022-05-02 RG_LCUT_INV-1_2022-05-02 587-597-1612 Tyler Mehler RG LCUT INV-4 2022-05-02 RG LCUT INV-3 2022-05-02 (Minnow Employee Signature) (Lab Employee Signature) Minnow Sample ID Victoria, British Columbia V8V 3K4 204-1006 Fort Street MINNOW ENVIRONMENTAL INCORPORATED Alex wade 02-May-22 Invertebrate tissue 02-May-22 Invertebrate tissue 02-May-22 Invertebrate tissue 02-May-22 Invertebrate tissue 02-May-22 Invertebrate tissue Sampled Date Matrix Moisture (Freeze Drying) Full Metals Date: 15 may 2022 including Telephone:(250) 595-1627 Facsmile:(250) 595-1625 Analysis Required Date Results Required By: Contact Email: Minnow Project #: Minnow Contact: Time: Time: 08.00 10.00 Tyler Mehler Containers tyler.mehler@minnow.ca Number of Shipment Method: Pacific Coastal cargo in iced cooler Sample Condition upon Receipt CHAIN OF CUSTODY RECORD 217202.0036 Lus per 100,000 # 3 Comments of 2002 331 10

Victor Laboratory: Trich Analytics	204-100 ria, British	W ENVI	RONMENTA		AL INCOR	AL INCORPORATED Telepho Facsm	MINNOW ENVIRONMENTAL INCORPORATED 10 Fort Street 11 Columbia V8V 3K4 12 Facsmile:(250) 595-1	ne:(250) le:(250) 5	ne:(250) 595-1627 le:(250) 595-1625
boratory: Tri	Trich Analytics						Minr	Minnow Contact: Contact Email: Minnow Project #:	Ty
Phone: 58	587-597-1612	Fax:					Date	Date Results Required B	sults Required By:
port mailing	Report mailing list: tyler.mehler@minnow.ca; Cybele.Heddle@teck.com; Kbatchelar@minnow.ca, Jessica.Ritz@teck.com Analysis Required	Cybele.Hedd	lle@teck.com; Kbatc	helar@min	now.ca, Jes	Ana	sica.Ritz@teck.c	ssica.Ritz@teck.com Analysis Required	sica.Ritz@teck.com Analysis Required
Sample	Minnow Sample ID	Date	Matrix	Moisture (Freeze Drying)	Full Metals including Hg				Number of Containers
1 RG	RG_LI8_INV-1_2022-05-04 V	04-May-22	04-May-22 Invertebrate tissue	×	×				_
2 RG	RG_LI8_INV-2_2022-05-04,v	04-May-22	04-May-22 Invertebrate tissue	×	×				1
3 RG	RG_LI8_INV-3_2022-05-04 /	04-May-22	04-May-22 Invertebrate tissue	×	×				_
4 RG	RG_LI8_INV-4_2022-05-04	04-May-22	04-May-22 Invertebrate tissue	×	×				-
5 RG	RG_LI8_INV-5_2022-05-04 ~	04-May-22	04-May-22 Invertebrate tissue	×	×				_
6									
7									
8									
9									
10									
1									Project # 2012-331
12									
13									
14									
15						-			
imples Relini (Minr	Samples Relinquished to Lab By: (Minnow Employee Signature)	030			Date: 2021	-	Date: Tim	Time: 68:00	Time:
imples Rece		Alex Wade	2	10	Date:	5,	5 May 2022	Time:	Time:
100	1		ŀ			(((

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

MINNOW ENVIRONMENTAL INCORPORATED 204-1006 Fort Street Victoria, British Columbia V8V 3K4 Facsmil CHAIN OF CUSTODY RECORD

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

1 1 1 Samp Samp		1	2	8	-	6	215 5	224 4	213 3	221 2	221	Sample Number	Contact: Phone: Report r	Labora
13 14 15 ples Reling (Minr	12	10	9	w	7	52		RG		RG	RG	ple	ct: Tyle 9: 587- t mailing li	Laboratory: Trich Analytics
13 14 15 Samples Relinquished to Lab By: (Minnow Employee Signature) Samples Received in Lab By:							RG LI24 INV-5 2022-05-02 *	RG LI24 INV-4 2022-05-02 .	RG LI24 INV-3 2022-05-02	RG LI24 INV-2 2022-05-02 *	RG LI24 INV-1 2022-05-02 M	Minnow Sample ID	Tyler Mehler 587-597-1612 ing list: tyler.mehler@minn	n Analytics
									*			J	ow.ca; Cyl	
*							02-May-22	02-May-22	02-May-22	02-May-22	02-May-22	Date Sampled	Fax: /bele.Heddl	
							02-May-22 Invertebrate tissue	02-May-22 Invertebrate tissue	02-May-22 Invertebrate tissue	02-May-22 Invertebrate tissue	02-May-22 Invertebrate tissue	Matrix	e@teck.com; Kbatc	
							×	×	×	×	×	Moisture (Freeze Drying)	helar@min	
Date: 202-05-13							×	×	×	×	×	Full Metals including Hg	Contact: Tyler Mehler Minnov Phone: 587-597-1612 Fax: Report mailing list: tyler.mehler@minnow.ca; Cybele.Heddle@teck.com; Kbatchelar@minnow.ca, Jessica.Ritz@teck.com Analysis Required	
Time: 08:00													Minnow Project #: Date Results Required By: eck.com	Minnow Contact:
Shipment Method: Pacific Coastal cargo in iced cooler Sample Condition upon Receipt:		· .					-					Number of Containers		Page 5 Tyler Mehler tyler mehler@minnow.ca
l: Pacific (119										Com		
Coastal carg		Propert # 1022 331										Comments		of
go in iced		IN.												10

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

* Sample container dollers read "2022-05-03"

and isovarizogs

	MINNOW ENV 204-1006 Fort Street Victoria, British Columbia V8V 3K4	V ENVIRO	MINNOW ENVIRONMENTAL INCORPORATED 16 Fort Street 1 Columbia V8V 3K4 Facs	CORP	ORATED Telephone:(2 Facsmile:(25)	FED Telephone:(250) 595-1627 Facsmile:(250) 595-1625	CHAIN OF CUSTODY RECORD
Laborator	Laboratory: Trich Analytics						Page
						Minnow Contact:	Tyler Mehler
Contact:	Tyler Mehler					Contact Email: Minnow Project #:	tyler.mehler@minnow.ca 217202.0036
Phone:	587-597-1612	Fax:				Date Results Required By:	
Report ma	Report mailing list: tyler.mehler@minnow.ca; Cybele.Heddle@teck.com; Kbatchelar@minnow.ca, Jessica.Ritz@teck.com Analysis Recuire	le.Heddle@te	ck.com; Kbatchelar	.wonnim@	ca, Jessica.Ritz@te	.Ritz@teck.com	
7					, mailon	- Cyclinox	
Sample Number	Minnow Sample ID	Date Sampled	Matrix	Moisture (Freeze Drying)	Full Metals including Hg		Number of Containers
226 1	RG_LIDCOM_INV-1_2022-05-03 *	03-May-22	03-May-22 Invertebrate tissue	×	×		_
227 2	RG_LIDCOM_INV-2_2022-05-03 -	03-May-22	03-May-22 Invertebrate tissue	×	×		_
228 3	RG_LIDCOM_INV-3_2022-05-03 *	03-May-22	03-May-22 Invertebrate tissue	×	×		_
229 4	RG_LIDCOM_INV-4_2022-05-03 *	03-May-22	03-May-22 Invertebrate tissue	×	×		_
230 5	RG_LIDCOM_INV-5_2022-05-03 *	03-May-22	03-May-22 Invertebrate tissue	×	×		_
6							
7							
œ							
9							
10							
11							
12							
13							
14							
15							
Samples	Samples Relinquished to Lab By: (Minnow Employee Signature)	S			Date: 22-01-13	Time: 08:00	Shipment Method: Pacific Coastal cargo in iced coole
Samples	DIOX	made	De la		Date:	Time:	Sample Condition upon Receipt:

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

* sample containers read "22/05/04".

204-1006 Fort Street MINNOW ENVIRONMENTAL INCORPORATED

Victoria, British Columbia V8V 3K4

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

Treu D 231 232 255 Report mailing list: tyler.mehler@minnow.ca; Cybele.Heddle@teck.com; Kbatchelar@minnow.ca, Jessica.Ritz@teck.com Contact: Laboratory: Trich Analytics Samples Relinquished to Lab By: Samples Received in Lab By: Number Sample 1 10 14 13 12 9 587-597-1612 RG LIDSL INV-2 2022-05-04 Tyler Mehler RG LIDSL INV-5 2022-05-04 RG LIDSL INV-4 2022-05-04 RG LIDSL INV-3 2022-05-04 RG LIDSL INV-1 2022-05-04 (Minnow Employee Signature) (Lab Employee Signature) Minnow Sample ID Alex S. winde 04-May-22 Invertebrate tissue 04-May-22 Invertebrate tissue 04-May-22 Invertebrate tissue 04-May-22 Invertebrate tissue 04-May-22 Invertebrate tissue Sampled Date Matrix Moisture Full Metals Drying) (Freeze including is may 2012 Analysis Required Date Results Required By: Minnow Project #: Contact Email: Minnow Contact: Time: Time: 08:00 10.00 Tyler Mehler Containers tyler.mehler@minnow.ca Sample Condition upon Receipt Shipment Method: Pacific Coastal cargo in iced cooler Number of 217202.0036 Frozen 12 July # 1242-350 Comments of 0

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

Trick 10 237 236 238 240 239 Samples Received in Lab By: Samples Relinquished to Lab By: Report mailing list: tyler.mehler@minnow.ca; Cybele.Heddle@teck.com; Kbatchelar@minnow.ca, Jessica.Ritz@teck.com Contact: Laboratory: Trich Analytics Sample Number 14 13 12 1 10 9 5 4 RG_LILC3_INV-5_2022-05-03 * RG_LILC3_INV-3_2022-05-03 * RG_LILC3_INV-1_2022-05-03* (Minnow Employee Signature) RG_LILC3_INV-4_2022-05-03 * RG_LILC3_INV-2_2022-05-03 * 587-597-1612 Tyler Mehler (Lab Employee Signature) Minnow Sample ID Victoria, British Columbia V8V 3K4 204-1006 Fort Street MINNOW ENVIRONMENTAL INCORPORATED Rick Alex wade Smit 02-May-22 Invertebrate tissue 02-May-22 Invertebrate tissue 02-May-22 Invertebrate tissue 02-May-22 Invertebrate tissue 02-May-22 Invertebrate tissue Sampled Date R Matrix Drying) (Freeze Moisture Full Metals × × × × × Date: Date: 202-05-13 including Hg × 15 may 2022 Telephone:(250) 595-1627 Facsmile:(250) 595-1625 Analysis Required Date Results Required By: Contact Email: Minnow Project #: Minnow Contact: Time: 00:00 10:00 Shipment Method: Pacific Coastal cargo in iced cooler tyler.mehler@minnow.ca Sample Condition upon Receipt: Containers Tyler Mehler Number of CHAIN OF CUSTODY RECORD 217202.0036 Froten Project #: 2022-331 00 Comments of 10

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

* Sample containers read "2012-05-02"

aw ismayloth

MINNOW ENVIRONMENTAL INCORPORATED 204-1006 Fort Street Victoria, British Columbia V8V 3K4 Telephone:(250) 595-1627 Facsmile:(250) 595-1625 CHAIN OF CUSTODY RECORD

			-	2	-	2.	241	100		
Sa Sa			545	244	243	242	100	THUID N	Contac Phone: Report	
13 14 15 mples F	10 9	7 6	5	4	ω	2	_	Sample	Laboratory Contact: Phone: Report mai	
13 14 15 Samples Relinquished to Lab By: (Minnow Employee Signature) Samples Received in Lab By: (Lab Employee Signature) (Lab Employee Signature)			RG LISP24 INV-5 2022-05-03	RG LISP24 INV-4 2022-05-03	RG LISP24 INV-3 2022-05-03	RG LISP24 INV-2 2022-05-03	RG LISP24 INV-1 2022-05-03	Minnow Sample ID	Analytics Corract: Tyler Mehler Contact: Tyler Mehler Fax: Phone: 587-597-1612 Fax: Report mailing list: tyler.mehler@minnow.ca; Cybele.Heddle@teck.com; Kbatchelar@minnow.ca, Jessica.Ritz@teck.com Analysis Require Moisture Full Metals	Titul Acabatan
Risk Smit			03-May-22 Invertebrate tissue	03-May-22 Invertebrate tissue	03-May-22 Invertebrate tissue	03-May-22 Invertebrate tissue	03-May-22 Invertebrate tissue	Date	Fax: bele.Heddle@teck.c	
D &			rtebrate tissue	Matrix	om; Kbatchelard					
			×	×	×	×	×	(Freeze Drying)	@minnow Moisture	
Date: 2022-05-13 Date: 15 may 2022			×	×	×	×	×		Minno Conta Minno Minno Date Date Analysis Required Full Metals	
Time: C.8' CO									Minnow Contact: Contact Email: Minnow Project #: Date Results Required By:com equired	
Shipment Method: Pacific Coastal cargo in iced cooler Sample Condition upon Receipt:	Project		4	_				Containers	2 27	Page
Pacific C	9							Comi)W.Ca	9
oastal ca	1221							Comments		10
ırgo in iced cooler	331									10

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

MINNOW ENVIRONMENTAL INCORPORATED 204-1006 Fort Street Victoria, British Columbia V8V 3K4 Facst

Telephone:(250) 595-1627 Facsmile:(250) 595-1625

CHAIN OF CUSTODY RECORD

												250	249	248	247	246	Trade 10							
Samples F	Samples F	15	14	13	12	11	10	9	00	7	6	5	4	w	2	1	Sample		Report ma	Phone:	Contact:			Laboratory
Samples Received in Lab By:	Samples Relinquished to Lab By: Rick Smit										i	RG_SLINE_INV-5_2022-05-03 V	RG_SLINE_INV-4_2022-05-03 /	RG_SLINE_INV-3_2022-05-03 /	RG_SLINE_INV-2_2022-05-03	RG_SLINE_INV-1_2022-05-03 V	Minnow Sample ID		Report mailing list: tyler.mehler@minnow.ca; Cybele.Heddle@teck.com; Kbatchelar@minnow.ca, Jessica.Ritz@teck.com	587-597-1612	Tyler Mehler			Laboratory: Trich Analytics
	+											03-May-22	03-May-22	03-May-22	03-May-22	03-May-22	Date Sampled		e.Heddle@ted	Fax:				
)	R											03-May-22 Invertebrate tissue	03-May-22 Invertebrate tissue	03-May-22 Invertebrate tissue	03-May-22 Invertebrate tissue	03-May-22 Invertebrate tissue	Matrix		ck.com; Kbatchelar(
1												×	×	×	×	×	Moisture (Freeze Drying)		@minnow.					
Date:	2622-05-13											×	×	×	×	×	Full Metals including Hg	Analysis	ca, Jessica.Ritz@tec					
Time:	3 Time: 08:00																	Analysis Required	k.com	Date Results Required By:	Minnow Project #:	Contact Email:	Minnow Contact:	
Sample Con	Shipment M											_	_	_	_	_	Number of Containers			By:	217202.0036	tyler.mehler	Tyler Mehler	Page
Sample Condition upon Receipt:	Shipment Method: Pacific Coastal cargo in iced cooler				1.0]	Priest # 2012-331											Comments				2.0036	tyler.mehler@minnow.ca		10 of 10

SUBMIT ORIGINAL TO LAB WITH SAMPLES AND RETAIN TWO PHOTOCOPIES AT MINNOW

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2022-364 (Finalized August 8, 2022)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Cybele Heddle Client:

Project Manager

Teck

Phone: (250) 910-8755

Email:

cybele.heddle@teck.com; tyler.mehler@minnow.ca;

jessica.ritz@teck.com; hannah.penner@teck.com; kbatchelar@minnow.ca

Client Project: LCO LAEMP Regional Effects Program (PO 818999)

Analytical Request: Composite Benthic Invertebrate Tissue Microchemistry (total metals & moisture) - 50 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg). Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards. Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 107% (ranging from 104-109%).

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

08 Aug 2022

Date Received:

Project No.:

Method No.:

Date of Analysis:

Final Report Date:

02 Aug 2022

05 Aug 2022 08 Aug 2022

2022-364

MET-002.06

Project No: 2022-364

Teck
Tissue Analysis Results

		Client ID	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-
		Client ID	1_2022-07-13_N	2_2022-07-13_N	3_2022-07-13_N	4_2022-07-13_N	5_2022-07-13_N
		Lab ID	001	002	003	004	005
	We	et Weight (g)	1.2089	1.4891	2.3637	1.6316	2.0446
		y Weight (g)	0.1939	0.2531	0.4575	0.2750	0.4027
		Moisture (%)	84.0	83.0	80.6	83.1	80.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.016	0.053	0.768	0.726	0.594	0.716	0.482
11B	0.070	0.233	1.1	0.914	0.822	1.2	0.457
23Na	6.1	20	4,108	4,997	4,567	2,992	3,998
24Mg	0.126	0.420	2,333	2,133	2,180	2,205	1,868
27Al	0.049	0.163	473	392	271	462	200
31P	112	373	16,862	17,235	15,456	13,709	14,635
39K	2.5	8.3	15,617	15,601	13,948	10,483	13,120
44Ca	10	33	4,124	3,702	3,620	3,734	2,384
49Ti	0.001	0.003	49	27	16	31	13
51V	0.032	0.107	1.2	0.830	0.597	0.915	0.495
52Cr	0.204	0.680	7.6	6.0	4.4	5.5	3.1
55Mn	0.009	0.030	101	91	115	198	109
57Fe	1.7	5.7	539	411	383	416	225
59Co	0.013	0.043	8.4	8.4	14	9.3	8.2
60Ni	0.053	0.177	28	26	35	25	20
63Cu	0.018	0.060	42	41	37	35	36
66Zn	0.374	1.2	907	755	952	815	877
75As	0.355	1.2	2.7	2.5	3.1	2.4	2.8
77Se	0.394	1.3	7.2	7.2	6.8	6.5	6.9
88Sr	0.001	0.003	7.1	5.7	5.6	6.9	4.3
95Mo	0.001	0.003	0.746	0.725	0.684	0.787	0.435
107Ag	0.001	0.003	0.104	0.094	0.073	0.063	0.052
111Cd	0.162	0.540	21	19	22	18	19
118Sn	0.046	0.153	1.9	0.677	0.678	0.755	0.603
121Sb	0.004	0.013	0.037	0.040	0.035	0.046	0.028
137Ba	0.001	0.003	28	23	18	36	17
202Hg	0.020	0.067	0.155	0.119	0.137	0.135	0.151
205Tl	0.001	0.003	0.118	0.084	0.108	0.088	0.129
208Pb	0.002	0.007	0.243	0.170	0.154	0.233	0.110
238U	0.001	0.003	0.163	0.072	0.085	0.101	0.078

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck
Tissue Analysis Results

		Client ID	RG_LIDSL_INV- 1_2022-07-11_N	RG_LIDSL_INV- 2_2022-07-11_N	RG_LIDSL_INV- 3_2022-07-11_N	RG_LIDSL_INV- 4_2022-07-11_N	RG_LIDSL_INV- 5_2022-07-11_N
		Lab ID	006	007	008	009	010
	We	et Weight (g)	1.5613	1.6903	1.8220	1.6341	1.4403
		y Weight (g)	0.2780	0.3367	0.3234	0.2910	0.2563
		Moisture (%)	82.2	80.1	82.3	82.2	82.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.016	0.053	0.639	0.411	0.771	0.578	0.494
11B	0.070	0.233	0.792	0.563	0.887	0.883	0.670
23Na	6.1	20	4,448	2,900	3,947	3,708	3,529
24Mg	0.126	0.420	1,925	1,369	2,232	1,821	1,881
27Al	0.049	0.163	390	159	629	425	252
31P	112	373	13,989	11,463	15,311	11,905	13,821
39K	2.5	8.3	14,699	9,670	13,050	11,616	11,812
44Ca	10	33	3,319	1,933	3,951	2,923	3,861
49Ti	0.001	0.003	23	9.5	42	29	20
51V	0.032	0.107	0.802	0.377	1.4	0.912	0.540
52Cr	0.204	0.680	4.7	2.3	8.6	5.6	4.0
55Mn	0.009	0.030	118	72	94	94	118
57Fe	1.7	5.7	375	191	491	402	278
59Co	0.013	0.043	8.9	5.7	8.4	7.2	12
60Ni	0.053	0.177	22	12	26	19	24
63Cu	0.018	0.060	29	22	32	27	35
66Zn	0.374	1.2	898	707	855	624	912
75As	0.355	1.2	2.5	1.9	2.2	2.0	2.5
77Se	0.394	1.3	6.4	5.1	7.2	6.4	7.9
88Sr	0.001	0.003	5.2	3.5	6.6	5.5	6.4
95Mo	0.001	0.003	0.476	0.352	0.559	0.456	0.704
107Ag	0.001	0.003	0.060	0.042	0.073	0.057	0.083
111Cd	0.162	0.540	24	16	23	17	25
118Sn	0.046	0.153	0.854	0.459	0.605	0.678	0.731
121Sb	0.004	0.013	0.041	0.027	0.041	0.034	0.027
137Ba	0.001	0.003	30	17	25	26	29
202Hg	0.020	0.067	0.130	0.123	0.146	0.149	0.192
205Tl	0.001	0.003	0.093	0.071	0.097	0.063	0.059
208Pb	0.002	0.007	0.213	0.108	0.216	0.154	0.151
238U	0.001	0.003	0.088	0.050	0.180	0.081	0.068

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck
Tissue Analysis Results

		Client ID	RG_LI8_INV- 1_2022-07-14_N	RG_LI8_INV- 2_2022-07-14_N	RG_LI8_INV- 3_2022-07-14_N	RG_LI8_INV- 4_2022-07-14_N	RG_LI8_INV- 5_2022-07-14_N
		Lab ID	011	012	013	014	015
	We	et Weight (g)	2.4954	1.5764	1.3009	1.7800	2.2766
		y Weight (g)	0.4928	0.3076	0.2685	0.3745	0.4614
		Moisture (%)	80.3	80.5	79.4	79.0	79.7
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.016	0.053	0.572	0.437	0.636	0.617	0.501
11B	0.070	0.233	0.701	0.670	0.975	1.0	0.579
23Na	6.1	20	4,812	3,373	2,937	3,466	3,580
24Mg	0.126	0.420	1,867	2,211	2,333	1,878	2,111
27Al	0.049	0.163	213	187	550	477	201
31P	112	373	15,355	14,250	14,636	13,645	15,046
39K	2.5	8.3	16,215	12,443	10,865	13,001	12,480
44Ca	10	33	2,566	3,743	3,464	3,378	3,185
49Ti	0.001	0.003	11	12	37	27	12
51V	0.032	0.107	0.450	0.501	1.1	0.833	0.490
52Cr	0.204	0.680	2.5	3.4	5.9	4.1	3.5
55Mn	0.009	0.030	69	72	65	65	63
57Fe	1.7	5.7	254	242	427	325	239
59Co	0.013	0.043	4.1	7.5	6.3	5.5	4.2
60Ni	0.053	0.177	19	30	29	27	24
63Cu	0.018	0.060	16	28	22	23	20
66Zn	0.374	1.2	1,001	1,234	1,071	1,099	876
75As	0.355	1.2	2.2	2.5	2.8	2.6	2.2
77Se	0.394	1.3	6.0	7.0	6.4	5.9	6.6
88Sr	0.001	0.003	3.9	5.9	5.7	5.1	5.7
95Mo	0.001	0.003	0.445	0.663	0.497	0.580	0.414
107Ag	0.001	0.003	0.057	0.047	0.050	0.042	0.052
111Cd	0.162	0.540	32	40	48	38	27
118Sn	0.046	0.153	0.198	0.493	0.318	0.434	0.390
121Sb	0.004	0.013	0.043	0.033	0.038	0.036	0.035
137Ba	0.001	0.003	28	30	29	27	25
202Hg	0.020	0.067	0.164	0.167	0.155	0.142	0.146
205TI	0.001	0.003	0.051	0.054	0.073	0.065	0.053
208Pb	0.002	0.007	0.116	0.136	0.198	0.199	0.124
238U	0.001	0.003	0.083	0.071	0.087	0.080	0.063

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck
Tissue Analysis Results

			RG LIDCOM INV-	RG LIDCOM INV-	RG LIDCOM INV-	RG LIDCOM INV-	RG_LIDCOM_INV-
		Client ID				4_2022-07-14_N	
		Lab ID	016	017	018	019	020
	We	et Weight (g)	3.1320	2.1172	3.5987	2.2552	2.5120
	Di	ry Weight (g)	0.5584	0.4058	0.7108	0.4943	0.5414
		Moisture (%)	82.2	80.8	80.2	78.1	78.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.016	0.053	0.633	0.676	0.787	0.509	0.555
11B	0.070	0.233	0.746	1.1	1.3	0.769	0.615
23Na	6.1	20	4,450	5,082	4,038	3,855	3,640
24Mg	0.126	0.420	2,270	3,118	1,908	2,671	3,079
27Al	0.049	0.163	333	466	282	309	238
31P	112	373	15,375	18,169	13,480	13,909	15,743
39K	2.5	8.3	13,234	16,106	14,087	12,969	13,777
44Ca	10	33	2,603	3,316	2,030	2,856	2,402
49Ti	0.001	0.003	21	35	59	24	14
51V	0.032	0.107	0.658	0.970	1.5	0.701	0.509
52Cr	0.204	0.680	3.0	4.9	3.8	3.2	3.0
55Mn	0.009	0.030	76	77	71	77	111
57Fe	1.7	5.7	283	435	406	340	256
59Co	0.013	0.043	9.1	8.9	5.8	9.1	7.6
60Ni	0.053	0.177	25	29	20	28	24
63Cu	0.018	0.060	21	35	27	25	27
66Zn	0.374	1.2	863	1,312	667	1,198	944
75As	0.355	1.2	2.1	3.3	2.2	3.2	2.2
77Se	0.394	1.3	7.0	8.0	7.8	6.4	7.1
88Sr	0.001	0.003	4.3	5.9	3.6	4.5	4.8
95Mo	0.001	0.003	0.394	0.564	0.466	0.490	0.637
107Ag	0.001	0.003	0.042	0.050	0.035	0.040	0.035
111Cd	0.162	0.540	22	25	20	25	23
118Sn	0.046	0.153	0.402	0.426	0.191	0.334	0.337
121Sb	0.004	0.013	0.029	0.033	0.032	0.028	0.035
137Ba	0.001	0.003	22	27	31	24	41
202Hg	0.020	0.067	0.123	0.173	0.145	0.173	0.155
205Tl	0.001	0.003	0.105	0.149	0.103	0.154	0.094
208Pb	0.002	0.007	0.129	0.175	0.197	0.162	0.131
238U	0.001	0.003	0.103	0.148	0.109	0.126	0.119

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck
Tissue Analysis Results

			RG_SLINE_INV-	RG_SLINE_INV-	RG_SLINE_INV-	RG_SLINE_INV-	RG_SLINE_INV-
		Client ID	1_2022-07-12_N	2_2022-07-12_N	3_2022-07-12_N	4_2022-07-12_N	5_2022-07-12_N
		Lab ID	021	022	023	024	025
		et Weight (g)	1.4334	1.8567	1.5193	0.9022	2.6542
		y Weight (g)	0.2269	0.3582	0.3361	0.1793	0.5182
		Moisture (%)	84.2	80.7	77.9	80.1	80.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.016	0.053	0.540	0.365	0.528	0.661	0.338
11B	0.070	0.233	1.2	0.730	1.2	1.7	0.577
23Na	6.1	20	3,221	4,201	3,383	2,574	3,061
24Mg	0.126	0.420	1,965	2,076	2,152	2,123	1,756
27Al	0.049	0.163	704	366	564	981	392
31P	112	373	13,171	15,229	13,452	12,796	11,072
39K	2.5	8.3	11,137	13,363	13,075	8,432	9,673
44Ca	10	33	3,596	3,595	4,292	5,380	2,680
49Ti	0.001	0.003	48	23	38	68	24
51V	0.032	0.107	1.4	0.698	1.0	1.8	0.844
52Cr	0.204	0.680	6.5	3.6	4.3	18	3.2
55Mn	0.009	0.030	54	33	39	46	38
57Fe	1.7	5.7	495	260	346	857	311
59Co	0.013	0.043	1.8	1.5	1.2	1.7	1.5
60Ni	0.053	0.177	12	6.4	8.3	30	6.8
63Cu	0.018	0.060	24	19	20	19	17
66Zn	0.374	1.2	1,152	727	831	673	1,037
75As	0.355	1.2	2.4	1.9	1.5	1.3	1.7
77Se	0.394	1.3	5.8	5.6	6.0	5.3	5.8
88Sr	0.001	0.003	6.1	6.5	6.8	10	4.4
95Mo	0.001	0.003	0.588	0.539	0.637	0.539	0.343
107Ag	0.001	0.003	0.121	0.086	0.098	0.136	0.076
111Cd	0.162	0.540	7.3	4.8	6.7	3.2	6.3
118Sn	0.046	0.153	0.840	0.524	0.256	0.543	0.425
121Sb	0.004	0.013	0.026	0.014	0.028	0.032	0.013
137Ba	0.001	0.003	30	21	40	43	20
202Hg	0.020	0.067	0.112	0.097	0.102	0.107	0.097
205Tl	0.001	0.003	0.091	0.074	0.110	0.060	0.085
208Pb	0.002	0.007	0.231	0.121	0.220	0.310	0.129
238U	0.001	0.003	0.159	0.077	0.186	0.107	0.103

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck
Tissue Analysis Results

			RG_LI24_INV-	RG_LI24_INV-	RG_LI24_INV-	RG_LI24_INV-	RG_LI24_INV-
	Client ID		1_2022-07-11_N	2_2022-07-11_N	3_2022-07-11_N	4_2022-07-11_N	5_2022-07-11_N
			006	007	000	000	020
	147	Lab ID	026	027	028	029	030
		et Weight (g)	1.6088	0.8935	1.3127	1.5384	1.3700
		y Weight (g)	0.2979	0.1388	0.2062	0.2575	0.2590
		Moisture (%)	81.5	84.5	84.3	83.3	81.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.016	0.053	0.798	0.502	0.578	1.5	0.661
11B	0.070	0.233	1.0	0.615	1.0	1.4	1.1
23Na	6.1	20	3,252	2,326	4,174	3,905	3,256
24Mg	0.126	0.420	2,080	1,952	2,217	2,614	2,158
27Al	0.049	0.163	761	347	441	874	594
31P	112	373	11,645	10,602	14,789	14,375	12,063
39K	2.5	8.3	10,334	7,313	12,883	12,507	10,332
44Ca	10	33	7,967	5,598	6,677	14,211	6,682
49Ti	0.001	0.003	60	20	30	68	41
51V	0.032	0.107	2.8	1.5	2.0	3.1	2.4
52Cr	0.204	0.680	7.8	5.9	10	6.4	8.3
55Mn	0.009	0.030	28	24	37	36	31
57Fe	1.7	5.7	494	317	471	517	434
59Co	0.013	0.043	1.7	1.1	1.7	1.8	1.2
60Ni	0.053	0.177	17	12	25	15	18
63Cu	0.018	0.060	17	19	19	19	19
66Zn	0.374	1.2	768	898	947	1,024	814
75As	0.355	1.2	1.8	1.2	1.7	1.8	1.2
77Se	0.394	1.3	7.1	5.8	7.8	7.0	7.3
88Sr	0.001	0.003	14	9.8	11	17	11
95Mo	0.001	0.003	0.490	0.343	0.539	0.539	0.466
107Ag	0.001	0.003	0.066	0.076	0.086	0.073	0.078
111Cd	0.162	0.540	2.2	2.5	3.0	2.9	2.2
118Sn	0.046	0.153	0.668	1.1	1.8	0.651	0.560
121Sb	0.004	0.013	0.053	0.031	0.051	0.065	0.049
137Ba	0.001	0.003	31	27	35	38	36
202Hg	0.020	0.067	0.104	0.107	0.092	0.112	0.102
205Tl	0.001	0.003	0.064	0.053	0.092	0.086	0.061
208Pb	0.002	0.007	0.301	0.164	0.218	0.306	0.247
238U	0.001	0.003	0.145	0.109	0.168	0.218	0.231

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 7 of 23

Teck Tissue Analysis Results

			RG_LCUT_INV-	RG_LCUT_INV-	RG_LCUT_INV-	RG_LCUT_INV-	RG_LCUT_INV-
		Client ID	1_2022-07-12_N	2_2022-07-12_N	3_2022-07-12_N	4_2022-07-12_N	5_2022-07-12_N
	Lab ID		031	032	033	034	035
	We	et Weight (g)	1.8059	1.7180	2.2917	1.1266	1.5490
		y Weight (g)	0.3411	0.3013	0.4754	0.1747	0.3010
		Moisture (%)	81.1	82.5	79.3	84.5	80.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.016	0.053	0.889	0.623	0.616	1.1	1.0
11B	0.070	0.233	2.0	1.7	1.7	3.8	3.4
23Na	6.1	20	3,230	3,009	3,133	3,313	3,288
24Mg	0.126	0.420	2,079	1,663	2,679	2,565	2,617
27Al	0.049	0.163	867	477	502	1,018	867
31P	112	373	15,427	12,211	17,168	15,226	17,254
39K	2.5	8.3	15,193	11,391	14,179	15,817	18,600
44Ca	10	33	3,145	3,368	4,928	7,645	6,891
49Ti	0.001	0.003	65	32	38	73	64
51V	0.032	0.107	1.9	1.0	1.2	2.5	1.7
52Cr	0.204	0.680	4.1	4.4	5.0	5.5	5.3
55Mn	0.009	0.030	61	33	54	65	68
57Fe	1.7	5.7	334	235	264	445	384
59Co	0.013	0.043	2.3	1.3	2.6	2.3	4.4
60Ni	0.053	0.177	19	13	17	20	26
63Cu	0.018	0.060	47	41	56	49	79
66Zn	0.374	1.2	343	280	469	448	544
75As	0.355	1.2	3.2	2.0	3.5	3.5	3.7
77Se	0.394	1.3	5.6	6.4	5.9	5.9	6.7
88Sr	0.001	0.003	6.4	5.5	9.7	13	12
95Mo	0.001	0.003	0.515	0.417	0.613	0.571	0.761
107Ag	0.001	0.003	0.040	0.050	0.055	0.063	0.082
111Cd	0.162	0.540	6.1	4.9	8.5	10	15
118Sn	0.046	0.153	0.254	0.498	0.459	0.582	0.546
121Sb	0.004	0.013	0.066	0.042	0.055	0.112	0.079
137Ba	0.001	0.003	80	33	46	63	60
202Hg	0.020	0.067	0.127	0.143	0.132	0.144	0.207
205TI	0.001	0.003	0.060	0.042	0.046	0.078	0.082
208Pb	0.002	0.007	0.427	0.238	0.273	0.378	0.470
238U	0.001	0.003	0.156	0.108	0.120	0.154	0.225

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Tissue Analysis Results

	Client ID		RG_LILC3_INV- 1_2022-07-12_N	RG_LILC3_INV- 2_2022-07-12_N	RG_LILC3_INV- 3_2022-07-12_N	RG_LILC3_INV- 4_2022-07-12_N	RG_LILC3_INV- 5_2022-07-12_N
	Lab ID		036	037	038	039	040
Wet Weight (g)			1.9489	2.8853	2.3000	2.1081	2.1279
		y Weight (g)	0.3282	0.5289	0.3900	0.3726	0.4072
		Moisture (%)	83.2	81.7	83.0	82.3	80.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm) (ppm)		(ppm)
7Li	0.016	0.053	0.789	0.512	1.0	0.685	0.616
11B	0.070	0.233	1.2	0.673	2.1	0.910	0.989
23Na	6.1	20	3,386	3,605	2,095	4,190	3,145
24Mg	0.126	0.420	2,055	1,663	1,422	1,961	1,834
27Al	0.049	0.163	186	167	295	187	141
31P	112	373	14,938	14,364	10,552	16,468	12,945
39K	2.5	8.3	14,890	12,705	9,601	16,114	13,740
44Ca	10	33	3,982	3,582	3,263	2,694	2,825
49Ti	0.001	0.003	8.6	8.6	24	9.8	7.6
51V	0.032	0.107	0.531	0.361	0.735	0.482	0.375
52Cr	0.204	0.680	4.1	2.3	3.2	2.4	2.4
55Mn	0.009	0.030	417	93	285	108	276
57Fe	1.7	5.7	276	195	393	262	224
59Co	0.013	0.043	7.9	2.9	5.3	3.7	8.3
60Ni	0.053	0.177	31	8.5	20	9.6	22
63Cu	0.018	0.060	33	29	26	29	33
66Zn	0.374	1.2	416	219	297	264	319
75As	0.355	1.2	2.1	1.7	1.3	2.2	1.8
77Se	0.394	1.3	10	8.2	6.6	7.9	7.5
88Sr	0.001	0.003	6.3	4.9	8.6	4.6	4.4
95Mo	0.001	0.003	0.992	0.435	0.544	0.408	0.788
107Ag	0.001	0.003	0.038	0.038	0.025	0.038	0.032
111Cd	0.162	0.540	9.9	4.2	9.2	4.0	9.8
118Sn	0.046	0.153	0.517	0.336	0.381	0.575	0.256
121Sb	0.004	0.013	0.052	0.036	0.062	0.033	0.040
137Ba	0.001	0.003	18	12	27	17	14
202Hg	0.020	0.067	0.204	0.173	0.127	0.173	0.170
205Tl	0.001	0.003	0.043	0.031	0.043	0.045	0.049
208Pb	0.002	0.007	0.162	0.120	0.273	0.157	0.140
238U	0.001	0.003	0.100	0.043	0.128	0.056	0.063

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Tissue Analysis Results

	Client ID		RG_FRUL_INV-	RG_FRUL_INV-	RG_FRUL_INV-	RG_FRUL_INV-	RG_FRUL_INV-
		Client ID	1_2022-07-13_N	2_2022-07-13_N	3_2022-07-13_N	4_2022-07-13_N	5_2022-07-13_N
	Lab ID		041	042	043	044	045
	We	et Weight (g)	1.0058	1.4112	0.8580	1.1379	1.6455
		y Weight (g)	0.1696	0.2568	0.1482	0.2001	0.3407
		Moisture (%)	83.1	81.8	82.7	82.4	79.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.016	0.053	0.794	0.672	1.1	1.3	1.1
11B	0.070	0.233	1.2	0.653	2.1	1.2	1.3
23Na	6.1	20	2,296	2,948	2,743	2,399	2,938
24Mg	0.126	0.420	1,717	1,768	1,958	1,815	2,116
27Al	0.049	0.163	697	288	1,536	750	756
31P	112	373	11,461	10,705	12,113	10,116	10,844
39K	2.5	8.3	8,373	10,337	9,716	8,175	9,705
44Ca	10	33	4,380	3,309	6,047	4,487	4,461
49Ti	0.001	0.003	54	27	101	55	70
51V	0.032	0.107	1.3	0.542	2.6	1.5	1.7
52Cr	0.204	0.680	7.3	2.4	10	7.0	5.1
55Mn	0.009	0.030	69	67	81	79	87
57Fe	1.7	5.7	478	291	896	553	580
59Co	0.013	0.043	1.9	2.8	2.0	2.1	2.9
60Ni	0.053	0.177	12	7.2	16	12	12
63Cu	0.018	0.060	17	16	19	16	19
66Zn	0.374	1.2	395	370	351	371	473
75As	0.355	1.2	0.634	1.1	0.858	0.895	1.2
77Se	0.394	1.3	8.5	9.6	8.9	7.9	9.7
88Sr	0.001	0.003	5.7	3.4	9.6	5.7	5.3
95Mo	0.001	0.003	0.408	0.326	0.653	0.761	0.462
107Ag	0.001	0.003	0.161	0.132	0.195	0.113	0.132
111Cd	0.162	0.540	4.4	8.6	5.2	6.0	7.8
118Sn	0.046	0.153	0.715	0.738	0.861	0.696	0.464
121Sb	0.004	0.013	0.029	0.028	0.039	0.026	0.029
137Ba	0.001	0.003	33	17	57	30	37
202Hg	0.020	0.067	0.081	0.075	0.075	0.075	0.060
205Tl	0.001	0.003	0.026	0.025	0.037	0.033	0.040
208Pb	0.002	0.007	0.227	0.115	0.425	0.220	0.250
238U	0.001	0.003	0.082	0.069	0.100	0.075	0.097

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck
Tissue Analysis Results

			RG_FO23_INV-	RG_FO23_INV-	RG_FO23_INV-	RG_FO23_INV-	RG_FO23_INV-
	Client ID		1_2022-07-11_N	2_2022-07-11_N	3_2022-07-11_N	4_2022-07-11_N	5_2022-07-11_N
	Lab ID		046	047	048	049	050
	Wet Weight (g)		1.4184	1.6011	0.6792	1.2185	1.2480
		y Weight (g)	0.2623	0.2635	0.1231	0.2347	0.2584
		Moisture (%)	81.5	83.5	81.9	80.7	79.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)			(ppm)
7Li	0.016	0.053	0.828	0.945	(ppm) 1.3	(ppm) 0.807	0.538
11B	0.070	0.233	1.4	1.8	1.3	1.6	0.871
23Na	6.1	20	2,579	2,878	2,868	2,743	1,935
23Na 24Mg	0.126	0.420	1,662	1,838	1,536	1,420	1,543
27AI	0.049	0.420	761	976	695	939	619
31P	112	373	9,264	12,606	10,294	10,834	9,283
39K	2.5	8.3	8,763	10,809	9,039	8,963	7,831
44Ca	10	33	3,101	3,358	2,605	2,881	2,671
49Ti	0.001	0.003	51	50	50	65	45
51V	0.032	0.107	1.2	1.7	1.1	1.5	1.1
52Cr	0.204	0.680	4.9	5.5	6.5	3.7	5.2
55Mn	0.009	0.030	60	62	51	69	47
57Fe	1.7	5.7	428	565	426	435	358
59Co	0.013	0.043	1.7	2.1	1.5	1.9	1.1
60Ni	0.053	0.177	9.4	12	12	9.0	9.4
63Cu	0.018	0.060	16	18	17	16	15
66Zn	0.374	1.2	428	558	563	448	426
75As	0.355	1.2	0.671	0.821	0.560	0.671	0.448
77Se	0.394	1.3	7.1	10	8.9	6.9	6.4
88Sr	0.001	0.003	4.9	5.1	3.7	4.4	3.6
95Mo	0.001	0.003	0.381	0.544	0.353	0.381	0.190
107Ag	0.001	0.003	0.069	0.082	0.095	0.069	0.120
111Cd	0.162	0.540	4.8	4.5	3.3	4.6	2.5
118Sn	0.046	0.153	0.401	0.604	0.480	0.381	0.182
121Sb	0.004	0.013	0.020	0.033	0.022	0.025	0.020
137Ba	0.001	0.003	23	31	20	27	23
202Hg	0.020	0.067	0.052	0.081	0.081	0.086	0.063
205Tl	0.001	0.003	0.038	0.036	0.029	0.030	0.023
208Pb	0.002	0.007	0.199	0.282	0.173	0.241	0.164
238U	0.001	0.003	0.047	0.064	0.050	0.058	0.039

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck
Tissue QA/QC Relative Percent Difference Results

Client ID		RG_LISP24_INV-2_2022-07-13_N			PG LIR	RG_LI8_INV-1_2022-07-14_N					
				2-07-15_11	KG_LIO_		J7-14_IN	RG_LIDCO	M_INV-1_202	2-07-14_N	
	Lab ID 002		011			016					
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	
7Li	0.016	0.726	0.793	8.8	0.572	0.530	7.6	0.633	0.572	10	
11B	0.070	0.914	1.0	9.0	0.701	0.670	-	0.746	0.579	-	
23Na	6.1	4,997	5,308	6.0	4,812	3,895	21	4,450	3,874	14	
24Mg	0.126	2,133	2,152	0.9	1,867	2,042	9.0	2,270	2,185	3.8	
27AI	0.049	392	496	23	213	215	0.9	333	271	21	
31P	112	17,235	17,543	1.8	15,355	13,926	9.8	15,375	15,332	0.3	
39K	2.5	15,601	15,501	0.6	16,215	12,772	24	13,234	11,905	11	
44Ca	10	3,702	3,660	1.1	2,566	2,451	4.6	2,603	2,059	23	
49Ti	0.001	27	28	3.6	11	11	0.0	21	19	10	
51V	0.032	0.830	0.881	6.0	0.450	0.439	2.5	0.658	0.506	26	
52Cr	0.204	6.0	8.2	31	2.5	2.9	15	3.0	2.7	11	
55Mn	0.009	91	86	5.6	69	59	16	76	71	6.8	
57Fe	1.7	411	461	12	254	234	8.2	283	221	25	
59Co	0.013	8.4	7.5	11	4.1	3.8	7.6	9.1	7.7	17	
60Ni	0.053	26	29	11	19	22	15	25	19	27	
63Cu	0.018	41	36	13	16	20	22	21	22	4.7	
66Zn	0.374	755	675	11	1,001	843	17	863	795	8.2	
75As	0.355	2.5	2.4	-	2.2	1.9	-	2.1	2.1	-	
77Se	0.394	7.2	7.1	1.4	6.0	6.1	1.7	7.0	6.5	7.4	
88Sr	0.001	5.7	5.7	0.0	3.9	4.1	5.0	4.3	3.1	32	
95Mo	0.001	0.725	0.684	5.8	0.445	0.476	6.7	0.394	0.414	5.0	
107Ag	0.001	0.094	0.089	5.5	0.057	0.042	30	0.042	0.036	15	
111Cd	0.162	19	17	11	32	31	3.2	22	19	15	
118Sn	0.046	0.677	0.708	-	0.198	0.254	-	0.402	0.307	-	
121Sb	0.004	0.040	0.039	-	0.043	0.033	-	0.029	0.037	-	
137Ba	0.001	23	23	0.0	28	25	11	22	16	32	
202Hg	0.020	0.119	0.119	-	0.164	0.174	-	0.123	0.123	-	
205TI	0.001	0.084	0.090	6.9	0.051	0.059	15	0.105	0.093	12	
208Pb	0.002	0.170	0.183	7.4	0.116	0.117	0.9	0.129	0.104	22	
238U	0.001	0.072	0.072	0.0	0.083	0.066	23	0.103	0.082	23	

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Project No: 2022-364

Teck
Tissue QA/QC Relative Percent Difference Results

(Client ID	BC LIDCOI	M_INV-5_202	22_07_14_N	PG 1124	_INV-2_2022	_07_11 N
	Lab ID	NO_LIDCOI	020	.2-07-14_11	NO_LIZ4	027	-07-11_11
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.016	0.555	0.441	23	0.502	0.418	18
11B	0.070	0.615	0.615	-	0.615	0.538	-
23Na	6.1	3,640	2,994	20	2,326	2,082	11
24Mg	0.126	3,079	2,091	38	1,952	1,753	11
27AI	0.049	238	204	15	347	263	28
31P	112	15,743	13,551	15	10,602	9,350	13
39K	2.5	13,777	12,281	12	7,313	5,591	27
44Ca	10	2,402	2,041	16	5,598	4,684	18
49Ti	0.001	14	12	15	20	17	16
51V	0.032	0.509	0.391	26	1.5	1.2	22
52Cr	0.204	3.0	2.7	11	5.9	6.9	16
55Mn	0.009	111	88	23	24	20	18
57Fe	1.7	256	201	24	317	282	12
59Co	0.013	7.6	5.5	32	1.1	0.863	24
60Ni	0.053	24	20	18	12	12	0.0
63Cu	0.018	27	19	35	19	21	10
66Zn	0.374	944	707	29	898	619	37
75As	0.355	2.2	1.7	-	1.2	1.2	-
77Se	0.394	7.1	7.0	1.4	5.8	5.9	1.7
88Sr	0.001	4.8	3.4	34	9.8	8.5	14
95Mo	0.001	0.637	0.441	36	0.343	0.343	0.0
107Ag	0.001	0.035	0.025	33	0.076	0.068	11
111Cd	0.162	23	24	4.3	2.5	1.6	-
118Sn	0.046	0.337	0.438	-	1.1	0.719	-
121Sb	0.004	0.035	0.023	-	0.031	0.029	-
137Ba	0.001	41	32	25	27	24	12
202Hg	0.020	0.155	0.115	-	0.107	0.107	-
205TI	0.001	0.094	0.069	31	0.053	0.045	16
208Pb	0.002	0.131	0.087	40	0.164	0.132	22
238U	0.001	0.119	0.089	29	0.109	0.087	22

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck
Tissue QA/QC Accuracy and Precision Results

	S	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.016	1.21	1.3	107	11	1.4	112	9.9
11B	0.070	4.5	4.9	108	4.2	4.9	108	6.7
23Na	6.1	14,000	16,167	115	9.3	13,667	98	3.2
24Mg	0.126	910	1,035	114	6.8	933	102	4.5
27Al	0.049	197.2	187	95	4.8	195	99	7.0
31P	112	8,000	8,808	110	4.4	7,796	98	5.1
39K	2.5	15,500	18,153	117	4.3	15,337	99	3.5
44Ca	10	2,360	2,727	116	1.9	2,552	108	2.7
49Ti	0.001	12.24	12	98	6.8	14	114	10
51V	0.032	1.57	1.8	116	9.4	1.7	107	7.8
52Cr	0.204	1.87	2.3	122	5.5	2.0	106	2.3
55Mn	0.009	3.17	3.7	118	4.1	3.4	108	3.8
57Fe	1.7	343	386	113	3.7	371	108	4.2
59Co	0.013	0.25	0.321	128	6.7	0.279	112	10
60Ni	0.053	1.34	1.6	119	7.2	1.4	108	3.8
63Cu	0.018	15.7	19	119	5.1	17	110	2.6
66Zn	0.374	51.6	59	115	0.8	54	104	4.3
75As	0.355	6.87	7.8	114	5.4	6.8	99	2.6
77Se	0.394	3.45	3.8	109	13	3.6	104	9.2
88Sr	0.001	10.1	12	119	0.0	11	109	0.0
95Mo	0.001	0.29	0.311	107	14	0.284	98	3.5
107Ag	0.001	0.0252	0.029	113	10	0.024	95	9.3
111Cd	0.162	0.299	0.288	96	6.1	0.333	111	12
118Sn	0.046	0.061	0.085	139	15	0.074	121	20
121Sb	0.004	0.011	0.014	130	18	0.012	109	17
137Ba	0.001	8.6	8.8	102	2.2	8.7	101	5.9
202Hg	0.020	0.412	0.427	104	5.9	0.467	113	9.1
205Tl	0.001	0.0013	-	-	-	-	-	-
208Pb	0.002	0.404	0.496	123	9.5	0.464	115	9.5
238U	0.001	0.05	0.058	115	3.3	0.057	113	11

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck
Tissue QA/QC Accuracy and Precision Results

Sample Group ID	03
Janners Croup is	

Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.016	1.21	1.4	112	6.6
11B	0.070	4.5	4.4	98	3.4
23Na	6.1	14,000	14,288	102	6.1
24Mg	0.126	910	909	100	5.7
27AI	0.049	197.2	176	89	9.3
31P	112	8,000	7,836	98	7.0
39K	2.5	15,500	16,287	105	4.6
44Ca	10	2,360	2,480	105	3.3
49Ti	0.001	12.24	10	86	10
51V	0.032	1.57	1.6	102	12
52Cr	0.204	1.87	1.9	102	5.3
55Mn	0.009	3.17	3.5	111	12
57Fe	1.7	343	371	108	6.6
59Co	0.013	0.25	0.286	114	5.4
60Ni	0.053	1.34	1.5	109	6.1
63Cu	0.018	15.7	17	108	7.2
66Zn	0.374	51.6	52	101	3.4
75As	0.355	6.87	6.7	98	3.3
77Se	0.394	3.45	3.7	108	7.7
88Sr	0.001	10.1	11	111	7.5
95Mo	0.001	0.29	0.294	101	10
107Ag	0.001	0.0252	0.022	87	16
111Cd	0.162	0.299	0.301	101	13
118Sn	0.046	0.061	0.053	87	5.0
121Sb	0.004	0.011	0.010	89	9.8
137Ba	0.001	8.6	7.7	90	5.7
202Hg	0.020	0.412	0.425	103	5.8
205Tl	0.001	0.0013	-	-	-
208Pb	0.002	0.404	0.400	99	6.6
238U	0.001	0.05	0.052	105	5.5

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_LISP24_INV-1_2022-07-13_N	001	05 Aug 2022
	RG_LISP24_INV-2_2022-07-13_N	002	
	RG_LISP24_INV-3_2022-07-13_N	003	
	RG_LISP24_INV-4_2022-07-13_N	004	
	RG_LISP24_INV-5_2022-07-13_N	005	
	RG_LIDSL_INV-1_2022-07-11_N	006	
	RG_LIDSL_INV-2_2022-07-11_N	007	
	RG_LIDSL_INV-3_2022-07-11_N	008	
	RG_LIDSL_INV-4_2022-07-11_N	009	
	RG_LIDSL_INV-5_2022-07-11_N	010	
	RG_LI8_INV-1_2022-07-14_N	011	
	RG_LI8_INV-2_2022-07-14_N	012	
	RG_LI8_INV-3_2022-07-14_N	013	
	RG_LI8_INV-4_2022-07-14_N	014	
	RG_LI8_INV-5_2022-07-14_N	015	
	RG_LIDCOM_INV-1_2022-07-14_N	016	
02	RG_LIDCOM_INV-2_2022-07-14_N	017	05 Aug 2022
	RG_LIDCOM_INV-3_2022-07-14_N	018	
	RG_LIDCOM_INV-4_2022-07-14_N	019	
	RG_LIDCOM_INV-5_2022-07-14_N	020	
	RG_SLINE_INV-1_2022-07-12_N	021	
	RG_SLINE_INV-2_2022-07-12_N	022	
	RG_SLINE_INV-3_2022-07-12_N	023	
	RG_SLINE_INV-4_2022-07-12_N	024	
	RG_SLINE_INV-5_2022-07-12_N	025	
	RG_LI24_INV-1_2022-07-11_N	026	
	RG_LI24_INV-2_2022-07-11_N	027	
	RG_LI24_INV-3_2022-07-11_N	028	
	RG_LI24_INV-4_2022-07-11_N	029	
	RG_LI24_INV-5_2022-07-11_N	030	
	RG_LCUT_INV-1_2022-07-12_N	031	
	RG_LCUT_INV-2_2022-07-12_N	032	
	RG_LCUT_INV-3_2022-07-12_N	033	
03	RG_LCUT_INV-4_2022-07-12_N	034	05 Aug 2022
	RG_LCUT_INV-5_2022-07-12_N	035	
	RG_LILC3_INV-1_2022-07-12_N	036	
	RG_LILC3_INV-2_2022-07-12_N	037	
	RG_LILC3_INV-3_2022-07-12_N	038	
	RG_LILC3_INV-4_2022-07-12_N	039	
	RG_LILC3_INV-5_2022-07-12_N	040	

Teck Sample Group Information

Sample			Date of
Group ID	Client ID	Lab ID	
•	Client ID RG_FRUL_INV-1_2022-07-13_N RG_FRUL_INV-2_2022-07-13_N RG_FRUL_INV-3_2022-07-13_N RG_FRUL_INV-4_2022-07-13_N RG_FRUL_INV-5_2022-07-13_N RG_FO23_INV-1_2022-07-11_N RG_FO23_INV-2_2022-07-11_N RG_FO23_INV-4_2022-07-11_N RG_FO23_INV-5_2022-07-11_N RG_FO23_INV-5_2022-07-11_N	041 042 043 044 045 046 047 048 049 050	Analysis 05 Aug 2022

Name Joba Regional Effects Program La Num Call-Advances Regional Effects Program La Num Call-Advances Regional Effects Program La Num Call-Advances Regional Content Distribution Regional Content Distribution Regional Content Regional Content Distribution Regional Content Region	August 2, 2022	Date/Time	Date		1	6		nature	Sampler's Signature		Emergency (1 Business Day) - 100% surcharge	Emergency (1 Bi	
COC DI: LCO LAEMP TURNAROUN TIME: Regard from Mission Result Record Provided Regard Regard Regard Record Regard			-		1	1				Jarge	usiness days) - 50% suici	Priority (2-5 b	
COC Dr. LCO LAEMP TURNAROUN TIME: Report Fromat Distribution Each Professional Effects (Frogram Each Professional Effects (Frogram Each Each Each Professional Each	403-586-3241	bile #	Moi		Rick Smit			ame	Sampler's N	fault)	Regular (de		
COC ID: LCO LAEMP											o lo avertal live in the least of	MAINTEN WITH TENDE	ORGENIA MANTE AND SERVED
COC ID: LCO LAEMP TURNAROUN FINAL: Report Format / Distribution Excel PDF	(Roject #: 2022 - 564)	Č		(
COC ID: LCO LAEMP TIRNAROUND TREE ROOME , ,	3	The same of											
COC ID: LCO LAEMP TIRNAROUND TIME: READ ROSH	-	laBrie	resiene		A	nental	ic Environn	k Smit/Loti	Rici		The state of the second	PO 818999	S ADDRESS SE
COCID: LCO LAEMP TURNAROUND TIME: RISH					omposite	-	INV	14:14	11-Jul-22	No.		009	RG_LIDSL_INV-4_2022-07-11_N
COC ID: LCO LAEMP TURNAROUND TIME: Regent Format / Distribution Recold PDF			-	+	omposite		INV	14:03	11-Jul-22	and and		800	RG_LIDSL_INV-3_2022-07-11_N
COC ID: LCO LAEMP TURNAROUND TIME: ROSH ROSH				+	omposite		INV	13:45	11-Jul-22			607	RG_LIDSL_INV-2_2022-07-11_N
COC ID: LCO LAEMP TURNAROUND TIME: Regional Effects Program Lab Name TabManayista Inc. Region Format Distribution Excel PDF					omposite		INV	13:40	11-Jul-22			606	RG_LIDSL_INV-1_2022-07-11_N
COC ID: LCO LAEMP TURNAROUND TIME: RUSH;			+		omposite	+	INV	14:00	13-Jul-22			065	RG_LISP24_INV-5_2022-07-13_N
COC ID: LCO LAEMP TURNAROUND TIME: Rejoint Fromul / Distribution Exact PDF					omposite	+	INV	13:56	13-Jul-22	about 5		004	RG_LISP24_INV-4_2022-07-13_N
COC ID: LCO LAEMP TURNAROUND TIME: Rule R			+	1	omposite	1	INV	13:21	13-Jul-22	A NO		003	RG_LISP24_INV-3_2022-07-13_N
COC ID: LCO LAEMP TURNAROUND TIME: RUSH; RUSH; Value Job# Regional Effects Frogram Lab Name TrichAnalytics Inc. Report Formal / Distribution Excel PDF				+	omposite	+	INV	13:19	13-Jul-22	7		002	RG_LISP24_INV-2_2022-07-13_N
COCID: LCO LAEMP TURNAROUND TIME: RUSH; RUSH; RUSH; RUSH; Rush Regional Effects Program Lab Name [TrichAnalytics Inc. Email 1:					omposite	+	INV	13:19	13-Jul-22	A NO		(00)	RG_LISP24_INV-1_2022-07-13_N
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF			(wet, dry & routine) Moisture Content by	Metals in Biota by CRC ICPMS (wet and dry)	ample			Time (24hr)	Date		ocation ocation	Trubio:	Sample ID
COCID: LO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF Lab Name TrichAnalytics Inc. Email 1: Depoil leading leave Email 2: Tyle Methodia glock.com Address 421 Pine Ave City Sparwood Province BC Province BC TURNAROUND TIME: Report Format / Distribution Email 1: Depoil leading leave Email 2: Tyle Methodia glock on Address 207-1753 Sean Heights Email 3: Depoil leading leave Email 3: Depoil leading leave Email 4: Depoil leading leave Email 5: Report Format / Distribution Email 1: Depoil leading leave Email 2: Tyle Methodia glock on Address 207-1753 Sean Heights Email 5: Report Format / Distribution Excel PDF Email 1: Depoil leading leave Email 3: Depoil leading leave Email 4: Depoil leading leave Email 5: Report Format / Distribution Excel PDF Email 1: Depoil leading leave Email 3: Depoil leading leave Email 3: Depoil leading leave Email 4: Depoil leading leave Email 5: Report Format / Distribution Excel PDF Excel PDF Excel PDF Email 6: Depoil leading leave Email 7: Depoil leading leave Email 8: Depoil leading leave Email 8: Depoil leading leave Email 9: Depoil le	6189	PO number	NAME OF TAXABLE PARTY.	SKIND OF	Number	Phone					10-8755	one Number 250-9	Ph
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF	The state of the s				al Code	Post					V0B 2G0	Postal Code	
COCID: LCO LAEMP TURNAROUND TIME: Regional Effects Program Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF	Kastehela/@ninngouda X	Email 5:			City Saar			BC			Sparwood	City	
COCID: LCO LAEMP TURNAROUND TIME: RUSH: Cocid	Hannah (Aprile (Exercision X	Email 4:										T MULTINOS	
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF	essica Rity@tecksom	ALC: US		1753 Sean Heights	Address 207-	1					ne Ave	Address 421 P	
COCID: LCO LAEMP TURNAROUND TIME: Color C	Tyle: MeHer@minnowca X X		hanalytics	ie.christensen@tric	Email jenni						Heddle@teck.com	ect Manager Cybel	rioji
COC ID: LCO LAEMP TURNAROUND TIME: RUSH:	Excel PDF	nio,		hAnalytics Inc.	Name Trick	Lal					nal Effects Program	Name / Job# Region	Facility !
				All Marie and	TIME:	RNAROUND	TUI		LAEMP	LCC	COC ID:		

Sparavood Province BC		Time	Date/Time						ature	Sampler's Signature		ergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend	mergency (1 But For Emergency	
Sparwood Province BC College Enail S. Province BC Province BC Province BC Province BC Enail S.	403-586-3241	ile#	Mobi		W. 1	Rick Smit			ите	Sampler's Na		Regular (de iness days) - 50% surch	Priority (2-3 bu	
Sparwood Province BC City Stantishton Province BC Email S. Province BC Province BC Province BC Province BC Province BC Province BC Province BC Province BC Email S.	(Pajest in 2002 367)		6		10.0									STANDAR PRINCIPES OF STANDARD
Sparwood Province BC City Samichton Province BC Email 4.	1000 H 2007	200	min	Com	1									
Sparwood Province BC City Saunichton Province BC Postal Code	03 Aug 2022 /	R	lene	Crex	The second second		uental	c Environn	Smit/Loti	Rich		A STATE OF THE PARTY OF THE PAR	PO 818999	SPACE BROWN STREET
Sparwood Province BC City Saanichton Province BC V0B 2G0 Province BC Postal Code Phone Number Phone Number			×	×	×	Composite		INV	13:28	14-Jul-22			410	RG_LIDCOM_INV-3_2022-07-14_N
Sparwood Province BC City Seanichton Province BC V0B 2G0 Province BC Postal Code Phone Number Phone Number			x	x	X	Composite	1	INV	13:23	14-Jul-22	00000		419	RG_LIDCOM_INV-2_2022-07-14_N
Sparwood Province BC City Saanichton Province BC V0B 2G0 Province BC City Saanichton Province BC Postal Code Phone Number Phone Number Phone Number Phone Number Phone Number Province BC City Saanichton Province BC Postal Code Postal Code Province BC Provi			x	x	X	Composite		INV	13:02	14-Jul-22	and Court of		016	RG_LIDCOM_INV-1_2022-07-14_N
Sparwood Province BC City Saanichton Province BC Postal Code V0B 2G0 Province BC City Saanichton Province BC Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Province BC			×	×	×	Composite	-	INV	11:21	14-Jul-22	ra No		510	RG_LI8_INV-5_2022-07-14_N
Sparwood Province BC City Saanichton Province BC V0B 2G0 Postal Code Postal Code Phone Number Phone Number Phone Number Phone Number Phone Number Province BC Postal Code Postal Code Province BC Postal Code Postal Code Postal Code Postal Code Province BC Postal Code Postal Code Province BC Postal Code Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Postal			×	x	×	Composite	+	INV	11:14	14-Jul-22	-		110	RG_LI8_INV-4_2022-07-14_N
Sparwood Province BC City Saanichton Province BC V0B 2G0 Province BC City Saanichton Province BC Postal Code Postal Code Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Phone Number Province BC Postal Code Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code			×	x	×	Composite	+	INV	10:43	14-Jul-22	PROPERTY.		013	RG_LI8_INV-3_2022-07-14_N
Sparwood Province BC City Saanichton Province BC V0B 2G0 Postal Code Postal Code Phone Number Phone Number Phone Number Phone Number Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC			x	×	×	Composite	1	INV	10:30	14-Jul-22	'A NO		012	RG_LI8_INV-2_2022-07-14_N
Sparwood Province BC City Saanichton Province BC V0B 2G0 Province BC City Saanichton Province BC City Saanichton Province BC Phone Number Phone Number Province BC Time Tissue Tissue Sample Code) Matrix Date (24hr) type Species Structure Metals in Biota by CVAAS (wet, dry & routine) Moisture Composite Moisture Content by Gravimetry Moisture Content by Gravimetry			×	×	×	Composite	1	AMI	10:08	14-Jul-22	CA NO		110	RG_LI8_ENV-1_2022-07-14_N
Sparwood Province BC City Saanichton Province BC VOB 2G0 Postal Code Phone Number Phone Number Phone Number Phone Number Time Tissue Tissue Sample Metals in Blota by CRC ICPMS Mercury in Blota by CVAAS (wet, dry & routine) Moisture Content by Gravimetry			×	×	X	Composite	1	INV	14:30	11-Jul-22	A		010	RG_LIDSL_INV-5_2022-07-11_N
Sparwood Province BC City Saanichton Province BC V0B 2G0 Postal Code Phone Number				Mercury in Biota by CVAAS	Metals in Biota by CRC ICPMS	Sample		Tissue	Time (24hr)	Date			Trichlo: Sa	Sample ID
Sparwood Province BC City Saanichton Province BC V0B 2G0 Postal Code City	The second second	PO number				e Number	Phon					0-8755	Phone Number 250-910-8755	Phone
Sparwood Province BC City Saanichton Province BC	125 - 51.05 # 3.20 8 A.					stal Code	Po					V0B 2G0	Postal Code	Po
Aduress 20/-1/33 Sean Heights	X particular to the second of	Email 5:		Province	aanichton	City S			ВС	rovince	F	Sparwood	City	
ACCURACY TO A CAST HARONS		Email 4:	1	curgion	OF TIOO OCAL		1100		4			NO CANO	Addiess 721 11	
e@teck.com	A Set Table To Set To Stephen Set To	Email 2:	raiyucs	sen@uricnar	O7 1753 Com	Address 2					-	Heddle@leck.com	Email Cybele	
Lab Contact Jennie Christensen	Weie Wearleights Arm Arma Arma	Email 1:		nsen	ennie Christer	b Contact J	La					Heddle	Project Manager Cybele Heddle	Project
Facility Name / Job# Regional Effects Program Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF	Excel	Report Forms		Inc.	richAnalytics	ab Name T			-			al Effects Program	ne / Job# Region	Facility Nar
COC ID: LCO LAEMP TURNAROUND TIME: RUSH:	RUSH:					ND TIME:	RNAROU	TT		LAEMI	LCC	COC ID:		

COLD COLD		Date/Time	Date						nature	Sampler's Signature		Emergency (1 Business Day) - 100% surcharge	Emergency (
COC ID: LCO LAEMP TURNAROUND TIME: Report Formary Description Record Properties Record Properties Record Regional Effects Properties Record Properties Record Properties Record Properties Record Regional Effects Properties Record Regional Effects Properties Record Regional Record R	403-586-3241	bile #	Mo			Rick Smit			ame	Sampler's N	r (default)	Regula	Priority (2	A STATE OF THE STA
City Sample Location Field Marrix Habel 153-64 153-6														
COL II: LCO LAEMP TURNANOUN DIME: Report Format / Date Plants Report Format / Date Pla	1	2	in	a										
COC ID: LCO LAEMP TURNAROUND TIME: Report Format Distribution Eace PDF	03 HG202 / 015	150	Men	20			nental	ic Environ	Smit/Lot	Rick	10		PO 818999	The state of the s
COC ID: LCO LAEMP	200	Distribution of the last			SHIESTER		100	ANT	11:20	11-Jul-22	E.,	RG_LI24	027	G_L124_INV-2_2022-07-11_N
COC ID: LCO LAEMP			×	×	×	omnosite		NA INA	10:49	11-Jul-22	-	RG_LI24	200	G_LI24_INV-1_2022-07-11_N
COC ID: LCO LAEMP TURNAROUNDER			×	×	×	omposite	-	100	15:0	12-Jul-22		RG_SLINE	220	G_SLINE_INV-5_2022-07-12_N
COC ID: LCO LAEMP TURNAROUND ITME: Report Formal / Dashbutton Excel PDF			×	×	× >	omposite		INV	14:54	12-Jul-22	Contract of the Contract of th	RG_SLINE	410	G_SLINE_INV-4_2022-07-12_N
COC ID: LCO LAEMP TURNAROUND ITME: Report Formar / Distribution Excel PDF			× ;	x :	× >	omposite	-	N.	14:44	12-Jul-22	uninum	RG_SLINE	023	G_SLINE_INV-3_2022-07-12_N
COCID: LCO LAEMP TURNAROUND TIME: Regent Formal / Distribution Excel PDF			× ;	× ;	< >	omposice	-	INV	14:20	12-Jul-22	and the same	RG_SLINE	220	SLINE_INV-2_2022-07-12_N
COC ID: LCO LAEMP TURNAROUND TIME: RADING REgional Effects Program Lab Name Trickhanlyrics Inc. Report Format / Distribution Excel PDF			× ×	× >	× >	omposite		INV	14:11	12-Jul-22	HOLENS TO BE	RG_SLINE	120	SLINE_INV-1_2022-07-12_N
COC ID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF					. >	omposite	1	INV	14:07	14-Jul-22	TA NO	RG_LIDCOM	020	LIDCOM_INV-5_2022-07-14_N
COCID: LCO LAEMP TURNAROUND TIME: REPORT Format / Discribution Excel PDF			4	e ;	4 ;	John	1	INV	13:46	14-Jul-22	edited to	RG_LIDCOM	610	LIDCOM_INV-4_2022-07-14_N
COCID: LCO LAEMP TURNAROUND TIME: Regional Effects Program Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF I Manager Cybele Hoddle Email Cybele. Hoddle Rock.com Address 207-1753 Sean Heights Email Space Sparwood Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province BC Postal Code Province Province PO number Province PO number Province PO number Province PO number Province PO number					Metals in Blota by CRC ICPMS (wet and dry)	ample			Time (24hr)	Date		Sample Location (sys loc code)	A cchip	Sample ID
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 1: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichan											105 (4)	0-910-8755	ne Number 25	Pho
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 1: Space Povince BC Povince	818999	PO number				lumber	Phone l						Postal Code	
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF	Notice William Volume	Zinan J.	DC		псиоп	City Saar	Post		BC		P	Sparwood	City	
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF	assan Penny @rest com	Email 5:	3											
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF	Sica Ritiglied con	Email 3:		ights		Address 207-	,					1 Pine Ave	Address 42	
me / Job# Regional Effects Program Lab Name TichAnalytics Inc. Report Format / Distribution Excel PDF Lab Contact Jennie Christensen Email 1: Capable Hopography Contact Jennie Christensen Capable Hopography Contact Jennie Christensen Capable Hopography Capable Hopograp	/er/wetter@minnowice		lytics	@trichanal	e.christensen(Email jenni	Lanc.					bele Heddle	ct Manager Cy	Proje
COCID: LCO LAEMP TURNAROUND TIME: RUSH:	Excel FDF	Report Forma		,	hAnalytics Inc	Name Trick	Lal					gional Effects Program	ame / Job# Re	Facility N
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					TIME:	NAROUND	TUR		LAEMP	LCO	COC ID:		100

COC.ID: LCO LAEMP TURNAROUN TIME: Reget from Distribution Earl Project Manager (Cycled Reddingleck.com Lab Namice (Tabelskap)cis inc. Earl			ime	Date/Time						nature	Sampler's Signature	rcharge	Emergency (1 Business Day) - 100% surcharge	Emergency (1 E	State of the San State
	-3241	403-586	e#	Mobil			Rick Smi			vame	Sampler's P	default) rcharge	Regular (o business days) - 50% su	Priority (2-3	
													· · · · · · · · · · · · · · · · · · ·	ST (MISSIS)	AND AND ASSOCIATION
COC DI: LCO LAEMP TURNAROUNTIME: Report Forms Distribution Enable	2022-364)	ligent it:	il y	mani	12					P.					
COC III: LCO LAEMP TURNAROUNTIME: Report Form Distribution Enable	N	03 Aug	Calibrate	nene	6	400		nmental	tic Environ	k Smit/Lo	Ric	-		PO 818999	
				X	×	×	Composite	Composite	INV	11:51		L.	RG_LILC3	036	RG_LILC3_INV-1_2022-07-12_N
COC ID: LCO LAEMY				×	×	X	Composite	Composite	INV	10:51	12-Jul-22	TA NO	RG_LCUT	750	RG_LCUT_INV-5_2022-07-12_N
				×	×	×	Composite	Composite	INV	10:47	12-Jul-22	TA NO	RG_LCUT	034	RG_LCUT_INV-4_2022-07-12_N
COCID: LCO LAEMP THENAROUND TIME: Regen Format Distribution Excel PDF				×	×	×	Composite	Composite	INV	10:32	12-Jul-22	TA NO	RG_LCUT	033	RG_LCUT_INV-3_2022-07-12_N
				×	×	×	Composite	Composite	INV	9:58	12-Jul-22	TA NO	RG_LCUT	032	RG_LCUT_INV-2_2022-07-12_N
				×	×	X	Composite	Composite	INV	9:49	12-Jul-22	TA NO	RG_LCUT	031	RG_LCUT_INV-1_2022-07-12_N
COCID: LCO LAEMP TURNAROUND TIME: Rejoin Rejoin Format / Description Edde Project Manager Cybele Heddle February Lab Name TrickManaytics Region Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Rejoin Format / Distribution Edde PDF Form				×	×	×	Composite	Composite	INV	12:16	11-Jul-22	TA N	RG_L124	030	RG_L124_INV-5_2022-07-11_N
COLID: LCO LAEMP TURNAROUND TIME: RUSH; RUSH; RUSH; RUSH; RUSH; RUSH; RUSH; RUSH; RUSH; RUSH; RUSH; Regional Effects Program Lab Contact Jamie Crinistenses Region format / Distribution Region format / Distribution Region format / Re				×	×	×	Composite	Composite	INV	12:06	11-Jul-22	TA NO	RG_LE24	029	RG_LI24_ENV-4_2022-07-11_N
Coc ID: LCO LAEMP TURNAROUND TIME: Rush R				×	×	×	Composite	Composite	INV	11:21	11-Jul-22	TA NO	RG_LI24	810	RG_L124_INV-3_2022-07-11_N
COCID: LCO LAEMP TURNAROUND TIME: Regional Effects Program Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF					Mercury in Biota by CVAAS		Sample Structure		Tissue type	Time (24hr)	Date			Tick to	
COCID: LCO LAEMP TURNAROUND TIME: Regional Effects Program Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF		446818	PO number	200 L			ne Number	Pho					-910-8755	ne Number 250	Pho
COCID: LCO LAEMP TURNAROUND TIME: Regional Effects Program Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF							ostal Code	P					V0B 2G0	Postal Code	
COCID: LCO LAEMP TURNAROUND TIME: RUSH: Rush	THE RESERVE THE PROPERTY OF THE PERSON NAMED IN COLUMN TO SHAPE THE PERSON NAMED THE PERSON NAMED IN COLUMN TO SHAPE THE PERSON NAMED IN COLUMN TO SHAPE THE PERSON NAMED IN COLUMN TO SHAPE THE PERSON NAMED IN C	(chelar@minrow.ca	Email 5:	e BC	Province	Saanichton	City			ВС	Province		Sparwood	City	
COCID: LCO LAEMP TURNAROUND TIME: RUSH: PDF Regional Effects Program Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF			Email 4:				100		100						-
COCID: LCO LAEMP TURNAROUND TIME: RUSH: Rush Cocid Coci		House Service	Email 3:		Heights	207-1753 Sean	Address					,	Pine Ave	Address 421	
COCID: LCO LAEMP TURNAROUND TIME: RUSH: Inc Job# Regional Effects Program Lab Name TrichAnalytics Inc. Report Format Distribution Excel PDF		Mehter Gradinowy ca	Email 2: Tye	nalytics	en@tricha		Email						ele.Heddle@teck.com	Email Cyb	- Form
COCID: LCO LAEMP TURNAROUND TIME:	Excel PDF EDD	Distribution	Report Format /		Inc.	frichAnalytics lennie Christer	Lab Name	-					ional Effects Program	lame / Job# Reg	Facility N
		RUSH:					ND TIME:	URNAROU	T		O LAEMI	LC	COC ID:		

COC ID: LCO LAEMP		Date/Time	Date						gnature	Sampler's Signature	surcharge	Emergency (1 Business Day) - 100% surcharge	Emergency (
COC ID: LCO LAEMP TURNAROUND THRE: Report Format / Datablation Record Regional Effects Frogram Lab Num (From Lab N	403-586-3241	5ile #	Mol		H	Rick Sm			Name	Sampler's	ar (default)	Regula	Mary and the	The state of the s
COC ID: LCO LAEMP														
COC ID: LCO LAEMY THRAMOUND TIME: Repart forms / Distribution Record PDF	(Maject #: 202-364)	Jan O	m	1										
COCID: LCO LAEMP	1200 Grass	MCIDI	1	4			nmental	tic Enviro	ck Smit/Le	Ri		E STATEMENT OF THE STAT	PO 818999	De Byvolungsky.
COC D LCO LAEMP TURNAROUND TIME: Report Format Distribution Excel PDF		The second second	ST. 100		The later of		Composite	TAY.	11:28			RG_FRUL	540	RG_FRUL_INV-5_2022-07-13_N
COC Discription LCO LAEMP TURNAROUND TIME: Regent From Distribution Enail State Pope From Distribution Enail State Pope From Distribution Enail State Pope From Distribution Enail State Pope From Distribution Enail State Pope From Distribution Enail State Pope From Distribution Enail State Pope From Pope From State Pope From Pope From Pope From State Pope From Pope F			×	×	X	Composite	Composito	100	11:22	and the same	-	RG_FRUL	440	RG_FRUL_INV-4_2022-07-13_N
COCID: LCO LAEMP TURNAROUND TURNE Recognition			×	×	X	Composite	Composite	NV.	10:47			RG_FRUL	043	RG_FRUL_INV-3_2022-07-13_N
COCID: LCO LAEMP TURNANOUND TIME: Name Théal-Analytés Inc. Enail 1:			×	×	×	Composite	Composite	INV	10:39			RG_FRUL	240	RG_FRUL_INV-2_2022-07-13_N
COCID: LCO LAEMP TURNANOUND TIME: No. Province Pick Program Lab Name ThichAnabytics Inc. Report Format / Distribution Excel Pick Province Pick			×	×	×	Composite	Composite	1	10:38	13-Jul-22	TA NO	RG_FRUL	041	RG_FRUL_INV-1_2022-07-13_N
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF			×	×	X	Composite	Composite	1	12:39	12-Jul-22	TA 50	RG_LILC3	040	RG_LILC3_INV-5_2022-07-12_N
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF			×	×	×	Composite	Composite	NV.	17.10	12-Jul-22	TA NO	RG_LILC3	039	RG_LILC3_INV-4_2022-07-12_N
COC ID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF			×	×	×	Composite	Composite	INV	17.70	77-IMF-71	TA N	RG_LILC3	038	RG_LILC3_INV-3_2022-07-12_N
COCID: LCO LAEMP TURNAROUND TIME: Report Formal / Distribution Excel PDF			×	X	×	Composite	Composite	INV	17.16			NO DELCO	037	LILC3_INV-2_2022-07-12_N
COCID: LCO LAE'MP TURNAROUND TIME: Report Format / Distribution Excel PDF			×	×	×	Composite	Composite	INV	11:51	12-Jul-22	TA NO	BC LILC3	1 Act In	Sample in
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF Lab Name TrichAnalytics Inc. Email 1: Goods Heddle PDF Manager Cybele Heddle Email Cybele Heddle Regional Effects Program t Manager Cybele Heddle Regional Effects Program t Manager Cybele Heddle Regional Effects Program t Manager Cybele Heddle Regional Effects Report Format / Distribution Email 1: Report Format / Distribution Email 1: Report Format / Distribution Email 1: Report Format / Distribution Email 2: Report Format / Distribution Email 3: Report Format / Distribution Email 2: Report Format / Distribution Excel PDF Email 3: Report Format / Distribution Email 2: Report Format / Distribution Email 2: Report Format / Distribution Excel PDF Email 3: Report Format / Distribution Excel PDF Email 3: Report Format / Distribution Excel PDF Email 2: Report Format / Distribution Excel PDF Email 3: Report Format / Distribution Excel PDF Email 3: Report Format / Distribution Excel PDF Email 3: Report Format / Distribution Excel PDF Email 4: Report Format / Distribution Excel PDF Email 5: Report Format / Distribution Excel PDF Email 5: Report Format / Distribution Excel PDF Email 6: Report Format / Distribution Excel PDF Email 7: Report Format / Distribution Excel PDF Email 8: Report Format / Distribution Email 8: Report Format / Distribution Email 8: Report Format / Distribution Email 8: Report Format / Distribution Email 8: Report Format / Distribution Email 8: Report Format / D				Mercury in Biota by CVAAS (wet, dry & routine)	Metals in Biota by CRC ICPMS (wet and dry)	Sample		Tissue type	Time (24hr)	Date		Sample Location	5	
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF Lab Name TrichAnalytics Inc. Email 1: Colide Manager (bybele Heddle Email Cybele Heddle Email Cybele Heddle Email Cybele Heddle Email Email Cybele Heddle Email Cybele Heddle Email Cybele Heddle Email Address 421 Pine Ave BC Province PO number City Sparwood Province BC Province Province PO number PO number RESH: Report Format / Distribution Excel PDF Report For				8 0 00 1 S								0-910-8755	one Number 25	Pho
COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF Lab Name TrichAnalytics Inc. Email 1: Distribution Excel PDF Lab Contact Jennie Christensen@trichanalytics Email 2: Distribution Email 2: Distribution Email 2: Distribution Email 2: Distribution Email 3: Distribution Excel PDF City Sparwood Province BC Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 1: Distribution Excel PDF RESTRICTION Email 2: Distribution Email 2: Distribution Email 3: RESTRICTION Email 2: Distribution Email 3: Distribution Email 3: Distribution Email 4: Distrib	818999	PO number				Number	Phone						Postal Code	
COCID: LCO LAEMP TURNAROUND TIME: Regional Effects Program Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF	and Control of the Co	Ellan 5. Nogle	96		anichton	City Sa	Pos		BC			Sparwood	City	
COCID: LCO LAEMP TURNAROUND TIME: Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF t Manager Cybele Hoddle Email Cybele Hoddle Ema	A COMPANY OF THE PROPERTY OF T	Email 4: Nameshill	+									I FILE AVE	Address 42	
COC ID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF	opietik colin	Email 3: Jessica Ru	-	ights	7-1753 Sean He	Address 20						bele.Heddle@teck.com	Email Cy	
COCID: LCO LAEMP TURNAROUND TIME: COCID: LCO LAEMP TURNAROUND TIME: Report Format / Distribution Excel PDF	reightingwa a www.x	Email 2: Tylan Mer		@trichanaly	nie.christensen	Email jen						bele Heddle	ct Manager Cyl	Proje
COCID: LCO LAEMP TURNAROUND TIME: RUSH:	S COM X	Email 1: Oyogie H			nie Christenser	b Name Tri	Lab					zional Effects Program	ame / Job# Rea	Facility N
	Excel PDF					TIME:	RNAROUN	TUI		LAEMP	LCO	COC ID:		

Province BC Province BC Province BC Province BC Province BC Time Tissue (24hr) type TA 11-Jul-22 16:01 INV TA 11-Jul-22 16:01 INV TA 11-Jul-22 16:36 INV TA 11-Jul-22 16:37 INV TA NO 11-Jul-22 16:37 INV TA NO 11-Jul-22 16:37 INV TA NO 11-Jul-22 16:37 INV TA NO 11-Jul-22 16:37 INV TA NO INV TA	Emergency (1 Busi	Priority (2-3 bus	The state of the s			PO 818999					RG_F023_INV-5_2022-07-11_N 050		RG_F023_INV-3_2022-07-11_N OH 8	RG_F023_INV-2_2022-07-11_N 047	RG_F023_INV-1_2022-07-11_N	Sample ID Ty tcht'D: (sv	Phone Number 220-910-6733	Postal Code	City	Addition	Email Cybele.	Project Manager Cybele Heddle	Facility Name / Job# Regional Effects Program	
Province BC Province B	iness Day) - 100% surchar	Regular (defau siness days) - 50% surchar	STATE OF THE WINDS			USARIOTECH CO.	TA	TA	TA	ΤA						Sample Location Field (sys loc code) Matrix	5-0733		Sparwood	o in the second	Heddle@teck.com	Heddle	l Effects Program	COC ID:
Tissu III INV III INV III INV III INV III INV III INV III INV III INV INV				- 41		Rick	NO	NO	30	NO	NO 11-Jul-22	NO 11-Jul-22	NOT 11-Jul-22	11-Jul-22	11-Jul-22	Hazardous Material (Yes/No)								Pico Mindian
Fissue type S INV C INV	ature	ame				Smit/Lotic					16:37	16:36	16:21	16:01	16:01				BC		-			
	No. of Concession, Name of Street, or other Persons, Name of Street, or ot					Environme	INV Composite	INV Composite	INV Composite	INV Composite	INV Composite	INV Composite	INV Composite	INV Composite	-	Tissue Tissue Species								
		Rick Smit					Composite	Composite	Composite	Composite	Composite	Composite	Composite	Composite	omposite	Sample		Number	City Saz		Address 207	Contact Jen	b Name Tric	F 101 6
Lab Name Tri Lab Contact Jen Email jen Address 207 Address 207 Address Structure esite Composite cosite Composite	77			100			X	×	X	X	×	×	×	×	*	Metals in Blota by CRC ICPMS (wet and dry)			inichton		-1753 Sean I	nie Christense	chAnalytics I	
b Name TrichAnalytics In Contact Jennie Christense Email Jennie Christense Email Jennie Christense Address 207-1753 Sean I Code City Saanichton Sample City Saanichton Samposite X omposite		and of the same			45	120	×	×	×	X	×	×	×	×		Mercury in Biota by CVAAS (wet, dry & routine)					leights	en n@trichanal	ic.	
Jennie Christensen Jennie Christ	Date/Tin	Mobile			man	rene	×	×	×	×	×	×	×	×		Moisture Content by Gravimetry		PC	+	1		+		
Jennie Christensen jennie Christensen@trichanalytics Inc. 207-1753 Sean Heights Saanichton Metals in Biota by CRC ICPMS (wet and dry) Mercury in Biota by CVAAS (wet, dry & routine) Mobile Date/Ti	пе	#			R	Cal Sm												number	mail 5:	mail 4:	mail 3:	mail 2:	Report Form	
Jennie Christensen Jennie	And the second s	403-586-3241		Liger in man 191	-100 # 1:00	03 Aug 2012 / 0930												808399	Khalina's Quinnow ta	Hamosty greegyed from 18		Overland and Marketon	Report Format / Distribution Excel PDF	(1) · · · · · · · · · · · · · · · · · · ·

, # .

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2022-401 (Finalized October 19, 2022)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Cybele Heddle

Project Manager Teck Coal Ltd

Phone: (250) 865-3048

Email: aquascilab@teck.com; tyler.mehler@minnow.ca;

teck.lab.results@teck.com; lisa.bowron@minnow.ca; hannah.penner@teck.com;

teckcoal@equisonline.com; cybele.heddle@teck.com

Client Project: REP_LAEMP_LCO_2022-09 Regional Effects Program (PO 818999)

Analytical Request: Composite Benthic Invertebrate Tissue Microchemistry (total metals & moisture) - 51 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg).

Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards.

Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 101% (ranging from 92-107%).

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

19 Oct 2022

Date Received:

Project No.:

Method No.:

Date of Analysis:

Final Report Date:

20 Sep 2022

30 Sep 2022

19 Oct 2022

MET-002.06

2022-401

Project No: 2022-401

			RG_FO23_INV-	RG_FO23_INV-	RG_FO23_INV-	RG_FO23_INV-	RG_FO23_INV-
		Client ID				4_2022-09-09_N	
		Lab ID	352	353	354	355	356
		et Weight (g)	0.9614	0.7641	1.4697	0.6390	0.9292
	Di	y Weight (g)	0.2330	0.2025	0.3747	0.1492	0.1937
		Moisture (%)	75.8	73.5	74.5	76.7	79.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.017	0.057	0.490	0.201	0.340	0.406	0.478
11B	0.090	0.300	0.802	0.367	0.451	0.651	0.902
23Na	11	37	2,551	1,830	3,443	3,338	3,934
24Mg	0.082	0.273	1,299	912	1,534	2,236	1,737
27Al	0.070	0.233	132	65	60	107	159
31P	82	273	10,605	8,385	10,516	12,287	13,643
39K	2.9	9.7	7,179	5,473	10,206	9,702	11,945
44Ca	22	73	1,932	1,202	1,787	3,150	2,619
49Ti	0.001	0.003	11	3.4	3.0	6.5	12
51V	0.032	0.107	0.230	0.120	0.120	0.190	0.255
52Cr	0.055	0.183	2.9	2.0	1.7	3.7	2.4
55Mn	0.008	0.027	22	16	21	53	64
57Fe	0.766	2.6	129	75	70	196	174
59Co	0.012	0.040	0.955	0.840	0.856	2.1	3.0
60Ni	0.015	0.050	6.3	7.2	6.1	16	19
63Cu	0.020	0.067	13	9.6	12	20	13
66Zn	0.253	0.843	318	232	250	434	351
75As	0.385	1.3	0.480	0.541	0.492	1.0	1.5
77Se	0.368	1.2	8.1	5.7	6.8	11	11
88Sr	0.001	0.003	2.7	1.8	2.3	4.6	4.0
95Mo	0.001	0.003	0.193	0.135	0.135	0.213	0.329
107Ag	0.001	0.003	0.067	0.036	0.133	0.120	0.065
111Cd	0.052	0.173	1.2	1.1	1.5	2.4	3.4
118Sn	0.017	0.057	0.141	0.130	0.055	0.352	0.280
121Sb	0.003	0.010	0.036	0.041	0.022	0.064	0.151
137Ba	0.001	0.003	12	5.4	5.5	13	13
202Hg	0.019	0.063	0.059	0.050	0.045	0.059	0.068
205Tl	0.001	0.003	0.011	0.009	0.009	0.012	0.024
208Pb	0.001	0.003	0.066	0.031	0.022	0.055	0.095
238U	0.001	0.003	0.028	0.013	0.013	0.037	0.056

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_FRUL_INV- 1_2022-09-10_N	RG_FRUL_INV- 2_2022-09-10_N	RG_FRUL_INV- 3_2022-09-10_N	RG_FRUL_COMP OLI-4_2022-09-	RG_FRUL_INV- 5_2022-09-10_N
						10_N	
		Lab ID	357	358	359	360	361
		et Weight (g)	1.0009	0.7463	1.6798	1.1183	0.5437
		y Weight (g)	0.2191	0.1723	0.3958	0.2516	0.1203
		Moisture (%)	78.1	76.9	76.4	77.5	77.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.017	0.057	1.2	0.384	0.462	0.959	0.739
11B	0.090	0.300	0.334	0.902	0.301	1.2	0.868
23Na	11	37	4,442	2,912	2,666	4,401	3,643
24Mg	0.082	0.273	1,278	1,382	1,287	1,732	1,324
27Al	0.070	0.233	99	176	71	416	234
31P	82	273	9,161	9,587	9,841	11,820	8,357
39K	2.9	9.7	6,169	9,003	6,319	9,856	8,509
44Ca	22	73	1,448	2,253	1,824	2,662	2,326
49Ti	0.001	0.003	5.7	10	3.6	33	20
51V	0.032	0.107	0.160	0.265	0.145	0.734	0.397
52Cr	0.055	0.183	2.2	3.1	1.8	6.5	2.6
55Mn	0.008	0.027	20	48	19	37	49
57Fe	0.766	2.6	88	170	96	304	209
59Co	0.012	0.040	0.342	1.5	0.713	1.1	1.4
60Ni	0.015	0.050	3.2	11	4.6	13	8.4
63Cu	0.020	0.067	10	14	11	19	14
66Zn	0.253	0.843	164	266	428	288	185
75As	0.385	1.3	< 0.385	0.935	0.468	0.788	0.788
77Se	0.368	1.2	7.7	9.8	6.9	9.6	10
88Sr	0.001	0.003	1.6	2.7	1.6	3.3	2.9
95Mo	0.001	0.003	0.135	0.193	0.135	0.271	0.309
107Ag	0.001	0.003	0.096	0.138	0.125	0.151	0.151
111Cd	0.052	0.173	1.6	1.7	1.6	1.5	2.1
118Sn	0.017	0.057	0.097	0.212	0.072	0.343	0.401
121Sb	0.003	0.010	0.011	0.027	0.016	0.043	0.045
137Ba	0.001	0.003	7.5	13	7.1	21	17
202Hg	0.019	0.063	0.063	0.061	0.072	0.059	0.059
205TI	0.001	0.003	0.007	0.011	0.006	0.021	0.014
208Pb	0.001	0.003	0.041	0.089	0.029	0.152	0.126
238U	0.001	0.003	0.012	0.035	0.015	0.051	0.052

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_FRUL_INVOLI- 4_2022-09-10_N	RG_LCUT_INV- 1_2022-09-15_N	RG_LCUT_INV- 2_2022-09-15_N	RG_LCUT_INV- 3_2022-09-15_N	RG_LCUT_INV- 4_2022-09-15_N
		Lab ID	362	363	364	365	366
	We	et Weight (g)	0.0589	0.9922	0.8095	1.2195	0.8924
		y Weight (g)	0.0242	0.2211	0.2256	0.2690	0.2286
		Moisture (%)	58.9	77.7	72.1	77.9	74.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.017	0.057	3.8	0.585	0.390	0.311	0.377
11B	0.090	0.300	12	1.2	0.735	0.768	0.468
23Na	11	37	3,393	2,946	2,812	2,088	2,998
24Mg	0.082	0.273	2,537	1,168	844	726	946
27Al	0.070	0.233	7,808	576	213	139	162
31P	82	273	10,206	10,503	10,100	7,851	11,246
39K	2.9	9.7	13,934	8,514	9,077	7,370	8,025
44Ca	22	73	14,095	2,395	981	1,463	1,086
49Ti	0.001	0.003	663	39	10	7.6	10
51V	0.032	0.107	12	0.839	0.309	0.210	0.260
52Cr	0.055	0.183	18	5.7	2.3	2.1	2.3
55Mn	0.008	0.027	148	18	18	12	19
57Fe	0.766	2.6	3,694	254	107	73	119
59Co	0.012	0.040	4.3	0.946	0.445	0.280	0.713
60Ni	0.015	0.050	34	14	4.6	3.6	4.5
63Cu	0.020	0.067	14	14	15	12	17
66Zn	0.253	0.843	211	172	133	93	150
75As	0.385	1.3	6.5	0.812	0.492	0.394	0.566
77Se	0.368	1.2	65	5.9	5.4	4.5	6.4
88Sr	0.001	0.003	18	3.7	1.6	2.0	1.9
95Mo	0.001	0.003	0.851	0.174	0.232	0.116	0.232
107Ag	0.001	0.003	0.113	0.022	0.009	0.009	0.013
111Cd	0.052	0.173	10	1.9	1.6	1.1	2.4
118Sn	0.017	0.057	0.653	0.199	0.170	0.111	0.200
121Sb	0.003	0.010	0.250	0.047	0.027	0.015	0.024
137Ba	0.001	0.003	215	25	17	8.2	13
202Hg	0.019	0.063	0.168	0.177	0.149	0.084	0.154
205Tl	0.001	0.003	0.156	0.030	0.025	0.014	0.019
208Pb	0.001	0.003	2.2	0.233	0.148	0.101	0.133
238U	0.001	0.003	0.393	0.078	0.044	0.030	0.052

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LCUT_INV-	RG LIDCOM INV-	RG LIDCOM INV-	RG LIDCOM INV-	RG_LIDCOM_INV-
		Client ID		1_2022-09-12_N			
		00	5_2522 65 15_1	1_2022 00 12_11		0	1_2022 00 10_11
		Lab ID	367	368	369	370	371
	We	et Weight (g)	1.3036	2.0104	3.2354	1.0732	1.6366
		y Weight (g)	0.3271	0.4390	0.7260	0.2676	0.3923
		Moisture (%)	74.9	78.2	77.6	75.1	76.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.017	0.057	0.465	0.535	0.568	0.284	0.346
11B	0.090	0.300	0.735	0.768	0.685	0.359	0.490
23Na	11	37	3,274	3,478	4,925	2,994	2,920
24Mg	0.082	0.273	1,048	1,183	1,209	863	947
27Al	0.070	0.233	146	447	360	99	74
31P	82	273	11,209	10,575	14,475	10,931	11,321
39K	2.9	9.7	8,672	9,810	13,366	7,599	7,274
44Ca	22	73	1,024	1,315	1,053	816	816
49Ti	0.001	0.003	8.8	39	24	5.4	5.8
51V	0.032	0.107	0.240	0.395	0.464	0.159	0.107
52Cr	0.055	0.183	2.3	3.0	2.3	2.6	2.6
55Mn	0.008	0.027	20	48	69	55	39
57Fe	0.766	2.6	110	154	190	118	64
59Co	0.012	0.040	0.492	0.638	0.615	0.675	0.450
60Ni	0.015	0.050	4.5	8.5	11	7.8	7.7
63Cu	0.020	0.067	15	7.3	7.5	10	7.5
66Zn	0.253	0.843	162	153	170	242	168
75As	0.385	1.3	0.615	0.517	0.720	0.546	0.472
77Se	0.368	1.2	6.3	5.8	5.4	5.2	4.4
88Sr	0.001	0.003	1.7	2.9	1.9	1.4	1.1
95Mo	0.001	0.003	0.232	0.232	0.206	0.216	0.176
107Ag	0.001	0.003	0.013	0.013	0.014	0.023	0.009
111Cd	0.052	0.173	2.1	0.961	1.4	2.3	1.2
118Sn	0.017	0.057	0.041	0.244	0.165	0.098	0.084
121Sb	0.003	0.010	0.031	0.033	0.022	0.015	0.013
137Ba	0.001	0.003	19	15	22	12	8.0
202Hg	0.019	0.063	0.145	0.072	0.066	0.079	0.053
205Tl	0.001	0.003	0.023	0.019	0.032	0.019	0.017
208Pb	0.001	0.003	0.152	0.145	0.103	0.050	0.037
238U	0.001	0.003	0.061	0.046	0.045	0.035	0.016

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LIDCOM_INV- 5_2022-09-13_N	RG_LIDSL_INV- 1_2022-09-13_N	RG_LIDSL_INV- 2_2022-09-13_N	RG_LIDSL_INV- 3_2022-09-13_N	RG_LIDSL_INV- 4_2022-09-14_N
		Lab ID	372	373	374	375	376
	We	et Weight (g)	2.1208	1.4813	2.0242	3.2350	1.8286
		y Weight (g)	0.4242	0.3078	0.4195	0.6606	0.3868
		Moisture (%)	80.0	79.2	79.3	79.6	78.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.017	0.057	0.398	0.419	0.428	0.475	0.357
11B	0.090	0.300	0.685	0.685	0.751	0.718	0.424
23Na	11	37	3,901	4,562	4,107	4,461	3,278
24Mg	0.082	0.273	1,133	1,771	1,231	1,102	1,330
27Al	0.070	0.233	135	82	221	133	30
31P	82	273	11,788	12,797	12,021	9,719	12,292
39K	2.9	9.7	9,872	10,912	9,404	8,448	9,610
44Ca	22	73	1,267	2,118	1,916	1,294	1,182
49Ti	0.001	0.003	10	6.4	15	7.5	1.7
51V	0.032	0.107	0.167	0.185	0.386	0.256	0.094
52Cr	0.055	0.183	2.1	2.9	2.4	2.0	1.5
55Mn	0.008	0.027	75	76	84	67	79
57Fe	0.766	2.6	129	198	289	168	132
59Co	0.012	0.040	0.751	2.6	1.1	1.1	1.6
60Ni	0.015	0.050	11	15	10	8.4	10
63Cu	0.020	0.067	13	23	16	8.5	17
66Zn	0.253	0.843	265	423	267	189	243
75As	0.385	1.3	0.596	0.906	0.546	0.521	0.683
77Se	0.368	1.2	6.8	11	9.0	5.2	7.6
88Sr	0.001	0.003	1.9	3.4	2.7	1.8	1.7
95Mo	0.001	0.003	0.255	0.333	0.294	0.196	0.274
107Ag	0.001	0.003	0.018	0.037	0.027	0.009	0.018
111Cd	0.052	0.173	1.8	6.9	3.3	3.3	4.2
118Sn	0.017	0.057	0.090	0.581	0.291	0.128	0.268
121Sb	0.003	0.010	0.023	0.030	0.030	0.022	0.015
137Ba	0.001	0.003	15	9.3	26	7.9	9.2
202Hg	0.019	0.063	0.071	0.115	0.106	0.057	0.093
205Tl	0.001	0.003	0.035	0.053	0.030	0.026	0.024
208Pb	0.001	0.003	0.081	0.070	0.145	0.063	0.044
238U	0.001	0.003	0.063	0.064	0.079	0.039	0.035

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LIDSL_INV-	RG_LILC3_INV-	RG_LILC3_INV-	RG_LILC3_INV-	RG_LILC3_INV-
		Client ID	5_2022-09-14_N	1_2022-09-08_N		3_2022-09-08_N	
		Lab ID	377	378	379	380	381
		et Weight (g)	2.1710	0.7350	0.4631	0.7118	0.6537
		y Weight (g)	0.5002	0.1447	0.1159	0.1530	0.1291
		Moisture (%)	77.0	80.3	75.0	78.5	80.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.017	0.057	0.343	0.346	0.346	0.381	0.393
11B	0.090	0.300	0.457	0.473	0.326	0.522	0.751
23Na	11	37	3,726	2,986	3,782	3,426	4,025
24Mg	0.082	0.273	1,164	822	1,096	858	1,027
27Al	0.070	0.233	135	70	44	72	166
31P	82	273	11,726	8,752	11,347	11,885	11,983
39K	2.9	9.7	9,976	7,004	9,869	8,705	9,363
44Ca	22	73	1,325	735	1,249	1,011	1,204
49Ti	0.001	0.003	7.9	4.4	2.5	3.7	8.7
51V	0.032	0.107	0.237	0.188	0.185	0.214	0.344
52Cr	0.055	0.183	2.1	2.2	2.1	2.0	2.7
55Mn	0.008	0.027	75	44	90	68	77
57Fe	0.766	2.6	237	159	262	296	307
59Co	0.012	0.040	1.8	0.787	0.844	1.1	1.5
60Ni	0.015	0.050	9.1	7.7	6.9	9.2	9.5
63Cu	0.020	0.067	18	12	17	14	12
66Zn	0.253	0.843	368	164	140	151	127
75As	0.385	1.3	0.832	0.571	0.447	0.559	0.447
77Se	0.368	1.2	7.8	9.2	8.0	10	9.0
88Sr	0.001	0.003	2.0	1.1	2.2	1.5	1.8
95Mo	0.001	0.003	0.314	0.294	0.294	0.255	0.235
107Ag	0.001	0.003	0.023	0.007	0.009	0.009	0.014
111Cd	0.052	0.173	5.1	0.688	1.5	1.7	1.6
118Sn	0.017	0.057	0.472	0.115	0.122	0.143	0.293
121Sb	0.003	0.010	0.018	0.028	0.032	0.031	0.028
137Ba	0.001	0.003	12	5.4	8.4	8.6	9.3
202Hg	0.019	0.063	0.099	0.119	0.088	0.101	0.115
205Tl	0.001	0.003	0.027	0.022	0.017	0.029	0.022
208Pb	0.001	0.003	0.068	0.050	0.068	0.085	0.125
238U	0.001	0.003	0.043	0.023	0.080	0.059	0.048

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LILC3_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-
		Client ID	5_2022-09-08_N		1_2022-09-14_N	4_2022-09-15_N	
		Lab ID	382	383	384	385	386
		et Weight (g)	0.8016	0.7643	1.4952	1.2758	0.6828
		y Weight (g)	0.1510	0.1858	0.3551	0.2749	0.1605
		Moisture (%)	81.2	75.7	76.3	78.5	76.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.017	0.057	0.551	0.346	0.413	0.346	0.443
11B	0.090	0.300	0.783	0.814	0.457	0.457	0.303
23Na	11	37	4,412	3,579	4,634	3,723	4,316
24Mg	0.082	0.273	1,081	1,199	1,391	1,007	1,311
27Al	0.070	0.233	131	218	67	90	68
31P	82	273	12,266	12,024	15,476	11,363	16,808
39K	2.9	9.7	9,992	9,296	10,737	9,164	10,378
44Ca	22	73	1,349	1,264	806	810	889
49Ti	0.001	0.003	7.9	13	3.9	5.4	3.3
51V	0.032	0.107	0.344	0.396	0.128	0.229	0.164
52Cr	0.055	0.183	2.3	2.1	1.8	2.0	2.2
55Mn	0.008	0.027	60	72	43	64	88
57Fe	0.766	2.6	309	328	166	262	163
59Co	0.012	0.040	0.913	1.4	0.751	1.1	0.621
60Ni	0.015	0.050	7.0	11	3.9	8.0	4.9
63Cu	0.020	0.067	15	10	11	11	16
66Zn	0.253	0.843	152	207	195	197	287
75As	0.385	1.3	0.484	0.645	0.621	0.497	0.717
77Se	0.368	1.2	9.2	8.2	8.8	6.7	7.7
88Sr	0.001	0.003	2.2	2.2	1.4	1.4	2.5
95Mo	0.001	0.003	0.333	0.274	0.372	0.294	0.343
107Ag	0.001	0.003	0.014	0.014	0.014	0.014	0.023
111Cd	0.052	0.173	1.2	1.8	1.6	1.9	0.977
118Sn	0.017	0.057	0.193	0.502	0.109	0.303	0.139
121Sb	0.003	0.010	0.033	0.031	0.018	0.017	0.013
137Ba	0.001	0.003	9.4	10	7.7	9.3	19
202Hg	0.019	0.063	0.115	0.084	0.088	0.075	0.124
205Tl	0.001	0.003	0.028	0.023	0.025	0.022	0.024
208Pb	0.001	0.003	0.102	0.085	0.041	0.062	0.040
238U	0.001	0.003	0.040	0.039	0.021	0.046	0.026

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_SLINE_INV- 1_2022-09-16_N	RG_SLINE_INV- 2_2022-09-16_N	RG_SLINE_INV- 3_2022-09-16_N	RG_SLINE_INV- 4_2022-09-16_N	RG_SLINE_INV- 5_2022-09-16_N
		Lab ID	387	388	389	390	391
	We	et Weight (g)	0.6443	1.5266	1.1253	0.7992	0.9909
		y Weight (g)	0.1230	0.2571	0.2462	0.1397	0.1924
		Moisture (%)	80.9	83.2	78.1	82.5	80.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.017	0.057	0.411	0.157	0.294	0.392	0.298
11B	0.090	0.300	0.889	0.283	0.566	0.889	0.606
23Na	11	37	4,635	2,864	4,072	3,326	3,532
24Mg	0.082	0.273	1,697	1,043	1,551	1,632	1,559
27Al	0.070	0.233	359	76	249	399	240
31P	82	273	16,185	11,619	14,177	12,677	13,075
39K	2.9	9.7	15,031	9,064	12,679	11,537	10,358
44Ca	22	73	3,042	1,281	1,927	2,965	2,361
49Ti	0.001	0.003	23	3.8	13	27	15
51V	0.032	0.107	0.882	0.273	0.625	0.953	0.504
52Cr	0.055	0.183	3.7	2.3	3.1	2.7	2.5
55Mn	0.008	0.027	24	13	17	19	13
57Fe	0.766	2.6	253	73	193	294	172
59Co	0.012	0.040	0.625	0.136	0.273	0.507	0.227
60Ni	0.015	0.050	7.1	2.8	6.0	4.7	3.5
63Cu	0.020	0.067	16	9.0	15	16	16
66Zn	0.253	0.843	557	285	307	613	322
75As	0.385	1.3	1.6	0.810	1.3	1.2	0.561
77Se	0.368	1.2	8.3	3.9	5.4	12	5.2
88Sr	0.001	0.003	7.3	2.9	4.1	5.5	4.3
95Mo	0.001	0.003	0.422	0.211	0.343	0.395	0.237
107Ag	0.001	0.003	0.098	0.045	0.076	0.068	0.091
111Cd	0.052	0.173	3.7	1.1	1.5	2.5	1.6
118Sn	0.017	0.057	0.463	0.241	0.334	0.324	0.197
121Sb	0.003	0.010	0.024	0.009	0.014	0.022	0.016
137Ba	0.001	0.003	18	12	18	16	14
202Hg	0.019	0.063	0.118	0.087	0.081	0.115	0.099
205Tl	0.001	0.003	0.105	0.045	0.058	0.082	0.058
208Pb	0.001	0.003	0.167	0.038	0.113	0.215	0.130
238U	0.001	0.003	0.098	0.037	0.040	0.090	0.068

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LISP24_INV- 3_2022-09-15_N	RG_LI24_INV- 1_2022-09-17_N	RG_LI24_INV- 2_2022-09-17_N	RG_LI24_INV- 3_2022-09-17_N	RG_LI24_INV- 4_2022-09-17_N
				_			
		Lab ID	392	393	394	395	396
	We	et Weight (g)	0.6704	0.4610	0.7245	0.6050	0.4372
	Dr	y Weight (g)	0.1485	0.0846	0.1257	0.1245	0.0661
		Moisture (%)	77.8	81.6	82.7	79.4	84.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.017	0.057	0.384	0.988	0.549	0.819	0.298
11B	0.090	0.300	0.929	2.1	1.4	1.4	0.606
23Na	11	37	3,043	3,604	4,106	3,791	3,319
24Mg	0.082	0.273	1,394	1,578	1,532	1,775	1,252
27Al	0.070	0.233	130	491	243	483	137
31P	82	273	12,220	12,068	14,045	15,024	14,363
39K	2.9	9.7	9,343	10,707	10,965	11,529	9,032
44Ca	22	73	1,523	4,265	3,169	2,910	2,627
49Ti	0.001	0.003	9.0	27	15	24	7.1
51V	0.032	0.107	0.476	2.5	1.9	2.0	0.718
52Cr	0.055	0.183	2.6	3.8	3.3	8.3	2.9
55Mn	0.008	0.027	67	18	13	18	11
57Fe	0.766	2.6	284	297	210	357	156
59Co	0.012	0.040	1.1	0.712	0.462	0.606	0.314
60Ni	0.015	0.050	9.3	11	11	15	6.3
63Cu	0.020	0.067	15	12	13	13	9.6
66Zn	0.253	0.843	178	434	318	344	268
75As	0.385	1.3	0.608	2.6	3.0	2.8	2.3
77Se	0.368	1.2	6.0	6.8	6.2	7.2	6.6
88Sr	0.001	0.003	2.2	10	6.8	6.5	4.9
95Mo	0.001	0.003	0.290	0.422	0.369	0.409	0.316
107Ag	0.001	0.003	0.015	0.053	0.079	0.076	0.042
111Cd	0.052	0.173	1.6	1.2	0.833	0.849	0.673
118Sn	0.017	0.057	0.272	0.883	0.599	0.389	0.742
121Sb	0.003	0.010	0.020	0.054	0.039	0.047	0.016
137Ba	0.001	0.003	10	25	16	25	13
202Hg	0.019	0.063	0.074	0.074	0.062	0.081	0.056
205Tl	0.001	0.003	0.028	0.055	0.054	0.062	0.048
208Pb	0.001	0.003	0.081	0.195	0.140	0.221	0.079
238U	0.001	0.003	0.039	0.400	0.084	0.127	0.063

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 10 of 24

		Client ID	RG_LI24_INV- 5_2022-09-17_N	RG_LI8_INV- 1_2022-09-17_N	RG_LI8_INV- 2_2022-09-17_N	RG_LI8_INV- 3_2022-09-17_N	RG_LI8_INV- 4_2022-09-17_N
		Lab ID	397	398	399	400	401
	We	et Weight (g)	0.8207	1.4904	2.8631	2.0220	1.4720
		y Weight (g)	0.1587	0.3349	0.5908	0.4141	0.2899
		Moisture (%)	80.7	77.5	79.4	79.5	80.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.017	0.057	0.212	0.329	0.384	0.768	0.619
11B	0.090	0.300	0.364	0.566	0.586	0.727	0.485
23Na	11	37	2,808	1,928	2,376	4,135	4,055
24Mg	0.082	0.273	1,366	771	762	1,978	1,131
27Al	0.070	0.233	60	163	136	171	158
31P	82	273	12,143	6,982	8,935	15,160	11,672
39K	2.9	9.7	7,472	6,296	8,316	10,402	8,254
44Ca	22	73	2,142	1,008	654	2,799	1,233
49Ti	0.001	0.003	3.1	9.0	5.9	27	9.2
51V	0.032	0.107	0.468	0.254	0.203	0.683	0.304
52Cr	0.055	0.183	2.3	1.7	1.9	2.7	1.9
55Mn	0.008	0.027	7.9	21	34	85	32
57Fe	0.766	2.6	106	78	60	176	119
59Co	0.012	0.040	0.197	0.284	0.257	0.613	0.405
60Ni	0.015	0.050	5.6	4.0	3.6	9.7	5.5
63Cu	0.020	0.067	12	7.1	5.2	13	10
66Zn	0.253	0.843	199	219	202	418	258
75As	0.385	1.3	1.7	< 0.385	< 0.385	0.685	0.483
77Se	0.368	1.2	4.7	3.9	4.4	7.5	7.0
88Sr	0.001	0.003	5.2	1.7	0.908	1.3	1.9
95Mo	0.001	0.003	0.237	0.132	0.105	0.316	0.264
107Ag	0.001	0.003	0.053	0.015	0.008	0.023	0.023
111Cd	0.052	0.173	0.609	1.5	1.9	2.6	1.6
118Sn	0.017	0.057	0.228	0.156	0.316	0.183	0.145
121Sb	0.003	0.010	0.010	0.011	0.009	0.025	0.012
137Ba	0.001	0.003	10	7.5	4.3	6.1	12
202Hg	0.019	0.063	0.050	0.056	0.043	0.099	0.093
205TI	0.001	0.003	0.046	0.014	0.015	0.024	0.014
208Pb	0.001	0.003	0.050	0.053	0.041	0.122	0.068
238U	0.001	0.003	0.069	0.025	0.018	0.064	0.027

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Client ID	RG_LI8_INV- 5_2022-09-17_N
Lab ID	402
Wet Weight (g)	1.7830
Dry Weight (g)	
Moisture (%)	

		Moisture (%)	81.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)
7Li	0.017	0.057	0.525
11B	0.090	0.300	0.485
23Na	11	37	2,642
24Mg	0.082	0.273	966
27Al	0.070	0.233	165
31P	82	273	8,375
39K	2.9	9.7	6,146
44Ca	22	73	712
49Ti	0.001	0.003	12
51V	0.032	0.107	0.312
52Cr	0.055	0.183	2.0
55Mn	0.008	0.027	22
57Fe	0.766	2.6	102
59Co	0.012	0.040	0.291
60Ni	0.015	0.050	6.1
63Cu	0.020	0.067	7.4
66Zn	0.253	0.843	224
75As	0.385	1.3	0.436
77Se	0.368	1.2	4.6
88Sr	0.001	0.003	1.4
95Mo	0.001	0.003	0.185
107Ag	0.001	0.003	0.015
111Cd	0.052	0.173	1.8
118Sn	0.017	0.057	0.115
121Sb	0.003	0.010	0.014
137Ba	0.001	0.003	11
202Hg	0.019	0.063	0.081
205TI	0.001	0.003	0.014
208Pb	0.001	0.003	0.060
238U	0.001	0.003	0.017

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

(Client ID	RG FO23	_INV-1_2022-	-09-09 N	RG FO23	 _INV-5_2022	-09-10 N			
`								RG_LIDSI	_INV-1_2022	-09-13_N
	Lab ID		352			356			373	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.017	0.490	0.535	8.8	0.478	0.453	5.4	0.419	0.334	23
11B	0.090	0.802	0.868	-	0.902	1.2	28	0.685	0.702	-
23Na	11	2,551	2,813	9.8	3,934	3,095	24	4,562	3,823	18
24Mg	0.082	1,299	1,423	9.1	1,737	1,657	4.7	1,771	1,557	13
27Al	0.070	132	160	19	159	195	20	82	76	7.6
31P	82	10,605	11,011	3.8	13,643	11,466	17	12,797	12,217	4.6
39K	2.9	7,179	9,243	25	11,945	10,308	15	10,912	8,939	20
44Ca	22	1,932	2,234	15	2,619	2,851	8.5	2,118	1,831	15
49Ti	0.001	11	8.6	25	12	8.8	31	6.4	4.9	27
51V	0.032	0.230	0.274	-	0.255	0.304	-	0.185	0.172	-
52Cr	0.055	2.9	3.6	22	2.4	2.1	13	2.9	2.1	32
55Mn	0.008	22	23	4.4	64	81	23	76	75	1.3
57Fe	0.766	129	134	3.8	174	230	28	198	218	9.6
59Co	0.012	0.955	1.0	4.6	3.0	2.9	3.4	2.6	2.1	21
60Ni	0.015	6.3	7.3	15	19	18	5.4	15	13	14
63Cu	0.020	13	13	0.0	13	13	0.0	23	19	19
66Zn	0.253	318	402	23	351	421	18	423	422	0.2
75As	0.385	0.480	0.492	-	1.5	1.3	-	0.906	0.695	-
77Se	0.368	8.1	6.6	20	11	11	0.0	11	8.2	29
88Sr	0.001	2.7	3.2	17	4.0	3.9	2.5	3.4	3.1	9.2
95Mo	0.001	0.193	0.222	14	0.329	0.464	34	0.333	0.235	35
107Ag	0.001	0.067	0.067	0.0	0.065	0.089	31	0.037	0.030	21
111Cd	0.052	1.2	1.6	29	3.4	3.4	0.0	6.9	4.8	36
118Sn	0.017	0.141	0.150	-	0.280	0.334	18	0.581	0.439	28
121Sb	0.003	0.036	0.027	-	0.151	0.203	29	0.030	0.016	-
137Ba	0.001	12	12	0.0	13	16	21	9.3	11	17
202Hg	0.019	0.059	0.063	-	0.068	0.068	-	0.115	0.093	-
205TI	0.001	0.011	0.012	8.7	0.024	0.021	13	0.053	0.039	30
208Pb	0.001	0.066	0.061	7.9	0.095	0.126	28	0.070	0.088	23
238U	0.001	0.028	0.029	3.5	0.056	0.055	1.8	0.064	0.077	18

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Project No: 2022-401

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

(Client ID	DC LIDSI	INV-5_2022	00 14 N	DC SUNE	_INV-4_2022	00 16 N	DC 1134	_INV-2_2022-	00 17 N
	Lab ID	KG_LID3L	114V-3_2022 377	-09-14_11	KG_SLINE	390	N_01-60	RG_LIZ4	394	-09-17_11
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.017	0.343	0.331	3.6	0.392	0.341	14	0.549	0.409	29
11B	0.090	0.457	0.685	-	0.889	0.768	-	1.4	0.970	36
23Na	11	3,726	3,445	7.8	3,326	4,096	21	4,106	3,297	22
24Mg	0.082	1,164	1,435	21	1,632	1,707	4.5	1,532	1,500	2.1
27Al	0.070	135	93	37	399	282	34	243	182	29
31P	82	11,726	11,507	1.9	12,677	15,182	18	14,045	12,290	13
39K	2.9	9,976	8,210	19	11,537	12,940	12	10,965	9,082	19
44Ca	22	1,325	1,253	5.6	2,965	2,122	33	3,169	2,763	14
49Ti	0.001	7.9	8.2	3.7	27	20	30	15	11	31
51V	0.032	0.237	0.183	-	0.953	0.703	30	1.9	1.4	30
52Cr	0.055	2.1	2.1	0.0	2.7	2.6	3.8	3.3	2.4	32
55Mn	0.008	75	72	4.1	19	19	0.0	13	11	17
57Fe	0.766	237	200	17	294	250	16	210	199	5.4
59Co	0.012	1.8	1.9	5.4	0.507	0.477	6.1	0.462	0.454	1.7
60Ni	0.015	9.1	11	19	4.7	4.8	2.1	11	8.5	26
63Cu	0.020	18	15	18	16	18	12	13	12	8.0
66Zn	0.253	368	312	17	613	566	8.0	318	320	0.6
75As	0.385	0.832	0.857	-	1.2	1.2	-	3.0	2.8	-
77Se	0.368	7.8	8.5	8.6	12	8.2	38	6.2	6.5	4.7
88Sr	0.001	2.0	2.2	9.5	5.5	4.7	16	6.8	6.0	13
95Mo	0.001	0.314	0.333	5.9	0.395	0.527	29	0.369	0.290	24
107Ag	0.001	0.023	0.018	24	0.068	0.068	0.0	0.079	0.057	32
111Cd	0.052	5.1	4.3	17	2.5	2.0	22	0.833	0.673	21
118Sn	0.017	0.472	0.335	34	0.324	0.254	24	0.599	0.623	3.9
121Sb	0.003	0.018	0.018	-	0.022	0.018	-	0.039	0.020	-
137Ba	0.001	12	10	18	16	14	13	16	15	6.5
202Hg	0.019	0.099	0.093	-	0.115	0.108	-	0.062	0.050	-
205TI	0.001	0.027	0.031	14	0.082	0.083	1.2	0.054	0.042	25
208Pb	0.001	0.068	0.065	4.5	0.215	0.151	35	0.140	0.095	38
238U	0.001	0.043	0.048	11	0.090	0.081	11	0.084	0.074	13

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Project No: 2022-401

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.017	1.21	1.3	107	0.0	1.1	94	10
11B	0.090	4.5	4.6	102	3.4	4.0	90	2.8
23Na	11	14,000	14,039	100	4.1	13,597	97	4.7
24Mg	0.082	910	982	108	5.0	893	98	12
27Al	0.070	197.2	182	92	6.4	176	90	5.0
31P	82	8,000	8,046	101	5.6	7,757	97	6.4
39K	2.9	15,500	16,412	106	4.1	14,828	96	2.6
44Ca	22	2,360	2,378	101	3.9	2,245	95	5.9
49Ti	0.001	12.24	11	92	4.0	10	85	10
51V	0.032	1.57	1.5	96	9.4	1.5	97	5.5
52Cr	0.055	1.87	1.8	98	6.2	1.9	103	6.8
55Mn	0.008	3.17	3.6	112	12	3.1	99	7.7
57Fe	0.766	343	370	108	5.7	339	99	5.5
59Co	0.012	0.25	0.276	110	6.7	0.258	103	7.6
60Ni	0.015	1.34	1.4	108	6.2	1.4	103	6.1
63Cu	0.020	15.7	16	102	4.4	16	102	7.7
66Zn	0.253	51.6	52	101	7.7	49	95	6.8
75As	0.385	6.87	7.0	101	4.1	6.7	98	4.9
77Se	0.368	3.45	3.2	92	4.1	3.5	103	8.8
88Sr	0.001	10.1	10	102	11	9.8	97	1.8
95Mo	0.001	0.29	0.286	99	5.6	0.274	95	10
107Ag	0.001	0.0252	0.026	104	17	0.026	104	6.8
111Cd	0.052	0.299	0.285	96	4.7	0.322	108	15
118Sn	0.017	0.061	0.061	100	12	0.062	102	13
121Sb	0.003	0.011	0.011	102	19	0.011	103	5.1
137Ba	0.001	8.6	8.5	99	2.2	7.5	87	2.2
202Hg	0.019	0.412	0.423	103	5.8	0.424	103	8.0
205Tl	0.001	0.0013	-	-	-	-	-	-
208Pb	0.001	0.404	0.408	101	8.7	0.408	101	8.0
238U	0.001	0.05	0.050	100	11	0.051	102	11

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

Sample Group ID	03

Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.017	1.21	1.2	101	11
11B	0.090	4.5	4.6	101	5.3
23Na	11	14,000	14,337	102	6.1
24Mg	0.082	910	967	106	4.0
27AI	0.070	197.2	191	97	2.7
31P	82	8,000	8,412	105	6.9
39K	2.9	15,500	16,751	108	7.2
44Ca	22	2,360	2,635	112	5.1
49Ti	0.001	12.24	13	105	12
51V	0.032	1.57	1.7	108	4.2
52Cr	0.055	1.87	2.0	108	4.1
55Mn	0.008	3.17	3.4	108	3.2
57Fe	0.766	343	368	107	3.0
59Co	0.012	0.25	0.289	116	6.6
60Ni	0.015	1.34	1.4	106	5.9
63Cu	0.020	15.7	17	111	3.1
66Zn	0.253	51.6	55	107	4.8
75As	0.385	6.87	7.1	103	2.0
77Se	0.368	3.45	3.7	107	5.8
88Sr	0.001	10.1	11	109	6.4
95Mo	0.001	0.29	0.306	105	4.7
107Ag	0.001	0.0252	0.032	125	11
111Cd	0.052	0.299	0.367	123	12
118Sn	0.017	0.061	0.058	96	7.4
121Sb	0.003	0.011	0.011	100	13
137Ba	0.001	8.6	8.6	100	2.2
202Hg	0.019	0.412	0.468	114	2.2
205Tl	0.001	0.0013	-	-	-
208Pb	0.001	0.404	0.418	104	17
238U	0.001	0.05	0.052	104	10

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_FO23_INV-1_2022-09-09_N	352	30 Sep 2022
	RG_FO23_INV-2_2022-09-09_N	353	
	RG_FO23_INV-3_2022-09-09_N	354	
	RG_FO23_INV-4_2022-09-09_N	355	
	RG_FO23_INV-5_2022-09-10_N	356	
	RG_FRUL_INV-1_2022-09-10_N	357	
	RG_FRUL_INV-2_2022-09-10_N	358	
	RG_FRUL_INV-3_2022-09-10_N	359	
	RG_FRUL_COMPOLI-4_2022-09-10_N	360	
	RG_FRUL_INV-5_2022-09-10_N	361	
	RG_FRUL_INVOLI-4_2022-09-10_N	362	
	RG_LCUT_INV-1_2022-09-15_N	363	
	RG_LCUT_INV-2_2022-09-15_N	364	
	RG_LCUT_INV-3_2022-09-15_N	365	
	RG_LCUT_INV-4_2022-09-15_N	366	
	RG_LCUT_INV-5_2022-09-15_N	367	
	RG_LIDCOM_INV-1_2022-09-12_N	368	
02	RG_LIDCOM_INV-2_2022-09-12_N	369	30 Sep 2022
	RG_LIDCOM_INV-3_2022-09-12_N	370	
	RG_LIDCOM_INV-4_2022-09-13_N	371	
	RG_LIDCOM_INV-5_2022-09-13_N	372	
	RG_LIDSL_INV-1_2022-09-13_N	373	
	RG_LIDSL_INV-2_2022-09-13_N	374	
	RG_LIDSL_INV-3_2022-09-13_N	375	
	RG_LIDSL_INV-4_2022-09-14_N	376	
	RG_LIDSL_INV-5_2022-09-14_N	377	
	RG_LILC3_INV-1_2022-09-08_N	378	
	RG_LILC3_INV-2_2022-09-08_N	379	
	RG_LILC3_INV-3_2022-09-08_N	380	
	RG_LILC3_INV-4_2022-09-08_N	381	
	RG_LILC3_INV-5_2022-09-08_N	382	
	RG_LISP24_INV-2_2022-09-15_N	383	
	RG_LISP24_INV-1_2022-09-14_N	384	
	RG_LISP24_INV-4_2022-09-15_N	385	
03	RG_LISP24_INV-5_2022-09-15_N	386	30 Sep 2022
	RG_SLINE_INV-1_2022-09-16_N	387	
	RG_SLINE_INV-2_2022-09-16_N	388	
	RG_SLINE_INV-3_2022-09-16_N	389	
	RG_SLINE_INV-4_2022-09-16_N	390	
	RG_SLINE_INV-5_2022-09-16_N	391	

Teck Coal Limited Sample Group Information

Sample			Date of
Group ID	Client ID	Lab ID	Analysis
03	RG_LISP24_INV-3_2022-09-15_N RG_LI24_INV-1_2022-09-17_N RG_LI24_INV-2_2022-09-17_N RG_LI24_INV-3_2022-09-17_N RG_LI24_INV-4_2022-09-17_N RG_LI24_INV-5_2022-09-17_N RG_LI8_INV-1_2022-09-17_N RG_LI8_INV-2_2022-09-17_N RG_LI8_INV-2_2022-09-17_N RG_LI8_INV-4_2022-09-17_N RG_LI8_INV-5_2022-09-17_N RG_LI8_INV-5_2022-09-17_N	392 393 394 395 396 397 398 399 400 401 402	Analysis 30 Sep 2022

	LABORATORY OTHER INFO	Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF EDD	Lab Contact Jennie Christensen Email 1: AquaScit.ab@Teck.com X X X	Email jennie christensen@trichanalytics Email 2: teckcoal@enisonline.com	Email 3:	Fmail 4:	Tyler Mehler@minnow.ra X	Frail 6:	d	ANALYSIS DEOLIGETED	ANALISIS REQUESTED	beeren bil	CAVVS)	ANALYSIS Of Contained Diota by Cl wet and dry in Biota by c Content by c Content by	Number Metals in Mercury (wet, dry	ite X X X	ite X X X	ite X X X	ite X X X	ite X X X	x x x x x x x x x x x x x x x x x x x	ite X X X	ite	1 X	I LA de 715007	Hills come	(Pojed # 2022-401)		
TURNAROUND TIME:	LABO	Lab Nam	Lab Contac	Ema	Addres	Company	į	Doctol Cod	Postal Code	LIIOILE INGILIO					Tissue Sample Species Structure	Composite Composite Composite Composite	Composite Composite	Composite Composite	COMPOLI Composite	ILIATION									
								()	lda	-	-				Time Tissue 24hr) type	ANI IS	35 INV	44 INV	VNI 6S	46 INV	ANI 60	INV 01	NI 0S	45 INV	RELINQUISHED BY/AFFILIATION Jennifer Ings	0			
LCO_2022 ICH							BC		y						Time Date (24hr)	9-Sep-22 8:51	9-Sep-22 11:35	9-Sep-22 14:44	9-Sep-22 15:59	10-Sep-22 15:46	10-Sep-22 9:09	10-Sep-22 10:10	10-Sep-22 10:50	10-Sep-22 11:45	RELINQUIS				
REP_LAEMP 09 TR							Province	FIGVIIIC	Country			(on/	rial (Yes	lous Mater		8-6	8-6	S-6	S-6	10-8	10-8	10-8	10-8	10-8					
REP_L		n					-			THE PARTY AND ADDRESS OF	SAMPLE DETAILS				Field Matrix	TA	TA	TA	TA	TA	ТА	TA	ТА	ТА					11 010 10
COC ID:	PROJECT/CLIENT INFO	Facility Name / Job# Regional Effects Program	Project Manager Cybele Heddle	Email Cybele Heddle@teck.com	Address 421 Dine Ave	SS 471 FIRE AVE	Sparwood		de VUB 2G0	Phone Number 1-250-865-3048	SAMP				Sample Location (sys loc code)	RG_F023	RG_F023	RG_F023	RG_F023	RG_F023	RG_FRUL	RG_FRUL	RG_FRUL	RG_FRUL	SPECIAL INSTRUCTIONS			- subject to availability)	-
		Facility Name / Job	Project Manage	Ema	PILE	Addre	Ö	CITY	Postal Code	Phone Numb					Sample ID	3523 RG_F023_INV-1_2022-09-09_N~	353 RG_F023_INV-2_2022-09-09_N ,	354 RG_F023_INV-3_2022-09-09_N ,	355 RG_FO23_INV-4_2022-09-09_N ,	350 RG_FO23_INV-5_2022-09-10_N	35‡ RG_FRUL_INV-1_2022-09-10_N	358 RG_FRUL_INV-2_2022-09-10_N-	359 RG_FRUL_INV-3_2022-09-10_N	360 RG_FRUL_COMPOLI-4_2022-09-10_N J	ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS PO 818999			SERVICE REQUEST (rush - subject to availability)	

red - F: Field, L.: Lab, FL: Field & Lab, N: Non EDD 40 +5: HI PDF DATE/TIME 2022 September 19, 2022 VPO00818999 Excel 21 Sep 20 21 5195003444 Project # OTHER INFO Hannah Penner@Teck.com Tyler. Mehler@minnow.ca AquaScil.ab@Teck.c Report Format / Distribution RUSH: ACCEPTED BY/AFFILIATION PO number Email 4: Email 6: Email 2: Email 5: Email 3: Loade Date/Time Mobile # ANALYSIS REQUESTED Alex Fravimetry × × × × × × × × Moisture Content by Email jennie.christensen@trichanalytics Province BC (wet, dry & routine) X × × × × × × × Mercury in Biota by CVAAS Address 207-1753 Sean Heights Lab Contact Jennie Christensen Lab Name TrichAnalytics Inc ***** Metals in Biota by CRC (wet and dry) DATE/TIME × × × × × × × × × City Saanichton -LABORATORY Number of Containers Jennifer Ings 48,0 Elle VAVLYSIS 2 of TURNAROUND TIME: Phone Number Postal Code Sample Structure Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Tissue Species Composite Composite Composite INVOLI RELINQUISHED BY/AFFILIATION Page Tissue type IN Jennifer Ings IN N IN IN N IN N IN Time (24hr) REP_LAEMP_LCO_2022-BC Canada 15:19 12:15 13:10 14:00 15:10 15:14 12:10 13:40 11:46 Sampler's Signature Sampler's Name 15-Sep-22 10-Sep-22 12-Sep-22 09 TRICH 15-Sep-22 15-Sep-22 15-Sep-22 12-Sep-22 10-Sep-22 15-Sep-22 Date Province Country Hazardous Material (Yes/No) SAMPLE DETAILS Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend Priority (2-3 business days) - 50% surcharge Regular (default) Field Matrix TA TA TA TA TA TA TA TA TA Facility Name / Job# Regional Effects Program Email Cybele. Heddle@teck.com Sparwood V0B 2G0 ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS PROJECT/CLIENT INFO Sample Location SERVICE REQUEST (rush - subject to availability) (sys loc code) COC ID: Phone Number 1-250-865-3048 Project Manager Cybele Heddle Address 421 Pine Ave RG_LIDCOM RG_LIDCOM RG_LCUT RG_LCUT RG_LCUT RG_FRUL RG_FRUL RG_LCUT RG_LCUT PO 818999 City Postal Code 368 RG_LIDCOM_INV-1_2022-09-12_N / RG_LIDCOM_INV-2_2022-09-12_N 362 RG_FRUL_INVOLI-4_2022-09-10_N 366 RG LCUT INV-4 2022-09-15 N 364 RG LCUT INV-2 2022-09-15 N RG_LCUT_INV-1_2022-09-15_N / RG_LCUT_INV-3_2022-09-15_N 367 RG_LCUT_INV-5_2022-09-15_N Sample ID RG_FRUL_INV-5_2022-09-10_N 象 300 363 365 361

O_2022- TURNAROUND TIME:	LABORATORY OTHER INFO	Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF EDD	Lab Contact Jennie Christensen Email 1: Aquascalab@Teck.com X X X	Email jennie christensen@richanalytics Email 2: teckcoal@equisonline.com N	Address 207-1753 Sean Heights Email 3: Teck. Lab Results Gatek.com X X X	Email 4:	BC City Saanichton Province BC Email 5: Tyler Mehler@minrow.ca X X X	ada Postal Code Email 6:	Phone Number PO number	ANALYSIS REQUESTE	Time Tissue Sample Metals in Biota by CVAAS Wetals in Biota by CVAAS Wetals in Biota by CVAAS Wet, dry & routine) Meteury in Biota by CVAAS Wet, dry & routine) Cravimetry Cravimetry Cravimetry	15:30 INV Composite	22 8:09 INV Composite Composite I X X X	22 8:17 INV Composite Composite	22 11:06 INV Composite Composite	22 14:06 INV Composite Composite 1 X X X	22 15:30 INV Composite Composite 1 X X X	10:28 INV Composite Composite X X	12:32 INV Composite Composite X X	rep-22 13-07 INV Composite Composite I X X X X N X N X N X N N X N X N X N X	######################################	(Parit #: 2022-401)			s Name Jennifer Ings Mobile # 519500344
																		10:28	12:32	8-Sep-22 13:07 INV	Jennifer Ings			Sampler's Name	
REP_LAEMP 09 TR		gram		com			ood Province			SAMPLE DETAILS	Field Matrix Hazzırdous Material (Yes/No)	TA 12-5	TA 13-5	TA 13-5	TA 13-5	TA 13-5	TA 13-5		TA 14-8	TA					Contraction of the contraction o
COC ID:	PROJECT/CLIENT INFO	Facility Name / Job# Regional Effects Program	Project Manager Cybele Heddle	Email Cybele. Heddle@teck.com	Address 421 Pine Ave		City Sparwood		1-250-865-304		Sample Location (sys loc code)	RG_LIDCOM	RG_LIDCOM	RG_LIDCOM	RG_LIDSL	RG_LIDSL	RG_LIDSL	RG_LIDSL	RG_LIDSL	RG_LILC3	ADDITIONAL COMMENTASPECTAL INSTRUCTIONS PO 818999		SERVICE REQUEST (rush - subject to availability)	Regular (default)	Company of the same of the same of
מכצ		Facility Name	Project Ma		· ·			Posta	Phone N	T OHOU	Sample ID	370 RG_LIDCOM_INV-3_2022-09-12_N /	RG_LIDCOM_INV-4_2022-09-13_N	373 RG_LIDCOM_INV-5_2022-09-13_N /	RG_LIDSL_INV-1_2022-09-13_N	RG_LIDSL_INV-2_2022-09-13_N ~	RG_LIDSL_INV-3_2022-09-13_N	334 RG_LIDSL_INV-4_2022-09-14_N ,	RG_LIDSL_INV-5_2022-09-14_N	548 RG_LILC3_INV-1_2022-09-08_N ·	ADDITIONAL COMMEN		SERVICE REQUEST (d	

Filtered - F: Field, L. Lab, FL: Field & Lab, N: Non EDD ts: hi 40 PDF DATE/TIME 2022 VPO00818999 September 19, 2022 Excel 21 Septeri 5195003444 Project # OTHER INFO Teck.Lab.Results@teck.com Hannah Penner@Teck.com Tyler.Mehler@minnow.ca Report Format / Distribution RUSH: ACCEPTED BY/AFFILIATION PO number Email 4: Email 5: Email 6: Email 2: Email 3: Email 1: Alex wede Date/Time Mobile # ANALYSIS REQUESTED Gravimetry × × × × × × × × Email jennie.christensen@trichanalytics × Moisture Content by BC Province Mercury in Biota by CVAAS (wet, dry & routine) × × × × × × × × Address 207-1753 Sean Heights Lab Name TrichAnalytics Inc. Lab Contact Jennie Christensen ############### ICPMS (wet and dry) DATE/TIME × × × × × × × × × Metals in Biota by CRC City Saanichton -Number of Containers -----Jennifer Ings PRESERV. SISATVNV EHF t of TURNAROUND TIME: Sample Structure Postal Code Composite Phone Number Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Composite Tissue Species RELINQUISHED BY/AFFILIATION Page Tissue type Jennifer Ings IN N IN N N N N N IN Canada Time (24hr) REP LAEMP LCO 2022 10:15 11:15 13:28 14:38 14:56 9:12 15:23 9:45 85:6 Sampler's Signature BC Sampler's Name 09 TRICH 15-Sep-22 16-Sep-22 8-Sep-22 8-Sep-22 8-Sep-22 15-Sep-22 14-Sep-22 15-Sep-22 8-Sep-22 Date Province Country Hazardous Material (Yes/No) SAMPLE DETAILS Regular (default)
Priority (2-3 business days) - 50% surcharge
Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend Field Matrix TA TA TA TA TA TA TA TA TA Email Cybele.Heddle@teck.com Facility Name / Job# Regional Effects Program Sparwood V0B 2G0 ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS PROJECT/CLIENT INFO Sample Location SERVICE REQUEST (rush - subject to availability) (sys loc code) COC ID: Phone Number 1-250-865-3048 Project Manager Cybele Heddle Address 421 Pine Ave RG_LISP24 RG_LISP24 RG_LILC3 RG_LILC3 RG_LISP24 RG_LISP24 RG SLINE RG_LILC3 RG_LILC3 PO 818999 City Postal Code RG_LISP24_INV-5_2022-09-15_N 385 RG_LISP24_INV-4_2022-09-15_N 383 RG_LISP24_INV-2_2022-09-15_N 384 RG_LISP24_INV-1_2022-09-14_N RG_SLINE_INV-1_2022-09-16_N Sample ID RG_LILC3_INV-2_2022-09-08_N 283 RG_LILC3_INV-5_2022-09-08_N RG_LILC3_INV-3_2022-09-08_N RG_LILC3_INV-4_2022-09-08_N 0 380 488 20 370 ORC 381

COC ID: REP_LAEMP_LCO_2022- TURNAROUND TIME: RUSH:	Scitab@Teck.com X Bowron@minnow.ca X Mehler@minnow.ca X WOO008 189 Filtered - F. Feld, L. La DATE 21 Sep 2022	Report Form Smail 1: Smail 2: Smail 3: Smail 4: Smail 5: Smail 6: O number	Moisture Content by Moisture Content by Cont	Mercury in Biota by CVAAS	AN Neutrals in Biota by CRC (Christense and dry) Neutrals in Biota by CRC (Methals in Biota by CRC) Neutrals in Biota by CRC (Methals in Biota by CRC)	The fire is in the interior in the interior in the interior in the interior	LABC CONTA Addree Lab Conta Emm Addree Ci Ci Postal Co, Composi Composi Composi Composi Composi Composi Composi Composi Composi Composi Composi		Tissue type INV INV INV INV INV INV INV INV INV INV	10:45 11:45 10:45 10:45 10:45 10:45 10:45		Hazardous Material (Yes/No)	B B B B B B B B B B B B B B B B B B B	COC ID: PROJECT/CLIENT INFG B# Regional Effects Program Ser Cybele Heddle Star Cybele Heddle Star 1-250-865-3048 BY Sample Location Sys loc code) RG_SLINE RG_SLINE RG_SLINE RG_LI24 RG_L	Posta Phone N Posta Phone N Phone N PO PO PO PO PO PO PO PO PO PO PO PO PO
A country July Supple Country A country A	Project # 2022-401														
Comparison Com	Minight # 20					+									
Composition Composition		1													
Control Protect Control Cont	71200000	Made	110x			human			Her Ings	чени				666	FU 010
Companies Comp	215020212	inde	Mox		#######	####			ifer Ings	Jenn		_	2	666	PO 818
Table Name Technologies Company Compan	DATE/T	BY/AFFILIATION	CEPTED		TEATIME	DA		LIATION	BY/AFF	COUISHEI	RELI			PECIAL INSTRUCTION	ADDITIONAL COMMENTS/S
FRODECTICITENT NECO Country Co			x	X				Composite	INV	11:45	17-Sep-22	V _A	TA	RG_LI24	V-4_2022-09-17_N
Colored Colo			×	×			_	Composite	INV	10:45	17-Sep-22		TA	RG_L124	
PRODUCTOCHENT INFO Province Lab Contact Lab Contac			x	X			_	Composite	INV	9:50	17-Sep-22		TA	RG_LI24	
Address 421 Fine And Electrocles from the Holde Greek com			A	*					WA	0.50			-	-	
PRODECTICALENT INFO			×	×	1			Composite	INV	9:10	17-Sep-22		TA	RG_LI24	
PRODECTICALENT NATO			×	X			_	Composite	INV	9:27	15-Sep-22		TA	RG_LISP24	
Taboratoral Production Prod			Y	X			-	Composite	INV	13:45	16-Sep-22		TA	RG_SLINE	
PRODECTICIENT INFO			,				-				den av			NO_CALLED	
PROJECT CLENT INFO			x	X			_	Composite	INV	13:25	16-Sep-22	=	TA	RG SLINE	NV-4 2022-09-16 N
PRODECTICLENT INFO Ty Name / Jobel Regional Effects Program Tyber Regional Effects Program Tyber Regional Effects Program Tyber Regional Effects Program Tyber Regional Effects Program Tyber Regional Effects Program Address 421 Pine Ave Email Sparwood Fine Christensen@inchanalytics Email Sparwood Fine Christensen@inchanalytics Email Sparwood Fine Christensen@inchanalytics Email Sparwood Fine Christensen@inchanalytics Final Sparwood Fine Christensen@inchanalytics Final Sparwood Fine Christensen@inchanalytics Final Sparwood Fine Christensen@inchanalytics Final Sparwood Fine Christensen@inchanalytics Final Sparwood Final Sparwood Fine Christensen@inchanalytics Final Sparwood Final Sp			x	X				Composite	INV	11:22	16-Sep-22		TA	RG_SLINE	NV-3 2022-09-16 N
PRODECTIONAL NET TO THE PRODUCT CLIENT INFO Ty Name / Job# Regional Effects Program Toject Manager (Cycle Heddle Total Charles Program Toject Manager (Cycle Heddle Total Charles Program Toject Manager (Cycle Heddle Total Charles Charles Program Total Control Total Charles Char			×	×				Composite	INV	10:50	16-Sep-22		TA	RG_SLINE	NV-2_2022-09-16_N ~
PRODECTICLIENT INFO Ty Name / Job# Regional Effects Program Ty Name / Job# Regional Effects Program Ty Name / Job# Regional Effects Program Ty Name / Job# Regional Effects Program Lab Name TrickAnalytics Inc. Report Format / Distribution TrickAnalytics Inc. Report Format / Distribution TrickAnalytics Inc. Report Format / Distribution TrickAnalytics Inc. Region TrickAnalytics TrickAnalytic			V	V	V			Sheeres	ry pc	(11147)			INIAU	(Sys 10c code)	Sample ID
LabORATORY LabORATORY Report Format / Distribution Excel Lab Contact Jennie Christensen Email 1: AquaScitab@Teck.com X Email Jennie christensen Email 2: Feckcoal@equisonline.com X Email Jennie christensen Email 3: Teck_Lab Results@fleck.com X Address 207-1753 Sean Heights Email 3: Teck_Lab Results@fleck.com X Email Sanichton Province BC Email 3: Teck_Lab Results@fleck.com X Country Canada Postal Code Postal Code Postal Code Ponte Number Po			Moisture Content by	Mercury in Biota by CVAAS	Metals in Biota by CRC	VANALSIS PRESERV. FIIL.		Tissue	Tissue	Time (24hr)			Fiel	Sample Location	Samula ID
LABORATORY Report Format / Distribu Lab Name TrichAnalytics Inc. Report Format / Distribu Lab Contact Jennie Christensen Email 1: Aquascalan Email jennie christensen@utichanalytics Email 2: Ieexcosi@eau Address 207-1753 Sean Heights Email 3: Teck.tab.Resu Address 207-1753 Sean Heights Email 4: Lisa Bouron Country Canada Postal Code Email 6: Hannah Penns Phone Number Pon number Pon number	Filtered F: Fred, 10 Lan, Fa.	P	REQUEST	ALYSIS	AN	SERV. FILL						TAILS	BIE DE	SAM	
LABORATORY Lab Name TrichAnalytics Inc. Report Format / Distribution Excel	Filtered - F: Field, L: Lab, FL	ED	REQUEST	ALYSIS	AN		Ollo ivalino	11.1				TAILS	PLE DE	SAM	Phone Numo
Laboratory Report Format / Distribution Excel Lab Contact Lenie Christensen Email 1: Aduasoitab@Teck.com X Email jennie.christensen@trichanalytics Email 2: tecktab Results@teck.com X Address 207-1753 Sean Heights Email 3: Tecktab Results@teck.com X Province BC City Saanichton Province BC Email 5: Tiver.Meher@minnow.ca X	ah Penner@Teck com // VPO00818999					de	Postal Coc	Pho		Canada	Country		99	de V0B 2	Postal Cor
LABORATORY Report Format / Distribution Lab Name TrichAnalytics Inc. Report Format / Distribution Lab Contact Jennie Christensen Email 1: Aduresclab@Teck.com Email jennie.christensen@trichanalytics Email 2: teckcoal@equisonline.com Address 207-1753 Sean Heights Email 3: Teck.Lab Results@teck.com Email 4: Lisa Bowon@minnow.ca	Mehler@minnow.ca X		e BC	Provinc	chton	ity Saanic	Ci			BC	Province		poo		Ci
LABORATORY Report Format / Distribution Excel Lab Name TrichAnalytics Inc. Report Format / Distribution Excel Lab Contact Jennie Christensen Email 1: Aquascalab@Teck.com X Email jennie christensen@trichanalytics Email 2: teckcoal@equisonline.com X Address 207-1753 Sean Heights Email 3: Teck.Lab.Results@teck.com X	Bowron@minnow.ca X														
LABORATORY GTHER INFO Lab Name TrichAnalytics Inc. Report Format / Distribution Excel Lab Contact Jennie Christensen Email 1: Aquascalab@Teck.com X Email jennie christensen@trichanalytics Email 2: teckcoal@equisonline.com X	ab.Results@teck.com .X			Heights	753 Sean I	ss 207-1	Addre							ss 421 Pine Ave	Addre
LABORATORY OTHER INFO Lab Name TrichAnalytics Inc. Report Format / Distribution Excel Lab Contact Jennic Christensen Email 1: Aquascalab@Teck com X	oal@equisonline.com		nalytics	en@trichar	christense.	ail jennie	Ems						com	ail Cybele.Heddle@teck.c	Emg
LABORATORY OTHER INFO Lab Name TrichAnalytics Inc. Report Format / Distribution Excel	SciLab@Teck.com X			en	Christens	ict Jennie	Lab Conta							er Cybele Heddle	Project Manag
U.S. INICAL LABORATORY		Report Format / Di		nc.	Analytics I	ne Trich/	Lab Nan						am	3# Regional Effects Progr	Facility Name / Job
OL DU	OTHER INFO		7		I.V.	RATOR	LABC				E	6		PROJECT/CLIENT INFO	

Filtered - P: Field, L: Lab, FL: Field & Lab, N: Non EDD 104-2202 14:57 PDF DATE/TIME September 19, 2022 VPO00818999 Excel 21 Septou Project #: 5195003444 Teck Lab Results@teck.com OTHER INFO Lisa.Bowron@minnow.ca AquaScil.ab@Teck.com Report Format / Distribution RUSH: Tyler.Mehl ACCEPTED BY/AFFILIATION PO number Email 1: Email 2: Email 4: Email 5: Email 6: Email 3: Alex wade Date/Time Mobile # ANALYSIS REQUESTED Gravimetry × × × × × × × × × Email jennie.christensen@trichanalytics Moisture Content by BC Province Mercury in Biota by CVAAS × × × × × × × × Address 207-1753 Sean Heights Lab Name TrichAnalytics Inc. Lab Contact Jennie Christensen ############### Metals in Biota by CRC (wet and dry) DATE/TIME × × × × × × × × × City Saanichton --LABORATORY Number of Containers ---Jennifer Ings PRESERV, FILL SISATVNV 5 of TURNAROUND TIME: Postal Code Phone Number Structure Composite Composite Composite Composite Composite Sample Composite Species Composite Composite Composite Composite Composite Composite Tissue RELINQUISHED BY/AFFILIATION Page Tissue Jennifer Ings type INV IN INV INV INV IN REP_LAEMP_LCO_2022 BC Canada Time (24hr) 15:30 12:30 14:30 15:00 15:23 15:47 Sampler's Signature Sampler's Name 17-Sep-22 09 TRICH 17-Sep-22 17-Sep-22 17-Sep-22 17-Sep-22 17-Sep-22 Date Province Country Hazardous Material (Yes/No) SAMPLE DETAILS Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend Priority (2-3 business days) - 50% surcharge Regular (default) Matrix Field TA TA TA TA TA LA Email Cybele. Heddle@teck.com Facility Name / Job# Regional Effects Program Sparwood V0B 2G0 ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS PROJECT/CLIENT INFO Sample Location SERVICE REQUEST (rush - subject to availability) (sys loc code) Phone Number 1-250-865-3048 Project Manager Cybele Heddle Address 421 Pine Ave RG_L124 RG_LIS RG_LI8 RG_LIS RG_LIS RG_LIS PO 818999 City Postal Code Sample ID RG_LI24_INV-5_2022-09-17_N 399 RG_LI8_INV-2_2022-09-17_N RG_LIS_INV-4_2022-09-17_N RG LIS INV-1 2022-09-17 N RG LI8 INV-3 2022-09-17 N RG_LI8_INV-5_2022-09-17_N 0 8 10) 400 SON 器 出

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2022-453 (Finalized January 12, 2023)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Cybele Heddle Date Received: 05 Jan 2023

Project Manager
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limited
Teck Coal Limi

Phone: 250-910-8755 Project No.: 2023-453
Email: cybele.heddle@teck.com; rhiannon.hodgson@minnow.ca; Method No.: MET-002.06

nicole.zathey@teck.com; hannah.penner@teck.com; kbatchelar@minnow.ca; teckcoal@equisonline.com; aquascilab@teck.com; teck.lab.results@teck.com

Client Project: December 2022 LCO LAEMP Regional Effects Program (PO: TBD)

Analytical Request: Composite Benthic Invertebrate Tissue Microchemistry (total metals & moisture) - 40 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg).

Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards.

Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 100% (ranging from 92-109%).

All Client sample IDs were updated and differ from the COC where "BIT" was changed to read "INV" in this report.

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

12 Jan 2023

Date

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

Project No: 2023-453

			RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-	RG_LISP24_INV-
		Client ID	1_2022-12_N	2_2022-12_N	3_2022-12_N	4_2022-12_N	5_2022-12_N
		Lab ID	004	005	006	007	008
	We	et Weight (g)	2.7913	1.0849	1.9874	2.3635	2.0488
	Di	y Weight (g)	0.6056	0.2204	0.4160	0.5001	0.4746
		Moisture (%)	78.3	79.7	79.1	78.8	76.8
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.044	0.147	0.801	0.505	0.474	0.261	0.809
11B	0.132	0.440	2.9	1.9	1.1	2.3	3.4
23Na	9.4	31	7,020	3,899	3,584	3,091	7,786
24Mg	0.127	0.423	2,139	1,298	1,272	880	2,153
27Al	0.073	0.243	322	300	223	124	353
31P	126	420	20,141	13,028	13,910	8,689	20,673
39K	5.4	18	15,426	10,029	7,933	6,911	16,226
44Ca	25	83	3,815	2,230	1,931	1,808	2,885
49Ti	0.001	0.003	25	19	15	7.2	29
51V	0.029	0.097	1.0	0.602	0.559	0.357	1.1
52Cr	0.097	0.323	5.6	4.1	2.9	3.0	5.1
55Mn	0.014	0.047	348	299	289	154	440
57Fe	0.952	3.2	900	652	487	375	1,069
59Co	0.017	0.057	5.8	3.9	3.6	2.4	6.4
60Ni	0.082	0.273	31	23	15	16	35
63Cu	0.019	0.063	36	20	14	18	28
66Zn	0.247	0.823	464	292	276	178	459
75As	0.365	1.2	1.6	1.1	0.808	1.2	1.7
77Se	0.385	1.3	12	7.0	6.2	6.3	12
88Sr	0.001	0.003	5.9	5.6	3.7	2.8	5.8
95Mo	0.001	0.003	0.653	0.399	0.290	0.254	0.580
107Ag	0.001	0.003	0.037	0.028	0.009	0.019	0.028
111Cd	0.181	0.603	7.6	7.0	7.7	3.1	7.3
118Sn	0.022	0.073	1.1	1.0	0.637	0.488	1.1
121Sb	0.005	0.017	0.135	0.080	0.052	0.053	0.118
137Ba	0.001	0.003	34	39	24	13	44
202Hg	0.025	0.083	0.142	0.115	0.110	0.079	0.136
205TI	0.001	0.003	0.058	0.036	0.030	0.018	0.051
208Pb	0.004	0.013	0.266	0.260	0.145	0.088	0.274
238U	0.001	0.003	0.128	0.098	0.071	0.048	0.145

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LIDSL_INV-	RG_LIDSL_INV-	RG_LIDSL_INV-	RG_LIDSL_INV-	RG_LIDSL_INV-
		Client ID	1_2022-12_N	2_2022-12_N	3_2022-12_N	4_2022-12_N	5_2022-12_N
		Lab ID	009	010	011	012	013
		et Weight (g)	1.2583	1.5793	1.7288	1.6647	2.0339
	Di	ry Weight (g)	0.2137	0.3301	0.3540	0.3726	0.4547
		Moisture (%)	83.0	79.1	79.5	77.6	77.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.044	0.147	0.614	0.809	0.326	0.566	0.400
11B	0.132	0.440	2.4	2.1	0.901	2.4	1.1
23Na	9.4	31	3,800	5,470	3,531	4,375	3,491
24Mg	0.127	0.423	1,982	1,584	1,037	1,544	977
27Al	0.073	0.243	442	424	323	305	271
31P	126	420	12,040	14,460	10,747	13,568	12,166
39K	5.4	18	9,030	10,763	7,634	9,613	8,366
44Ca	25	83	4,484	2,804	1,492	2,528	1,809
49Ti	0.001	0.003	33	38	15	21	17
51V	0.029	0.097	0.797	0.905	0.530	0.738	0.532
52Cr	0.097	0.323	5.5	5.5	2.0	3.7	3.2
55Mn	0.014	0.047	229	312	166	215	252
57Fe	0.952	3.2	654	591	251	487	375
59Co	0.017	0.057	2.9	3.5	2.5	2.5	3.2
60Ni	0.082	0.273	23	23	14	19	17
63Cu	0.019	0.063	27	18	13	20	16
66Zn	0.247	0.823	620	315	266	324	294
75As	0.365	1.2	0.923	0.962	0.596	0.846	0.769
77Se	0.385	1.3	8.5	7.5	6.2	8.7	6.6
88Sr	0.001	0.003	7.0	4.9	2.7	4.8	3.1
95Mo	0.001	0.003	0.435	0.435	0.254	0.326	0.363
107Ag	0.001	0.003	0.047	0.028	0.019	0.038	0.019
111Cd	0.181	0.603	10	7.0	6.2	4.4	5.7
118Sn	0.022	0.073	0.925	0.869	0.352	0.495	0.472
121Sb	0.005	0.017	0.059	0.074	0.037	0.071	0.048
137Ba	0.001	0.003	35	34	17	26	22
202Hg	0.025	0.083	0.115	0.110	0.089	0.126	0.084
205Tl	0.001	0.003	0.055	0.045	0.024	0.037	0.025
208Pb	0.004	0.013	0.295	0.298	0.097	0.210	0.117
238U	0.001	0.003	0.141	0.145	0.075	0.076	0.077

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LIDCOM_INV-	RG_LIDCOM_INV-	RG_LIDCOM_INV-	RG_LIDCOM_INV-	RG_LIDCOM_INV-
		Client ID	1_2022-12_N	2_2022-12_N	3_2022-12_N	4_2022-12_N	5_2022-12_N
		1 - k 1D	014	015	016	017	010
	147	Lab ID	014	015	016	017	018
		et Weight (g)	3.3246	1.7412	2.0587	2.6986	1.5305
		ry Weight (g)	0.7578	0.4041	0.4341	0.5326	0.3306
<u>-</u>		Moisture (%)	77.2	76.8	78.9	80.3	78.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.044	0.147	0.435	0.265	0.888	0.435	0.474
11B	0.132	0.440	1.1	0.751	3.0	1.1	1.6
23Na	9.4	31	3,850	2,861	3,349	4,041	3,291
24Mg	0.127	0.423	1,201	1,169	1,288	932	962
27Al	0.073	0.243	221	132	1,123	227	499
31P	126	420	15,944	10,476	11,414	10,819	9,941
39K	5.4	18	9,108	6,431	8,025	8,526	7,148
44Ca	25	83	2,353	957	1,626	1,520	2,291
49Ti	0.001	0.003	14	7.2	91	15	36
51V	0.029	0.097	0.432	0.230	2.0	0.413	0.821
52Cr	0.097	0.323	3.3	2.7	5.2	3.1	3.8
55Mn	0.014	0.047	102	91	172	99	114
57Fe	0.952	3.2	201	127	688	221	312
59Co	0.017	0.057	0.955	0.525	1.5	0.976	1.7
60Ni	0.082	0.273	12	5.6	20	13	13
63Cu	0.019	0.063	11	10	10	9.9	11
66Zn	0.247	0.823	242	180	229	191	267
75As	0.365	1.2	0.519	0.442	0.846	0.423	0.615
77Se	0.385	1.3	4.6	5.8	5.0	4.8	5.5
88Sr	0.001	0.003	3.5	2.1	5.6	2.3	4.0
95Mo	0.001	0.003	0.363	0.181	0.363	0.236	0.217
107Ag	0.001	0.003	0.028	0.019	0.038	0.019	0.019
111Cd	0.181	0.603	1.7	1.1	3.5	1.9	4.8
118Sn	0.022	0.073	0.248	0.173	0.304	0.290	0.352
121Sb	0.005	0.017	0.030	0.023	0.075	0.039	0.041
137Ba	0.001	0.003	19	14	47	15	25
202Hg	0.025	0.083	0.068	0.073	0.079	0.063	0.100
205TI	0.001	0.003	0.026	0.019	0.045	0.024	0.035
208Pb	0.004	0.013	0.132	0.065	0.607	0.176	0.230
238U	0.001	0.003	0.071	0.021	0.139	0.053	0.083

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_SLINE_INV- 1_2022-12_N	RG_SLINE_INV- 2_2022-12_N	RG_SLINE_INV- 3_2022-12_N	RG_SLINE_INV- 4_2022-12_N	RG_SLINE_INV- 5_2022-12_N
		Lab ID	019	020	021	022	023
	We	et Weight (g)	1.8345	1.8630	1.0739	1.4983	1.0381
		y Weight (g)	0.3251	0.3785	0.1865	0.2466	0.1959
		Moisture (%)	82.3	79.7	82.6	83.5	81.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.044	0.147	0.383	0.235	0.320	0.256	0.209
11B	0.132	0.440	0.801	0.601	1.5	0.863	0.839
23Na	9.4	31	5,776	4,144	4,658	4,010	3,341
24Mg	0.127	0.423	1,312	1,292	1,449	1,447	1,307
27Al	0.073	0.243	167	145	263	247	247
31P	126	420	12,814	13,566	16,422	13,014	10,655
39K	5.4	18	8,848	8,913	10,016	8,607	7,138
44Ca	25	83	1,609	2,016	2,673	1,810	2,448
49Ti	0.001	0.003	18	19	16	15	11
51V	0.029	0.097	0.547	0.647	0.967	0.659	0.826
52Cr	0.097	0.323	2.4	2.3	4.3	2.5	2.3
55Mn	0.014	0.047	26	21	34	29	20
57Fe	0.952	3.2	133	113	182	145	148
59Co	0.017	0.057	0.265	0.223	0.586	0.395	0.407
60Ni	0.082	0.273	3.1	2.9	7.4	3.6	4.4
63Cu	0.019	0.063	11	13	15	13	13
66Zn	0.247	0.823	347	328	436	426	460
75As	0.365	1.2	0.846	0.808	1.2	0.858	1.0
77Se	0.385	1.3	7.2	7.2	8.2	7.9	7.5
88Sr	0.001	0.003	3.2	4.6	6.5	4.2	5.5
95Mo	0.001	0.003	0.290	0.326	0.303	0.303	0.303
107Ag	0.001	0.003	0.066	0.085	0.084	0.059	0.067
111Cd	0.181	0.603	2.7	2.8	6.1	4.4	6.6
118Sn	0.022	0.073	0.535	0.256	0.773	0.596	0.543
121Sb	0.005	0.017	0.020	0.024	0.043	0.024	0.029
137Ba	0.001	0.003	17	21	24	15	15
202Hg	0.025	0.083	0.100	0.115	0.121	0.124	0.116
205Tl	0.001	0.003	0.076	0.071	0.116	0.100	0.114
208Pb	0.004	0.013	0.151	0.109	0.229	0.147	0.128
238U	0.001	0.003	0.103	0.116	0.178	0.112	0.121

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LI24_INV- 1_2022-12_N	RG_LI24_INV- 2_2022-12_N	RG_LI24_INV- 3_2022-12_N	RG_LI24_INV- 4_2022-12_N	RG_LI24_INV- 5_2022-12_N
		Lab ID	024	025	026	027	028
	We	et Weight (g)	1.2996	1.5606	1.7365	1.7965	1.0560
		y Weight (g)	0.2428	0.3157	0.3459	0.3545	0.2212
		Moisture (%)	81.3	79.8	80.1	80.3	79.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.044	0.147	0.290	0.239	0.137	0.162	0.281
11B	0.132	0.440	0.623	0.767	0.431	0.479	0.601
23Na	9.4	31	3,665	4,341	3,293	3,755	3,114
24Mg	0.127	0.423	1,151	1,344	976	1,097	1,062
27Al	0.073	0.243	187	110	66	75	244
31P	126	420	12,484	14,773	11,820	11,506	10,615
39K	5.4	18	8,741	9,959	7,414	7,735	7,604
44Ca	25	83	2,640	2,816	1,510	2,259	3,257
49Ti	0.001	0.003	10	3.4	2.8	3.4	7.8
51V	0.029	0.097	1.3	1.1	0.865	1.1	1.3
52Cr	0.097	0.323	3.1	2.6	2.2	1.9	2.7
55Mn	0.014	0.047	16	13	16	11	15
57Fe	0.952	3.2	126	101	69	90	145
59Co	0.017	0.057	0.455	0.347	0.263	0.335	0.419
60Ni	0.082	0.273	6.0	5.7	3.9	4.8	6.1
63Cu	0.019	0.063	11	12	8.7	9.4	8.1
66Zn	0.247	0.823	324	224	213	225	227
75As	0.365	1.2	1.4	1.3	0.970	1.1	1.1
77Se	0.385	1.3	5.2	5.0	4.4	5.5	4.2
88Sr	0.001	0.003	6.1	5.8	3.4	5.5	7.9
95Mo	0.001	0.003	0.265	0.227	0.189	0.227	0.227
107Ag	0.001	0.003	0.042	0.027	0.025	0.034	0.034
111Cd	0.181	0.603	1.8	1.4	1.4	1.4	1.8
118Sn	0.022	0.073	0.783	0.410	0.395	0.474	0.569
121Sb	0.005	0.017	0.025	0.024	0.014	0.030	0.033
137Ba	0.001	0.003	12	11	15	11	18
202Hg	0.025	0.083	0.062	0.057	0.052	0.052	0.062
205TI	0.001	0.003	0.054	0.044	0.044	0.053	0.053
208Pb	0.004	0.013	0.149	0.119	0.074	0.122	0.143
238U	0.001	0.003	0.091	0.070	0.053	0.087	0.102

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_LCUT_INV-	RG_LCUT_INV-	RG_LCUT_INV-	RG_LCUT_INV-	RG_LCUT_INV-
		Client ID	1_2022-12_N	2_2022-12_N	3_2022-12_N	4_2022-12_N	5_2022-12_N
		Lab ID	029	030	031	032	033
		et Weight (g)	1.7700	1.5704	2.2086	1.6728	1.5421
		y Weight (g)	0.3954	0.3171	0.4932	0.4041	0.3314
		Moisture (%)	77.7	79.8	77.7	75.8	78.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.044	0.147	0.495	0.636	0.529	0.555	0.572
11B	0.132	0.440	0.695	2.7	1.1	0.911	1.9
23Na	9.4	31	4,794	4,532	4,247	5,657	5,357
24Mg	0.127	0.423	994	1,418	1,089	1,097	1,268
27Al	0.073	0.243	171	304	354	282	382
31P	126	420	14,359	12,637	13,305	15,454	14,227
39K	5.4	18	10,081	9,673	8,866	12,343	11,606
44Ca	25	83	1,386	3,495	1,561	1,673	3,450
49Ti	0.001	0.003	12	38	19	14	20
51V	0.029	0.097	0.317	1.1	0.659	0.668	0.770
52Cr	0.097	0.323	2.4	5.0	2.6	2.5	3.1
55Mn	0.014	0.047	27	22	20	30	21
57Fe	0.952	3.2	109	299	146	153	184
59Co	0.017	0.057	0.586	1.0	0.748	0.814	0.993
60Ni	0.082	0.273	5.5	13	6.9	6.6	11
63Cu	0.019	0.063	23	28	20	27	21
66Zn	0.247	0.823	160	211	164	228	175
75As	0.365	1.2	0.821	2.6	1.4	1.8	1.4
77Se	0.385	1.3	5.2	4.7	5.4	5.3	4.7
88Sr	0.001	0.003	1.9	4.5	2.3	2.6	4.8
95Mo	0.001	0.003	0.246	0.265	0.340	0.378	0.227
107Ag	0.001	0.003	0.017	0.025	0.017	0.025	0.017
111Cd	0.181	0.603	3.6	4.9	3.3	6.0	4.0
118Sn	0.022	0.073	0.217	0.422	0.193	0.167	0.454
121Sb	0.005	0.017	0.033	0.068	0.047	0.040	0.055
137Ba	0.001	0.003	16	24	22	27	21
202Hg	0.025	0.083	0.171	0.165	0.158	0.191	0.124
205TI	0.001	0.003	0.033	0.043	0.042	0.058	0.043
208Pb	0.004	0.013	0.262	0.472	0.326	0.405	0.365
238U	0.001	0.003	0.066	0.075	0.054	0.092	0.080

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_LILC3_INV- 1_2022-12_N	RG_LILC3_INV- 2_2022-12_N	RG_LILC3_INV- 3_2022-12_N	RG_LILC3_INV- 4_2022-12_N	RG_LILC3_INV- 5_2022-12_N
		Lab ID	034	035	036	037	038
	We	et Weight (g)	1.8205	1.6568	1.5899	0.8484	0.8683
		y Weight (g)	0.3737	0.3224	0.3281	0.1656	0.1798
		Moisture (%)	79.5	80.5	79.4	80.5	79.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.044	0.147	0.324	0.401	0.470	0.555	0.768
11B	0.132	0.440	0.743	0.671	1.0	1.6	3.3
23Na	9.4	31	3,710	3,816	4,751	4,496	4,271
24Mg	0.127	0.423	644	781	1,008	1,175	1,512
27Al	0.073	0.243	99	109	279	307	740
31P	126	420	9,411	11,779	14,241	12,655	12,692
39K	5.4	18	7,052	7,721	9,070	9,393	9,765
44Ca	25	83	685	1,027	1,566	3,348	7,982
49Ti	0.001	0.003	5.6	9.9	14	20	58
51V	0.029	0.097	0.329	0.522	0.770	1.3	2.2
52Cr	0.097	0.323	1.9	2.6	2.8	3.6	5.4
55Mn	0.014	0.047	176	224	346	423	675
57Fe	0.952	3.2	744	650	987	1,282	1,838
59Co	0.017	0.057	2.4	2.8	3.9	4.9	6.2
60Ni	0.082	0.273	9.3	12	15	22	37
63Cu	0.019	0.063	11	8.0	14	14	15
66Zn	0.247	0.823	108	111	206	173	282
75As	0.365	1.2	0.709	0.597	0.970	1.1	1.6
77Se	0.385	1.3	8.9	7.8	7.7	7.2	10
88Sr	0.001	0.003	1.4	2.0	3.5	5.3	11
95Mo	0.001	0.003	0.227	0.303	0.378	0.530	0.677
107Ag	0.001	0.003	< 0.001	0.008	0.008	0.017	0.022
111Cd	0.181	0.603	2.0	2.5	4.7	4.9	7.7
118Sn	0.022	0.073	0.361	0.464	0.735	1.2	1.3
121Sb	0.005	0.017	0.062	0.071	0.083	0.124	0.200
137Ba	0.001	0.003	13	19	29	42	83
202Hg	0.025	0.083	0.062	0.083	0.098	0.109	0.088
205Tl	0.001	0.003	0.079	0.058	0.077	0.084	0.171
208Pb	0.004	0.013	0.112	0.167	0.292	0.331	0.573
238U	0.001	0.003	0.058	0.062	0.112	0.102	0.251

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_FRUL_INV-	RG_FRUL_INV-	RG_FRUL_INV-	RG_FRUL_INV-	RG_FRUL_INV-
		Client ID	1_2022-12_N	2_2022-12_N	3_2022-12_N	4_2022-12_N	5_2022-12_N
		Lab ID	039	040	041	042	043
		et Weight (g)	1.2275	0.9060	1.7511	0.9375	2.0801
	Di	ry Weight (g)	0.2193	0.1487	0.3255	0.1674	0.3507
		Moisture (%)	82.1	83.6	81.4	82.1	83.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.044	0.147	0.262	0.337	0.399	0.346	0.523
11B	0.132	0.440	0.855	1.5	0.507	0.824	0.507
23Na	9.4	31	3,248	1,799	4,602	4,654	5,310
24Mg	0.127	0.423	1,202	2,052	1,584	1,280	1,568
27Al	0.073	0.243	199	290	82	279	73
31P	126	420	9,773	10,374	11,138	11,679	13,415
39K	5.4	18	6,674	3,351	6,706	9,199	7,773
44Ca	25	83	3,550	9,069	2,721	2,904	3,328
49Ti	0.001	0.003	16	26	5.3	20	5.3
51V	0.029	0.097	0.460	0.510	0.164	0.464	0.159
52Cr	0.097	0.323	3.8	5.8	2.5	4.6	2.4
55Mn	0.014	0.047	29	37	34	33	28
57Fe	0.952	3.2	219	247	117	215	114
59Co	0.017	0.057	0.557	0.433	0.396	0.644	0.384
60Ni	0.082	0.273	5.0	6.4	3.1	6.7	2.4
63Cu	0.019	0.063	20	20	15	22	17
66Zn	0.247	0.823	440	437	280	472	370
75As	0.365	1.2	0.396	0.440	< 0.365	0.528	< 0.365
77Se	0.385	1.3	9.7	9.0	9.5	11	9.5
88Sr	0.001	0.003	3.8	11	3.0	3.2	3.5
95Mo	0.001	0.003	0.193	0.242	0.193	0.242	0.145
107Ag	0.001	0.003	0.216	0.259	0.151	0.238	0.162
111Cd	0.181	0.603	1.4	1.2	1.5	2.0	1.1
118Sn	0.022	0.073	0.386	0.485	0.344	0.421	0.297
121Sb	0.005	0.017	0.034	0.041	0.026	0.032	0.014
137Ba	0.001	0.003	21	51	16	20	20
202Hg	0.025	0.083	0.065	0.082	0.059	0.076	0.071
205Tl	0.001	0.003	0.017	0.020	0.014	0.027	0.014
208Pb	0.004	0.013	0.128	0.109	0.076	0.146	0.052
238U	0.001	0.003	0.037	0.059	0.031	0.043	0.019

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited
Tissue QA/QC Relative Percent Difference Results

(Client ID	RG_LISP2	24_INV-1_20	22-12_N	RG_SLIN	E_INV-3_20	22-12_N	RG_LCU	T_INV-1_202	22-12_N
	Lab ID		004			021			029	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.044	0.801	0.818	2.1	0.320	0.354	-	0.495	0.581	16
11B	0.132	2.9	2.9	0.0	1.5	1.3	-	0.695	0.767	-
23Na	9.4	7,020	7,517	6.8	4,658	5,456	16	4,794	4,892	2.0
24Mg	0.127	2,139	1,989	7.3	1,449	1,471	1.5	994	1,087	8.9
27Al	0.073	322	362	12	263	360	31	171	237	32
31P	126	20,141	20,784	3.1	16,422	15,768	4.1	14,359	14,518	1.1
39K	5.4	15,426	17,535	13	10,016	11,545	14	10,081	9,439	6.6
44Ca	25	3,815	2,936	26	2,673	2,969	11	1,386	1,254	10
49Ti	0.001	25	32	25	16	19	17	12	14	15
51V	0.029	1.0	0.960	4.1	0.967	1.1	13	0.317	0.419	28
52Cr	0.097	5.6	4.8	15	4.3	4.6	6.7	2.4	2.3	4.3
55Mn	0.014	348	344	1.2	34	40	16	27	21	25
57Fe	0.952	900	838	7.1	182	222	20	109	123	12
59Co	0.017	5.8	5.2	11	0.586	0.556	5.3	0.586	0.515	13
60Ni	0.082	31	31	0.0	7.4	7.9	6.5	5.5	5.2	5.6
63Cu	0.019	36	31	15	15	16	6.5	23	18	24
66Zn	0.247	464	365	24	436	446	2.3	160	152	5.1
75As	0.365	1.6	1.3	-	1.2	1.2	-	0.821	0.840	-
77Se	0.385	12	12	0.0	8.2	8.3	1.2	5.2	5.7	9.2
88Sr	0.001	5.9	4.8	21	6.5	6.1	6.3	1.9	2.1	10
95Mo	0.001	0.653	0.580	12	0.303	0.340	12	0.246	0.227	8.0
107Ag	0.001	0.037	0.038	2.7	0.084	0.084	0.0	0.017	0.017	0.0
111Cd	0.181	7.6	5.7	29	6.1	5.6	8.5	3.6	2.9	22
118Sn	0.022	1.1	1.1	0.0	0.773	0.739	4.5	0.217	0.183	-
121Sb	0.005	0.135	0.114	17	0.043	0.043	-	0.033	0.048	-
137Ba	0.001	34	35	2.9	24	33	32	16	17	6.1
202Hg	0.025	0.142	0.121	-	0.121	0.134	-	0.171	0.163	-
205TI	0.001	0.058	0.052	11	0.116	0.114	1.7	0.033	0.037	11
208Pb	0.004	0.266	0.242	9.4	0.229	0.232	1.3	0.262	0.226	15
238U	0.001	0.128	0.125	2.4	0.178	0.168	5.8	0.066	0.059	11

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

(Client ID	RG_LILC	3_INV-5_20	22-12_N
	Lab ID		038	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.044	0.768	0.692	10
11B	0.132	3.3	3.8	14
23Na	9.4	4,271	4,271	0.0
24Mg	0.127	1,512	1,504	0.5
27Al	0.073	740	579	25
31P	126	12,692	11,775	7.5
39K	5.4	9,765	9,031	7.8
44Ca	25	7,982	8,945	11
49Ti	0.001	58	42	10
51V	0.029	2.2	1.6	32
52Cr	0.097	5.4	4.8	12
55Mn	0.014	675	633	6.4
57Fe	0.952	1,838	1,453	23
59Co	0.017	6.2	7.0	12
60Ni	0.082	37	43	15
63Cu	0.019	15	16	6.5
66Zn	0.247	282	227	22
75As	0.365	1.6	1.6	-
77Se	0.385	10	11	9.5
88Sr	0.001	11	13	17
95Mo	0.001	0.677	0.628	7.5
107Ag	0.001	0.022	0.022	0.0
111Cd	0.181	7.7	6.8	12
118Sn	0.022	1.3	1.0	26
121Sb	0.005	0.200	0.204	2.0
137Ba	0.001	83	95	14
202Hg	0.025	0.088	0.100	-
205Tl	0.001	0.171	0.136	23
208Pb	0.004	0.573	0.418	31
238U	0.001	0.251	0.234	7.0

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	S	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.044	1.21	1.3	107	0.0	1.2	96	4.7
11B	0.132	4.5	4.5	101	3.3	4.0	90	2.8
23Na	9.4	14,000	15,177	108	8.9	12,723	91	2.8
24Mg	0.127	910	976	107	8.7	879	97	3.4
27Al	0.073	197.2	193	98	4.0	199	101	6.5
31P	126	8,000	8,545	107	8.3	7,216	90	2.9
39K	5.4	15,500	16,941	109	13	14,713	95	4.0
44Ca	25	2,360	2,517	107	4.0	2,174	92	3.6
49Ti	0.001	12.24	12	98	13	11	86	6.4
51V	0.029	1.57	1.7	106	9.1	1.6	99	5.7
52Cr	0.097	1.87	2.1	112	4.8	1.9	100	2.4
55Mn	0.014	3.17	3.8	119	7.6	3.2	100	6.0
57Fe	0.952	343	368	107	3.4	347	101	5.2
59Co	0.017	0.25	0.284	114	5.2	0.265	106	6.2
60Ni	0.082	1.34	1.6	116	3.5	1.4	104	5.1
63Cu	0.019	15.7	17	107	2.7	15	97	2.9
66Zn	0.247	51.6	57	110	4.1	47	90	2.4
75As	0.365	6.87	7.1	104	2.3	6.2	90	4.1
77Se	0.385	3.45	3.8	109	4.1	3.2	92	11
88Sr	0.001	10.1	11	111	7.5	9.0	89	5.1
95Mo	0.001	0.29	0.297	102	10	0.238	82	7.1
107Ag	0.001	0.0252	0.030	119	15	0.022	86	20
111Cd	0.181	0.299	0.370	124	8.6	0.319	107	17
118Sn	0.022	0.061	0.078	127	11	0.058	95	9.9
121Sb	0.005	0.011	0.013	116	14	0.010	88	12
137Ba	0.001	8.6	8.6	100	5.5	8.0	94	3.6
202Hg	0.025	0.412	0.459	111	3.2	0.414	100	4.4
205Tl	0.001	0.0013	-	-	-	-	-	-
208Pb	0.004	0.404	0.461	114	8.6	0.400	99	7.3
238U	0.001	0.05	0.054	108	5.4	0.047	95	6.8

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

Sample Group ID 03

Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.044	1.21	1.1	89	7.7
11B	0.132	4.5	4.3	96	4.1
23Na	9.4	14,000	13,539	97	4.8
24Mg	0.127	910	865	95	8.2
27Al	0.073	197.2	198	100	9.4
31P	126	8,000	7,567	95	5.0
39K	5.4	15,500	14,899	96	7.0
44Ca	25	2,360	2,335	99	2.1
49Ti	0.001	12.24	13	106	16
51V	0.029	1.57	1.5	96	6.7
52Cr	0.097	1.87	1.9	100	2.9
55Mn	0.014	3.17	3.0	93	5.1
57Fe	0.952	343	345	100	3.2
59Co	0.017	0.25	0.237	95	8.3
60Ni	0.082	1.34	1.3	97	7.7
63Cu	0.019	15.7	15	97	5.5
66Zn	0.247	51.6	48	94	2.4
75As	0.365	6.87	6.7	98	2.7
77Se	0.385	3.45	3.5	100	6.3
88Sr	0.001	10.1	9.5	94	4.7
95Mo	0.001	0.29	0.290	100	0.0
107Ag	0.001	0.0252	0.024	95	19
111Cd	0.181	0.299	0.272	91	12
118Sn	0.022	0.061	0.053	88	6.6
121Sb	0.005	0.011	0.011	102	7.5
137Ba	0.001	8.6	8.6	100	2.7
202Hg	0.025	0.412	0.371	90	12
205Tl	0.001	0.0013	-	-	-
208Pb	0.004	0.404	0.321	80	4.4
238U	0.001	0.05	0.046	91	10

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_LISP24_INV-1_2022-12_N	004	11 Jan 2023
	RG_LISP24_INV-2_2022-12_N	005	
	RG_LISP24_INV-3_2022-12_N	006	
	RG_LISP24_INV-4_2022-12_N	007	
	RG_LISP24_INV-5_2022-12_N	800	
	RG_LIDSL_INV-1_2022-12_N	009	
	RG_LIDSL_INV-2_2022-12_N	010	
	RG_LIDSL_INV-3_2022-12_N	011	
	RG_LIDSL_INV-4_2022-12_N	012	
	RG_LIDSL_INV-5_2022-12_N	013	
	rg_lidcom_inv-1_2022-12_n	014	
	RG_LIDCOM_INV-2_2022-12_N	015	
	RG_LIDCOM_INV-3_2022-12_N	016	
	RG_LIDCOM_INV-4_2022-12_N	017	
	RG_LIDCOM_INV-5_2022-12_N	018	
	RG_SLINE_INV-1_2022-12_N	019	
	RG_SLINE_INV-2_2022-12_N	020	
02	RG_SLINE_INV-3_2022-12_N	021	11 Jan 2023
	rg_sline_inv-4_2022-12_n	022	
	rg_sline_inv-5_2022-12_n	023	
	RG_LI24_INV-1_2022-12_N	024	
	RG_LI24_INV-2_2022-12_N	025	
	RG_LI24_INV-3_2022-12_N	026	
	RG_LI24_INV-4_2022-12_N	027	
	RG_LI24_INV-5_2022-12_N	028	
	RG_LCUT_INV-1_2022-12_N	029	
	RG_LCUT_INV-2_2022-12_N	030	
	RG_LCUT_INV-3_2022-12_N	031	
	RG_LCUT_INV-4_2022-12_N	032	
	RG_LCUT_INV-5_2022-12_N	033	
	RG_LILC3_INV-1_2022-12_N	034	
	RG_LILC3_INV-2_2022-12_N	035	
	RG_LILC3_INV-3_2022-12_N	036	
00	RG_LILC3_INV-4_2022-12_N	037	44 1 2022
03	RG_LILC3_INV-5_2022-12_N	038	11 Jan 2023
	RG_FRUL_INV-1_2022-12_N	039	
	RG_FRUL_INV-2_2022-12_N	040	
	RG_FRUL_INV-3_2022-12_N	041	
	RG_FRUL_INV-4_2022-12_N	042	
	RG_FRUL_INV-5_2022-12_N	043	

RG_LISP24_BIT-2_2022-12_N RG_LISP24_BIT-1_2022-12_N RG_LIDSL_BIT-1_2022-12_N RG_LISP24_BIT-5_2022-12_N RG_LISP24_BIT-4_2022-12_N RG_LISP24_BIT-3_2022-12_N RG_LIDSL_BIT-4_2022-12_N RG_LIDSL_BIT-3_2022-12_N RG_LIDSL_BIT-2_2022-12_N No samples collected for sample locations RG_LI8 and RG_FO23. PO 818999. samples labelled incorrectly. Please follow COC ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Teck SERVICE REQUEST (rush - subject to availability) Sample ID Facility Name / Job# Regional Effects Program Project Manager Cybele Heddle Phone Number 250-910-8755 Postal Code Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend 500 400 Address 421 Pine Ave Priority (2-3 business days) - 50% surcharge £00 900 110 010 000 008 012 Email Cybele.Heddle@teck.com PROJECT/CLIENT INFO Sample Location (sys loc code) COC ID: RG_LISP24 RG_LISP24 RG_LISP24 RG_LISP24 RG_LIDSL RG_LIDSI RG_LISP24 RG_LIDSI RG_LIDSI Sparwood V0B 2G0 SAMPLE DETAILS Regular (default) Matrix Field TA TA TA TA TA TA TA TA TA December 2022 LCO Hazardous Material (Yes/No) NO NO NO NO O ON O ON O ARMP Province Sampler's Signature Sampler's Name 29-Nov-22 01-Dec-22 01-Dec-22 01-Dec-22 01-Dec-22 01-Dec-22 29-Nov-22 29-Nov-22 Date RELINQUISHED BY/AFFILIATION Rick Smit/Lotic Environmental BC Time (24hr) 14:08 14:24 13:12 13:48 13:46 14:02 13:56 13:41 13:30 Tissue type INV W N INV INV N W INV N Page TURNAROUND TIME: Composite Composite Composite Composite Tissue Composite Composite Species Phone Number Lab Contact Jennie Christensen Postal Code Lab Name TrichAnalytics Inc. Structure Composite Composite Composite Composite Composite Composite Composite Composite Sample Address 207-1753 Sean Heights Composite LABORATORY Email jennie.christensen@trichanalytics Rick Smit City Saanichton of of Filt. ANALYSIS PRESERV. ############## DATE/TIME -Number of Containers _ -jest -_ 5 Metals in Biota by CRC ICPMS ANALYSIS REQUESTED PO number × × × × × × Gol Obstanlors × × × wet and dry) Province Mercury in Biota by CVAAS × × × × × × × × × neviere un wet, dry & routine) ACCEPTED BY/AFFILIATION BC Moisture Content by × × × × × × × × Date/Time Gravimetry Mobile # Email 3: Email 5: Email 2: Email 4: Email 1: Report Format / Distribution me Rhiannon.Hodgson@minno.X Cybele.Heddle@teck.com Nicole.Zathey@teck.com Hannah.Penner@teck.com Kbatchelar@minnow.ca RUSH: OTHER INFO 06Jan 2023 818999 December 27, 2022 Filtered - F: Field, L.: Lab, FL: Field & Lab, N: None 403-586-3241 ect # 202 Excel DATE/TIME 3-453 PDF 6900 EDD

RG LIDSL BIT-5 2022-12 N RG LIBCON BIT 3 3822-12 N RG LIDCOM JHT-1 2923-12 N BC LIBCON BIT J M22-12 N No samples collected for sample locations RG_1.18 and RG_FO23. PO 818999, samples labelled incorrectly, Please follow COC ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Teck SERVICE REQUEST (rush - val) ject to availability) Sample ID Facility Name / John Regional Effects Program Project Manager Cybele Heddle Phone Number 250-910-8755 Postal Code Trick ID Emergency (1 Business Day) - 100% surcharge 013 Priority (2-3 business days) - 50% surcharge 310 210 Address 421 Pine Ave 310 For Emergency <1 Day, ASAP or Weekend Email Cybele.Heddle/a.teck.com City PROJECT/CLIENT INFO Sample Location (sys loc code) RG_LIDCOM RG LIBCOM COCID RG LIBCOM RG LIBSI V0B 2G0 Sparwood SAMPLE DETAILS Regular (default Matrix Field A. 7 TA Z December 2022 LUO 80 Hazardous Material (Yes/No) NO NO S Province Sampler's Signature Sampler's Name 25.Nov-22 91-Dec-22 01-Dec-22 111-Dec-22 Date RELINQUISHED BY/AFFILIATION Rick Smit/Lotte Environmental 更 (24hr) 14:29 15:16 1500 THE. 14:28 TESSUE N N type 3 3 7 TURNAROUND TIME: Composite Composite Composite Composite Species 1188HG Phone Number Lab Contact Jennie Christensen Postal Code Lab Name TrichAnalytics Inc. Structure Composite Composite Composite LABORATORY Address 207-1753 Scan Heights Rick Smit Email jennie christensen@trichanalytics City Sassichton 92 DATE/FIME Sumber of Containers -Metals in Blota by CRC ICPMS (wet and dry) × × ANALYSIS REQUESTED GOL OF SUNTERS × × Province BC Mercury in Biota by CVAAS (wet, dry & routine) JENENS LADIAS × Chimery of ACCEPTED BY AFFILIATION × × × Moisture Content by Gravimetry × × × Date/Time Mobile # PO number Email 4: Email S Email 1: Email 3: Emuil 2: Report Format / Distribution Cybelle Reddingstack.com Name Zathey Ditork.com Rith British Doll von Kriefa (1) Harriah Penneriptieck com Koalchear Bristoowca RUSH OTHER INFO 06Jan 2023 December 7, 2022 666872 Filler - T.: Field Jr. Lat. 31 - Field & Lat., 7n News 403-586-3241 1ed# 2023-453 12 DATE/TIME Exce 10900 PDF EDD

RG_LIDCOM_BIT-4_2022-12_N RG_SLINE_BIT-1_2022-12_N RG_LIDCOM_BIT-5_2022-12_N RG_L124_BIT-2_2022-12_N RG_L124_BIT-1_2022-12_N RG_SLINE_BIT-5_2022-12_N RG_SLINE_BIT-4_2022-12_N RG_SLINE_BIT-3_2022-12_N RG_SLINE_BIT-2_2022-12_N No samples collected for sample locations RG_L18 and RG_FO23. PO 818999. samples labelled incorrectly. Please follow COC ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Teck SERVICE REQUEST (rush - subject to availability) Sample ID Facility Name / Job# Regional Effects Program Project Manager Cybele Heddle Phone Number 250-910-8755 Postal Code Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend Address 421 Pine Ave 410 024 020 019 023 022 021 80 Email Cybele.Heddle@teck.com 025 PROJECT/CLIENT INFO Sample Location (sys loc code) RG_LIDCOM COC ID: RG_LIDCOM RG_SLINE RG SLINE RG_SLINE RG_SLINE RG_LI24 RG SLINE RG_L124 Sparwood V0B 2G0 SAMPLE DETAILS Regular (default) Matrix Field TA TA TA TA TA TA TA TA TA December 2022 LCO NO Hazardous Material (Yes/No) NO NO NO NO NO ON NO NO IAEMP Province Sampler's Signature Sampler's Name 01-Dec-22 30-Nov-22 01-Dec-22 30-Nov-22 30-Nov-22 30-Nov-22 30-Nov-22 30-Nov-22 30-Nov-22 Date Rick Smit/Lotic Environmental BC Time (24hr) 12:48 10:15 13:20 15:27 15:19 14:00 13:46 13:05 9:43 Tissue W W W type N N N N N N Page TURNAROUND TIME: Composite Composite Composite Species Composite Tissue Phone Number Lab Contact Jennie Christensen Postal Code Lab Name TrichAnalytics Inc Structure Composite Composite Composite Composite Composite Composite Composite Composite Composite Sample LABORATORY Address 207-1753 Sean Heights Rick Smit Email jennie.christensen@trichanalytics City Saanichton در PRESERV. Filt, ANALYSIS DATE/TIME _ -Number of Containers B Metals in Biota by CRC ICPMS (wet and dry) GOL Obsan wis × × ANALYSIS REQUESTED × × × × × × Province BC Mercury in Biota by CVAAS (wet, dry & routine) Genera Luisne × × × × × × × × × Gumin 23-ACCEPTED BY/AFFILIATION Moisture Content by × × × × × × × × Gravimetry Date/Time Mobile # PO number Email 2: Email 1: Email 5: Email 3: Report Format / Distribution Cybele.Heddle@teck.com X Rhiannon.Hodgson@minno.X Kbatchelar@minnow.ca Hannah.Penner@teck.com Nicole.Zathey@teck.com OTHER INFO RUSH: 06Jan 2023 818999 Filtered - F: Fleid, L.: Lab, FL: Fleid & Lab, N: None December 7, 2022 Met # 2023-453 403-586-3241 DATE/TIME Excel 10900 PDF EDD

For Emergency <1 Day, ASAP or Weekend Sampler's Signature		SERVICE REQUEST (rush - subject to availability)		ALTO THE SERVICE AND THE INCOLUMN THE SERVICE STREET, THE SERVICE	No samples collected for sample locations RG_LI8 and RG_FO23, PO Rick Smit/Lotic Environmental	R	RG_L1LC3_BIT-(_2021-(1_N	RG_LCUT_BRT-S_2022-01_N 623	RG_LCUT_RUT = 3022-32_N	RG_LCUT_BITS_2022-RLN D3y RG_LCUT TA NO 91-Dec-22 US44 DNV Composite	RG_LCUT_BFF-2_2022-01_N m30 RG_LCUT TA NO 01-Dec-22 11-010 DNV Composite	RG_LCUT_BIT-1_2025-12_N G_2Q RG_LCUT TA NO 01-28-622 11-27 INV Composels	RG 1224 BIT-5_2022-12_N C-229 RG 1224 TA NO 34-Nov-22 10:41 INV: Composite	RG_LIZA_BITA_2022-12.N D17 RG_LIZA TA NO 39-Non-22 10:38 INV Composée	RG_LD4_BIT-3_2025-12_N	Sample ID Trigh p (sys (sc code)) Matrix H Date (24hr) type Species	SAMPLE DETAILS			City Sparwood Province BC	Address 421 Pine Ave	@Jeck.com	Facility Name / Jobil Regional Effects Program Project Manager Cybele Heddle	The state of the s	COCID: December 2022 ECO TURNAROUND TIMES	eck
	Rick Smit					DATECTIVE	Composite I X	Composite 1 X	Compettr 1 X	Composite 1 X	Composite 1 X	Composite 1 X	Composite 1 X	Composite 1 X	Composite 1 X	Number of Containers Metals in Biota by CRC ICPMS (wet and dry) Mercury in Biota by CVAAS		Phone Number	Postal Code	City Samichton Prov	Address 207-1753 Sean Heights	Email jenne christensen/etrichanalytics	Lab Name TrichAnalytics Inc.	LABORATORY	E	6,61,01
Date/Time	Mobile #			Tumur H	reviene lui	ACCEPTED BY AFFILIATION	x x	X	×	x	×	×	x	×	x	(wet, thry & routine) Ministure Content by: Gravimetry	NALYSIS REQUESTED	POnt		Province BC Email 5:			Rep			6Jan 10LD
December 7, 2022	403-586-3241	The state of the s	Myest # 2023-453	3 - OLJan 3023 / 0900		TUINTION OATE(IIME											Head F. Edd, C.Ld., E. Dat & Ca., N. New	PO number 878999		Email 5: Kasthear@menoeca a 1 4	None Zehry@teck.com X X	Rhiamon Hodgsongmano X	Report Format / Distribution		RUSH:	

		SERVICE REQUI		818999, samples label	No samples collected for sample locations RG_LI8 and RG_FO23. PO	ADDITIONAL COMP	RG FRUL BIT-5 2022-12 N	RG_FRUL_BIT-4_2022-12_N	RG_FRUL_BIT-3_2022-12_N	RG_FRUL_BIT-2_2022-12_N	RG_FRUL_BIT-1_2022-12_N	RG_LILC3_BIT-5_2022-12_N	RG_LILC3_BIT-4_2022-12_N	RG_LILC3_BIT-3_2022-12_N	RG_LILC3_BIT-2_2022-12_N	Sample ID	THOIL	Phon	D				Project	Facility Nar		Teck						
Emergency	Priority	EST (rush -		lled incorr	ple locati	MENTS/SP	043	042	140	040	680	038	650	036	8.0	Trans P	CINUITORI	Number	City Postal Code		Address	Email	Manager	me / Job#								
Emergency (1 Business Day) - 100% surcharge	Regular (default) Priority (2-3 business days) - 50% surcharge	SERVICE REQUEST (rush - subject to availability)		818999, samples labelled incorrectly. Please follow COC	ons RG_LI8 and RG_FC	ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS	RG_FRUL	RG_FRUL	RG_FRUL	RG_FRUL	RG_FRUL	RG_LILC3	RG_LILC3	RG_LILC3	RG_LILC3	Sample Location (sys loc code)		Bhone Number 250-910-8755	V0B 2G0	Chargood	Address 421 Pine Ave	Email Cybele.Heddle@teck.com	Project Manager Cybele Heddle	Facility Name / Job# Regional Effects Program	PROTECT/CLIENT INFO							
surcharg	 - 50% surcharge 			(3)23. PO		TA	TA	TA	TA	TA	TA	TA	TA	TA	Field	SAMPLE DETAILS									рес						
	6 /						NO	NO	NO	NO	NO	NO	NO	NO	NO	Hazardous Material (Yes/No)	S			p					-	embe						
Camalania Signatura	Sampler's Name				Ric	RELIT	29-Nov-22	29-Nov-22	29-Nov-22	29-Nov-22	29-Nov-22	01-Dec-22	01-Dec-22	01-Dec-22	01-Dec-22	Date				Province					AEMP	December 2022 LCO						
	ame				k Smit/Lo	NQUISHE	12:05	11:52	11:17	11:13	10:06	10:46	10:35	10:14	9:40	Time (24hr)				BC						O						
					Rick Smit/Lotic Environmental	D BY/AFF	INV	INV	INV	INV	INV	INV	INV	INV	INV	Tissue										1						
Rick Smit				nmental	RELINQUISHED BY/AFFILIATION	Composite	Composite	Composite	Composite	Composite	Composite	Composite	Composite	Composite	Tissue Species		Pho	F				I			TURNAROUND TIME:							
														Composite		e Composite	Composite		Composite		Composite	Composite	Composite	Sample		Phone Number	Postal Code	City	Addiese 707-1733 Seat treignes	Address	Lab Contact Jennie Christensen	Lab Name TrichAnalytics
	mit			+		DA		1				100				ANALYSIS PRESERV. Filt,				City Saanichton	707-17	Jennie.	Jennie	TrichA	ATOR"							
						DATE/TIME	-	-	-	-	-	-	-	-	-	Number of Containers Metals in Biota by CRC ICPMS	A			hton	22 3ca	E3 Ca	Christe	nalytics	Y	0						
						ME	×	×	×	×	×	×	×	×	×	(wet and dry)	NAL			Pr	ii iicigi	Haird	nsen	s Inc.		0 10						
				Gu	Ger	ACC	×	×	×	×	×	×	×	×	×	Mercury in Biota by CVAAS (wet, dry & routine)	SIS RE			Province B	6	Editali Jennie componegnoment	ichanalo			6590						
Date/Time	Mon			mumi	reviene	ACCEPTED BY/AFFILIATION	×	×	×	. ×	×	>	: ×	×	×	Moisture Content by Gravimetry	NALYSIS REQUESTED			BC			6			Got 0 65 GA 2023						
Time	Mobile #	-		3	Car	BY/AH											D	PO number		Email 5:	Email 4:	Fmail 3:	Email 7	Repo								
				Cr.	2012	FILIA												nber						110								
De			PA	06	4	ION											- India	818		Kbatchelar@minnow.ca	Hannah,Penner@teck.com	Nicole Zathev@teck.com X	Cybele.Heddle@teck.com	Report Format / Distribution	OTHER INFO	RUSH:						
403-586-3241 December 7, 2022	03-586-	Project #2023-453	06 Jan 4623	1	-											Hilleton - F. Eddin' Til Prant Late Late Later or Trans Late	818999							INFO								
7, 2022		3241	#20	-		DATE:	TET					1					Lit Later F	1 1 1 1		X				KCCI	- 1000							
			23-	00100	201	1111111	AME	+		1							o near the	a bland		×	X	X	X	PDF	non-							
			854	0	5		1	+		+	+	+	-	+			Transfer Land	Tab N. T		X	X	X	X	EDD	100							